• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.17.2020.tde-08012020-110425
Document
Auteur
Nom complet
Ricardo Puziol de Oliveira
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
Ribeirão Preto, 2019
Directeur
Jury
Achcar, Jorge Alberto (Président)
Barros, Emilio Augusto Coelho
Nunes, Altacilio Aparecido
Ortega, Edwin Moises Marcos
Titre en anglais
Multivariate lifetime models to evaluate long-term survivors in medical studies
Mots-clés en anglais
Bayesian approach
Cancer studies
Continuous models
Cure rate
Dependence structure
Discrete models
Medical studies
Multivariate models
Public health
Regression models
Risk factors
Survival analysis
Resumé en anglais
Multivariate survival data are presented in the literature in all shapes and sizes. A common situation is the presence of correlated lifetimes when an individual is followed-up for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In many applications involving these type of data, it is common the use of continuous random variable modeling approach. In this direction, the multivariate normal distribution is the most common used since it has friendly properties such as a readily interpretable dependence structure. Moreover, in most of these studies, there is the presence of covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. In this situation, it is needed to assume lifetime regression models. In this way, the well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not enough to explain the complete dependence structure of pair of lifetimes on the covariate vector. In this thesis, it is presented some new multivariate lifetime models assuming cure rate structure based on mixture and non-mixture approaches for the analysis of long-term survivors applied to medical studies. The proposed models could be also useful to study the dependence structure of pair of lifetimes on the covariate vector X. The results emerging from this study reinforce the fact that the search of appropriate multivariate lifetime distributions could be extremely difficult depending on the correlation structure of the lifetime data. However, the proposed methodology could be very useful in the medical lifetime data analysis where the interest is the estimation of the fraction of patients in the studied population who never experience the event of interest. In addition, the identification of important covariates was also easily obtained assuming the proposed models even using non-informative priors for the parameters of the model, under a Bayesian approach. The results could be also extended to other cross-over trials in clinical research; reliability analysis in engineering; risk analysis in economics; among many other areas. For reproducible research, the general framework for the computer codes of the proposed modeling approach is also presented which could be carried out using free R or OpenBugs free softwares.
Titre en portugais
Modelos multivariados para avaliar sobreviventes de longo prazo em estudos médicos
Mots-clés en portugais
Análise Bayesiana
Estrutura de dependência
Estudos de câncer
Estudos médicos
Modelos contínuos
Modelos discretos
Modelos multivariados
Taxa de cura
Resumé en portugais
Dados multivariados de sobrevida são apresentados na literatura em muitas formas e direcionamentos de modelagem. Uma situação comum é a presença de tempos de sobrevida correlacionados quando um indivíduo é acompanhado até a ocorrência de dois ou mais tipos de eventos, ou quando indivíduos distintos têm tempos dependentes para o mesmo tipo de evento ocorrendo várias vezes. Em muitas aplicações envolvendo esses tipos de dados, é comum o uso de uma abordagem de modelagem assumindo variáveis aleatórias contínuas. Nessa direção, a distribuição normal multivariada é a mais comumente utilizada uma vez que possui propriedades amigáveis como uma estrutura de dependência prontamente interpretável. Além disso, na maioria desses estudos, há a presença de covariáveis, como tratamentos, indicadores de grupos, características individuais ou condições ambientais, cuja relação com o tempo de vida é de interesse. Nessa situação, é necessário assumir modelos de regressão de longa duração. Dessa forma, o conhecido modelo de riscos proporcionais de Cox e suas variações, utilizando funções de risco marginais usadas para a análise de dados de sobrevida multivariada como observado na literatura, não são suficientes para explicar a estrutura de dependência completa do par de tempos de vida no vetor das covariáveis. Nesta tese, são apresentados alguns novos modelos multivariados de longa duração assumindo uma estrutura de taxa de cura baseada em abordagens de modelos de misturas e não-misturas para a análise de sobreviventes de longo prazo aplicados a dados de estudos médicos. Os modelos propostos também podem ser úteis para estudar a estrutura de dependência do par de tempos de vidas no vetor de covariáveis X. Os resultados que emergiram deste estudo reforçam o fato de que a busca de distribuições multivariadas apropriadas podem ser extremamente difíceis, dependendo da estrutura de correlação dos dados de sobrevida. No entanto, a metodologia proposta poderia ser muito útil na análise dos dados de sobrevida médicos onde o interesse é a estimativa da fração de pacientes na população estudada que nunca experimentaram o evento de interesse. Além disso, a identificação de covariáveis importantes também foi facilmente obtida, assumindo os modelos propostos, mesmo usando distribuições a priori não informativas para os parâmetros do modelo, sob uma abordagem Bayesiana. Os resultados também poderiam ser estendidos a outros tipos de ensaios clínicos; análise de confiabilidade em engenharia; análise de risco em economia; entre muitas outras áreas. Para a pesquisa reprodutível, também é apresentada a estrutura geral para os códigos de computador da abordagem de modelagem proposta que pode ser realizada usando softwares livres R ou OpenBugs.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-04-30
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.