UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA CELULAR E MOLECULAR

BIANCA BONTEMPI BATISTA

Caracterização de novos mecanismos regulatórios e de resistência ao ferro em Chromobacterium violaceum

> Ribeirão Preto, SP, Brasil 2023

BIANCA BONTEMPI BATISTA

Caracterização de novos mecanismos regulatórios e de resistência ao ferro em Chromobacterium violaceum

Versão Original

Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Doutora em Ciências.

Área de concentração: Biologia Celular e Molecular

Orientador: Prof. Dr. José Freire da Silva Neto

Ribeirão Preto, SP, Brasil

2023

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

FICHA CATALOGRÁFICA

Batista, Bianca Bontempi

Caracterização de novos mecanismos regulatórios e de resistência ao ferro em *Chromobacterium violaceum*. Ribeirão Preto, 2023.

p.:226 ; il. ; 30 cm

Tese de Doutorado, apresentada à Faculdade de Medicina de Ribeirão Preto/USP. Área de concentração: Biologia Celular e Molecular.

Orientador: da Silva Neto, José Freire.

1. *Chromobacterium violaceum*. 2. Sideróforo. 3. Homeostase de ferro. 4. Quorum senseing. 5. Fatores de transcrição da família MarR. 6. Proteínas H-NS.

Nome: BATISTA, Bianca Bontempi

Título: Caracterização de novos mecanismos regulatórios e de resistência ao ferro em *Chromobacterium violaceum*.

> Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutora em Ciências. Área de Concentração: Biologia Celular e Molecular Orientador: Prof. Dr. José Freire da Silva Neto

Avaliada em: __/__/___

Banca Examinadora:

Prof. Dr	Instituição:
Julgamento:	Assinatura:
Prof. Dr	Instituição:
Julgamento:	_Assinatura:
Prof Dr	Instituição:
Julgamento:	Assinatura:
ouigamonto.	

UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO COMISSÃO DE ÉTICA NO USO DE ANIMAIS

CERTIFICADO

Certificamos que o Protocolo *intitulado "Caracterização de novos mecanismos regulatórios e de resistência ao ferro em Chromobacterium violaceum"*, registrado com o número **117/2019**, sob a responsabilidade do **Prof. Dr. José Freire da Silva Neto**, envolvendo a produção, manutenção ou utilização de animais pertencentes ao *filo Chordata, subfilo Vertebrata* (exceto humanos) para fins de pesquisa científica, encontra-se de acordo com os preceitos da Lei nº 11.794 de 8 de outubro de 2008, do Decreto nº 6.899 de 15 de julho de 2009 e com as normas editadas pelo Conselho Nacional de Controle de Experimentação Animal (CONCEA), e foi **APROVADO** pela Comissão de Ética no Uso de Animais da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo em reunião de 01 de julho de 2019.

Este Protocolo prevê a utilização de 100 camundongos Balb c fêmeas pesando 20g oriundos do Serviço de Biotério da Prefeitura do *Campus* de Ribeirão Preto da Universidade de São Paulo. Vigência da autorização: 01/07/2019 a 10/12/2022.

We certify that the Protocol *n*^o 117/2019, entitled "Characterization of novel mechanisms of regulation and resistance to iron in Chromobacterium violaceum", is in accordance with the Ethical Principles in Animal Research adopted by the National Council for the Control of Animal Experimentation (CONCEA) and was approved by the Local Animal Ethical Committee from Ribeirão Preto Medical School of the University of São Paulo in 07/01/2019. This protocol involves the production, maintenance or use of animals from *phylum Chordata, subphylum Vertebrata* (except humans) for research purposes, and includes the use of 100 female Balb c mice weighing 20g from the Central Animal House of Ribeirão Preto Medical School. This certificate is valid until 12/10/2022.

Ribeirão Preto, 01 de julho de 2019

Profa. Dra. Katiuchia Uzzun Sales Coordenadora da CEUA–FMRP – USP

AGRADECIMENTOS

Ao meu orientador, Prof. Dr. José Freire da Silva Neto, pela oportunidade de realizar o doutorado em seu laboratório e sua ótima orientação;

Ao Prof. Ferric C. Fang, pela oportunidade de realizar o Estágio de Pesquisa no Exterior (BEPE) em seu laboratório e pela ótima supervisão. Também gostaria de agradecer a todos os membros do seu laboratório pelo acolhimento e ensinamentos, em especial ao Ryan pela colaboração e ajuda nos experimentos;

Aos meus colaboradores, Profa. Dra. Tie Koide e sua aluna Beatriz Adas Picinato, por realizarem as análises de bioinformática dos dados de RNAseq;

Aos laboratórios da FMRP-USP pelo uso de equipamentos, em especial dos professores Dario Zamboni, Paulo Coelho e Maria Cristina Barreira;

À técnica do nosso laboratório, Cláudia e aos alunos de treinamento técnico, pelo suporte técnico;

À Faculdade de Medicina de Ribeirão Preto (FMRP-USP), ao Programa de Pós-Graduação em Biologia Celular e Molecular e ao Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos pelo apoio institucional e infraestrutura;

Aos meus colegas do laboratório Júlia, Vinicius, Raquel, Gustavo, Sergio e Carolina pelos momentos compartilhados e troca de conhecimento;

Em especial, gostaria de agradecer ao Vinicius, pela colaboração tanto neste trabalho quanto na minha vida. Em onze anos de amizade foram muitos momentos especiais juntos que tenho certeza de que ainda continuarão por muitos anos. Com você aprendi muitas coisas que vão além da ciência, você me ensinou o verdadeiro significado de amizade e confiança;

À minha família que sempre me apoio e acreditou no meu potencial. Em especial, ao meu avô Walter, minhas avós Lúcia e Claudete, minha mãe Vera, meu pai Sérgio e meus irmãos Amanda e Neto. Vocês são a base e o pilar da minha vida, nada disso seria possível sem vocês;

Ao meu namorado Giordano, que chegou de surpresa na minha vida e se tornou tão necessário. Sua presença me deu forças para continuar lutando pelos meus sonhos e sem seu apoio as coisas teriam sido mais difíceis;

Por fim, mas não menos importantes, gostaria de agradecer aos meus amigos de coração, Vitor e Greicy, por sempre estarem comigo e a minha família do coração, Silvia, Tadeu e Vitoria por sempre estarem por perto, me ajudarem e me apoiarem.

AGRADECIMENTOS PELO APOIO FINANCEIRO E DECLARAÇÃO DE RESPONSABILIDADE

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pela concessão da bolsa de doutorado, processo número 2018/19058-2 e da bolsa BEPE, processo número 2021/09170-2.

À FAPESP, pela concessão dos auxílios ao Laboratório de Regulação da Expressão Gênica e Patogenicidade Bacteriana (LREGPB), que contribuíram para o desenvolvimento desta pesquisa.

À Fundação de Apoio ao Ensino, Pesquisa e Assistência (FAEPA) do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto – Universidade de São Paulo (HCFMRP-USP), pelo apoio financeiro anual concedido ao LREGPB.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão de bolsa de doutorado durante o período de setembro de 2018 a dezembro de 2019. Também agradeço pelo apoio institucional ao Programa de Pós-Graduação em Biologia Celular e Molecular da FMRP-USP.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelo apoio institucional ao Programa de Pós-Graduação em Biologia celular e Molecular da FMRP-USP.

Declaração de responsabilidade: "As opiniões, hipóteses e conclusões ou recomendações expressas neste material são de responsabilidade do autor e não necessariamente refletem a visão da FAPESP".

RESUMO

Batista, Bianca Bontempi. **Caracterização de novos mecanismos regulatórios e de resistência ao ferro em Chromobacterium violaceum**. 2023. 226 p. Tese (Doutorado em Biologia Celular e Molecular) – Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2023.

O ferro é um micronutriente essencial, necessário como cofator em diversas reações biológicas, mas seu excesso intracelular pode gerar danos. Em bactérias, a homeostase de ferro envolve sistemas regulatórios que controlam a captação, em limitação, e o efluxo e estocagem, em excesso, deste metal. Neste trabalho, identificamos e caracterizamos novos sistemas regulatórios e de resistência ao ferro em Chromobacterium violaceum, uma bactéria ambiental que ocasionalmente causa graves infecções em humanos. A identificação não enviesada de novos fatores de transcrição e sistemas de detoxificação de ferro foi realizada pela varredura de uma biblioteca de 10 mil mutantes de transposon. A varredura em placas PSA-CAS revelou 25 genes com inserção do transposon com alteração dos halos de sideróforos. Os genes mutados agrupam em diferentes categorias funcionais, sendo que seis deles foram estudados por codificar sistemas regulatórios. Mutação nula dos genes csrA (CV_2600) e CV_0635 não tiveram o mesmo fenótipo encontrado na varredura. Já inserções e mutação nula no sistema de dois componentes AirSR (CV_0536 e CV_0537) levaram ao aumento dos halos de sideróforo. A inserção e a mutação nula do regulador VitR levaram ao aumento dos halos de sideróforo e diminuição na produção de biofilme, violaceína e proteases. Determinamos que esses efeitos ocorreram exclusivamente devido à desrepressão de vioS no mutante vitR. VioS é um inibidor do regulador CviR do sistema de quorum sensing (QS) CviIR. De fato, inserção em cviR e mutação nula de cvil e cviR levaram ao aumento de halos de sideróforo. Ensaios de RNA-seg dos mutantes $\Delta cvil$ e $\Delta cviR$ revelaram que CviR regula conjuntos de genes dependentes e independentes de Cvil. Processos clássicos dependentes de QS (violaceína, proteases e antibióticos) foram ativados em alta densidade celular por Cvil e CviR. No entanto, genes relacionados à homeostase do ferro e outros processos foram regulados por CviR, mas não por Cvil, sugerindo que CviR atua sem seu autoindutor canônico Cvil. Nossos dados revelaram uma complexa cascata regulatória envolvendo o regulador VitR atuando upstream do sistema de QS para controlar a

homeostase do ferro mediada por sideróforos em C. violaceum. A varredura da biblioteca de transposon em excesso de ferro revelou mutantes susceptíveis ao excesso de ferro com inserção do transposon em dezoito genes, sendo que dois sistemas regulatórios foram selecionados para caracterização. O primeiro sistema consiste do operon CV_3659-58-57 que codifica o fator de transcrição da família MarR CV_3659 e a citocromo bd oxidase CV_3658-57. Demonstramos que o regulador CV_3659 reprime a expressão de seu operon e que a citocromo bd oxidase é necessária para a resistência de C. violaceum a diferentes metais (zinco e ferro), ao sulfeto e ao estresse oxidativo e nitrosativo. Por fim, caracterizamos duas proteínas H-NS de C. violaceum. RNAseq revelou que as H-NS CV_1363 e CV_1243 silenciam a expressão de diversos genes em *C. violaceum*, com destaque para genes presentes em ilhas de patogenicidade. Como CV_1363 silencia a expressão de CV_1243, os efeitos de CV_1243 em fenótipos e regulação gênica só foram evidenciados com mutação de ambas H-NS. Caracterização fenotípica revelou que as H-NS de C. violaceum estão envolvidas na produção de violaceína, motilidade do tipo swimming, na homeostase de ferro e na resistência ao pH ácido e a alta osmolaridade. Em conclusão, C. violaceum utiliza diversos sistemas regulatórios para controlar a homeostase de ferro, tanto a captação mediada por sideróforos quanto a tolerância ao excesso de ferro.

Palavras-chave: Homeostase de ferro. Sideróforos. *Chromobacterium violaceum*. Fatores de transcrição. Quorum sensing. Família MarR. Proteínas H-NS.

ABSTRACT

Batista, Bianca Bontempi. **Characterization of novel mechanisms of regulation and resistance to iron in** *Chromobacterium violaceum*. 2023. 226 p. Thesis (Ph.D. in Cellular and Molecular Biology) – Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 2023.

Iron is an essential micronutrient, necessary as a cofactor in several biological reactions, but its intracellular excess can cause damage. In bacteria, iron homeostasis involves regulatory systems that control the uptake, in limitation, and the efflux and storage, in excess, of this metal. In this work, we identified and characterized new regulatory and iron resistance systems in Chromobacterium violaceum, an environmental bacterium that occasionally causes severe infections in humans. Unbiased identification of novel transcription factors and iron detoxification systems was performed by screening a library of 10,000 transposon mutants. The screen on PSA-CAS plates revealed 25 genes with transposon insertion with altered siderophore halos. The mutated genes grouped into different functional categories, and six of them were studied for encoding regulatory systems. Null mutation of csrA (CV_2600) and CV_0635 did not have the same phenotype found in the screen. Insertions and null mutation in the AirSR two-component system (CV_0536 and CV_0537) led to increased siderophore halos. The insertion and null mutation of the VitR regulator led to an increase in siderophore halos, and a decrease in the production of biofilm, violacein, and proteases. We determined that these effects occurred exclusively due to derepression of vioS in the vitR mutant. VioS is an inhibitor of the CviR regulator of the quorum sensing (QS) system CviIR. Indeed, insertion into *cviR* and null mutation of *cvil* and *cviR* led to an increase in siderophore halos. RNA-seq of the $\Delta cvil$ and $\Delta cviR$ mutants revealed that CviR regulates a set of CviI-dependent and independent genes. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by Cvil and CviR. However, genes related to iron homeostasis and other processes were regulated by CviR but not by Cvil, suggesting that CviR acts without its canonical Cvil autoinducer. Our data revealed a complex regulatory cascade involving the VitR regulator acting upstream of the QS system to control siderophore-mediated iron homeostasis in C. violaceum. Screen of the transposon library in iron excess revealed iron-susceptible mutants with transposon

insertion in eighteen genes, and two regulatory systems were selected for further characterization. The first system consists of the CV_3659-58-57 operon that encodes the MarR family transcription factor CV_3659 and the cytochrome *bd* oxidase CV_3658-57. We demonstrated that the regulator CV_3659 represses the expression of its own operon and that the cytochrome *bd* oxidase is necessary for the resistance of *C. violaceum* to different metals (zinc and iron), to sulfide and to oxidative and nitrosative stresses. Finally, we characterized two *C. violaceum* H-NS proteins. RNAseq revealed that the H-NS CV_1363 and CV_1243 silence the expression of several genes in *C. violaceum*, such as those found in pathogenicity islands. As CV_1363 silences the expression of CV_1243, the effects of CV_1243 on phenotypes and gene regulation were only evidenced with mutation of both H-NS. Phenotypic characterization revealed that the *C. violaceum* H-NS are involved in violacein production, swimming motility, iron homeostasis, and resistance to acidic pH and high osmolarity. In conclusion, *C. violaceum* uses several regulatory systems to control iron homeostasis, both siderophore-mediated iron uptake and tolerance to excess of iron.

Keywords: Iron homeostasis. Siderophores. *Chromobacterium violaceum*. Transcription factors. Quorum sensing. MarR family. H-NS proteins.

LISTA DE TABELAS

Tabela 1: Linhagens bacterianas e plasmídeos
Tabela 2: Oligonucleotídeos utilizados para obtenção e complementação de mutantes
40
Tabela 3: Oligonucleotídeos utilizados para a identificação do sítio de inserção do
transposon no genoma de <i>C. violaceum</i> 47
Tabela 4: Oligonucleotídeos utilizados para a depleção do RNA ribossomal de C.
violaceum
Tabela 5: Oligonucleotídeos utilizados para análise da expressão por RT-qPCR53
Tabela 6: Oligonucleotídeos utilizados para construção das fusões transcricionais e
expressão heteróloga55
Tabela 7: Identificação do sítio de inserção do transposon das linhagens mutantes
selecionadas na varredura para níveis alterados de sideróforos63
Tabela 8: Identificação do sítio de inserção do transposon das linhagens mutantes
selecionadas na varredura para intoxicação por ferro83

LISTA DE FIGURAS

Figura 1: Manutenção da homeostase de ferro em bactérias20
Figura 2: Mecanismos de regulação da expressão gênica em bactérias
Figura 3: Aspectos gerais da fisiologia e infecção de Chromobacterium violaceum
Figura 4: Esquema para obtenção dos mutantes nulos44
Figura 5: Classificação funcional dos genes com inserção de transposon e confirmação da inserção em genes de sistemas regulatórios
Figura 6: Caracterização do fator de transcrição CV_0635 na formação de halos de sideróforos
Figura 7: Caracterização do sistema de dois componentes CsrAB68
Figura 8: Caracterização do sistema de dois componentes AirSR70
Figura 9: Caracterização fenotípica do regulador vitR72
Figura 10: Análise da expressão global para identificação do regulon VitR em C violaceum
Figura 11: VitR liga diretamente na região intergênica entre vioS e vitR74
Figura 12: VitR regula múltiplos processos via VioS75
Figura 13: O sistema de QS CvilR participa da homeostase de ferro mediada por sideróforos em <i>C. violaceum</i>
Figura 14: Análise global dos genes regulados por Cvil e CviR em C. violaceum78
Figura 15: CviR regula genes dependente e independentemente de Cvil80
Figura 16: Expressão de genes regulados por CviR e Cvil por densidade celular82
Figura 17: Os genes CV_3659-58-57 compõem um operon86
Figura 18: O operon CV_3659-58-57 é regulado por densidade celular, reprimido pelo regulador da família MarR CV_3659 a ativado por CviR
Figura 19: O regulador da família MarR CV_3659 liga diretamente no promotor do seu operon
Figura 20: Caracterização fenotípica do operon CV_3659-58-5789
Figura 21: A citocromo <i>bd</i> oxidase CV_3658-3657 protege <i>C. violaceum</i> de estresse a metais, oxidativo e nitrosativo91
Figura 22: Ensaios de sobrevivência e disco difusão corroboram o perfil de suscetibilidade do mutante da citocromo <i>bd</i> oxidase

Figura 23: Geração e confirmação das linhagens mutantes para H-NS de C. violaceum
Figura 24: Mutações das H-NS levam ao excesso de ferro intracelular94
Figura 25: Mutação na H-NS CV_1363 leva à diminuição da produção de violaceína e motilidade95
Figura 26: Mutação na H-NS CV_1363 aumenta a suscetibilidade de <i>C. violaceum</i> ao pH ácido e à hiperosmolaridade96
Figura 27: Análise global dos genes regulados pelas H-NS em C. violaceum98
Figura 28: Validação de genes diferencialmente expressos em ∆CV_1363 e ∆CV_1243/136399
Figura 29: Caracterização de novos mecanismos regulatórios para homeostase de sideróforos e resistência ao ferro em <i>C. violaceum</i>

SUMÁRIO

1. INTRODUÇÃO	17
1.1. Importância dos metais de transição na fisiologia e patogênese	e bacteriana
	17
1.3. Regulação da expressão gênica em bactérias	22
1.3.1. Regulação da homeostase de ferro em bactérias	24
1.3.2. Fatores de transcrição da família MarR	26
1.3.3. Compactação do DNA e o controle da expressão gênica	28
1.4. Chromobacterium violaceum	29
1.4.1. Sinalização por <i>quorum sensing</i> (QS) em <i>C. violaceum</i>	32
1.4.2. Homeostase de ferro em <i>C. violaceum</i>	33
3. MATERIAL E MÉTODOS	35
3.1. Linhagens e plasmídeos	35
3.2. Meios de cultura e condições de cultivo	37
3.3. Procedimentos gerais de clonagem	38
3.3.1. Reações de PCR	
3.3.2. Digestão de DNA com enzimas de restrição	
3.3.3. Ligação de DNA e transformação por eletroporação	39
3.3.4. Sequenciamento de DNA	39
3.3.5. Clonagem em uma etapa por montagem de DNA	39
3.4. Construção das linhagens mutantes em <i>C. violaceum</i>	43
3.4.1. Construção de mutantes nulos por troca alélica	43
3.4.2. Construção das linhagens complementadas	45
3.4.3. Construção de mutantes por inserção	45
3.4.4. Obtenção de mutantes por transposição	46
3.5. Análise global da expressão gênica	48
3.5.1. Extração do RNA	48
3.5.2. Sequenciamento de RNA (RNA-Seq)	49
3.5.3. Análise do RNA-Seq	51
3.6. Ensaios de expressão gênica	52

3.6.1. Co-transcrição por RT-PCR52
3.6.2. Expressão gênica por RT-qPCR52
3.6.3. Construção de fusões transcricionais e ensaio de β -galactosidase .54
3.7. Expressão heteróloga de proteínas56
3.7.1. Construção das linhagens para expressão heteróloga de proteínas 56
3.7.2. Expressão e purificação de proteínas recombinantes
3.8. Ensaio de alteração de mobilidade eletroforética em gel (EMSA)58
3.9. Caracterização fenotípica dos mutantes em <i>C. violaceum</i>
3.9.1. Curvas de crescimento59
3.9.2. Ensaio de sobrevivência59
3.9.3. Ensaio de CAS60
3.9.4. Ensaio de motilidade60
3.9.6. Quantificação da produção de violaceína61
3.9.7. Ensaio de toxidade ao ferro61
3.9.8. Ensaio de protease61
3.9.9. Ensaio de disco difusão61
3.9.10. Ensaio de virulência62
4.1. Caracterização de novos fatores de transcrição envolvidos na
homeostase de ferro63
4.1.1. Análise global por mutagênese revela novos sistemas regulatórios envolvidos na homeostase de ferro mediada por sideróforos em <i>C. violaceum</i>
4.1.2. Mutante nulo do fator de transcrição CV_0635 não valida fenótipo de sideróforo aumentado do mutante de transposon
4.1.3. Superexpressão de CsrA leva a diminuição dos halos de sideróforos em <i>C. violaceum</i> 67
4.1.4. O Sistema de dois componentes AirSR está envolvido na homeostase de sideróforo em <i>C. violaceum</i>
4.1.5. VitR controla sideróforos e vários outros processos agindo como um repressor direto de <i>vio</i> S71
4.1.6. CviR regula processos clássicos de forma dependente de Cvil e a captação de ferro/sideróforo de forma independente de Cvil
4.2. Caracterização de novos sistemas envolvidos na tolerância ao ferro83
4.2.1. Análise global por mutagênese revela mecanismos de tolerância ao ferro em <i>C. violaceum</i>

4.2.2. Uma citocromo <i>bd</i> oxidase reprimida por um regulador da família MarR contribui para a resistência a metais, sulfeto e ao estresse oxidativo e nitrosativo em <i>C. violaceum</i> 85
4.2.3. A H-NS CV_1363 tem papel majoritário e juntamente com a H-NS CV_1243 silencia genes de diversos processos em <i>C. violaceum</i>
5.1. Caracterização de novos fatores de transcrição envolvidos na homeostase de sideróforo
5.2. Caracterização do operon CV_3659-58-57 para a resistência a metais, sulfeto e estresse oxidativo e nitrosativo em <i>C. violaceum</i>
5.3. Caracterização das H-NS CV_1363 e CV_1243 como silenciadores de diversos processos em <i>C. violaceum</i> 112
6. CONCLUSÃO
8.1. Artigos publicados com primeira autoria142 8.2. Artigos publicados em colaboração142
9. APÊNDICE B143 9.1. Material Suplementar143

1. INTRODUÇÃO

1.1. Importância dos metais de transição na fisiologia e patogênese bacteriana

Os metais de transição ferro, manganês, zinco e cobre são essenciais para a vida e indispensáveis para vários aspectos do metabolismo, pois atuam como cofatores de proteínas, desempenhando papéis estruturais e catalíticos. Muitos processos biológicos dependem de metaloproteínas, incluindo a biossíntese de aminoácidos, a replicação de DNA, a transcrição, a respiração e as respostas ao estresse oxidativo (PALMER e SKAAR, 2016; CHANDRANGSU et al., 2017). A maioria desses metais tem a capacidade de transitar entre diferentes estados de oxidação, o que contribui tanto para suas propriedades catalíticas quanto para sua toxidade. As reações de oxidorredução (reações redox) mediadas por metais redox ativos podem facilitar a produção de espécies reativas de oxigênio (ROS), potencializando sua toxidade (IMLAY, 2013; SHELDON e SKAAR, 2019). Assim, os níveis intracelulares de metais de transição devem ser cuidadosamente controlados na célula. Para isto, bactérias empregam sistemas de influxo e efluxo e proteínas de estocagem de metais que têm sua expressão coordenada por fatores de transcrição que respondem a metais (LEE e HELMANN, 2007; CHANDRANGSU et al., 2017; BAKSH e ZAMBLE, 2020).

Tanto os hospedeiros quanto os patógenos possuem mecanismos para manter as concentrações homeostáticas de metais de transição. No contexto da infecção, ocorre uma batalha por estes metais que tem um papel decisivo na patogênese das doenças bacterianas. Embora o hospedeiro represente uma potencial fonte de metal para as bactérias, os hospedeiros vertebrados restringem o acesso das bactérias a esses metais durante a infecção, por mantê-los sequestrados em proteínas como transferrina, lactoferrina e calprotectina, de modo a reduzir a proliferação bacteriana, processo conhecido como imunidade nutricional (HOOD e SKAAR, 2012; PALMER e SKAAR, 2016). Outro mecanismo explorado pelo hospedeiro é a intoxicação de bactérias por metais, por meio do acúmulo desses metais em compartimentos de células fagocíticas contendo bactérias (SHELDON e SKAAR, 2019). Além disso, a desregulação da homeostase de metais no hospedeiro por meio de mutações genéticas ou dieta pode levar a suscetibilidade à infecção, uma vez que os metais têm um papel importante na maturação e desenvolvimento das células do sistema imune (PALMER e SKAAR, 2016; HEALY et al., 2021).

1.1.1. Metais de transição e a respiração bacteriana

Metais de transição são fundamentais nas reações de transferência de elétrons da cadeia respiratória, sobretudo o ferro (na forma de grupo heme) e o cobre. A maioria das bactérias possui uma cadeia respiratória flexível e ramificada que permite obter energia por respiração aeróbica e anaeróbica (KAILA e WIKSTRÖM, 2021). Em geral, a cadeia respiratória bacteriana é composta por desidrogenases específicas de um substrato que transferem equivalentes redutores para um *pool* de quinonas. Em seguida, os elétrons das quinonas reduzidas (quinol) são transferidos por oxidorredutases para diferentes aceptores de elétrons. Sob condições de crescimento aeróbico, o aceptor de elétrons terminal é o oxigênio molecular (O2) e a transferência de elétrons do quinol (ou citocromo c) para o O₂ é realizada por terminal oxidases (redutases de oxigênio respiratórias), resultando na redução por quatro elétrons do oxigênio molecular em água. Quando o oxigênio não está disponível (condição anaeróbica), aceptores de elétrons alternativos, como fumarato, nitrato e nitrito, podem ser usados e a reação é catalisada por terminal redutases (UNDEN e BONGAERTS, 1997; BORISOV et al., 2011; KAILA e WIKSTRÖM, 2021; SILETSKY e BORISOV, 2021).

As terminal oxidase respiratórias são um grupo de enzimas funcionalmente relacionadas (redução do oxigênio molecular em água) que agrupam em duas superfamílias evolutivamente e estruturalmente distintas: (i) as heme-cobre oxidases (HCO), encontradas em eucariotos e bactérias que transferem elétrons de citocromo *c* ou quinol para o O₂ usando um centro catalítico binuclear contendo heme e cobre; (ii) as oxidases do tipo *bd* (citocromo *bd* oxidases), encontradas apenas em Bacteria e Archaea que reduzem O₂ as custas da oxidação de quinol usando um centro diheme (JÜNEMANN, 1997; BORISOV et al., 2011; SILETSKY e BORISOV, 2021).

As citocromo *bd* oxidases são proteínas de membrana com duas subunidades principais (CydA e CydB) contendo três hemes (b₅₅₈, b₅₉₅ e d) e o sítio de ligação do quinol (Q-loop) em CydA. O Q-loop pode variar, sendo um Q-loop longo, como em *Escherichia coli e Azotobacter vinelandii* (CydAB), ou um Q-loop curto, como em *Pseudomonas aeruginosa* (CioAB), permitindo a classificação dessas enzimas como do tipo *bd*-I e do tipo *Cyanide-Insensitive Oxidase* (CIO) (CUNNINGHAM et al., 1997; BORISOV et al., 2011; DEGLI ESPOSTI et al., 2015). As citocromo *bd* oxidases têm alta afinidade por O₂, permitindo as bactérias explorarem ambientes com pouco O₂ no hospedeiro (SMALL et al., 2013; VAN ALST et al., 2022; BEEBOUT et al., 2022), além

de conferirem proteção contra estresses nitrosativo e oxidativo (EDWARDS et al., 2000; MASON et al., 2009; BORISOV et al., 2013; GIUFFRE et al., 2014; AL-ATTAR et al., 2016). De fato, a expressão do operon *cydAB* que codifica uma citocromo *bd* oxidase em *E. coli*, responde aos níveis de oxigênio, sendo ativado por ArcAB em microaerobiose e reprimido por Fnr em anaerobiose (COTTER et al., 1990; FU et al., 1991; TSENG et al., 1996).

1.2. Principais mecanismos para a manutenção da homeostase de ferro em bactérias

O ferro é um micronutriente essencial para todos os organismos vivos, pois atua como cofator de enzimas envolvidas com muitos processos biológicos importantes, seja diretamente como Fe²⁺ ou na forma de grupos ferro-enxofre e heme (ANDREWS et al., 2003; KREWULAK e VOGEL, 2008). Nos tempos atuais, este metal de transição encontra-se biologicamente indisponível na maioria dos ambientes em que predomina a vida, pois conforme houve o aumento do oxigênio na atmosfera terrestre, a forma reduzida solúvel de ferro ferroso (Fe²⁺) foi oxidada na forma de ferro férrico (Fe³⁺), gerando óxidos de ferro insolúveis (SCHAIBLE e KAUFMANN, 2004; WEBER et al., 2006; BRAUN e HANTKE, 2011). O ciclo geoquímico do ferro é fortemente impactado por microrganismos que utilizam ferro para obter energia na respiração, seja usando Fe³⁺ como aceptor de elétrons (FRM, Fe³⁺-Reducing *Microorganisms*) em condições anóxicas, ou usando Fe²⁺ como uma fonte de elétrons (FOM, Fe²⁺-Oxidizing Microorganisms) (WEBER et al., 2006; ROGER et al., 2012; WHITE et al., 2016). A despeito de sua baixa biodisponibilidade, o ferro pode ser tóxico em altas concentrações devido sua reatividade e sua ação de potencializar os efeitos do estresse oxidativo. Na chamada reação de Fenton, o Fe²⁺ é oxidado pelo peróxido de hidrogênio (H₂O₂) a Fe³⁺, liberando o radical hidroxila ('OH), uma espécie reativa de oxigênio (ROS) que atua como potente oxidante capaz de danificar todas as moléculas orgânicas (IMLAY, 2013).

Visto que a falta de ferro pode comprometer a multiplicação bacteriana e seu excesso pode causar danos para as maquinarias celulares, é fundamental que a homeostase de ferro seja mantida (ANDREWS et al., 2003; CHANDRANGSU et al., 2017). Assim, as bactérias e outros organismos evoluíram diferentes mecanismos para manter o ferro em níveis fisiológicos (Figura 1), a saber: sistemas de transporte de alta afinidade para captar o ferro em suas várias formas; proteínas chamadas ferritinas para estocagem e sequestro de ferro intracelular em uma forma inerte e

mobilizável; sistemas regulatórios baseados em metaloreguladores que coordenam a expressão de muitos genes de acordo com a disponibilidade de ferro; e, mais recentemente identificados, sistemas de efluxo expressos em situações de excesso de ferro intracelular (PI e HELMMAN, 2017). As estratégias bacterianas para captação (em limitação) e efluxo (em excesso) de ferro estão descritas abaixo.

Figura 1: Manutenção da homeostase de ferro em bactérias. Quando os níveis de ferro intracelular estão baixos (limitação), as células expressam sideróforos e outros sistemas de importação de ferro para adquirir ferro do ambiente. A captação pode ocorrer por sideróforos, heme e transferrina. Essas moléculas são reconhecidas por receptores dependentes de TonB (RDTB) e o ferro é transportado para o citosol por meio de transportadores do tipo ABC. Sob condições de suficiência de ferro, o regulador transcricional Fur sente os níveis de ferro e reprime a expressão dos genes de aquisição de ferro. O ferro disponível é incorporado em proteínas e usado na síntese de grupos ferro-enxofre e heme. Sob condições de estresse por ferro (excesso), este metal é estocado em ferritinas ou bombeado para fora da célula por proteínas exportadoras de ferro para aliviar os danos ao DNA causados pela reação de Fenton. Modificado de Hood e Skaar, 2012 e Frawley e Fang, 2014.

O desafio de obter e captar ferro foi solucionado pelas bactérias pela evolução de sistemas distintos para transportar as diferentes fontes e variadas formas deste metal (ANDREWS et al., 2003; WANDERSMAN e DELEPELAIRE, 2004). O Fe²⁺, que predomina em ambientes anaeróbicos e ácidos, é transportado por sistemas localizados na membrana citoplasmática, como FeoAB e EfeUOB (Figura 1) (LAU et al., 2016). Já o Fe³⁺, encontrado na forma insolúvel ou fortemente ligado a proteínas, é solubilizado e transportado em complexo com sideróforos, moléculas de baixo peso molecular que sequestram Fe³⁺ com alta afinidade (Figura 1) (FARALDO-GOMEZ e

SANSOM, 2003; MIETHKE e MARAHIEL, 2007; BILITEWSKI et al., 2017). Os sideróforos podem ser produzidos por duas vias distintas. A primeira é por sintetases de peptídeo não ribossomais (NRPS), enzimas modulares de múltiplos domínios que funcionam de maneira coordenada e sequencial para montar metabólitos secundários, como sideróforos do tipo catecolato e antibióticos, usando aminoácidos como precursor (GULICK, 2017; CARROLL e MOORE, 2018). Já na segunda via, que é NRPS-independente (NIS), sintetases são responsáveis por uma única reação, na qual o ácido cítrico ou um derivado, é condensado com um grupo amina ou álcool para gerar sideróforos do tipo hidroxamato, fenolato e carboxilato (WILSON et al., 2016; CARROLL e MOORE, 2018). O ferro também pode ser sequestrado por receptores de patógenos bacterianos direto de fontes do hospedeiro, como transferrina, lactoferrina, hemoglobina e heme (Figura 1) (KREWULAK e VOGEL, 2008; BRAUN e HANTKE, 2011; CASSAT e SKAAR, 2013).

Em bactérias Gram-negativas, em situação de carência de ferro os sideróforos são secretados usando um mecanismo de efluxo ativo envolvendo transportadores da membrana interna, como EntS e IroC, e a proteína de membrana externa ToIC (FRAWLEY e FANG, 2014). No ambiente, os sideróforos não apenas contribuem para a absorção de ferro na forma insolúvel, mas também adquirem ferro de citrato férrico, fosfato férrico, transferrina férrica, ferro ligado a pigmentos flavonoides vegetais, açúcares e glicosídeos (KHASHEII et al., 2021). Os complexos ferri-sideróforos e as proteínas contendo ferro do hospedeiro são reconhecidas por receptores dependentes de TonB, proteínas na forma de barril-beta que utilizam a energia próton-motriz gerada pelo complexo TonB-ExbD-ExbB para realizar o transporte através da membrana externa (BRAUN e HANTKE, 2011). Uma vez no periplasma, os complexos ferri-sideróforos são transportados para o citoplasma por transportadores do tipo ABC, onde o Fe³⁺ é então reduzido a Fe²⁺ e liberado do sideróforo (Figura 1) (BRAUN e HANTKE, 2011; PALMER e SKAAR, 2016).

Por muito tempo acreditou-se que a principal forma das bactérias lidar com excesso de ferro seria estocá-lo em ferritinas, como FtnA, Bfr e Dps (BEVERS e THEIL, 2011). No entanto, estudos recentes identificaram o papel importante de transportadores para o efluxo de ferro (Fe²⁺) para proteger as células bacterianas da intoxicação por este metal (Figura 1) (PI e HELMANN, 2017). Estes sistemas de efluxo pertencem a diferentes famílias de transportadores: ATPases do tipo P_{1B}; proteínas facilitadoras de difusão de cátions (CDF); proteínas da superfamília facilitadora (MFS)

e proteínas semelhantes à ferritina ligadas à membrana (MbfA) (PI e HELMANN, 2017). Destes, as ATPases do tipo P_{1B} são a categoria com mais membros caracterizados como exportadores de Fe²⁺ que protegem contra a intoxicação pelo ferro e por estresse oxidativo (Figura 1), incluindo PfeT de *Bacillus subtilis* (GUAN et al., 2015), FrvA de *Listeria monocytogenes* (PI et al., 2016), PmtA de *Streptococcus* do grupo A (VANDERWAL et al., 2017) e CtpD de *Mycobacterium tuberculosis* (PATEL et al., 2016). Em *Salmonella* Typhimurium o transportador da família MFS IceT é responsável pelo efluxo de citrato férrico e ferro e confere resistência a estresse oxidativo e nitrosativo (Figura 1) (FRAWLEY et al., 2013). Em *P. aeruginosa*, o transportador da família CDF codificado pelo gene *aitP* foi caracterizado como um transportador de Fe²⁺ e Co²⁺, sendo este necessário durante a infecção de plantas por esta bactéria (SALUSSO e RAIMUNDA, 2017).

1.3. Regulação da expressão gênica em bactérias

A regulação da expressão gênica é fundamental para o funcionamento adequado de todos os organismos. Em bactérias, a expressão de muitos genes está sujeita a variação em resposta a mudanças ambientais, o que é crítico para a aptidão e sobrevivência bacteriana. Qualquer etapa na via de expressão gênica pode ser regulada, incluindo a transcrição do DNA em mRNA, a tradução do mRNA em proteína e as modificações pós-traducionais nas proteínas. Para a maioria dos genes bacterianos, a etapa regulatória chave que modula a expressão gênica é o reconhecimento do promotor e a iniciação da transcrição pela RNA polimerase (RNAP) (BROWNING e BUSBY, 2016; MEJÍA-ALMONTE et al., 2020).

A RNAP bacteriana é uma holoenzima composta de um cerne (subunidades $\alpha_2\beta\beta'\omega$) contendo o sítio ativo que catalisa a formação da ligação fosfodiéster do RNA nascente, e de uma subunidade dissociável, o fator sigma (σ), que é responsável por reconhecer a região promotora para iniciar a transcrição (Figura 2A) (BROWNING e BUSBY, 2016; MEJÍA-ALMONTE et al., 2020). As bactérias possuem um fator σ essencial, conhecido como fator σ de manutenção (por exemplo, σ^{70} de *E. coli*), que é responsável por reconhecer a maioria dos promotores, e conjuntos variáveis de fatores σ alternativos que direcionam o cerne da RNAP para promotores de genes de resposta a condições específicas. Este intercâmbio de fatores σ associando-se ao cerne da RNAP constitui um mecanismo central da regulação gênica em bactérias (BROWNING e BUSBY, 2016; MEJÍA-ALMONTE et al., 2020).

Figura 2: Mecanismos de regulação da expressão gênica em bactérias. A. Reconhecimento do promotor pela RNAP bacteriana. A holoenzima RNAP está mostrada com as subunidades do cerne e o fator sigma. As regiões do fator sigma (domínios 1 a 4) e do domínio carboxi-terminal da subunidade a da RNAP (aCTD) estão posicionadas nos elementos de DNA típicos do promotor bacteriano. Modificado de Browning e Busby, 2016. B. Esquema da regulação da expressão gênica mediada por Fur e sRNA. Em ambientes com suficiência de ferro, Fur encontra-se na forma ativa (Holo-Fur), reprimindo a expressão de genes para a captação de ferro e a expressão do sRNA (por exemplo, RyhB). Em condições de carência de ferro, Fur encontra-se na sua forma inativa (Apo-Fur), levando a desrepressão dos genes de captação de ferro e do sRNA. O sRNA expresso leva a degradação de mRNAs de genes envolvidos na estocagem do ferro. Modificado de Rudolph et al., 2006 e Oglesby-Sherrouse e Murphy, 2013. C. Organização típica de loci gênicos que codificam proteínas MarR. Fatores de transcrição da família MarR regulam a atividade do gene marR e um gene ou operon orientado divergente por ligação à região intergênica. A ligação ao DNA é modulada pela presença de sinais químicos específicos, resultando na desrepressão dos genes. Modificado de Deochand e Grove, 2017. D. Modelo de silenciamento por proteínas H-NS. A afinidade de H-NS por regiões do DNA ricas em AT (azul) e sua capacidade de multimerizar em tetrâmeros ou oligômeros e ligar a regiões adjacentes de DNA permite a flexão do DNA possibilitando o silenciamento da expressão gênica em regiões downstream do local de início da transcrição (seta preta). Modificado de Navarre et al., 2007.

Os promotores bacterianos contêm vários elementos de sequência localizados *upstream* do sítio de início da transcrição (+1) que são reconhecidos pela holoenzima RNAP. Dentre estes temos, o elemento –35, o elemento –10 estendido, o elemento – 10 e a região discriminadora (posição -6 a -4), que são reconhecidos por diferentes domínios do fator σ ; e o elemento UP (posições –37 a –58), que é reconhecido pelo

domínio C-terminal das subunidades α (Figura 2A) (BROWNING e BUSBY, 2016; MEJIA-ALMONTE et al., 2020). Essas regiões podem estar sob o controle de fatores de transcrição conhecidos como repressores e ativadores que usam diferentes mecanismos para reprimir ou ativar o início da transcrição. A repressão gênica pode ocorrer de diferentes maneiras: (i) impedimento estérico, no qual o fator de transcrição se liga a um sítio que sobrepõe os elementos centrais do promotor, bloqueando a ligação da holoenzima RNAP (Figura 2B e C); (ii) repressão por looping, em que interações proteína-proteína são formadas entre os repressores que se ligam em regiões upstream e downstream do promotor induzindo um loop do DNA e impedindo o reconhecimento do promotor pela RNAP (Figura 2D); (iii) modulação de ativador, quando repressores impedem a ligação de um ativador necessário para expressão de um promotor (BROWNING e BUSBY, 2016; MEJÍA-ALMONTE et al., 2020). A ativação da expressão gênica também pode ocorrer de diferentes maneiras: (i) ativação de classe I, quando o ativador se liga upstream ao promotor e recruta a RNAP por contato com o domínio C-terminal da subunidade α (α CTD); (ii) ativação de classe II, quando o ativador se liga ao promotor próximo ao elemento -35 e recruta a RNAP por meio de interação direta com o domínio 4 do fator σ ; (iii) ativação por mudança conformacional do promotor, quando ativadores se ligam aos elementos centrais de reconhecimento da RNAP e realinham os elementos -10 e -35, permitindo o recrutamento da RNAP (BUSBY, 2019; BROWNING e BUSBY, 2016; MEJÍA-ALMONTE et al., 2020).

1.3.1. Regulação da homeostase de ferro em bactérias

A família Fur de fatores de transcrição inclui sensores de ferro (Fur), zinco (Zur), manganês (Mur) e níquel (Nur). Essas metaloproteínas atuam como repressores da expressão gênica, tendo a sua ligação ao DNA dependente da presença de metais (LEE e HELMANN, 2007; FILLAT, 2014). O paradigma da regulação da expressão de genes em resposta a disponibilidade de ferro em bactérias envolve a ação coordenada de Fur, um fator de transcrição global de resposta a ferro, com pequenos RNAs regulatórios (sRNA) de resposta a ferro (LEE e HELMANN, 2007; OGLESBY-SHERROUSE e MURPHY, 2013; FILLAT, 2014). Quando há suficiência de ferro, o complexo metalo-proteína Fur e Fe²⁺ se liga a uma sequência específica do DNA, chamada Fur box, localizada entre os elementos -10 e -35 do promotor de genes que codificam sistemas de captação de ferro, reprimindo a expressão dos mesmos (Figura 1 e Figura 2B) (HANTKE, 1981; ANDREWS et al., 2003; LEE e HELMANN, 2007; FILLAT, 2014). Além de atuar como repressor direto, Fur também exerce regulação positiva na expressão de alguns genes (ferritinas, sistemas de efluxo de ferro), seja de modo direto (CARPENTER et al., 2009; DA SILVA NETO et al., 2009) ou indiretamente via sRNAs (OGLESBY-SHERROUSE e MURPHY, 2013). Assim, o sRNA RyhB de *E. coli* e outros sRNAs análogos de *P. aeruginosa* e *B. subtilis* são reprimidos por Fur em suficiência de ferro, mas tem sua expressão liberada em carência de ferro, quando então atuam pareando no mRNA dos genes alvos, levando à degradação destes mRNAs (Figura 2B) (MASSÉ e GOSTTESMAN, 2002; CHARBONNIER et al., 2022). Os genes alvos destes sRNAs geralmente codificam proteínas de armazenamento de ferro e enzimas de utilização de ferro, o que permite mobilizar o ferro estocado e priorizá-lo para enzimas essenciais (OGLESBY-SHERROUSE e MURPHY, 2013; PORCHERON e DOZOIS, 2015). Dentre os sistemas de efluxo de ferro descritos recentemente, alguns são ativados por Fur na presença de ferro (PI et al., 2016; PI e HELMANN, 2017).

Embora o mecanismo envolvendo Fur/sRNA predomine como sistema de regulação global de homeostase de ferro em diversas bactérias, tendo inclusive papel importante em virulência (PORCHERON e DOZOIS, 2015), em alguns grupos bacterianos, outros fatores de transcrição exercem esta função. Assim, em bactérias Gram-positivas de alto conteúdo G+C a função de Fur é exercida pelo regulador DxtR. Em alguns grupos de alfa-proteobactérias como *Rhizobiales* e *Rhodobacterales*, os reguladores RirA são os reguladores globais de homeostase de ferro, com proteínas do tipo Fur sendo chamadas de Mur, por regularem apenas sistemas de captação de manganês (RUDOLPH et al., 2006; HIBBING e FUQUA, 2011). Em *Streptomyces coelicolor*, o regulon do fator de transcrição CatR da família Fur revelou seu papel na homeostase do ferro através da regulação do gene *vtlA*, que codifica um exportador de ferro (KIM et al., 2021).

Embora esteja bem documentada a coexistência destes fatores de transcrição globais, como Fur e Irr, com sistemas de regulação local que respondem a fontes específicas de ferro, como fatores de transcrição de resposta a sideróforos e fatores sigma alternativos do tipo FecI (BRAUN e MAHREN, 2005; LLAMAS et al., 2014), trabalhos recentes têm demonstrado que novos reguladores de ferro com funções mais globais podem existir em bactérias que apresentam a regulação por Fur e Irr bem estabelecida. Assim, foi descrito em *Xanthomonas campestres* que, além de Fur, o regulador XibR (família NtrC) controla vários aspectos da homeostase de ferro, além

de regular motilidade e virulência bacteriana (PANDEY et al., 2016). Também em *X. campestres*, foi identificado o sistema de dois componentes VgrSR que consegue sentir os níveis extracelulares e intracelulares de ferro e modular a expressão dos genes de homeostase de ferro (WANG et al., 2016). Em *Rhodobacter capsulatus*, foi identificado o regulador HbrL da família LysR como um regulador global da homeostase de ferro e de heme (ZAPPA e BAUER, 2013).

A regulação da homeostase de ferro pode ser integrada ao quorum sensing (QS). O QS é um processo de comunicação célula-célula no qual as células produzem, detectam e respondem a moléculas sinalizadoras chamadas autoindutores, permitindo que as bactérias alterem sincronicamente seu comportamento em resposta a mudanças na densidade populacional e na composição de espécies da comunidade (PAPENFORT e BASSLER, 2016; MUKHERJEE e BASSLER, 2019). Considerando que os sideróforos são conhecidos como bens públicos, não é surpresa que os sistemas QS de algumas bactérias regulem a produção de sideróforos (WEN et al, 2012; CHAPALAIN et al, 2013; MCROSE et al., 2018; SHAH et al, 2020). Em P. aeruginosa, a molécula de sinalização do QS PQS estimula o aumento de sideróforos, resultando em aumento de trapaceiros na comunidade. Isto pode ser benéfico, por aumentar outros benefícios compartilhados, ou prejudicial, tornando a população produtora vulnerável (POPAT et al., 2017). Em Vibrio harveyi, observou-se diminuição do sideróforo insolúvel anfi-enterobactina durante a curva de crescimento, e acúmulo de sideróforos mais solúveis. Essa repressão da produção de anfi-enterobactina ocorre via QS (MCROSE et al., 2018). Em Paracoccus denitrificans, foi descrito que o sistema QS leva à troca de uma forma de captação de ferro dependente de TonB para uma forma de captação de ferro independente de TonB durante a formação do biofilme (ZHANG et al., 2018).

1.3.2. Fatores de transcrição da família MarR

Os fatores de transcrição da família MarR são encontrados em Archaea e Bacteria e o nome da família se refere ao primeiro membro descrito, o regulador MarR (regulador de resistência a múltiplos antibióticos) de *E. coli* (DEOCHAND e GROVE, 2017; WILL e FANG, 2020). Os fatores de transcrição dessa família agem principalmente como repressores da expressão gênica e existem como dímeros, com cada subunidade contribuindo com um motivo de ligação ao DNA de hélice-voltahélice (wHTH) e uma região que responde a um sinal químico específico (Figura 2C) (DEOCHAND e GROVE, 2017). Esses sinais químicos são pequenas moléculas que oxidam diretamente o regulador (ROS, metais) ou que atuam como ligantes moleculares, tais como antibióticos e intermediários metabólicos (BAKSH e ZAMBLE, 2020; GONG et al., 2019). Por exemplo, o cobre oxida uma cisteína no regulador MarR de *E. coli* anulando a capacidade da proteína de se ligar ao DNA, o que resulta na expressão de uma bomba de efluxo que confere resistência a antibióticos (HAO et al., 2014). Em contraste, em *Streptococcus pneumoniae*, um fator de transcrição da família MarR chamado AdcR é ativado pela ligação de Zn²⁺, que por sua vez leva a uma mudança conformacional, reorientando o motivo de ligação ao DNA da proteína (REYES-CABALLERO et al., 2010). Embora os fatores de transcrição da família MarR tenham sido originalmente considerados como repressores clássicos da transcrição, estudos mais recentes demonstraram que alguns membros da família podem modular positiva e negativamente a expressão gênica, em alguns casos por meio de contrasilenciamento de H-NS (WYBORN et al., 2004; WILL e FANG, 2020).

Alguns fatores de transcrição da família MarR estão envolvidos na homeostase do ferro e do heme. O regulador HsmR de *Clostridioides difficile* detecta e se liga ao heme, levando à ativação de *hsmA*, o qual codifica uma proteína com a capacidade de sequestrar heme e proteger a célula contra estresse oxidativo (KNIPPEL et al., 2020). Em *P. aeruginosa*, o regulador PqrR usa um grupo prostético contendo ferro para atuar como um fator de transcrição sensível ao redox (RUNGRASSAMEE et al., 2009). Em *X. campestris*, HpaR, um fator de transcrição relacionado à virulência, atua como um ativador do sistema de dois componentes VgrRS, um sistema importante para detectar deficiência de ferro e regular a virulência bacteriana (PAN et al., 2018). Esses dados ilustram a importância da família MarR na detecção de estresses ambientais, como o desequilíbrio na concentração de íons metálicos nas células bacterianas.

Os membros da família MarR podem ser agrupados em subfamílias, como a subfamília GbsR, recentemente descrita como amplamente distribuída entre Bacteria e Archaea (RONZHEIMER et al., 2018). Análise *in silico* de co-localização genômica revelou que em *Firmicutes* genes codificando reguladores do tipo GbsR estão nas proximidades de grupos de genes que codificam a síntese/importação de protetores de estresse osmótico (colina, glicina betaína, prolina betaína). Em alfa e beta proteobacteria, os genes que codificam proteínas do tipo GbsR (*cydE*) estão situados próximos aos operons *cydAB* ou *cydABCD* que codificam citocromo *bd* oxidases (RONZHEIMER et al., 2018). Em *Alishewanella* sp., a proteína GbsR CydE reprime a

expressão de genes *cydAB* que são cruciais para a resistência a cromato e sulfeto (XIA et al., 2018).

1.3.3. Compactação do DNA e o controle da expressão gênica

Em bactérias, o DNA do cromossomo é empacotado e estruturado no nucleoide por várias proteínas associadas ao nucleoide (NAPs), tais como H-NS, Dps, Fis, HU, IHF e Lrp. Estas NAPs ligam ao DNA com baixa especificidade e geralmente tem efeito global na expressão gênica (DILLON e DORMAN, 2010). A proteína de estruturação de nucleoide semelhante a histona H-NS (histone-like nucleoid structuring protein) tem sido extensivamente estudada em E. coli e outras enterobactérias (WILLIAMS e RIMSKY, 1997; TENDENG e BERTIN, 2003; NAVARRE et al., 2007; GRAINGER 2016). As H-NS são pequenas proteínas (a H-NS de *E. coli* tem 137 aminoácidos e 15.5 kDa) com dois domínios. O domínio N-terminal contém quatro α hélices e permite que H-NS forme oligômeros. Em baixa concentração, H-NS é encontrada em dímeros, mas em alta concentração e em regiões promotoras, H-NS multimeriza em tetrâmeros ou complexos maiores. Já o domínio C-terminal é o domínio de ligação ao DNA, sendo formado por duas folhas β , uma α hélice e uma hélice 3₁₀. Normalmente, H-NS se liga a regiões ricas em AT e foi mostrado in vitro uma maior afinidade por DNA curvo (OSHIMA et al., 2006; GRAINGER 2016; NAVARRE et al., 2007). Após a ligação inicial das proteínas H-NS ao DNA em locais distantes, as mesmas podem formar oligômeros, aproximando segmentos distantes de DNA, o que contribui para compactação do DNA e organização do nucleoide (Figura 2D) (OSHIMA et al., 2006; NAVARRE et al., 2007).

Ao compactar o DNA, H-NS controla muitos processos, sendo um dos mais estudados a iniciação da transcrição pela RNAP (DORMAN, 2004; GRAINGER 2016; NAVARRE et al., 2007; LANDICK et al., 2015). Assim, H-NS pode restringir o início da transcrição por diferentes mecanismos: (i) aprisionamento da RNAP, pela formação de uma alça de repressão; (ii) repressão seletiva, quando H-NS se liga em regiões promotoras e impede a ligação da RNAP; (iii) repressão por interação direta com a RNAP, quando H-NS oligomeriza próximo ao promotor e interage com a subunidade αCTD, evitando a abertura da dupla fita de DNA; (iv) exclusão da RNAP e fator de transcrição, quando H-NS oclui certos promotores e locais de ligação do fator de transcrição (GRAINGER 2016; LANDICK et al., 2015). Uma característica particularmente interessante de H-NS é sua capacidade de silenciar a transcrição de genes que foram adquiridos horizontalmente, o que inclui ilhas de patogenicidade de

diversas bactérias, incluindo *S. enterica* serovar Typhimurium (DORMAN, 2004; LANDICK et al., 2015; GRAINGER 2016; NAVARRE et al., 2007). Os mecanismos de repressão por H-NS podem ser desfeitos por meio de contra-silenciamento da expressão, quando fatores de transcrição interrompem a ligação de H-NS do DNA (NAVARRE et al., 2007; GRAINGER 2016; WILL e FANG, 2020).

Uma variedade de fenótipos tem sido associados a mutação de H-NS. Em *E. coli*, mutação de H-NS levou a desrepressão do metabolismo de β-glicosídeos, aumento da resistência a pH baixo e alta osmolaridade e perda de motilidade (BERTIN et al., 2001; TENDENG e BERTIN, 2003; GAO et al., 2018). Em *Klebsiella pneumoniae*, foi mostrado que H-NS está relacionada com a virulência, uma vez que mutação de H-NS diminuiu a expressão de genes do pili do tipo III, afetou a formação de biofilme e levou ao aumento da expressão dos genes da cápsula (ARES et al., 2016). Em *Acinetobacter baumannii*, mutação de H-NS levou a um aumento da expressão de genes associados com a resistência a diversas classes de antibióticos (RODGERS et al., 2021), além de mudança da expressão do sistema de secreção do tipo VI (T6SS) e do pilus do tipo I (EIJKELKAMP et al., 2013). Mutantes de H-NS em *Vibrio cholerae* exibem fenótipos alterados de virulência, motilidade e resposta ao estresse ambiental (WANG et al., 2015). Assim, H-NS pode ser associada com diversos fenótipos em bactérias Gram-negativas, sendo seu estudo importante para fisiologia e patogenicidade bacteriana.

1.4. Chromobacterium violaceum

A bactéria *Chromobacterium violaceum* pertencente ao filo Proteobacteria, classe β-proteobacteria, ordem Neisseriales e família Neisseiraceae. A *C. violaceum* é uma bactéria Gram-negativa, saprofítica e anaeróbia facultativa. Além de ser encontrada em amostras de solo e água de regiões tropicais e subtropicais de todos os continentes, incluindo os biomas Amazônia, Cerrado e Mata Atlântica brasileira (LIMA-BITTENCOURT et al, 2007), esta bactéria também é um patógeno oportunista de humanos (YANG e LI, 2011; BATISTA e DA SILVA NETO, 2017). Como o nome sugere, a *C. violaceum* apresenta coloração roxa devido a produção de um pigmento de cor violeta chamado violaceína (Figura 3A). A via de síntese da violaceína envolve cinco enzimas (codificadas pelo operon *vioABCDE*) que produzem o pigmento a partir do triptofano. A violaceína tem sido muito estudada devido sua ação *in vitro* antibacteriana, antiparasitária, antiviral e antitumoral (DURAN e MENCK, 2001; DURAN et al., 2016; PARK et al., 2021). Recentemente, foi descrito que a violaceína

tem como alvo a membrana citoplasmática de bactérias Gram-positivas e que a mesma pode ser entregue por meio de vesículas de membrana externa para competir contra *Staphylococcus aureus* (CAUZ et al., 2019; BATISTA et al., 2020).

