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Resumo 

CARDOSO-JÚNIOR, C. A. M. Epigenética em coméias de abelhas. 2020. 133f. Tese (Doutorado 

em Biologia Celular e Molecular) – Faculdade de Medicina de Ribeirão Preto, Universidade de São 

Paulo, Ribeirão Preto, 2020. 

 

Mecanismos epigenéticos desempenham um papel importante na expressão gênica alterando a 

estrutura da cromatina sem alterar a sequência do DNA. Os mecanismos melhores estudados são a 

metilação do DNA, modificações pós-traducionais nas histonas e RNAs não-codificantes. Este 

trabalho teve como objetivo explorar as funções desses mecanismos epigenéticos em diversos 

processos do ciclo de vida de abelhas adultas da espécie Apis mellifera. Primeiramente, estudamos o 

papel da metilação do DNA na longevidade de operárias e rainhas. Neste contexto, nós determinamos 

os efeitos de estímulos sociais, como feromônios e variações demográficas sazonais em colmeias de 

abelhas, na expressão de genes codificadores de enzimas que promovem modificações epigenéticas 

no DNA, RNA e histonas. Finalmente, investigamos como o gene codificador da DNA 

metiltransferase 3 (DNMT3), uma enzima chave na reprogramação da metilação do DNA, é regulada 

durante a maior transição da vida das operárias, nomeadamente, a transição entre o cuidado da cria e 

o forrageamento. Nossas análises da expressão dos genes das Dnmts e ensaios funcionais de suas 

atividades enzimáticas mostraram que a metilação do DNA está associada a longevidade de abelhas 

operárias, provavelmente envolvendo a regulação da vitelogenina, uma proteína que controla as taxas 

de maturação comportamental desta casta. Além disso, fatores ambientais (ex: feromônio da rainha e 

exposição à larvas ou adultos jovens) regulam a expressão de genes que codificam modificadores 

epigenéticos do DNA, RNA e histonas. Esses dados sugerem que reprogramações epigenéticas 

controlam a expressão gênica, permitindo adaptação a novos ambientes sociais. Uma segunda parte 

importante deste projeto gerou dados de metilomas através do sequenciamento de bissulfito para 

comparar genes diferencialmente metilados nos cérebros e ovários de operárias sujeitas a contextos 

sociais distintos. Interessantemente, e ao contrário do esperado, esses resultados revelaram poucas 

alterações na metilação do DNA em resposta a um novo contexto social, apesar de alterações 

significativas na expressão dos genes Dnmt. Além disso, os padrões de metilação em ovários e 

cérebros são quase idênticos, apesar das diferenças funcionais nesses tecidos, indicando também que 

é improvável que a metilação do DNA regule a expressão gênica em abelhas. Isso nos leva a concluir 

que a maquinaria de metilação do DNA possivelmente possuem outras funções, as quais não são 

diretamente associadas à metilação do DNA. De acordo com essa hipótese, análises in silico e dados 

de microscopia confocal mostraram a localização citoplasmática da proteína DNMT3, a qual foi 

encontrada predominantemente associada a vesículas lipídicas de células do corpo gorduroso. 



 
 

Finalmente, descobrimos que o microRNA de abelhas ame-miR-29b é um regulador autêntico da 

expressão de Dnmt3, e essa função é conservada evolutivamente entre abelhas e mamíferos, incluindo 

humanos. Em conclusão, este estudo revelou um grau considerável e inesperado de complexidade 

nos papéis dos mecanismos epigenéticos e sua regulação da expressão gênica na vida social das 

abelhas. 

 

Palavras chaves: Epigenética. Metilação do DNA. Envelhecimento. Abelhas. Apis mellifera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Abstract 

CARDOSO-JÚNIOR, C. A. M. Epigenetics in a honeybee hive. 2020. 133f. Thesis (Ph.D. in Cell 

and Molecular Biology) – Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão 

Preto, 2020. 

 

Epigenetic mechanisms play a major role in gene expression, altering the chromatin structure without 

changing the DNA sequence. The best studied epigenetic mechanisms are DNA methylation, histone 

post-translational modifications and non-coding RNAs. This work aimed to explore the functions of 

these epigenetic mechanisms in the context of several processes in the adult life cycle of the honeybee, 

Apis mellifera. Firstly, we studied the role of DNA methylation in the longevity of workers and 

queens. In this context, we determined the effects of social stimuli, such as the queen pheromone and 

the seasonal demographic variation in the beehive, on the expression of genes that code for enzymes 

that promote epigenetic alterations on the DNA, RNA and histones. Finally, we investigated how the 

gene encoding the DNA methyltransferase 3 (DNMT3), a key enzyme for the reprogramming of 

