• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.17.2011.tde-02052012-094850
Document
Author
Full name
Estela Cristina Carneseca
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2011
Supervisor
Committee
Achcar, Jorge Alberto (President)
Mello, Luane Marques de
Vianna, Elcio dos Santos Oliveira
Title in Portuguese
Problemas respiratórios e fatores ambientais: uma análise Bayesiana para dados de Ribeirão Preto
Keywords in Portuguese
Análise Bayesiana
Material particulado.
Palavras-chave: Modelo de regressão de Poisson
Problemas respiratórios
Queimadas
Abstract in Portuguese
Estudos envolvendo o meio ambiente estão sendo cada vez mais desenvolvidos devido ao fato dos níveis de poluição e das mudanças climáticas estarem causando a degradação da qualidade do ar e dos reservatórios de água de maneira alarmante nos últimos anos, comprometendo sobretudo, a qualidade de vida do ser humano. Dado que estes fatores são preponderantes nos agravos e complicações respiratórias dos indivíduos, buscou-se compreender com este estudo a relação entre as condições atmosféricas e os problemas respiratórios nos residentes do município de Ribeirão Preto, interior de São Paulo, onde há um elevado número de focos de queimadas nos períodos de estiagem e, consequentemente, altas concentrações de poluentes, como o material particulado. Considerando os dados mensais de contagem de inalações/nebulizações, foram assumidos diferentes modelos de regressão de Poisson na presença de um fator aleatório que captura a variabilidade extra-Poisson entre as contagens. A análise dos dados foi feita sob enfoque Bayesiano, utilizando métodos de simulação MCMC (Monte Carlo em Cadeias de Markov) para obter os sumários a posteriori de interesse.
Title in English
Respiratory problems and environmental factors: a Bayesian analysis for data from Ribeirão Preto City.
Keywords in English
Bayesian Analysis
Fires
Particulate matter.
Poisson regression model
Respiratory problems
Abstract in English
Many studies involving the environment are being developed in the last years due to the fact that the levels of pollution and climate changes are causing the degradation of air quality and water reservoirs at an alarming rate in recent years, with great consequences for the quality of life of the population. Since these factors are prevalent in respiratory disorders and complications of the health for the individuals, we intended to understand from this study the relationship between weather conditions and respiratory problems for the residents of the municipality of Ribeirão Preto, São Paulo, which has a high number of outbreaks of fires in drought periods and, consequently, high concentrations of pollutants such as particulate matter. Considering the monthly count of inhalations / nebulizations, we assumed different Poisson regression models in the presence of a random factor that captures the extra-Poisson variability between the counts. The data analysis was performed under a Bayesian approach using MCMC simulation methods (Markov Chain Monte Carlo) to get the posterior summaries of interest.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Estela.pdf (887.72 Kbytes)
Publishing Date
2012-05-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.