Embora raros, os casos de infecção por *C. violaceum* em humanos e outros animais são caracterizados por rápida disseminação e alta mortalidade. Alguns relatos de casos clínicos já foram observados na Colômbia (DÍAZ PÉREZ et al., 2007), Brasil (DE SIQUEIRA *et al.*, 2005), Índia (KUMAR, 2012), além de muitos outros países de clima tropical e subtropical (YANG e LI, 2011; SEIGEL et al., 2012; SWAIN, 2014; RICHARD et al., 2015; BATISTA e DA SILVA NETO, 2017). Os pacientes desenvolvem lesões na pele e abscessos no fígado e pulmão, evoluindo para um quadro de septicemia fatal (Figura 3B e C). A rota mais provável de entrada no corpo são ferimentos em contato com solo ou água parada (YANG e LI, 2011).

Trabalhos usando camundongos como modelo de infecção têm demonstrado o papel de um sistema de secreção do tipo III (T3SS) localizado na ilha de patogenicidade Cpi1/1a como determinante de virulência em C. violaceum, pois linhagens mutantes neste sistema são bastante atenuadas para virulência (MIKI et al., 2010; MIKI et al., 2011; BATISTA e DA SILVA NETO, 2017). Efetores secretados pelo T3SS de C. violaceum vêm sendo caracterizados como importantes para infecção e evasão do sistema inume. O efetor CopE foi demostrado como necessário para a invasão de células HeLa (MIKI et al., 2011); o efetor CetC é uma ADPribosiltransferase que bloqueia a ubiquitinação no hospedeiro (YAN et al., 2020); e o inativa caspases-3/-7/-8/-9 por modificação pós-traducional, efetor CopC desregulando processos de morte celular como apoptose (PENG et al., 2022; LIU et al., 2022). Um importante trabalho utilizando camundongos knockout revelou que o sistema imune inato controla a infecção por C. violaceum via piroptose de macrófagos, lise de hepatócitos por células Natural Killer (NK) e geração de ROS por neutrófilos (MALTEZ et al., 2015).

O sequenciamento do genoma completo da linhagem ATCC 12472 de *C. violaceum* (linhagem isolada de água na Malásia) relevou um genoma relativamente grande (4.5 Mb) (VASCONCELOS et al., 2003). Análises *in sillico* e trabalhos recentes demostram um genoma com adaptações ao seu estilo de vida variado (ambiental e patógeno), como a presença de: (i) sistemas de secreção (T1SS, T2SS, T3SS, T5SS e T6SS), sendo que o T6SS foi caracterizado como importante para competição interbacteriana (ALVES et al., 2022); (ii) sistemas de captação e regulação da

homeostase dos metais ferro (BATISTA et al., 2019; SANTOS et al., 2020; DE LIMA et al., 2022) e zinco (SANTOS et al., 2021); (iii) produção de metabólitos secundários como o antibiótico anisomicina (MION et al., 2021); (iv) grande quantidade de sistemas regulatórios. Dentre os mais de 200 fatores de transcrição de *C. violaceum*, 16 deles pertencem a família MarR. Nosso laboratório caracterizou alguns reguladores dessa família em *C. violaceum*: OhrR está relacionado com a virulência de *C. violaceum* por regular genes de defesa ao estresse oxidativo (*ohrA*) e genes relacionados com virulência (enzimas extracelulares) (PREVIATO-MELLO et al., 2017); EmrR está envolvido com a resistência ao antibiótico ácido nalídíxico por regular a bomba de efluxo EmrCAB (BARROSO et al., 2018); OsbR está envolvido na defesa ao estresse oxidativo, respiração anaeróbica e formação de biofilme (ALVES et al., 2021).

Figura 3. Aspectos gerais da fisiologia e infecção de *Chromobacterium violaceum*. A. *C. violaceum* selvagem semeada em placa LB, evidenciando a presença de seu pigmento roxo, a violaceína. Colônias isoladas e cultivo em meio LB líquido das linhagens de *C. violaceum* WT e $\Delta cviR$, mostrando a perda da produção de violaceína no mutante. **B.** Paciente com fasciíte necrotizante por *C. violaceum*. Presença de edema facial e necrose. Modificada de Seigel et al., 2012. **C.** Lesões glúteas em paciente infectado com *C. violaceum*. Modificado

de Richard et al., 2015. **D.** Sistema de QS de *C. violaceum*. Cvil produz o autoindutor C10-HSL. Em alta densidade celular (ADC), há o acúmulo de autoindutor na célula que se liga ao regulador CviR. CviR então ativa a expressão de diversos genes como o *cvil* e o operon *vioABCDE*, levando a produção de violaceína. VioS atua como um inibidor da violaceína por um mecanismo ainda não descrito. Hipótese de que seja via inibição de CviR (linha descontinua). Modificado de Devescovi et al., 2017. BDC, baixa densidade celular. **E.** Mecanismos de captação de ferro e heme em *C. violaceum*. *C. violaceum* produz ao menos dois sideróforos, chromobactina e viobactina, via enzimas NRPS CbaF e VbaF, respectivamente. Os sideróforos são liberados no meio externo e retornam para célula por meio dos receptores CbuA e VbuA. Além disso, *C. violaceum* usa o sistema ChuPRSTUV para captar heme como fonte de ferro. Fur reprime a expressão desses genes em suficiência de ferro. Modificado de Batista et al., 2019 e de Lima et al., 2022.

1.4.1. Sinalização por quorum sensing (QS) em C. violaceum

Em bactérias Gram-negativas, uma importante classe de autoindutores de QS são as acil-homoserina lactonas (AHLs). Dois tipos de receptores cognatos detectam esses autoindutores: (i) fatores de transcrição no citoplasma; (ii) sistemas de dois componentes por meio de histidinas quinases sensoras na membrana. Em ambos os casos, a resposta final envolve regulação da expressão de genes alvo de acordo com a densidade celular (PAPENFORT e BASSLER, 2016; MUKHERJEE e BASSLER, 2019). C. violaceum ATCC 12472 apresenta o sistema de QS Cvil/CviR, no qual a enzima Cvil produz autoindutores AHLs de cadeia longa (C10-HSL), diferente da linhagem de C. violaceum ATCC 31532 que produz e responde a AHL de cadeia curta (C6-HSL) (MCCLEAN et al, 1997; MOROHOSHI et al., 2008). Recentemente, a linhagem C. violaceum ATCC 31532 foi renomeada como Chromobacterium subtsugae CV017 (BENOMAR et al., 2019). Em alta densidade celular (ADC), as AHLs se acumulam e se ligam ao regulador CviR, da família LuxR, levando à ativação de diferentes genes (Figura 3D), como aqueles que codificam enzimas para produção de violaceína (Figura 3A e D) e outros metabólitos secundários (MCCLEAN et al, 1997; STAUFF e BASSLER, 2011). De fato, mutantes do sistema Cvil/CviR apresentam redução da produção de metabólitos secundários (violaceína, anisomicina e cianeto), da formação de biofilme e da liberação de enzimas hidrolíticas extracelulares (proteases e quitinases) (MOROHOSHI et al., 2010; DEVESCOVI et al., 2017; MION et al., 2021). Esse sistema tem sido muito usado como um biossensor de AHLs exógenas e para a descoberta de moléculas que inibem o QS (MCCLEAN et al, 1997; MOROHOSHI et al., 2008; SWEM et al., 2009; MION et al., 2021). Por exemplo, foi descoberto um antagonista do QS que levou a proteção de Caenorhabditis elegans da morte mediada por C. violaceum ATCC 31532 (SWEM et al., 2009). O uso de uma enzima quorum-quenching que degrada as AHLs de C. violaceum ATCC 12472

reduziu a capacidade desta bactéria de matar *Bacillus cereus* e *Saccharomyces cerevisiae* e de causar toxicidade em macrófagos e planárias (MION et al., 2021).

Varredura de bibliotecas de mutantes de transposon na linhagem de *C. violaceum* ATCC 31532 buscando colônias que produzem mais violaceína revelou linhagens mutantes com inserção do transposon no gene CV_1055 (*vioS*) que codifica uma proteína de função desconhecida (SWEM et al., 2009; DEVESCOVI et al., 2017). Ensaios de β -galactosidase revelaram que VioS não regula o promotor do operon *vioABCDE* e que CviR não foi capaz de ativar a síntese de violaceína na presença de VioS em *E. coli*, sugerindo que VioS apresenta uma atividade inibitória de CviR (DEVESCOVI et al., 2017). Nenhum trabalho realizou até o momento uma análise global dos genes regulados pelo sistema de QS Cvil/CviR em *C. violaceum* ATCC 12472. O sítio de ligação ao DNA do CviR foi mapeado apenas *upstream* do operon *vioABCDE* e usado para fazer uma predição *in silico* no genoma. Sítios putativos foram preditos no promotor de genes que codificam quitinases, sistema de secreção tipo VI e a enzima Cvil que produz AHLs (STAUFF e BASSLER, 2011).

1.4.2. Homeostase de ferro em C. violaceum

Alguns aspetos da homeostase de ferro de *C. violaceum* veem sendo descritos. Nosso grupo mostrou que C. violaceum sintetiza pelo menos dois sideróforos do tipo catecolato (cromobactina e viobactina) e ambos são necessários para a virulência de C. violaceum (BATISTA et al., 2019). Propomos que esses sideróforos sejam montados pelas NRPS CbaF e VbaF a partir do precursor comum 2,3-DHBA sintetizado pelas enzimas CbaCEBA, e importados pelos receptores dependentes de TonB CbuA e VbuA, respectivamente (Figura 3E) (BATISTA et al., 2019). Em outro estudo, demonstramos que C. violaceum usa heme e hemoglobina via sistema ChuPRSRTUV, e que tanto os sideróforos quanto o heme são importantes estratégias de aquisição de ferro necessárias para a infecção (Figura 3E) (DE LIMA et al., 2022). Além disso, o nosso grupo demonstrou que Fur reprime genes relacionados à homeostase do ferro (Figura 3E) e controla a virulência em C. violaceum, além de conferir proteção contra excesso de ferro e danos gerados pelo estresse oxidativo (SANTOS et al., 2020). No entanto, ainda não se sabe se outros fatores de transcrição regulam a produção e captação de sideróforos em C. violaceum, como esta bactéria lida com estresse por excesso de ferro e como a homeostase de ferro está integrada a outros processos como a comunicação celular por QS.

2. OBJETIVO

O objetivo deste trabalho foi estudar mecanismos de homeostase de ferro no patógeno oportunista *Chromobacterium violaceum*, buscando identificar e caracterizar novos fatores de transcrição envolvidos na captação de ferro por sideróforos e na resistência ao excesso de ferro.

Para atingir tal objetivo, utilizamos as seguintes estratégias:

 (i) Realizar varredura de uma biblioteca de mutantes de transposon para a produção alterada de sideróforos com a finalidade de encontrar novos fatores de transcrição envolvidos em homeostase de ferro;

 (ii) Caracterizar estes fatores de transcrição encontrados na varredura da biblioteca e identificar de modo global seus respectivos regulons por meio da técnica de RNA-Seq;

(iii) Validar os dados de análise global do transcriptoma para genes selecionados de cada regulon por RT-qPCR ou ensaio de β-galactosidase (expressão gênica *in vivo*) e por ensaios de EMSA (validação *in vitro* dos sítios de ligação ao DNA);

 (iv) Realizar varredura da biblioteca de mutantes de transposon para sensibilidade a altos níveis de ferro com a finalidade de identificar sistemas envolvidos na resistência ao excesso de ferro;

(v) Caracterizar os potenciais sistemas de resistência ao ferro, analisando a sensibilidade dos mutantes ao ferro, a outros metais e ao estresse oxidativo;
3. MATERIAL E MÉTODOS

3.1. Linhagens e plasmídeos

As linhagens bacterianas e os plasmídeos utilizados neste trabalho estão listadas na Tabela 1.

Linhagem ou plasmídeo	Descrição ^a	Referência
Linhagens		
Escherichia coli		
DH5a	Linhagem de <i>E. coli</i> utilizada para clonagem.	(HANAHAN, 1983)
S17-1	Linhagem de <i>E. coli</i> utilizada para conjugação de plasmídeos.	(SIMON et al., 1983)
BL21(DE3)	Linhagem de <i>E. coli</i> utilizada para	Novagen
SM10λpir	Linhagem de <i>E. coli</i> utilizada para obtenção de mutantes de transposon.	(JACOBS et al., 2003)
JKe201	Linhagem de <i>E. coli</i> utilizada para clonagem e conjugação de plasmídeos.	(HARMS et al., 2017)
Chromobacterium vio	laceum	
ATCC 12472 (WT)	Linhagem ATCC 12472 selvagem (WT). Sequenciada, isolado de água, patogênica,	(VASCONCELOS et al., 2003)
CV ^{NALR}	Mutante espontâneo resistente ao ácido nalidíxico com mutação pontual no gene	(SANTOS et al, 2020)
WT[pMR20]	Linhagem selvagem com o vetor pMR20 vazio.	Este trabalho
WT[pSEVA]	Linhagem selvagem com o vetor pSEVA vazio.	Este trabalho
WT[csrA]	Linhagem selvagem com o vetor pSEVA- csrA para aumento da expressão desse gene.	Este trabalho
WT[csrB]	Linhagem selvagem com o vetor pMR20- csrB para aumento da expressão desse	Este trabalho
airS::T8	Linhagem mutante CVNAL::IS <i>lacZ</i> /hah com inserção aleatória do transposon no gene <i>air</i> S (CV 0536).	Este trabalho
∆airS	Mutantes nulo para o gene airS.	Este trabalho
∆airS[airMS]	Mutante nulo <i>airS</i> complementado com <i>airMS</i> no vetor pSEVA.	Este trabalho
airR::T8	Linhagem mutante com inserção aleatória do transposon no gene <i>airR</i> (CV_0537).	Este trabalho
∆airR	Mutante nulo para o gene airR.	Este trabalho
∆airR[airR]	Mutante nulo <i>airR</i> complementado com <i>airR</i> no vetor pSEVA.	Este trabalho
∆airSR	Mutante nulo para os genes airSR.	Este trabalho

Tabela 1. Linhagens ba	cterianas e plasmídeos
------------------------	------------------------

∆airSR[airMS]	Mutante nulo <i>airSR</i> complementado com	Este trabalho	
	airMS no vetor pSEVA		
∆airSR[airR]	Mutante nulo <i>airSR</i> complementado com <i>airR</i> no vetor pSEVA	Este trabalho	
CV_0635::T8	Linhagem mutante com inserção aleatória do transposon no gene CV 0635	Este trabalho	
ACV 0635	Mutante nulo para o gene CV 0635	Este trabalho	
$\Delta CV_{0635}[CV_{0635}]$	Mutante nulo CV_0635 complementado com CV_0635 no vetor pSEVA	Este trabalho	
WT[CV_0635]	Linhagem selvagem expressando mais	Este trabalho	
<i>vitR</i> ::T8	Linhagem mutante com inserção aleatória do transposon no gene <i>vitR</i> (CV 1057).	Este trabalho	
∆vitR	Mutante nulo para o gene <i>vitR</i> .	Este trabalho	
$\Delta vit R$ [pMR20]	Mutante nulo <i>vitR</i> com vetor pMR20 vazio.	Este trabalho	
$\Delta vitR[vitR]$	Mutante nulo <i>vitR</i> complementado com <i>vitR</i> no vetor pMR20.	Este trabalho	
ΔvioS	Mutante nulo para o gene vioS (CV 1055).	Este trabalho	
$\Delta vit R/vio S$	Mutante nulo para os genes vitR e vioS	Este trabalho	
$\Delta vitR/vioS[vitR]$	Mutante duplo <i>vitR</i> / <i>vioS</i> complementado com <i>vitR</i> no vetor pMR20.	Este trabalho	
$\Delta vitR/vioS[vioS]$	Mutante duplo $vitR/vioS$ complementado com $vioS$ no vetor pMR20.	Este trabalho	
csrA::T8	Linhagem mutante com inserção aleatória do transposon no gene <i>csrA</i> (CV 2600).	Este trabalho	
csrA::T8[csrA]	Mutante $csrA$::T8 complementado com $csrA$ no vetor pSEV/A	Este trabalho	
AcsrA	Mutante nulo para o gene csrA	Este trabalho	
$\Delta csrA[csrA]$	Mutante nulo <i>csrA</i> complementado com	Este trabalho	
4.00 mD	CSTA NO VETOR DEVA.	Esta trakalka	
$\Delta CSIB$	Mutante nulo para o gene <i>CSTB</i> .	Este trabalho	
∆csrB[csrB]	<i>csrB</i> no vetor pMR20.	Este trabalho	
$\Delta csrAB$	Linhagem WT com deleção dos genes csrAB.	Este trabalho	
$\Delta csrAB[csrA]$	Mutante duplo <i>csrAB</i> complementado com <i>csrA</i> no vetor pSEVA.	Este trabalho	
∆csrAB[csrB]	Mutante duplo <i>csrAB</i> complementado com <i>csrB</i> no vetor pMR20	Este trabalho	
<i>cviR</i> ::T8	Linhagem mutante CVNAL::IS <i>lacZ</i> /hah com inserção aleatória do transposon no	Este trabalho	
∆cviR	Mutante nulo para o gene <i>cviR</i> .	(BATISTA et	al.,
∆cviR[cviR]	Mutante nulo <i>cviR</i> complementado com	(Linhagem	do
∆ <i>cviR/cbaF</i> ::pNPT	Mutante nulo para o gene <i>cviR</i> com mutação por inserção do pNPT no gene <i>chaF</i>	Este trabalho	
∆ <i>cviR/vbaF</i> ::pNPT	Mutante nulo para o gene <i>cviR</i> com mutação por inserção do pNPT no gene <i>vbaF</i> .	Este trabalho	
∆cvil	Mutante nulo para o gene <i>cvil</i> (CV_4091).	(BARROSO et 2018)	al.,

∆cvil[cvil]	Mutante nulo <i>cvil</i> complementado com <i>cvil</i> (Linhagem	
∆CV 3659	Mutante nulo para o gene CV 3659.	Este trabalho
ACV 3659[CV 3659]	Mutante nulo CV 3659 complementado	Este trabalho
	com a cópia de CV_3659 no vetor pSEVA	
ACV 3658-57	Mutante nulo para os genes CV 3658 e	Este trabalho
201_0000 01	CV 3657	
ACV 3658-57	Mutante nulo CV 3658-57 complementado	Este trabalho
$10^{-3658-571}$	$com CV_3658-57$ no vetor nMR20	
$(0^{-})^{-}$	Mutante nulo para o gene CV/ 12/3	Este trabalho
ΔCV_{1243}	Mutante nulo para o gene CV_1243.	Este trabalho
$\Delta CV_{12/3/1363}$	Mutante nulo para os gonos CV 1243 o	Este trabalho
ACV_1243/1303	CV 1363	
Plasmídeos	<u> </u>	
nNPTS138	Vetor suicida para mutagênese. Can ^R	
pFOK	Vetor suicida para mutagênese. Can ^R	
βιοιζ	velor suicida para mulagenese, Can	
	Vatar da complementação ariT. Tat ^R	$(P \cap R E P T S)$
ρινικζυ	velor de complementação orr, rec	(NOBERTS et al.,
	Vatar da complementação, Can ^B	
ρσενά	velor de complementação, Cana	
	Votor de overessãos promotor induzido por	al., 2013)
period	IPTC: roproscor lock Amp ^R	Novagen
	Descrides contend a transpoor To	(IACORS at al
priz	$(18 \log 7/b \cosh)$; Amp ^R Tot ^R	
	(ISIACZ/IIAII), AIIIP, Tet	2003) Dromogo
pGEIN-T easy	Vetor pero fueão do transcrição co	
prr <i>iac</i> zz90	Velor para lusao de transcrição ao	
	nacz, balko humero de copias, onv, ret	SHAPIRU, 1992)
ρίας	anna vit D fucionada a lasZ	
	gene vilk iusionada a lacz.	Foto trobalha
placP-1103	prinace 290 com a região promotora do	Este trabalho
	gene vios iusionada a lacz.	Fata trabalha
placP-ainvis	provide a região promotora do	Este trabalho
	peron allings iusionada a lacz.	Eata trabalha
placP-allR	privace 290 com a região promotora do	Este trabalho
	gene all'R iusionada a lacz.	
plac::P-csra	pRK/ac2290 com a região promotora do	Este trabalno
	gene cs/A lusionada a lacz.	
plac::P-csrB	pRK/ac2290 com a região promotora do	Este trabalno
	gene csrB fusionada a lacz.	
PLAC::P-CVIR	promotora do	Este trabalho
	gene cvik tusionada a lac∠.	
plac::P-CV_3659	price promotora do	Este trabalho
	gene CV_3659 fusionada a <i>lacZ</i> .	

^a Abreviações: Can, canamicina; Tet, tratraciclina; Amp, ampicilina; NAL, ácido nalidíxico; R, resistência.

3.2. Meios de cultura e condições de cultivo

As linhagens de *E. coli* DH5α (clonagem), S17-1 (conjugação), SM10λpir (conjugação do transposon), JKe201 (mutagênese) e BL21(DE3) (expressão heteróloga de proteínas) foram cultivadas a 37 °C sob agitação, em meio rico Luria-Bertani (LB). As culturas foram suplementadas com canamicina (50 µg/ml), ampicilina

(100 µg/ml) e tetraciclina (12 µg/ml), quando necessário. As linhagens de *C. violaceum* (Tabela 1) foram cultivadas a 37 °C em meio LB e em meio mínimo M9 (SAMBROOK e RUSSELL, 2001) modificado com adição de 0,1% de hidrolisado de caseína (M9HC), e suplementadas com os antibióticos tetraciclina (10 µg/ml) e canamicina (50 µg/ml), quando necessário. Em condições de carência de ferro o meio LB foi suplementado com 150 µM e 200 µM de 2,2'-Dipyridyl (DP, Sigma), um quelante de alta afinidade ao ferro.

3.3. Procedimentos gerais de clonagem

3.3.1. Reações de PCR

Os insertos de DNA utilizados para clonagem foram amplificados por PCR (reação em cadeia da polimerase), utilizando enzima de alta afinidade. Utilizou-se em cada reação: 0,5 µl do DNA molde (DNA genômico de *C. violaceum* ATCC 12472), 0,5 µl de cada oligonucleotídeo a 50 µM (Tabela 2), 1,0 µl de dNTP mix a 10 mM, 10 µl de 5x Phusion HF Buffer, 0,3 µl de Phusion DNA polimerase (Thermo Scientific), 1,5 µl de DMSO e água mili-Q para um volume final de 50 µl. O PCR foi realizado nas seguintes condições: 98 °C por 3 minutos; 30 ciclos compostos por 3 etapas cada ciclo (98 °C por 10 segundos, 63 °C por 30 segundos e 72 °C por 30-60 segundos); 72 °C por 5 minutos e resfriamento a 4 °C. Os produtos obtidos foram analisados em gel de agarose 1% ou 0,8%. As bandas foram recortadas e recuperadas do gel, seguindo protocolo do kit NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel).

Para a confirmação das clonagens ou confirmação dos mutantes de *C. violaceum*, o PCR de colônia foi realizado utilizando uma Taq DNA polimerase comum e as colônias bacterianas foram utilizadas diretamente como molde de DNA. Para cada reação foram utilizados: 1,0 µl de DNA molde, 0,2 µl de cada oligonucleotídeo a 50 µM (Tabela 2), 0,4 µl de dNTP mix a 10 mM, 2,0 µl de 10x Taq buffer com (NH₄)₂SO₂, 1,0 µl de MgCl₂ 25 mM, 0,2 µl de Taq DNA polimerase (Cellco), 1,0 µl de DMSO e água mili-Q para um volume final de 20 µl. O PCR foi realizado nas seguintes condições: 95 °C por 5 minutos; 30 ciclos compostos por 3 etapas cada ciclo (95 °C por 30 segundos, 60 °C por 30 segundos e 72 °C por 30-60 segundos); 72 °C por 7 minutos e resfriamento a 4 °C. Os produtos obtidos foram analisados em gel de agarose 1% ou 0,8%.

3.3.2. Digestão de DNA com enzimas de restrição

Os plasmídeos e os produtos das reações de PCR utilizados para as clonagens foram digeridos com as enzimas de restrição apropriadas (Tabela 2) em tampão

específico fornecido pelo fabricante (Thermo Scientific) entre 1 e 3 horas, dependendo da enzima, a 37 °C. As digestões foram inativadas por calor de acordo com o fabricante (Thermo Scientific) e analisadas em gel de agarose 1% ou 0,8%.

3.3.3. Ligação de DNA e transformação por eletroporação

A ligação entre insertos e vetores digeridos foi feita usando a enzima T4 DNA ligase (Biolabs) em tampão apropriado, por 16 horas a 16 °C. Após incubação, a ligação foi limpa utilizando o kit NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel). Assim, 5 μ l da ligação eluída foi transformada em *E. coli* DH5 α (40 μ l de células) por eletroporação em cubetas de 0,2 cm (Biorad), usando os seguintes parâmetros: 2500 V, 200 Ω , 25 μ F. Após a eletroporação, as células foram recuperadas em 600 μ l de meio LB por 1 hora sob agitação e espalhadas em placas de meio LB suplementado com antibiótico adequado. As placas foram incubadas em estufa a 37 °C por 24 horas.

3.3.4. Sequenciamento de DNA

Para a realização das reações de sequenciamento de Sanger foi utilizado o kit BigDye Terminator V3.1 (Applied Biosystems), com oligonucleotídeos adequados, conforme protocolo do fabricante. As reações foram precipitadas com isopropanol 62,5% final e a lavagem foi feita com etanol 70%. Os sequenciamentos foram realizados no ABI 3500XL do Núcleo de Serviços em Biotecnologia (NSB) na Fundação Hemocentro de Ribeirão Preto.

3.3.5. Clonagem em uma etapa por montagem de DNA

Para a geração dos mutantes de H-NS (CV_1243 e CV_1363), as clonagens foram realizadas utilizando kit de montagem de DNA. Para isso, os fragmentos de interesse foram amplificados por PCR utilizando enzima de alta fidelidade (Thermo Scientific). O vetor pFOK foi digerido com as enzimas *Eco*RI e *Bam*HI no tampão adequado (Thermo Scientific) a 37 °C por 2 horas. Os fragmentos obtidos da PCR e a digestão foram recuperados de gel de agarose 0,8%, utilizando o kit QIAquick Gel Extraction (Qiagen). Vetor (0,05 pmol) e inserto (0,1 pmol) numa razão de 1:2 foram adicionados ao NEBuilder® HiFi DNA Assembly master mix (Biolabs). Após incubação por 1 hora a 50 °C, as amostras foram dialisadas em membrana Type-VS (Millipore) e transformadas em *E. coli* JKe201, por eletroporação. As bactérias foram recuperadas com 100 µM de ácido diaminopimélico (DAP). As placas foram

incubadas em estufa a 37 °C por 24 horas. As clonagens foram confirmadas por PCR de colônia.

Nome	Sequência (5'→3') ^a	Descrição
	Construção de linhagens mutantes	E.
CV_0536_del1	cctagcgggcccccccatgatggtaggctag	Clonagem da região flanqueadora do gene
CV_0536_del2	ggcctaggatcccgtgctctgcacgtacaag	CV_0536 (<i>airS</i>) no vetor pNPTS138 (<i>Apal/Bam</i> HI, 663 pb)
CV_0536_del3	cctagcggatccgcgctgatgggaggagag	Clonagem da região flanqueadora do gene
CV_0536_del4	ggcctagaattcctggtcggatggaaagatgc	CV_0536 (<i>airS</i>) no vetor pNPTS138
CV_0537_del1	cctagc <u>aagcttg</u> aaccaagcccaacgccaa	(Barnen/Ecori, 588 pb). Clonagem da região flanqueadora do gene
CV_0537_del2	ggcctaggatccgtcaatcacgacgggagatt	CV_0537 (<i>airR</i>) no vetor pNPTS138
CV_0537_del3	cctagcggatcccacggcgtccgctactttc	Clonagem da região flangueadora do gene
CV_0537_del4	ggcctagaattcgccgttacacacgatacagg	CV_0537 (<i>airR</i>) no vetor pNPTS138
CV_0536/37_del1	cctagcgggcccccccatgatggtaggctag	(<i>Bam</i> HI/ <i>Eco</i> RI, 733 pb). Clonagem da região flangueadora dos genes
CV_0536/37_del2	ggcctaggatcccgtgctctgcacgtacaag	<i>airSR</i> no vetor pNPTS138 (<i>Apal/Bam</i> HI, 664 pb).
CV_0536/37_del3	ggcctaggatccgtcaatcacgacgggagatt	Clonagem da região flanqueadora dos genes
CV_0536/37_del4	cctagc <u>aagcttg</u> aaccaagcccaacgccaa	<i>airSR</i> no vetor pNPTS138 (<i>Bam</i> HI/ <i>Hind</i> III, 579 pb).
CV_0635_del1	cctagcgggcccgcaagctcatgcaggaggg	Clonagem da região flanqueadora do gene
CV_0635_del2	ggcctaggatccgcccatgaagtatcgctcgg	CV_0635 no vetor pNPTS138 (<i>Apal/Bam</i> HI,
CV_0635_del3	cctagcggatcccagttattggagcgcgccg	Clonagem da região flanqueadora do gene
CV_0635_del4	ggcctagaattcctccatggtgagactatcgg	CV_0635 no vetor pNPTS138
CV_1057del1	cctagcaagcttgatgcggctggagggtag	(<i>Bam</i> HI/ <i>Eco</i> RI, 772 pb). Clonagem da região flangueadora do gene
CV_1057del2	ggcctaggatcccgttgtgttttccatacccc	CV_1057 (<i>vitR</i>) no vetor pNPTS138
CV_1057del3	cctagcggatccgaccctgagatgtttggcg	(<i>Hind</i> III <i>/Bam</i> HI, 633 pb). Clonagem da região flangueadora do gene
CV_1057del4	ggcctagtcgacccaaagcccattccaagg	CV_1057 (<i>vitR</i>) no vetor pNPTS138 (<i>Bam</i> HI/Sall,
CV_2599del1	cctagcgggcccccccagggccaagccatttcg	Clonagem da região flangueadora do gene
CV_2599del2	ggcctaggatcctacccgttgtacggcagcg	CV_2599 (<i>csrB</i>) no vetor pNPTS138 (<i>Apal/Bam</i> HI, 677 pb).

Tabela 2: Oligonucleotídeos utilizados para obtenção e complementação de mutantes

CV_2599del3	cctagcggatcccactagctcggaggtttgc
CV_2599del4	ggcctagaattccggtatccttgcaactggc
CV_2600del1	cctagcaagcttacgatatcctgtcgcccgg
CV_2600del2	ggcctaggatccgcggataatgctttgcgtgc
CV_2600del3	cctagcggatccggttgcgactccatgcaatg
CV_2600del4	ggcctagaattcgctggacttgggtttgccag
CV_2599/2600del1	cctagcaagcttacgatatcctgtcgcccgg
CV_2599/2600del2	ggcctaggatccgcggataatgctttgcgtgc
CV_2599/2600del3	ggcctaggatcctacccgttgtacggcagcg
CV_2599/2600del4	cctagcgggcccccccagggccaagccatttcg
vioS_del1	ggcctagggcccgggaatggatatgcgacaag
vioS_del2	ggcctaggatccaccacgtgctgtaagccc
vioS_del3	cctagc <u>ggatcc</u> cgcgagatgagacgaactg
vioS_del4	cctagcgtcgacgaggtcagcaagttcctcac
CV_1055/57del1	ggcctagggcccgggaatggatatgcgacaag
CV_1055/57del2	ggcctaggatccaccacgtgctgtaagccc
CV_1055/57del3	cctagcggatccgaccctgagatgtttggcg
CV_1055/57del4	ggccta <u>gtcgac</u> ccaaagcccattccaagg
CV_3659_del1	cctagcgggcccctgaacgtgctgcagctcg
CV_3659_del2	ggccta <u>aagctt</u> cagaggtggaatattcatgac
CV_3659_del3	cctagcaagcttcagtcgctgtcccggctg
CV_3659_del4	ggcctagtcgacggtcttcaaggccgccatc
CV_3658_del1	cctagcgggcccccgtgctgcatttcggcgag
CV_3658_del2	ggcctaaagcttccaggccatcgcgatattg

Clonagem da região flanqueadora do gene CV_2599 (csrB) no vetor pNPTS138 (BamHI/EcoRI, 544 pb). Clonagem da região flangueadora do gene CV 2600 (csrA) no vetor pNPTS138 (HindIII/BamHI, 764 pb). Clonagem da região flanqueadora do gene CV_2600 (csrA) no vetor pNPTS138 (BamHI/EcoRI, 681 pb). Clonagem da região flanqueadora dos genes csrAB no vetor pNPTS138 (*Hind*III/*Bam*HI, 764 pb). Clonagem da região flanqueadora dos genes csrAB no vetor pNPTS138 (BamHI/Apal, 677 pb). Clonagem da região flangueadora do gene CV 1055 (vioS) no vetor pNPTS138 (Apal/BamHI, 570 pb). Clonagem da região flanqueadora do gene CV_1055 (vioS) no vetor pNPTS138 (BamHI/Sall, 682 pb). Clonagem da região flangueadora dos genes vioS e vitR no vetor pNPTS138 (Apal/BamHI, 570 pb). Clonagem da região flanqueadora dos genes vioS e vitR no vetor pNPTS138 (BamHI/Sall, 772 pb). Clonagem da região flangueadora do gene CV 3659 no vetor pNPTS138 (Apal/HindIII, 680 pb). Clonagem da região flanqueadora do gene CV_3659 no vetor pNPTS138 (HindIII/Sall, 719 pb). Clonagem da região flangueadora dos genes CV_3658-57 no vetor pNPTS138 (Apal/HindIII, 645 pb).

CV_3657_del3	cctagcaagcttgccgacaagctcagctacc	Clonagem da região flangueadora dos genes
CV_3657_del4	ggcctaggatcccttggcgtcgctgtaatagc	CV_3658-57 no vetor pNPTS138
CV_RS22060_USFW	tatcgataagcttgatatcggtagcagcaggccaaatc	Clonagem da região flanqueadora do gene
CV_RS22060_USRV	gtgaatattacattaactccttagggtaatgatg	CV_1243 no vetor pFOK (Região de homologia, 613 pb)
CV_RS22060_DSFW	ggagttaatgtaatattcactcgcagatag	Clonagem da região flanqueadora do gene
CV_RS22060_DSRV	cggccgctctagaactagtgagagtgatcatgaacattttag	CV_1243 no vetor pFOK (Região de homologia, 613 pb)
CV_RS06665_USFW	tatcgataagcttgatatcgaccgtagccaaaaggctg	Clonagem da região flanqueadora do gene
CV_RS06665_USRV	ttcaagctcaaacatgttcccttgattattggtttaac	CV_1363 no vetor pFOK (Região de homologia, 613 pb)
CV_RS06665_DSFW	ggaacatgtttgagcttgaatccatataaaaaaagcg	Clonagem da região flanqueadora do gene
CV_RS06665_DSRV	cggccgctctagaactagtgcgcgcattgagattgccattg	CV_1363 no vetor pFOK (Região de homologia, 613 pb)
CV_1486Mut_FW	cctagc <u>aagctt</u> cgcatttcgtctccagcgcc	Fragmento <i>Hind</i> III/ <i>Bam</i> HI
CV_1486Mut_RV	cgcctaggatccgcgcgtccaacgtcacgaag	inserção no gene <i>cbaF</i> (CV_1486)
CV_1486Conf	ctacctgctctacacctc	Confirmar a inserção do vetor pNPT no gene <i>cbaF</i>
CV_2233Mut_FW	cctagc <u>aagctt</u> accggctggcctacatgatc	Fragmento <i>Hind</i> III/ <i>Bam</i> HI
CV_2233Mut_RV	ggcctaggatccccatctggccatgggcgttc	inserção no gene <i>vbaF</i> (CV_2233)
CV_2233Conf	ctgtgcctggatgatggc	Confirmar a inserção do vetor pNPT no gene vbaF
M13_FW M13_RV	gtaaaacgacggccagt agcggataacaatttcac	Sequenciamento das clonagens realizadas no pNPTS138

Construção de linhagens complementadas			
CV_0536_comp_FW	cctagcgaattcctggtcggtgatcctgcg	Clonagem dos genes <i>airMS</i> para	
CV_0536_comp_RV	ggcctaggatccctattcaagcccatcatcgc	complementação (EcoRI/BamHI, 2001 pb).	
CV_0537_comp_FW	cctagcgaattccaatcttccacgccaactcg	Clonagem do gene CV_0537 (<i>airR</i>) para	
CV_0537_comp_RV	ggcctaggatccctgatgggaggagaggcg	complementação (<i>Eco</i> RI/ <i>Bam</i> HI, 1419 pb).	
CV_0635_comp_FW	cctagcgaattcgaagcggatcgcaccttcg	Clonagem do gene CV 0635 para	
CV_0635_comp_RV	ggcctaggatccgtttcagtggccgccagg	complementação (<i>Eco</i> RI/ <i>Bam</i> HI, 936 pb).	
CV_1057_CompFW	cctagcaagcttcgcgagatgagacgaactg	Clonagem do gene CV_1057 (<i>vitR</i>) para	
CV_1057_CompRV	ggcctaggatccgaggtcagcaagttcctcac	complementação (HindIII/BamHI, 682 pb).	
vioS_Comp_FW vioS_Comp_RV	cctagcggatccgttttccataccccgatagc ggcctagaattccagccattttccagccgg	Clonagem do gene CV_1055 (<i>vioS</i>) para	

		(<i>Bam</i> HI/ <i>Eco</i> RÍ, 798 pb).
CV_2599Comp_FW	cctagcggatccgcggccaaagagtcaggaa	Clonagem do gene
-		CV_2599 (<i>csrB</i>) para
CV_2599Comp_RV	ggcctagaattcatctgtacacgcttcgtcac	complementação
		(<i>Bam</i> HI/ <i>Eco</i> RI 1087 pb).
CV_2600Comp_FW	cctagcggatcccagccgccgtgcggtttg	Clonagem do gene
		CV_2600 (<i>csrA</i>) para
CV_2600Comp_RV	ggcctagaattcctcggaggtttgcttgccc	complementação
		(<i>Bam</i> HI/ <i>Eco</i> RI 3207 pb).
CV_3659_comp_FW	cctagcggatcccgctgggcgatctgctgg	Clonagem do gene
		CV_3659 para
CV_3659_comp_RV	ggcctagaattcggccatcgcgatattgatgg	complementação
		(BamHI/EcoRI 951 pb).
CV_3658_comp_FW	cctagcggatccctgatgaagctgggctcgc	Clonagem dos genes
		CV_3658-57 para
CV_3657_comp_RV	ggcctagaattcgctcgggacatcggcttc	complementação
		(BamHI/EcoRI 2635 pb).

^a Sítios de reconhecimento das enzimas de restrição estão sublinhados.

3.4. Construção das linhagens mutantes em C. violaceum

3.4.1. Construção de mutantes nulos por troca alélica

Para geração das linhagens de mutantes nulos (Figura 4), as regiões flanqueadoras dos genes de interesse (*vitR*, *vioS*, *airS*, *airR*, *csrA*, *csrB*, CV_0635, CV_3659, CV_3658-57) foram amplificadas por PCR utilizando os pares de oligonucleotídeos del1/del2 e del3/del4 (Tabela 2). Após a reação de PCR, os produtos foram digeridos com enzima de restrição interna comum (sítios de restrição em del2/del3). Os produtos digeridos foram ligados utilizando a T4 ligase e usados como molde para PCR com os oligonucleotídeos del1/del4. Os fragmentos gerados e o vetor pPNTS138 foram digeridos com as enzimas externas (sítios de restrição em del1/del4, Tabela 2). Em seguida, foi feita a ligação, transformação e confirmação da clonagem, conforme descrito acima. Os vetores com os insertos clonados foram extraídos com o kit NucleoSpin® Plasmid EasyPure (Macherey-Nagel). A sequência correta dos insertos foi verificada por sequenciamento utilizando os oligonucleotídeos del1, del4, M13_FW e M13_RV (Tabela 2).

As construções finais no vetor pNPTS138 foram transformadas em *E. coli* S17-1 por eletroporação e transferidas para *C. violaceum* por conjugação. Após 24 horas em placas LB, as conjugações foram espalhadas em placas LB suplementadas com canamicina (50 µg/ml) e ampicilina (100 µg/ml) e incubadas a 37 °C para a seleção da primeira recombinação homóloga (inserção do vetor no genoma) (Figura 4). As colônias de *C. violaceum* resistentes a canamicina foram confirmadas para a primeira recombinação por meio de PCR de colônia e posteriormente foram cultivadas em meio LB líquido por 48 horas em agitação de 250 rpm à 37 °C para que ocorresse o evento

complementação

de segunda recombinação homóloga (Figura 4). Para selecionar as colônias nas quais o evento de recombinação ocorreu, 1 µl das culturas foram espalhadas em placas LB sem adição de NaCl e suplementado com 20% de sacarose. O vetor pNPTS138 possui o gene *sacB*, o qual codifica uma enzima que metaboliza a sacarose em um produto tóxico para as bactérias que apresentam a integração do vetor. Após 48 horas a 30 °C, as colônias resistentes à sacarose foram testadas para sensibilidade a canamicina (50 µg/ml). Nas colônias sensíveis a canamicina, a segunda recombinação homóloga pode ter ocorrido de duas maneiras, resultando na reversão ao genótipo selvagem (linha tracejada), ou na deleção do gene de interesse (linha contínua, Figura 4). A confirmação dos mutantes foi feita por PCR de colônia, utilizando os oligonucleotídeos del1 e del4 de cada gene (Tabela 2). As linhagens mutantes foram congeladas em 20% de glicerol no freezer -80 °C.

Figura 4: Esquema para obtenção dos mutantes nulos. As regiões flanqueadoras dos genes de interesse a serem mutados, clonadas no vetor pNPTS138, permitem a inserção por recombinação homóloga da construção inteira no genoma da *C. violaceum* ATCC 12472. A recombinação intermolecular pode ocorrer em uma das duas sequencias homólogas (1 e 2). O evento de recombinação homóloga intramolecular pode levar à mutação desejada (linhas contínuas, Δ) ou à reversão para o genótipo selvagem (linhas tracejadas, WT).

Para a geração das linhagens mutantes das H-NS (CV_1243 e CV_1363), as regiões flanqueadoras dos genes foram clonadas no vetor pFOK em *E. coli* JKe201. Colônias transconjugantes de *C. violaceum* ATCC 12472 foram obtidas após sua conjugação com *E. coli* JKe201 (com as construções) em filtro em placas LB por 6 horas a 37 °C e seleção em placas LB canamicina (50 µg/ml). O vetor pFOK apresenta contra seleção dupla para o evento de segunda recombinação: pelo gene *sacB*, como descrito acima, e pelo gene I-*Sce*I que codifica uma enzima de restrição que leva a quebra da fita dupla de DNA em uma sequência específica. Ambos os genes estão sob o controle do regulador TetR no vetor pFOK. Para a ocorrência do evento de segunda recombinação, as colônias transconjugantes foram inoculadas em meio LB líquido por 6 horas a 37 °C. Após a incubação, 10 µl das culturas foram inoculados em placas LB sem adição de NaCI e suplementadas com 20% de sacarose e 0.5 µg/ml de anidrotetraciclina (AHT - *anhydrous tetracycline*). Após 48 horas de incubação a 30 °C, as colônias que cresceram nestas placas foram submetidas ao PCR de colônia para confirmação da mutação. Os mutantes foram congelados, como descrito acima.

3.4.2. Construção das linhagens complementadas

Para complementação das linhagens mutantes de *C. violaceum*, fragmentos contendo a região codificadora com as regiões promotoras (*vitR*, *vioS*, *cviR*, *airS*, *airR*, *csrA*, *csrB*, CV_0635 e CV_3659) ou com cerca de 80 pb antes do ATG, nos genes sem promotor imediato (CV_3658-57) foram amplificados por PCR como descrito utilizando os oligonucleotídeos indicados na Tabela 2. Os produtos obtidos foram digeridos com as enzimas de restrição específicas (Tabela 2) e clonados no vetor pMR20 ou pSEVA e confirmados por PCR. DNA plasmidial das construções foram transformados em *E. coli* S17-1 e transferidos para os mutantes por meio de conjugação. Após a seleção com o antibiótico específico para cada vetor, as colônias de *C. violaceum* resistentes foram confirmadas por PCR e congeladas em 20% de glicerol no freezer -80 °C.

3.4.3. Construção de mutantes por inserção

Inserção do vetor pNPTS138 foi utilizada para interromper a região codificadora de genes de interesse para a geração de linhagens mutantes. Assim, um fragmento contendo a região interna dos genes *cbaF* e *vbaF* (CV_1486 e CV_2233) foi amplificado por PCR usando oligonucleotídeos identificados na Tabela 2. Esses fragmentos e o vetor pNPTS138 foram digeridos com as enzimas indicadas (Tabela

 Em seguida, foi feita a ligação, transformação, confirmação da clonagem por meio de PCR de colônia e extração do DNA plasmidial como descrito acima.

As construções finais no vetor pNPTS138 foram transformadas em *E. coli* S17-1 e conjugadas com *C. violaceum*. Colônias de *C. violaceum* resistentes a canamicina resultam de inserção do vetor dentro do gene a ser interrompido por recombinação homóloga. Para a confirmação da inserção do vetor foi realizado um PCR de colônia utilizando um oligonucleotídeo dentro do vetor (M13_FW) e outro encontrado no gene de interesse fora da região de homologia (Tabela 2). Após confirmação da inserção do vetor, as linhagens mutantes foram congeladas em 20% de glicerol no freezer -80 °C. Os mutantes duplos de deleção e deleção/inserção foram obtidos por repetição sequencial destes procedimentos.

3.4.4. Obtenção de mutantes por transposição

Para a obtenção de mutantes de transposon em C. violaceum foi utilizado o transposon IS/acZ/hah (T8) presente no plasmídeo pIT2 (JACOBS et al., 2003). Anteriormente, nós validamos o uso desse transposon para a geração de mutantes em C. violaceum usando como linhagem referência um mutante espontâneo resistente ao ácido nalidíxico (CV^{NALR}) (SANTOS et al., 2020). Para a aquisição de uma biblioteca de mutantes de C. violaceum com inserções aleatórias no genoma, a linhagem de *E. coli* SM10λpir contendo pIT2 foi conjugada com a CV^{NALR}, usando uma proporção de 2:1 da receptora para a doadora. Após 24h em placa LB, a conjugação foi espalhada em placas LB suplementadas com ácido nalidíxico (20 µg/ml) e tetraciclina (10 µg/ml). Aproximadamente 10.000 colônias de C. violaceum resistentes à tetraciclina foram selecionadas e cultivadas em 100 µl de meio LB com ácido nalidíxico (20 µg/ml) e tetraciclina (10 µg/ml) em placas de 96 poços por 24h a 37 °C sem agitação. As bactérias nestas placas foram congeladas no freezer -80 °C, após adição de 20% de glicerol. Foi feita posterior varredura de toda a biblioteca de mutantes quanto à atividade de sideróforos em placas PSA-CAS e à resistência ao excesso de ferro em placas LB suplementadas com 5 mM FeCl₃ e 8 mM FeSO₄.

3.4.4.1. Identificação do sítio de inserção do transposon

A identificação do sítio de inserção do transposon foi realizada como descrito por Jacobs et al (2003), usando PCR semi-degenerado de dois estágios e reação de sequenciamento. Primeiramente foi realizada uma reação de PCR utilizando o seguinte protocolo: 1 µl de 10x Taq buffer (NH4)₂SO₄; 0,2 µl de 10 mM dNTPs mix; 1,5 µl de MgCl₂ 10 mM; 0,5 µl do oligonucleotídeo *lacZ*-211 a 10 pmol/µl (esse

oligonucleotídeo irá parear dentro do transposon no gene *lacZ*) e 0,17 µl de cada um dos oligonucleotídeos semi-degenerados (CEKG2A, CEKG2B e CEKG2C) a 10 pmol/µl (Tabela 3); 5,7 µl de água miliQ, 0,2 µl de Taq DNA polimerase (Thermo Scientific) e 0,5 µl das colônias para serem usadas como molde. Esse PCR foi feito nas seguintes condições: 94 °C por 12 minutos; 6 ciclos compostos por 3 etapas (94 °C por 30 segundos, 42 °C por 30 segundos, caindo a temperatura um grau por ciclo, e a 72 °C por 3 minutos); após esses 6 ciclos foram feitos 25 ciclos compostos por 3 etapas (94 °C por 30 segundos, 64 °C por 30 segundos e 72 °C por 3 minutos); e 72 °C por 7 minutos. Após esta amplificação, foi feita uma segunda reação de PCR com o mesmo protocolo, mas utilizando um oligonucleotídeo dentro do transposon chamado de lacZ-148, que se encontra downstream ao lacZ-211, juntamente com um oligonucleotídeo que apresenta uma sequência ancorada aos oligonucleotídeos semidegenerados (CEKG4, Tabela 3) e como molde foi usado o produto da primeira reação de amplificação. A reação foi feita nas seguintes condições: 94 °C por 10 minutos, 30 ciclos de 3 etapas (94 °C por 30 segundos, 64 °C por 30 segundos e 72 °C por 3 minutos); 72 °C por 7 minutos. Os produtos da segunda reação foram submetidos ao tratamento com Exonuclease I (Thermo Scientific) e fosfatase alcalina de camarão (Thermo Scientific) e então utilizados como molde para a reação de seguenciamento com o oligonucleotídeo lacZ-148, utilizando o kit BigDye Terminator V3.1 (Applied Biosystems), conforme descrito acima.

Nome	Sequência 5'→3'	Descrição
CEKG2A	ggccacgcgtcgactagtacnnnnnnnnnagag	Oligonucleotídeos
CEKG2B	ggccacgcgtcgactagtacnnnnnnnnnacgcc	identificação do sítio de
CEKG2C	ggccacgcgtcgactagtacnnnnnnnnngatat	inserção do transposon
CEKG4	ggccacgcgtcgactagtac	Oligo ancorado utilizado para identificação do sítio de inserção do transposon
<i>lacZ</i> -211	tgcgggcctcttcgctatta	Oligo localizado dentro do transposon utilizado para identificação do sítio de inserção do transposon
<i>lacZ</i> -148	gggtaacgccagggttttcc	Oligo localizado dentro do transposon utilizado para identificação do sítio de inserção do transposon

Tabela 3: Oligonucleotídeos utilizados para a identificação do sítio de inserção do transposon no genoma de *C. violaceum*.

3.5. Análise global da expressão gênica

3.5.1. Extração do RNA

O RNA total das linhagens de C. violaceum selvagem, $\Delta vitR$, $\Delta cviI$, $\Delta cviR$, ΔCV_{1243} , ΔCV_{1363} e $\Delta CV_{1243}/1363$ foi extraído para a análise do transcriptoma por RNAseq. Para as linhagens selvagem, $\Delta vitR$, $\Delta cvil \in \Delta cviR$, os RNAs foram extraídos na condição de alta densidade celular (ADC). Inicialmente, o pré-inóculo foi diluído para DO_{600nm} 0,01 em 15 ml de LB em Erlenmeyer de 125 ml e incubados a 37 °C sob agitação (250 rpm) até a cultura atingir DO_{600nm} 4,0. Então, 1,5 ml das culturas foi coletado e centrifugado por 1 minuto a 20000 x g. O sobrenadante foi descartado e o pellet foi ressuspendido em 1 ml de TRizol (Invitrogen). Em seguida, a mistura foi incubada a 65 °C e após 10 minutos foram adicionados 200 µl de clorofórmio e homogeneizado por inversão seguido da incubação em temperatura ambiente por 5 minutos. As amostras foram centrifugadas a 12000 rpm por 15 minutos a 4 °C e a fase líquida superior foi coletada para purificação do RNA com o kit Direct-zol™ RNA Miniprep Plus (Zymo Research), segundo protocolo do fabricante. A qualidade e quantidade do RNA total extraído e purificado foram avaliadas por meio de Qubit RNA HS assay (Thermo Scientifc) de acordo com o protocolo do fabricante, por Bioanalyzer (Agilent) de acordo com o fabricante e por meio de gel de agarose 1,2% desnaturante. A contaminação por DNA das amostras de RNA foi avaliada por PCR usando o DNA genômico de C. violaceum como controle positivo e uma reação sem molde como controle negativo. Os RNAs foram armazenados a -80 °C.

Para o RNA-Seq das linhagens selvagem, ΔCV_1243 , ΔCV_1363 e $\Delta CV_1243/1363$, as bactérias foram cultivadas em meio LB a 37 °C sob agitação até DO_{600nm} de 1,0 (baixa densidade celular, BDC). O RNA total foi extraído como descrito em Culviner e Laub (2018) e purificado com o kit Direct-zolTM RNA Miniprep Plus (Zymo Research). O RNA foi então tratado com 2 µL de turbo DNase (Invitrogen) em 100 µL usando o tampão 10x fornecido. Após incubação por 20 minutos a 37°C, 2 µL adicionais de DNase foram adicionados, seguidos por outros 20 minutos a 37°C, 0 volume da reação foi levado a 200 µL com água DEPC e agitado em vórtex com 200 µL de ácido-fenol:clorofórmio:IAA, pH 4,5 (Invitrogen). As amostras foram centrifugadas por 10 minutos a 4°C e a camada superior foi extraída e precipitada com 20 µL de NaOAc 3M, 2 µL de GlycoBlue (Invitrogen) e 600 µL de etanol 100% gelado. As amostras foram incubadas a -80°C por pelo menos 4 horas e depois centrifugadas

na velocidade máxima a 4°C por 30 minutos. As amostras foram lavadas com 500 μ L de etanol 70% gelado, centrifugadas novamente por 5 minutos, secas ao ar e ressuspensas em 30 μ L de água DEPC. A qualidade e quantidade do RNA total extraído e purificado foram avaliadas em espectrofotômetro NanoDrop e por gel de agarose 1,2% com adição de 1% de hipoclorito de sódio (ARANDA et al., 2012).

3.5.2. Sequenciamento de RNA (RNA-Seq)

O RNA-Seq das amostras de *C. violaceum* selvagem, $\Delta vitR$, $\Delta cvil e \Delta cviR$ foi realizado como serviço pela empresa NGS soluções genômicas em Piracicaba. Assim, o RNA total foi enviado para a empresa onde foi realizada a depleção do rRNA e a construção das bibliotecas utilizando o kit Illumina Stranded Total RNA Prep, com Ribo-Zero Plus (Illumina) de acordo com o protocolo do fabricante. As bibliotecas geradas foram quantificadas por PCR quantitativo e em seguida foi realizado a clusterização e o sequenciamento (6 milhões de leituras pareadas) no equipamento NextSeq2000 (Illumina).

Para as amostras de RNA total das linhagens selvagem, ΔCV_1243 , ΔCV_1363 e $\Delta CV_1243/1363$, o rRNA foi depletado de acordo com Culviner e colaboradores (2020). Inicialmente, oligonucleotídeos biotinilados para o rRNA 23S, 16S e 5S foram desenhados usando o algoritmo descrito (Tabela 4). Em seguida, os oligonucleotídeos foram misturados em uma razão volumétrica de 1:1:2 de 23S, 16S e 5S, respectivamente. A mistura de oligonucleotídeos foi diluída com base na quantidade de RNA total adicionado à mistura de reação de depleção. Para a hibridização entre as sondas biotiniladas e o rRNA, 2 a 3 µg de RNA total foram combinados com a mistura de sonda diluída na presença de 1 x SSC (0,15 M de NaCl mais 0,015 M de citrato de sódio) e 500 µM de EDTA. As reações foram incubadas a 70°C por 5 minutos, seguido por uma lenta redução gradual para 25°C a uma taxa de 1°C a cada 30 segundos.

Para retirar as sondas biotiniladas ligadas ao rRNA, foram utilizadas esferas de estreptavidina C1 Dynabeads MyOne (ThermoFisher). Previamente, as esferas foram lavadas 3 vezes com tampão 1 x B&W [5 mM Tris HCl (pH 7,0), 5 mM Tris-HCl (pH 8,0), 500 µM EDTA, 1 M NaCl] e então ressuspendidas em 30 µl de tampão 2 x B&W [10 mM Tris-HCl (pH 7,0), 10 mM Tris-HCl (pH 8,0), 1 mM EDTA, 2 M NaCl]. Para evitar a contaminação com RNase, 1 µl de inibidor de SUPERase-In RNase (ThermoFisher) foi adicionado. Assim, às reações de hibridização foram adicionadas as esferas em tampão 2 x B&W, misturadas por pipetagem e vórtex e incubadas por

5 minutos à temperatura ambiente. Em seguida, as reações foram homogeneizadas e incubadas a 50 °C por 5 minutos e, posteriormente, colocadas diretamente em um suporte magnético para separar as esferas do RNA total restante. O sobrenadante foi retirado das esferas e o RNA foi precipitado como descrito anteriormente. Os pellets de RNA foram então secos ao ar e ressuspendidos em 10 µl DEPC-H₂O. O rendimento de RNA foi quantificado por um espectrofotômetro NanoDrop, e a eficiência da depleção de rRNA foi verificada por gel de agarose 1,2% com adição de 1% de hipoclorito de sódio (ARANDA et al., 2012).