DNA methylation, is regulated during the major behavioural transition in a worker bee’s life, namely, 

the transition from brood care to foraging. Our analyses of Dnmt genes expression and functional 

assays of their enzymatic activity showed that DNA methylation is associated with longevity in 

honeybee workers. This likely involves the regulation of vitellogenin, a protein that controls 

behavioural maturation rates in this caste. Moreover, environmental factors (e.g., queen pheromone 

and exposure to larvae or young adults) regulate the expression of genes that code for epigenetic 

modifiers of DNA, RNA and histones. These data suggest that epigenetic reprogramming controls 

gene expression, allowing adaptation to new social environments. In a second major project we 

generated methylome data by bisulfite sequencing for comparisons between differentially methylated 

genes in the brains and ovaries of workers subjected to distinct social contexts. Strikingly, and 

contrary to expectation, these results revealed only very few changes in DNA methylation in response 

to a new social context, despite significant alterations in the expression of Dnmt genes. Furthermore, 

the methylome patterns in ovaries and brains are almost identical, despite the functional differences 

for these tissues, thus also indicating that DNA methylation is unlikely to regulate honeybee gene 

expression. This led us to conclude that the DNA methylation machinery possibly displays other 

functions that are not directly associated with DNA methylation. In line with this hypothesis, in silico 

analyses and confocal microscopy data showed that a cytoplasmic localization of the DNMT3 protein 

is predominantly found associated with lipid vesicles. Finally, we found that the honeybee microRNA 

ame-miR-29b is a bona-fide regulator of Dnmt3 gene expression, and this function is evolutionary 

conserved between honeybees and mammals, including humans. In conclusion, this study revealed a 



 
 

considerable and unexpected degree of complexity in the roles of epigenetic mechanisms and their 

regulation of gene expression in a honeybee’s social life. 

 

Key words: Epigenetics. Aging. DNA methylation. Honey bee. Apis mellifera. 
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1. Introduction 

 

The term “Epigenetics” was firstly coined by the biologist Conrad H. Waddington in 1942. 

He defined epigenetics as changes in the phenotype without alterations in the genotype. Nowadays, 

the concept of epigenetics comprises a group of molecular mechanisms that act on the inheritance of 

gene expression patterns by adapting the chromatin structure 1. Chromatin can be interpreted as the 

physiological part of our genetic information, which include the double-stranded DNA and its 

associated packaging proteins. Depending on the degree of association between the DNA, histones, 

and other chromatin-modifier proteins, the chromatin state can vary from high to low compaction, 

denoted as heterochromatin and euchromatin, respectively 2. Heterochromatin regions are 

transcriptionally inactive regions where the nucleosomes, which are composed by different types of 

histones, are tightly associated with the DNA, blocking the access of proteins, especially transcription 

factors, that will regulate the transcription of specific genes 3. Euchromatin regions, on the other hand, 

are transcriptionally active because of the low association between the regulatory regions of the DNA 

and nucleosomes 4.  

Epigenetic modifications consist of a broad range of molecular programs that act at several 

levels of gene expression, such as DNA methylation, histone post-translational modifications, histone 

variants, RNA methylation, microRNAs and other non-coding RNAs, just to mention the major 

players 5. These epigenetic mechanisms mostly control gene activity by altering the chromatin 

structure. Some epigenetic mechanisms, however, such as non-coding RNAs (e.g., microRNAs, 

piwiRNAs) act at posttranscriptional stages of gene expression 6. Other epigenetic events, e.g., 

histone phosphorylation and histone variants, are not directly linked to gene expression, but act, for 

example, by maintaining the genomic architecture, such as genomic stability and chromosome 

segregation during cell division cycles (revised in 1,5). 

In this study I focused on classical epigenetic mechanisms and the role(s) they play in several 

social traits of the honeybee. Specifically, the roles of DNA methylation, histone modifier genes, and 

microRNAs were studied in different tissues and castes subjected to different social contexts that 

influence ageing, reproductive and behavioural processes. The main hypothesis of this work is that 

the high degree in honeybees makes, at least in part, use of the complex and efficient epigenetic 

mechanisms to flexibly regulate gene expression. Thus, epigenetic events were predicted to be 

associated with important aspects of the social lifestyle of honeybees, including pheromonal 

regulation of behavioural maturation of workers, as well as the remarkable differences of reproductive 

and longevity traits between queens and workers. In addition, we also studied the mechanisms that 
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control the expression of the DNA methyltransferase 3 (DNMT3) gene and its protein, given its 

postulated importance in regulating de novo DNA methylation.  

In the following subsections, I will present an overview on these epigenetic mechanisms and 

how they canonically control gene expression in social insects or in other biological models. Detailed 

information of each of the studied mechanisms is provided in the following sections of this 

introduction. The experiments and results obtained in this thesis will then be presented in the form of 

five chapters, followed by a general conclusion summarizing the main take home messages of this 

study. Finally, a list of peer-reviewed articles published during the development of this work, or 

manuscripts under review, as well as publication not directly linked to epigenetics mechanisms in 

honeybees are presented as attachments to this thesis. 

 

1.1 DNA methylation and honeybees 

 

The DNA methylation is the best studied epigenetic mark 1. This epigenetic mark refers to an 

inheritable and reversible chemical modification placed on the carbon 5 of cytosines in the context 

of CpG dinucleotides. DNA methylation is catalysed by DNA methyltransferase (Dnmt) enzymes, 

which transfer a methyl group from S-adenosylmethyonine to a cytosine 7. Methionine is an essential 

amino acid precursor of S-adenosylmethyonine, so the uptake of methyl-donor molecules occurs 

strictly during feeding 8. The DNMT1 is considered DNA methylation enzyme, as it promotes DNA 

methylation during replication, by coping the methylation pattern from the DNA mother strands to 

the newly synthetized DNA strands. In contrast, DNMT3 is responsible for creating new patterns of 

methylation due to its de novo catalytic activity 7. DNMT2, also called Trdmt1, was initially classified 

as a DNA methyltransferase based on sequence similarity, but this enzyme is in fact an RNA 

methyltransferase, primarily targeting tRNAs 9.  

The DNMT enzymes, and consequently DNA methylation, play essential roles during the 

development of several organisms 10,11. For example, the knockout of either DNMT1, DNMT3A, or 

DNMT3B is lethal in several biological models, including human embryonic stem cells, mouse, and 

zebrafish 12–15. On the other hand, the knockout of the DNMT2 did not cause deleterious phenotypes 

in Drosophila melanogaster 16, yet it did so in zebrafish, indicating species-specific activity 17. The 

varying results obtained in DNMTs knockout experiments can be explained by the diverse functions 

of each of these enzymes. Whereas DNMT1 and DNMT3 are strongly associated with the generation 

and maintenance of DNA methylation 7, DNMT2 acts on tRNA substrates 9. Under stress conditions 

it can also affect the biogenesis of microRNAs by regulating the cleavage of methylated-tRNA 18,19. 
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Epigenetic studies showed that the DNMTs are not sequence-specific as they are able to 

methylate the whole genome 1,7. Mechanistically, however, we still do not fully understand how the 

DNMTs are delivered to specific genomic loci 20. Therefore, depending on where the methylation 

mark is deposited, it will influence a diverse range of biological mechanisms, including the control 

of gene expression, genomic stability, repression of mobility elements of DNA, and also the X 

chromosome inactivation 1,21. For example, the methylation at sites in promoter regions is known to 

repress gene expression by reducing the affinity between DNA and transcription factors, and the 

methylation of transposable elements is known to repress their activity. Regions with high densities 

of CpG nucleotides, called CpG islands, are often differentially methylated between normal and 

carcinogenic cells, indicating that this epigenetic mark might be of importance for several pathologies 
22,23.  

Much less understood is the methylation within gene bodies (intragenic methylation), and it 

has intrigued scientists since its discovery. Gene body methylation occurs in exons and introns, and 

is phylogenetically widespread among animals and plants 24,25, but there is no consensus yet on its 

role. In plants, for instance, it does not regulate gene expression, it is not a request for viability, and 

also does not affect transcriptional elongation 26–28. In mammals, it has been shown that gene body 

methylation may influence gene expression, yet its underlying mechanistic aspects still remain 

unclear 29. In the highly eusocial honeybees, gene body methylation at been suggested to regulate 

gene expression through alternative splicing 30.  

The roles of DNA methylation in invertebrates is still poorly understood because the main 

genetic models, the fruit fly D. melanogaster and the nematode Caenorhabditis elegans, lack the 

principal components to epigenetically modify their DNA 31. For this reason, social insects emerged 

as models for epigenetic studies, because they present an active epigenetic system and a fascinating 

repertory of social behaviour 32,33. Honeybees were used to explore the genomic functions of gene 

body methylation because in its genome, methylation is found exclusively at gene bodies 34, thus 

facilitating the acquisition of data without the confounding effects from other methylated genomic 

compartments.  

Honeybees are worldwide spread insects that are excellent to study DNA methylation and its 

roles on fascinating features of a social lifestyle, such as the presence of different castes (queens and 

workers), a haplodiploid system for sex determination, and complex social behaviours 33,35. 

Furthermore, honeybee methylomes are much less complex than the ones of mammals, as only ~1% 

of the CpGs are methylated 34,36. Methylation in honeybees is enriched at highly expressed genes, 

including house-keeping genes 34,37.  
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In A. mellifera, as in all Hymenoptera, sex is determined by a haplodiploid system, whereby 

unfertilized eggs give rise to males and fertilized eggs develop into female individuals. Honeybee 

societies are characterised by an elevated degree of social organization marked by the reproductive 

division of labour among its castes in the female sex, workers and queens. The developmental 

pathways underlying caste development are differentially activated by the diet received by the larvae. 

Queen-destined larvae are solely fed royal jelly, a secretion of the hypopharyngeal and mandibular 

glands in the head of workers that is rich in protein, lipid and carbohydrates 38. On the other hand, 

worker-destined larvae receive worker jelly, a similar head gland secretion, yet less rich in 

carbohydrates, during the first three days of larval development. Subsequently they are fed a mixed 

diet consisting of worker jelly, pollen and honey 39,40. 

Remarkable differences regarding reproductive, behavioural, physiological, and 

morphological aspects distinguish the two castes 39. For example, queens are highly reproductive 

females that can lay up to 2000 eggs per day 39–41, while workers are facultatively sterile females that 

only lay unfertilized eggs in the absence of the queen 39,42. Queens, through their mandibular gland 

pheromone, maintain the reproductive monopoly of a colony by supressing ovary activation in 

workers 42,43. Interestingly, the knockdown of DNMT3 function by RNA interference in worker 

larvae resulted in a queen-like phenotype, thus restoring the biological effects of the royal jelly diet 
44. Differences were also found when contrasting the methylomes of queens and workers in both 

larval and adult stages 34,36. Thus, DNA methylation is thought to play a major role in the development 

and function of the honeybee castes 32,34,36,44,45. 