Após a depleção do rRNA, as bibliotecas de cDNA foram geradas utilizando o kit NEBNext® Ultra II Directional RNA Library Prep Kit for Illumina (BioLabs) de acordo com as recomendações do fabricante. A qualidade do cDNA gerado foi determinada usando D1000 TapeStation (Agilent) de acordo com o fabricante. As bibliotecas de cDNA foram quantificadas por PCR quantitativo utilizando o kit KAPA Library Quantification Kits for Illumina® platforms (Kapa Biosystems). As bibliotecas foram sequenciadas no equipamento Illumina NextSeq no Northwest Genomics Center (University of Washington, USA).

Nome	Sequência 5'→3'	Descrição
23S_1	acctttccctcacggtactggttcgctatcggtca	
23S_2	agtcgctggctcattatacaaaaggtacgccgtcacc	
23S_3	tcggggagaaccagctatctccgggtttgattggc	
23S_4	gtggctgcttctaagccaacatcctg	
23S_5	gggtacaggaatattaacctgatttccatcgactacgcc	Oligonucleotídeos biotinilados
23S_6	cacctgtgtcggtttggggtacggt	usados para depleção da
23S_7	tcgtgcgggtcggaacttacccgacaag	subunidade 23S do RNA ribossomal.
23S_8	gagccgacatcgaggtgccaaaca	
23S_9	cggcggatagggaccgaactgtctcacgac	
23S_GN1	cacgtccttcatcgccttttactgccaaggcatcc	
23S_GN2	ccacacccggcctatcaacgtggtggtcttcgacg	
16S_1	ccgctcgacttgcatgtgttaagcatgccgacagcgttcg	
16S_2	cccattgtgcaagattccctactgctgcctcccgt	
16S_3	accgcggctgctggcacggagt	
16S_4	acggcgtggactaccagggtat	Oligonucleotideos biotinilados
16S_5	tccacatgctccaccgcttgtgcgggcccccg	subunidade 16S do RNA ribossomal.
16S_6	acccaacatctcacaacacgagctgacgaca	
16S_7	gggcagtgtgtacaaggcccggga	
16S_8	aaggaggtgatccagccgcag	
5S_Cv_1	gttcgggatgggaaggcgtgggaccacctcgcta	Oligonucleotídeos biotinilados
5S_Cv_2	gaatgccacactatcatcggcgctaaggcg	usados para depleção da subunidade 5S do RNA ribossomal.

Tabela 4: Oligonucleotídeos utilizados para a depleção do RNA ribossomal de *C. violaceum*.

3.5.3. Análise do RNA-Seq

O RNA-Seq das amostras de C. violaceum selvagem, $\Delta vitR$, $\Delta cvil \in \Delta cviR$ foram analisados em colaboração com o laboratório da professora Tie Koide. Inicialmente, os dados brutos foram processados usando a *pipeline* frtc disponível em https://github.com/alanlorenzetti/frtc/ (TEN-CATEN et al., 2018). Resumidamente, inspecionamos a qualidade das reads usando Rqc (DE SOUZA et al., 2018); aparamos os adaptadores e removemos as extremidades restantes de baixa qualidade (Q<30) usando Trimmomatic (BOLGER et al., 2014); alinhamos as *reads* aparadas contra o genoma de referência usando o HISAT2 sem splicing (KIM et al., 2019); e geramos os arquivos para visualização do sinal de transcrição no IGV (THORVALDSDOTTIR et al., 2013) usando deepTools2 (RAMIREZ et al., 2016). A análise de expressão diferencial foi realizada como em de Araújo e colaboradores (2021) utilizando, com as adequações necessárias, os scripts https://github.com/alanlorenzetti/ccrescentus_RNASeq_analysis. disponíveis em Realizamos a contagem das reads usando GenomicAlignmets (LAWRENCE et al., 2013) e a análise de expressão diferencial usando o DESeq2 (LOVE et al., 2014) com design de grupos (Δ vitR ADC vs. WT ADC, Δ cvil ADC vs. WT ADC, Δ cviR ADC vs. WT ADC e WT ADC vs. WT BDC). Chamamos de diferencialmente expressos genes com \log_2 fold change \geq 1 ou \leq -1 e p-valor ajustado < 0.01. Utilizamos anotação funcional do Clusters of Orthologous Groups (COG) com algumas anotações adicionadas manualmente baseadas em trabalhos prévios do laboratório.

Para o RNA-Seq das amostras de *C. violaceum* selvagem, ΔCV_1243 , ΔCV_1363 e $\Delta CV_1243/1363$, as análises foram feitas em colaboração com o laboratório do professor Ferric C. Fang. As bibliotecas sequenciadas foram analisadas usando a plataforma Galaxy (AFGAN et al., 2018). Leituras com comprimentos ou qualidades menores que 20 foram descartadas usando Cutadapt (MARCEL, 2011). As leituras foram alinhadas com o genoma de *C. violaceum* ATCC 12472 usando Bowtie2 (LANGMEAD et al., 2009; LANGMEAD e SALZBERG, 2012). As contagens de leitura de genes individuais foram determinadas usando htseq-count (ANDERS et al., 2015) e as amostras foram comparadas usando DESeq2 (LOVE et al., 2014).

3.6. Ensaios de expressão gênica

3.6.1. Co-transcrição por RT-PCR

Para comprovar que os genes CV_3659-58-57 fazem parte de um operon, nós realizamos o ensaio de RT-PCR. A linhagem de *C. violaceum* selvagem foi cultivada em meio LB até DO_{600nm} de 4,0. O RNA total foi extraído usando Trizol (Invitrogen) e purificado com o kit Direct-zol[™] RNA Miniprep Plus (Zymo Research), como descrito anteriormente. RT-PCR foi realizado com o kit SuperScript III One-Step RT-PCR System with Platinum Taq High Fidelity DNA Polymerase (Invitrogen) de acordo com as condições do fabricante. Um micrograma de RNA de cada amostra e oligonucleotídeos específicos (Tabela 2) que amplificam regiões de CV_3659 a CV_3658 (CV_3658_del1 e CV_3659_del2, 645 pb) e CV_3659 a CV_3657 (CV_3658_compFW e CV_3657_del2, 1528 pb) foram usados nas reações. PCRs usando Taq DNA polimerase convencional e os mesmos conjuntos de primers foram realizados com DNA genômico (controle positivo) e RNA (controle negativo) como moldes.

3.6.2. Expressão gênica por RT-qPCR

Para validar os dados encontrados no RNAseq, as amostras de RNA foram extraídas como descrito acima. Dois microgramas de RNA total de cada amostra foram convertidos em cDNA usando o kit High-Capacity cDNA Reverse Transcription (Thermo Fisher Scientific). A contaminação com DNA genômico do RNA e a eficiência da transcrição reversa com cDNA foram verificadas por PCR convencional com os primers para o gene CV_3376 (Tabela 5). As reações de PCR quantitativo (qPCR) foram realizadas usando o PowerUp[™] SYBR[™] Green Master Mix (Thermo Fisher Scientific), os primers específicos (Tabela 5) e 10 ng de cDNA. A expressão relativa foi calculada pelo método 2-ΔΔCt (LIVAK e SCHMITTGEN, 2001). Os dados de três réplicas biológicas foram normalizados por um controle endógeno (gene CV_3376) e uma condição de referência (WT em LB em alta densidade celular).

Realizamos o RT-qPCR para avaliar a expressão dos genes CV_3658, CV_3657, CV_1243 e CV_1363 nas diferentes linhagens de *C. violaceum*. Para isso, as linhagens foram cultivadas em meio LB até DO_{600nm} de 1,0. O RNA total foi purificado usando TRIzol (Life Technologies) de acordo com o protocolo do fabricante. Quinhentos nanogramas de RNA total de cada amostra foram convertidos em cDNA usando o kit de transcrição reversa QuantiTect (Qiagen). As reações de PCR quantitativo (qPCR) foram realizadas e quantificadas em um Bio-Rad CFX96 (Bio-

Rad), usando SYBR Green master mix, os primers específicos (Tabela 5) e 2 µl de cDNA (APARICIO et al., 2004). Os dados de três réplicas biológicas foram normalizados por um controle endógeno (gene CV_3376) e uma condição de referência (WT em LB).

Nome	Sequência 5'→3'	Descrição
CV_1485_qPCR_FW	gggtgttcgacgcggtatg	Fragmento de 113 pb da região
CV_1485_qPCR_RV	gtccttttgcagcagcagc	codificadora do gene CV_1485 (<i>cbaC</i>).
CV_2235_qPCR_FW	ggtttacctgctggcatgga	Fragmento de 120 pb da região
CV_2235_qPCR_RV	tccagactggcgttgatcag	codificadora do gene CV_2235.
CV_0399_qPCR _FW	catagccagggccagttcg	Fragmento de 117 pb da região
CV_0399_qPCR_RV	ggtcaggaactcgtcgacg	codificadora do gene CV_0399.
CV_3553_qPCR _FW	gacgctgctgaccgaaaag	Fragmento de 112 pb da região
CV_3553_qPCR_RV	cgtgccgatctggtaagtca	codificadora do gene CV_3553.
CV_1308_qPCR _FW	cgtcaaagtggcttcttcgc	Fragmento de 121 pb da região
CV_1308_qPCR_RV	atttgtccccggcaaaatcg	codificadora do gene CV_1308.
CV_3771_qPCR _FW	catccggccacctacctga	Fragmento de 124 pb da região
CV_3771_qPCR_RV	tgccgatgatgatggaaccc	codificadora do gene CV_3771.
CV_3245_qPCR _FW	ctgatccgcgacgaggaaac	Fragmento de 110 pb da região
CV_3245_qPCR_RV	ggcaggcgtttcttccacag	codificadora do gene CV_3245.
CV_3783_qPCR _FW	tcgccttcaaggtggatacc	Fragmento de 111 pb da região
CV_3783_qPCR_RV	cgatgaacacccataccgtca	codificadora do gene CV_3783.
CV_2255_qPCR _FW	gcaatcacgtctttatcgggc	Fragmento de 112 pb da região
CV_2255_qPCR_RV	tcttctatcaccactggcgc	codificadora do gene CV_2255.
CV_1404_qPCR _FW	attccgctgatccaggatctg	Fragmento de 110 pb da região
CV_1404_qPCR_RV	atgaatttgcagtcgtgggtg	codificadora do gene CV_1404.
CV_2571_qPCR _FW	ggccggcgtgatctacaaaa	Fragmento de 114 pb da região
CV_2571_qPCR_RV	gccaccgtgttgaggttgat	codificadora do gene CV_2571.
CV_0724_qPCR _FW	cgatgggctcgatctaccag	Fragmento de 125 pb da região
CV_0724_qPCR_RV	aatctgcatcacgcccatgt	codificadora do gene CV_0724.
CV_0568_qPCR_FW	gccctacgagcggatgtac	Fragmento de 124 pb da região
CV_0568_qPCR_RV	atcctggtggatccggtagg	codificadora do gene CV_0568.
CV_2625_qPCR_FW	cggcgacgtattgctgattt	Fragmento de 118 pb da região
CV_2625_qPCR_RV	cgccatttcgttctgccatt	codificadora do gene CV_2625.
CV_2711_qPCR _FW	ctattggctgttgagcggc	Fragmento de 113 pb da região
CV_2711_qPCR_RV	aaaaaggcaacatgcggtgg	codificadora do gene CV_2711.
CV_0580_qPCR_FW	cctgcgtccggacttcatc	Fragmento de 119 pb da região
CV_0580_qPCR_RV	tcagcaggcgttgtgtaagg	codificadora do gene CV_0580.
CV_2839_qPCR _FW	ctatctgctgtggctggcat	Fragmento de 124 pb da região
CV_2839_qPCR_RV	ggggttgagcagattggtca	codificadora do gene CV_2839.
CV_1151_qPCR_FW	ctgccggtggattggttcc	Fragmento de 110 pb da região
CV_1151_qPCR_RV	gacaggatcacgtccgggta	codificadora do gene CV_1151.
CV_3100_qPCR_FW	aactcggtgcagaacttcgg	Fragmento de 114 pb da região
CV_3100_qPCR_RV	Atccttgtcgccgtaaacgt	
CV_2541_qPCR_FW	gttacgtgctcaccttcgacc	Fragmento de 115 pb da região
CV_2541_qPCR_RV	cggtattcatccagcaggtcc	codificadora do gene CV_2541.

CV_2532_qPCR_RVcgatcaggcgaggtgaacodificadora do gene CV_2532.CV_3658_FWgcctcaacacgttgaggcacFragmento de 124 pb da regiãoCV_3658_RVtagtcgttgctgcgggtttccodificadora do gene CV_3658.CV_3657_FWacaaccgtggggaggggcodificadora do gene CV_3657.CV_3676_FWagccggcttcgactacatFragmento de 118 pb da regiãoCV_376_FWaggccgggttcgactacatFragmento de 118 pb da regiãoCV_3376_RVcgacacttccggattgggacodificadora do gene CV_3376.06665_qRT_FWagtccaaggccaaaagcgaFragmento de 118 pb da região06665_qRT_RVggatggcggtacttggctcodificadora do gene CV_80665.22060_qRT_RVggatggcgtgatttcgcctacodificadora do gene CV_RS0665.22060_qRT_RVgtggcgtatttcgcctacodificadora do gene CV_282060.CV_2420_FWagctaggctcatttcgcgaFragmento de 114 pb da regiãoCV_2618_FWgcatcaccgaccattcgaagFragmento de 114 pb da regiãoCV_2618_RVagcttggtcatcgtccataggcodificadora do gene CV_2618.CV_2580_FWgcatcaccgacccaagaagFragmento de 118 pb da regiãocsrA_FWaccgcattgcctgacgatcodificadora do gene CV_2580.cv2255_RVccggattccactgcgccgacgatcodificadora do gene CV_2255.CV_0431_FWgcgtctgataggtacggFragmento de 126 pb da regiãoCV_1878_FWcggacccaaaagctgcaaaagccodificadora do gene CV_2431.CV_1878_FWcggacccaaaagctggaggtacaggFragmento de 133 pb da regiãoCV_1238_FWgtgggttggggatactggFragmento de 133 pb da regiãoCV_1238_RVttggcgtatccgacaaa	CV_2532_qPCR _FW	ggtttcgagcgcatcaagatc	Fragmento de 112 pb da região
CV_3658_FWgcctcaacacgttgaagcacFragmento de 124 pb da regiãoCV_3658_RVtagtcgttgctgcgggtttccodificadora do gene CV_3658.CV_3657_FWacaaaccgtggtggaacgcFragmento de 118 pb da regiãoCV_3657_RVaacagccaggaagtggaggtcodificadora do gene CV_3657.CV_3376_RVcgacacttccggattggtgacodificadora do gene CV_3657.CV_3376_RVcgacacttccggattggtgacodificadora do gene CV_3657.06665_qRT_FWagtccaaggccaaaagcgaFragmento de 118 pb da região06665_qRT_RVggatggcggtacttggcttcodificadora do gene CV_RS0665.22060_qRT_FWaagtccaggaagcgaagggagcaFragmento de 121 pb da região22060_qRT_RVgtggcgtatttccgcqaFragmento de 143 pb da regiãoCV_2420_FWagtaggctcagcaattcgaagcFragmento de 143 pb da regiãoCV_2420_RVccgagatatgcatgggctgcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcactgcagtgcggagtattgcccodificadora do gene CV_2580.csrA_RVaccgcattgcctagcagattcodificadora do gene CV_2600).copE_FWgcggttctggggtatttgcccodificadora do gene CV_2258.CV_255_FWtggcgtattctggatgcaFragmento de 126 pb da regiãoCV_255_RVccggattccagaaacgcodificadora do gene CV_2255.CV_0431_RVcccgatgcatcagcaacagcodificadora do gene CV_2431.CV_1238_FWgtggggtctgggagaactgFragmento de 133 pb da regiãoCV_1238_RVttggcgtattgggagaactg <td>CV_2532_qPCR_RV</td> <td>cgatcaggcgcaggatgaa</td> <td>codificadora do gene CV_2532.</td>	CV_2532_qPCR_RV	cgatcaggcgcaggatgaa	codificadora do gene CV_2532.
CV_3658_RVtagtcgtgtgggggtttccodificadora do gene CV_3658.CV_3657_FWacaaaccgtggtggaacgcFragmento de 118 pb da regiãoCV_3376_FWaagccgggttcgactacatcFragmento de 113 pb da regiãoCV_3376_RVcgacacttccggattggtgacodificadora do gene CV_3376.06665_qRT_FWagtccaaggcaagagcgaFragmento de 118 pb da região06665_qRT_RVggatggcggtacttggctcodificadora do gene CV_3376.06665_qRT_RVggatggcggtacttggctcodificadora do gene CV_RS0665.22060_qRT_RVggatggcggtatttcgctctacodificadora do gene CV_RS22060.CV_2420_FWagtcaggtctattccgcgaFragmento de 113 pb da regiãoCV_2420_RVccgagatatgcatgggtggcodificadora do gene CV_28420.CV_2410_RVgcagtccagcattcgagcFragmento de 143 pb da regiãoCV_2618_RVgcattggttcgtccatcgccodificadora do gene CV_2618.CV_2580_RVacttactgcgggccaagaaaFragmento de 135 pb da regiãocopE_FWcattgcgggcccaagaaaFragmento de 125 pb da regiãocopE_FWgcgtttgacgtgtttgcccodificadora do gene CV_2580.CV_255_RVcattgcgggcctagcagtFragmento de 141 pb da regiãocv_255_RVccggattcgacggttcodificadora do gene CV_2600).CV_255_RVccggattcggattaggtgatcodificadora do gene CV_2255.CV_0431_RVccgatccaagaccgaaFragmento de 126 pb da regiãoCV_1878_RVcggcccagattccagtgFragmento de 133 pb da regiãoCV_1238_RVttggcgtattggcaagagtgagagagFragmento de 133 pb da regiãoCV_1238_RVttggcgtattcggtgagaaccggFra	CV_3658_FW	gcctcaacacgttgaagcac	Fragmento de 124 pb da região
CV_3657_FWacaaaccgtggtggaacgcFragmento de 118 pb da região codificadora do gene CV_3657.CV_3376_FWaagccgggttcgactacatcFragmento de 113 pb da região codificadora do gene CV_3376.CV_3376_RVcgacacttccggattggtgacodificadora do gene CV_3376.06665_qRT_FWagtccaaggccaaaaagcagaFragmento de 118 pb da região codificadora do gene CV_85065.22060_qRT_RVggatggcggtacttggcttcodificadora do gene CV_RS0665.22060_qRT_RVgtggcggtatttcgcctcacodificadora do gene CV_RS0665.22060_qRT_RVgtggcggtatttcgcctcacodificadora do gene CV_RS22060.CV_2420_FWagctaggtctattccgcgaFragmento de 121 pb da região codificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 143 pb da região codificadora do gene CV_2420.CV_2580_RVagcttggtatgtcgccacaagaat gcatcacgcgtccaagaaaFragmento de 135 pb da região codificadora do gene CV_2580.CV_2580_RVacttcactgccgtcaagaaa a csrA_RVFragmento de 125 pb da região codificadora do gene CV_2580.CV_2255_FWtgcgtattcctggatgca tgcgtattcctggatgcatFragmento de 126 pb da região codificadora do gene cv/2255.CV_0431_FWgcggctagtaaggataccgg scggtcatgaaggatacgaaca codificadora do gene CV_2255.Fragmento de 140 pb da região codificadora do gene CV_2255.CV_1378_FWcggatccaaagctgcaagaaca codificadora do gene CV_2255.Fragmento de 140 pb da região codificadora do gene CV_2431.CV_1238_FWgtgggtctgggagaactg gtgggtctgggagaactgFragmento de 133 pb da região codificadora do gene CV_0431.CV_1238_RVttgccccacaaagctgca	CV_3658_RV	tagtcgttgctgcgggtttc	codificadora do gene CV_3658.
CV_3657_RVaacagccaggaagtggagtcodificadora do gene CV_3657.CV_3376_FWaagccggttcgactacatcFragmento de 113 pb da regiãoCV_3376_RVcgacacttccggattggtacodificadora do gene CV_3376.06665_qRT_FWagtccaaggccaaaaagcagaFragmento de 118 pb da região06665_qRT_RVggatggcggtacttggcttcodificadora do gene CV_RS0665.22060_qRT_FWaaaggcagaagcgaagagcaFragmento de 121 pb da região22060_qRT_RVgtggcggtatttcgcctcacodificadora do gene CV_RS22060.CV_2420_FWagctaggctcattccgcgaFragmento de 143 pb da regiãoCV_2420_RVccgagatatgcatgggctgcodificadora do gene CV_2420.CV_2618_FWgcatcaccgacattcgaagcFragmento de 114 pb da regiãoCV_2580_FWgcatcaccgacccaaagatFragmento de 135 pb da regiãocvj_280_RVacttactgcgtcgacgattcodificadora do gene CV_2580.cvj_255_RVccaggattgctggcccaagaataFragmento de 141 pb da regiãocopE_FWgcgtctgacggtatttcgccodificadora do gene copE (CV_2038).CV_2255_RVccggatttcctagcagattcodificadora do gene copE (CV_2038).CV_255_RVccggattccacatactcccgcodificadora do gene CV_255.CV_0431_RVccggatccaaaagctgaaaggtaaggtaacggFragmento de 133 pb da regiãocvj_378_RVgcggcatgtaaggataccggFragmento de 140 pb da regiãocvj_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_RVccgagcacgaagcaaagcgaaacgFragmento de 133 pb da regiãocvj_38_RVttgcccacaaagctgcaagFragmento de 133 pb da regiãocvj_1	CV_3657_FW	acaaaccgtggtggaacgc	Fragmento de 118 pb da região
CV_3376_FWaagccggttcgactacatcFragmento de 113 pb da região codificadora do gene CV_3376.06665_qRT_FWagtccaaggccaaaaagcagaFragmento de 118 pb da região codificadora do gene CV_RS0665.22060_qRT_RVggatggcggtacttggcttcodificadora do gene CV_RS0665.22060_qRT_RVgtggcggtatttcgcctcacodificadora do gene CV_RS22060.CV_2420_FWagctaggctcattccgcgaFragmento de 121 pb da região codificadora do gene CV_RS22060.CV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da região codificadora do gene CV_2420.CV_2618_RVagcttggtatcgtccaccgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgacccaaagat gcatcaccgacccaaagatFragmento de 135 pb da região codificadora do gene CV_2580.CV_2580_RVacttcactgccgtcagcatt gcgttctgacggtattgccFragmento de 125 pb da região codificadora do gene CV_2580.CV_2580_FWgcgttctgacggtatttgcccodificadora do gene cors/A (CV_2600).copE_FWcaccgaattgcatggatga gcgttctgacggtatttgccFragmento de 125 pb da região codificadora do gene cors/A (CV_2600).CV_2255_FWtggcgtattcctggatgcat gcggtctgacggtattgccFragmento de 140 pb da região codificadora do gene CV_2255.CV_0431_FWccgatgcatcaaaagctgcaaacag gcggcacagaaggataccggFragmento de 133 pb da região codificadora do gene CV_0431.CV_1238_FWgtggggtctgggagaacttg gtggggtctgggagaacttgFragmento de 133 pb da região codificadora do gene CV_1238.	CV_3657_RV	aacagccaggaagtggaggt	codificadora do gene CV_3657.
CV_3376_RVcgacacttccggattggtgacodificadora do gene CV_3376.06665_qRT_FWagtccaaggccaaaagcagaFragmento de 118 pb da região06665_qRT_RVggatggcggtacttggcttcodificadora do gene CV_RS0665.22060_qRT_FWaaaggcagaagcgaaggcaFragmento de 121 pb da região22060_qRT_RVgtggcggtatttcgcctcacodificadora do gene CV_RS22060.CV_2420_FWagctaggctcattccgcgaFragmento de 143 pb da regiãoCV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgaccccaagaatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_RVaccgcattgcctagcagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgtgaccgattFragmento de 125 pb da regiãocv_2255_RVccggattccactactcccgcodificadora do gene CV_2255.CV_0431_RVcccgattgcatgagatacgaFragmento de 126 pb da regiãoCV_1238_RVtggcgtattcagcaaacagfragmento de 133 pb da regiãoCV_1238_RVtggcgtattcagtcagacagafragmento de 133 pb da regiãoCV_1238_RVtggcgtattcagcaacagfragmento de 140 pb da regiãoCV_1238_RVttggcgtattcagtagagatcggfragmento de 140 pb da regiãocodificadora do gene CV_1878.fragmento de 133 pb da regiãocodificadora do gene CV_1878.fragmento de 133 pb da regiãocodificadora do gene CV_1878.fragment	CV_3376_FW	aagccggcttcgactacatc	Fragmento de 113 pb da região
06665_qRT_FWagtccaaggccaaaagcagaFragmento de 118 pb da região codificadora do gene CV_RS0665.22060_qRT_FWaaaggcagaagcgaaggcaFragmento de 121 pb da região codificadora do gene CV_RS22060.CV_2420_FWagtaggcgtattccgctat ccgagatatgcatgggctggcodificadora do gene CV_RS22060.CV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagc gcatcaccgaccccaaagatFragmento de 114 pb da região codificadora do gene CV_2420.CV_2618_RVagctggtattgctcgccacaa gcatcaccgaccccaaagatFragmento de 114 pb da região codificadora do gene CV_2618.CV_2580_RVacttcactgccgtcagatcc cosrA_RVcatttgcgggcccaagaaaa accgcattgcctagcagattFragmento de 125 pb da região codificadora do gene cV_2580.cv_2580_RVaccgcattgcctgcgacgatt copE_FWcatttgcgggcccaagaaaa gcgttctgacggtatttcctggadgccFragmento de 125 pb da região codificadora do gene cV_2580.CV_2255_FWgcggtattcctggatgcat copE_FWFragmento de 126 pb da região codificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccgg ccggatccaaaagccgaaaggatagcaacaa codificadora do gene CV_0431.CV_1878_FWcggcaccagattccagcaacaa ccdificadora do gene CV_0431.CV_1238_FWgtggggtctgggagaacttg gtggggtctgggagaacttgFragmento de 133 pb da região codificadora do gene CV_1238.	CV_3376_RV	cgacacttccggattggtga	codificadora do gene CV_3376.
06665_qRT_RVggatggcggtacttggcttcodificadora do gene CV_RS0665.22060_qRT_FWaaaggcagaagcgaaggcaFragmento de 121 pb da região22060_qRT_RVgtggcggtatttcgcctcacodificadora do gene CV_RS22060.CV_2420_FWagctaggctctattccgcgaFragmento de 143 pb da regiãoCV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgacccaaagatFragmento de 135 pb da regiãocV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocopE_FWcattcgcgtgaccgattcodificadora do gene csrA (CV_2600).copE_FWgcgttctgacggtattgcccodificadora do gene copE (CV_2038).CV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_RVcccgatgcatgaaggacaaaaFragmento de 133 pb da regiãoCV_1238_RVttgcgcgtctggaggaacttgFragmento de 133 pb da regiãoCV_1238_RVttgccccatcgccagattcodificadora do gene CV_0431.Fragmento de 133 pb da regiãocodificadora do gene CV_0431.Fragmento de 133 pb da regiãocodificadora do gene CV_0431.Fragmento de 133 pb da regiãocodificadora do gene CV_0431.CV_1238_RVttgccccatcgcattggFragmento de 142 pb da regiãoCV_1238_RVttgccccatcgcattggFragmento de 142 pb da região	06665_qRT_FW	agtccaaggccaaaaagcaga	Fragmento de 118 pb da região
22060_qRT_FWaaaggcagaagcgaagagca gtggcggtatttcgcctctaFragmento de 121 pb da região codificadora do gene CV_RS22060.CV_2420_FWagctaggctctattccgcgaFragmento de 143 pb da região codificadora do gene CV_2420.CV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da região codificadora do gene CV_2618.CV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgaccccaaagatFragmento de 135 pb da região codificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaFragmento de 125 pb da região codificadora do gene cSrA (CV_2600).copE_FWctacctgacgtgaccgattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgtgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da região codificadora do gene CV_2255.CV_0431_FWgcggccaagaaggatacggaaggagagagagaFragmento de 133 pb da região codificadora do gene CV_0431.CV_1238_FWgtggggtctgggagaacttgFragmento de 133 pb da região codificadora do gene CV_1878.CV_1238_RVtttgccccatcgcatttgtgFragmento de 142 pb da região codificadora do gene CV_1238.	06665_qRT_RV	ggatggcggtacttggctt	codificadora do gene CV_RS0665.
22060_qRT_RVgtggcggtatttcgcctctacodificadora do gene CV_RS22060.CV_2420_FWagctaggctctattccgcgaFragmento de 143 pb da regiãoCV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgaccccaaagatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocopE_FWctacctgacgtgacgattcodificadora do gene csrA (CV_2600).copE_FWgcgttctgacgtattccggatgcaFragmento de 141 pb da regiãocv_2255_FWgcgttctgacgtattgcccodificadora do gene copE (CV_2038).CV_2255_RVccggattccagcagataccggattcodificadora do gene CV_2255.CV_0431_RVcccgatgcatgaaggataccggFragmento de 140 pb da regiãoCV_1878_FWcggccacagattccagaaacagcodificadora do gene CV_0431.CV_1238_FWgtggggtctggggagaacttgFragmento de 133 pb da regiãoCV_1238_RVtttgccccatcgcattgcgggFragmento de 132 pb da região	22060_qRT_FW	aaaggcagaagcgaagagca	Fragmento de 121 pb da região
CV_2420_FWagctaggctctattccgcgaFragmento de 143 pb da regiãoCV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgaccccaaagatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgctagcagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgtgacgattcodificadora do gene copE (CV_2038).CV_2255_FWgcgttctgacggtatttgcccodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_1878_FWcgatcccaaaagctgcaagatcodificadora do gene CV_0431.CV_1878_FWcggcaccagattccagtaagcodificadora do gene CV_0431.CV_1238_FWgtggggtctgggagaacttgFragmento de 133 pb da regiãoCV_1238_RVtttgccccatcgcttgtgFragmento de 133 pb da regiãoCV_1238_RVtttgccccatcgcattgtgcodificadora do gene CV_1238.	22060_qRT_RV	gtggcggtatttcgcctcta	codificadora do gene CV_RS22060.
CV_2420_RVccgagatatgcatgggctggcodificadora do gene CV_2420.CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgaccccaaagatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgcctgcagattcodificadora do gene csrA (CV_2600).copE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccgaacaaaaFragmento de 140 pb da regiãoCV_1878_FWcggcaccagattccagaaacagcodificadora do gene CV_0431.CV_1878_RVcggcaccagattccagtaaFragmento de 133 pb da regiãoCV_1238_FWgtggggttgggagaacttgFragmento de 133 pb da regiãoCV_1238_RVtttgccccatcgcattggFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttggFragmento de 142 pb da região	CV_2420_FW	agctaggctctattccgcga	Fragmento de 143 pb da região
CV_2618_FWgcagtccagcaattcgaagcFragmento de 114 pb da regiãoCV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgaccccaaagatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgcctgcggcgaccgattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_1878_FWcgatcccaaaagctgcaagcodificadora do gene CV_0431.CV_1238_FWgtggggtctggggagaacttgFragmento de 133 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgFragmento de 142 pb da região	CV_2420_RV	ccgagatatgcatgggctgg	codificadora do gene CV_2420.
CV_2618_RVagcttggtatcgtccatcgccodificadora do gene CV_2618.CV_2580_FWgcatcaccgacccaaagatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgcctagcagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_1878_FWcgatcccaaaagcctgcaagcodificadora do gene CV_0431.CV_1238_FWgtggggtctgggagaacttgFragmento de 133 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgCodificadora do gene CV_1238.	CV_2618_FW	gcagtccagcaattcgaagc	Fragmento de 114 pb da região
CV_2580_FWgcatcaccgaccccaaagatFragmento de 135 pb da regiãoCV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgcctgcgagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_1878_FWcgacccaaaagcctgcaagcodificadora do gene CV_0431.CV_1878_RVcggcaccagattccagttgaFragmento de 133 pb da regiãoCV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_2618_RV	agcttggtatcgtccatcgc	codificadora do gene CV_2618.
CV_2580_RVacttcactgccgtcagatcccodificadora do gene CV_2580.csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgcctagcagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_1878_FWcgatcccaaaagcctgcaagcodificadora do gene CV_0431.CV_1878_RVcggcaccagattccagttgaFragmento de 133 pb da regiãoCV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgCodificadora do gene CV_1238.	CV_2580_FW	gcatcaccgaccccaaagat	Fragmento de 135 pb da região
csrA_FWcatttgcgggcccaagaaaaFragmento de 125 pb da regiãocsrA_RVaccgcattgcctagcagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctggggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_2580_RV	acttcactgccgtcagatcc	codificadora do gene CV_2580.
csrA_RVaccgcattgcctagcagattcodificadora do gene csrA (CV_2600).copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgFragmento de 142 pb da região	csrA_FW	catttgcgggcccaagaaaa	Fragmento de 125 pb da região
copE_FWctacctgacgctgaccgatcFragmento de 141 pb da regiãocopE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgaFragmento de 133 pb da regiãoCV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	<i>csrA</i> _RV	accgcattgcctagcagatt	codificadora do gene <i>csrA</i> (CV_2600).
copE_FWgcgttctgacggtatttgcccodificadora do gene copE (CV_2038).CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	copE_FW	ctacctgacgctgaccgatc	Fragmento de 141 pb da região
CV_2255_FWtggcgtattcctggatgcatFragmento de 126 pb da regiãoCV_2255_RVccggattccacatactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	copE_FW	gcgttctgacggtatttgcc	codificadora do gene <i>copE</i> (CV_2038).
CV_2255_RVccggattccactactcccgcodificadora do gene CV_2255.CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_2255_FW	tggcgtattcctggatgcat	Fragmento de 126 pb da região
CV_0431_FWgcggctagtaaggataccggFragmento de 140 pb da regiãoCV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_2255_RV	ccggattccacatactcccg	codificadora do gene CV_2255.
CV_0431_RVcccgatgcatcagcaaacagcodificadora do gene CV_0431.CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_0431_FW	gcggctagtaaggataccgg	Fragmento de 140 pb da região
CV_1878_FWcgatcccaaaagcctgcaagFragmento de 133 pb da regiãoCV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_0431_RV	cccgatgcatcagcaaacag	codificadora do gene CV_0431.
CV_1878_RVcggcaccagattccagttgacodificadora do gene CV_1878.CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_1878_FW	cgatcccaaaagcctgcaag	Fragmento de 133 pb da região
CV_1238_FWgtggggtctgggagaacttgFragmento de 142 pb da regiãoCV_1238_RVtttgccccatcgcatttgtgcodificadora do gene CV_1238.	CV_1878_RV	cggcaccagattccagttga	codificadora do gene CV_1878.
CV_1238_RV tttgccccatcgcatttgtg codificadora do gene CV_1238.	CV_1238_FW	gtggggtctgggagaacttg	Fragmento de 142 pb da região
	CV_1238_RV	tttgccccatcgcatttgtg	codificadora do gene CV_1238.

3.6.3. Construção de fusões transcricionais e ensaio de β-galactosidase 3.6.3.1. Clonagem das regiões promotoras em fusão com *lacZ*

Para verificar a expressão dos genes por meio de fusões transcricionais, fragmentos contendo a região promotora dos genes *vitR*, *vioS*, *cviR*, *airMS*, *airR*, *csrA*, *csrB* e CV_3659 foram amplificados por PCR utilizando a enzima Taq convencional (Thermo Scientifc) utilizando os oligonucleotídeos indicados na Tabela 6. Os produtos amplificados foram diretamente ligados ao vetor pGEM-T Easy, conforme instruções do fabricante (Promega). Após confirmação das clonagens por PCR de colônia, o DNA plasmidial foi extraído e digerido com as enzimas de restrição especificas (Tabela 6). Os insertos foram subclonados no vetor pRK*lacZ*290 e confirmados por PCR. DNA plasmidial das construções foi transformado em *E. coli* S17-1 e transferido para as linhagens de *C. violaceum* por meio de conjugação. Após a seleção com tetraciclina,

as colônias de *C. violaceum* resistentes foram confirmadas por PCR utilizando os oligonucleotídeos contidos no vetor (Tabela 6) e congeladas em 20% de glicerol no freezer -80 °C.

3.6.3.2. Ensaio de β-Galactosidase

Os níveis de expressão do gene lacZ, sob controle das regiões promotoras clonadas no vetor pRKlacZ290, foram avaliados por meio do ensaio de βgalactosidase. As linhagens de C. violaceum contendo os plasmídeos repórteres foram cultivadas em diferentes condições: (i) baixa densidade celular, cultivo em meio LB até DO_{600nm} de 1,0; (ii) alta densidade celular, cultivo em meio LB até DO_{600nm} de 4,0; (iii) carência e suficiência de ferro, cultivo em meio LB até DO_{600nm} de 0,6-0,8 seguido da adição ou não de 150 µM DP por 1 hora. Todas as condições testadas partiram de DO_{600nm} inicial de 0,01 e foram mantidas a 37 °C sob agitação até atingir a DO_{600nm} desejada. Após os cultivos, 100 µL das culturas foram adicionados a tubos contendo 800 µl de tampão Z (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCl, 1 mM MgSO₄, pH 7,0, 5 mM β -mercaptoetanol), 100 μ L de clorofórmio e 25 μ L de 0,1% SDS. Os tubos foram vortexados e incubados a 30 °C por 5 minutos. Em seguida, 200 µl de 0,4% ONPG (p/v) (ONPG – orthoNitrophenyl-b-galactoside) foram adicionados, os tubos novamente vortexados e incubados nas mesmas condições. Para finalizar as reações, 400 µl de 1 M Na₂CO₃ foram adicionados aos tubos e vortexados. Os tubos foram centrifugados e foi feita as leituras da DO_{420nm} das fases líquidas superiores obtidas. Por fim, as unidades de Miller foram determinadas pela fórmula: Unidades de Miller = 1000 x {DO420 x [tempo (min) x cultura (mL) x DO600]-1}

Nome	Descrição								
Expressão heteróloga									
CV_1057_pET_FW	cctagc <u>catatg</u> gaaaacacaacgaaaccc	Clonagem do gene CV_1057 (<i>vitR</i>) no pET-15b para							
CV_1057_pET_RV	ggcctaggatccctatttattcgccttgtccag	expressão heteróloga (264 pb, <i>Ndel/Bam</i> HI).							
CV_3659_pET_FW	cctagccatatgaatattccacctctggtg	Clonagem do gene CV_3659 no pET-15b para expressão							
CV_3659_pET_RV	ggcctaggatcctcattctgcgtgctcccgg	heteróloga (576 pb, <i>Ndel/Bam</i> HI).							
T7_promoter	taatacgactcactataggg	Sequenciamento das							
T7_terminator	clonagens realizadas no pET15-b								
	Ensaio de β-galactosidase e EMS	SA							
CV 0537 comp EW	cotagogaattooaatottooacgogaactog								

Tabela (6: Oligonucleotídeos	utilizados	para	construção	das	fusões	transcricio	onais e	e
express	ão heteróloga.								

CV_0537_comp_FW cctagcgaat

CV_0537_del2	ggcctaggatccgtcaatcacgacgggagatt	do gene <i>airR</i> no pRK <i>lacZ</i> 290 para ensaio de expressão
		gênica (429 pb, <i>Eco</i> RI/ <i>Bam</i> HI).
CV_0536_promot_FW	cctagcgaattcctggtcggtgatcctgcg	Clonagem da região promotora
		do operon <i>airMS</i> no
CV 0536 promot Rv	aacctaagateceggeggectagacaatge	pRK <i>lacZ2</i> 90 para ensalo de
•• <u></u> ••••• <u></u> •••• <u></u> •••	990000 <u>990000</u> 099099000990000.90	expressão genica (301 pb,
		Clonggom de região promotoro
Cv_1057_promot_Fvv	cctagcgaattccgcgagatgagacgaactg	do gono vitP no nPK/ac7200
C_{1} (1057 promot D_{1}	a a coto a a cho contrata titito coto co co	para ensaio de expressão
Cv_1057_promot_Rv	ggcelaggalcecgligigillicealaceee	gênica (321 ph <i>Eco</i> RI/ <i>Bam</i> HI)
vias promot EW	cetageaagettegegagatgagagagagetg	Clonagem da região promotora
	cciagc <u>aagcii</u> cgcgagaigagacgaacig	do gene vioS no pRK/acZ290
		para ensaio de expressão
<i>vioS_</i> promot_RV	ggcctaggatcccgttgtgttttccatacccc	gênica (321 pb.
		HindIII/BamHI).
<i>cviR</i> promot FW	cctagcggtaccggatgctcacaccattctcgc	Clonagem da região promotora
	·· ·	do gene cviR no pRKlacZ290
<i>cviR</i> _promot_RV	ggccta <u>aagcttg</u> agcggtcttgcattgatggg	para ensaio de expressão
		gênica (302 pb, <i>Kpn</i> l/ <i>Hind</i> III).
CV_2600Promot_FW	cctagcgaattccagccgccgtgcggtttg	Clonagem da região promotora
		do gene csrA no pRK/acZ290
CV_2600del2	ggcctaggatccgcggataatgctttgcgtgc	para ensaio de expressao
0)/ 0500		genica (373 pb, ECORI/Bamini).
CV_2599_promot_FW	cctagc <u>gaattcg</u> cggccaaagagtcaggaa	do gono osrá no pPK/207200
C_{1} (2500 dol)	agostogastostosogattatoogasogas	nara ensaio de expressão
Cv_25990eiz	yyccia <u>yyaicc</u> iacccyiiyiacyycaycy	gênica (288 pb EcoRI/BamHI)
CV 3659 promot FW	ectanenastecenetanaenatetaetan	Clonagem da região promotora
	celage <u>ggalee</u> egelgggegalelgelgg	do gene CV 3659 no
		pRK <i>lacZ</i> 290 para ensaio de
CV_3659_promot_Rv	ggccta <u>aagctt</u> cagaggtggaatattcatgac	expressão gênica (298 pb,
		BamHI/HindIII).
CV_3659_EMSA_FW	cgctgggcgatctgctgg	Amplificação da região
CV 3659 FAM RV	6-FAM-aaatgcagcacgaaagcctgc	promotora do gene CV 3659
 CV_3659_EMSA_RV	aaatgcagcacgaaagcctgc	para EMSA (321 pb).
CV 3376 FW	aacconcticnactacatc	Amplificação da região
01_0010_111	aageeggenegaelaeate	codificadora do gene CV 3376
CV_3376_RV	cgacacttccggattggtga	para EMSA (113 pb).
1007200up	tacagatatacacata	Confirmação das clónagens
lacz290up	igacygciaicaccaica	realizadas no pRK <i>lacZ</i> 290

^a Sítios de restrição das enzimas estão sublinhados.

3.7. Expressão heteróloga de proteínas

3.7.1. Construção das linhagens para expressão heteróloga de proteínas

Para a expressão heteróloga de proteínas de C. violaceum, fragmentos contendo a região codificadora dos genes vitR e CV_3659 foram amplificados por PCR utilizando os oligonucleotídeos indicados na Tabela 6. Os produtos obtidos foram digeridos com as enzimas de restrição específicas (Tabela 6) e clonados no vetor pET15b, de modo a gerar proteínas fusionadas com cauda de histidina. DNA plasmidial das construções foram transformados em E. coli BL21(DE3). Após a

Clonagem da região promotora

seleção com ampicilina, as colônias de *E. coli* resistentes foram congeladas em 10% de glicerol no freezer -80 °C.

3.7.2. Expressão e purificação de proteínas recombinantes

A *E. coli* BL21(DE3) com as construções de *vitR* ou CV_3659 no pET15b foi cultivada sob agitação a 37 °C em 500 ml de meio LB suplementado com ampicilina. Após atingir DO_{600nm} de 0,5, a superexpressão das proteínas foi induzida pela adição de 1 mM de isopropil-D-tiogalactopiranósido (IPTG) por 2 horas a 37°C. Após a indução, as culturas foram centrifugadas a 14000 x g por 5 minutos a 4 °C e os pellets obtidos foram lavados com água Milli-Q, centrifugados e armazenados a -20 °C. Um mililitro das culturas foi coletado antes e depois da indução por IPTG para avaliar a qualidade da indução. As alíquotas foram centrifugadas a 12000 x g por 5 minutos e os pellets ressuspendidos em tampão 1X SDS gel loading [100 mM Tris-HCI (pH 6,8), 4% dodecilsulfato de sódio (SDS), 10% glicerol, 0,1 % azul de bromofenol e 100 mM dithiothreitol (DTT)].

Para purificação da proteína recombinante VitR, o pellet armazenado foi ressuspendido em 20 mL de tampão de lise [50 mM tampão fosfato de sódio (pH 7,4), 300 mM NaCl, 20 mM imidazol e 1 mM PMSF] e submetido a sonicação (15 pulsos de 30 segundos com amplitude de 75% e intervalos de 30 segundos), e posteriormente, tratado com 1% de estreptomicina por 20 minutos sob agitação e centrifugado a 15000 x g por 30 minutos a 4 °C. Por fim, o sobrenadante foi filtrado em membrana de 0,45 µm (Millipore). A fração solúvel contendo a proteína His-VitR foi utilizada na purificação em coluna de níquel Ni-NTA Superflow (5 mL), de acordo com as recomendações do fabricante Quiagen), usando bomba peristáltica P1 (GE Healthscience). Primeiramente, a coluna foi carregada com a solução de 100 mM NiSO4 e equilibrada com tampão de ligação [50 mM tampão fosfato de sódio (pH 7,4), 300 mM NaCl e 20 mM imidazol]. O extrato solúvel foi aplicado a coluna carregada e posteriormente lavada com o tampão de lavagem [50 mM tampão fosfato de sódio (pH 7,4), 300 mM NaCl e 100 mM imidazol]. Para eluição das proteínas de interesse, 12 ml do tampão de eluição [50 mM tampão fosfato de sódio (pH 7,4), 300 mM NaCl e 500 mM imidazol] foram utilizados e alíquotas de 1 mL foram coletadas. A presença de proteína nas alíquotas coletadas foi verificada por ensaio de Bradford (Quick Start Bradford 1X Dye – Biorad) e as cinco alíquotas mais reativas foram selecionadas. Após concentração (Vivaspin 6 Concentrator, Sartorius Stedim Biotech) e dessalinização (PD 10 Dessalinting Columns, GE Healthcare), a proteína His-VitR purificada foi resolvida em gel SDS-PAGE a 15% juntamente com as frações coletadas durante a indução e purificação.

Para a proteína CV_3659, a fração solúvel contendo a proteína His-CV_3659 foi purificada usando a coluna HisTrap HP de 5 ml (Cytiva Life Sciences) em um sistema AKTA Explorer FPLC (Cytiva Life Sciences). Após concentração e dessalinização por diálise usando o tampão 20 mM Tris (pH 7,6), 150 mM NaCl, 0,1 mM EDTA, 5 mM DTT, a proteína CV_3659 purificada foi resolvida em gel SDS-PAGE 15%.

3.8. Ensaio de alteração de mobilidade eletroforética em gel (EMSA)

A capacidade de ligação da proteína His-VitR à região promotora de genes específicos foi avaliada por EMSA. Inicialmente, os fragmentos das regiões promotoras de *vitR*, *vioS* e *chuP* (controle negativo) foram amplificados por PCR com a Taq DNA polimerase utilizando oligonucleotídeos específicos (Tabela 6). Em seguida, as sondas de DNA foram marcadas com [γ-³²P]ATP (PerkinElmer) seguindo o protocolo da T4 polynucleotide kinase (Thermo Scientific) e purificadas com o kit NucleoSpin® Gel and PCR Clean-up.

As interações proteína (VitR) e DNA foram realizadas em volumes finais de 20 μ L contendo tampão de interação [10 mM Tris-HCI (pH 7,5), 40 mM KCI, 1 mM MgCl₂, 1 mM DTT, 0,1 mM BSA (BSA – *bovine serum albumin*) e 5% de glicerol], 0,1 mg/ml de DNA de esperma de salmão competidor, 50 ng das sondas de DNA e diferentes concentrações da proteína VitR (0 a 100 nM) a 25 °C por 25 minutos. Para verificar a especificidade da ligação da proteína VitR ao DNA, foram realizados ensaios de competição usando 50 ng de His-VitR como descrito acima na presença de um excesso de 10 vezes de sondas específicas não marcadas (região promotora do gene *vitR*) ou não específicas (região promotora do gene *chuP*). Posteriormente, todas as reações de interação foram aplicadas em gel de poliacrilamida 5% e submetidas a eletroforese em tampão 0,5 X TB (TB – Tris-borate) por aproximadamente 1 hora a 30 mA. Ao final, os géis foram desidratados em secadora a vácuo e o sinal foi detectado por autorradiografia.

Também foi avaliada a capacidade do MarR CV_3659 de se ligar a sua própria região promotora. Para isso, a região *upstream* do gene CV_3659 foi amplificada por PCR usando um oligonucleotídeo marcado com 6-FAM (Tabela 6). As reações de interação ao DNA foram realizadas em tampão de interação (20 mM Tris-HCI [pH 8,0],

50 mM NaCl, 1,5 mM de MgSO₄, 0,5 mM de CaCl₂, 0,1 mg/ml de BSA, 1 mM de DTT, 0,05% de NP-40, 10% de glicerol), 0,1 mg/ml de DNA de esperma de salmão competidor, 50 ng de sonda de DNA 6-FAM marcada e diferentes concentrações de His-CV_3659 em um volume final de 20 µL. Todas as reações de interação foram incubadas a 37°C por 25 min e as amostras foram separadas por eletroforese em gel de poliacrilamida nativa a 5% em tampão TB. Os ensaios de competição foram realizados usando 1 µg de His-CV_3659 como descrito acima na presença de um excesso de 10 vezes de sondas específicas não marcadas (região promotora do gene CV_3659) ou não específicas (região codificadora do gene CV_3376). A fluorescência do gel foi capturada pelo Azure Sapphire Biomolecular Imager usando a excitação Alexa Fluor 546.

3.9. Caracterização fenotípica dos mutantes em *C. violaceum*

3.9.1. Curvas de crescimento

Para avaliar o crescimento das linhagens mutantes ao longo do tempo, curvas de crescimento foram realizadas. Para este experimento, as linhagens selvagem e mutantes foram inicialmente cultivadas em 2 mL de meio LB durante a noite. A densidade das culturas foi medida no comprimento de onda de 600 nm (DO_{600nm}). As culturas foram diluídas para 0,01 em 4 mL de meio LB e incubadas sob agitação (250 rpm). O crescimento foi determinado pela medição da DO_{600nm} para os 8 pontos iniciais, além do ponto de 24 horas. Para uma condição de deficiência de ferro, o meio LB foi suplementado com 150 µM de dipiridil (DP). Os experimentos foram realizados em três réplicas biológicas.

Para os mutantes $\Delta CV_3659 e \Delta CV_3658-57$, o crescimento foi avaliado de outra forma. As linhagens foram inicialmente cultivadas em meio LB ou M9HC durante a noite. Posteriormente, as culturas foram diluídas para DO_{600nm} de 0,01 no meio indicado com ou sem tratamento para um volume final de 300 µL em poços de placa de microtitulação. As bactérias foram cultivadas aerobiamente com agitação a 37°C em leitor de placa Labsystems Bioscreen C (Growth Curves USA). O crescimento foi monitorado medindo DO_{600nm} a cada 60 minutos. Os experimentos foram realizados com seis réplicas biológicas.

3.9.2. Ensaio de sobrevivência

Para contagem de unidades formadoras de colônia (UFC) das linhagens em diferentes condições, foram realizados ensaios de sobrevivência. Para esses experimentos, as linhagens foram inicialmente cultivadas em 2 ml de meio LB e as culturas foram diluídas para DO_{600nm} de 0,01 em meio LB fresco e incubadas a 37 °C com agitação até DO_{600nm} de 0,5. As culturas foram então tratadas ou não tratadas por 20 horas sob as mesmas condições de cultivo. Após o tratamento, as culturas foram diluídas em PBS estéril, semeadas em meio LB e incubadas a 37 °C por 24 horas. Os experimentos foram realizados com seis réplicas. As colônias foram contadas e as UFC/mL foram calculadas, conforme abaixo:

UFC/mL = n° de colônias x diluição-1 x volume plaqueado-1 (mL)

3.9.3. Ensaio de CAS

A análise de sideróforos nas diferentes linhagens foi realizada utilizando o ensaio Cromo Azurol S (ensaio de CAS) (BATISTA et al., 2019). A detecção da presença de sideróforos é feita pela alteração da cor do meio. O ensaio foi feito em placas PSA-CAS que contêm o complexo formado por Cromo Azurol S (Sigma), FeCl₃ (Sigma) e Hexadecyltrimethylammonium bromide (HDTMA) (Sigma) que faz com que o meio apresente a cor azul. Na presença se sideróforos, o ferro do complexo é sequestrado e a cor do meio se altera para laranja. Para isto, 10 µL de pré-inóculos em meio LB foram plaqueados em meio PSA-CAS. As placas foram incubadas por 24 horas a 37 °C, fotografadas e as áreas de halo laranja quantificadas com o software ImageJ. O ensaio foi realizado com três réplicas biológicas. Para a varredura da biblioteca de mutantes de transposon em placas PSA-CAS, as bactérias foram "palitadas" com ponteira (cerca de 100 mutantes por placa), juntamente com a *C. violaceum* selvagem, para comparação dos diâmetros dos halos laranja.

3.9.4. Ensaio de motilidade

Para verificar a motilidade do tipo *swimming*, as linhagens WT e mutantes foram pré-cultivadas em meio M9HC e diluídas para DO_{600nm} de 0,1 em meio M9HC. Então, 5 µl das culturas diluídas foram inoculados no centro de placas (injetado com a ponteira) contendo 50 ml de M9HC 0,3% de ágar e incubadas a 37 °C. Após 24 e 48 horas, as placas foram fotografadas e a área de motilidade foi quantificada usando o software ImageJ. O ensaio foi realizado com três réplicas biológicas.

3.9.5. Ensaio de biofilme estático

Para verificar a formação de biofilme pelas linhagens, nós realizamos o ensaio de biofilme estático corado com cristal violeta. As linhagens pré-cultivadas em meio LB foram diluídas para DO_{600nm} de 0,01 em 1 ml de meio LB em tubos de vidro e incubadas a 37 °C sem agitação por 24 horas. As culturas foram então retiradas dos

tubos, lavados com água destilada 3 vezes e corados com 1,5 ml de cristal violeta 0,1%. Após 10 minutos, o cristal violeta foi retirado e os tubos foram novamente lavados com água destilada 3 vezes e colocados a 37 °C para secar. Por fim, o biofilme corado foi ressuspendido em 1 ml de etanol 100% e a DO_{600nm} foi medida para a quantificação. Todos os ensaios foram feitos com seis réplicas biológicas.

3.9.6. Quantificação da produção de violaceína

Para a quantificação da produção de violaceína, as linhagens WT e mutantes foram pré-cultivadas em meio LB e diluídas para DO_{600nm} de 0,01 em 2 ml de meio LB líquido. As culturas foram incubadas a 37 °C sob agitação por 24 horas e foram fotografadas. Para o ensaio quantitativo, 500 µl das culturas foram misturados com 500 µl de acetona 100%, um solvente orgânico para a violaceína. Os tubos foram homogeneizados em vórtex por 30 segundos e centrifugados por 5 minutos a 13.000 rpm. A fase orgânica, contendo a violaceína, foi quantificada em espectrofotômetro em comprimento de onda de 575 nm (DO_{575nm}). O ensaio foi realizado com três réplicas biológicas.

3.9.7. Ensaio de toxidade ao ferro

As diferentes linhagens foram cultivadas em 2 ml de meio LB a 37 °C com agitação a 250 rpm por 24 horas. Para testar a sensibilidade ao ferro, 10 µl das culturas foram semeados na superfície de placas LB suplementada ou não com 8 mM FeSO₄ ou 5 mM FeCl₃ e incubadas a 37 °C. Após 24 horas, o crescimento das linhagens foi observado e as placas foram fotografadas. O ensaio foi feito com três réplicas biológicas.

3.9.8. Ensaio de protease

Para verificar a presença de proteases, as linhagens selvagem e mutantes foram cultivadas em meio M9HC a 37°C por 24 horas sob agitação. Dez microlitros dessas culturas foram semeados na superfície de placas M9 com 1,5% de leite em pó em substituição ao hidrolisado de caseína. As placas foram incubadas a 37°C por 24 horas e os halos de hidrólise produzidos foram medidos usando o programa ImageJ. Os experimentos foram realizados em três réplicas biológicas.

3.9.9. Ensaio de disco difusão

Para avaliar a suscetibilidade das linhagens mutantes a diferentes tratamentos, foram realizados ensaios em placas. As linhagens selvagem e mutantes foram précultivadas em meio LB e diluídas em meio LB fresco para um DO_{600nm} de 1,0. Vinte microlitros de cada diluição foram adicionados em 20 mL de LB ágar. Poços foram feitos nas placas e alíquotas de 30 µL de 10 µg/mL de estreptonigrina (SN, Sigma), 10 mM de peroxido de hidrogênio (H₂O₂, Sigma), 80 mM de cloreto de zinco (Zn, Sigma) ou 100 mM de cloreto férrico (FeCl₃, Sigma) foram aplicadas a poços individuais. Após incubação por 24 horas a 37°C, observou-se inibição do crescimento pela formação de halos ao redor dos poços. O diâmetro dos halos foi quantificado usando o software Image J. Os experimentos foram realizados com três réplicas biológicas.