Another interesting aspect of eusociality is the absence of the “reproductive vs. longevity” 

trade-off, which is a hallmark in practically all solitarily living Bilateria. This trade-off predicts that 

the high energetic costs associated with reproduction result in a decline in life span 46,47. Social insects 

are an exception to this rule, as for instance in the honeybee, the highly reproductive queens live 

almost 20 times more than non-reproductive workers. Ageing in honeybee workers is also fascinating, 

because it is associated with behavioural maturation, meaning that young worker specialize in in-hive 

activities, such as cleaning and attending and feeding the brood, whereas older workers perform more 

risky tasks outside the colony, including foraging and colony defence 39,48. Interestingly, both 

behavioural maturation and ageing in honeybee workers can be delayed, accelerated, or even 

reversed, depending on the needs of the colony 48,49. Behavioural maturation and ageing in workers 

is determined by intrinsic and extrinsic factors, including social clues, such as pheromones, that affect 

their behaviour by regulating gene expression, 50–52. Importantly, DNA methylation patterns were 

found to be associated with the division of labour in honeybee workers 53, and these patterns were 

shown to be reversible depending on the task exhibited by the workers. This suggests that the dynamic 
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methylation of DNA plays an important role in the behavioural maturation and ageing in honeybee 

workers 53. Yet, whether this dynamic in epigenetic marks is also associated with the chronological 

ageing and not only the behavioural maturation of honeybee workers remained to be elucidated. 

These studies that showed altered patterns of DNA methylation comparing individuals of the 

different castes and worker bees displaying different social tasks were essentially correlational 

studies, and information from functional studies is still limited. A study showed that the RNA 

interference-mediated Dnmt3-knockdown affected the expression of 17% of the honeybee genes 30. 

Nonetheless, a reanalysis of the data published in this study showed that only a very small fraction of 

the honeybee transcriptome is in fact likely to be regulated by the DNMT3 activity 54. The problem 

of a clear functional role for gene body methylation in honeybees, as well as in other social insects, 

became apparent in a study that compared the methylomes of reproductive and non-reproductive 

clonal raider ants, a species that reproduce asexually and, therefore, allows to design experiments 

without the confounding effects of genetic variants 55. This study showed that the link between DNA 

methylation and social function is actually in this ant 55, and possibly so also in other social insects, 

contradicting to a certain extent the previous reports for honeybees 36. A possible explanation for 

these contrasting results may be that DNA methylation is in fact genotype-specific in these social 

insects 55,56. Thus, the role of gene body methylation in the honeybee and, more broadly, in other 

social insect genomes, requires further studies. 

 

1.2. Histone post-translational modifications 

 

Histones play essential roles in the life of eukaryotes by packing the large strands of DNA 

into the small nucleus in a functional fashion. This involves the winding of double-stranded DNA 

around nucleosomes. Nucleosomes are a multiproteic complexes composed of two molecules of each 

of the following histones: H2A, H2B, H3 and H4, while H1 forms a bridge between two neighbouring 

nucleosomes, allowing the strong compaction of chromatin 57. Covalent post-translational 

modifications can occur on the unfolded N-terminal tails of nucleosome proteins, and these can have 

a major role in gene expression regulation 58. Epigenetic modifications of histones regulate gene 

expression by promoting either local chromatin remodelling (e.g. cis-regulatory events) or signalling 

to promote distant epigenetic regulation (e.g. trans-regulatory events) 59. Both, cis and trans-

regulatory events are determined by a serious of epigenetic phenomena, including the actual 

epigenetic mark, the modified residue on histone tails and the cross-talk with other epigenetic events 

(e.g. DNA methylation, non-coding RNAs), constituting thus an epigenetic code that integrates 

several epigenetic events to regulate gene expression 
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How histone post-translational modifications (HPTMs) can affect nucleosome positioning 

and, in consequence transcription, was extensively studied in the context of the formation and 

expansion of heterochromatin in D. melanogaster. It was shown that gene expression is regulated by 

HPTMs, explaining the long-known phenomenon of “position-effect variegation”. This phenomenon 

was first described by Hermann J. Muller in the white-mottled-4 (wm4) Drosophila mutant 60. This 

mutant showed eye colour variegation due to the juxtaposition of genes for eye pigmentation next to 

heterochromatin domains by chromosomal rearrangement or transposition, resulting in gene 

silencing. Heterochromatin extension occurs via propagation of epigenetic elements along 

chromosomes 3.  

Histone methylation occurs in lysine and arginine residues in the H3 tails and also in related 

proteins, for instance SU(VAR)3-9 and HP1 3,61. It causes transcription activation or repression, 

depending on the amino acid modified and the degree of modification, which can be found at three 

degrees, as mono-, di-, or three-methylation. Each type of histone methylation results in a restructured 

chromatin in either direction, i.e. from euchromatin to heterochromatin and vice versa. Histone 

methylation is also influenced by the neighbouring epigenetic marks on DNA and adjacent 

nucleosomes. With such an elaborated system of epigenetic information, the existence of an 

epigenetic code has been proposed that coordinates gene expression. Therefore, chromatin 

remodelling is likely the result of a crosstalk between several histone and other epigenetic marks, 

including DNA methylation, non-coding RNAs and activation of RNA Polymerase II. 

Because of the complex association between DNA and methylated histones, this epigenetic 

mark did not receive much attention when it was discovered 62. By that time, histone acetylation 

received more attention because this epigenetic mark is directly linked to activation of gene 

expression. Acetylation neutralizes positive charges on the histone tails. This reduces the affinity 

between the DNA and nucleosomes, leading to chromatin opening and consequently facilitating 

transcription 1,58. The direct link between gene transcription and this epigenetic modification led to 

the discovery of the machineries involved in reversibly modifications of histone residues. These can 

be classified as writers and erasers, or in other terms histone acetyltransferases (HATs) and histone 

deacetylases (HDACs), respectively. HATs are responsible for adding acetyl groups to lysine residues 

on histone tails, whereas HDACs remove these groups 63,64. Later another class of epigenetic modifier 

proteins was found, the readers, which bind to modified residues and promote chromatin remodelling. 