3.9.10. Ensaio de virulência

Para verificar o papel de genes específicos na patogenicidade de *C. violaceum*, foi realizado ensaio de curva de sobrevivência em camundongos. Para isso, as linhagens selvagem e mutantes foram pré-cultivadas e diluídas para DO_{600nm} de 0,01 em 5 ml de meio LB em tubos Falcon e incubadas a 37 °C sob agitação (250 rpm). Após 20 horas de cultivo, 1,65 ml das culturas foram centrifugados a 14000 rpm por 3 minutos, sendo o pellet ressuspendido em 1 ml de PBS estéril para obter 10¹⁰ UFC/ml. A partir disto, foram realizadas diluições seriadas 1:10 em PBS até 10⁻⁷ em 1 mL final. Assim, 100 µl da diluição 10⁻³ (aproximadamente 10⁶ células bacterianas) foram injetados via intraperitoneal em camundongos Balb/c fêmeas com 6 semanas de vida. Afim de conferir a dose injetada nos camundongos, 100 µL da diluição 10⁻⁷ (aproximadamente 100 células bacterianas) foram plaqueados em LB. Os animais infectados foram então monitorados por uma semana para avaliar a sobrevivência. Os ensaios utilizando animais foram realizados no Biotério do Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos da FMRP-USP, segundo Protocolo de Ética Animal (n° 117/2019) aprovado pela CEUA da FMRP-USP.

4. RESULTADOS

4.1. Caracterização de novos fatores de transcrição envolvidos na homeostase de ferro

4.1.1. Análise global por mutagênese revela novos sistemas regulatórios envolvidos na homeostase de ferro mediada por sideróforos em *C. violaceum*

Em *C. violaceum* Fur, um regulador global de homeostase de ferro, reprime a produção de sideróforos (SANTOS et al., 2020). Para identificar novos sistemas regulatórios envolvidos na síntese e/ou captação de sideróforos, usamos o transposon T8 (JACOBS et al., 2003; SANTOS et al., 2020) para gerar uma biblioteca de 10.000 mutantes de transposon em *C. violaceum* ATCC 12472. Varredura da biblioteca de transposon em placas PSA-CAS revelou 132 linhagens mutantes de transposon com halos de sideróforos alterados (101 linhagens com halos aumentados e 31 linhagens com halos diminuídos) (Tabela 7). O sequenciamento de produtos de PCR semi-degenerados das 132 linhagens mutantes permitiu a identificação de sítios únicos de inserção de transposon em 25 genes diferentes no genoma de *C. violaceum*, com alguns genes mostrando múltiplas inserções independentes de transposon (Tabela 7).

Lócus de inserção do T8	Produto gênico	No. de inser ções	Linhagem mutante	Tama nho Predito aa ^b	Sítio de inserção aa	Area do halo de sideróforo em mm ² (SD) ^d
			CVNAL ^a			59,14 (5,27)
CV_0013	Hypothetical protein	1	7B94	163	66	8,04 (2,41)
CV_0025	Hypothetical protein	3	6E60, 7D65 and 7F65	173	46, 120 and 53	9,88 (2,22)
CV_0085	Carboxymuco nolactone decarboxylase family protein	1	8B51	118	56	137,87 (24,71)
CV_0174	dksA	2	5G65 and 6G103	136	IR °	20,29 (5,48)
CV_0535	Hypothetical protein (<i>airM</i>)	21	1H74, 2G74, 2H74, 6H74, 7C74, 9B74, 9F74, 10H74, 12D74, 2H75, 4 E75, 6G75, 10C75, 1E76, 2B76, 2C76, 4C76, 4E77, 4H77, 5G79, 10B79 and 10D79	163	All in 19	104,5 (13,74)
CV_0536	Two- component sensor histidine kinase (<i>airS</i>)	1	9E104	458	154	125,94 (5,85)

Tabela 7: Identificação do sítio de inserção do transposon das linhagens mutantes selecionadas na varredura para níveis alterados de sideróforos.

CV_0537	Probable response regulator with BetR domain (airR)	2	2A44 and 1C52	300	60 and 61	110,3 (16,47)
CV_0635	Probable transcriptiona I regulator with PAS domain	1	10A38	257	15	140,2 (5,60)
CV_RS03 115	Cupin fold metalloprotein, WbuC family	6	4D39, 10C40, 8A57, 1A91, 4F91 and 2H92	169	4, 27, 83, 83, 84 and 153	93,65 (11,29)
CV_0773	Sugar ABC transporter substrate- binding protein	4	12F20, 6G24, 10D39 and 11E65	630	535, 138, 485 and 211	16,11 (2,13)
CV_0774	Phosphatase PAP2 family protein	10	6E41, 5H43, 12E43, 10B43,10B44, 10D50, 12C51, 8E54, 10C54 and 11H72	953	74, 74, 74, 74, 74, 943 and IR	12,28 (0,8)
CV_0775	Conserved hypothetical protein	4	12F21, 11H21, 12B21 and 3H22	90	IR	17,48 (5,04)
CV_1057	Probable transcriptiona I regulator (vitP)	1	1B14	87	33	180,13 (14,13)
CV_1218	Hypothetical protein Methyl-	2	4H51 and 9H51	66	19 and 17	130,4 (19,96)
CV_1716	accepting chemotaxis protein	1	11D54	693	228	151,45 (12,67)
CV_1918 CV_2228	Filamentous hemagglutinin N-terminal domain- containing protein NarK/NasA family nitrate	2	1E50 and 11H54 4A50 and 11B54	1628 400	507 and 507 111 and 111	146,4 (22,94) 133,0 (22,94)
CV_2600	Probable two- component sensor/regula tor (<i>csrA</i>)	5	10E20, 2A26, 8G26, 7H26 and 4B27	924	304, 319, 308, 670 and 336	289,7 (11,14)
CV_3542	Nucleoside- diphosphate kinase	1	1A15	141	130	21,65 (2,03)
CV_3814	Type II secretion system protein GspD	2	12D51 and 3A54	708	302 and 302	16,25 (1,04)
CV_3972	DUF3304 domain- containing protein	1	1G96	182	144	11,88 (2,92)

	UDP-N-acetyl- D-					160.62
CV_4019	mannosamine dehydrogenas e	1	9H61	413	341	(18,72)
CV_4023	Peptidoglycan bridge formation glycyltransfera se FemA/FemB family protein	3	1A50, 4D50 and 12B104	331	30, 30 and 158	104,1 (18,01)
CV_4090	LuxR family transcriptiona I regulator (<i>cviR</i>)	51	12A50, 3B51, 11A54, 11F54, 1F56, 3A56, 2D56, 3E56, 4A56, 4B56, 5C56, 6D56, 6A56, 7B56, 8B56, 9F56, 9H56, 10B56, 10C56, 12H56, 1A57, 2F57, 5F57, 5C57, 7A57, 7H57, 9B57, 11D57,11F57, 11E57, 6E57, 1C59, 6E59, 1C59, 6E59, 7E60, 7H60, 10D61, 12A61, 7G62, 8E62, 9E62, 10C62, 5F63, 6G63, 7G63, 5H64, 6E65, 6F65, 7H65, 9E65, 10H65 and 11F65	265	124, 124 and IR	171,0 (22,85)
CV_4261	domain- containing protein	3	5D58, 6E58 and 8B58	184	159, 140 and 159	15,75 (3,4)

^a Linhagem referência na qual foi construída a biblioteca de transposon; ^b aminoácido; ^c Inserção na região intergênica; Genes em negrito codificam sistemas regulatórios. ^d Todas as linhagens exibem uma diferença significativa no tamanho dos halos de sideróforo (p < 0,05).</p>

Os genes com inserção do transposon agrupam em diferentes categorias funcionais e muitos codificam sistemas regulatórios (seis genes) (Figura 5A; Tabela 7) que serão caracterizados a seguir: (i) o fator de transcrição CV_0635 (Figura 5B); (ii) a histidina quinase CsrA (CV_2600) do sistema de dois componentes CsrAB localizado na ilha de patogenicidade da *Chromobacterium* Cpi-2 (Figura 5C); (iii) o fator de transcrição VitR (CV_1057) (Figura 5D); (iv) o sistema de dois componentes AirSR (CV_0536-37) (Figura 5E); (v) o fator de transcrição CviR (CV_4090) do sistema de QS CviIR (Figura 5F). As inserções nestes seis genes foram posteriormente confirmadas por PCR usando oligonucleotídeos fora do gene (del1/4, Tabela 2), de forma que a inserção do transposon impede a amplificação nos mutantes, mas não na linhagem selvagem. Linhagens mutantes nulas foram geradas e confirmadas por PCR (Figura 5B-F). Esses resultados indicam que vários sistemas regulatórios controlam a homeostase do ferro mediada por sideróforos em *C. violaceum*.

Figura 5: Classificação funcional dos genes com inserção de transposon e confirmação da inserção em genes de sistemas regulatórios. A. Classificação funcional dos 25 genes com inserção de transposon que causou diferença nos halos de sideróforo. B-F. Organização gênica dos sistemas regulatórios com inserções de transposon. PCR com oligos del1/4 de cada gene confirmando a inserção nas linhagens T8 e deleção dos genes nas linhagens mutantes nulas. Ponta de seta preta, um local de inserção; ponta de seta branca, vários locais de inserção; WT, linhagem selvagem; T8, linhagem mutante de transposon do gene indicado; Δ , linhagem mutante nula do gene indicado; marcador de peso molecular 1 Kb plus DNA Ladder (Thermo Scientific).

4.1.2. Mutante nulo do fator de transcrição CV_0635 não valida fenótipo de sideróforo aumentado do mutante de transposon

Um dos fatores de transcrição que apresentaram inserção do transposon foi CV_0635 (Figura 5B). Esse provável regulador transcricional apresenta um domínio

de ligação ao DNA hélice-volta-hélice da família LuxR e um domínio PAS que pode agir como um domínio sensor. Confirmamos em placas PSA-CAS, para o mutante de transposon CV_0635::T8, o fenótipo de aumento dos halos de sideróforo (Figura 6A e B) observado na varredura da biblioteca (Tabela 7). No entanto, a linhagem mutante nula Δ CV_0635 não apresentou o mesmo fenótipo que CV_0635::T8 (Figura 6A e B). Já que a perda do gene CV_0635 não alterou os halos de sideróforos, nós verificamos se a superexpressão desse gene teria algum efeito. Adicionar mais cópias do gene CV_0635 na linhagem selvagem não alterou a formação de halos em placas PSA-CAS (Figura 6A e B). Estes dados sugerem que o gene CV_0635 não apresenta um papel na homeostase de ferro mediada por sideróforos em *C. violaceum* e que o fenótipo do mutante de transposon CV_0635::T8 não parece ser por interrupção da função deste gene.

Figura 6: Caracterização do fator de transcrição CV_0635 na formação de halos de sideróforos. A. Ensaio de CAS mostrando a presença de sideróforos (halos laranja) pelas linhagens indicadas inoculadas em placas PSA-CAS. Foi gerada linhagem mutante nulo para o gene CV_0635 que não apresentou o mesmo fenótipo que a linhagem CV_0635::T8. B. Medição da área dos halos das placas CAS das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Tukey. **** p <0,0001; quando não indicado, não significativo.

4.1.3. Superexpressão de CsrA leva a diminuição dos halos de sideróforos em

C. violaceum

Varredura da biblioteca de transposon revelou 5 mutantes com halo de sideróforo aumentado, cujas inserções mapearam no gene *csrA* (CV_2600) (Tabela 7). Este gene codifica uma histidina quinase (CsrA) e está localizado próximo a *csrB* (CV_2599), que codifica o regulador de resposta CsrB (Figura 5C). Este sistema de

dois componentes CsrAB já foi descrito como importante para a ativação da ilha de patogenicidade Cpi-2 de C. violaceum (MIKI et al., 2011). Confirmamos que a inserção do transposon no gene csrA (linhagem csrA::T8) levou ao aumento dos halos de sideróforos (Figura 7A e B). Para melhor investigar esse fenótipo, geramos linhagens mutantes nulas sem cada um ou todo o sistema de dois componentes csrAB. Surpreendentemente, as linhagens mutantes $\triangle csrA$, $\triangle csrB$ e $\triangle csrAB$ não apresentaram alteração nos níveis de sideróforos (Figura 7A e B). No entanto, o fenótipo do mutante csrA::T8 foi complementado com o gene csrA, ligando o fenótipo à inserção do transposon no csrA (Figura 7A e B). Mais experimentos são necessários para elucidar o fenótipo de aumento de sideróforos observado no mutante csrA::T8. Curiosamente, a complementação da linhagem $\Delta csrA$ levou a uma diminuição no halo de sideróforo (Figura 7A e B), levantando a hipótese de que a superexpressão de csrA diminui os níveis de sideróforos. De fato, a expressão de csrA na linhagem selvagem (WT[csrA]) causou redução nos níveis de sideróforos, enquanto a expressão de csrB (WT[csrB]) não alterou os halos (Figura 7C). Assim, esses resultados indicam que superexpressão de CsrA leva a diminuição dos halos de sideróforos.

Figura 7: Caracterização do sistema de dois componentes CsrAB. A. Ensaio de CAS mostrando a presença de sideróforos (halos laranja) nas linhagens indicadas inoculadas em placas PSA-CAS. Geramos linhagens mutantes para os genes *csrA*, *csrB* ou ambos e eles não apresentaram o mesmo fenótipo que a linhagem *csrA*::T8. **B-C.** Medição da área dos halos das placas CAS das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Tukey. ***, p <0,001, **** p <0,0001; quando não indicado, não significativo. **D.** Organização gênica do sistema de dois componentes CsrAB evidenciando as regiões promotoras desses genes

que foram clonadas em fusão com o gene *lacZ* no vetor pRK*lacZ*290. Expressão das regiões promotoras de *csrA* e *csrB* nas linhagens indicadas. Todas as linhagens contendo as construções com os promotores indicados foram cultivadas até DO_{600nm} 0,6-0,8 e tratadas ou não por 1 hora com 100 µm de DP. Análises estatísticas usando Two-Way ANOVA seguido pelo teste de comparações múltiplas de Tukey. *p <0,05, **, p <0,01; quando não indicado, não significativo.

Para entender a expressão e regulação do sistema *csrAB*, clonamos as regiões promotoras dos genes *csrA* e *csrB* fusionadas com o gene *lacZ* (Figura 7D). Primeiro, verificamos a expressão de ambas as regiões promotoras em meio LB na fase mid-log (DO_{600nm} ~1-2) e se esse sistema é autorregulado. A expressão do regulador *csrB* foi maior que a de *csrA* na linhagem WT (Figura 7D). Quando as construções contendo as regiões promotoras foram adicionadas às linhagens mutantes indicadas, não observamos diferença na expressão, indicando que não há autorregulação do sistema (Figura 7D). Por fim, para verificar se esse sistema é regulado pelos níveis de ferro, as culturas foram tratadas com DP para gerar uma condição de carência de ferro e a expressão foi analisada. A expressão dos genes *csrA* e *csrB* não foi alterada por limitação de ferro nas condições testadas (Figura 7D). Assim, esses dados mostram que o sistema CSrAB não se autoregula e não é regulado pelos níveis de ferro.

4.1.4. O Sistema de dois componentes AirSR está envolvido na homeostase de sideróforo em *C. violaceum*

Inserções de transposon nos genes CV_0535-36-37 causaram aumento nos halos de sideróforos (Tabela 7, Figura 5E). Recentemente, os ortólogos de CV_0535-36-37 em *C. violaceum* ATCC 31532 foram caracterizados como um sistema de resposta induzida por antibiótico (*Air system*) composto por uma oxidoredutase (AirM), uma histidina quinase (AirS) e um regulador de resposta (AirR), respectivamente. O sistema Air atua via o sistema CviIR para ativar a produção de violaceína (LOZANO et al, 2020). Investigamos mais a fundo o sistema de dois componentes AirSR (CV_0636-37). Confirmamos que inserção do transposon em AirS e AirR causou aumento dos halos de sideróforos em placas PSA-CAS (Figura 8A e B). Para confirmar o papel do sistema AirSR nos níveis de sideróforos, nós geramos linhagens mutantes para um ou ambos os genes. As linhagens mutantes nulas $\Delta airS$, $\Delta airR$ e $\Delta airSR$ mostraram um aumento nos halos de sideróforos e esses fenótipos foram revertidos por complementação (Figura 8A e B). Esses resultados indicam que o sistema de dois componentes AirSR controla a homeostase de sideróforos em *C. violaceum*.

Figura 8: Caracterização do sistema de dois componentes AirSR. A. Ensaio de CAS mostrando a presença de sideróforos (halos laranja) pelas linhagens indicadas inoculadas em placas PSA-CAS. Geramos linhagens mutantes para os genes *airS*, *airR* ou ambos que apresentaram o mesmo fenótipo que as linhagens *airS*::T8 e *airR*::T8. **B.** Medição da área dos halos das placas CAS das linhagens indicadas. Dados de três ensaios biológicos. Análise estatística usando One-Way ANOVA seguido pelo teste de comparações múltiplas Holm-Sidak. * p<0,05; ** p<0.01, *** p<0.001, **** p<0.0001; quando não indicado, não significativo. **C.** Organização gênica do sistema de dois componentes AirSR, evidenciando as regiões promotoras desses genes clonadas em fusão com o gene *lacZ* no vetor pRK*lacZ*290. Expressão das regiões promotoras de *airR* e *airMS* nas linhagens indicadas. Todas as linhagens contendo os plasmídeos com os promotores indicados foram cultivados até DO_{600nm} 0,6-0,8 e tratadas ou não por 1 hora com 100 µm de DP. Análises estatísticas usando Two-Way ANOVA seguido pelo teste de comparações múltiplas de Tukey. **, p <0,01; ****, p <0,001; quando não indicado, não significativo.

Para investigar a expressão do sistema AirSR, clonamos as regiões promotoras dos genes *airMS* e *airR* em fusão com o gene *lacZ* no vetor pRK*lacZ*290 (Figura 8C). Primeiro, verificamos a expressão de ambas as regiões promotoras em meio LB e nas linhagens mutantes para verificar se esse sistema é autorregulado. Observamos que *airMS* é mais expresso que *airR* na linhagem selvagem e que a expressão de *airMS* diminuiu um pouco no mutante $\Delta airR$ (Figura 8C), sugerindo que o regulador AirR ativa a expressão de *airMS*. Também verificamos se o sistema AirSR responderia aos
níveis de ferro. Quando as culturas foram tratadas com 100 µM DP, a expressão de *airMS* diminuiu (Figura 8C), indicando que o operon *airMS* é regulado negativamente em limitação de ferro.

4.1.5. VitR controla sideróforos e vários outros processos agindo como um repressor direto de *vioS*

O gene CV_1057 codifica um suposto fator de transcrição pertencente à superfamília Cro, família XRE que denominamos VitR (violacein inhibitor regulator). A inserção do transposon em vitR resultou em halos de sideróforos aumentados (Tabela 7; Figura 9A e B). Linhagem mutante nula $\Delta vitR$ apresentou halo de sideróforo aumentado, validando o fenótipo do mutante de transposon (Figura 9A e B). Curiosamente, observamos que, quando cultivada em meio LB líquido por 24 horas, a linhagem mutante $\Delta vitR$ produziu menos violaceína do que a linhagem selvagem (Figura 9C). Além disso, $\Delta vitR$ formou menos biofilme do que a linhagem selvagem (Figura 9D). As curvas de crescimento indicam que $\Delta vitR$ teve o mesmo crescimento em LB (Figura 9E), mas seu crescimento foi um pouco prejudicado em carência de ferro (150 µM DP) (Figura 9F), quando comparado com a linhagem selvagem. Todos os fenótipos observados foram revertidos em uma linhagem complementada com vitR (Figura 9). Para avaliar a importância de VitR na virulência de C. violaceum, curvas de sobrevivência em camundongos foram realizadas e verificou-se vitR não é necessário para a virulência de C. violaceum (Figura 9G). Juntos, esses dados indicam que o VitR está envolvido na regulação de sideróforos, produção de violaceína e formação de biofilme em C. violaceum.

Para identificar os genes regulados por VitR, realizamos RNA-seq das linhagens WT e $\Delta vitR$ cultivadas em LB em alta densidade celular (ADC) (Tabela Suplementar 1; Figura 10A e B). O gene com maior expressão em $\Delta vitR$ foi o *vioS*, que codifica uma proteína que inibe a produção de violaceína (DEVESCOVI et al, 2017). Uma hipótese de como o VioS reprime a produção de violaceína é inibindo o regulador QS CviR por meio de interação proteína-proteína (DEVESCOVI et al, 2017). Muitos genes com expressão diminuída em $\Delta vitR$ estão envolvidos em processos conhecidos por serem regulados por CviR (biossíntese de violaceína, proteases, quitinase) (Tabela Suplementar 1; Figura 10A e B), sugerindo que seus níveis de expressão alterados em $\Delta vitR$ são um efeito indireto da superexpressão de *vioS* neste mutante.

Figura 9: Caracterização fenotípica do regulador vitR. A. Ensaio de CAS mostrando a presença de sideróforos (halos laranja) pelas linhagens indicadas inoculadas em placas PSA-CAS. Geramos uma linhagem mutante para o gene vitR que teve o mesmo fenótipo do vitR::T8. B. Medição da área do halo CAS das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguidas pelo teste de comparações múltiplas de Dunnett. * p<0,05; ** p<0,01; quando não indicado, não significativo. C. Crescimento das linhagens indicadas em meio LB para verificar a produção de violaceína. D. Ensaio de biofilme das linhagens indicadas. As linhagens foram cultivadas em meio LB por 24 horas e o ensaio foi realizado com cristal violeta para quantificar o biofilme. Dados de seis ensaios. Análise estatística usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunn. ** p<0,01; *** p<0,001; quando não indicado, não significativo. E. Crescimento de linhagens selvagem e mutantes em meio LB. F. Crescimento de linhagens selvagem e mutantes sob limitação de ferro pela adição de 150 µM DP ao meio LB. As curvas foram obtidas pela medida de DO_{600nm} das culturas durante as primeiras oito horas (intervalos de 1h) e no ponto de 24 horas (itens E e F). G. Curvas de sobrevivência de camundongos BALB/c infectados. Os animais (n = 8 para linhagem) foram injetados i.p. com 10⁶ CFU das linhagens indicadas de *C. violaceum*.

O gene *vitR* está próximo e transcrito de forma divergente em relação ao *vioS* (Figura 5D e Figura 10C). A expressão dos promotores *vioS* e *vitR* foi investigada por ensaios de beta-galactosidase em várias condições e linhagens mutantes (Figura 10C e D). Primeiramente, investigamos o efeito da densidade celular e da mutação em *vitR* na expressão de ambos os genes (Figura 10C). Para isso, as linhagens WT e $\Delta vitR$

contendo as fusões indicadas foram cultivadas em meio LB até DO_{600nm} de 1,0 (BDC) e DO_{600nm} de 4,0 (ADC). A expressão de *vitR* aumenta na linhagem selvagem de BDC para ADC e, em ambas as condições, sua expressão diminui no mutante $\Delta vitR$. Já a expressão de *vioS* foi totalmente reprimida na linhagem selvagem e totalmente desreprimida no mutante $\Delta vitR$ em ambas as condições (Figura 10C), validando os dados de RNA-seq. De modo geral, estes dados indicam que VitR se autoativa, tem expressão aumentada em alta densidade celular e reprime a expressão de *vioS*. Nós também verificamos a expressão de ambos os promotores em limitação de ferro. Ferro e Fur tiveram pouco ou nenhum efeito na expressão de *vioS* (Figura 10D). Os níveis de expressão de *vitR* caíram sob limitação de ferro na WT, e caíram em $\Delta vitR$ e Δfur , independentemente dos níveis de ferro (Figura 10D). Esses dados indicam que o VitR se ativa e é ativado pelo Fur em suficiência de ferro.

Figura 10: Análise da expressão global para identificação do regulon VitR em C. violaceum. A. Gráfico volcano dos dados de RNA-seq com a distribuição dos genes diferencialmente expressos em $vitR^{ADC}$ vs. WT^{ADC}. O RNA-seq foi realizado em três réplicas biológicas de bactérias cultivadas em LB em alta densidade celular (ADC). B. Categorização funcional de genes regulados por vitR. C. Organização gênica de vitR e vioS, evidenciando as regiões promotoras desses genes clonadas em fusão com o gene *lacZ* no vetor pRK*lacZ*290. Validação dos dados do RNAseq por ensaio de β -galactosidase. As linhagens

indicadas foram cultivadas em baixa densidade celular (BDC, DO_{600nm} 1,0) e em alta densidade celular (ADC, DO_{600nm} 4,0). **D.** Expressão da região promotora dos genes *vitR* e *vioS* em limitação e suficiência de ferro. Todas as linhagens contendo os plasmídeos com o promotor indicado foram cultivadas até DO_{600nm} 0,6-0,8 e tratadas ou não por 1 hora com 100 µM de DP. Dados de seis ensaios biológicos. Análises estatísticas usando Two-Way ANOVA seguidas pelo teste de comparações múltiplas de Sidak. * p<0,05; ** p<0,01; ****, p<0,0001; quando não indicado, não significativo.

Para melhor compreensão da regulação exercida por VitR, esta proteína foi expressa de forma heteróloga em *E. coli* BL21(DE3) para purificação. A região codificadora de *vitR* foi clonada no vetor pET15b e, após expressão, a proteína recombinante com cauda de histidina (His-VitR) foi purificada em coluna de níquel. A eficiência da indução e purificação foram verificadas por SDS-PAGE. Conseguimos observar alta eficiência de indução e purificação da proteína His-VitR (11,7 kDa) (Figura 11A). Assim, investigamos se a proteína VitR purificada se liga à região intergênica entre *vioS* e *vitR* (Figura 10C) pelo ensaio EMSA (Figura 11B). Observamos a ligação ao DNA a partir de 10 nM de VitR, com a ligação completa da proteína ocorrendo a 25 nM. Essa ligação foi específica, conforme demonstrado por ensaio de competição com sonda fria específica e inespecífica e por ensaio de EMSA usando uma sonda inespecífica como controle (ligação parcial no promotor *chuP* apenas a partir de 100 nM de VitR) (Figura 11F). Estes dados indicam que VitR ativa *vitR* e reprime *vioS* ligando-se diretamente aos seus promotores (Figuras 10 e 11).

Figura 11: VitR liga diretamente na região intergênica entre vioS e vitR. A. Análise da indução e purificação da proteína VitR recombinante. SDS-PAGE em gel 15% de poliacrilamida revelou banda de tamanho esperado para His-VitR (11,70 kDa). M: Marcador PAGERuler Prestained Protein Ladder (Thermo Scientific). NI: Culturas não induzidas. IN: Culturas induzidas por IPTG. P: *pellet* obtido após lise celular. S: sobrenadante obtido após lise celular. VitR: proteína His-VitR purificada. **B.** EMSA com regiões promotoras específicas (*vioS/vitR*) e não específicas (*chuP*) para verificar a regulação direta pelo regulador VitR. No ensaio de competição (centro): S- sonda não marcada específica; N- sonda não marcada não específica; P- Proteína His-VitR (50 nM).

Para confirmar geneticamente que o VitR atua via *vioS*, geramos linhagens mutantes $\Delta vioS$ e $\Delta vitR/vioS$. Enquanto $\Delta vitR$ apresentou menor produção de violaceína, formação de biofilme e atividade proteolítica e aumento do halo do sideróforo, $\Delta vioS$ e $\Delta vitR/vioS$ apresentaram todos esses fenótipos semelhantes aos da linhagem selvagem (Figura 12). Complementação com o gene *vioS* nas linhagens $\Delta vioS$ e $\Delta vitR/vioS$ levou a uma diminuição mais robusta da produção de violaceína e aumento dos halos de sideróforos, sugerindo que nessas linhagens está havendo uma superexpressão de *vioS*. Estes dados indicam que os fenótipos de $\Delta vitR$ podem ser atribuídos exclusivamente à desrepressão de *vioS* neste mutante. Os fenótipos observados em $\Delta vitR$ já foram descritos como regulados por QS em *C. violaceum*, o que reforça nossa hipótese de uma cascata regulatória envolvendo o regulador VitR, a proteína VioS e o sistema de QS CviIR.

Figura 12: VitR regula múltiplos processos via VioS. Os fenótipos de $\Delta vitR$ são revertidos no duplo mutante $\Delta vitR/vioS$. A. Crescimento das linhagens indicadas em meio LB para verificação da produção de violaceína e testes CAS mostrando a presença de sideróforos (halos laranja) em placas PSA-CAS. B. Medição da produção de violaceína nas linhagens indicadas. A violaceína foi extraída com acetona de culturas de 24 horas e quantificada por leitura a DO_{575nm}. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Tukey. **** p <0,0001; quando não

indicado, não significativo. **C.** Medição da área do halo CAS das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunnett. **** p<0,0001, quando não indicado, não significativo. **D.** Ensaio de biofilme das linhagens indicadas. As linhagens foram cultivadas em meio LB por 24 horas e o ensaio foi realizado com cristal violeta para quantificar o biofilme. Dados de seis ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunnett. * p<0,05; *** p<0,001; **** p<0,0001. **E.** Testes de protease mostrando a produção e secreção de proteases em placas M9 suplementadas com 1,5% de leite em pó. Medição da área do halo das proteases das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunnett. * p<0,05; *** p<0,001; **** p<0,0001. **E.** Testes de protease mostrando a produção e secreção de proteases das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunnett. * p<0,05; *** p<0,001; **** p<0,0001. **E.** Testes de proteases mostrando a produção da área do halo das proteases das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunnett. * p<0,05; quando não indicado, não significativo.

4.1.6. CviR regula processos clássicos de forma dependente de Cvil e a captação de ferro/sideróforo de forma independente de Cvil

Dentre os mutantes de transposon com halos de sideróforo aumentados, 51 linhagens (50%) apresentaram inserções na região codificadora ou no promotor do gene cviR (CV_4090), que codifica o regulador CviR do sistema de QS CvilR de C. violaceum (Tabela 7; Figura 5F). Para verificar se tanto cviR guanto cvil controlam os sideróforos, realizamos os ensaios PSA-CAS usando mutantes nulos destes genes. Como esperado, os mutantes $\Delta cviR$ e $\Delta cviI$ tiveram um aumento nos halos de sideróforos em comparação à linhagem selvagem, com todas as linhagens complementadas tendo o fenótipo revertido (Figura 13A e B). Para verificar se os halos de sideróforo aumentados na linhagem $\Delta cviR$ estavam relacionados a um sideróforo específico, geramos mutantes de inserção em cada um dos genes NRPS (*cbaF* e *vbaF*) usando o mutante $\triangle cviR$ como *background*. Em ambos os mutantes duplos, o tamanho dos halos do sideróforo foi ligeiramente menor em comparação com a linhagem $\triangle cviR$ (Figura 13A e B), sugerindo que o sistema de QS CviIR de C. violaceum afeta a homeostase de ambos os sideróforos. Considerando que a deleção de cviR, vitR ou airR levou ao aumento dos halos de sideróforos (Tabela 7; Figuras 8, 9 e 13), testamos se esses fatores de transcrição regulam a expressão do promotor *cviR* de maneira dependente de ferro (Figura 13C). Os ensaios de beta-galactosidase revelaram que (i) não há diferença na expressão de cviR em limitação de ferro; (ii) CviR não é autorregulado; (iii) VitR não regula a expressão de cviR, o que vai de acordo com VitR agindo sobre CviR via VioS; e (iv) nestas condições, AirR não regula cviR (Figura 13C).

Figura 13: O sistema de QS CvilR participa da homeostase de ferro mediada por sideróforos em *C. violaceum***. A.** Ensaio de CAS mostrando a presença de sideróforos (halos laranja) pelas linhagens indicadas inoculadas em placas PSA-CAS. **B.** Medição da área do halo das placas PSA-CAS das linhagens indicadas. Dados de três ensaios biológicos. Análises estatísticas usando One-Way ANOVA seguido pelo teste de comparações múltiplas de Dunnett. *** p<0,001; **** p<0,0001; quando não indicado, não significativo. **C.** Expressão da região promotora de *cviR* nas linhagens indicadas. Todas as linhagens contendo os plasmídeos com o promotor indicado foram cultivadas até DO_{600nm} ~3,0 e tratadas ou não por 1 hora com 100 μM de DP. Dados de três ensaios biológicos. Análises estatísticas usando rwo-Way ANOVA seguido pelo teste de comparações múltiplas de Tukey. Quando não indicado, não significativo.

Dadas as conexões de VitR e AirR com CviR e o fenótipo compartilhado de halos de sideróforos aumentados nos mutantes desses fatores de transcrição, especulamos que o sistema de QS CvilR regula genes envolvidos na homeostase de sideróforo/ferro. Apesar de muitos estudos sobre o sistema de QS CvilR (MCCLEAN et al., 1997; MOROHOSHI et al., 2008; SWEM et al., 2009; STAUFF e BASSLER, 2011; Mion et al., 2021), o repertório global de genes regulados por Cvil e CviR permanece desconhecido em *C. violaceum*. Para comparar os perfis de transcriptoma das linhagens WT, $\Delta cviR$ e $\Delta cviI$, realizamos RNA-seq dessas linhagens cultivadas em LB em alta densidade celular (ADC) (Tabelas Suplementares 2 e 3; Figura 14).

Figura 14: Análise global dos genes regulados por Cvil e CviR em *C. violaceum*. A e B. Gráficos volcano dos dados de RNAseq com a distribuição dos genes diferencialmente expressos na comparação $\Delta cviR^{ADC}$ vs. WT^{ACD} (A) e na na comparação $\Delta cviI^{ADC}$ vs. WT^(B). O RNA-seq foi realizado em triplicata biológica a partir de bactérias cultivadas em LB em alta densidade celular (ADC). **C e D.** Categorização funcional dos genes diferencialmente expressos em $\Delta cviR$ (C) ou em $\Delta cviI$ (D). Abreviaturas: NA, sem anotação. TI, tráfico intracelular. PT, pós-traducional. SM, metabólitos secundários. **E e F.** Correlação dos genes

diferencialmente expressos em $\Delta cviR$ (E) ou em $\Delta cvil$ (f). As alterações de \log_2 obtidas a partir dos dados de RNA-seq foram plotadas contra as alterações de \log_2 determinadas por RTqPCR para os genes indicados.

O número de genes diferencialmente expressos (GDEs) foi maior na ausência de *cviR* (956 GDEs) (Tabela Suplementar 2; Figura 14A) do que na ausência de *cvil* (470 GDEs) (Tabela Suplementar 3; Figura 14B). O sistema CviR/Cvil teve um impacto global na transcrição, regulando diversos processos celulares (Figura 14C e D). Usando RT-qPCR, validamos o perfil de expressão de vários genes que tiveram sua expressão aumentada ou diminuída em $\Delta cviR$ e $\Delta cvil$ (Figura 14E e F). A comparação entre os dados do RNAseq e do RT-qPCR foi de R²= 0,91 para $\Delta cviR$ e R²= 0,92 para $\Delta cvil$, demonstrando uma boa correlação e validando os dados de expressão global.

Para uma análise comparativa dos regulons de VitR, CviR e Cvil, nós fizemos um diagrama de Venn comparando os genes diferencialmente expressos em $\Delta vitR$, $\Delta cviR$ e $\Delta cviI$ (Figura 15A e B). Podemos observar que a maioria dos genes regulados por vitR também foi regulada pelo sistema de QS (80%), sendo o gene vioS o único gene que foi exclusivamente reprimido por VitR (Figura 15A e B). Esses dados corroboram a hipótese de que VitR age upstream ao sistema CviIR. A maioria dos genes regulados por cvil também foi regulada por cviR (84%), enquanto menos genes regulados por *cviR* dependeram de *cvil* (41%) (Figura 15A e B), sugerindo que CviR regula muitos genes sem seu autoindutor canônico produzido por Cvil. Para melhor caracterizar a expressão dos genes regulados por QS, nós realizamos ensaio de RTqPCR. Comparação dos dados do RNAseq com os dados do RT-qPCR revelou três diferentes classes de genes regulados por CviIR (Figura 15C): (i) classe de genes que dependem igualmente de CviIR, como genes clássicos do QS já caracterizados; (ii) classe de genes que são regulados por CviR e parcialmente regulados por Cvil; (iii) classe de genes regulados exclusivamente por CviR, entre eles, genes relacionados a homeostase de ferro em C. violaceum. Esses dados indicam que CviR regula distintos regulons de forma dependente ou independente de Cvil.

Figura 15: CviR regula genes dependente e independentemente de Cvil. A-B. Diagramas de Venn mostrando a sobreposição e o subconjunto único de genes cuja expressão foi diminuída (A) ou aumentada (B) nas linhagens $\Delta vitR$, $\Delta cvil$ e $\Delta cviR$ nos ensaios de RNA-seq em alta densidade celular (OD_{600nm} ~ 4). **C.** Validação por RT-qPCR de genes diferencialmente expressos em $\Delta cviR$ e $\Delta cvil$. O cDNA foi gerado do RNA total extraído das linhagens WT, $\Delta cvil$ e $\Delta cviR$ cultivadas em alta densidade celular (OD_{600nm} ~ 4,0). A expressão dos genes indicados é mostrada como o *fold change* em relação ao WT normalizado pelo controle endógeno *minD*.

Para revelar se a expressão dos genes regulados por CviR e Cvil muda de acordo com a densidade celular, comparamos os dados de RNA-seq da linhagem WT em ADC (este trabalho) com os dados de RNA-seq da linhagem WT em BDC (manuscrito em preparação, Santos et al). Como esperado, a maioria dos genes regulados por CviR e Cvil (68%) tiveram seus níveis de expressão alterados pela densidade celular (Tabela Suplementar 4; Figura 16A, pontos azuis e vermelhos).

Para identificar os processos ativados por CviR/Cvil em ADC, focamos em 258 genes que tiveram expressão diminuída tanto em $\Delta cviR$ e $\Delta cvil$, dos quais 191 genes também foram regulados positivamente em ADC (Figura 16B). Este grupo inclui genes que codificam uma lectina (CV_1744), muitas enzimas hidrolíticas extracelulares (1 colagenase, 3 quitinases, 7 protases) e grupos de biossíntese de antibióticos (vioABCDE para violaceína e aniIQPMNHKL para anisomicina) (Figura 16C), que são processos conhecidos como associados ao QS em C. violaceum (STAUFF e BASSLER, 2011; MION et al., 2021). Também estão nesta categoria, vários grandes grupos de genes (CV_1395 a CV_1407, CV_1541 a CV1547, CV_2798 a CV_2804, CV2831 a CV_2837 e CV_3940 a CV_3961) que podem estar relacionados à produção de novos pequenos metabólitos bioativos que foram previamente detectados, mas não identificados em uma análise de metaboloma de C. violaceum (MION et al., 2021). Notavelmente, dois locus CRISPR/Cas (CV_1224 a CV_1230 e CV_1751 a CV_1754), agrupamentos de genes para fago CvP4 (alguns genes de CV_2114 a CV_2150) e produção de R-body (CV_0721 a CV_0737) e genes que codificam enzimas antioxidantes (ohrA, sodB2, tpx), também foram ativados por CviIR em ADC (Figura 16C). Assim, genes relacionados a processos clássicos dependentes de QS são ativados por CvilR em alta densidade celular.

Nossos dados de RNA-seq revelam que muitos genes relacionados à aquisição de ferro/sideróforo tiveram a expressão diminuída em $\Delta cviR$, mas seus níveis de expressão quase não foram afetados em $\Delta cvil$ (Figura 16D). Consistente com um mecanismo de ativação por CviR em BDC, a maioria desses genes foi mais expressa em BDC do que em ADC (Figura 16D). Tais genes codificam transportadores para aquisição de ferro (*feoB, exbBD*), incluindo ferro ligado aos sideróforos cromobactina (*cbuA* e CV_1487-88-89), viobactina (CV_2234-35) e heme (*chuR*). Portanto, o aumento dos halos de sideróforos em $\Delta cviR$ parece estar relacionado a uma captação prejudicada de sideróforos neste mutante. Esses dados sugerem que os genes envolvidos na aquisição de ferro mediada por sideróforos são ativados por CviR em BDC para otimizar a absorção de ferro nesta condição. Muitos outros processos além do escopo deste estudo foram regulados pelo sistema de QS CviIR. Por exemplo, quase todos os genes de um grande cluster que codificam o T6SS tiveram a expressão diminuída em $\Delta cviR$ e em $\Delta cvil$ (Figura 16D).

Figura 16: Expressão de genes regulados por CviR e Cvil por densidade celular. A. Gráfico volcano com a distribuição de genes diferencialmente expressos no RNA-seq comparando WT^{ADC} vs WT^{BDC}. Em destaque (azul e vermelho), os genes que também foram diferencialmente expressos em $\Delta cviR$ e $\Delta cvil$. *C. violaceum* ATCC 12472 foi cultivada em meio LB até OD ~1,0 para a condição BDC (Santos et al) e até OD ~4,0 para a condição ADC (este trabalho). **B.** Diagrama de Venn mostrando a sobreposição e subconjunto único de genes com expressão aumentada em ADC versus BDC na WT (azul) e com expressão diminuída em $\Delta cviR$ e $\Delta cvil$ versus WT (vermelho). **C-D.** Heatmap evidenciando os genes regulados por CviR de acordo com suas dependências da densidade celular e Cvil. Comparações de WT^{ADC} vs WT^{BDC}, $\Delta cviR^{ADC}$ vs WT^{ADC} e $\Delta cvil^{ADC}$ vs WT^{ADC}.

4.2. Caracterização de novos sistemas envolvidos na tolerância ao ferro

4.2.1. Análise global por mutagênese revela mecanismos de tolerância ao ferro em *C. violaceum*

Para identificar genes importantes para proteção à toxicidade do ferro em C. violaceum, realizamos a varredura da biblioteca de transposon quanto à tolerância ao ferro em placas LB suplementadas com FeCl₃ 5 mM ou FeSO₄ 8 mM (condição permissiva para as linhagens WT e CVNAL). A partir desta varredura, 30 linhagens foram selecionadas quanto ao crescimento prejudicado em excesso de ferro em relação ao crescimento em placas LB. Foi determinado o MIC para ferro destas linhagens e para a maioria delas foi confirmada a susceptibilidade a pelo menos uma das duas fontes de ferro (Tabela 8). O sequenciamento de produtos semidegenerados de PCR das 30 linhagens mutantes permitiu a identificação de sítios únicos de inserção do transposon em 18 genes diferentes no genoma de C. violaceum (Tabela 8). A classificação funcional dos genes relacionados à toxicidade ao ferro mostrou uma maior representação de categorias relacionadas a biossíntese da membrana celular e proteínas com função desconhecida (oito e cinco genes, respectivamente) seguido de sistemas regulatórios (quatro genes). Particularmente, centramos esforços em caracterizar mutantes cuja a inserção do transposon ocorreu em dois genes regulatórios: (i) CV_3659, que codifica um provável fator de transcrição da família MarR e subfamília GbsR e; (ii) CV_1363 (CV_RS06665), que codifica um ortólogo de H-NS que pode estar envolvido na regulação de diversas funções celulares. Durante o estágio de pesquisa no exterior (BEPE) no laboratório do Prof. Ferric Fang demos continuidade na caracterização detalhada do gene CV_3659 e de duas proteínas H-NS de C. violaceum (CV_1363 e CV_1243).

Lócus de inserção do T8	Função do produto gênico	No. de inserções T8	Linhagem mutante	Tamanho proteína aa ^b	Sítio de inserção aa	MIC em placas LB FeSO ₄ / FeCl ₃ (mM)
			WT			30 / 7
			CVNAL ^a			20 / 7
CV_0760	Two-component system, OmpR family	1	1E70	450	437	20 / 6
CV_1363	H-NS histone family protein	3	10F59, 10A92 and 3F91	101	39, 39 and 74	15 / 5
CV_1478	Mor domain- containing protein	1	5G53	143	128	20 / 6

Tabela 8: Identificação do sítio de inserção do transposon das linhagens mutantes selecionadas na varredura para intoxicação por ferro.

CV_1867	Hypothetical protein Probable	1	1A55	52	12	15 / 7
CV_2316	transposase protein Tox-PLDMTX	1	1A70	263	IR °	20 / 6
CV_2593	domain- containing protein	1	6H53	2944	1894	30 / 7
CV_2600	l wo-component sensor/regulator (<i>csrA</i>) GbsR/MarR	1	5A53	924	532	20 / 6
CV_3659	family transcriptional regulator	1	6B63	191	69	15 / 5,5
CV_4019	DDP-N-acetyl- D-mannosamine dehydrogenase (<i>wecC</i>)	3	4B55, 6A74 and 9H61	413	168, 294 and 341	20 / 5,5
CV_4021	Glycosyltransfer ase family 4 protein Peptidoglycan	1	2D10	408	236	20 / 5,5
CV_4023	bridge formation glycyltransferas e FemA/FemB family protein Acylneuraminat	1	4A73	331	31	30 / 5,5
CV_4028	e cytidylyltransfer ase family protein	1	11G67	239	14	20 / 5,5
CV_4034	LegC family aminotransferas e SDB family	2	3A13 and 11H91	383	82 and 308	15 / 5
CV_4035	NAD(P)- dependent oxidoreductase	3	12G25, 9D20 and 12C38	307	128, 128 and 151	20 / 5,5
CV_4129	Nucleotide sugar dehydrogenase	2	6B09 and 6B10	430	All in 114	20 / 6
CV_4144	Tetratricopeptid e repeat protein Septal ring lytic	1	4F53	410	189	20 / 7
CV_4384	transglycosylase RlpA family protein	1	5A72	292	17	20 / 7
CV_RS0311 5	Cupin fold metalloprotein, WbuC family	5	12H99, 10B101, 6E103, 10B103 and 9E94	169	All in 88	20/6

^a Linhagem referência na qual foi construída a biblioteca de transposon; ^b aminoácido; ^c Inserção na região intergênica.

4.2.2. Uma citocromo *bd* oxidase reprimida por um regulador da família MarR contribui para a resistência a metais, sulfeto e ao estresse oxidativo e nitrosativo em *C. violaceum*

O gene CV_3659, que codifica um fator de transcrição putativo da família MarR e subfamília GbsR, parece estar em um operon com os genes CV_3658-57 (*cioAB*) que codificam uma citocromo *bd* oxidase (Figura 17A). Um sistema parecido foi descrito como importante para a resistência a cromato e sulfeto em *Alishewanella* sp. (XIA et al., 2018). Para determinar se CV_3659-58-57 compõe um operon, realizamos reações de RT-PCR, usando oligonucleotídeos correspondentes às regiões entre os genes CV_3659-CV_3658 (par 1 e 2) e CV_3659-CV_3657 (par 3 e 4) (Figuras 17A, B e C). Após transcrição reversa a partir do RNA e amplificação por PCR, foram detectadas bandas com tamanhos esperados para as duas combinações de oligonucleotídeos testadas, confirmando que os genes CV_3659-58-57 são cotranscritos (Figura 17B e C). Para melhor caracterizar o papel deste operon em *C. violaceum*, nós geramos mutante nulo simples do gene CV_3659 (Δ CV_3659) e mutante nulo duplo dos genes CV_3658-57), os quais foram confirmados por PCR (Figura 17D e E).

Fatores de transcrição da família MarR são tipicamente repressores diretos de seus operons. Assim, examinamos o papel do regulador CV_3659 na expressão de seu operon. A região promotora de CV_3659-58-57 foi clonada em fusão com o gene *lacZ* para medir sua expressão em baixa e alta densidade celular (BDC e ADC), comparando a expressão entre linhagens WT e mutante (Figura 18A). Ensaio de β galactosidase na linhagem WT mostrou que o operon CV_3659-58-57 é mais expresso em ADC do que em BDC. Em BDC, a expressão do operon aumentou drasticamente no mutante ΔCV 3659 em comparação com a WT (Figura 18A), indicando que CV_3659 reprime a expressão de seu operon nesta condição. Para confirmar estes dados, a expressão dos genes de cada subunidade da citocromo bd oxidase foi medida por RT-gPCR nas linhagens WT e ΔCV 3659 em BDC (Figura 18B). Como esperado, a expressão de ambos os genes foi aumentada no mutante WT. Na ΔCV 3659 em comparação com linhagem complementada ΔCV_3659[CV_3696], a expressão diminuiu, embora não tenha alcançado os níveis de expressão observados na linhagem WT (Figura 18B). Visto que a expressão do operon CV_3559-58-57 aumentou em ADC, nós verificamos se esses genes estariam sendo regulados pelo sistema de QS de C. violaceum. Para isso, a fusão transcricional

do operon foi adicionada ao mutante $\Delta cviR$ e o ensaio de β -galactosidase foi realizado em BDC e ADC. Podemos observar que a expressão do operon diminuiu no mutante $\Delta cviR$ em relação à linhagem WT em ambas as condições (Figura 18C). Podemos concluir que o operon CV_3659-58-57 é reprimido por CV_3659 em BDC e ativado pelo sistema de QS CviR em BDC e ADC.

Figura 17: Os genes CV_3659-58-57 compõem um operon. A. Organização genômica dos genes CV_3659-58-57 em *C. violaceum*. As setas numeradas indicam os primers usados no RT-PCR. **B-C.** Confirmação da cotranscrição dos genes CV_3659-58-57. As reações de RT-PCR amplificaram fragmentos de 645 pb (B, oligonucleotídeos 1 e 2) e 1528 pb (C, oligonucleotídeos 3 e 4). PCR convencional foi realizada utilizando DNA genômico (PCR) e RNA (CN), como controles. M, marcador de peso molecular 1Kb plus DNA Ladder (Thermo Scientific). **D-E.** Confirmação das linhagens mutantes para os genes CV_3659 e CV_3658-57. As linhagens foram confirmadas por PCR utilizando os oligonucleotídeos del1/4 para o gene indicado (Tabela 2). M, marcador de peso molecular 1Kb plus DNA Ladder (Thermo Scientific). WT, fragmentos amplificados utilizando o DNA genômico de *C. violaceum* ATCC 12472; 1R, fragmentos amplificados usando a primeira recombinação como molde; Δ , fragmentos amplificados usando a linhagem mutante como molde.

Figura 18: O operon CV_3659-58-57 é regulado por densidade celular, reprimido pelo regulador da família MarR CV_3659 a ativado por CviR. A. Quantificação da atividade do promotor do operon CV_3659-58-57 por ensaios de β-galactosidase. Os ensaios foram realizados com as linhagens WT e ∆CV 3659 contendo a fusão P-CV 3659-lacZ, ambas cultivadas em meio LB em baixa (OD 1,0) e alta (OD 4,0) densidade celular. Os dados são de cinco réplicas biológicas. ** p<0,01, ****p < 0,0001; quando não indicado, não significativo. Two-Way ANOVA seguida pelo teste de comparações múltiplas de Sidak. B. Análise de expressão por RT-qPCR indica que CV_3658 e CV_3657 são reprimidos por CV_3659. O cDNA foi transcrito reversamente a partir do RNA obtido das linhagens WT, Δ CV 3659 e △CV_3659[CV_3659] cultivadas em LB até OD 1.0. A expressão de CV_3658 e CV_3657 é mostrada como fold change em relação à condição controle (WT). Os dados são de três réplicas biológicas. *p < 0,05; guando não indicado, não significativo. Two-Way ANOVA seguida pelo teste de comparação múltipla de Tukey. C. Quantificação da atividade do promotor do operon CV 3659-58-57 no mutante do QS $\Delta cviR$. Os ensaios de β -galactosidase foram realizados com as linhagens WT e $\Delta cviR$ contendo a fusão P-CV_3659-*lacZ*, ambas cultivadas em meio LB em baixa (OD 1,0) e alta (OD 4,0) densidade celular. Os dados são de cinco réplicas biológicas. ****p < 0,0001; quando não indicado, não significativo. Two-Way ANOVA seguida pelo teste de comparações múltiplas de Sidak.

Para melhor compreensão da regulação exercida por CV_3659, esta proteína foi expressa de forma heteróloga em *E. coli* BL21(DE3). A região codificadora de CV_3659 foi clonada no vetor pET15b e, após expressão, a proteína recombinante com cauda de histidina (His-CV_3659) foi purificada em coluna de níquel. A eficiência da indução e purificação foram verificadas por SDS-PAGE (não mostrado). Conseguimos a purificação da proteína His-CV_3659 (24,26 kDa) em boa quantidade, suficiente para os ensaios subsequentes (Figura 19A). Assim, investigamos se a proteína CV_3659 purificada se liga à região promotora de seu operon pelo ensaio de EMSA (Figura 19B). Na presença da região promotora de seu operon, a proteína His-CV_3659 foi capaz de se ligar especificamente ao DNA (Figura 19B). Esses resultados em conjunto indicam que o operon CV_3659-58-57 é diretamente reprimido pela proteína reguladora CV_3659 em baixa densidade celular.

Figura 19: O regulador da família MarR CV_3659 liga diretamente no promotor do seu operon. A. Análise da indução e purificação da proteína CV_3659 recombinante em gel SDS-PAGE 15%. A proteína His-CV_3659 migrou no gel no tamanho esperado (predição de 24,26 kDa). M: Marcador PAGERuler Prestained Protein Ladder (Thermo Scientific). Diferentes volumes da proteína His-CV_3659 purificada. B. CV_3659 se liga à região promotora do operon CV_3659-58-57. As concentrações indicadas de His-CV_3659 foram usadas em ensaios EMSA com uma sonda CV_3659-58-57-FAM. O ensaio de competição com a sonda não marcada foi realizado para provar a especificidade de ligação. S- sonda não marcada específica; N- sonda não marcada não específica; P- Proteína His-CV_3659 a 1000 nM.

Como a inserção do transposon no gene CV_3659 resultou em maior susceptibilidade a altas concentrações de ferro (Tabela 8), decidimos analisar o papel do operon CV_3659-58-57 na tolerância ao ferro, usando os mutantes nulos (Figura 20A). Surpreendentemente, a linhagem mutante Δ CV_3659 não teve comprometimento do crescimento sob condições de altos níveis de ferro. Já o mutante Δ CV_3658-57 falhou em crescer sob a mesma condição e este fenótipo foi complementado (Figura 20A). Estes dados sugerem que o fenótipo do mutante de transposon foi devido a um efeito polar nos genes CV_3658-57.

Notamos que o mutante Δ CV_3658-57 produziu menos pigmento roxo do que a linhagem WT. Para confirmar esse fenótipo, quantificamos a produção de violaceína nas diferentes linhagens mutantes do operon. Os resultados indicaram que especificamente o mutante Δ CV_3658-57 apresentou diminuição da produção de violaceína (Figura 20B). Para avaliar a homeostase de ferro nessas linhagens, medimos os níveis de sideróforos pelas linhagens indicadas por meio de placas PSA-CAS. O mutante Δ CV_3658-57 apresentou diminuição dos halos de sideróforo em comparação com WT (Figura 20C). Todos os fenótipos observados para o mutante Δ CV_3658-57 foram revertidos quando a linhagem foi complementada (Figura 20). Esses dados podem indicar maior nível de ferro na linhagem Δ CV_3658-57, o que estaria levando à repressão de genes relacionados à captação de ferro. A sugestão de que a perda da citocromo *bd* oxidase resulta em aumento de ferro é surpreendente, uma vez que a *E. coli* deficiente em citocromo *bd* oxidase exibe níveis de ferro reduzidos e produção aumentada de sideróforos (COOK et al., 1998). Concluímos que a mutação da citocromo *bd* oxidase CV_3658-3657 leva a um aumento da suscetibilidade ao ferro e diminuição da produção de violaceína e sideróforos em *C. violaceum*.

Figura 20: Caracterização fenotípica do operon CV_3659-58-57. A. Mutação dos genes CV_3658-57 aumenta a suscetibilidade ao ferro. As linhagens indicadas foram cultivadas em placas LB suplementadas ou não com 5 mM FeCl₃ ou 8 mM FeSO₄ e incubadas por 24 horas a 37°C para verificar o crescimento. **B.** Mutação dos genes CV_3658-57 leva à diminuição da produção de violaceína. As linhagens indicadas foram cultivadas em meio LB sob agitação a 37°C por 24 horas. A violaceína foi extraída com acetona e quantificada em espectrofotômetro a 575 nm. Dados de três ensaios biológicos. Inserto: tubos após o cultivo, mostrando a produção de violaceína. **C.** Mutação dos genes CV_3658-57 leva à diminuição dos halos de sideróforo. Medida da área do halo nas placas de CAS das linhagens indicadas. Dados de três ensaios biológicos são mostrados. Inserto: Ensaio de CAS mostrando a presença de sideróforos (halos laranja) pelas linhagens indicadas inoculadas em placas PSA-CAS. ****p < 0,0001; quando não indicado, não significativo.Two-way ANOVA seguido pelo teste de comparações múltiplas de Tukey.

Para avaliar a importância do operon CV_3659-58-57 na tolerância a diferentes metais, sulfeto, estresse oxidativo e nitrosativo, curvas de crescimento foram realizadas com linhagens mutantes e complementadas (Figura 21). Para avaliar os níveis de ferro intracelular e a resistência ao estresse oxidativo, curvas de crescimento foram realizadas na presença de 0,1 µg/ml de estreptonigrina (SN) e 2,5 mM de peróxido de hidrogênio (H₂O₂) (Figura 21A e B). Em ambas as condições, o mutante ΔCV 3658-57 foi mais suscetível que a linhagem WT. Para verificar a tolerância aos metais, curvas de crescimento foram realizadas na presença de 5 mM FeCl₃, 3 mM ZnCl₂ ou 2,5 mM CuSO₄ (Figura 21C, D e E). A suscetibilidade ao ferro da linhagem ΔCV 3658-57 foi menos evidente na curva de crescimento do que nas placas LB suplementadas com ferro, talvez devido à menor solubilidade do metal. O mutante ΔCV 3658-57 foi menos tolerante ao zinco, como já descrito para outras citocromo bd oxidases (CHANDRANGSU e HELMANN, 2016). Todas as linhagens exibiram o mesmo crescimento na presença de cobre (Figura 21E). Também avaliamos o crescimento sob condições de deficiência de ferro após a adição de 150 µM de 2,2'-Dipiridil (DP) às culturas (Figura 21F). Todas as linhagens exibiram crescimento semelhante nesta condição.

Foi demonstrado em *E. coli* que citocromos *bd* oxidases protegem a célula do estresse nitrosativo (MASON et al., 2009). Para testar isso, monitoramos o crescimento na presença de 2,5 mM de NONOato de espermina (SperNO), um gerador de óxido nítrico. O mutante ΔCV_3658 -57 foi mais suscetível ao estresse nitrosativo do que a linhagem WT (Figura 21G). Finalmente, testamos a tolerância ao sulfeto. Para este experimento, as curvas de crescimento foram obtidas na presença de 0,5 mM de cistina como fonte de enxofre (Figura 21H). Novamente, o mutante ΔCV_3658 -57 foi menos tolerante ao sulfeto do que a linhagem WT. Juntos, esses experimentos mostram que o mutante ΔCV_3658 -57 é mais suscetível a estreptonigrina, ferro, zinco, H₂O₂, sperNO e sulfeto quando comparado com as linhagens WT e complementadas (Figura 21). Já o mutante ΔCV_3659 não mostrou fenótipo para nenhuma das condições de estresse testadas (Figura 21).

Figura 21: A citocromo bd oxidase CV_3658-3657 protege *C. violaceum* de estresse a metais, oxidativo e nitrosativo. A-H. As curvas de crescimento foram obtidas em Bioscreen C. As linhagens indicadas foram cultivadas em meio LB com ou sem os tratamentos indicados por 24h a 37°C sob agitação. As linhas contínuas indicam crescimento em meio LB. As linhas tracejadas indicam o crescimento em meio LB com a adição do tratamento indicado. A. Adição de 0,1 µg/mL de estreptonigrina. B. Adição de 2,5 mM de peróxido de hidrogênio. C. Adição de 5 mM de cloreto férrico. D. Adição de 3 mM de cloreto de zinco. E. Adição de 2,5 mM de cobre. F. Adição de 150 µM de 2,2'-dipiridil. G. Adição de 2,5 mM de NONOato de espermina (doador de NO). H. Adição de 0,5 mM de cistina (produção de sulfeto).

Ensaios de sobrevivência e ensaio de disco difusão foram realizados para confirmar os resultados das curvas de crescimento (Figura 22). Para os ensaios de sobrevivência, as linhagens foram cultivadas em meio LB e tratadas por 20 horas com estreptonigrina (0,5 µg/ml), H₂O₂ (5 mM), ferro (8 mM), zinco (3 mM), sperNO (2,5 mM) ou cistina (0,5 mM). Após o tratamento, as UFC/ml foram quantificadas (Figura 22A). Estes ensaios indicaram que o mutante Δ CV_3658-57 exibiu menor sobrevivência em comparação com WT em meio LB tratado com SN, zinco ou peróxido de hidrogênio (Figura 22A). Nos ensaios de difusão em disco, o mutante Δ CV_3658-57 foi mais suscetível a todos os tratamentos do que WT (Figura 22B). Todos os fenótipos observados para o mutante Δ CV_3658-57 foram revertidos quando a linhagem foi complementada (Figura 22). Esses dados confirmam o aumento da suscetibilidade de Δ CV_3658-57 às condições de estresse testadas e indicam que a citocromo *bd* oxidase CV_3658-3657 é fundamental para *C. violaceum* resistir a múltiplos estresses.

Figura 22: Ensaios de sobrevivência e disco difusão corroboram o perfil de suscetibilidade do mutante da citocromo *bd* oxidase. A. Ensaios de sobrevivência foram realizados cultivando as linhagens indicadas em meio LB até DO_{600nm} de 0,5 e tratando ou não por 20 horas sob agitação a 37°C. Após o tratamento, foi feita diluição seriada e as mesmas foram semeadas em meio LB. Após 24 horas de incubação, as colônias foram contadas e UFC/ml calculadas. B. Ensaios de disco difusão foram realizados por medição do diâmetro do halo das linhagens indicadas. As linhagens foram embebidas em placas LB e alíquotas de 30 µL de vários tratamentos foram adicionadas aos poços antes da incubação a 37°C por 24 horas. Após a incubação, os diâmetros dos halos foram medidos. Os dados de três ensaios biológicos são mostrados. ****p < 0,0001; ***p < 0,001; **p < 0,01; *p < 0,05; quando não indicado, não significativo. A significância foi determinada por Two-way ANOVA seguida pelo teste de comparação múltipla de Tukey.

4.2.3. A H-NS CV_1363 tem papel majoritário e juntamente com a H-NS CV_1243 silencia genes de diversos processos em *C. violaceum*

Durante a varredura de genes de *C. violaceum* relacionados à proteção da toxicidade do ferro, obtivemos três linhagens com inserção no gene CV_1363 que codifica um ortólogo de H-NS (Tabela 8). Após uma análise *in silico*, descobrimos que *C. violaceum* possui dois genes H-NS-*like* em seu genoma (CV_1243 e CV_1363). Uma vez que H-NS tem um papel importante no silenciamento de diversos genes em muitas espécies bacterianas (GRAINGER 2016), nós estudamos ambos os genes H-NS e examinamos seu papel na expressão gênica e fisiologia de *C. violaceum*. Para isto, foram geradas linhagens mutantes nula para cada gene H-NS individualmente e depois combinadas para gerar uma linhagem mutante dupla (Figura 23). Podemos concluir que estas duas H-NS de *C. violaceum* não são genes essenciais já que foi possível remover ambas do genoma.

Figura 23: Geração e confirmação das linhagens mutantes para H-NS de *C. violaceum.* **A-C.** Confirmação das linhagens mutantes dos genes CV_1243 (A), CV_1363 (B) e mutante duplo de ambos os genes (C). As linhagens foram confirmadas por PCR utilizando os oligonucleotídeos del1/4 para cada gene indicado (Tabela 2). M, marcador de peso molecular 1Kb plus DNA Ladder (Thermo Scientific); WT, fragmentos amplificados utilizando o DNA genômico de *C. violaceum* ATCC 12472; Δ, fragmentos amplificados usando as linhagens mutantes como molde.

Visto que inserção do transposon no gene CV_1363 levou a uma maior suscetibilidade ao ferro (Tabela 8), nós investigamos indiretamente como estaria o conteúdo intracelular de ferro nas linhagens mutantes nulas de H-NS. Para isso, curvas de crescimentos foram realizadas na ausência e na presença de estreptonigrina, um antibiótico cuja atividade é ativada por ferro (Figura 24A). Em meio LB as linhagens mutantes simples tiveram um crescimento semelhante à linhagem selvagem e o mutante duplo teve um pequeno atraso no crescimento. Adição de estreptonigrina ao meio levou a um atraso do crescimento do mutante ΔCV_1243 em relação à linhagem selvagem, enquanto os mutantes ΔCV_1363 e $\Delta CV_1243/1363$ tiveram seu crescimento completamente comprometido (Figura 24A). Para avaliar a homeostase de ferro nessas linhagens, medimos os níveis de sideróforos nas

linhagens indicadas em placas PSA-CAS. Os mutantes $\Delta CV_1363 e \Delta CV_1243/1363$ apresentaram diminuição dos halos de sideróforo em comparação com a linhagem WT, além de apresentarem um fenótipo de rugosidade aumentada (Figura 24B). Esses dados podem indicar maior nível intracelular de ferro nas linhagens $\Delta CV_1363 e$ $\Delta CV_1243/1363$ que estaria levando à repressão de genes relacionados à captação de ferro.

Figura 24: Mutações das H-NS levam ao excesso de ferro intracelular. A. Mutação dos genes CV_1243, CV_1363 e CV_1243/1363 leva à uma maior susceptibilidade a estreptonigrina. As curvas de crescimento foram obtidas em Bioscreen C. As linhagens indicadas foram cultivadas em meio LB com ou sem tratamento por 24h a 37°C sob agitação. Linhas contínuas indicam crescimento em meio LB. As linhas tracejadas indicam o crescimento em meio LB com adição de 0,1 µg/mL de estreptonigrina (SN). **B.** Mutação dos genes CV_1363 e CV_1243/1363 leva à diminuição dos halos de sideróforo. Medida da área dos halos em placas PSA-CAS das linhagens indicadas. Dados de três ensaios biológicos são mostrados. Inserto: Foto representativa do ensaio de CAS. **p < 0,01, ****p < 0,0001; quando não indicado, não significativo. Two-way ANOVA seguido pelo teste de comparações múltiplas de Tukey.

Observamos que as linhagens $\Delta CV_1363 e \Delta CV_1243/1363$ produzem menos pigmento roxo do que a linhagem selvagem. Para confirmar este fenótipo, as linhagens foram cultivadas em meio LB a 30°C ou 37°C, e a violaceína foi quantificada (Figura 25A e B). Curiosamente, a linhagem selvagem apresentou maior produção de violaceína a 30°C do que a 37°C. Os mutantes $\Delta CV_1363 e \Delta CV_1243/1363$ apresentaram diminuição da produção de violaceína em ambas as temperaturas em relação à linhagem selvagem. Realizamos ensaio de biofilme para verificar se existe um papel das H-NS na formação do mesmo (Figura 25C). Podemos observar que

todos os mutantes tiveram o mesmo fenótipo da linhagem selvagem. Já foi relatado em outras bactérias que H-NS tem um papel na expressão de genes envolvidos com a motilidade (WANG et al., 2018). Assim, realizamos um ensaio de motilidade em meio M9 semi-sólido e a área de motilidade foi medida após 24 e 48 horas (Figura 25D e E). Após 24 horas, as linhagens ΔCV_1363 e $\Delta CV_1243/1363$ exibiram motilidade reduzida em comparação com WT. Às 48 horas, ambos os mutantes continuaram a exibir uma área de motilidade bem menor do que WT e o mutante ΔCV_1243 apresentou pequena redução da motilidade. Juntos, esses dados indicam que a H-NS CV_1363 está envolvida na regulação da produção de violaceína e na motilidade do tipo *swimming* em *C. violaceum*.

Figura 25: Mutação na H-NS CV_1363 leva à diminuição da produção de violaceína e motilidade. A. Crescimento das linhagens indicadas em meio LB para verificação da produção de violaceína a 30°C e 37°C. B. Medição da produção de violaceína. As linhagens indicadas foram cultivadas em meio LB sob agitação a 37°C e 30°C por 24 horas. A violaceína foi extraída com acetona e quantificada em espectrofotômetro a 575 nm. Os dados de três ensaios biológicos são mostrados. C. Ensaio de biofilme das linhagens indicadas. As linhagens foram cultivadas em meio LB por 24 horas e o ensaio foi realizado com cristal violeta para quantificar o biofilme. Dados de seis ensaios biológicos. D. Ensaio de motilidade, no qual as linhagens indicadas foram cultivadas e semeadas em meio semi-sólido M9HC (0,3% de ágar) por 24 e 48 horas. E. Medição da área de motilidade do ensaio de motilidade. Os dados de três ensaios biológicos são mostrados. Análises estatísticas usando Two-Way ANOVA seguidas pelo teste de comparações múltiplas de Tukey. ****p < 0,0001; ***p < 0,001, quando não indicado, não significativo.

Outro papel descrito para H-NS de bactérias é conferir tolerância à acidez e hiperosmolaridade (HOMMAIS et al, 2001; KRIN et al., 2010; GAO et al., 2018). Para verificar se as H-NS de C. violaceum estão envolvidas nesses processos, realizamos curvas de crescimento sob estes estresses (Figura 26). Primeiro, determinamos o crescimento das linhagens em meio LB e M9 (Figura 26A e D). Em ambas as condições a linhagem ΔCV 1243/1363 teve um atraso de crescimento em relação a WT. Em seguida, avaliamos a suscetibilidade ao pH ácido. As curvas de crescimento foram realizadas em meio LB a pH 5,0 e em meio M9 a pH 4,5 (Figura 26B e E). C. violaceum foi mais tolerante ao pH ácido no meio M9 do que no meio LB. Além disso, as linhagens ACV 1363 e ACV 1243/1363 foram mais suscetíveis a condições ácidas. Finalmente, testamos o crescimento em alta osmolaridade. As curvas de crescimento foram obtidas em meio LB e M9 após adição de 0,3 M de NaCI (Figura 26C e F). As linhagens Δ CV 1363 e Δ CV 1243/1363 apresentaram crescimento prejudicado em relação a WT (ambas em LB com sal, apenas o mutante duplo em M9 com sal). Esses dados indicam que a H-NS CV_1363 tem um papel na tolerância a pH ácido e alta osmolaridade em C. violaceum.

Figura 26: Mutação na H-NS CV_1363 aumenta a suscetibilidade de *C. violaceum* ao pH ácido e à hiperosmolaridade. A-F. As curvas de crescimento foram obtidas no equipamento Bioscreen C. As linhagens indicadas foram cultivadas em meio LB ou M9HC com ou sem os tratamentos indicados por 24h a 37°C sob agitação. A. Meio LB, pH 7,0. B. Meio LB ácido, pH 5,0. C. Meio LB de alta osmolaridade suplementado com cloreto de sódio 0,3 M. D. Meio

M9HC, pH 7,0. E. Meio M9HC ácido, pH 4,5. F. Meio M9HC de alta osmolaridade suplementado com 0,3 M de cloreto de sódio.

Em conjunto, os dados fenotípicos obtidos revelam que a H-NS CV_1363 é o ortógolo com papel majoritário em *C. violaceum*, com compensação parcial pela H-NS CV_1243 na ausência de CV_1363, conforme evidenciado (i) pelos claros fenótipos do mutante Δ CV_1363, (ii) pelos fenótipos sutis ou ausentes do mutante Δ CV_1243, (iii) e pela exacerbação dos fenótipos na comparação entre as linhagens Δ CV_1363 e Δ CV_1243/1363 (Figuras 24, 25 e 26).

Para identificar o repertório de genes regulados pelas H-NS de *C. violaceum*, nós realizamos ensaios de RNA-seq das linhagens WT, Δ CV_1243, Δ CV_1363 e Δ CV_1243/1363. Para isso, as linhagens foram cultivadas em meio LB até DO_{600nm} de 1,0, o RNA total foi extraído e as bibliotecas foram geradas e sequenciadas. Surpreendentemente, quando comparamos as linhagens WT vs. Δ CV_1243, apenas o próprio CV_1243 veio com a sua expressão aumentada na linhagem selvagem (Figura 27A, Tabela Suplementar 5), indicando que essa comparação não revela os genes possivelmente regulados pela H-NS CV_1243. Quando comparamos WT vs. Δ CV_1363, podemos observar que 81 genes tiveram expressão diminuída na linhagem WT (Figura 27B, Tabela Suplementar 6), evidenciando que CV_1363 tem um papel mais proeminente em reprimir genes em *C. violaceum*. Ao comparar as linhagens WT vs. Δ CV_1243/1363, observamos 213 genes com expressão diminuída e 39 genes com expressão aumentada na linhagem WT (Figura 27C, Tabela Suplementar 7), sugerindo que CV_1243 apresenta um papel compensatório na ausência de CV_1363.

Um dos genes que vieram reprimidos por CV_1363 na linhagem WT foi a H-NS CV_1243. Para validar e entender melhor a relação entre as duas H-NS, a expressão de cada gene H-NS foi medida nas linhagens WT, Δ CV_1243 e Δ CV_1363 por RT-qPCR (Figura 27D). Os dados indicaram que a deleção de CV_1363 levou a um aumento na expressão de CV_1243, enquanto nenhuma alteração na expressão de CV_1363 foi observada no mutante Δ CV_1243 (Figura 27D). Diagrama de Venn comparando os genes diferencialmente expressos nas comparações WT vs Δ CV_1363 e WT vs Δ CV_1243/1363 (Figura 27E e F), evidenciou a função compensatória da H-NS CV_1243 na ausência de CV_1243/1363. Assim, podemos concluímos que a H-NS CV_1363 tem um papel mais importante na célula e e que

uma de suas funções é reprimir a H-NS CV_1243. Estes dados de RNA-seq corroboram o perfil fenotípico diferencial observado para os mutantes das H-NS de *C. violaceum*.

Figura 27: Análise global dos genes regulados pelas H-NS em *C. violaceum*. A. Gráfico volcano dos dados de RNAseq com a distribuição dos genes diferencialmente expressos na WT vs. ΔCV_{1243} . B. Gráfico volcano dos dados de RNAseq com a distribuição dos genes diferencialmente expressos na WT vs. ΔCV_{1363} . C. Gráfico volcano dos dados de RNAseq com a distribuição dos genes diferencialmente expressos na WT vs. $\Delta CV_{1243}/1363$. Nas três comparações, o RNA-seq foi realizado em triplicata biológica a partir de bactérias cultivadas em LB até DO_{600nm} de 1,0. D. Expressão das H-NS nas linhagens mutantes de H-NS. A expressão foi medida por RT-qPCR. O cDNA foi transcrito reversamente a partir do RNA obtido das linhagens WT, ΔCV_{1243} e ΔCV_{1363} cultivadas em LB até DO_{600nm} de 1.0. A expressão de CV_1243 e CV_1363 é mostrada como *fold change* em relação à condição controle (WT). Os dados são de três réplicas biológicas. E-F. Diagramas de Venn mostrando a sobreposição e o subconjunto único de genes cuja expressão foi reprimida (D) ou ativada (E) pelas H-NS CV_1243 e CV_1363. Os círculos azuis representam genes diferencialmente expressos na linhagem WT em comparação com $\Delta CV_{1243}/1363$.

Nós selecionamos vários dos genes regulados pelas H-NS para validar os dados de RNAseq por ensaios de RT-qPCR (Figura 28). Focamos sobretudo nos genes reprimidos por H-NS. Para todos estes genes testados, foi confirmado o aumento de expressão nos mutantes Δ CV_1363 e Δ CV_1243/1363, sendo que em alguns deles o aumento foi maior no mutante duplo (Figura 28A, B, C, D, E). A expressão diminuída no mutante Δ CV_1243/1363 foi confirmada para três genes (Figura 28G, H, I). Portanto, nossa validação corroborou os dados do RNA-seq.

Figura 28: Validação de genes diferencialmente expressos em Δ CV_1363 e Δ CV_1243/1363. Para validar os dados de expressão encontrados no RNAseq das linhagens mutantes para H-NS, alguns genes foram selecionados e a expressão foi medida por ensaio de RT-qPCR. O cDNA foi gerado do RNA total extraído das linhagens WT, Δ CV_1243, Δ CV_1363 e Δ CV_1243/1363 cultivadas em meio LB (DO_{600nm} ~ 1,0). A expressão dos genes indicados é mostrada como *fold change* em relação à linhagem WT normalizado pelo controle endógeno *minD*.

Os processos que são reprimidos pelas H-NS incluem grupos de genes que codificam operons que podem ter sido horizontalmente adquiridos (Tabelas Suplementares 6 e 7). Dentre estes podemos destacar: (i) operons de fagos (CV_0430-32, CV_0343-47, CV_3544-47) (Figura 28A); (ii) sistema de secreção do tipo I (CV 0513-16); (iii) sistema de secreção do tipo V (CV 1468, CV 1878) (Figura 28B); (iv) proteínas relacionadas ao sistema de secreção do tipo VI (CV_1238-40) (Figura 28C); (v) sistema de secreção do tipo III presente na segunda ilha de patogenicidade Cpi-2 (CV_2574-2603) (Figura 28D, E). Outros conjuntos de genes reprimidos por H-NS estão envolvidos em transporte de taurina (CV 2288-91), metabolismo de açúcar (CV_4018-23) e proteínas ribossomais (CV_4270-71 e CV_4291-93). Além disso, um conjunto de genes que são ativados pelo sistema CviIR de QS vieram como reprimidos pelas H-NS. Entre eles, o operon envolvido na síntese de anisomicina (aniIQPMNHKL) (Figura 28F), um operon provavelmente envolvido na síntese de um metabolito secundário (CV_2802-04), um dos locus CRISPR/Cas (CV_1226-28) e uma protease (CV_2571). Isto poderia indicar um mecanismo de ativação do QS por contra-silenciamento de H-NS nesses genes. Surpreendentemente, mutação de ambas H-NS levou a diminuição da expressão de alguns genes, entre eles o sistema de secreção do tipo III presente na ilha de patogenicidade Cpi-1 e Cpi-1A (CV_2417-25 e CV_2610-33), efetores secretados por esse sistema (CV_2038 e CV_0977-75) e genes envolvidos na motilidade por flagelo (CV_2994 e CV_3011) (Tabela Suplementar 7, Figura 28G, H, I). Assim, podemos concluir que as H-NS estão relacionadas sobretudo com o silenciamento de diversos processos em C. violaceum, incluindo ilhas de patogenicidade desta bactéria como a ilha de patogenicidade Cpi-2.

5. DISCUSSÃO

A relação do ferro com os sistemas biológicos é paradoxal. Este metal de transição é ao mesmo tempo um micronutriente essencial de pouca biodisponibilidade para a grande maioria dos organismos e um catalisador de reações de oxidação que danificam macromoléculas. Daí a importância dos sistemas regulatórios para manutenção da homeostase de ferro em bactérias. Neste trabalho, utilizamos uma abordagem genética não enviesada de mutagênese por transposon para identificar novos sistemas regulatórios envolvidos na homeostase do ferro em Chromobacterium violaceum, uma bactéria ambiental que atua como patógeno oportunista em humanos e que se utiliza de diferentes mecanismos de captação de ferro para infectar hospedeiros mamíferos (BATISTA et al., 2019; SANTOS et al., 2020; DE LIMA et al., 2022). Realizando a varredura da biblioteca de mutantes de transposon tanto para produção alterada de sideróforos quanto para susceptibilidade a altas doses de ferro, fomos capazes de identificar e caracterizar três novos circuitos regulatórios em C. violaceum: (i) uma cascata regulatória conectando homeostase de sideróforos com o sistema de QS CviIR; (ii) um fator de transcrição da família MarR que regula uma citocromo bd oxidase de proteção a estresses; (iii) duas proteínas H-NS que atuam de modo hierárquico para silenciar múltiplos genes de C. violaceum (Figura 29).

Dentre os sistemas regulatórios identificados como envolvidos na homeostase de sideróforos (Tabela 7), propomos um modelo de uma cascata regulatória envolvendo o fator de transcrição VitR, o sistema de dois componentes AirSR e o sistema de QS CviIR (Figura 29A). O regulador VitR, que é autoativado e ativado por Fur sob suficiência de ferro, reprime diretamente *vioS*, anulando a provável inibição do VioS sobre o CviR (Figura 29A). Uma vez ativado, CviR regula conjuntos de genes de forma dependente e independente de CviI. Em alta densidade celular na presença do autoindutor, CviR ativa a produção de autoindutor, síntese de violaceína, anisomicina e proteases, além de muitos outros processos. Por um mecanismo independente do autoindutor em baixa densidade celular, CviR ativa o sistema AirSR e genes necessários para a captação e síntese de sideróforos (Figura 29A). Essa cascata permite que *C. violaceum* adapte a expressão de genes de aquisição de ferro mediados por sideróforos de acordo com a densidade celular, adicionando uma nova camada de regulação à já conhecida repressão mediada por Fur, o único regulador de homeostase de ferro já estudado em *C. violaceum* (SANTOS et al., 2020).

Figura 29: Caracterização de novos mecanismos regulatórios para homeostase de sideróforos e resistência ao ferro em C. violaceum. A. Esquema mostrando a cascata regulatória proposta que regula a captação de sideróforos por meio do sistema CvilR. O regulador VitR em suficiência de ferro é autoativado e ativado por Fur, levando à repressão da proteína VioS, que provavelmente inibe a proteína CviR através da interação proteína-proteína. Em ADC, na presença do autoindutor Cvil, o regulador CviR ativa a produção de Cvil, a síntese de violaceína pelo operon *vioABCDE*, a síntese de anisomicina pelo operon *aniQPNMHKL* e a síntese de proteases (CV_4240). Por um mecanismo independente de Cvil, o regulador CviR ativa o sistema AirSR e genes necessários para a captação e síntese de sideróforos (CV_3553, CV_2234, CV_2235, *cbaF*, *cbaCE*, CV_1487-40 e *cbuA*) em *C. violaceum*. Linhas contínuas: regulação comprovada; Linhas tracejadas: regulamentação não comprovada. **B.** Esquema mostrando a regulação e a importância da citocromo *bd* oxidase CV_3658-57 em *C. violaceum*. O operon CV_3659-58-57 é reprimido pelo regulador da família MarR CV_3659 e ativado por densidade celular mediada por CviR. Ausência da citocromo *bd* oxidase

oxidativo (ROS) e ao estresse nitrosativo (RNS). Linha vermelha tracejada indica a susceptibilidade. **C.** Esquema mostrando a relação entre as H-NS de *C. violaceum* e os genes regulados por elas. A H-NS CV_1363 é o ortólogo principal, levando a repressão da H-NS CV_1243 e de diversos genes como T5SS (CV_1468), síntese de anisomicina (*anilQPNMHKL*) e o T3SS presente na segunda ilha de patogenicidade (Cpi-2). Mutação de ambas H-NS (xis vermelho) leva ao aumento da expressão de um número maior de genes, como operons de fagos (CV_0343-47), genes envolvidos no metabolismo de açúcar (CV_4018-23) e genes envolvidos na captação de taurina (CV_2288-91). Além disso, no mutante duplo ocorre a diminuição da expressão do T3SS presente na primeira ilha de patogenicidade (Cpi1/Cpi-1a) e genes envolvidos na motilidade por flagelo (*fliD*). As setas tracejadas indicam que os eventos de repressão e ativação das H-NS não estão ocorrendo no mutante duplo.

A varredura da biblioteca de transposon em excesso de ferro permitiu identificar novos genes envolvidos na tolerância ao ferro em C. violaceum. Caracterizamos mais a fundo dois destes sistemas. O primeiro é o operon CV_3659-58-57, que codifica o fator de transcrição da família MarR CV_3659 e a citocromo bd oxidase CV_3658-57 (cioAB). Demonstramos que a expressão deste operon é diretamente reprimida por CV 3659 e também regulada por fase de crescimento de modo dependente de CviR (Figura 29B). Mostramos ainda que a citocromo *bd* oxidase tem papel na tolerância a metais, sulfeto, estresse oxidativo e nitrosativo em C. violaceum (Figura 29B). O segundo sistema regulatório caracterizado foram as proteínas H-NS CV_1363 e CV_1243 de C. violaceum. Ensaio de RNAseq revelou que CV_1363 é o ortólogo com atividade proeminente em C. violaceum, reprimindo a expressão da H-NS CV_1243 e de diversos genes (Figura 29C). Linhagem mutante duplo para as H-NS levou a diferença de expressão de um número maior de genes, evidenciando as funções de CV_1243 em C. violaceum (Figura 29C). Mutação em ambas H-NS levou ao excesso de ferro intracelular, diminuição da produção de violaceína, diminuição da motilidade por swimming e maior susceptibilidade ao pH ácido e hiperosmolaridade.

Uma importante contribuição deste trabalho foi a geração de uma biblioteca de mutantes de transposon em *C. violaceum*, uma ferramenta genética ainda pouco explorada nesta bactéria. De fato, a varredura dessa biblioteca em placas PSA-CAS revelou 25 genes ainda não caracterizados como importantes para a homeostase de ferro (Tabela 7). Além disso, a varredura em placas com excesso de ferro revelou 18 genes ainda não caracterizados envolvidos na tolerância ao ferro em *C. violaceum* (Tabela 8). As bibliotecas de transposon têm sido amplamente utilizadas para a descoberta de genes essenciais e condicionalmente essenciais (DEJESUS et al., 2017; STERNON et al., 2018; GOODALL et al., 2018). Por exemplo, essa abordagem foi usada para a identificação imparcial de genes de virulência em *Salmonella enterica*

sorovar Typhi (KARLINSEY et al., 2019), genes para absorção de ferro em Mycobacterium tuberculosis (ZHANG et al., 2020) e novos genes relacionados a vários fenótipos bacterianos (OKSHEVSKY et al., 2018; KALINDAMAR et al., 2019). Neste trabalho, esta ferramenta nos permitiu encontrar seis novos sistemas regulatórios envolvidos na homeostase de ferro mediada por sideróforos e dois sistemas regulatórios e genes envolvidos no metabolismo de açúcar como importantes para a tolerância ao ferro em C. violaceum (Tabelas 7 e 8). Recentemente, uma triagem de transposon para genes de Xanthomonas campestris importantes para a homeostase de ferro também revelou genes envolvidos em regulação e metabolismo de açúcar (PANDEY et al., 2016; JAVVADI et al., 2017). Foi descrito em X. campestris o regulador global XibR da família NtrC que controla vários aspectos da homeostase de ferro, além de regular motilidade e virulência bacteriana. Este estudo mostra a possibilidade da co-ocorrência de Fur com outro regulador global que responde aos níveis de ferro (PANDEY et al., 2016), concordando com nossos achados de que em C. violaceum existem outros sistemas regulatórios envolvidos na homeostase do ferro. Em X. campestris descobriu-se também que um β -(1-2)-glucano sequestra a forma ferrosa do ferro e promove o crescimento sob condições de restrição de ferro. A perda da produção deste glucano reduziu a tolerância ao ferro e elevou a produção de ROS (JAVVADI et al., 2017). Esses resultados corroboram com os nossos achados, ao mesmo tempo em que sugerem que genes adicionais importantes para a homeostase de ferro em C. violaceum ainda precisam ser descritos.

5.1. Caracterização de novos fatores de transcrição envolvidos na homeostase de sideróforo

Dentre os sistemas regulatórios identificados na varredura da biblioteca de mutantes em placas PSA-CAS (Figura 5), a inserção do transposon nos genes CV_0635 e *csrA* levou ao aumento dos halos de sideróforos. Infelizmente, para esses dois genes os fenótipos obtidos nos mutantes CV_0635::T8 e *csrA*::T8 não foi observado nos mutantes nulos Δ CV_0635 e Δ *csrA* (Figuras 6 e 7A-C). O gene CV_0635 codifica um fator de transcrição da família LuxR e apresenta um domínio PAS em sua sequência. Nossa hipótese é de que na realidade o fenótipo visto para a linhagem CV_0635::T8 é devido interrupção do gene CV_RS03115 (*wbuC*) que codifica uma metaloproteína. A varredura identificou seis linhagens com inserção do transposon em *wbuC* levando ao aumento dos níveis de sideróforos. Esse gene foi

recentemente anotado e observamos que ele apresenta uma região sobreposta com o gene CV_0635. Tivemos apenas uma inserção no gene CV_0635, que ocorreu próxima ao aminoácido 15 que corresponde a região sobreposta ao final do gene *wbuC*, podendo assim estar afetando o final da sua transcrição. Reguladores com domínio PAS já foram descritos como importantes para a homeostase de ferro. Em *Campylobacter jejuni* o regulador HeuR, que apresenta um domínio PAS, ativa o operon ChuABCD para captação de heme e negativamente impacta a atividade de catalase (JOHNSON et al., 2016).

O gene csrA codifica uma histidina guinase do sistema de dois componentes CsrAB, envolvido na regulação de genes da ilha de patogenicidade 2 (Cpi-2) de C. violaceum (MIKI et al., 2011). Neste caso, levantamos as seguintes hipóteses para as diferenças fenotípicas observadas entre a linhagem csrA::T8 e o mutante nulo: (i) a inserção teria ocorrido em outro gene; (ii) uma segunda mutação pode ter ocorrido espontaneamente em outro gene; (iii) a superexpressão do gene, gerada pela região promotora presente no transposon; (iv) a produção de uma proteína CsrA truncada. Algumas dessas hipóteses foram testadas e descartadas. Mais experimentos são necessários para entender os eventos que ocorrem na linhagem csrA::T8. Em Salmonella foi demostrado que a expressão de SPI-2 é regulada por Fur e ferro, uma vez que Fur reprime a expressão de ssrB (CHOI et al., 2014). Essas discrepâncias entre linhagens mutantes nulas e pela inserção do transposon já foram descritas anteriormente. Em Pseudomonas putida, uma triagem para identificar novos genes relacionados à produção de biofilme mostrou que a inserção no gene olpA levou a um aumento na fixação do biofilme, um fenótipo não complementado. O sequenciamento de DNA do genoma completo dessa linhagem revelou uma mutação pontual no gene lapG, já descrita com papel no biofilme (YOUSEF-CORONADO et al., 2011). Em Bartonella henselae, a inserção de transposon na região promotora do gene hbpC levou à hiperpigmentação da linhagem, mas a linhagem mutante $\Delta hbpC$ não apresentou o mesmo fenótipo. As análises indicaram que a inserção do transposon levou à superexpressão de hbpC que resultou no fenótipo (RODEN et al., 2012). Recentemente, foi visto em Vibrio fischeri que a inserção no gene glpF leva a uma diminuição na produção de sideróforos, mas o mutante nulo não tinha o mesmo fenótipo. O fenótipo do mutante transposon foi atribuído a uma mutação polar no gene glpK (EICKHOFF e BASSLER, 2020).

Nossos dados indicam que os genes CV_0535-36-37 desempenham um papel na regulação de sideróforos em C. violaceum ATCC 12472 (Figuras 8). Este sistema foi caracterizado em C. violaceum ATCC 31532 como um sistema induzido por antibióticos (airMSR) atuando através da via de sinalização CvilR para ativar a produção de violaceína durante a competição de C. violaceum com Streptomyces spp (LOZANO et al., 2020). Testamos a produção de violaceína em mutantes airMSR em C. violaceum ATCC 12472, mas os fenótipos descritos em C. violaceum ATCC 31532 não foram observados (dados não mostrados). Assim, o sistema CV_0535-36-37 em C. violaceum ATCC 12472 parece detectar outros sinais e não antibióticos. Embora os autores tenham descoberto que AirR (CV_0537) regula vbaF e cviR (LOZANO et al., 2020), não conseguimos detectar a regulação de ambos os genes por CV_0537 em nossas condições. Mais experimentos são necessários para relacionar o sistema de dois componentes CV_0536-37 com o fenótipo de sideróforo aumentado e encontrar o sinal que ativa esse sistema em C. violaceum ATCC 12472. Sistemas de dois componentes já foram descritos como sensores de ferro e como importantes para a homeostase de ferro em diversas bactérias. Em P. aeruginosa, o sistema BqsRS sente os níveis extracelulares de ferro e protege a célula contra agentes antimicrobianos clinicamente importantes (KREAMER et al., 2012; KREAMER et al., 2015). O sistema PmrAB foi descrito em Salmonella como um sensor de ferro ativando genes importantes para a resistência a polimixina (WÔSTEN et al., 2000). Em P. aeruginosa, a fosforilação do regulador AlgR do sistema de dois componentes AlgZR modula a expressão de genes de aquisição de ferro (LITTLE et al., 2018).

Neste estudo, caracterizamos o VitR como um novo fator de transcrição que controla sideróforos, violaceína e formação de biofilme em *C. violaceum* (Figura 9). Nossos dados fornecem evidências de que VitR opera *upstream* ao sistema CvilR atuando como um repressor direto de *vioS*, já que: (i) VitR se liga à região intergênica onde promotores divergentes dos genes *vioS* e *vitR* são encontrados, reprimindo *vioS* e ativando sua própria expressão (Figuras 10C, 11B); (ii) todos os fenótipos do mutante $\Delta vitR$ foram resgatados em um mutante duplo $\Delta vitR/vioS$ (Figura 12); (iii) quase todos os genes regulados por VitR pertencem aos regulons CvilR (Figuras 10A, 15A, 15B). Portanto, ao contrário de outros fatores de transcrição de detecção de ferro que regulam diretamente grandes regulons em resposta ao ferro, como XibR e VgrR em *X. campestres* (PANDEY et al., 2016; WANG et al., 2016), o VitR exerce seus efeitos como um repressor local de *vioS*, e sua ligação com o ferro parece ser indireta
via regulação de vitR mediada por Fur. O sinal que libera VitR do DNA para desencadear a expressão de vioS ainda precisa ser determinado. VitR pertence à superfamília Cro, família XRE de fatores de transcrição. A ligação ao DNA de membros da família XRE pode ser antagonizada por pequenas moléculas (regulador BzdR) ou por proteínas mimetizadoras de DNA (regulador NHTF). Em Azoarcus sp., o regulador BzdR, que apresenta alta similaridade com o regulador SinR de *B. subtilis*, atua sobre o operon responsável pela degradação do benzoato. A presença do benzoil-CoA leva à liberação da expressão desse operon, uma vez que essa molécula é capaz de se ligar ao BzdR, liberando-o do DNA (BARRAGAN et al., 2005; DURANTE-RODRIGUEZ et al., 2010). Nós analisamos a expressão de vioS na presença de diferentes moléculas, como, por exemplo, a molécula percursora do sideróforo 2-3-DHBA, mas nenhuma condição levou a desrepressão de vioS (dados não mostrados). Foi descrito em Neisseria que a proteína NHTF, membro da família de fatores de transcrição XRE, tem sua atividade de ligação ao DNA inibida pela proteína DMP19 por meio de uma interação carga-carga, sendo um novo mecanismo de regulação em Neisseria (WANG et al., 2012). Curiosamente, o regulador VitR está em um possível operon com a proteína CV 1058 de função desconhecida, sendo que ambos podem ser cotraduzidos, pois uma pequena região está sobreposta. Uma hipótese é de que a proteína CV_1058 poderia inibir a função reguladora de VitR por um mecanismo de interação proteína-proteína.

Foi proposto que a proteína VioS inibe o regulador CviR por meio de interação proteína-proteína (DEVESCOVI et al., 2017; LOZANO et al., 2020). Nossos dados corroboram essa hipótese, uma vez que desrepressão de *vioS* não alterou os níveis transcricionais de *cviR* (Figura 13C) e as nossas evidências genéticas e fenotípicas indicam uma relação inibitória entre essas proteínas. Alguns mecanismos de inibição do QS vêm sendo descritos na literatura como mecanismos importantes para o controle da virulência bacteriana. Dentre estes mecanismos podemos destacar: (i) uso de moléculas inibidoras de QS; em *P. aeruginosa* foram identificadas moléculas capazes de interagir com o regulador LasR a partir de produtos naturais de plantas (ZHONG et al., 2020); (ii) uso de enzimas *quorum-quenching*; em *C. violaceum* a lactonase SsoPox W263I foi capaz de inibir o QS e afetar a capacidade de *C. violaceum* em interagir com micro e macroorganismos (MION et al., 2021); (iii) inibição do regulador de QS por interação proteína-proteína; foi descrito que o fago DMS3 codifica uma proteína anti-QS durante a infecção de *P. aeruginosa*. A proteína Aqs1

interage com o motivo de ligação ao DNA do regulador global do QS LasR e com a proteína PilB inibindo a motilidade por *twitching* (SHAH et al., 2021); (iv) inibição da enzima que sintetiza AHL; *Lysobacter enzymogenes* produz LqqP, uma leucil aminopeptidase, que diretamente se liga em Pcol, enzima que produz AHL de *P. fluorescens*, por meio de interação proteína-proteína reduzindo a abundância de enzimas disponíveis para sintetizar AHL (LIAO et al., 2021). Assim, experimentos adicionais estão em andamento para desvendar o mecanismo pelo qual VioS inibe o QS de *C. violaceum*.

Um achado importante do nosso estudo foi que o sistema de QS CvilR está envolvido na regulação de sideróforos em C. violaceum, uma vez que a mutação dos genes cvilR levou a um aumento dos halos de sideróforos nas placas PSA-CAS (Figura 13A-B). Foi descrito que a mutação de sistemas de QS levou a um aumento de sideróforos em Burkholderia ambifaria, Pseudomonas chlororaphis e Vibrio vulnificus (WEN et al., 2012; CHAPALAIN et al., 2013; SHAH et al., 2020). Para entender os mecanismos de como o sistema CvilR controla os níveis de sideróforos em C. violaceum, determinamos todo o repertório de genes regulados por CviR e Cvil (Figura 14) e verificamos se a regulação desses genes é dependente da densidade celular (Figura 16). Surpreendentemente, descobrimos que CviR regula regulons dependentes e independentes de Cvil (Figura 15), sugerindo que CviR pode agir sem seus autoindutores Cvil canônicos, que em C. violaceum ATCC 12472 são vários AHLs de cadeia longa (MOROHOSHI et al., 2008; MION et al., 2021). Por exemplo, quase todos os genes de um grande cluster que codifica o T6SS tiveram expressão diminuída em $\Delta cviR$, mas não em $\Delta cviI$, o que é consistente com nossos dados anteriores de que CviR, mas não Cvil, é necessário para competição mediada por T6SS de C. violaceum (ALVES et al., 2022). Fenótipos e regulons diferentes também foram descritos no sistema de QS RhII/R de *P. aeruginosa* (MUKHERJEE et al., 2017) e, neste caso, um ligante alternativo produzido por PqsE é responsável pela expressão de genes dependentes de RhIR na ausência de RhII (MUKHERJEE et al., 2018). Como esperado, os genes que codificam processos clássicos dependentes de QS descritos em Chromobacterium spp. foram ativados em alta densidade celular por Cvil e CviR (Figura 16C), incluindo aqueles para enzimas extracelulares como proteases e quitinases, e para biossíntese dos antibióticos violaceína e anisomicina (MCCLEAN et al, 1997; STAUFF e BASSLER, 2011; MION et al., 2021). RNAseq de uma linhagem mutante do gene cvil sem ou com a adição de AHLs sintéticos C6-HSL

ou C8-HSL relevou ativação da transcrição de dezenas de genes em *C. subtsugae*, incluindo os genes *hcnABC* que codificam para a produção de cianeto de hidrogênio (LOO et al., 2023).

Os sideróforos são considerados bens públicos, como muitas enzimas extracelulares (ROSS-GILLESPIE et al., 2015; POPAT et al., 2017; JIN et al., 2018). No entanto, o padrão de regulação mediada por QS de genes relacionados à aquisição de ferro/sideróforo foi distinto do observado para enzimas extracelulares, uma vez que os genes de sideróforo foram mais expressos em BDC do que em ADC e tiveram a expressão diminuída em $\Delta cviR$, mas não em $\Delta cviI$ (Figura 16D). Esses resultados sugerem que C. violaceum aumenta sua capacidade de adquirir ferro via sideróforos em BDC via ativação por CviR. Uma estratégia regulatória por QS semelhante foi descrita para o regulador global de QS LuxT atuando sobre sideróforos em Vibrio harveyi (EICKHOFF et al., 2022). Nesta bactéria, um mesmo cluster de síntese de sideróforos regulado por QS produz sideróforos solúveis ou associados a células para otimizar a absorção de ferro de acordo com os estágios de vida da bactéria (MCROSE et al., 2018). Em E. coli, foi descrito que o sideróforo enteroquelina é parcialmente privatizado, podendo ser eficientemente compartilhado apenas em ADC (SCHOLZ e GREENBERG, 2015). Estudos futuros sobre a estrutura guímica dos sideróforos cromobactina e viobactina serão úteis para entender o papel destes sideróforos nas diferentes fases da vida de C. violaceum. Além disso, como o papel do sistema CviIR na patogênese de C. violaceum foi investigado apenas em modelos invertebrados (SWEM et al., 2009; MION et al., 2021), seu papel deve ser determinado em hospedeiros mamíferos.

5.2. Caracterização do operon CV_3659-58-57 para a resistência a metais, sulfeto e estresse oxidativo e nitrosativo em *C. violaceum*

Um dos reguladores estudados neste trabalho foi CV_3659, uma proteína com motivo HTH pertencente à subfamília GbsR da família MarR de fatores de transcrição. Outros reguladores da família MarR já foram estudados pelo nosso grupo em *C. violaceum*. O regulador EmrR reprime a expressão da bomba de efluxo EmrCAB responsável pela resistência ao antibiótico ácido nalidíxico em *C. violaceum* (BARROSO et al., 2018). OhrR atua como um repressor direto de sua própria expressão e medeia a resposta a hidroperóxidos orgânicos (DA SILVA NETO et al., 2012), bem como modula a virulência de *C. violaceum* (PREVIATO-MELLO et al., 2017). Outro regulador, OsbR, contribui para a resistência ao estresse oxidativo, respiração anaeróbica e formação de biofilme (ALVES et al., 2021). Demostramos que CV_3659 reprime diretamente a expressão de seu operon (Figuras 18 e 19). Curiosamente, a região promotora do CV_3659-58-57 parece estar sob o controle de diferentes sistemas regulatórios. Além da repressão por CV_3659, esse operon também é regulado pela densidade celular e CviR ativa a expressão deste operon tanto em BDC quanto em ADC (Figuras 18). Além disso, Alves e colaboradores (2020) mostraram que OsbR reprime diretamente a expressão de CV_3659. Isso indica que há uma regulação complexa desses genes em resposta a várias condições ambientais.

Nós mostramos o papel do fator de transcrição CV_3659 em reprimir a expressão da citocromo *bd* oxidase CV_3658-57 em *C. violaceum*, mas não conseguimos identificar o sinal que leva a desrepressão desse operon. Em *Alishewanella* sp., foi mostrado que a expressão de *cydAB* é reprimida por CydE e desreprimida na presença de sulfato (XIA et al., 2018). Em *E. coli*, os genes *cydAB* são expressos quando a tensão de O₂ é baixa. O sistema de dois componentes ArcAB em condições microaeróbicas ativa a expressão dos genes *cydAB*, enquanto o regulador Fnr inibe a sua expressão em anaerobiose (BORISOV et al., 2011). Em *Salmonella*, foi mostrado que os homólogos de RyhB reprimem a expressão da citocromo *bd* oxidase em resposta ao estresse nitrosativo (CALDERON et al., 2014). Assim, analisar a expressão do operon CV_3659-58-57 sob condições de estresse como anaerobiose, estresse oxidativo e nitrosativo seria importante para desvendar o sinal que leva a sua regulação em *C. violaceum*.

Nossos dados revelaram que a citocromo *bd* oxidase CV_3658-57 é importante para a tolerância de *C. violaceum* a metais, sulfeto, estresse oxidativo e nitrosativo (Figura 21 e 22). Na presença de excesso de zinco a linhagem Δ CV_3658-57 foi mais sensível em relação à linhagem selvagem. O fenótipo de suscetibilidade ao zinco já foi descrito para mutações dos genes *cydABCD* em *E. coli, B. subtilis* e *S. coelicolor* (POOLE et al., 1989; BREKASIS e PAGET, 2003; CHANDRANGSU e HELMANN, 2016). Isso ocorre devido a capacidade do zinco em interferir tanto na captação quanto na liberação de prótons pelas oxidases do tipo heme-cobre, tornando necessária a expressão da citocromo *bd* oxidase para a sobrevivência das células nessas condições (AAGAARD e BRZEZINSKI, 2001; FAXEN et al., 2006). Em *Rhodobacter sphaeroides*, além do zinco, cádmio também foi capaz de inibir a citocromo *c* oxidase (MILLS et al., 2002). Seria interessante verificar se em *C. violaceum* a presença da citocromo *bd* oxidase seria importante em excesso de cadmio. Além disso, um mecanismo semelhante pode explicar a suscetibilidade do mutante $\Delta CV_3658-57$ ao íon sulfeto. O sulfeto é um potente ligante de cobre e heme, levando à inibição da citocromo *bo* oxidase. Em altos níveis de sulfeto, *E. coli* depende da citocromo *bd* oxidase para a respiração (KORSHUNOV et al., 2016). Em *M. tuberculosis*, sulfato de hidrogênio estimula a respiração bioenergética predominantemente via citocromo *bd* oxidase (SAINI et al., 2020).

Mutação da citocromo bd oxidase levou ao aumento da suscetibilidade a estresse oxidativo, excesso de ferro e estreptonigrina, além de diminuir os níveis de sideróforos (Figuras 20, 21). Em Azotobacter vinelandii, mutante para citocromo bd oxidase (cydAB) foi hipersensível a cobre, zinco e estresse oxidativo, mas a produção de sideróforos não foi afetada (EDWARDS et al., 2000). Em *E. coli*, perda da citocromo bd oxidase aboliu a produção de H2O2 induzida por proteínas do hospedeiro e aumentou a resistência a morte por essas proteínas (KASHYAP et al., 2020). Mutante para cydAB apresenta maior expressão de katG indicando que essa linhagem apresentam um maior nível de H₂O₂ intracelular (LINDQVIST et al., 2000). Superexpressão da citocromo bd oxidase em M. tuberculosis levou ao aumento da resistência a H₂O₂ e foi mostrado que essa resistência é dependente de catalase, sugerindo uma rota para a degradação e detoxificação de H₂O₂ (FORTE et al., 2013). Esses dados corroboram com as evidências de que citocromo bd oxidase de E. coli pode agir como uma catalase para fazer a detoxificação de H₂O₂ (BORISOV et al., 2013; GIUFFRE et al., 2014; AL-ATTAR et al., 2016). Mais ensaios são necessários para verificar se a citocromo bd oxidase de C. violaceum apresenta atividade de catalase. Além disso, nós hipotetizamos que a suscetibilidade do mutante ΔCV 3658-57 ao ferro e ao estresse oxidativo se deve ao acúmulo de NADH, potencializando a reação de Fenton. Trabalhos anteriores mostraram que a E. coli não respiratória exibe um acúmulo de NADH, que acelera a taxa de transferência de elétrons mediada pela flavina redutase para as flavinas livres, que podem, por sua vez, reduzir o ferro livre para catalisar a reação de Fenton e promover danos ao DNA (WOODMANSEE e IMLAY, 2002). Experimentos adicionais estão em andamento para testar essa hipótese.

Como visto anteriormente, ΔCV_3658-57 foi mais sensível a estresse nitrosativo. Estudos prévios mostraram que Salmonella, E. coli e Shewanella oneidensis também necessitam da citocromo bd oxidase para a tolerância ao óxido

nítrico (MASON et al., 2009; ZHANG et al., 2013; HOLYOAKE et al., 2016; DUC et al., 2020). A citrocromo *bd* oxidase foi determinante para a patogênese e colonização de *Salmonella, E. coli, M. tuberculosis, Vibrio cholerae, E. coli* uropatogênica e *Listeria monocytogenes* no hospedeiro, evidenciando sua importância na virulência dessas bactérias (SHI et al., 2005; JONES-CARSON et al., 2016; SHEPHERD et al., 2016; CORBETT et al., 2017; BEEBOUT et al., 2019; BEEBOUT et al., 2022; VAN ALST et al., 2022). Apesar dos nossos achados mostrarem a importância da CV_3658-57 para detoxificação de óxido nítrico em *C. violaceum*, mais estudos são necessários para verificar um possível mecanismo pelo qual esta citocromo *bd* oxidase pode promover a virulência de *C. violaceum*.

5.3. Caracterização das H-NS CV_1363 e CV_1243 como silenciadores de diversos processos em *C. violaceum*

Os membros da família de proteínas H-NS desempenham papel tanto na manutenção da arquitetura cromossômica quanto na mediação da regulação da expressão gênica em bactérias (NAVARRE et al., 2007; GRAINGER 2016). Neste trabalho, mostramos que *C. violaceum* possui duas H-NS que estão envolvidas na regulação de diversos processos celulares. É importante ressaltar que contribuímos na elucidação dos papéis de ambas H-NS, demonstrando que CV_1363 tem um papel mais proeminente no silenciamento gênico e na determinação dos fenótipos de *C. violaceum*, enquanto CV_1243 é desreprimida na ausência de CV_1363 e fornece compensação parcial (Figura 29C). Como comparação, *E. coli* linhagem 042 codifica três homólogos de H-NS (*hns, stpA* e *hns2*), e mutação de *hns* leva ao aumento da expressão de *hns2*, que compensa parcialmente a perda de H-NS (PRIETO et al., 2020). Já em *P. aeruginosa*, as H-NS MvaT e MvaU funcionam de forma coordenada, regulando o mesmo conjunto de genes para silenciar elementos genéticos adquiridos (CASTANG et al., 2008).

Os ensaios de RNAseq revelaram o papel das H-NS CV_1363 e CV_1243 em reprimir genes possivelmente adquiridos por *C. violaceum* (Tabelas Suplementares 6 e 7, Figura 27, 28). Estudos em *Salmonella*, *Shigella flexneri*, *Vibrio cholerae* e *E. coli* demonstraram a importância de H-NS em silenciar genes adquiridos evitando a perda de *fitness* (DORMAN, 2007; NAVARRE et al., 2007; HUTTENER et al., 2015). Um trabalho mostrou evidências de que H-NS consegue discriminar e diferenciar os genes adquiridos horizontalmente ajudando a mantê-los silenciados sendo uma vantagem adaptativa para essas bactérias (BANOS et al., 2009). Dentre os genes adquiridos, as

ilhas de patogenicidade Cpi-1/1a e Cpi-2, que contém dois T3SS, e outros sistemas de secreção vieram diferencialmente expressas quando ambas H-NS foram mutadas em *C. violaceum.* Em *S. enterica* serovar Typhimurium, mutação de H-NS levou a expressão descontrolada das ilhas de patogenicidade; foi mostrado que H-NS reprime a expressão da SPI-1 via repressão de *hilD* (LUCCHINI et al., 2006; KALAFATIS e SLAUCH, 2021). Em *Edwardsiella piscicida*, foi descrito que H-NS reprime a expressão dos genes *evpB* e *evpC* do T6SS (CUI et al., 2016). Em *E. coli* enteropatogênica, a ilha de patogenicidade LEE é reprimida por H-NS (BHAT et al., 2014). Assim, H-NS pode estar relacionada a virulência de diversas bactérias. Em *E. coli* enterohemorrágica, infecção de camundongos com mutante de *hns* levou a uma diminuição da taxa de sobrevivência e uma maior CFU no intestino (WAN et al., 2016). Visto a relação de H-NS com a expressão de efetores e ilhas de patogenicidade, seria interessante averiguar sua importância na virulência de *C. violaceum*.

Dentre os genes que são reprimidos por H-NS em C. violaceum, podemos destacar um grupo de genes que são ativados pelo sistema de QS CvilR, podendo indicar uma ativação indireta por meio do contra-silenciamento de H-NS por CviR. Mecanismo como este já foi descrito em Vibrio harveyi, no qual foi mostrado que 28 promotores são co-regulados por LuxR e H-NS, de forma que em ADC ocorre a maior ocupação de LuxR no promotor desligando H-NS do DNA e levando ao contrasilenciamento (CHAPARIAN et al., 2020). Mecanismo de contra-silenciamento vem sendo descrito em outras bactérias. Em Salmonella, foi demonstrado que o regulador SsrB ativa a expressão dos efetores sifA, sifB e sseJ por se ligar a região promotora desses genes e deslocar a repressão mediada por H-NS (WALTHERS et al., 2011). Nesta mesma bactéria, o regulador CsgD diretamente se liga ao promotor dos genes csgBA e leva ao contra-silenciamento desses genes por H-NS em alta densidade celular (NEWMAN et al., 2018). Embora a maioria dos genes tenham mostrado expressão aumentada nos mutantes H-NS, verificamos que mutação de ambas H-NS em C. violaceum também levou a diminuição da expressão dos genes presentes nas ilhas Cpi-1/1a, além de efetores secretados por esse T3SS e genes relacionados a motilidade por flagelo. Em Vibrio parahaemolyticus, foi descrito a ativação indireta de cpsQ e cpsA-J devido a desrepressão de scrABC (ZHANG et al., 2018) e a ativação indireta do regulador principal do QS OpaR (ZHANG et al., 2016).

Neste trabalho, mostramos que as H-NS de *C. violaceum* estão envolvidas na produção de violaceína e motilidade (Figura 25). Já foi demonstrado que H-NS

desempenha um papel importante na motilidade de outras espécies bacterianas. Por exemplo, em V. parahaemolyticus, H-NS reprime a motilidade agindo diretamente no gene lafA (WANG et al., 2018) e em E. coli, H-NS influencia a motilidade por meio de uma cascata regulatória (KIM e BLAIR, 2015). Aqui, mostramos que perda de H-NS leva a diminuição da expressão de genes do flagelo e consequentemente a diminuição da motilidade do tipo swimming de C. violaceum. Em V. parahaemolyticus, H-NS reprime a formação de biofilme e a síntese de c-di-GMP (XUE et al., 2022). Em C. violaceum, a formação de biofilme não foi afetada por mutação de H-NS, embora tenha sido observado aumento de rugosidade em placa, sugestivo de níveis aumentados de c-di-GMP (Figura 24B). Outro fenótipo visto para as H-NS foi o excesso de ferro intracelular e a diminuição dos níveis de sideróforos (Figura 24). O fenótipo de diminuição do sideróforo poderia ser explicado pela repressão do operon envolvido no metabolismo de açúcar CV_4018-23, uma vez que mutação pelo transposon desses genes levou ao aumento dos níveis de sideróforo e susceptibilidade ao excesso de ferro (Tabela 7 e 8). H-NS já foi implicada na homeostase de ferro em outras bactérias. Em E. coli, foi descrito que o mecanismo de ativação da ferritina FtnA é via contra-silenciamento de H-NS por Fur (NANDAL et al., 2010). Também em *E. coli* foi demostrado que H-NS regula a expressão dos genes cirA e fes envolvidos na homeostase de ferro (WHITE-ZIEGLER et al., 2007).