Interestingly, a class of well-characterized NAD+-dependent HDACs enzymes called Sirtuins is 

known to play a major role in the longevity of several animal model organisms, including D. 

melanogaster and C. elegans 65. Studies in honeybees on Sirtuins and HPTMs in general are still 

scarce (but see 66,67). However, the identification of several histone marks already suggests that the 
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epigenetic regulatory role of chromatin structure is conserved in honeybees 68. Notably, histone 

acetylation was recently shown to affect female caste bias in larval development of honeybee queens 

and workers 69.  

Although histone methylation and acetylation are the better characterized HPTMs, these are 

not the only events. Rather, histones can be modified by a broad range of epigenetic modifications 

that all affect gene expression, including phosphorylation, ubiquitination, and sumoylation 58. For 

example, histone sumoylation can recruit HDACs that then induce transcriptional repression 70,71. 

Sumoylation occurs by the transfer of small ubiquitin-like modifier (SUMO) polypeptides to lysine 

residues of histones and other substrates, and they play critical roles in several physiological disorders 
72. Interestingly, some epigenetic marks on histones are not directly associated with transcription 59. 

For instance, histone ubiquitination and phosphorylation are associated with DNA-related processes 

in a transcription-independent manner, as they regulate biological processes involved in DNA 

damage responses, chromosomal integrity, and cell cycle progression 73,74. 

This said, HPTMs should represent interesting candidates for controlling gene expression in 

different contexts of the honeybee’s social lifestyle. Nonetheless, little is known yet about the histone 

modifications that regulate gene activity and the proteins/genes associated with these epigenetic 

mechanisms in honeybees. In Chapter III of this thesis I report on results concerning the annotation 

of HPTMs genes and investigations into the role of these genes in the context of the response to queen 

mandibular pheromone, which plays a major role in regulating worker behavioural maturation, 

ageing, and reproduction. 

 

1.3. MicroRNAs and other non-coding RNAs 

Non-coding RNAs (nc-RNAs) comprise a diverse class of molecules that can be characterized 

by their function, size, or the biological processes in which they participate. These ncRNAs include 

piwi-RNAs, small-interference RNAs, small nucleolar RNAs, centrosome and telomerase small 

RNAs, ribosomal RNAs, and long ncRNAs 75. A well-characterized ncRNA is the long-ncRNA Xist. 

Xist promotes the X-chromosomal dose compensation in mammals by inactivating one of the X-

chromosomes in female tissues 76. However, the probably best known nc-RNAs are the ribosomal 

RNAs that are indispensable for life maintenance in all the major branches of life, Eukaryota, Archaea 

and Bacteria (revised in 77). Similarly well-known are tRNAs, which are key molecules for translating 

mRNA information into functional proteins. Recent findings, however, showed that the function of 

tRNAs is not restricted to translation, as they can also be signalling molecules. For instance, 

epigenetic modification of tRNA nucleotides (e.g., RNA methylation) was shown to be relevant in 
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several cellular process, including epigenetic memory, biogenesis of microRNAs, response to stress, 

translation stability, bacterial drug-resistance, and also ageing 18,19,78–81.  

Although RNA methylation has not been studied in honeybees so far, other epigenetic 

mechanisms associated with ncRNAs are better understood. MicroRNAs, a class of short ncRNAs 

with an average of ~22 nucleotides in length, have revolutionized our understanding of molecular 

biology since their discovery in 1993 in the worm C. elegans 82,83. MicroRNAs act in the cytoplasm 

by targeting the 3’ untranslated region of mRNAs. This disrupts translation or induces mRNA 

cleavage, leading to transcriptional silencing. MicroRNAs are transcribed as pri-miRNA, which have 

a hairpin structure and are recognized by the Drosha and spliceosome proteins, converting pri-

miRNAs into pre-miRNAs. After exportation to the cytoplasm by the exportin-5 protein, pre-

miRNAs are recognized by Dicer or Argonaut proteins that transform them into mature, functional 

microRNAs, which are able to bind to their mRNA targets. Nonetheless, the short length of 

microRNAs makes them to a certain degree promiscuous, i.e., they may target a more or less broad 

range of different mRNA populations (revised in 6).  

MicroRNAs play important roles in honeybees. MicroRNAs are differentially expressed 

between queen and worker-destined larvae 84. Plant microRNAs present in the food of queen and 

worker larvae were shown to be functional against caste-specific mRNAs of these larvae, revealing 

an interesting regulatory module involving both plant and bee-derived RNA molecules interacting in 

the caste determination process 85. MicroRNAs are also likely to play a role on the regulation of ovary 

activation in adult workers 86, which are suppressed by the queen and larval pheromones 43,87,88.  