Nossos dados indicam que H-NS está relacionada à tolerância ao pH ácido e alta osmolaridade em *C. violaceum* (Figura 26). Trabalhos anteriores caracterizaram a importância de H-NS na resposta ao estresse ácido em outras bactérias. Em *E. coli,* mutação de *hns* aumenta a suscetibilidade ao estresse de pH ácido. Além disso, H-NS participa da cascata regulatória envolvida na resistência ao estresse ácido e confere resistência a condições de alta osmolaridade (HOMMAIS et al, 2001; KRIN et al., 2010; GAO et al., 2018). Alterações ambientais como temperatura, osmolaridade, pH, disponibilidade de ferro podem levar H-NS a reprimir ou ativar genes (HULTON et al., 1990). Em *V. vulnificus*, estresse nitrosativo e carência de ferro levam a ativação do operon *vvhBA* via contra-silenciamento de H-NS (CHOI et al., 2020). Em *E. coli,* foi demonstrado realocalização de H-NS dependente de fase em resposta ao choque hiperosmótico (RAFIEI et al., 2019). Outro mecanismo demonstrado foi que repressão por H-NS tem um papel na indução de RpoS em fase estacionária em condições de hiperosmolaridade (BARTH et al., 1995). Portanto, proteínas H-NS regulam múltiplos processos em bactérias.

6. CONCLUSÃO

Neste trabalho identificamos novos sistemas regulatórios envolvidos na homeostase de ferro em *Chromobacterium violaceum*. Caracterizamos uma cascata regulatória conectando o sistema de *quorum sensing* com a regulação da homeostase de ferro mediada por sideróforos e descrevemos o envolvimento de um fator de transcrição da família MarR e uma citocromo *bd* oxidase por ele regulada e de duas proteínas H-NS na tolerância ao ferro e a outros estresses.

As principais conclusões são:

 (i) Em *C. violaceum* há outros reguladores envolvidos na homeostase de ferro além de Fur, uma vez que a varredura de mutantes de transposon mostrou alteração dos níveis de sideróforos em mutantes de vários fatores de transcrição;

 (ii) O sistema de dois componentes AirSR está envolvido na homeostase de ferro mediada por sideróforos de *C. violaceum*, uma vez que mutação dos genes *airS* e *airR* levou ao aumento dos halos de sideróforos em placas PSA-CAS;

 (iii) O fator de transcrição VitR controla sideróforos, produção de violaceína e formação de biofilme em *C. violaceum*;

 (iv) VitR controla diferentes processos agindo como um repressor direto de vioS em uma cascata regulatória upstream ao sistema de QS CviIR;

(v) O sistema de QS CvilR regula a homeostase de ferro dependente de sideróforos em *C. violaceum*, visto que mutação dos genes *cvil* e *cviR* levaram ao aumento dos halos de sideróforos em placas PSA-CAS;

(vi) CviR regula processos clássicos do QS de forma dependente de Cvil em alta densidade celular e a captação de ferro/sideróforo de forma independente de Cvil em baixa densidade celular, como revelado por ensaios de RNAseq;

(vii) C. violaceum possui genes relacionados a sistemas regulatórios e metabolismo de açúcar envolvidos na tolerância ao ferro, identificados na varredura de mutantes de transposon em excesso de ferro.

(viii) O fator de transcrição da família MarR CV_3659 reprime de forma direta a expressão de seu próprio operon que codifica ainda uma citocromo *bd* oxidase do tipo CioAB (CV_3658-57);

(ix) A citocromo *bd* oxidase CV_3658-57 é necessária para a resistência de *C. violaceum* a vários metais, sulfeto e estresse oxidativo e nitrosativo, uma vez que mutação desses genes aumenta a susceptibilidade a esses estresses;

(x) As H-NS CV_1363 e CV_1243 silenciam a expressão de diversos genes em *C. violaceum*, com destaque para genes presentes em ilhas de patogenicidade. Como CV_1363 silencia a expressão de CV_1243, os efeitos de CV_1243 em fenótipos e regulação gênica só foram evidenciados com mutação de ambas H-NS;

(xi) Ambas H-NS estão envolvidas na homeostase de ferro de *C. violaceum*, uma vez que inserção do transposon em CV_1363 diminuiu a sobrevivência em excesso de ferro e mutação de ambas H-NS levou ao acúmulo de ferro intracelular, com aumento da susceptibilidade a estreptonigrina e diminuição dos halos de sideróforos; (xii) As H-NS controlam vários outros processos em *C. violaceum*, como produção de violaceína, motilidade e tolerância a pH ácido e hiperosmolaridade, como revelado por análises fenotípicas dos mutantes H-NS.

7. REFERÊNCIAS BIBLIOGRÁFICAS

AAGAARD, A., BRZEZINSKI, P. Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen. **FEBS Lett,** v. 494, n. 3, p. 157-60, 2001.

AFGAN, E., BAKER, D., BATUT, B., VAN DEN BEEK, M., BOUVIER, D., CECH, M., CHILTON, J., CLEMENTS, D., CORAOR, N., GRUNING, B. A., GUERLER, A., HILLMAN-JACKSON, J., HILTEMANN, S., JALILI, V., RASCHE, H., SORANZO, N., GOECKS, J., TAYLOR, J., NEKRUTENKO, A., BLANKENBERG, D. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. **Nucleic Acids Res,** v. 46, n. W1, p. W537-W544, 2018.

AL-ATTAR, S., YU, Y., PINKSE, M., HOESER, J., FRIEDRICH, T., BALD, D., DE VRIES, S. Cytochrome bd Displays Significant Quinol Peroxidase Activity. **Sci Rep**, v. 6, p. 27631, 2016.

ALVES, J. A., LEAL, F. C., PREVIATO-MELLO, M., DA SILVA NETO, J. F. A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in *Chromobacterium violaceum*. **Microbiol Spectr,** v. 10, n. 4, p. e0157622, 2022.

ALVES, J. A., PREVIATO-MELLO, M., BARROSO, K. C. M., KOIDE, T., DA SILVA NETO, J. F. The MarR family regulator OsbR controls oxidative stress response, anaerobic nitrate respiration, and biofilm formation in *Chromobacterium violaceum*. **BMC Microbiol**, v. 21, n. 1, p. 304, 2021.

ANDERS, S., PYL, P. T., HUBER, W. HTSeq--a Python framework to work with high-throughput sequencing data. **Bioinformatics**, v. 31, n. 2, p. 166-9, 2015.

ANDREWS, S. C., ROBINSON, A. K., RODRIGUEZ-QUINONES, F. Bacterial iron homeostasis. **FEMS Microbiol Rev,** v. 27, n. 2-3, p. 215-37, 2003.

APARICIO, O., GEISBERG, J. V., STRUHL, K. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences *in vivo*. **Curr Protoc Cell Biol**, v. Chapter 17, p. Unit 17.7, 2004.

ARANDA, P. S., LAJOIE, D. M., JORCYK, C. L. Bleach gel: a simple agarose gel for analyzing RNA quality. **Electrophoresis**, v. 33, n. 2, p. 366-9, 2012.

ARES, M. A., FERNANDEZ-VAZQUEZ, J. L., ROSALES-REYES, R., JARILLO-QUIJADA, M. D., VON BARGEN, K., TORRES, J., GONZALEZ-Y-MERCHAND, J. A., ALCANTAR-CURIEL, M. D., DE LA CRUZ, M. A. H-NS Nucleoid Protein Controls Virulence Features of *Klebsiella pneumoniae* by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol, v. 6, p. 13, 2016.

BAKSH, K. A., ZAMBLE, D. B. Allosteric control of metal-responsive transcriptional regulators in bacteria. **J Biol Chem,** v. 295, n. 6, p. 1673-1684, 2020.

BANOS, R. C., VIVERO, A., AZNAR, S., GARCIA, J., PONS, M., MADRID, C., JUAREZ, A. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. **PLoS Genet**, v. 5, n. 6, p. e1000513, 2009.

BARRAGAN, M. J., BLAZQUEZ, B., ZAMARRO, M. T., MANCHENO, J. M., GARCIA, J. L., DIAZ, E., CARMONA, M. BzdR, a repressor that controls the anaerobic catabolism of benzoate in *Azoarcus* sp. CIB, is the first member of a new subfamily of transcriptional regulators. **J Biol Chem**, v. 280, n. 11, p. 10683-94, 2005.

BARROSO, K. C. M., PREVIATO-MELLO, M., BATISTA, B. B., BATISTA, J. H., DA SILVA NETO, J. F. EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in *Chromobacterium violaceum*. Front Microbiol, v. 9, p. 2756, 2018.

BARTH, M., MARSCHALL, C., MUFFLER, A., FISCHER, D., HENGGE-ARONIS, R. Role for the histone-like protein H-NS in growth phase-dependent and osmotic regulation of sigma S and many sigma S-dependent genes in *Escherichia coli*. **J Bacteriol**, v. 177, n. 12, p. 3455-64, 1995.

BATISTA, B. B., SANTOS, R., RICCI-AZEVEDO, R., DA SILVA NETO, J. F. Production and Uptake of Distinct Endogenous Catecholate-Type Siderophores Are Required for Iron Acquisition and Virulence in *Chromobacterium violaceum*. Infect Immun, v. 87, n. 12, 2019.

BATISTA, J. H., DA SILVA NETO, J. F. *Chromobacterium violaceum* Pathogenicity: Updates and Insights from Genome Sequencing of Novel Chromobacterium Species. **Front Microbiol**, v. 8, p. 2213, 2017.

BATISTA, J. H., LEAL, F. C., FUKUDA, T. T. H., ALCOFORADO DINIZ, J., ALMEIDA, F., PUPO, M. T., DA SILVA NETO, J. F. Interplay between two quorum sensing-regulated pathways, violacein biosynthesis and VacJ/Yrb, dictates outer membrane vesicle biogenesis in *Chromobacterium violaceum*. **Environ Microbiol**, v. 22, n. 6, p. 2432-2442, 2020.

BEEBOUT, C. J., EBERLY, A. R., WERBY, S. H., REASONER, S. A., BRANNON, J. R., DE, S., FITZGERALD, M. J., HUGGINS, M. M., CLAYTON, D. B., CEGELSKI, L., HADJIFRANGISKOU, M. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic *Escherichia coli*. **mBio**, v. 10, n. 2, 2019.

BEEBOUT, C. J., ROBERTSON, G. L., REINFELD, B. I., BLEE, A. M., MORALES, G. H., BRANNON, J. R., CHAZIN, W. J., RATHMELL, W. K., RATHMELL, J. C., GAMA, V., HADJIFRANGISKOU, M. Uropathogenic *Escherichia coli* subverts mitochondrial metabolism to enable intracellular bacterial pathogenesis in urinary tract infection. **Nat Microbiol,** v. 7, n. 9, p. 1348-1360, 2022.

BENOMAR, S., EVANS, K. C., UNCKLESS, R. L., CHANDLER, J. R. Efflux Pumps in *Chromobacterium* Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. **Appl Environ Microbiol**, v. 85, n. 19, 2019.

BERTIN, P., HOMMAIS, F., KRIN, E., SOUTOURINA, O., TENDENG, C., DERZELLE, S., DANCHIN, A. H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. **Biochimie**, v. 83, n. 2, p. 235-41, 2001.

BEVERS, L. E., THEIL, E. C. Maxi- and mini-ferritins: minerals and protein nanocages. **Prog Mol Subcell Biol**, v. 52, p. 29-47, 2011.

BHAT, A. P., SHIN, M., CHOY, H. E. Identification of high-specificity H-NS binding site in *LEE5* promoter of enteropathogenic *Esherichia coli* (EPEC). **J Microbiol**, v. 52, n. 7, p. 626-9, 2014.

BILITEWSKI, U., BLODGETT, J. A. V., DUHME-KLAIR, A. K., DALLAVALLE, S., LASCHAT, S., ROUTLEDGE, A., SCHOBERT, R. Chemical and Biological Aspects of Nutritional Immunity-Perspectives for New Anti-Infectives that Target Iron Uptake Systems. **Angew Chem Int Ed Engl,** v. 56, n. 46, p. 14360-14382, 2017.

BOLGER, A. M., LOHSE, M., USADEL, B. Trimmomatic: a flexible trimmer for Illumina sequence data. **Bioinformatics**, v. 30, n. 15, p. 2114-20, 2014.

BORISOV, V. B., FORTE, E., DAVLETSHIN, A., MASTRONICOLA, D., SARTI, P., GIUFFRE, A. Cytochrome bd oxidase from *Escherichia coli* displays high catalase activity: an additional defense against oxidative stress. **FEBS Lett,** v. 587, n. 14, p. 2214-8, 2013.

BORISOV, V. B., GENNIS, R. B., HEMP, J., VERKHOVSKY, M. I. The cytochrome *bd* respiratory oxygen reductases. **Biochim Biophys Acta**, v. 1807, n. 11, p. 1398-413, 2011.

BRAUN V, HANTKE K. Recent insights into iron import by bacteria. **Curr. Opin. Chem.** Biol, v. 15, n. 2,p. 328-334, 2011. BRAUN, V., MAHREN, S. Transmembrane transcriptional control (surface signalling) of the *Escherichia coli* Fec type. **FEMS Microbiol Rev,** v. 29, n. 4, p. 673-84, 2005.

BREKASIS, D., PAGET, M. S. A novel sensor of NADH/NAD+ redox poise in *Streptomyces coelicolor* A3(2). **Embo j,** v. 22, n. 18, p. 4856-65, 2003.

BROWNING, D. F., BUSBY, S. J. Local and global regulation of transcription initiation in bacteria. **Nat Rev Microbiol,** v. 14, n. 10, p. 638-50, 2016.

BUSBY, S. J. W. Transcription activation in bacteria: ancient and modern. **Microbiology (Reading),** v. 165, n. 4, p. 386-395, 2019.

CALDERON, P. F., MORALES, E. H., ACUNA, L. G., FUENTES, D. N., GIL, F., PORWOLLIK, S., MCCLELLAND, M., SAAVEDRA, C. P., CALDERON, I. L. The small RNA RyhB homologs from *Salmonella typhimurium* participate in the response to S-nitrosoglutathione-induced stress. **Biochem Biophys Res Commun**, v. 450, n. 1, p. 641-5, 2014.

CARPENTER, B. M., WHITMIRE, J. M., MERRELL, D. S. This is not your mother's repressor: the complex role of *fur* in pathogenesis. **Infect Immun,** v. 77, n. 7, p. 2590-601, 2009.

CARROLL, C. S., MOORE, M. M. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. **Crit Rev Biochem Mol Biol,** v. 53, n. 4, p. 356-381, 2018.

CASSAT, J. E., SKAAR, E. P. Iron in infection and immunity. **Cell Host Microbe,** v. 13, n. 5, p. 509-519, 2013.

CASTANG, S., MCMANUS, H. R., TURNER, K. H., DOVE, S. L. H-NS family members function coordinately in an opportunistic pathogen. **Proc Natl Acad Sci U S A**, v. 105, n. 48, p. 18947-52, 2008.

CAUZ, A. C. G., CARRETERO, G. P. B., SARAIVA, G. K. V., PARK, P., MORTARA, L., CUCCOVIA, I. M., BROCCHI, M., GUEIROS-FILHO, F. J. Violacein Targets the Cytoplasmic Membrane of Bacteria. **ACS Infect Dis,** v. 5, n. 4, p. 539-549, 2019.

CHANDRANGSU, P., HELMANN, J. D. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in *Bacillus subtilis*. **PLoS Genet,** v. 12, n. 12, p. e1006515, 2016.

CHANDRANGSU, P., RENSING, C., HELMANN, J. D. Metal homeostasis and resistance in bacteria. **Nat Rev Microbiol,** v. 15, n. 6, p. 338-350, 2017.

CHAPALAIN, A., VIAL, L., LAPRADE, N., DEKIMPE, V., PERREAULT, J., DEZIEL, E. Identification of quorum sensing-controlled genes in *Burkholderia ambifaria*. **Microbiologyopen**, v. 2, n. 2, p. 226-42, 2013.

CHAPARIAN, R. R., TRAN, M. L. N., MILLER CONRAD, L. C., RUSCH, D. B., VAN KESSEL, J. C. Global H-NS counter-silencing by LuxR activates quorum sensing gene expression. **Nucleic Acids Res**, v. 48, n. 1, p. 171-183, 2020.

CHARBONNIER, M., GONZALEZ-ESPINOZA, G., KEHL-FIE, T. E., LALAOUNA, D. Battle for Metals: Regulatory RNAs at the Front Line. **Front Cell Infect Microbiol**, v. 12, p. 952948, 2022.

CHOI, E., KIM, H., LEE, H., NAM, D., CHOI, J., SHIN, D. The iron-sensing fur regulator controls expression timing and levels of *Salmonella* pathogenicity island 2 genes in the course of environmental acidification. **Infect Immun,** v. 82, n. 6, p. 2203-10, 2014.

CHOI, G., JANG, K. K., LIM, J. G., LEE, Z. W., IM, H., CHOI, S. H. The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the *vvhBA* operon in *Vibrio vulnificus*. **J Biol Chem,** v. 295, n. 16, p. 5350-5361, 2020.

CIANFANELLI, F. R., CUNRATH, O., BUMANN, D. Efficient dual-negative selection for bacterial genome editing. **BMC Microbiol**, v. 20, n. 1, p. 129, 2020.

COOK, G. M., LODER, C., SØBALLE, B., STAFFORD, G. P., MEMBRILLO-HERNÁNDEZ, J., POOLE, R. K. A factor produced by *Escherichia coli* K-12 inhibits the growth of *E. coli* mutants defective in the cytochrome bd quinol oxidase complex: enterochelin rediscovered. **Microbiology (Reading)**, v. 144 (Pt 12), p. 3297-3308, 1998.

CORBETT, D., GOLDRICK, M., FERNANDES, V. E., DAVIDGE, K., POOLE, R. K., ANDREW, P. W., CAVET, J., ROBERTS, I. S. *Listeria monocytogenes* Has Both Cytochrome bd-Type and Cytochrome aa (3)-Type Terminal Oxidases, Which Allow Growth at Different Oxygen Levels, and Both Are Important in Infection. **Infect Immun**, v. 85, n. 11, 2017.

COTTER, P. A., CHEPURI, V., GENNIS, R. B., GUNSALUS, R. P. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in *Escherichia coli* is regulated by oxygen, pH, and the fnr gene product. **J Bacteriol**, v. 172, n. 11, p. 6333-8, 1990.

CUI, S., XIAO, J., WANG, Q., ZHANG, Y. H-NS binding to evpB and evpC and

repressing T6SS expression in fish pathogen *Edwardsiella piscicida*. **Arch Microbiol**, v. 198, n. 7, p. 653-61, 2016.

CULVINER, P. H., GUEGLER, C. K., LAUB, M. T. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. **mBio**, v. 11, n. 2, 2020.

CULVINER, P. H., LAUB, M. T. Global Analysis of the *E. coli* Toxin MazF Reveals Widespread Cleavage of mRNA and the Inhibition of rRNA Maturation and Ribosome Biogenesis. **Mol Cell,** v. 70, n. 5, p. 868-880 e10, 2018.

CUNNINGHAM, L., PITT, M., WILLIAMS, H. D. The *cioAB* genes from *Pseudomonas aeruginosa* code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. **Mol Microbiol**, v. 24, n. 3, p. 579-91, 1997.

DA SILVA NETO, J. F., BRAZ, V. S., ITALIANI, V. C., MARQUES, M. V. Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alphaproteobacterium *Caulobacter crescentus*. **Nucleic Acids Res**, v. 37, n. 14, p. 4812-25, 2009.

DA SILVA NETO, J. F., NEGRETTO, C. C., NETTO, L. E. Analysis of the organic hydroperoxide response of *Chromobacterium violaceum* reveals that OhrR is a cys-based redox sensor regulated by thioredoxin. **PLoS One,** v. 7, n. 10, p. e47090, 2012.

DE ARAÚJO, H. L., MARTINS, B. P., VICENTE, A. M., LORENZETTI, A. P. R., KOIDE, T., MARQUES, M. V. Cold Regulation of Genes Encoding Ion Transport Systems in the Oligotrophic Bacterium *Caulobacter crescentus*. **Microbiol Spectr**, v. 9, n. 1, p. e0071021, 2021.

DE LIMA, V. M., BATISTA, B. B., DA SILVA NETO, J. F. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for *Chromobacterium violaceum* Virulence. **Front Cell Infect Microbiol**, v. 12, p. 873536, 2022.

DE SIQUEIRA, I. C., DIAS, J., RUF, H., RAMOS, E. A., MACIEL, E. A., ROLIM, A., LABUR, L., VASCONCELOS, L., SILVANY, C. *Chromobacterium violaceum* in siblings, Brazil. **Emerg Infect Dis,** v. 11, n. 9, p. 1443-5, 2005.

DE SOUZA, W., CARVALHO, B. D. S., LOPES-CENDES, I. Rqc: A Bioconductor Package for Quality Control of High-Throughput Sequencing Data. Journal of Statistical Software, v. 87, n. Code Snippet 2, 2018. DEGLI ESPOSTI, M., ROSAS-PÉREZ, T., SERVÍN-GARCIDUEÑAS, L. E., BOLAÑOS, L. M., ROSENBLUETH, M., MARTÍNEZ-ROMERO, E. Molecular Evolution of Cytochrome bd Oxidases Across Proteobacterial Genomes. **Genome Biol Evol**, v. 7, n. 3, p. 801-20, 2015.

DEJESUS, M. A., GERRICK, E. R., XU, W., PARK, S. W., LONG, J. E., BOUTTE, C. C., RUBIN, E. J., SCHNAPPINGER, D., EHRT, S., FORTUNE, S. M., SASSETTI, C. M., IOERGER, T. R. Comprehensive Essentiality Analysis of the *Mycobacterium tuberculosis* Genome via Saturating Transposon Mutagenesis. **mBio**, v. 8, n. 1, 2017.

DEOCHAND, D. K., GROVE, A. MarR family transcription factors: dynamic variations on a common scaffold. **Crit Rev Biochem Mol Biol,** v. 52, n. 6, p. 595-613, 2017.

DEVESCOVI, G., KOJIC, M., COVACEUSZACH, S., CÁMARA, M., WILLIAMS, P., BERTANI, I., SUBRAMONI, S., VENTURI, V. Negative Regulation of Violacein Biosynthesis in *Chromobacterium violaceum*. **Front Microbiol**, v. 8, p. 349, 2017.

DÍAZ PÉREZ, J. A., GARCÍA, J., RODRIGUEZ VILLAMIZAR, L. A. Sepsis by *Chromobacterium violaceum*: first case report from Colombia. **Braz J Infect Dis,** v. 11, n. 4, p. 441-2, 2007.

DILLON, S.C., DORMAN, C.J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. **Nat Rev Microbiol.** V. 8, n. 3, p. 185-195, 2010.

DORMAN, C. J. H-NS, the genome sentinel. **Nat Rev Microbiol,** v. 5, n. 2, p. 157-61, 2007.

DORMAN, C. J. H-NS: a universal regulator for a dynamic genome. **Nat Rev Microbiol**, v. 2, n. 5, p. 391-400, 2004.

DUC, K. M., KANG, B. G., LEE, C., PARK, H. J., PARK, Y. M., JOUNG, Y. H., BANG, I. S. The Small Protein CydX Is Required for Cytochrome bd Quinol Oxidase Stability and Function in *Salmonella enterica* Serovar Typhimurium: a Phenotypic Study. **J Bacteriol**, v. 202, n. 2, 2020.

DURAN, N., JUSTO, G. Z., DURAN, M., BROCCHI, M., CORDI, L., TASIC, L., CASTRO, G. R., NAKAZATO, G. Advances in *Chromobacterium violaceum* and properties of violacein-Its main secondary metabolite: A review. **Biotechnol Adv**, v. 34, n. 5, p. 1030-1045, 2016.

DURÁN, N., MENCK, C. F. *Chromobacterium violaceum*: a review of pharmacological and industiral perspectives. **Crit Rev Microbiol,** v. 27, n. 3, p. 201-22, 2001.

DURANTE-RODRIGUEZ, G., VALDERRAMA, J. A., MANCHENO, J. M., RIVAS, G., ALFONSO, C., ARIAS-PALOMO, E., LLORCA, O., GARCIA, J. L., DIAZ, E., CARMONA, M. Biochemical characterization of the transcriptional regulator BzdR from *Azoarcus* sp. CIB. **J Biol Chem**, v. 285, n. 46, p. 35694-705, 2010.

EDWARDS, S. E., LODER, C. S., WU, G., CORKER, H., BAINBRIDGE, B. W., HILL, S., POOLE, R. K. Mutation of cytochrome bd quinol oxidase results in reduced stationary phase survival, iron deprivation, metal toxicity and oxidative stress in *Azotobacter vinelandii*. **FEMS Microbiol Lett**, v. 185, n. 1, p. 71-7, 2000.

EICKHOFF, M. J., BASSLER, B. L. *Vibrio fischeri* siderophore production drives competitive exclusion during dual-species growth. **Mol Microbiol**, v. 114, n. 2, p. 244-261, 2020.

EICKHOFF, M. J., FEI, C., CONG, J. P., BASSLER, B. L. LuxT Is a Global Regulator of Low-Cell-Density Behaviors, Including Type III Secretion, Siderophore Production, and Aerolysin Production, in *Vibrio harveyi*. **mBio**, v. 13, n. 1, p. e0362121, 2022.

EIJKELKAMP, B. A., STROEHER, U. H., HASSAN, K. A., ELBOURNE, L. D., PAULSEN, I. T., BROWN, M. H. H-NS plays a role in expression of *Acinetobacter baumannii* virulence features. **Infect Immun,** v. 81, n. 7, p. 2574-83, 2013.

FARALDO-GOMEZ, J. D., SANSOM, M. S. Acquisition of siderophores in gram-negative bacteria. **Nat Rev Mol Cell Biol**, v. 4, n. 2, p. 105-16, 2003.

FAXEN, K., SALOMONSSON, L., ADELROTH, P., BRZEZINSKI, P. Inhibition of proton pumping by zinc ions during specific reaction steps in cytochrome c oxidase. **Biochim Biophys Acta,** v. 1757, n. 5-6, p. 388-94, 2006.

FILLAT, M. F. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. **Arch Biochem Biophys**, v. 546, p. 41-52, 2014.

FORTE, E., BORISOV, V. B., DAVLETSHIN, A., MASTRONICOLA, D., SARTI, P., GIUFFRÈ, A. Cytochrome *bd* Oxidase and Hydrogen Peroxide Resistance in *Mycobacterium tuberculosis*. **mBio**, v. 4, n. 6, p. e01006-13, 2013.

FRAWLEY, E. R., CROUCH, M. L., BINGHAM-RAMOS, L. K., ROBBINS, H. F., WANG, W., WRIGHT, G. D., FANG, F. C. Iron and citrate export by a major

facilitator superfamily pump regulates metabolism and stress resistance in *Salmonella* Typhimurium. **Proc Natl Acad Sci U S A,** v. 110, n. 29, p. 12054-9, 2013.

FRAWLEY, E. R., FANG, F. C. The ins and outs of bacterial iron metabolism. **Mol Microbiol**, v. 93, n. 4, p. 609-16, 2014.

FU, H. A., IUCHI, S., LIN, E. C. The requirement of ArcA and Fnr for peak expression of the *cyd* operon in *Escherichia coli* under microaerobic conditions. **Mol Gen Genet,** v. 226, n. 1-2, p. 209-13, 1991.

GAO, X., YANG, X., LI, J., ZHANG, Y., CHEN, P., LIN, Z. Engineered global regulator H-NS improves the acid tolerance of *E. coli*. **Microb Cell Fact**, v. 17, n. 1, p. 118, 2018.

GIUFFRE, A., BORISOV, V. B., ARESE, M., SARTI, P., FORTE, E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. **Biochim Biophys Acta,** v. 1837, n. 7, p. 1178-87, 2014.

GOBER, J. W., SHAPIRO, L. A developmentally regulated *Caulobacter* flagellar promoter is activated by 3' enhancer and IHF binding elements. **Mol Biol Cell**, v. 3, n. 8, p. 913-26, 1992.

GONG, Z., LI, H., CAI, Y., STOJKOSKA, A., XIE, J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. **J Cell Physiol,** v. 234, n. 11, p. 19237-19248, 2019.

GOODALL, E. C. A., ROBINSON, A., JOHNSTON, I. G., JABBARI, S., TURNER, K. A., CUNNINGHAM, A. F., LUND, P. A., COLE, J. A., HENDERSON, I. R. The Essential Genome of *Escherichia coli* K-12. **mBio**, v. 9, n. 1, p. e02096-17, 2018.

GRAINGER, D. C. Structure and function of bacterial H-NS protein. **Biochem Soc Trans,** v. 44, n. 6, p. 1561-1569, 2016.

GUAN, G., PINOCHET-BARROS, A., GABALLA, A., PATEL, S. J., ARGUELLO, J. M., HELMANN, J. D. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects *Bacillus subtilis* against iron intoxication. **Mol Microbiol**, v. 98, n. 4, p. 787-803, 2015.

GULICK, A. M. Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens. **Nat Prod Rep,** v. 34, n. 8, p. 981-1009, 2017.

HANAHAN, D. Studies on transformation of *Escherichia coli* with plasmids. J **Mol Biol**, v. 166, n. 4, p. 557-80, 1983.

HANTKE, K. Regulation of ferric iron transport in *Escherichia coli* K12: isolation of a constitutive mutant. **Mol Gen Genet**, v. 182, n. 2, p. 288-92, 1981.

HAO, Z., LOU, H., ZHU, R., ZHU, J., ZHANG, D., ZHAO, B. S., ZENG, S., CHEN, X., CHAN, J., HE, C., CHEN, P. R. The multiple antibiotic resistance regulator MarR is a copper sensor in *Escherichia coli*. **Nat Chem Biol**, v. 10, n. 1, p. 21-8, 2014.

HARMS, A., LIESCH, M., KORNER, J., QUEBATTE, M., ENGEL, P., DEHIO, C. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of *Bartonella*. **PLoS Genet**, v. 13, n. 10, p. e1007077, 2017.

HEALY, C., MUNOZ-WOLF, N., STRYDOM, J., FAHERTY, L., WILLIAMS, N. C., KENNY, S., DONNELLY, S. C., CLOONAN, S. M. Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. **Respir Res**, v. 22, n. 1, p. 133, 2021.

HIBBING, M. E., FUQUA, C. Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of *Agrobacterium tumefaciens*. **J Bacteriol**, v. 193, n. 14, p. 3461-72, 2011.

HOLYOAKE, L. V., HUNT, S., SANGUINETTI, G., COOK, G. M., HOWARD, M. J., ROWE, M. L., POOLE, R. K., SHEPHERD, M. CydDC-mediated reductant export in *Escherichia coli* controls the transcriptional wiring of energy metabolism and combats nitrosative stress. **Biochem J**, v. 473, n. 6, p. 693-701, 2016.

HOMMAIS, F., KRIN, E., LAURENT-WINTER, C., SOUTOURINA, O., MALPERTUY, A., LE CAER, J. P., DANCHIN, A., BERTIN, P. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. **Mol Microbiol**, v. 40, n. 1, p. 20-36, 2001.

HOOD, M. I., SKAAR, E. P. Nutritional immunity: transition metals at the pathogen-host interface. **Nat Rev Microbiol**, v. 10, n. 8, p. 525-37, 2012.

HULTON, C. S., SEIRAFI, A., HINTON, J. C., SIDEBOTHAM, J. M., WADDELL, L., PAVITT, G. D., OWEN-HUGHES, T., SPASSKY, A., BUC, H., HIGGINS, C. F. Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. **Cell**, v. 63, n. 3, p. 631-42, 1990.

HUTTENER, M., PAYTUBI, S., JUAREZ, A. Success in incorporating horizontally transferred genes: the H-NS protein. **Trends Microbiol**, v. 23, n. 2, p. 67-9, 2015.

IMLAY, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. **Nat Rev Microbiol**, v. 11, n. 7, p. 443-54, 2013.

JACOBS, M. A., ALWOOD, A., THAIPISUTTIKUL, I., SPENCER, D.,

HAUGEN, E., ERNST, S., WILL, O., KAUL, R., RAYMOND, C., LEVY, R., CHUN-RONG, L., GUENTHNER, D., BOVEE, D., OLSON, M. V., MANOIL, C. Comprehensive transposon mutant library of *Pseudomonas aeruginosa*. **Proc Natl Acad Sci U S A,** v. 100, n. 24, p. 14339-44, 2003.

JAVVADI, S., PANDEY, S. S., MISHRA, A., PRADHAN, B. B., CHATTERJEE, S. Bacterial cyclic beta-(1,2)-glucans sequester iron to protect against iron-induced toxicity. **EMBO Rep,** v. 19, n. 1, p. 172-186, 2018.

JIN, Z., LI, J., NI, L., ZHANG, R., XIA, A., JIN, F. Conditional privatization of a public siderophore enables *Pseudomonas aeruginosa* to resist cheater invasion. **Nat Commun**, v. 9, n. 1, p. 1383, 2018.

JOHNSON, J. G., GADDY, J. A., DIRITA, V. J. The PAS Domain-Containing Protein HeuR Regulates Heme Uptake in *Campylobacter jejuni*. **mBio**, v. 7, n. 6, 2016.

JONES-CARSON, J., HUSAIN, M., LIU, L., ORLICKY, D. J., VAZQUEZ-TORRES, A. Cytochrome bd-Dependent Bioenergetics and Antinitrosative Defenses in *Salmonella* Pathogenesis. **mBio**, v. 7, n. 6, 2016.

JÜNEMANN, S. Cytochrome bd terminal oxidase. **Biochim Biophys Acta,** v. 1321, n. 2, p. 107-27, 1997.

KAILA, V.R.I., WIKSTRÖM, M. Architecture of bacterial respiratory chains. **Nat Rev Microbiol.** V.19, n. 5, p. 319-330, 2021.

KALAFATIS, M., SLAUCH, J. M. Long-Distance Effects of H-NS Binding in the Control of *hilD* Expression in the *Salmonella* SPI1 Locus. **J Bacteriol**, v. 203, n. 21, p. e0030821, 2021.

KALINDAMAR, S., LU, J., ABDELHAMED, H., TEKEDAR, H. C., LAWRENCE, M. L., KARSI, A. Transposon mutagenesis and identification of mutated genes in growth-delayed *Edwardsiella ictaluri*. **BMC Microbiol**, v. 19, n. 1, p. 55, 2019.

KARLINSEY, J. E., STEPIEN, T. A., MAYHO, M., SINGLETARY, L. A., BINGHAM-RAMOS, L. K., BREHM, M. A., GREINER, D. L., SHULTZ, L. D., GALLAGHER, L. A., BAWN, M., KINGSLEY, R. A., LIBBY, S. J., FANG, F. C. Genomewide Analysis of *Salmonella enterica* serovar Typhi in Humanized Mice Reveals Key Virulence Features. **Cell Host Microbe,** v. 26, n. 3, p. 426-434.e6, 2019.

KASHYAP, D. R., KOWALCZYK, D. A., SHAN, Y., YANG, C. K., GUPTA, D., DZIARSKI, R. Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in *Escherichia coli.* **Sci Rep,** v. 10, n. 1, p. 1993, 2020.

KHASHEII, B., MAHMOODI, P., MOHAMMADZADEH, A. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. **Microbiol Res,** v. 250, p. 126790, 2021.

KIM, D., PAGGI, J. M., PARK, C., BENNETT, C., SALZBERG, S. L. Graphbased genome alignment and genotyping with HISAT2 and HISAT-genotype. **Nat Biotechnol**, v. 37, n. 8, p. 907-915, 2019.

KIM, E. A., BLAIR, D. F. Function of the Histone-Like Protein H-NS in Motility of *Escherichia coli*: Multiple Regulatory Roles Rather than Direct Action at the Flagellar Motor. **J Bacteriol**, v. 197, n. 19, p. 3110-20, 2015.

KIM, Y., ROE, J. H., PARK, J. H., CHO, Y. J., LEE, K. L. Regulation of iron homeostasis by peroxide-sensitive CatR, a Fur-family regulator in *Streptomyces coelicolor*. **J Microbiol**, v. 59, n. 12, p. 1083-1091, 2021.

KNIPPEL, R. J., WEXLER, A. G., MILLER, J. M., BEAVERS, W. N., WEISS, A., DE CRECY-LAGARD, V., EDMONDS, K. A., GIEDROC, D. P., SKAAR, E. P. *Clostridioides difficile* Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. **Cell Host Microbe**, v. 28, n. 3, p. 411-421 e6, 2020.

KORSHUNOV, S., IMLAY, K. R., IMLAY, J. A. The cytochrome bd oxidase of *Escherichia coli* prevents respiratory inhibition by endogenous and exogenous hydrogen sulfide. **Mol Microbiol**, v. 101, n. 1, p. 62-77, 2016.

KREAMER, N. N., COSTA, F., NEWMAN, D. K. The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. **mBio**, v. 6, n. 2, p. e02549, 2015.

KREAMER, N. N., WILKS, J. C., MARLOW, J. J., COLEMAN, M. L., NEWMAN, D. K. BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in *Pseudomonas aeruginosa*. **J Bacteriol**, v. 194, n. 5, p. 1195-204, 2012.

KREWULAK, K. D., VOGEL, H. J. Structural biology of bacterial iron uptake. **Biochim Biophys Acta**, v. 1778, n. 9, p. 1781-804, 2008.

KRIN, E., DANCHIN, A., SOUTOURINA, O. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in *Escherichia coli*. **BMC Microbiol**, v. 10, p. 273, 2010.

KUMAR, M. R. *Chromobacterium violaceum*: A rare bacterium isolated from a wound over the scalp. **Int J Appl Basic Med Res,** v. 2, n. 1, p. 70-2, 2012.

LANDICK, R., WADE, J. T., GRAINGER, D. C. H-NS and RNA polymerase: a

love-hate relationship? Curr Opin Microbiol, v. 24, p. 53-9, 2015.

LANGMEAD, B., SALZBERG, S. L. Fast gapped-read alignment with Bowtie 2. **Nat Methods,** v. 9, n. 4, p. 357-9, 2012.

LANGMEAD, B., TRAPNELL, C., POP, M., SALZBERG, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. **Genome Biol**, v. 10, n. 3, p. R25, 2009.

LAU, C. K., KREWULAK, K. D., VOGEL, H. J. Bacterial ferrous iron transport: the Feo system. **FEMS Microbiol Rev,** v. 40, n. 2, p. 273-98, 2016.

LAWRENCE, M., HUBER, W., PAGES, H., ABOYOUN, P., CARLSON, M., GENTLEMAN, R., MORGAN, M. T., CAREY, V. J. Software for computing and annotating genomic ranges. **PLoS Comput Biol,** v. 9, n. 8, p. e1003118, 2013.

LEE, J. W., HELMANN, J. D. Functional specialization within the Fur family of metalloregulators. **Biometals**, v. 20, n. 3-4, p. 485-99, 2007.

LIAO, J., SHEN, D., LIN, L., CHEN, H., JIN, Y., CHOU, S. H., YU, X. Q., LI, T., QIAN, G. Bacterial quorum sensing quenching activity of *Lysobacter* leucyl aminopeptidase acts by interacting with autoinducer synthase. **Comput Struct Biotechnol J**, v. 19, p. 6179-6190, 2021.

LIMA-BITTENCOURT, C. I., ASTOLFI-FILHO, S., CHARTONE-SOUZA, E., SANTOS, F. R., NASCIMENTO, A. M. Analysis of *Chromobacterium sp.* natural isolates from different Brazilian ecosystems. **BMC Microbiol**, v. 7, p. 58, 2007.

LINDQVIST, A., MEMBRILLO-HERNAŃDEZ, J., POOLE, R. K., COOK, G. M. Roles of respiratory oxidases in protecting *Escherichia coli* K12 from oxidative stress. **Antonie Van Leeuwenhoek,** v. 78, n. 1, p. 23-31, 2000.

LITTLE, A. S., OKKOTSU, Y., REINHART, A. A., DAMRON, F. H., BARBIER, M., BARRETT, B., OGLESBY-SHERROUSE, A. G., GOLDBERG, J. B., CODY, W. L., SCHURR, M. J., VASIL, M. L., SCHURR, M. J. *Pseudomonas aeruginosa* AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. **mBio**, v. 9, n. 1, 2018.

LIU, Y., ZENG, H., HOU, Y., LI, Z., LI, L., SONG, X., DING, J., SHAO, F., XU, Y. Calmodulin Binding Activates *Chromobacterium* CopC Effector to ADP-Riboxanate Host Apoptotic Caspases. **mBio**, v. 13, n. 3, p. e0069022, 2022.

LIVAK, K. J., SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. **Methods,** v. 25, n. 4, p. 402-8, 2001.

LLAMAS, M. A., IMPERI, F., VISCA, P., LAMONT, I. L. Cell-surface signaling in *Pseudomonas*: stress responses, iron transport, and pathogenicity. **FEMS Microbiol Rev,** v. 38, n. 4, p. 569-97, 2014.

LOO, C., KOIRALA, P., SMITH, N. C., EVANS, K. C., BENOMAR, S., PARISI, I. R., OLLER, A., CHANDLER, J. R. Cross-species activation of hydrogen cyanide production by a promiscuous quorum-sensing receptor promotes Chromobacterium subtsugae competition in a dual-species model. **Microbiology (Reading),** v. 169, n. 2, 2023.

LOVE, M. I., HUBER, W., ANDERS, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. **Genome Biol**, v. 15, n. 12, p. 550, 2014.

LOZANO, G. L., GUAN, C., CAO, Y., BORLEE, B. R., BRODERICK, N. A., STABB, E. V., HANDELSMAN, J. A Chemical Counterpunch: *Chromobacterium violaceum* ATCC 31532 Produces Violacein in Response to Translation-Inhibiting Antibiotics. **mBio**, v. 11, n. 3, 2020.

LUCCHINI, S., ROWLEY, G., GOLDBERG, M. D., HURD, D., HARRISON, M., HINTON, J. C. H-NS mediates the silencing of laterally acquired genes in bacteria. **PLoS Pathog**, v. 2, n. 8, p. e81, 2006.

MALTEZ, V. I., TUBBS, A. L., COOK, K. D., AACHOUI, Y., FALCONE, E. L., HOLLAND, S. M., WHITMIRE, J. K., MIAO, E. A. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium. **Immunity**, v. 43, n. 5, p. 987-97, 2015.

MARCEL, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. **EMBnet.journal**, [S.I.], v. 17, n. 1, p. pp. 10-12, may 2011.

MASON, M. G., SHEPHERD, M., NICHOLLS, P., DOBBIN, P. S., DODSWORTH, K. S., POOLE, R. K., COOPER, C. E. Cytochrome bd confers nitric oxide resistance to *Escherichia coli*. **Nat Chem Biol**, v. 5, n. 2, p. 94-6, 2009.

MASSÉ, E., GOTTESMAN, S. A small RNA regulates the expression of genes involved in iron metabolism in *Escherichia coli*. **Proc Natl Acad Sci U S A**, v. 99, n. 7, p. 4620-5, 2002.

MCCLEAN, K. H., WINSON, M. K., FISH, L., TAYLOR, A., CHHABRA, S. R., CAMARA, M., DAYKIN, M., LAMB, J. H., SWIFT, S., BYCROFT, B. W., STEWART, G., WILLIAMS, P. Quorum sensing and *Chromobacterium violaceum*: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. **Microbiology (Reading),** v. 143 (Pt 12), p. 3703-3711, 1997.

MCROSE, D. L., BAARS, O., SEYEDSAYAMDOST, M. R., MOREL, F. M. M. Quorum sensing and iron regulate a two-for-one siderophore gene cluster in *Vibrio harveyi*. **Proc Natl Acad Sci U S A**, v. 115, n. 29, p. 7581-7586, 2018.

MCROSE, D. L., SEYEDSAYAMDOST, M. R., MOREL, F. M. M. Multiple siderophores: bug or feature? **J Biol Inorg Chem,** v. 23, n. 7, p. 983-993, 2018.

MEJIA-ALMONTE, C., BUSBY, S. J. W., WADE, J. T., VAN HELDEN, J., ARKIN, A. P., STORMO, G. D., EILBECK, K., PALSSON, B. O., GALAGAN, J. E., COLLADO-VIDES, J. Redefining fundamental concepts of transcription initiation in bacteria. **Nat Rev Genet,** v. 21, n. 11, p. 699-714, 2020.

MIETHKE, M., MARAHIEL, M. A. Siderophore-based iron acquisition and pathogen control. **Microbiol Mol Biol Rev,** v. 71, n. 3, p. 413-51, 2007.

MIKI, T., AKIBA, K., IGUCHI, M., DANBARA, H., OKADA, N. The *Chromobacterium violaceum* type III effector CopE, a guanine nucleotide exchange factor for Rac1 and Cdc42, is involved in bacterial invasion of epithelial cells and pathogenesis. **Mol Microbiol**, v. 80, n. 5, p. 1186-203, 2011.

MIKI, T., IGUCHI, M., AKIBA, K., HOSONO, M., SOBUE, T., DANBARA, H., OKADA, N. *Chromobacterium* pathogenicity island 1 type III secretion system is a major virulence determinant for *Chromobacterium violaceum*-induced cell death in hepatocytes. **Mol Microbiol,** v. 77, n. 4, p. 855-72, 2010.

MILLS, D. A., SCHMIDT, B., HISER, C., WESTLEY, E., FERGUSON-MILLER, S. Membrane potential-controlled inhibition of cytochrome c oxidase by zinc. J Biol Chem, v. 277, n. 17, p. 14894-901, 2002.

MION, S., CARRIOT, N., LOPEZ, J., PLENER, L., ORTALO-MAGNE, A., CHABRIERE, E., CULIOLI, G., DAUDE, D. Disrupting quorum sensing alters social interactions in *Chromobacterium violaceum*. **NPJ Biofilms Microbiomes,** v. 7, n. 1, p. 40, 2021.

MOROHOSHI, T., FUKAMACHI, K., KATO, M., KATO, N., IKEDA, T. Regulation of the violacein biosynthetic gene cluster by acylhomoserine lactonemediated quorum sensing in *Chromobacterium violaceum* ATCC 12472. **Biosci Biotechnol Biochem,** v. 74, n. 10, p. 2116-9, 2010.

MOROHOSHI, T., KATO, M., FUKAMACHI, K., KATO, N., IKEDA, T. Nacylhomoserine lactone regulates violacein production in *Chromobacterium violaceum* type strain ATCC 12472. FEMS Microbiol Lett, v. 279, n. 1, p. 124-30, 2008.

MUKHERJEE, S., BASSLER, B. L. Bacterial quorum sensing in complex and dynamically changing environments. **Nat Rev Microbiol**, v. 17, n. 6, p. 371-382, 2019.

MUKHERJEE, S., MOUSTAFA, D. A., STERGIOULA, V., SMITH, C. D., GOLDBERG, J. B., BASSLER, B. L. The PqsE and RhIR proteins are an autoinducer synthase-receptor pair that control virulence and biofilm development in *Pseudomonas aeruginosa*. **Proc Natl Acad Sci U S A**, v. 115, n. 40, p. E9411-E9418, 2018.

MUKHERJEE, S., MOUSTAFA, D., SMITH, C. D., GOLDBERG, J. B., BASSLER, B. L. The RhIR quorum-sensing receptor controls *Pseudomonas aeruginosa* pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. **PLoS Pathog**, v. 13, n. 7, p. e1006504, 2017.

NANDAL, A., HUGGINS, C. C., WOODHALL, M. R., MCHUGH, J., RODRÍGUEZ-QUIÑONES, F., QUAIL, M. A., GUEST, J. R., ANDREWS, S. C. Induction of the ferritin gene (*ftnA*) of *Escherichia coli* by Fe(2+)-Fur is mediated by reversal of H-NS silencing and is RyhB independent. **Mol Microbiol,** v. 75, n. 3, p. 637-57, 2010.

NAVARRE, W. W., MCCLELLAND, M., LIBBY, S. J., FANG, F. C. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. **Genes Dev**, v. 21, n. 12, p. 1456-71, 2007.

NEWMAN, S. L., WILL, W. R., LIBBY, S. J., FANG, F. C. The curli regulator CsgD mediates stationary phase counter-silencing of *csgBA* in *Salmonella* Typhimurium. **Mol Microbiol**, v. 108, n. 1, p. 101-114, 2018.

OGLESBY-SHERROUSE, A. G., MURPHY, E. R. Iron-responsive bacterial small RNAs: variations on a theme. **Metallomics**, v. 5, n. 4, p. 276-86, 2013.

OKSHEVSKY, M., LOUW, M. G., LAMELA, E. O., NILSSON, M., TOLKER-NIELSEN, T., MEYER, R. L. A transposon mutant library of *Bacillus cereus* ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. **Microbiologyopen**, v. 7, n. 2, p. e00552, 2018.

OSHIMA, T., ISHIKAWA, S., KUROKAWA, K., AIBA, H., OGASAWARA, N. *Escherichia coli* histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. **DNA Res**, v. 13, n. 4, p. 141-53, 2006.

PALMER, L. D., SKAAR, E. P. Transition Metals and Virulence in Bacteria. Annu Rev Genet, v. 50, p. 67-91, 2016. PAN, Y., LIANG, F., LI, R. J., QIAN, W. MarR-Family Transcription Factor HpaR Controls Expression of the *vgrR-vgrS* Operon of *Xanthomonas campestris* pv. *campestris*. **Mol Plant Microbe Interact**, v. 31, n. 3, p. 299-310, 2018.

PANDEY, S. S., PATNANA, P. K., LOMADA, S. K., TOMAR, A., CHATTERJEE, S. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen *Xanthomonas*. **PLoS Pathog**, v. 12, n. 11, p. e1006019, 2016.

PAPENFORT, K., BASSLER, B. L. Quorum sensing signal-response systems in Gram-negative bacteria. **Nat Rev Microbiol**, v. 14, n. 9, p. 576-88, 2016.

PARK, H., PARK, S., YANG, Y. H., CHOI, K. Y. Microbial synthesis of violacein pigment and its potential applications. **Crit Rev Biotechnol**, v. 41, n. 6, p. 879-901, 2021.

PATEL, S. J., LEWIS, B. E., LONG, J. E., NAMBI, S., SASSETTI, C. M., STEMMLER, T. L., ARGUELLO, J. M. Fine-tuning of Substrate Affinity Leads to Alternative Roles of *Mycobacterium tuberculosis* Fe2+-ATPases. **J Biol Chem**, v. 291, n. 22, p. 11529-39, 2016.

PENG, T., TAO, X., XIA, Z., HU, S., XUE, J., ZHU, Q., PAN, X., ZHANG, Q., LI, S. Pathogen hijacks programmed cell death signaling by arginine ADPR-deacylization of caspases. **Mol Cell,** v. 82, n. 10, p. 1806-1820 e8, 2022.

PI, H., HELMANN, J. D. Ferrous iron efflux systems in bacteria. **Metallomics**, v. 9, n. 7, p. 840-851, 2017.

PI, H., PATEL, S. J., ARGUELLO, J. M., HELMANN, J. D. The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. **Mol Microbiol**, v. 100, n. 6, p. 1066-79, 2016.

POOLE, R. K., WILLIAMS, H. D., DOWNIE, J. A., GIBSON, F. Mutations affecting the cytochrome d-containing oxidase complex of *Escherichia coli* K12: identification and mapping of a fourth locus, *cydD*. **J Gen Microbiol**, v. 135, n. 7, p. 1865-74, 1989.

POPAT, R., HARRISON, F., DA SILVA, A. C., EASTON, S. A., MCNALLY, L., WILLIAMS, P., DIGGLE, S. P. Environmental modification via a quorum sensing molecule influences the social landscape of siderophore production. **Proc Biol Sci**, v. 284, n. 1852, 2017.

PORCHERON, G., DOZOIS, C. M. Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. **Vet Microbiol**,

v. 179, n. 1-2, p. 2-14, 2015.

PREVIATO-MELLO, M., MEIRELES, D. A., NETTO, L. E. S., DA SILVA NETO, J. F. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in *Chromobacterium violaceum*. Infect Immun, v. 85, n. 8, 2017.

PRIETO, A., BERNABEU, M., FALGENHAUER, L., CHAKRABORTY, T., HÜTTENER, M., JUÁREZ, A. Overexpression of the third H-NS paralogue H-NS2 compensates fitness loss in *hns* mutants of the enteroaggregative *Escherichia coli* strain 042. **Scientific Reports,** v. 10, n. 1, p. 18131, 2020.

RAFIEI, N., CORDOVA, M., NAVARRE, W. W., MILSTEIN, J. N. Growth Phase-Dependent Chromosome Condensation and Heat-Stable Nucleoid-Structuring Protein Redistribution in *Escherichia coli* under Osmotic Stress. **J Bacteriol**, v. 201, n. 23, 2019.

RAMIREZ, F., RYAN, D. P., GRUNING, B., BHARDWAJ, V., KILPERT, F., RICHTER, A. S., HEYNE, S., DUNDAR, F., MANKE, T. deepTools2: a next generation web server for deep-sequencing data analysis. **Nucleic Acids Res**, v. 44, n. W1, p. W160-5, 2016.

REYES-CABALLERO, H., GUERRA, A. J., JACOBSEN, F. E., KAZMIERCZAK, K. M., COWART, D., KOPPOLU, U. M., SCOTT, R. A., WINKLER, M. E., GIEDROC, D. P. The metalloregulatory zinc site in *Streptococcus pneumoniae* AdcR, a zinc-activated MarR family repressor. **J Mol Biol,** v. 403, n. 2, p. 197-216, 2010.

RICHARD, K.R., LOVVORN, J.J., OLIVER, S.E., ROSS, S.A., BENNER, K.W., KONG, M.Y. Chromobacterium Violaceum Sepsis: Rethinking Conventional Therapy to Improve Outcome. Am J Case Rep. v. 16, p. 740-744, 2015.

ROBERTS, R. C., TOOCHINDA, C., AVEDISSIAN, M., BALDINI, R. L., GOMES, S. L., SHAPIRO, L. Identification of a *Caulobacter crescentus* operon encoding *hrcA*, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. **J Bacteriol**, v. 178, n. 7, p. 1829-41, 1996.

RODEN, J. A., WELLS, D. H., CHOMEL, B. B., KASTEN, R. W., KOEHLER, J. E. Hemin binding protein C is found in outer membrane vesicles and protects *Bartonella henselae* against toxic concentrations of hemin. **Infect Immun,** v. 80, n. 3, p. 929-42, 2012.

RODGERS, D., LE, C., PIMENTEL, C., TUTTOBENE, M. R., SUBILS, T.,

ESCALANTE, J., NISHIMURA, B., VESCOVI, E. G., SIEIRA, R., BONOMO, R. A., TOLMASKY, M. E., RAMIREZ, M. S. Histone-like nucleoid-structuring protein (H-NS) regulatory role in antibiotic resistance in *Acinetobacter baumannii*. **Sci Rep,** v. 11, n. 1, p. 18414, 2021.

ROGER, M., CASTELLE, C., GUIRAL, M., INFOSSI, P., LOJOU, E., GIUDICI-ORTICONI, M. T., ILBERT, M. Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in *Acidithiobacillus ferrooxidans*. **Biochem Soc Trans**, v. 40, n. 6, p. 1324-9, 2012.

RONZHEIMER, S., WARMBOLD, B., ARNHOLD, C., BREMER, E. The GbsR Family of Transcriptional Regulators: Functional Characterization of the OpuAR Repressor. **Front Microbiol**, v. 9, p. 2536, 2018.

ROSS-GILLESPIE, A., DUMAS, Z., KÜMMERLI, R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in *Pseudomonas aeruginosa*. **J Evol Biol**, v. 28, n. 1, p. 29-39, 2015.

RUDOLPH, G., HENNECKE, H., FISCHER, H. M. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. **FEMS Microbiol Rev,** v. 30, n. 4, p. 631-48, 2006.

RUNGRASSAMEE, W., RYAN, K. C., MARONEY, M. J., POMPOSIELLO, P. J. The PqrR transcriptional repressor of *Pseudomonas aeruginosa* transduces redox signals via an iron-containing prosthetic group. **J Bacteriol**, v. 191, n. 21, p. 6709-21, 2009.

SAINI, V., CHINTA, K. C., REDDY, V. P., GLASGOW, J. N., STEIN, A., LAMPRECHT, D. A., RAHMAN, M. A., MACKENZIE, J. S., TRUEBODY, B. E., ADAMSON, J. H., KUNOTA, T. T. R., BAILEY, S. M., MOELLERING, D. R., LANCASTER, J. R., JR., STEYN, A. J. C. Hydrogen sulfide stimulates *Mycobacterium tuberculosis* respiration, growth and pathogenesis. **Nat Commun**, v. 11, n. 1, p. 557, 2020.

SALUSSO, A., RAIMUNDA, D. Defining the Roles of the Cation Diffusion Facilitators in Fe(2+)/Zn(2+) Homeostasis and Establishment of Their Participation in Virulence in *Pseudomonas aeruginosa*. **Front Cell Infect Microbiol**, v. 7, p. 84, 2017.

SAMBROOK J, RUSSELL D. **Molecular Cloning: A Laboratory Manual**, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001.

SANTOS, R., BATISTA, B. B., DA SILVA NETO, J. F. Ferric Uptake Regulator Fur Coordinates Siderophore Production and Defense against Iron Toxicity and Oxidative Stress and Contributes to Virulence in *Chromobacterium violaceum*. Appl Environ Microbiol, v. 86, n. 21, 2020.

SANTOS, R., DA SILVA JUNIOR, W. P., HARRISON, S., SKAAR, E. P., CHAZIN, W. J., DA SILVA NETO, J. F. The Zinc Transporter ZnuABC Is Critical for the Virulence of *Chromobacterium violaceum* and Contributes to Diverse Zinc-Dependent Physiological Processes. **Infect Immun**, v. 89, n. 11, p. e0031121, 2021.

SCHAIBLE, U. E., KAUFMANN, S. H. Iron and microbial infection. **Nat Rev Microbiol**, v. 2, n. 12, p. 946-53, 2004.

SCHOLZ, R. L., GREENBERG, E. P. Sociality in *Escherichia coli*: Enterochelin Is a Private Good at Low Cell Density and Can Be Shared at High Cell Density. **J Bacteriol**, v. 197, n. 13, p. 2122-2128, 2015.

SEIGEL, J.K., STADLER, M.E., LOMBRANO, J.L., ALMONY, J.S., COUCH, M.E., BELHORN, T.H. Chromobacterium violaceum necrotizing fasciitis: a case report and review of the literature. **Ear Nose Throat J.** v. 91, n. 11, p. 479-483, 2012.

SHAH, M., TAYLOR, V. L., BONA, D., TSAO, Y., STANLEY, S. Y., PIMENTEL-ELARDO, S. M., MCCALLUM, M., BONDY-DENOMY, J., HOWELL, P. L., NODWELL, J. R., DAVIDSON, A. R., MORAES, T. F., MAXWELL, K. L. A phage-encoded antiactivator inhibits quorum sensing in *Pseudomonas aeruginosa*. **Mol Cell,** v. 81, n. 3, p. 571-583 e6, 2021.

SHAH, N., GISLASON, A. S., BECKER, M., BELMONTE, M. F., FERNANDO, W. G. D., DE KIEVIT, T. R. Investigation of the quorum-sensing regulon of the biocontrol bacterium *Pseudomonas chlororaphis* strain PA23. **PLoS One,** v. 15, n. 2, p. e0226232, 2020.

SHELDON, J. R., SKAAR, E. P. Metals as phagocyte antimicrobial effectors. **Curr Opin Immunol,** v. 60, p. 1-9, 2019.

SHEPHERD, M., ACHARD, M. E., IDRIS, A., TOTSIKA, M., PHAN, M. D., PETERS, K. M., SARKAR, S., RIBEIRO, C. A., HOLYOAKE, L. V., LADAKIS, D., ULETT, G. C., SWEET, M. J., POOLE, R. K., MCEWAN, A. G., SCHEMBRI, M. A. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant *Escherichia coli* during infection. **Sci Rep**, v. 6, p. 35285, 2016.

SHI, L., SOHASKEY, C. D., KANA, B. D., DAWES, S., NORTH, R. J., MIZRAHI, V., GENNARO, M. L. Changes in energy metabolism of *Mycobacterium tuberculosis* in mouse lung and under in vitro conditions affecting aerobic respiration. **Proc Natl Acad Sci U S A,** v. 102, n. 43, p. 15629-34, 2005.

SILETSKY, S.A., BORISOV, V.B. Proton pumping and non-pumping terminal respiratory oxidases: active sites intermediates of these molecular machines and their derivatives. **Int J Mol Sci.** v. 22, n. 19, p. 10852, 2021.

SILVA-ROCHA, R., MARTÍNEZ-GARCÍA, E., CALLES, B., CHAVARRÍA, M., ARCE-RODRÍGUEZ, A., DE LAS HERAS, A., PÁEZ-ESPINO, A. D., DURANTE-RODRÍGUEZ, G., KIM, J., NIKEL, P. I., PLATERO, R., DE LORENZO, V. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. **Nucleic Acids Res,** v. 41, n. Database issue, p. D666-75, 2013.

SIMON, R., PRIEFER, U., PÜHLER, A. A Broad Host Range Mobilization System for *in vivo* Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. **Bio/Technology,** v. 1, n. 9, p. 784-791, 1983.

SMALL, J. L., PARK, S. W., KANA, B. D., IOERGER, T. R., SACCHETTINI, J. C., EHRT, S. Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in *Mycobacterium tuberculosis*. **mBio**, v. 4, n. 5, p. e00475-13, 2013.

STAUFF, D. L., BASSLER, B. L. Quorum sensing in *Chromobacterium violaceum*: DNA recognition and gene regulation by the CviR receptor. **J Bacteriol**, v. 193, n. 15, p. 3871-8, 2011.

STERNON, J. F., GODESSART, P., GONÇALVES DE FREITAS, R., VAN DER HENST, M., PONCIN, K., FRANCIS, N., WILLEMART, K., CHRISTEN, M., CHRISTEN, B., LETESSON, J. J., DE BOLLE, X. Transposon Sequencing of *Brucella abortus* Uncovers Essential Genes for Growth *In Vitro* and Inside Macrophages. **Infect Immun,** v. 86, n. 8, 2018.

SWAIN, B., OTTA, S., SAHU, K. K., PANDA, K., ROUT, S. Urinary tract infection by *Chromobacterium violaceum*. **J Clin Diagn Res,** v. 8, n. 8, p. DD01-2, 2014.

SWEM, L. R., SWEM, D. L., O'LOUGHLIN, C. T., GATMAITAN, R., ZHAO, B., ULRICH, S. M., BASSLER, B. L. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. **Mol Cell**, v. 35, n. 2, p. 143-53, 2009.

TEN-CATEN, F., VENCIO, R. Z. N., LORENZETTI, A. P. R., ZARAMELA, L. S., SANTANA, A. C., KOIDE, T. Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea. **RNA Biol**, v. 15, n. 8, p. 1119-1132, 2018.

TENDENG, C., BERTIN, P. N. H-NS in Gram-negative bacteria: a family of multifaceted proteins. **Trends Microbiol**, v. 11, n. 11, p. 511-8, 2003.

THORVALDSDOTTIR, H., ROBINSON, J. T., MESIROV, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. **Brief Bioinform,** v. 14, n. 2, p. 178-92, 2013.

TSENG, C. P., ALBRECHT, J., GUNSALUS, R. P. Effect of microaerophilic cell growth conditions on expression of the aerobic (*cyoABCDE* and *cydAB*) and anaerobic (*narGHJI*, *frdABCD*, and *dmsABC*) respiratory pathway genes in *Escherichia coli*. **J Bacteriol**, v. 178, n. 4, p. 1094-8, 1996.

UNDEN, G., BONGAERTS, J. Alternative respiratory pathways of *Escherichia coli*: energetics and transcriptional regulation in response to electron acceptors. **Biochim Biophys Acta,** v. 1320, n. 3, p. 217-34, 1997.

VASCONCELOS ATR, et al. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. **Proc. Natl. Acad. Sci. USA**, v. 100, n. 20, p. 11660-11665, 2003.

VAN ALST, A. J., DEMEY, L. M., DIRITA, V. J. *Vibrio cholerae* requires oxidative respiration through the bd-I and cbb3 oxidases for intestinal proliferation. **PLoS Pathog**, v. 18, n. 5, p. e1010102, 2022.

VANDERWAL, A. R., MAKTHAL, N., PINOCHET-BARROS, A., HELMANN, J. D., OLSEN, R. J., KUMARASWAMI, M. Iron Efflux by PmtA Is Critical for Oxidative Stress Resistance and Contributes Significantly to Group A *Streptococcus* Virulence. **Infect Immun,** v. 85, n. 6, 2017.

WALTHERS, D., LI, Y., LIU, Y., ANAND, G., YAN, J., KENNEY, L. J. *Salmonella enterica* response regulator SsrB relieves H-NS silencing by displacing H-NS bound in polymerization mode and directly activates transcription. **J Biol Chem**, v. 286, n. 3, p. 1895-902, 2011.

WAN, B., ZHANG, Q., TAO, J., ZHOU, A., YAO, Y. F., NI, J. Global transcriptional regulation by H-NS and its biological influence on the virulence of Enterohemorrhagic *Escherichia coli*. **Gene**, v. 588, n. 2, p. 115-23, 2016.

WANDERSMAN, C., DELEPELAIRE, P. Bacterial iron sources: from siderophores to hemophores. **Annu Rev Microbiol,** v. 58, p. 611-47, 2004.

WANG, H. C., KO, T. P., WU, M. L., KU, S. C., WU, H. J., WANG, A. H. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor. **Nucleic Acids Res**, v. 40, n.

12, p. 5718-30, 2012.

WANG, H., AYALA, J. C., BENITEZ, J. A., SILVA, A. J. RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting *Vibrio cholerae* virulence, stress response and chemotaxis. **PLoS One,** v. 10, n. 2, p. e0118295, 2015.

WANG, L., PAN, Y., YUAN, Z. H., ZHANG, H., PENG, B. Y., WANG, F. F., QIAN, W. Two-Component Signaling System VgrRS Directly Senses Extracytoplasmic and Intracellular Iron to Control Bacterial Adaptation under Iron Depleted Stress. **PLoS Pathog**, v. 12, n. 12, p. e1006133, 2016.

WANG, Y., ZHANG, Y., YIN, Z., WANG, J., ZHU, Y., PENG, H., ZHOU, D., QI, Z., YANG, W. H-NS represses transcription of the flagellin gene lafA of lateral flagella in *Vibrio parahaemolyticus*. **Can J Microbiol**, v. 64, n. 1, p. 69-74, 2018.

WEBER, K.A., ACHENBACH, L.A., COATES, J.D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. **Nat Rev Microbiol.** v. 4, n. 10, p.752-764, 2006.

WEN, Y., KIM, I. H., SON, J. S., LEE, B. H., KIM, K. S. Iron and quorum sensing coordinately regulate the expression of vulnibactin biosynthesis in *Vibrio vulnificus*. **J Biol Chem**, v. 287, n. 32, p. 26727-39, 2012.

WHITE, G. F., EDWARDS, M. J., GOMEZ-PEREZ, L., RICHARDSON, D. J., BUTT, J. N., CLARKE, T. A. Mechanisms of Bacterial Extracellular Electron Exchange. **Adv Microb Physiol,** v. 68, p. 87-138, 2016.

WHITE-ZIEGLER, C. A., MALHOWSKI, A. J., YOUNG, S. Human body temperature (37degrees C) increases the expression of iron, carbohydrate, and amino acid utilization genes in *Escherichia coli* K-12. **J Bacteriol**, v. 189, n. 15, p. 5429-40, 2007.

WILL, W. R., FANG, F. C. The evolution of MarR family transcription factors as counter-silencers in regulatory networks. **Curr Opin Microbiol**, v. 55, p. 1-8, 2020.

WILLIAMS, R. M., RIMSKY, S. Molecular aspects of the *E. coli* nucleoid protein, H-NS: a central controller of gene regulatory networks. **FEMS Microbiol Lett**, v. 156, n. 2, p. 175-85, 1997.

WILSON, B. R., BOGDAN, A. R., MIYAZAWA, M., HASHIMOTO, K., TSUJI, Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. **Trends Mol Med,** v. 22, n. 12, p. 1077-1090, 2016.

WOODMANSEE, A. N., IMLAY, J. A. Reduced flavins promote oxidative DNA

damage in non-respiring *Escherichia coli* by delivering electrons to intracellular free iron. **J Biol Chem,** v. 277, n. 37, p. 34055-66, 2002.

WÖSTEN, M. M., KOX, L. F., CHAMNONGPOL, S., SONCINI, F. C., GROISMAN, E. A. A signal transduction system that responds to extracellular iron. **Cell**, v. 103, n. 1, p. 113-25, 2000.

WYBORN, N. R., STAPLETON, M. R., NORTE, V. A., ROBERTS, R. E., GRAFTON, J., GREEN, J. Regulation of *Escherichia coli* hemolysin E expression by H-NS and *Salmonella* SlyA. **J Bacteriol**, v. 186, n. 6, p. 1620-8, 2004.

XIA, X., WU, S., LI, L., XU, B., WANG, G. The Cytochrome bd Complex Is Essential for Chromate and Sulfide Resistance and Is Regulated by a GbsR-Type Regulator, CydE, in *Alishewanella* Sp. WH16-1. **Front Microbiol**, v. 9, p. 1849, 2018.

XUE, X. F., ZHNAG, M. M., SUN, J. F., LI, X., WU, Q. M., YIN, Z., YANG, W. H., NI, B., HU, L. F., ZHOU, D. S., LU, R. F., ZHANG, Y. Q. H-NS Represses Biofilm Formation and c-di-GMP Synthesis in *Vibrio parahaemolyticus*. **Biomed Environ Sci**, v. 35, n. 9, p. 821-829, 2022.

YAN, F., HUANG, C., WANG, X., TAN, J., CHENG, S., WAN, M., WANG, Z., WANG, S., LUO, S., LI, A., GUO, X., FENG, M., LIU, X., ZHU, Y., ZHOU, Y. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. **Mol Cell,** v. 78, n. 4, p. 641-652 e9, 2020.

YANG, C. H., LI, Y. H. *Chromobacterium violaceum* infection: a clinical review of an important but neglected infection. **J Chin Med Assoc**, v. 74, n. 10, p. 435-41, 2011.

YOUSEF-CORONADO, F., SORIANO, M. I., YANG, L., MOLIN, S., ESPINOSA-URGEL, M. Selection of hyperadherent mutants in *Pseudomonas putida* biofilms. **Microbiology (Reading),** v. 157, n. Pt 8, p. 2257-2265, 2011.

ZAPPA, S., BAUER, C. E. The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in *Rhodobacter capsulatus*. **Mol Microbiol**, v. 90, n. 6, p. 1277-92, 2013.

ZHANG, H., FU, H., WANG, J., SUN, L., JIANG, Y., ZHANG, L., GAO, H. Impacts of nitrate and nitrite on physiology of *Shewanella oneidensis*. **PLoS One**, v. 8, n. 4, p. e62629, 2013.

ZHANG, L., HENDRICKSON, R. C., MEIKLE, V., LEFKOWITZ, E. J., IOERGER, T. R., NIEDERWEIS, M. Comprehensive analysis of iron utilization by *Mycobacterium tuberculosis*. **PLoS Pathog**, v. 16, n. 2, p. e1008337, 2020.

ZHANG, L., WENG, Y., WU, Y., WANG, X., YIN, Z., YANG, H., YANG, W., ZHANG, Y. H-NS is an activator of exopolysaccharide biosynthesis genes transcription in *Vibrio parahaemolyticus*. **Microb Pathog**, v. 116, p. 164-167, 2018.

ZHANG, Y., GAO, J., WANG, L., LIU, S., BAI, Z., ZHUANG, X., ZHUANG, G. Environmental Adaptability and Quorum Sensing: Iron Uptake Regulation during Biofilm Formation by *Paracoccus denitrificans*. **Appl Environ Microbiol**, v. 84, n. 14, 2018.

ZHANG, Y., ZHANG, L., HOU, S., HUANG, X., SUN, F., GAO, H. The Master Quorum-Sensing Regulator OpaR is Activated Indirectly by H-NS in *Vibrio parahaemolyticus*. **Curr Microbiol**, v. 73, n. 1, p. 71-6, 2016.

ZHONG, L., RAVICHANDRAN, V., ZHANG, N., WANG, H., BIAN, X., ZHANG, Y., LI, A. Attenuation of *Pseudomonas aeruginosa* Quorum Sensing by Natural Products: Virtual Screening, Evaluation and Biomolecular Interactions. **Int J Mol Sci**, v. 21, n. 6, 2020.

8. APÊNDICE A

Produção científica

8.1. Artigos publicados com primeira autoria.

Artigo publicado durante o Doutorado, correspondente ao Mestrado.

• **Batista BB**, Santos RERS, Ricci-Azevedo R, da Silva Neto JF. Production and Uptake of Distinct Endogenous Catecholate-Type Siderophores Are Required for Iron Acquisition and Virulence in Chromobacterium violaceum. *Infect Immun*. 2019;87(12):e00577-19. Published 2019 Nov 18. doi:10.1128/IAI.00577-19

8.2. Artigos publicados em colaboração.

• Barroso KCM, Previato-Mello M, **Batista BB**, Batista JH, da Silva Neto JF. EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in *Chromobacterium violaceum*. *Front Microbiol*. 2018;9:2756. Published 2018 Nov 15. doi:10.3389/fmicb.2018.02756

• Santos RERS, **Batista BB**, da Silva Neto JF. Ferric Uptake Regulator Fur Coordinates Siderophore Production and Defense against Iron Toxicity and Oxidative Stress and Contributes to Virulence in Chromobacterium violaceum. *Appl Environ Microbiol.* 2020;86(21):e01620-20. Published 2020 Oct 15. doi:10.1128/AEM.01620-20

• de Lima VM, **Batista BB**, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for *Chromobacterium violaceum* Virulence. *Front Cell Infect Microbiol*. 2022;12:873536. Published 2022 May 11. doi:10.3389/fcimb.2022.873536
9. APÊNDICE B

9.1. Material Suplementar

Tabela Suplementar 1. Genes diferencialmente expressos em $\Delta vitR$.

Open Reading Frame	Gene	Function	log₂ Fold Change (∆ <i>vitR</i> /WT strain)
		Downregulated genes	
CV_0019		methylcrotonoyl-CoA carboxylase	-1,4833534
CV_0020		MFS transporter	-1,700436
CV_0021		aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme	-1,4565109
CV_0056		M20/M25/M40 family metallo-hydrolase	-2,3214642
CV_0057		peptidase M4 family protein	-2,2093836
CV_0277		nuclear transport factor 2 family protein	-1,0094896
CV_0568		chorismate-binding protein	-1,3475834
CV_0570		helix-turn-helix transcriptional regulator	-1,3134022
CV_0572		phosphohydrolase	-1,0115435
CV_0597		hypothetical protein	-1,5127035
CV_0867		superoxide dismutase	-1,4937776
CV_1040		FAD-binding protein	-1,0357655
CV_1057	vitR	helix-turn-helix transcriptional regulator	-5,4866786
CV_1058		hypothetical protein	-1,1743294
CV_1400	mtnP	S-methyl-5'-thioadenosine phosphorylase	-1,282073
CV_1401		fatty acid desaturase	-1,6335951
CV_1403		FAD-dependent oxidoreductase	-1,5995498
CV_1404		DegT/DnrJ/EryC1/StrS family aminotransferase	-1,4251028
CV_1405		NUDIX hydrolase	-1,3736945
CV_1406		DegT/DnrJ/EryC1/StrS family aminotransferase	-2,049964
CV_1541		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	-2,5146258
CV_1543		hypothetical protein	-1,8747135
CV_1544		diiron oxygenase	-1,7641672
CV_1545		NAD(P)/FAD-dependent oxidoreductase	-1,7627019
CV_1744		fucose-binding lectin II	-1,2837592
CV_1759		hydroxymethylglutaryl-CoA lyase	-1,4522491
CV_1760		Gyrl-like domain-containing protein	-1,5967587
CV_1761		tetratricopeptide repeat protein	-1,3962314
CV_2100		hypothetical protein	-1,3349442
CV_2248		sugar MFS transporter	-1,4244448
CV_2383		hypothetical protein	-1,1390104
CV_2802		non-ribosomal peptide synthetase	-1,2358903
CV_2803		non-ribosomal peptide synthetase	-2,1529301
CV_2804		aspartate aminotransferase family protein	-1,7883665
CV_3270	vioE	violacein biosynthesis enzyme VioE	-1,5425172
CV_3271	vioD	tryptophan hydroxylase VioD	-1,495762

CV_3272	vioC	FAD-dependent monooxygenase	-1,1691057	
CV_3274	vioA	FAD-dependent oxidoreductase	-1,3208486	
CV_3316		chitinase C-terminal domain-containing protein	-1,4127804	
CV_3961		(5-formylfuran-3-yl)methyl phosphate synthase	-1,415667	
CV_4217		riboflavin synthase subunit alpha	-2,1046104	
Upregulated genes				
CV_1055	vioS	DUF1484 domain-containing protein	9,25190554	
CV_2534		type IV pili methyl-accepting chemotaxis transducer N-terminal domain-containing protein	1,06445184	
CV_2534 CV_3208		type IV pili methyl-accepting chemotaxis transducer N-terminal domain-containing protein 1-acyl-sn-glycerol-3-phosphate acyltransferase	1,06445184 1,99664047	

Tabela Suplementar 2. Genes diferencialmente expressos em $\Delta cviR$.

Open Reading frame	Gene	Function	log₂ Fold Change (∆ <i>cviR</i> /WT strain)
		Downregulated genes	
CV_0008		DUF1484 family protein	-1,265272
CV_0011		hypothetical protein	-2,5512799
CV_0012		DUF2235 domain-containing protein	-2,7087705
CV_0013		hypothetical protein	-2,9256752
CV_0014		hypothetical protein	-2,8408906
CV_0015		DUF4123 domain-containing protein	-3,8305706
CV_0018		ATP-grasp domain-containing protein	-3,4982257
CV_0019		methylcrotonoyl-CoA carboxylase	-3,5024446
CV_0020		MFS transporter	-4,8750353
CV_0021		aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme	-4,1388299
CV_0037		hypothetical protein	-1,8979069
CV_0056		M20/M25/M40 family metallo-hydrolase	-2,7593819
CV_0057		peptidase M4 family protein	-2,1874987
CV_0068		peptidase domain-containing ABC transporter	-2,0202068
CV_0069		HlyD family efflux transporter periplasmic adaptor subunit	-2,3361454
CV_0073		sigma-54-dependent Fis family transcriptional regulator	-1,056592
CV_0096		glycoside hydrolase family 16 protein	-2,172642
CV_0122		multidrug effflux MFS transporter	-1,0818072
CV_0126		transposase	-2,1917463
CV_0168		twin-arginine translocation signal domain- containing protein	-1,127752
CV_0172		depolymerase	-3,2884955
CV_0193		O-methyltransferase	-1,3196102
CV_0202		hypothetical protein	-1,2855048
CV_0209		organic hydroperoxide resistance protein	-2,6366411
CV_0229		LD-carboxypeptidase	-1,0930304

CV_0241	PTS sugar transporter subunit IIA	-1,1805233
CV_0244	EthD family reductase	-1,6612114
CV_0247	ester cyclase	-2,6573795
CV_0256	hypothetical protein	-2,1187921
CV_0305	response regulator transcription factor	-1,9803414
CV_0306	HlyD family type I secretion periplasmic adaptor subunit	-1,8737636
CV_0307	type I secretion system permease/ATPase	-2,1819774
CV_0308	TolC family outer membrane protein	-2,4540193
CV_0310	EAL domain-containing protein	-1,0266626
CV_0311	retention module-containing protein	-1,9366484
CV_0328	transposase	-2,9285165
CV_0329	GNAT family N-acetyltransferase	-1,5473722
CV_0330	DUF4243 domain-containing protein	-1,3112496
CV_0358	alpha/beta hydrolase	-1,4292093
CV_0360	SGNH/GDSL hydrolase family protein	-1,9395947
CV_0369	pyrB aspartate carbamoyltransferase	-1,341005
CV_0370	aspartate carbamoyltransferase regulatory subunit	-1,5260055
CV_0393	aldehyde dehydrogenase family protein	-1,5622472
CV_0394	class I SAM-dependent	-1,2846599
CV_0398	biopolymer transporter ExbD	-3,09635
CV_0399	MotA/TolQ/ExbB proton channel family protein	-2,0596153
CV_0403	MFS transporter	-1,706353
CV_0454	hypothetical protein	-2,4618999
CV_0457	DUF2325 domain-containing protein	-3,0840058
CV_0464	DUF4347 domain-containing protein	-1,8599381
CV_0465	ToIC family protein	-1,7641176
CV_0466	efflux RND transporter periplasmic adaptor subunit	-1,4261876
CV_0468	GNAT family N-acetyltransferase	-1,6669854
CV_0469	hypothetical protein	-2,1867963
CV_0470	tail fiber protein	-1,7938238
CV_0472	response regulator	-1,0979375
CV_0515	glycosyltransferase	-2,1677543
CV_0516	calcium-binding hemolysin	-1,3615999
CV_0535	hypothetical protein	-1,1496506
CV_0537	response regulator	-1,3529998
CV_0538	hypothetical protein	-3,5295014
CV_0539	MarR family transcriptional regulator	-1,6154944
CV_0540	cysteine hydrolase	-1,7862502
CV_0541	FUSC family protein	-2,0973102
CV_0553	lytic polysaccharide monooxygenase	-4,9965079
CV_0554	lytic polysaccharide monooxygenase	-4,4804453
CV_0567	hypothetical protein	-3,257762
CV_0568	chorismate-binding protein	-2,9919373

	queuosine precursor transporter	-3,3629089
	helix-turn-helix transcriptional regulator	-4,1485975
	phosphohydrolase	-1,6673942
	carboxymuconolactone decarboxylase family protein	-2,5009684
	DUF2860 domain-containing protein	-1,826811
	response regulator	-1,4705464
	sensor histidine kinase	-1,498
	hypothetical protein	-1,3774156
	hypothetical protein	-2,5235386
ctaD	cytochrome c oxidase subunit I	-2,2818664
	hypothetical protein	-1,2610173
	protoheme IX farnesyltransferase	-1,1232987
	hypothetical protein	-2,9448886
	hypothetical protein	-2,1387211
	patatin-like phospholipase family protein	-1,6125347
	3-hydroxybutyrate dehydrogenase	-1,7249658
	DHA2 family efflux MFS transporter	-2 8406767
	permease subunit	2,0100707
	HiyD family secretion protein	-4,6196089
	efflux transporter outer membrane subunit	-3,9272707
	hypothetical protein	-2,5189504
	poly(3-hydroxybutyrate) depolymerase	-1,9134514
	RebB family R body protein	-2,7641025
	RebB family R body protein	-3,4431972
	RebB family R body protein	-3,3333957
	RebB family R body protein	-4,1479624
	hypothetical protein	-2,9729025
	lysozyme	-1,0153369
	hypothetical protein	-2,1953268
	polyhydroxybutyrate depolymerase	-2,0367111
	patatin-like phospholipase family protein	-3,0561223
	hypothetical protein	-4,9480323
	RebB family R body protein	-4,2647682
	DUF4239 domain-containing protein	-5,7366564
	DUF2589 domain-containing protein	-4,4330236
	DUF2589 domain-containing protein	-3,9004528
	RNA polymerase sigma factor	-5,6335341
	hypothetical protein	-1,2931476
	DUF805 domain-containing protein	-1,5536819
	hypothetical protein	-4,2062939
	hypothetical protein	-2,6419582
	hypothetical protein	-1,919728
	hypothetical protein	-2,0099185
	sulfoxide reductase heme-binding subunit YedZ	-1,03832
	MFS transporter	-1,8694003
hemA	5-aminolevulinate synthase	-2,7385785
	hemA	queuosine precursor transporter helix-tum-helix transcriptional regulator phosphohydrolase carboxymuconolactone decarboxylase family protein DUF2860 domain-containing protein response regulator sensor histidine kinase hypothetical protein hypothetical protein protoheme IX farnesyltransferase hypothetical protein protoheme IX farnesyltransferase hypothetical protein patatin-like phospholipase family protein 3-hydroxybutyrate dehydrogenase DHA2 family efflux MFS transporter permease subunit HIVD family secretion protein efflux transporter outer membrane subunit hypothetical protein poly(3-hydroxybutyrate) depolymerase RebB family R body protein RebB family R body protein kebB family R body protein kypothetical protein polyhdroxybutyrate depolymerase family R body protein RebB family R body protein Nypothetical protein bypothetical protein RebB family R body protein RebB family R body protein Nypothetical protein bypothetical protein bypothetical protein bypothetical protein bypothetical protein bypothetical protein bypothetical protein bypothetical protein bypothetical protein buF2589 domain-containing protein DUF2589 domain-containing protein bUF2589 domain-containing protein bUF2589 domain-containing protein buF2589 domain-containing protein buF805 domain-containing protein buF805 domain-containing protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein buF805 domain-containing subunit YedZ MFS transporter

CV_0804		TauD/TfdA family dioxygenase	-1,3442305
CV_0805		ketoacyl-ACP synthase III family protein	-1,4917192
CV_0806		ATP-grasp domain-containing protein	-1,2006134
CV_0808		NADP-dependent oxidoreductase	-1,8354758
CV_0864		haloacid dehalogenase type II	-1,677401
CV_0867		superoxide dismutase	-5,7138167
CV_0868		DUF1842 domain-containing protein	-6,5928945
CV_0870	tpx	thiol peroxidase	-2,0600254
CV_0895		TonB-dependent copper receptor	-3,8898225
CV_0896		HAMP domain-containing histidine kinase	-3,3984992
CV_0897		response regulator	-3,5099059
CV_0922		chromate transporter	-1,0298957
CV_0956		ribonuclease T2	-1,1328896
CV_0960		ribonuclease T2	-1,7575135
CV_0966	metF	methylenetetrahydrofolate reductase [NAD(P)H]	-1,3361534
CV_0993		MFS transporter	-1,1687686
CV_1019		TonB-dependent receptor	-3,2881021
CV_1039		cytochrome c5 family protein	-2,3526569
CV_1040		FAD-binding protein	-2,4861395
CV_1041		DSD1 family PLP-dependent enzyme	-2,6248719
CV_1050		hypothetical protein	-1,8170139
CV_1052		hypothetical protein	-2,806886
CV_1059		SIR2 family protein	-1,2823987
CV_1095	iscR	Fe-S cluster assembly transcriptional regulator IscR	-1,4563534
CV_1102		VOC family protein	-1,5467939
CV_1121	acnA	aconitate hydratase AcnA	-1,980984
CV_1144		DinB family protein	-3,4747491
CV_1153		Cd(II)/Pb(II)-responsive transcriptional regulator	-1,5354001
CV_1154	cadA	cadmium-translocating P-type ATPase	-1,4661011
CV_1186	eat	ethanolamine permease	-1,0500343
CV_1189		response regulator	-1,4953806
CV_1190		response regulator	-1,4444218
CV_1219		MFS transporter	-2,0734808
CV_1220		hypothetical protein	-1,7716747
CV_1221		class I SAM-dependent methyltransferase	-1,641421
CV_1222		aldehyde dehydrogenase	-2,1617745
CV_1224		CRISPR-associated helicase/endonuclease Cas3	-1,4596691
CV_1225	cas5c	type I-C CRISPR-associated protein Cas5	-1,11393
CV_1226	cas8c	type I-C CRISPR-associated protein Cas8c/Csd1	-1,1835237
CV_1227	cas7c	type I-C CRISPR-associated protein Cas7/Csd2	-1,3328015
CV_1228	cas4	CRISPR-associated protein Cas4	-1,6633432

CV_1229	cas1c	type I-C CRISPR-associated	-1,6594467
CV/ 1020	2222		1 6901200
CV_{1230}	Casz		-1,0091309
CV_{1273}		amino acid ABC transporter permease	-3,3228365
CV_1274		amino acid ABC transporter permease	-2,8117045
CV_1275		ABC transporter substrate-binding protein	-3,3674428
CV_1284		hydrolase	-2,1043157
CV_1285		amidohydrolase	-1,5616978
CV_1297		hypothetical protein	-1,1990838
CV_1299		MHS family MFS transporter	-1,2312183
CV_1300		GMC family oxidoreductase N-terminal domain-containing protein	-1,3923167
CV_1311		hypothetical protein	-1,3362373
CV_1324		OsmC family protein	-1,5840694
CV_1325		thioredoxin family protein	-1,4441391
CV_1326		hypothetical protein	-1,3776233
CV 1340		trypsin-like serine protease	-2,1802059
CV 1395		galactose mutarotase	-2.7389308
CV 1396		ABC transporter substrate-binding protein	-3.4137812
CV 1397		HAD family phosphatase	-2.8511291
CV 1398		MES transporter	-3.724283
CV 1399		NUDIX domain-containing protein	-4 1226371
CV 1400	mtnP	S-methyl-5'-thioadenosine phosphorylase	-4 547238
CV_1401		fatty acid desaturase	-5 3828113
CV_{1402}		HAD family hydrolase	-6,6315/26
CV 1403		EAD-dependent exidereductase	-6,0515420
01403		DegT/Dnr I/EryC1/StrS family	-5,7554471
CV_1404		aminotransferase	-7,754237
CV 1405		NUDIX hvdrolase	-5.7181454
CV_1406		DegT/DnrJ/EryC1/StrS family aminotransferase	-5,1670924
CV 1407		Gfo/Idh/MocA family oxidoreductase	-6,2485899
CV 1414		copper homeostasis protein CutC	-1.2730877
CV 1415	aat	gamma-glutamyltransferase	-1.2084685
CV 1416	33-	GNAT family N-acetyltransferase	-1.2782975
CV 1418		response regulator transcription factor	-1,1756748
CV 1430		hypothetical protein	-1 8655509
CV 1431		RHS repeat protein	-3 7315526
CV_{1434}		DI JE1304 domain-containing protein	-1 5425679
CV_1/36		aspartate aminotransferase family protein	-1 0201755
CV_{1430}		SRPBCC family protein	-1,0291733
CV_{1433}		hypothetical protein	-1,5075297
01444		PI P-dependent aminotransferase family	-1,3093102
CV_1451		protein	-1,119542
CV_1452	ccoG		-1,1905407
CV_1473		phage tail assembly protein	-3,6060421
CV_1484	cbaE	(2,3-dihydroxybenzoyl)adenylate synthase	-1,9005262
CV_1485	cbaC	isochorismate synthase	-2,4399036

CV_1486	cbaF	non-ribosomal peptide synthetase	-1,8260468
CV_1487		ABC transporter ATP-binding protein	-2,7946396
CV_1488		iron ABC transporter permease	-2,5573312
CV_1489		ABC transporter substrate-binding protein	-2,1568044
CV_1490		DUF2218 domain-containing protein	-2,466176
CV_1491	cbuA	TonB-dependent receptor	-2,8389424
CV_1541		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	-4,9646276
CV_1542		MaoC family dehydratase	-3,9390724
CV_1543		hypothetical protein	-3,2745507
CV_1544		diiron oxygenase	-3,3687546
CV_1545		NAD(P)/FAD-dependent oxidoreductase	-3,1374712
CV_1546	fabG	3-oxoacyl-ACP reductase FabG	-1,3685913
CV_1547		ferredoxin family protein	-1,6872168
CV_1550		hypothetical protein	-1,4954157
CV_1551		DUF4180 domain-containing protein	-2,2903524
CV 1552		hypothetical protein	-1,2472596
		enoyl-CoA hydratase/isomerase family	4 050000
CV_1555		protein	-1,0565229
CV_1554		VOC family protein	-1,3259335
CV_1573		HOXIN/HUDIN/NIXA family nickel/cobalt transporter	-1,1393629
CV_1590		MAPEG family protein	-1,5708861
CV_1599	kdpA	potassium-transporting ATPase subunit KdpA	-1,1260278
CV_1601		sulfite exporter TauE/SafE family protein	-3,439165
CV_1620		EAL domain-containing protein	-1,344591
CV_1626		efflux RND transporter permease subunit	-1,2492111
CV_1641	aceA	isocitrate lyase	-1,3360495
CV_1678		ABC transporter ATP-binding protein	-1,8164534
CV_1680		ABC transporter permease subunit	-2,4905579
CV_1681		ABC transporter substrate-binding protein	-1,6653463
CV_1682	hcnC	cyanide-forming glycine dehydrogenase subunit HcnC	-2,4237866
CV_1683		NAD(P)/FAD-dependent oxidoreductase	-2,6466592
CV_1685		hypothetical protein	-1,0523792
CV_1730		HD-GYP domain-containing protein	-1,7820706
CV_1731		GNAT family N-acetyltransferase	-1,4284414
CV_1741		class I SAM-dependent	-1,1672647
CV 1744		fucose-binding lectin II	-2,8219653
_ CV 1751	cas6f	type I-F CRISPR-associated	-2,7779515
	00001	endoribonuclease Cas6/Csy4	2,7770010
CV_1752	csy3	type I-F CRISPR-associated protein Csy3	-2,4442626
CV_1753	csy2	type I-F CRISPR-associated protein Csy2	-2,3776594
CV_1754	csy1	type I-F CRISPR-associated protein Csy1	-2,1994417
CV_1783		DUF5610 domain-containing protein	-1,4263361
CV_1784		DUF5610 domain-containing protein	-1,2341547
CV_1789		PrkA family serine protein kinase	-1,2784049
CV_1790		YeaH/YhbH family protein	-1,0031989

CV_1791		SpoVR family protein	-1,1790143
CV_1821		hypothetical protein	-2,006081
CV_1827		CysB family HTH-type transcriptional regulator	-2,895007
CV_1828		sulfate ABC transporter ATP-binding protein	-2,8685563
CV_1830	cysT	sulfate ABC transporter permease subunit CysT	-3,0672019
CV_1832		sulfate ABC transporter substrate-binding protein	-4,5366569
CV_1833		EAL domain-containing protein	-2,3337883
CV_1834		hypothetical protein	-2,1160396
CV_1858		hypothetical protein	-1,8589154
CV_1884		amidohydrolase	-4,4983116
CV_1885		DUF3100 domain-containing protein	-4,2819394
CV_1896		hypothetical protein	-1,6089568
CV_1916		PAS domain-containing protein	-1,0689515
CV_1934		aminotransferase class V-fold PLP- dependent enzyme	-2,9074855
CV_1975		efflux RND transporter periplasmic adaptor subunit	-1,2072334
CV_1976		efflux RND transporter permease subunit	-1,0884277
CV_1978		ABC transporter substrate-binding protein	-1,1533883
CV_1981		ABC transporter ATP-binding protein	-1,1226146
CV_2001		M9 family metallopeptidase N-terminal domain-containing protein	-4,3783479
CV_2002		hypothetical protein	-2,2704306
CV_2013		DUF3141 domain-containing protein	-1,5444834
CV_2036		redoxin family protein	-2,2971223
CV_2037		dihydrolipoyl dehydrogenase	-1,7398526
CV_2043		NAD(P)H-quinone oxidoreductase	-1,0491989
CV_2101		helix-turn-helix domain-containing protein	-3,3209317
CV_2113		hypothetical protein	-1,0779847
CV_2114		phage tail protein	-2,2282088
CV 2123		phage tail assembly protein	-2,8978111
CV 2125		hypothetical protein	-2,5519202
CV 2126		hypothetical protein	-1,7096281
CV_2128		phage tail sheath subtilisin-like domain- containing protein	-1,1734187
CV 2131		DUF1320 domain-containing protein	-2,7096191
CV 2132		DUF2190 family protein	-3,9333207
CV_2134		hypothetical protein	-2,8416362
CV 2135		peptidase	-3.4760226
CV 2136		hypothetical protein	-1.3526084
CV 2147		M15 family metallopeptidase	-3.56679
CV 2148		hypothetical protein	-1.4321888
CV 2149		hypothetical protein	-1,3522905
CV 2157		AAA family ATPase	-1,8269286
CV 2190		GNAT family N-acetvltransferase	-1.2004127
CV_2212		hypothetical protein	-1,1236684
		••••••	

CV_2234		ABC transporter ATP-binding protein	-2,2500309
CV_2235	fepG	iron-enterobactin ABC transporter permease	-1,9649251
CV_2246		response regulator transcription factor	-1,8808946
CV_2247		transaldolase	-2,0623809
CV_2248		sugar MFS transporter	-1,8277874
CV_2249		hypothetical protein	-2,8768905
CV_2255	anil	sugar O-acetyltransferase	-8,5889287
CV_2256	aniQ	aspartate aminotransferase family protein	-7,0595399
CV_2257	aniP	hypothetical protein	-6,7630365
CV_2258	aniN	SDR family oxidoreductase	-6,0307995
CV_2259	aniM	DUF1349 domain-containing protein	-5,0279368
CV_2260	aniH	HAD-IIB family hydrolase	-4,9884195
CV_2261	aniK	methyltransferase	-3,6701197
CV_2262	aniL	MFS transporter	-2,6422859
CV_2263		RHS repeat-associated core domain- containing protein	-3,9381952
CV_2264		hypothetical protein	-2,4487318
CV_2309		PTS fructose transporter subunit IIC	-1,4141687
CV_2310		PTS fructose transporter subunit IIB	-1,3656076
CV_2311	ptsP	phosphoenolpyruvateprotein phosphotransferase	-1,4201777
CV_2312	manA	mannose-6-phosphate isomerase, class I	-1,3333292
CV_2313		helix-turn-helix transcriptional regulator	-1,4095782
CV_2337		GNAT family N-acetyltransferase	-1,1485326
CV_2362		FKBP-type peptidyl-prolyl cis-trans isomerase	-1,2119721
CV_2379	argE	acetylornithine deacetylase	-1,056139
CV_2381		hypothetical protein	-1,258804
CV_2383		hypothetical protein	-4,3641059
CV_2416		MFS transporter	-2,1638473
CV_2431		hypothetical protein	-1,900577
CV_2432		metallophosphoesterase	-1,3869568
CV_2433		CHAT domain-containing protein	-1,3074434
CV_2435		DUF2726 domain-containing protein	-1,2605639
CV_2446		ketoacyl-ACP synthase III	-1,9017521
CV_2447		NAD(P)-dependent oxidoreductase	-2,0986245
CV_2449		coenzyme F390 synthetase	-2,2349121
CV_2452		acyl-CoA desaturase	-1,9403877
CV_2454		aminopeptidase P family protein	-1,1327137
CV_2463		methyl-accepting chemotaxis protein	-1,495138
CV_2469		GNAT family N-acetyltransferase	-1,3046632
CV_2497		two-component system response regulator	-1,1706424
CV_2563		hypothetical protein	-2,3751701
CV_2564		hypothetical protein	-2,4973044
CV_2571		M23 family metallopeptidase	-5,3589349
CV_2572		cytosine permease	-1,8233015
CV_2634		two-component sensor histidine kinase	-1,3707891

CV_2635 CV_2651 CV_2656 CV_2667 CV_2670 CV_2670 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2720 CV_2720		response regulator hypothetical protein cytochrome P450 hypothetical protein transposase amidohydrolase hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA	-1,5149899 -2,6967138 -1,0666035 -1,6724516 -2,1289573 -3,3627707 -2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2651 CV_2656 CV_2667 CV_2670 CV_2684 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2720 CV_2720		hypothetical protein cytochrome P450 hypothetical protein transposase amidohydrolase hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA	-2,6967138 -1,0666035 -1,6724516 -2,1289573 -3,3627707 -2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2656 CV_2667 CV_2670 CV_2670 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2720 CV_2720 CV_2725 CV_2753 CV_2769		cytochrome P450 hypothetical protein transposase amidohydrolase hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA	-1,0666035 -1,6724516 -2,1289573 -3,3627707 -2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2666 CV_2670 CV_2684 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2720 CV_2725 CV_2753 CV_2769		hypothetical protein transposase amidohydrolase hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-1,6724516 -2,1289573 -3,3627707 -2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2667 CV_2670 CV_2684 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		transposase amidohydrolase hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehvdrogenase/enovl-CoA hydratase	-2,1289573 -3,3627707 -2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2670 CV_2684 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		amidohydrolase hypothetical protein hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-3,3627707 -2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2684 CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		hypothetical protein hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-2,5014463 -1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2696 CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		hypothetical protein hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-1,0203121 -1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2702 CV_2717 CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		hypothetical protein S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-1,2938063 -2,0495071 -1,5556777 -1,2544238
CV_2717 CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		S8 family serine peptidase hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-2,0495071 -1,5556777 -1,2544238
CV_2718 CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		hypothetical protein acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase	-1,5556777 -1,2544238
CV_2719 CV_2720 CV_2725 CV_2753 CV_2769		acetyl-CoA C-acyltransferase 3-hydroxyacyl-CoA dehvdrogenase/enovl-CoA hydratase	-1,2544238
CV_2720 CV_2725 CV_2753 CV_2769		3-hydroxyacyl-CoA dehvdrogenase/enovl-CoA hydratase	
CV_2720 CV_2725 CV_2753 CV_2769		dehvdrogenase/enovl-CoA hvdratase	
CV_2725 CV_2753 CV_2769		family protein	-1,1330609
CV_2753 CV_2769		O-succinylhomoserine sulfhydrylase	-1,2627406
CV_2769		thioredoxin family protein	-2,0785273
		DUF3955 domain-containing protein	-1,2215448
CV_2790		acetyl-CoA C-acetyltransferase	-1,4234362
CV_2798		MFS transporter	-2,3075172
CV_2799		alpha/beta fold hydrolase	-2,3093404
CV_2800		hypothetical protein	-2,3182421
CV_2801		hypothetical protein	-2,6508684
CV_2802		non-ribosomal peptide synthetase	-3,240925
CV_2803		non-ribosomal peptide synthetase	-4,2305876
CV_2804		aspartate aminotransferase family protein	-5,0035398
CV_2830		alkaline phosphatase family protein	-2,6348318
CV_2831		hypothetical protein	-4,9441245
CV_2832		ferritin-like protein	-3,7940791
CV_2833		3-dehydroquinate synthase	-2,5692221
CV_2834	eboE	metabolite traffic protein EboE	-1,8460162
CV_2835		EboA domain-containing protein	-2,2580476
CV_2836		TatD family hydrolase	-3,0047992
CV_2837		VOC family protein	-2,7303031
CV_2856	tauC	taurine ABC transporter permease TauC	-2,2950256
CV_2858	tauA	taurine ABC transporter substrate-binding protein	-1,9446005
CV_2864	aqpZ	aquaporin Z	-1,7066133
CV_2893		hypothetical protein	-2,1010864
CV_2894		glycoside hydrolase family 9 protein	-1,4108029
CV_2895		ROK family transcriptional regulator	-1,1658352
CV_2903		cation:proton antiporter	-1,2456642
CV_2904		glutamatecysteine ligase	-1,1010818
CV_2906		hypothetical protein	-1,3032417
CV_2935		chitinase	-1,1481316
CV_2941	pgaC	poly-beta-1,6 N-acetyl-D-glucosamine synthase	-1,1284085
		LacI family DNA-binding transcriptional	-2,0193755

CV_2969		cystine ABC transporter substrate-binding	-1,6940077
		protein	1 266902
CV_2971		nypolitelical protein	-1,300092
CV_2902		amino acid ABC transporter substrate-	-2,0544907
CV_2983		binding protein	-1,9762086
CV_3012		serine carboxypeptidase	-1,3048607
CV 3014		MFS transporter	-2,1494321
CV_3063		sulfite exporter TauE/SafE family protein	-1,2438844
CV 3064		metal ABC transporter substrate-binding	-1 1083727
01/004		protein	-1,1903727
CV_3066		ABC transporter ATP-binding protein	-1,2655362
CV_3068		transcriptional repressor	-1,1416221
CV_3074		hypothetical protein	-2,5064068
CV_3078		hypothetical protein	-1,8724928
CV_3079	radC	DNA repair protein RadC	-1,1815751
CV_3104		porin	-1,5820633
CV_3143		hypothetical protein	-2,6101642
CV_3146		aspartate/glutamate racemase family protein	-1,6960135
CV_3147		DUF917 domain-containing protein	-1,0858416
CV_3148		sigma-54 interaction domain-containing protein	-1,0618105
CV_3151		hypothetical protein	-1,1606226
CV_3182		cysteine dioxygenase family protein	-1,0331965
CV_3201		Paal family thioesterase	-1,2979734
CV_3202		hypothetical protein	-1,6487622
CV_3218		threonylcarbamoyl-AMP synthase	-4,8947894
CV_3219		hypothetical protein	-4,982336
CV_3220		DUF2309 domain-containing protein	-4,2942985
CV_3221		NADH-quinone oxidoreductase subunit L	-5,009224
CV_3235		MerR family DNA-binding protein	-2,0448298
CV/ 3236		type 1 glutamine amidotransferase	-1 0603423
0v_3230		domain-containing protein	-1,9003423
CV_3256		AraC family transcriptional regulator	-2,0465434
CV_3265		hypothetical protein	-1,8130553
CV_3270	vioE	violacein biosynthesis enzyme VioE	-5,3317996
CV_3271	vioD	tryptophan hydroxylase VioD	-5,184004
CV_3272	vioC	FAD-dependent monooxygenase	-5,0325617
CV_3273	vioB	iminophenyl-pyruvate dimer synthase VioB	-4,696645
CV_3274	vioA	FAD-dependent oxidoreductase	-4,7301455
CV_3275	sph	sphingomyelin phosphodiesterase	-1,6398244
CV_3284		methyltransferase domain-containing protein	-1,1027988
CV_3290		3-methyl-2-oxobutanoate hydroxymethyltransferase	-5,6524959
CV_3291		LysR family transcriptional regulator	-3,2603232
CV_3297		hypothetical protein	-1,7462931
CV_3301		AIPR family protein	-1,5505401

CV_3304		malate synthase A	-1,4044954
CV_3305		SIMPL domain-containing protein	-1,1688283
CV_3308		2OG-Fe dioxygenase family protein	-1,439274
CV_3316		chitinase C-terminal domain-containing protein	-3,5613119
CV_3318		hypothetical protein	-1,9668566
CV_3383		MarR family transcriptional regulator	-1,16189
CV_3394		PLP-dependent transferase	-3,9546869
CV_3395		pyridoxal-phosphate dependent enzyme	-4,2568795
CV_3396		class I SAM-dependent methyltransferase	-3,2997991
CV_3401		NUDIX hydrolase	-1,3426311
CV_3426		ABC transporter substrate-binding protein	-2,1836882
_ CV_3435	cheD	chemoreceptor glutamine deamidase CheD	-1,5075877
CV 3437		chemotaxis protein CheR	-1.0145003
CV 3475		hypothetical protein	-3.7871978
CV_3486		VOC family protein	-3,5674689
CV 3503		PAS domain S-box protein	-1,0441138
CV_3505		fused response regulator/phosphatase	-1,2458736
CV_3506		protease	-6,7034998
CV_3512		DUF2282 domain-containing protein	-1,2742148
CV_3514		putative DNA-binding domain-containing protein	-1,0876315
CV_3515		DoxX family protein	-1,0826998
CV_3519		S8 family serine peptidase	-1,4597337
CV_3520		acetoacetate decarboxylase	-1,1542045
CV_3549		catalase	-1,5040881
CV_3553	feoB	ferrous iron transport protein B	-1,5901163
CV_3561	cysK	cysteine synthase A	-1,5453594
CV_3572		DUF934 domain-containing protein	-2,187308
CV_3596		hypothetical protein	-3,8458393
CV_3597		pyridoxal-phosphate dependent enzyme	-3,7237164
CV_3598		phenylacetateCoA ligase family protein	-3,3591375
CV_3599		transglutaminase domain-containing protein	-2,3996673
CV_3600		MFS transporter	-2,0189354
CV_3604	metE	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	-2,5975323
CV_3609		hypothetical protein	-1,2076356
CV_3627		hypothetical protein	-1,274234
CV_3628		GNAT family N-acetyltransferase	-2,0405413
CV_3629		GNAT family N-acetyltransferase	-1,5738803
CV_3657		cytochrome d ubiquinol oxidase subunit II	-4,4157994
CV_3658		cytochrome ubiquinol oxidase subunit I	-4,2604776
CV_3659		GbsR/MarR family transcriptional regulator	-4,0243754
CV_3662		hypothetical protein	-1,2778769
CV_3729	fliD	flagellar filament capping protein FliD	-1,5304513
CV_3732		DUF2946 family protein	-1,0010632

CV_3736		MFS transporter	-1,0745337
CV_3743	fabl	enoyl-ACP reductase Fabl	-1,2394097
CV_3744		phosphate acetyltransferase	-1,2830085
CV_3745		acetate/propionate family kinase	-1,3670541
CV_3760		hypothetical protein	-2,8848437
CV_3778		patatin-like phospholipase family protein	-2,0437856
CV_3779		hypothetical protein	-2,1158695
CV_3790		DUF2189 domain-containing protein	-1,0993448
CV_3812	gspF	type II secretion system inner membrane protein GspF	-1,0299938
CV_3819		MaoC family dehydratase	-1,5917002
CV_3865		B12-binding domain-containing radical SAM protein	-1,2747203
CV_3878		flagellin	-1,117473
CV_3896		TonB-dependent hemoglobin/transferrin/lactoferrin family receptor	-1,7188197
CV 3905		MarR family transcriptional regulator	-4.047386
CV 3911		DUF3592 domain-containing protein	-1.112992
CV 3931		chitosanase	-2.9029482
CV 3934		hypothetical protein	-1.7918321
CV 3935		M15 family metallopeptidase	-1,4537603
CV 3939		hypothetical protein	-1,5581213
CV_3940		hypothetical protein	-2,5015172
CV_3941		outer membrane lipoprotein-sorting protein	-1,927255
CV_3942		ABC transporter permease	-2,2117461
CV_3943		ABC transporter ATP-binding protein	-2,1413673
CV_3944		NAD(P)-dependent oxidoreductase	-2,0317263
CV_3946		FAD-dependent oxidoreductase	-1,6785394
CV_3947	fabG	3-oxoacyl-ACP reductase FabG	-1,712161
CV_3948		beta-ketoacyl synthase	-1,7707753
CV_3949		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	-1,6833405
CV_3950		(3R)-hydroxymyristoyl-ACP dehydratase	-1,8852371
CV_3951		hypothetical protein	-2,1665248
CV_3952		methyltransferase domain-containing protein	-2,0276142
CV_3953		SDR family oxidoreductase	-2,1263029
CV_3954		polyprenyl synthetase family protein	-2,2261789
CV_3955		hypothetical protein	-1,818363
CV_3956		UbiA family prenyltransferase	-2,0609365
CV_3957		HAD hydrolase-like protein	-2,9375539
CV_3958		polyprenyl synthetase family protein	-1,8963637
CV_3959	asnB	asparagine synthase (glutamine- hydrolyzing)	-2,3438523
CV_3960		isopentenyl phosphate kinase family protein	-3,3906383
CV_3961		(5-formylfuran-3-yl)methyl phosphate synthase	-3,4386089

CV_3963	tssA	type VI secretion system protein TssA	-1,4919038
CV_3965	tssH	type VI secretion system ATPase TssH	-1,5559966
CV_3967	tssG	type VI secretion system baseplate subunit TssG	-1,1688241
CV_3971		DUF2235 domain-containing protein	-1,7644304
CV_3972		DUF3304 domain-containing protein	-2,1975617
CV_3973		DUF3304 domain-containing protein	-1,962079
CV_3974		DUF4123 domain-containing protein	-2,7090203
CV_3976		OmpA family protein	-2,217951
CV_3977		type VI secretion system tube protein Hcp	-3,1127842
CV_3978	tssC	type VI secretion system contractile sheath large subunit	-2,4200692
CV_3979	tssB	type VI secretion system contractile sheath small subunit	-2,2805073
CV_3980	tssM	type VI secretion system membrane subunit TssM	-2,4086047
CV_3981		M15 family metallopeptidase	-2,6015065
CV_3982	tssJ	type VI secretion system lipoprotein TssJ	-1,3596232
CV_3983	tssK	type VI secretion system baseplate subunit TssK	-1,1683366
CV_3984		type IVB secretion system protein IcmH/DotU	-1,5525617
CV_3985	tssE	type VI secretion system baseplate subunit TssE	-1,2458269
CV_3986		type VI secretion system tip protein VgrG	-1,4864259
CV_3987		DUF4123 domain-containing protein	-1,4593841
CV_3989		DUF3304 domain-containing protein	-1,7367283
CV_3990		DUF2235 domain-containing protein	-1,3301611
CV_3991		hypothetical protein	-1,5856815
CV_4017		transposase	-1,2245286
CV_4045		ferredoxinNADP reductase	-1,8479515
CV_4090		LuxR family transcriptional regulator	-3,2990416
CV_4091		GNAT family N-acetyltransferase	-1,9415368
CV_4105		HutD family protein	-1,6615874
CV_4106		hypothetical protein	-3,6035512
CV_4107		hypothetical protein	-3,7186696
CV_4114		hypothetical protein	-1,0607224
CV_4201		YfhL family 4Fe-4S dicluster ferredoxin	-1,0245485
CV_4221		BON domain-containing protein	-1,2567257
CV_4224		trypsin-like serine protease	-4,9329903
CV_4238		hypothetical protein	-1,1838576
CV_4239		cysteine hydrolase	-1,160788
CV_4240		chitinase	-3,2398493
CV_4280		DUF2087 domain-containing protein	-1,3195207
CV_4288		mechanosensitive ion channel	-1,3699248
CV_4312		hypothetical protein	-2,2209952
CV_4317		MdfA family multidrug efflux MFS transporter	-3,5230046
CV_4318		acyl-protein synthase	-2,8620289
CV_4319		hypothetical protein	-3,9416959