Honeybee microRNAs are intensively studied, including by research groups in Ribeirão Preto 
86,89,90, and using bioinformatics tools, we set a focus on the ame-miR-29b, an evolutionary ancient 

microRNA from the family 29 that canonically regulates the expression of Dnmts in mammals. Using 

correlational and functional approaches, we found evidence for an interaction between ame-miR-29b 

and Dnmt3 (see Chapter IV). This link actually also motivated our search for other epigenetic events 

that might control Dnmt3 expression underlying ageing in honeybee workers. 
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2. Aims 

 
The general aim of this project was to shed light on the role of epigenetic modification, 

especially DNA methylation, in the social context of honeybees. For this, four specific aims were 
defined: 

 

2.1 Determine whether DNA methylation plays a role in the chronological aging of 

honeybee workers: 

2.1.1 Quantify the expression of DNMTs encoding genes in different body 

compartments of honeybee workers with different ages; 

2.1.2. Determine the pharmacological effects of RG108, a DNMT inhibitor, on: (i) 

survival rates, (ii) expression of aging-associated genes, (iii) modulation of juvenile 

hormone levels; 

2.1.3. Determine the relationship of aging regulators (e.g, vitellogenin, TOR) and 

the expression of DNMTs encoding genes expression; 

 

2.2 Quantify the transcription levels of DNMT genes and histone modifiers genes in 

workers subjected to different social environments, such as the presence/absence of 

young workers, brood, or the queen; 

 

2.3 Investigate the regulation of Dnmt3 gene expression and its protein: 

2.3.1 Quantify the mRNA levels of Dnmt3 in honeybee nurses and foragers from 

different colonies; 

2.3.2 Identify and validate whether and how the ame-miR-29b regulates the 

expression of Dnmt3; 

2.3.3 Immunolocalize the DNMT3 protein in the fat bodies of nurses and foragers 

by immunofluorescence laser confocal microscopy; 

2.3.4 Determine the subcellular localization of DNMT3 protein by immunogold 

labelling in the fat body of forager bees; 

2.3.4 Perform in silico analyses on the DNMT3 amino acid sequence and its 

predicted three-dimensional structure; 

 

 2.4 Determine the effects of social manipulation in the expression and methylation 

patterns of genes in worker honeybees: 
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2.4.1 Perform whole genome bisulfite sequencing on brain and ovary samples of 

workers from queenright and queenless colonies; 

2.4.2. Assess the effects of the queen’s presence/absence on the methylome of 

worker brains and ovaries; 

2.4.3 Compare the methylomes of individuals from different colonies to determine 

possible colony effects on the methylation patterns; 

2.4.4 Identify and compare differently methylated regions between brains and 

ovaries; 

2.4.5 Quantify the expression of differentially methylated genes with respect to 

social status, colony and tissue. 
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3. Results, Discussion and Material and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Chapter I



 
26 

3.1 Chapter I 

 

This chapter refers to the following article: 

 

Title: DNA methylation affects the lifespan of honey bee (Apis mellifera L.) workers – evidences for 

a regulatory module that involves vitellogenin expression but is independent of juvenile hormone 

function 

Authors: Carlos A. M. Cardoso-Júnior, Karina R. Guidugli-Lazzarini, Klaus H. Hartfelder 

Journal: Insect Biochemistry and Molecular Biology 

DOI: 10.1016/j.ibmb.2017.11.005 
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3.2 Chapter II 

 

This chapter refers to the following article: 

 

Title: Social context influences the expression of DNA methyltransferase genes in the honeybee 

Authors: Carlos A. M. Cardoso-Júnior, Michael Eyer, Benjamin Dainat, Klaus H. Hartfelder, 

Vincent Dietemann 

Journal: Scientific Reports 

DOI: 10.1038/s41598-018-29377-8 
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Attachments to the Chapter II 
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3.3 Chapter III 

 

This chapter refers to the following article: 

 

Title: Queen pheromone modulates the expression of epigenetic coding genes in the brain of 

honeybee workers 

Authors: Carlos A. M. Cardoso-Júnior, Isobel Ronai, Klaus H. Hartfelder, Benjamin P. Oldroyd 

Journal: Manuscript in preparation 
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Attachments to the chapter III 
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3.4 Chapter IV 

 

This chapter refers to the following article: 

 

Title: Social regulation of DNA methyltransferase 3 and its association with aging in the honeybee, 

Apis mellifera 

Authors: Carlos A. M. Cardoso-Júnior, Mário Cervoni, Cibele Cardoso, Lucas Tavares, Elaine E. 

da Silva, Klaus H. Hartfelder 

Journal: Manuscript in preparation 
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Attachments to the chapter IV 

 

 
Supplementary Figure 1. Real Time-PCR quantification of ame-miR-29b transcripts in the 

head and abdomen of one-week-old workers (WW) and one-month-old workers (WM). Statistical 

analysis: unpaired Student’s t-test, ** p < 0.01; N=3-5. 

 

 

 

 

 
Supplementary Figure 2. Western blot validation of antibody ⍺-DNMT3 in honeybee fat 

body tissue. Actin and GAPDH were used as loading control. * represents unspecific bands informed 

by manufacturer. 
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Supplementary Figure 3. Quantification of DNMT3 fluorescence from immunofluorescence 

images in both oenocyte and trophocyte cells of nurse and foragers. Different letters represent 

statistically significant differences (Two-Way ANOVA, p < 0.05, N=20-28 cells per group) 

 

Table S1. Statistical details of Dnmt3 gene expression. 

 
Table S2. List of primers used in RT-qPCR and luciferase assays. 

 
 

 

Test Comparison Function applied Dnmt3  expression
Colony A - Nurse vs. Forager log t  = 2.981, df  = 12, p  = 0.0115
Colony B - Nurse vs. Forager none t  = 4.073, df  = 12, p  = 0.0015
Colony C - Nurse vs.  Forager none t  = 3.592, df  = 12, p  = 0.0037

Colony D - Nurse vs. Forager none t  = 4.265, df  = 12, p  = 0.0011

Two-tailed 
Student's t -test

Generalized Linear 
Mixed Model

Pool - Nurse vs. Forager X2 = 8.3867, p = 0.00378log

Name Sequence (5' → 3')
GenBank or 

miRBase access 
code

Reference

Dnmt3 - F CAGCGATGACCTGCGATCGGCGATA
Dnmt3 - R TACAGGGTTTATATCGTTCCGAAC
Rpl32 - F CGTCATATGTTGCCAACTGGT
Rpl32 - R TTGAGCACGTTCAACAATGG

ame-miR-29b  - F TAGCACCATTTGAAATCAGT MI0005736 This study
U6 - F CGATACAGAGAAGATTAGCATGG
U6 - R GTGGAACGCTTCACGATTTT

Dnmt3 3' UTR - F CCGCTCGAGTGCGTTGAAACCAATTT
Dnmt3 3' UTR - R AAGGAAAAAAGCGGCCGCTTTTTGAAGAGCATTATTCGTG
ame-miR-29b  - F CCGGACTGATTTCAAATGGTGCTACTCGAGTAGCACCATTTGAAATCAGTTTTTTG
ame-miR-29b  - R AATTCAAAAAACTGATTTCAAATGGTGCTACTCGAGTAGCACCATTTGAAATCAGT
hsa-miR-210 - F CCGGTCAGCCGCTGTCACACGCACAGCTCGAGCTGTGCGTGTGACAGCGGCTGATTTTTG
hsa-miR-210 - R AATTCAAAAATCAGCCGCTGTCACACGCACAGCTCGAGCTGTGCGTGTGACAGCGGCTGA

Gene 
expression

GB55485

AF441189.1

GB50324

DOI: 10.1097/WNR.0b013e32833ce5be

DOI: 10.1051/apido:2008015

DOI: 10.1016/j.ibmb.2013.03.001

Luciferase 
assay

GB55485

MI0005736

MI0000286

This study

This study

This study
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3.5 Chapter V 

 

This chapter refers to the following article: 

Title: DNA methylation is not a driver of behavioral reprogramming in young honeybee workers 

Authors: Carlos A. M. Cardoso-Júnior, Boris Yagound, Isobel Ronai, Emily Remnant, Klaus H. 

Hartfelder, Benjamin P. Oldroyd 

Journal: Manuscript in preparation 
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Attachments to the Chapter V 

 

Table S1. List of differentially methylated regions found in the contrast of the methylomes of 

workers’ brains from queenright (QR) and queenless (QL) colonies (Page 1 out 20). 
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Table S2. List of differentially methylated regions found in the contrast of the methylomes of 

workers’ ovaries from queenright (QR) and queenless (QL) colonies (Page 1 out 10). 
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Table S3. Statistical details of GLMM test of gene expression data comparing queenright and queenless 

social contexts. 

 
 

 

Table S4. Statistical details of GLMM test of gene expression data comparing different colonies. 
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Table S5. List of primers used in RT-qPCR and amplicon sequencing. The amplification temperature and 

references are given. Underlined nucleotides represent the sequence of nextera adaptors. 

 
 



 
121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Final considerations 



 
122 

4. Final considerations 

 

Honeybees exhibit an active and functional epigenetic system for DNA methylation and 

histone modification 68,69,91. Here, we studied the role of DNA methylation in the context of the 

“reproductive vs. longevity trade-off”, a central factor in metazoan life histories, but which is clearly 

violated in honeybees and other social insects 46,47. For insights into the regulation of DNA 

methyltransferase 3 (DNMT3), a key determiner of epigenetic reprograming via DNA methylation, 

we studied its regulation at the transcriptional, post-transcriptional and post-translational levels 

during a major transition in the adult life cycle of worker bees, the transition from brood care to 

foraging behaviour. Moreover, we investigated the expression of DNMTs and histone-modifiers 

encoding genes in response to environmental cues, such as queen pheromones and the presence of 

larvae or young adults in a colony. Finally, we generated whole methylome sequencing data at single 

base-pair resolution of brains and ovaries of workers subjected to different social contexts, especially 

the presence or absence of a queen, a situation that naturally occurs in the life history of honeybees. 

In the first chapter we report that the Dnmt3 gene is upregulated in the abdomen of old 

honeybee workers, suggesting a role for DNA methylation in aging. Inhibition of the enzymatic 

activity of DNMTs caused genomic hypomethylation, increased the lifespan of workers and an 

upregulation of vitellogenin, a protein synthesized by the fat body that is associated with behavioural 

maturation in workers and reproduction in the queen 92–94. These results suggest that DNA 

methylation participates in aging processes of fat body cells. However, in Chapter V we show that, 

contrary to expectation, the methylomes of brains and ovaries are highly similar, despite the major 

functional difference between the two tissues. This strongly indicates that DNA methylation does not 

control differential gene expression in honeybees. Therefore, we now suggest that the effects of 

DNMT inhibition on the lifespan of workers are not directly linked to DNA methylation. Instead, we 

propose that DNMT enzymes are likely to have other, previously unreported functions, and one of 

them would be the regulation of the workers’ lifespan.  

We have also observed that the majority of Dnmt genes is differently regulated by several 

environmental factors that affect aging in workers. For example, in Chapter II we provide evidences 

that the Dnmt1a, Dnmt2 and Dnmt3 genes dynamically change their expression over different time 

points of the yearly colony cycle, in response to the presence/absence of brood and young workers. 

In addition to differential regulation of histone-modifier genes, dynamic responses in the 

expression of Dnmt genes were also observed in the results presented in the Chapter III. In the 

experimental design for this chapter, the expression of Dnmt genes was found altered in the brains of 

workers in response to the queen mandibular pheromone, a key regulator of colony social cohesion.  
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Taken together, we propose that alterations in the expression of Dnmt genes are not directly 

linked to the reprogramming of gene expression via alteration in epigenetic marks, such as differential 

DNA methylation. Rather, the differential expression and regulation of Dnmt genes indicates their 

participation in important social contexts experienced by a honeybee worker; however, independent 

of alterations in DNA methylation marks. This conclusion is also reinforced by our gene expression, 

biochemistry, and in silico analyses of DNMT3 properties presented in Chapter IV. Interestingly, 

here we found that the DNMT3 protein predominantly localizes inside lipid vesicles of the cytoplasm, 

not in the nucleus as expected based on its DNA methylating enzymatic activity 91. This unexpected 

subcellular location indicates that the primary function of DNMT3 is probably not to methylate the 

nuclear DNA, as this enzyme was only rarely found inside the nucleus of fat body cells of honeybee 

workers. Thus, a reinterpretation is needed for the previously published reports showing that the 

functional knockdown of Dnmt3 via RNA interference in larvae and adult honeybees, resulted in a 

queen-like phenotype and altered alternative splicing in fat body tissue, respectively 30,44. 

In line with our findings for DNA methylation in honeybees, it has been shown for clonal 

raider ants, which reproduce asexually and therefore, have a genetically homogeneous colony 

composition, that DNA methylation is not associated with differential gene expression 55,95. Instead, 

the authors proposed that there is a strong “colony effect” in the previous reports 36,96, attesting that 

previous reports on DNA methylation patterns neglected this colony effect in their experimental 

design, leading to the erroneous interpretation that DNA methylation is a key regulation in caste 

differentiation and social regulation 55. Thus, the data from the clonal raider ant and our data indicate 

that DNA methylation is more likely sequence-specific 56,97 rather than dynamic in response to 

environmental changes. By controlling the genetic background of workers, as done in the 

experimental design for the methylome analyses, we provide evidence that DNA methylation does 

not control gene expression, but is rather colony-specific in honeybees, and possibly so also in other 

social insects. Thus, we show for the first time in honeybees that DNA methylation is not a major 

regulator of gene expression. Nonetheless, the results of our other experiments suggest that DNMTs 

might regulate gene expression in ways other than via DNA methylation. 

In conclusion, the results generated in this work shed light on important aspects of the 

epigenetic machinery, its regulation, and its roles in the life cycle of adult honeybees. These data 

change our interpretation of epigenetic systems and their role in invertebrate genomes, adding 

important pieces to the epigenetic puzzle of invertebrates, and requiring major reinterpretations of the 

results from previously reports in the literature. 
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5. Conclusions 

 

This study focused on the regulatory roles of epigenetic mechanisms underlying several 

aspects of the social life of honeybees, including aging, reproduction, and social communication. We 

found that the expression of Dnmt genes changes over time and responds to diverse social clues, such 

as pheromones and the presence of larvae or young adults in the colony.  

We demonstrated that the inhibition of DNMT activity increases the workers’ lifespan. This 

is likely due to an effect on vitellogenin expression, which is activated upon genomic demethylation. 

Next, we showed that the expression of Dnmt genes is regulated at different time points and tissues 

in response to the presence/absence of the queen, larvae, or young adult worker bees. All these social 

factors influence aging in honeybee workers, suggesting a critical role of DNMTs in behavioural 

maturation.  

Surprisingly though, we found that DNA methylation itself is not as dynamic as the expression 

of DNMT encoding genes. While the expression of Dnmt genes are highly responsive to social cues, 

the methylomes of brains and ovaries tissues did not show significant alterations in response to the 

queen’s presence or absence, even though her presence has a major effect on gene expression in 

workers. Thus, we conclude that DNMTs may have functions additional to DNA methylation. Also, 

we propose that DNA methylation in honeybees (and possibly in other social insects) does not control 

gene expression to the extent that was previously hypothesized. Our data, which revealed a strong 

colony effect in the worker brain and ovary methylomes, emphasize that more attention is needed in 

the design of experiments on DNA methylation, and call for a careful assessment of the results, taking 

into account the methylation profile specific for each colony.  

A deep investigation of the regulators of DNMT3 and its biochemistry and molecular 

properties also reinforces the hypothesis raised in this study that DNMTs protein might possess 

multiple functions associated with social behaviour in a mode independent of DNA methylation 

events. Importantly, we found that two epigenetic mechanisms (Dnmt3 and its regulation by the 

microRNA 29b, an epi-microRNA) form a regulatory circuitry. Therefore, we conclude that the 

presence of an active and efficient epigenetic system, operating within multiple aspects of the social 

life of honeybees, is an essential component in orchestrating the adult life cycle of queens and 

workers. Our data highlight for the first time that there is a discordance between the expression of 

Dnmt genes, the DNA methylation status, and its control on differential gene expression.  
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