CV_4320		AMP-binding protein	-2,9604362
CV_4321		GNAT family N-acetyltransferase	-3,2172524
CV_4364		copper chaperone PCu(A)C	-4,3347164
CV_RS01870		diguanylate cyclase	-1,4103142
CV_RS02280		HlyD family efflux transporter periplasmic adaptor subunit	-1,5246172
CV_RS05175		hypothetical protein	-1,5654303
CV_RS08260	hcnA	cyanide-forming glycine dehydrogenase subunit HcnA	-2,5564494
CV_RS08830		FAD-dependent monooxygenase	-1,4756112
CV_RS10725		AraC family transcriptional regulator	-1,1710916
CV_RS10890		hypothetical protein	-2,9041047
CV_RS11955		CHAD domain-containing protein	-1,872138
CV_RS12990		hypothetical protein	-1,9376069
CV_RS13005		GFA family protein	-1,3268084
CV_RS14435		hypothetical protein	-1,218465
CV_RS15155		CHASE domain-containing protein	-1,3188622
CV_RS16770		(2Fe-2S)-binding protein	-2,3006773
CV_RS19635		PAAR domain-containing protein	-1,5489852
CV_R519640		type VI secretion system-associated	-1,3087259
CV_RS19720	tagF	protein TagF	-3,1867506
CV_RS22830		GNAT family N-acetyltransferase	-1,5987911
CV_RS23040		serine hydrolase	-1,2961504
$(\mathcal{N} P S \mathcal{O} \mathcal{A} \mathcal{O} \mathcal{O})$		hypothetical protein	-1.4443815
01/020020			,
		Upregulated genes	4.00040000
CV_0034		Upregulated genes nicotinate phosphoribosyltransferase	1,26319393
CV_0034 CV_0048		Upregulated genes nicotinate phosphoribosyltransferase MFS transporter	1,26319393 1,07888418
CV_0034 CV_0048 CV_0065 CV_0080	orfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase poptido chain release factor 1	1,26319393 1,07888418 1,06654209
CV_0034 CV_0048 CV_0065 CV_0080	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase	1,26319393 1,07888418 1,06654209 1,29582738
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein D12 binding demain containing radias	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117 CV_0118	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein ABC transporter permease subunit	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828 1,51632746
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117 CV_0118 CV_0119	prfA	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein ABC transporter permease subunit amino acid ABC transporter permease	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828 1,51632746 1,54345354
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117 CV_0118 CV_0119 CV_0131	prfA benE	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein ABC transporter permease subunit amino acid ABC transporter permease benzoate/H(+) symporter BenE family transporter	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828 1,51632746 1,54345354 1,16513598
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117 CV_0118 CV_0119 CV_0131 CV_0135	prfA benE	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein ABC transporter permease subunit amino acid ABC transporter permease benzoate/H(+) symporter BenE family transporter NAD(P)/FAD-dependent oxidoreductase	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828 1,51632746 1,54345354 1,16513598 1,02263593
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117 CV_0118 CV_0119 CV_0131 CV_0135 CV_0148	prfA benE hexR	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein ABC transporter permease subunit amino acid ABC transporter permease benzoate/H(+) symporter BenE family transporter NAD(P)/FAD-dependent oxidoreductase transcriptional regulator HexR	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828 1,51632746 1,54345354 1,16513598 1,02263593 1,33655451
CV_0034 CV_0048 CV_0065 CV_0080 CV_0085 CV_0086 CV_0090 CV_0092 CV_0113 CV_0117 CV_0118 CV_0119 CV_0135 CV_0148 CV_0161	prfA benE hexR purE	Upregulated genes nicotinate phosphoribosyltransferase MFS transporter DEAD/DEAH box helicase peptide chain release factor 1 carboxymuconolactone decarboxylase family protein B12-binding domain-containing radical SAM protein hypothetical protein RNB domain-containing ribonuclease aspartate/glutamate racemase family protein amino acid ABC transporter ATP-binding protein ABC transporter permease subunit amino acid ABC transporter permease benzoate/H(+) symporter BenE family transporter NAD(P)/FAD-dependent oxidoreductase transcriptional regulator HexR 5-(carboxyamino)imidazole ribonucleotide mutase	1,26319393 1,07888418 1,06654209 1,29582738 1,12430168 1,26125356 2,52091671 1,13326392 1,19926979 1,27423828 1,51632746 1,54345354 1,16513598 1,02263593 1,33655451 1,6658733

CV_0174	dksA	RNA polymerase-binding protein DksA	1,00750228
CV_0175		c-type cytochrome	1,86121126
CV_0189		phosphoglycerate kinase	1,29536732
CV_0190	gap	type I glyceraldehyde-3-phosphate dehydrogenase	2,00468987
CV_0191	tkt	transketolase	1,31711912
CV_0231		HlyC/CorC family transporter	1,18681557
CV_0249	pyk	pyruvate kinase	1,4746211
CV_0255		hypothetical protein	2,41133326
CV_0263		OprD family outer membrane porin	1,20625828
CV_0266		U32 family peptidase	1,60418723
CV_0280		YkgJ family cysteine cluster protein	1,94221772
CV_0296		hypothetical protein	2,03102736
CV_0320	hutC	histidine utilization repressor	1,30270452
CV_0366		inositol monophosphatase family protein	1,36906124
CV_0372		N-acetyltransferase	1,0410625
CV_0383		DEAD/DEAH box helicase	2,01329595
CV_0437		ABC transporter ATP-binding protein	1,26340322
CV_0438		ABC transporter permease	1,52966204
CV_0439		BolA/IbaG family iron-sulfur metabolism protein	2,15412593
CV_0440	murA	UDP-N-acetyIglucosamine 1-	1,84348189
CV 0456		sodium:proton antiporter	2 28953545
01_0400		class I SAM-dependent	2,20000040
CV_0463		methyltransferase	1,00417993
CV_0485	rfaE2	D-glycero-beta-D-manno-heptose 1- phosphate adenylyltransferase	1,438362
CV_0486		biotin[acetyl-CoA-carboxylase] ligase	1,31331055
CV_0490	speB	agmatinase	1,24303147
CV_0520		carbonic anhydrase	1,06926961
CV_0521		hypothetical protein	3,2690146
CV_0589		hypothetical protein	1,23332124
CV_0590		hypothetical protein	1,5286171
CV_0611	hisD	histidinol dehydrogenase	1,17727674
CV_0627		MCP four helix bundle domain-containing protein	2,61954355
CV_0651		tyrosine-type recombinase/integrase tRNA uridine-5-	1,80286354
CV_0661	mnmG	carboxymethylaminomethyl(34) synthesis enzyme MnmG	1,13404066
		bifunctional UDP-N-acetylglucosamine	
CV_0674	glmU	diphosphorylase/glucosamine-1- phosphate N-acetyltransferase GImU	1,34201494
CV_0742		nucleoid-associated protein	1,20177493
CV_0767		EmrA/EmrK family multidrug efflux transporter periplasmic adaptor subunit	1,53361236
CV_0768		efflux transporter outer membrane subunit	1,45908622
CV_0788		TIGR01212 family radical SAM protein	3,38830804
CV_0811		DUF3025 domain-containing protein	1,11498649

CV_0819		NAD-dependent epimerase/dehydratase	1,13857102
CV 0824		glycosyltransferase family 4 protein	1.22252327
	mah	lipid A export permease/ATP-binding	1,09605906
CV_0625	IIISDA	protein MsbA	1,00095000
CV_0847	ispB	octaprenyl diphosphate synthase	1,5151045
CV_0848	rplU	50S ribosomal protein L21	1,50551057
CV_0849	rpmA	50S ribosomal protein L27	1,26971918
CV_0850	obgE	GTPase ObgE	1,20493886
CV_0853	hisQ	histidine ABC transporter permease HisQ	1,49995552
CV_0854		ABC transporter permease	1,81166176
CV_0855		A I P-binding cassette domain-containing protein	1,89367332
CV_0871		APC family permease	1,05023578
CV_0884		methyltransferase domain-containing protein	2,09432343
CV_0885		hypothetical protein	1,30875033
CV_0905		glutathione S-transferase family protein	1,45768868
CV_0934		inorganic phosphate transporter	2,34818464
CV_0951	nuoK	NADH-quinone oxidoreductase subunit NuoK	1,06821677
CV_0952	nuoL	NADH-quinone oxidoreductase subunit L	1,01609543
CV_0953		NADH-quinone oxidoreductase subunit M	1,03589749
CV_0961		lipid A biosynthesis lauroyl acyltransferase	1,06179603
CV_0974		tyrosine phosphatase	2,99843922
CV_0975		CesT family type III secretion system chaperone	2,27642043
CV_0976		hypothetical protein	2,58757576
CV_0979	ptsG	PTS glucose transporter subunit IIBC	1,0314922
CV_0985	accC	acetyl-CoA carboxylase biotin carboxylase subunit	1,22577524
CV_0986		acetyl-CoA carboxylase biotin carboxyl carrier protein	1,10140471
CV 0988	aueA	tRNA preQ1(34) S-adenosylmethionine	1.03868528
	90.071	ribosyltransferase-isomerase QueA	.,
CV_1005	h 0	cation transporter	2,03851207
CV_1060	lyss		1,11494039
CV_1077		I etR/AcrR family transcriptional regulator	1,03730589
CV_1078		MFS transporter	1,46354247
CV_1080		metnyl-accepting chemotaxis protein	1,19813941
CV_1098		ABC transporter permease subunit	1,36327298
CV_1132		FAD-dependent monooxygenase	1,04577491
CV_1137	adhE	dehydrogenase	1,93978431
CV_1156		acyl-CoA thioesterase	2,19312599
CV_1157		TIGR01621 family pseudouridine	1,37966187
CV 1162		peptide MFS transporter	2,16736048
CV 1182		reactive intermediate/imine deaminase	2,3306404
CV_1194		ABC transporter permease	1,23776282
_		• •	

CV_1196		ABC transporter permease	1,11414911
CV_1197		ABC transporter ATP-binding protein	1,44177586
CV_1205		MFS transporter	1,42082454
CV_1269		peptidase	2,5501461
CV_1286		serine hydroxymethyltransferase	1,06810764
CV_1298		hypothetical protein	1,39425711
CV_1308		type III secretion system effector phosphothreonine lyase	1,08129921
CV_1318	htpG	molecular chaperone HtpG	1,17595384
CV_1335		hypothetical protein	1,17757966
CV_1345	secD	protein translocase subunit SecD	1,17840605
CV_1348	thrS	threoninetRNA ligase	1,11170859
CV_1373	rimO	30S ribosomal protein S12 methylthiotransferase RimO	1,04560653
CV_1408		L-serine ammonia-lyase	4,92266569
CV_1409		HAAAP family serine/threonine permease	4,20628107
CV_1411		formate transporter FocA	2,49075453
CV_1464	truB	tRNA pseudouridine(55) synthase TruB	1,23466572
CV_1465	rpsO	30S ribosomal protein S15	1,07825686
CV_1467		hypothetical protein	2,00220557
CV_1503		branched-chain amino acid ABC transporter permease	1,39876437
CV_1504		ABC transporter ATP-binding protein	1,1574004
CV_1530	pta	phosphate acetyltransferase	1,54064605
CV_1531		acetate kinase	1,98684591
CV_1532		aromatic ring-hydroxylating dioxygenase subunit alpha	1,48867748
CV_1536		STAS/SEC14 domain-containing protein	1,40445191
CV_1537		RNA-binding transcriptional accessory protein	1,74908348
CV_1578		EAL domain-containing response regulator	2,00202788
CV_1593		MATE family efflux transporter	1,22528649
CV_1632	pcnB	polynucleotide adenylyltransferase PcnB 2-amino-4-hydroxy-6-	1,09674506
CV_1633	folK	hydroxymethyldihydropteridine diphosphokinase	1,09719867
CV_1634		deoxynucleoside kinase	1,11095496
CV_1646		porin	1,26403397
CV_1653	hemG	protoporphyrinogen oxidase	3,37770781
CV_1655		hypothetical protein	1,26957834
CV_1656		glycinetRNA ligase subunit beta	1,20279338
CV_1661		sodium:proton antiporter	1,40950372
CV_1663		hypothetical protein	4,98292668
CV_1664	yehT	two-component system response regulator BtsR	5,26635343
CV_1665		sensor histidine kinase	6,28928885
CV_1667		sensor domain-containing diguanylate cyclase	1,48992666
CV_1720	ppk2	polyphosphate kinase 2	1,01508402

CV_1742		glutaminetRNA ligase/YqeY domain	1,38778179
-		TUSION PROTEIN	1 16015070
CV_{1740}	rnmE	CystellieIRINA ligase	1,10210372
CV_1/4/	rpme	type LE CPISPP-associated bolicase	1,59206359
CV_1755	cas3f	Cas3	1,27162682
CV_1770	CV_RS08670	response regulator transcription factor	1,31703452
CV_1771		sensor histidine kinase	1,01774458
CV_1779		MerR family DNA-binding transcriptional regulator	1,18387441
CV_1794		iron ABC transporter permease	1,0567004
CV_1824		serine dehydratase subunit alpha family protein	2,84100014
CV 1869		response regulator transcription factor	1,23220172
CV 1893	uvrA	excinuclease ABC subunit UvrA	1,21678606
CV_1913		winged helix-turn-helix transcriptional regulator	1,53885426
CV_1925	folD	bifunctional methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase FolD	1,0975665
CV_1932	rlmD	23S rRNA (uracil(1939)-C(5))- methyltransferase RImD	1,36496368
CV_1957		polyamine ABC transporter substrate- binding protein	1,49271773
CV_1958		ABC transporter permease subunit	2,60115153
CV_1959		ABC transporter permease subunit	2,49941727
CV_1960		DUF3138 family protein	2,28648969
CV_1993	argF	ornithine carbamoyltransferase	1,34552794
CV_1994		argininosuccinate synthase	1,12766122
CV_2007	nirK	nitrite reductase, copper-containing	5,56938092
CV_2008		formylglycine-generating enzyme family protein	6,06505257
CV_2009		SCO family protein	4,55578109
CV_2038		T3SS effector OspC family protein	2,14658451
CV_2039		MFS transporter	1,0085096
CV_2040		sodium-dependent nucleoside transporter	1,8387839
CV_2047		YajQ family cyclic di-GMP-binding protein	1,29815626
CV/ 2051		NAD(P)-dependent alcohol	1 09706105
012001		dehydrogenase	1,09700105
CV_2089		RNA helicase	1,09049506
CV_2100		hypothetical protein	1,01939487
CV_2180		phosphoglycolate phosphatase	1,29324999
CV_2188		metallophosphoesterase	1,12260502
CV_2189	_	HD domain-containing protein	1,375374
CV_2196	rpsB	30S ribosomal protein S2	1,43984871
CV_2197		elongation factor Ts UDP-3-O-(3-	1,01665747
CV_2206	lpxD	hydroxymyristoyl)glucosamine N- acyltransferase	1,01150094
CV_2266		GDSL family lipase	1,83712114
CV_2292		hypothetical protein	2,32804488

CV_2342		thymidine kinase	1,75250572
CV_2345		23S rRNA (adenine(2030)-N(6))- methyltransferase RImJ	1,45552904
CV_2347		BMP family ABC transporter substrate- binding protein	1,20707658
CV_2348		ABC transporter ATP-binding protein	1,85988362
CV_2386		peptide chain release factor 3	1,04178961
CV_2391	nusB	transcription antitermination factor NusB	1,01954547
CV_2410	typA	translational GTPase TypA	1,14518179
CV_2412	nrdD	anaerobic ribonucleoside-triphosphate reductase	2,05252721
CV_2413	nrdG	anaerobic ribonucleoside-triphosphate reductase activating protein	1,48498185
CV_2419	orgA	oxygen-regulated invasion protein OrgA	1,12050352
CV_2467		BMP family ABC transporter substrate- binding protein	1,77018041
CV_2534		type IV pili methyl-accepting chemotaxis transducer N-terminal domain-containing protein	1,81973089
CV_2535		response regulator transcription factor	1,56560303
CV_2613		hypothetical protein	2,02907636
CV_2615		acyl carrier protein	1,29236891
CV_2616	sipA	SPI-1 type III secretion system effector SipA	1,61825241
CV_2617	sctA	type III secretion system needle tip protein SctA	1,69160038
CV_2618		IpaC/SipC family type III secretion system needle tip complex protein	1,75981296
CV_2619		type III secretion system needle tip complex protein	1,88000126
CV_2620	sicA	type III secretion system translocator chaperone SicA	1,98296214
CV_2621		EscU/YscU/HrcU family type III secretion system export apparatus switch protein	2,29096962
CV_2622		SpaR/YscT/HrcT type III secretion system export apparatus protein	3,02453516
CV_2623		EscS/YscS/HrcS family type III secretion system export apparatus protein	3,00268439
CV_2624		EscR/YscR/HrcR family type III secretion system export apparatus protein	3,1265568
CV_2625		YscQ/HrcQ family type III secretion apparatus protein	3,37271522
CV_2626		surface presentation of antigens secretory protein	3,50396593
CV_2627		secretory protein, associated with virulence	3,31804661
CV_2628	sctN	type III secretion system ATPase SctN	3,23721805
CV_2629	spaK	SPI-1 type III secretion system chaperone SpaK	3,0455169
CV_2630		EscV/YscV/HrcV family type III secretion system export apparatus protein	3,14468978
CV_2631		YopN/LcrE/InvE/MxiC type III secretion system gatekeeper	2,57720289

CV 2632		EscC/YscC/HrcC family type III secretion	3,18407696
0)/ 0000	.	system outer membrane ring protein	0.0000047
CV_2633	INVF	Arac family transcriptional regulator Inve	3,06606217
CV_2638		hypothetical protein	1,5036254
CV_2639		hypothetical protein	1,81794803
CV_2640		HilA/EilA family virulence transcriptional regulator	1,03817593
CV_2641	iagB	type III secretion system invasion protein IagB	1,00043212
CV_2682		LysR family transcriptional regulator	1,07203914
CV_2706		LysR family transcriptional regulator	1,2957525
CV_2709		hypothetical protein	7,88513335
CV_2710		hemerythrin domain-containing protein	10,3520448
CV_2711		NnrS family protein	8,50784428
CV_2712	trpC	indole-3-glycerol phosphate synthase TrpC	1,87264987
CV_2730		amino acid permease	2,03911617
CV_2746		hypothetical protein	2,26378876
CV 2817		hypothetical protein	3,25728764
CV 2851		TIGR03862 family flavoprotein	1.89016112
CV 2852		methyl-accepting chemotaxis protein	1.86718895
CV 2853	dbpA	ATP-dependent RNA helicase DbpA	1 4723216
CV 2854	appri	hypothetical protein	1 07891473
CV 2890		hypothetical protein	1 63712562
CV_2021		MaoC family debydratase	1 38110419
CV_{2954}		hypothetical protein	2 0658197
CV_{299}		restriction and anuclease Eco57	1 1510222
0v_2900		Flim/Flim family flagellar motor switch	1,1319222
CV_3001	<i>CI'</i> 1	protein	1,1411048
CV_3002	fliN	flagellar motor switch protein FliN	1,28848759
CV_3019	rbsD	D-ribose pyranase	1,11673571
CV_3041		UDP-glucose/GDP-mannose dehydrogenase family protein	1,12297889
CV_3049		nucleoside triphosphate	1,08079386
		pyropnosphonydrolase ramily protein	4 54000470
CV_3050		cytochrome b	1,51932178
CV_3062	(0	enoyl-CoA nydratase	3,50441934
CV_3072	tyrS	tyrosinetRNA ligase	1,66484471
CV_3077		oxidoreductase	3,49267331
CV_3164		thiamine ABC transporter substrate- binding protein	1,34469899
CV_3183		outer membrane protein transport protein	2,27556304
CV_3184		peptidyl-prolyl cis-trans isomerase	1,17775344
CV_3186		UDP-2,3-diacylglucosamine diphosphatase	1,10925271
CV_3208		1-acyl-sn-glycerol-3-phosphate acyltransferase	2,64547254
CV_3213		hypothetical protein	2,46409019
CV_3214		hypothetical protein	2,58651948
CV_3215		DUF2933 domain-containing protein	1,44049085

CV 3216		isoprenylcysteine	2 13760391
01_0210		carboxylmethyltransferase family protein	2,10700001
CV_3217	cadA	cadmium-translocating P-type ATPase	1,79286375
CV_3245		magnesium transporter	3,18164395
CV_3293	nth	endonuclease III	1,17361668
CV_3310		hypothetical protein	2,71173041
CV_3311		DUF465 domain-containing protein	3,13802182
CV_3313		protease modulator HfIC	1,09647699
CV_3323		lytic polysaccharide monooxygenase	1,75645017
CV/ 3324		cytochrome b/b6 domain-containing	2 2288660
01_0024		protein	2,2200003
CV_3325		AsmA family protein	1,24230786
CV_3365		hypothetical protein	1,13231579
CV_3366	frdD	fumarate reductase subunit FrdD	3,42341706
CV_3367		hypothetical protein	3,66820862
CV 3368		succinate dehydrogenase/fumarate	4.16220469
0.70000		reductase iron-sulfur subunit	.,
CV_3369	frdA	fumarate reductase (quinoi) flavoprotein	3,81453052
$C \sqrt{2270}$		Suburnit anaorobia C4 dicarboxylato transportor	4 01240720
CV_{330}		NUDV demoin containing protein	4,01240739
CV_3365			1,49204376
CV_3411			1,26593179
CV 3412	fabF	beta-ketoacyl-ACP synthase II	1.03017377
CV_3421	10.01	SAM-dependent methyltransferase	1 24742026
CV_{3432}		amino acid permease	1 47541186
CV_{3455}	rnmG	50S ribosomal protein L 33	1,40077561
CV_{3456}	romB	50S ribosomal protein L28	1,43077301
CV_{3462}	трпъ	RnfH family protein	1,29100931
CV_{3402}		Prf2 family transcriptional regulator	1,02033090
CV_{3407}	hmnA		2 1102207
CV_{3400}	ппрА		3,1103307
CV_{3494}		Nunc-oxide reductase large subunit	8,00070088
		NADPH-dependent oxidoreductase	1,41908377
CV_3508		6-carboxytetranydropterin synthase	1,03149794
CV_3548		recombination-associated protein RdgC	1,36306199
CV_3551		dihydroorotate oxidase	2,66745884
CV_3556		hypothetical protein	1,2153546
CV_3577		ABC-F family ATPase	1,35567915
CV_3584	prmC	peptide chain release factor N(5)-	1,57041535
CV/ 2505	matE	giulamine melnyilransierase	1 6121 4201
CV_3000	IIIgiE	inagnesium transporter	1,01214391
CV_{3033}		EQS ribosomol protoin LO	1,47012332
CV_3037		305 hibosomal protein 249	1,00020941
		SUS HOUSOMAI PROTEIN STO	1,20138008
CV_{3639}	priB	primosomal replication protein N	1,43/369/8
UV_3640	rps⊢	305 ribosomai protein S6	1,0970682
UV_3643		multicopper oxidase family protein	1,31/35428
CV_3645		RNA methyltransferase	1,50942841
CV_3648	hemN	Uxygen-independent coproporphyrinogen III oxidase	4,34742665

CV_3649		methyl-accepting chemotaxis protein	2,38796646
CV_3650		sodium:alanine symporter family protein	1,46695671
CV_3672	rpIS	50S ribosomal protein L19	1,31491163
CV/2672	trmD	tRNA (guanosine(37)-N1)-	1 1000101
CV_3073	unid	methyltransferase TrmD	1,4200401
CV_3695		N-acetyl-gamma-glutamyl-phosphate reductase	1,00683146
		bifunctional (p)ppGpp	
CV 3702		synthetase/guanosine-3',5'-	1 23868832
01_0102		bis(diphosphate) 3'-	1,2000002
0.4 0.700		pyrophosphohydrolase	
CV_3709	ppsA	phosphoenolpyruvate synthase	1,52902602
CV_3725		DUF3313 family protein	3,14933315
CV_3748	murJ	murein biosynthesis integral membrane protein MurJ	1,6431046
CV_3749		CPBP family intramembrane metalloprotease	1,679344
CV_3755	dtpA	dipeptide/tripeptide permease DtpA	1,9174138
CV_3757	lysA	diaminopimelate decarboxylase	1,45469675
CV_3771		NCS2 family permease	2,85370944
CV_3780	arcC	carbamate kinase	3,15338277
CV_3781		ornithine carbamoyltransferase	3,02075023
CV_3782		arginine deiminase	3,53052695
CV_3783	arcD	arginine-ornithine antiporter	3,39159463
-		CDP-6-deoxy-delta-3,4-glucoseen	4 40700005
CV_3/64		reductase	1,12700905
CV_3834	purB	adenylosuccinate lyase	1,05938561
CV_3839	fdnG	formate dehydrogenase-N subunit alpha	1,32692865
CV_3840	fdxH	formate dehydrogenase subunit beta	1,62462833
CV_3841		formate dehydrogenase subunit gamma	1,33802477
CV_3846		trypsin-like serine protease	1,64641032
CV_3867		hypothetical protein	1,03230273
CV 3868		DUF3761 domain-containing protein	1,10216338
CV 3917		CoA transferase	1,40639063
CV_3918		acvl-CoA dehvdrogenase	1.68456422
CV_3919		IcIR family transcriptional regulator	2.08292694
CV 3922		TetR/AcrR family transcriptional regulator	1.49586322
0)/ 0000		efflux RND transporter periplasmic	4.05005070
CV_3923		adaptor subunit	1,65235076
CV_3924		efflux RND transporter permease subunit	1,26814097
CV_3995	суоВ	cytochrome o ubiquinol oxidase subunit I	1,25609065
CV_4003		ammonium transporter	1,66706546
CV/ 4005		glutathione S-transferase N-terminal	1 02965020
CV_4005		domain-containing protein	1,02005029
CV_4011	rfbD	dTDP-4-dehydrorhamnose reductase	1,03084546
CV_4012	rfbA	giucose-1-pnosphate thymidylyltransferase RfbA	1,29508151
CV_4051		long-chain fatty acidCoA ligase	2,536955
CV_4056	pth	aminoacyl-tRNA hydrolase	1,30001445
CV_4057	rpIY	50S ribosomal protein L25	1,73072459
	-	-	

CV_4058		ribose-phosphate pyrophosphokinase	1,69430093
CV_4065		DUF459 domain-containing protein	1,3731021
		prepilin-type N-terminal	
CV_4079		cleavage/methylation domain-containing	1,14191546
		protein	
CV/ 4081		prepilin-type N-terminal	2 00020062
014001		protein	2,00920902
CV 4082		hypothetical protein	1.64156653
CV 4084		U32 family peptidase	6.824109
CV 4085		U32 family peptidase	6.45301103
		SCP2 sterol-binding domain-containing	0,00001100
CV_4086		protein	6,36021148
CV_4087		GGDEF domain-containing protein	4,14562692
CV_4103		OmpW family protein	3,83846548
CV_4127		Gfo/Idh/MocA family oxidoreductase	1,06937004
CV_4134		hypothetical protein	1,64392067
CV_4143		LysR family transcriptional regulator	1,0601051
CV_4146		pseudouridylate synthase	1,14927225
CV_4154	Int	apolipoprotein N-acyltransferase	1,36902556
CV_4159	rplQ	50S ribosomal protein L17	1,00383368
CV 4160	rnoA	DNA-directed RNA polymerase subunit	1 4252581
01-4100	Трод	alpha	1,4202001
CV_4161	rpsD	30S ribosomal protein S4	1,34013945
CV_4162	rpsK	30S ribosomal protein S11	1,20138271
CV_4163	rpsM	30S ribosomal protein S13	1,34427104
CV_4164	rpmJ	50S ribosomal protein L36	1,15673731
CV_4165	infA	translation initiation factor IF-1	1,0249351
CV_4166	secY	preprotein translocase subunit SecY	1,00809502
CV_4167	rplO	50S ribosomal protein L15	1,35861067
CV_4168	rpmD	50S ribosomal protein L30	1,73904742
CV_4169	rpsE	30S ribosomal protein S5	1,70997046
CV_4170	rplR	50S ribosomal protein L18	2,0718781
CV_4171	rplF	50S ribosomal protein L6	1,97530795
CV_4172		30S ribosomal protein S8	1,9896979
CV_4173	rpsN	30S ribosomal protein S14	1,95288434
CV_4174	rplE	50S ribosomal protein L5	2,07735079
CV_4175	rplX	50S ribosomal protein L24	1,98672886
CV_4176	rplN	50S ribosomal protein L14	2,0398232
CV_4181	rpIV	50S ribosomal protein L22	1,22370978
CV_4182	rpsS	30S ribosomal protein S19	1,28156561
CV_4183	rplB	50S ribosomal protein L2	1,32325732
CV_4184	rplW	50S ribosomal protein L23	1,47966588
CV_4185	rplD	50S ribosomal protein L4	1,40238843
CV_4186	rplC	50S ribosomal protein L3	1,36882714
CV_4190	rpsG	30S ribosomal protein S7	1,19315654
CV_4191	rpsL	30S ribosomal protein S12	1,11406584
CV_4192	rpoC	DNA-directed RNA polymerase subunit beta'	1,13198345

CV_4193	rpoB	DNA-directed RNA polymerase subunit beta	1,05049882
CV_4194	rpIL	50S ribosomal protein L7/L12	1,55743083
CV_4195	rplJ	50S ribosomal protein L10	1,91837338
CV_4196	rplA	50S ribosomal protein L1	1,71191265
CV_4197	rplK	50S ribosomal protein L11	1,87356191
CV_4198	nusG	transcription termination/antitermination protein NusG	1,6573793
CV_4199	secE	preprotein translocase subunit SecE	1,38742658
CV_4200		elongation factor Tu	1,63988182
CV_4207		O-antigen ligase family protein	1,16728895
CV_4213		spermidine/putrescine ABC transporter substrate-binding protein	1,73761414
CV_4225	ruvC	crossover junction endodeoxyribonuclease RuvC	1,17115035
CV_4227		hypothetical protein	1,23905193
CV_4228		phosphotransferase	1,02402473
CV_4278		carbohydrate kinase family protein	1,15705263
CV_4301		TlyA family RNA methyltransferase	1,0404488
CV_4322		YbjQ family protein	1,37438949
CV_4323		2-phosphosulfolactate phosphatase	1,60655795
CV_4374		patatin-like phospholipase family protein	1,12214366
CV_4404	yidC	membrane protein insertase YidC	1,24984395
CV_4405	yidD	membrane protein insertion efficiency factor YidD	1,5596723
CV_4407	rpmH	50S ribosomal protein L34	1,11444873
CV_RS01270		DUF3079 domain-containing protein	2,81627662
CV_RS01330		hypothetical protein	1,29380236
CV_RS03740		hypothetical protein	1,49739113
CV_RS04125		EAL domain-containing protein	1,39174655
CV_RS04825		DUF971 domain-containing protein	1,21927212
CV_RS13280		DUF2249 domain-containing protein	10,209137
CV_RS19035		hypothetical protein	2,17076699
CV_RS23255		hypothetical protein	1,92285432
CV_RS23680		DUF3149 domain-containing protein	4,04509394

Tabela Suplementar 3. Genes diferencialmente expressos em $\Delta cvil$.

Open Reading frame	Gene	Function	log₂ Fold Change (∆ <i>cvil</i> /WT strain)
		Downregulated genes	
CV_0008		DUF1484 family protein	-1,0443698
CV_0012		DUF2235 domain-containing protein	-1,10789
CV_0013		hypothetical protein	-1,1901014
CV_0014		hypothetical protein	-1,1180722
CV_0015		DUF4123 domain-containing protein	-1,0355622
CV_0018		ATP-grasp domain-containing protein	-2,961156

CV_0019	methylcrotonoyl-CoA carboxylase	-3,3654817
CV_0020	MFS transporter	-3,2557783
CV_0021	aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme	-3,4735261
CV_0056	M20/M25/M40 family metallo-hydrolase	-3,0029378
CV_0057	peptidase M4 family protein	-2,3072309
CV_0068	peptidase domain-containing ABC transporter	-2,4661332
CV_0069	HlyD family efflux transporter periplasmic adaptor subunit	-2,432117
CV_0096	glycoside hydrolase family 16 protein	-1,2615419
CV_0158	molybdopterin-dependent oxidoreductase	-1,7457421
CV_0172	depolymerase	-1,4459675
CV_0198	MgtC/SapB family protein	-1,2915599
CV_0209	organic hydroperoxide resistance protein	-2,7025254
CV_0241	PTS sugar transporter subunit IIA	-1,0090066
CV_0247	ester cyclase	-1,5907526
CV_0256	hypothetical protein	-2,1397368
CV_0308	ToIC family outer membrane protein	-1,131121
CV_0311	retention module-containing protein	-1,1662907
CV_0328	transposase	-2,3740019
CV_0330	DUF4243 domain-containing protein	-1,1920185
CV_0360	SGNH/GDSL hydrolase family protein	-1,6569632
CV_0370	aspartate carbamoyltransferase regulatory subunit	-1,0407345
CV_0393	aldehyde dehydrogenase family protein	-2,1869563
CV_0394	class I SAM-dependent methyltransferase	-1,2881401
CV_0403	MFS transporter	-1,4877118
CV_0443	alkylphosphonate utilization protein	-1,1515874
CV_0454	hypothetical protein	-2,1585177
CV_0464	DUF4347 domain-containing protein	-1,0204372
CV_0466	efflux RND transporter periplasmic adaptor subunit	-1,1040301
CV_0541	FUSC family protein	-1,0770303
CV_0553	lytic polysaccharide monooxygenase	-3,7671099
CV_0554	lytic polysaccharide monooxygenase	-2,7761618
CV_0567	hypothetical protein	-2,9640245
CV_0568	chorismate-binding protein	-3,0985212
CV_0569	queuosine precursor transporter	-3,0355807
CV_0570	helix-turn-helix transcriptional regulator	-3,8504444
CV_0572	phosphohydrolase	-1,9485691
CV_0579	carboxymuconolactone decarboxylase family protein	-2,5276029
CV_0580	DUF2798 domain-containing protein	-3,8927286
CV_0592	DUF2860 domain-containing protein	-1,4390175
CV_0594	sensor histidine kinase	-1,0500729
CV_0597	hypothetical protein	-2,8247632
CV_0636	hypothetical protein	-1,6799787
CV_0708	DHA2 family efflux MFS transporter permease subunit	-3,4195135
CV_0709	HlyD family secretion protein	-4,5751105
CV_0710	efflux transporter outer membrane subunit	-3,6815433

CV_0717		hypothetical protein	-1,4824434
CV_0718		poly(3-hydroxybutyrate) depolymerase	-1,1563063
CV_0721		RebB family R body protein	-2,2768932
CV_0722		RebB family R body protein	-3,1267776
CV_0723		RebB family R body protein	-3,5731145
CV_0724		RebB family R body protein	-3,2968683
CV_0725		hypothetical protein	-2,9139344
CV_0728		hypothetical protein	-2,0147982
CV 0729		polyhydroxybutyrate depolymerase	-2,2773733
CV_0731		patatin-like phospholipase family protein	-2,4318888
CV 0732		hypothetical protein	-4,2984865
CV_0733		RebB family R body protein	-3,3879911
CV 0735		DUF2589 domain-containing protein	-3,5027804
CV_0737		RNA polymerase sigma factor	-4,5131175
CV 0753		hypothetical protein	-2,7012139
CV_0754		hypothetical protein	-1,6707619
CV_0755		hypothetical protein	-1,3940006
CV_0756		hypothetical protein	-1,4402251
CV_0801		MFS transporter	-1,8829104
CV 0803	hemA	5-aminolevulinate synthase	-2.1101644
CV 0808		NADP-dependent oxidoreductase	-1,5133789
CV_0867		superoxide dismutase	-3,7459398
CV_0868		DUF1842 domain-containing protein	-4.4732547
CV 0870	tpx	thiol peroxidase	-1,4539275
CV 0924	dusA	tRNA dihydrouridine(20/20a) synthase DusA	-1,0275823
CV_1034		EAL domain-containing protein	-1,0188508
CV_1039		cytochrome c5 family protein	-3,1432857
CV_1040		FAD-binding protein	-1,963252
CV_1041		DSD1 family PLP-dependent enzyme	-2,5614396
CV 1052		hypothetical protein	-2,2860845
CV_1094		IscS subfamily cysteine desulfurase	-1,0488559
_ CV_1095	iscR	Fe-S cluster assembly transcriptional regulator	-1,2976878
CV 1121	acn∆	aconitate hydratase AcnA	-1 3050603
CV 1144	00///	DinB family protein	-1 7842326
CV 1148		FAL domain-containing protein	-1 0790646
CV 1151		CidA/LirgA family protein	-2 0484703
CV 1152		L rgB family protein	-1 7065973
CV 1219		MFS transporter	-2 1250157
CV 1220		hypothetical protein	-1 4946887
CV 1222		aldebyde debydrogenase	-1 7192551
CV 1228	cas4	CRISPR-associated protein Cas4	-1 3995326
CV 1229	cas1c	type I-C CRISPR-associated endonuclease Cas1	-1 1622782
CV 1230	cas2	CRISPR-associated endonuclease Cas2	-1.3405968
CV 1284	JUDE	hydrolase	-1 2759153
CV 1311		hypothetical protein	-1 1146386
CV 1324		OsmC family protein	-1 1344361
C\/ 1325		thioredoxin family protein	-1 3400015
<u> </u>			1,0100010

CV_1326		hypothetical protein	-1,1874365
CV_1340		trypsin-like serine protease	-2,309425
CV_1395		galactose mutarotase	-2,4532099
CV_1396		ABC transporter substrate-binding protein	-2,7942865
CV_1397		HAD family phosphatase	-2,6052805
CV_1398		MFS transporter	-3,4865484
CV_1399		NUDIX domain-containing protein	-3,6808158
CV_1400	mtnP	S-methyl-5'-thioadenosine phosphorylase	-3,7781899
CV_1401		fatty acid desaturase	-4,0742732
CV_1402		HAD family hydrolase	-7,4347163
CV_1403		FAD-dependent oxidoreductase	-5,4319858
CV_1404		DegT/DnrJ/EryC1/StrS family aminotransferase	-4,9876493
CV_1405		NUDIX hydrolase	-4,962886
CV_1406		DegT/DnrJ/EryC1/StrS family aminotransferase	-6,3868596
CV_1407		Gfo/Idh/MocA family oxidoreductase	-6,2783909
CV_1414		copper homeostasis protein CutC	-1,0581292
CV_1434		DUF1304 domain-containing protein	-1,0376323
CV_1473		phage tail assembly protein	-4,1563152
CV_1541		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	-5,4628313
CV_1542		MaoC family dehydratase	-4,919485
CV_1543		hypothetical protein	-3,3257211
CV_1544		diiron oxygenase	-3,2170889
CV_1545		NAD(P)/FAD-dependent oxidoreductase	-3,2543845
CV_1546	fabG	3-oxoacyl-ACP reductase FabG	-1,4313526
CV_1547		ferredoxin family protein	-1,441138
CV_1551		DUF4180 domain-containing protein	-1,3095996
CV_1599	kdpA	potassium-transporting ATPase subunit KdpA	-1,2942998
CV_1712		phospholipase	-1,3780529
CV_1713	asnB	asparagine synthase (glutamine-hydrolyzing)	-2,1665549
CV_1740		GNAT family N-acetyltransferase	-1,1497443
CV_1741		class I SAM-dependent methyltransferase	-1,1447532
CV_1744		fucose-binding lectin II	-2,6720085
CV_1751	cas6f	type I-F CRISPR-associated endoribonuclease Cas6/Csy4	-1,9103805
CV_1752	csy3	type I-F CRISPR-associated protein Csy3	-1,4210406
CV_1753	csy2	type I-F CRISPR-associated protein Csy2	-1,270959
CV_1754	csy1	type I-F CRISPR-associated protein Csy1	-1,3167136
CV_1884		amidohydrolase	-4,3188064
CV_1885		DUF3100 domain-containing protein	-3,5698258
CV_2001		M9 family metallopeptidase N-terminal domain- containing protein	-2,0573851
CV_2002		hypothetical protein	-1,3487823
CV_2036		redoxin family protein	-1,288798
CV_2101		helix-turn-helix domain-containing protein	-1,434609
CV_2102		amidohydrolase	-1,7556066
CV_2114		phage tail protein	-1,8887025
CV_2126		hypothetical protein	-1,0339051
CV_2131		DUF1320 domain-containing protein	-2,5330635

CV_2134		hypothetical protein	-2,6007601
CV_2135		peptidase	-2,5699083
CV_2147		M15 family metallopeptidase	-5,2927071
CV_2246		response regulator transcription factor	-1,6351089
CV_2247		transaldolase	-1,7471702
CV_2248		sugar MFS transporter	-1,5587817
CV_2249		hypothetical protein	-1,9536002
CV_2255	anil	sugar O-acetyltransferase	-7,8330711
CV_2256	aniQ	aspartate aminotransferase family protein	-6,9073975
CV_2257	aniP	hypothetical protein	-6,6025233
CV_2258	aniN	SDR family oxidoreductase	-5,9905997
CV_2259	aniM	DUF1349 domain-containing protein	-5,2345579
CV_2260	aniH	HAD-IIB family hydrolase	-4,6941824
CV_2261	aniK	methyltransferase	-3,5118651
CV_2262	aniL	MFS transporter	-2,8638416
CV/ 2263		RHS repeat-associated core domain-containing	-2 0258365
01/2203		protein	-2,920000
CV_2264		hypothetical protein	-2,0749761
CV_2309		PTS fructose transporter subunit IIC	-1,2542489
CV_2310		PTS fructose transporter subunit IIB	-1,1364353
CV_2311	ptsP	phosphoenolpyruvateprotein phosphotransferase	-1,1429162
CV_2312	manA	mannose-6-phosphate isomerase, class I	-1,0723107
CV_2313		helix-turn-helix transcriptional regulator	-1,0935786
CV_2383		hypothetical protein	-2,5374629
CV_2393		phosphatidylglycerophosphatase A	-1,0248365
CV_2398		response regulator	-1,554524
CV_2454		aminopeptidase P family protein	-1,0563649
CV_2463		methyl-accepting chemotaxis protein	-1,6125659
CV_2469		GNAT family N-acetyltransferase	-1,1942635
CV_2498		response regulator	-1,1598002
CV_2563		hypothetical protein	-1,2559198
CV_2564		hypothetical protein	-1,8664375
CV_2571		M23 family metallopeptidase	-4,6452763
CV_2634		two-component sensor histidine kinase	-1,1386244
CV_2635		response regulator	-1,4047708
CV_2651		hypothetical protein	-2,0747551
CV_2666		hypothetical protein	-1,0210068
CV_2670		amidohydrolase	-2,6456989
CV_2684		hypothetical protein	-2,8005709
CV_2717		S8 family serine peptidase	-1,1990654
CV_2751		3'-5' exonuclease	-1,0505408
CV_2753		thioredoxin family protein	-1,0259041
CV_2798		MFS transporter	-1,3433499
CV_2799		alpha/beta fold hydrolase	-1,1000201
CV_2801		hypothetical protein	-1,1837931
CV_2802		non-ribosomal peptide synthetase	-2,8497039
CV_2803		non-ribosomal peptide synthetase	-3,7478255
CV_2804		aspartate aminotransferase family protein	-4,1252917

CV_2830		alkaline phosphatase family protein	-1,6531555
CV_2831		hypothetical protein	-1,9540126
CV_2832		ferritin-like protein	-2,0759944
CV_2833		3-dehydroquinate synthase	-1,5487597
CV_2834	eboE	metabolite traffic protein EboE	-1,9128099
CV_2836		TatD family hydrolase	-1,8443335
CV_2837		VOC family protein	-2,1095433
CV_2839		LysE family translocator	-2,0872552
CV_2956		Lacl family DNA-binding transcriptional regulator	-1,4113731
CV_2969		cystine ABC transporter substrate-binding protein	-1,2744056
CV_3014		MFS transporter	-2,315118
CV_3063		sulfite exporter TauE/SafE family protein	-1,0823348
CV_3064		metal ABC transporter substrate-binding protein	-1,1883255
CV_3065		metal ABC transporter permease	-1,0837981
CV_3067		GTP-binding protein	-1,0913411
CV_3068		transcriptional repressor	-1,8440045
CV_3104		porin	-1,4697313
CV_3143		hypothetical protein	-1,1187582
CV_3218		threonylcarbamoyl-AMP synthase	-2,179431
CV_3219		hypothetical protein	-2,5235364
CV_3220		DUF2309 domain-containing protein	-1,917803
CV_3221		NADH-quinone oxidoreductase subunit L	-2,1453393
CV_3235		MerR family DNA-binding protein	-1,2681635
CV_3265		hypothetical protein	-1,3654546
CV_3270	vioE	violacein biosynthesis enzyme VioE	-4,6630951
CV_3271	vioD	tryptophan hydroxylase VioD	-4,4188645
CV_3272	vioC	FAD-dependent monooxygenase	-3,7328341
CV_3273	vioB	iminophenyl-pyruvate dimer synthase VioB	-3,6161116
CV_3274	vioA	FAD-dependent oxidoreductase	-4,0702767
CV_3275	sph	sphingomyelin phosphodiesterase	-1,4884633
CV_3290		3-methyl-2-oxobutanoate hydroxymethyltransferase	-5,2000259
CV_3291		LysR family transcriptional regulator	-2,0655513
CV_3297		hypothetical protein	-1,2838064
CV_3316		chitinase C-terminal domain-containing protein	-3,6256069
CV_3318		hypothetical protein	-1,5607794
CV_3383		MarR family transcriptional regulator	-1,3051706
CV_3475		hypothetical protein	-2,2981134
CV_3486		VOC family protein	-1,8509431
CV_3506		protease	-3,9167613
CV_3514		putative DNA-binding domain-containing protein	-1,1022563
CV_3515		DoxX family protein	-1,1539199
CV_3520		acetoacetate decarboxylase	-1,4534995
CV_3595		hypothetical protein	-1,0772761
CV_3596		hypothetical protein	-3,5478117
CV_3597		pyridoxal-phosphate dependent enzyme	-3,8498799
CV_3598		phenylacetateCoA ligase family protein	-3,5188803
CV_3599		transglutaminase domain-containing protein	-3,8150189

CV_3600		MFS transporter	-2,105038
CV_3604	metE	5-methyltetrahydropteroyltriglutamate homocysteine S-methyltransferase	-1,9238701
CV_3731		MFS transporter	-1,6853098
CV_3760		hypothetical protein	-2,2865233
CV_3905		MarR family transcriptional regulator	-2,5532972
CV_3931		chitosanase	-2,4134756
CV_3934		hypothetical protein	-1,3754023
CV_3935		M15 family metallopeptidase	-1,2668935
CV_3939		hypothetical protein	-2,0881117
CV_3940		hypothetical protein	-1,2965545
CV_3946		FAD-dependent oxidoreductase	-1,6333791
CV_3947	fabG	3-oxoacyl-ACP reductase FabG	-1,6251969
CV_3948		beta-ketoacyl synthase	-1,5555864
CV_3949		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	-1,6091318
CV_3950		(3R)-hydroxymyristoyl-ACP dehydratase	-1,6364656
CV_3951		hypothetical protein	-1,9227111
CV_3952		methyltransferase domain-containing protein	-1,6630755
CV_3953		SDR family oxidoreductase	-1,7640519
CV_3954		polyprenyl synthetase family protein	-1,6429256
CV_3955		hypothetical protein	-1,8002361
CV_3956		UbiA family prenyltransferase	-2,3705401
CV_3959	asnB	asparagine synthase (glutamine-hydrolyzing)	-2,551322
CV_3960		isopentenyl phosphate kinase family protein	-2,1977588
CV_3961		(5-formylfuran-3-yl)methyl phosphate synthase	-2,8261174
CV_4045		ferredoxinNADP reductase	-1,77936
CV_4091		GNAT family N-acetyltransferase	-6,1821458
CV_4106		hypothetical protein	-1,7192725
CV_4107		hypothetical protein	-1,5130324
CV_4114		hypothetical protein	-1,0630158
CV_4142		formyl transferase	-1,4380489
CV_4224		trypsin-like serine protease	-2,7259278
CV_4238		hypothetical protein	-1,5299121
CV_4239		cysteine hydrolase	-1,0808992
CV_4240		chitinase	-2,6733826
CV_4280		DUF2087 domain-containing protein	-1,3395367
CV_4317		MdfA family multidrug efflux MFS transporter	-4,3587746
CV_4318		acyl-protein synthase	-2,6481264
CV_4319		hypothetical protein	-3,0675949
CV_4320		AMP-binding protein	-3,0173593
CV_RS05175		hypothetical protein	-1,2190931
CV_RS10890		hypothetical protein	-2,1657991
CV_RS11955		CHAD domain-containing protein	-1,3587513
CV_RS12990		hypothetical protein	-2,2544807
CV_RS22830		GNAT family N-acetyltransferase	-1,3238449
		Upregulated genes	
CV_0034		nicotinate phosphoribosyltransferase	1,54356982

CV_0083		YeeE/YedE family protein	2,25075989
CV_0085		carboxymuconolactone decarboxylase family protein	1,01242254
CV_0090		hypothetical protein	1,62898155
CV_0117		amino acid ABC transporter ATP-binding protein	1,11752412
CV_0118		ABC transporter permease subunit	1,38069176
CV_0119		amino acid ABC transporter permease	1,47328649
CV_0131	benE	benzoate/H(+) symporter BenE family transporter	1,06370328
CV_0136		DeoR family transcriptional regulator	1,10399683
CV_0161	purE	5-(carboxyamino)imidazole ribonucleotide mutase	1,42007309
CV_0162		5-(carboxyamino)imidazole ribonucleotide synthase	1,10993485
CV_0164		DNA alkylation repair protein	1,29138301
CV_0165		phosphoribosylaminoimidazolesuccinocarboxamide synthase	1,3365346
CV_0190	gap	type I glyceraldehyde-3-phosphate dehydrogenase	1,49807462
CV_0231		HlyC/CorC family transporter	1,26727489
CV_0255		hypothetical protein	1,8362769
CV_0296		hypothetical protein	1,49256205
CV_0401	hslV	ATP-dependent protease subunit HsIV	1,79899282
CV_0402	hslU	ATP-dependent protease ATPase subunit HsIU	1,30786502
CV_0456		sodium:proton antiporter	1,05606243
CV_0521		hypothetical protein	2,27935695
CV_0595		2-isopropylmalate synthase	1,28422376
CV_0627		MCP four helix bundle domain-containing protein	1,55370129
CV_0651		tyrosine-type recombinase/integrase	1,51586922
CV_0679		helix-turn-helix transcriptional regulator	1,1804439
CV_0854		ABC transporter permease	1,31094973
CV_0855		ATP-binding cassette domain-containing protein	1,51543212
CV_0949	nuol	NADH-quinone oxidoreductase subunit Nuol	1,07740188
CV_0974		tyrosine phosphatase	1,78598142
CV_0975		CesT family type III secretion system chaperone	1,67639037
CV_1078		MFS transporter	1,08241039
CV_1098		ABC transporter permease subunit	1,24345261
CV_1101		ABC transporter ATP-binding protein	1,00092904
CV_1162		peptide MFS transporter	1,71882005
CV_1182		reactive intermediate/imine deaminase	1,27589761
CV_1298		hypothetical protein	1,10628935
CV_1318	htpG	molecular chaperone HtpG	1,5971235
CV_1333	potA	polyamine ABC transporter ATP-binding protein	1,13712928
CV_1334		FAD-binding oxidoreductase	1,03319618
CV_1408		L-serine ammonia-lyase	2,20210383
CV_1409		HAAAP family serine/threonine permease	2,3460758
CV_1441		MBL fold metallo-hydrolase	1,16849825
CV_1467		hypothetical protein	1,60771079
CV_1503		branched-chain amino acid ABC transporter permease	1,38878943
CV_1504		ABC transporter ATP-binding protein	1,21237329
CV_1505		ABC transporter ATP-binding protein	1,14815196
CV_1506		ABC transporter ATP-binding protein	1,34510805

CV_1530	pta	phosphate acetyltransferase	1,4712163
CV_1531		acetate kinase	1,36643918
CV_1532		aromatic ring-hydroxylating dioxygenase subunit alpha	1,31345614
CV_1538	putA	trifunctional transcriptional regulator/proline dehydrogenase/L-glutamate gamma-semialdehyde dehydrogenase	1,12874855
CV_1578		EAL domain-containing response regulator	2,27193102
CV_1642	grpE	nucleotide exchange factor GrpE	1,42312376
CV_1653	hemG	protoporphyrinogen oxidase	2,04711547
CV_1663		hypothetical protein	2,52595965
CV_1664	yehT	two-component system response regulator BtsR	3,38129944
CV_1665		sensor histidine kinase	4,77764874
CV_1720	ppk2	polyphosphate kinase 2	1,02491121
CV_1766		isovaleryl-CoA dehydrogenase	1,26748109
CV_1779		MerR family DNA-binding transcriptional regulator	1,47398763
CV_1780		AMP-binding protein	1,04527114
CV_1843		alpha-D-ribose 1-methylphosphonate 5-phosphate C-P-lyase PhnJ	1,22540102
CV_1920		pirin family protein	1,34328277
CV_1944	clpB	ATP-dependent chaperone ClpB	1,16896266
CV_1957		polyamine ABC transporter substrate-binding protein	1,1493977
CV_1958		ABC transporter permease subunit	1,72933031
CV_1959		ABC transporter permease subunit	1,77954453
CV_1960		DUF3138 family protein	1,69904688
CV_1993	argF	ornithine carbamoyltransferase	1,2433543
CV_1994		argininosuccinate synthase	1,00020305
CV_2007	nirK	nitrite reductase, copper-containing	1,89241317
CV_2038		T3SS effector OspC family protein	1,70825161
CV_2057	prpB	methylisocitrate lyase	1,11298926
CV_2188		metallophosphoesterase	1,13917162
CV_2189		HD domain-containing protein	1,2244203
CV_2266		GDSL family lipase	1,28012917
CV_2292		hypothetical protein	1,8938906
CV_2347		BMP family ABC transporter substrate-binding protein	1,11362696
CV_2348		ABC transporter ATP-binding protein	1,34387191
CV_2467		BMP family ABC transporter substrate-binding protein	1,10997001
CV_2495		flagellin	1,15038532
CV_2532	moaA	GTP 3',8-cyclase MoaA	5,46476686
CV_2534		type IV pili methyl-accepting chemotaxis transducer N-terminal domain-containing protein	2,83025607
CV_2535	-	response regulator transcription factor	2,5314004
CV_2540	narl	respiratory nitrate reductase subunit gamma	5,64195164
CV_2541	narJ	nitrate reductase molybdenum cofactor assembly chaperone	5,84466473
CV_2542	narH	nitrate reductase subunit beta	6,18466903
CV_2543		nitrate reductase subunit alpha	7,1632362

CV_2544		NarK family nitrate/nitrite MFS transporter	6,7926928
CV_2545		NarK/NasA family nitrate transporter	4,96949513
CV_2613		hypothetical protein	1,15835851
CV 2616	sipA	SPI-1 type III secretion system effector SipA	1,17360841
CV_2617	sctA	type III secretion system needle tip protein SctA	1,21871347
CV_2618		IpaC/SipC family type III secretion system needle tip complex protein	1,26421896
CV_2619		type III secretion system needle tip complex protein	1,32183159
CV_2620	sicA	type III secretion system translocator chaperone SicA	1,4421366
CV_2623		EscS/YscS/HrcS family type III secretion system export apparatus protein	1,86150708
CV_2624		EscR/YscR/HrcR family type III secretion system export apparatus protein	1,9038438
CV_2625		YscQ/HrcQ family type III secretion apparatus protein	2,04387883
CV_2626		surface presentation of antigens secretory protein	2,21577806
CV_2627		secretory protein, associated with virulence	2,07926947
CV_2628	sctN	type III secretion system ATPase SctN	2,04358882
CV_2629	spaK	SPI-1 type III secretion system chaperone SpaK	2,03211051
CV 2630		EscV/YscV/HrcV family type III secretion system	2.15142723
CV_2631		export apparatus protein YopN/LcrE/InvE/MxiC type III secretion system gatekeeper	1,46573945
CV_2632		EscC/YscC/HrcC family type III secretion system	2,07579429
CV 2633	invF	AraC family transcriptional regulator InvF	2.0041108
CV 2639		hypothetical protein	1,15316248
CV 2709		hypothetical protein	6,05673349
CV 2710		hemerythrin domain-containing protein	8,51730532
CV 2711		NnrS family protein	6,85928961
CV 2817		hypothetical protein	2,3043643
CV 2883	flgG	flagellar basal-body rod protein FlgG	1,16049219
CV 2884	Ũ	flagellar basal body rod protein FlgF	1,10736523
CV 2897		extracellular solute-binding protein	1.24433315
CV 2898		sugar ABC transporter permease	1.20916739
CV 2899		carbohydrate ABC transporter permease	1,1057594
CV 2921		MaoC family dehydratase	1.45369525
CV 2980		restriction endonuclease Eco57I	1.14479733
CV 3018		sugar ABC transporter ATP-binding protein	1.2770738
CV 3019	rbsD	D-ribose pyranase	1.32949738
CV 3020	rbsK	ribokinase	1.31672234
CV 3062		enovI-CoA hydratase	2,22758927
CV 3072	tvrS	tvrosinetRNA ligase	1.01006228
CV_3077	cy/ C	oxidoreductase	2 76943338
CV 3100	matA	magnesium-translocating P-type ATPase	2.33628397
CV 3109	go i	protease HtpX	1.04552698
CV 3208		1-acyl-sn-glycerol-3-phosphate acyltransferase	2,6632338
CV 3213		hypothetical protein	1,93717019
20_10			.,

CV_3216		isoprenylcysteine carboxylmethyltransferase family	1,88869121
CV/ 3231		hypothetical protein	1 25370054
CV_{3232}		co-chaperone GroES	2 80526008
CV_3253		pirin family protein	2,09520900
CV_3310		hypothetical protein	1,40312031
CV_{3311}		DI IE465 domain-containing protein	1,327 12140
CV_{3323}		bol 400 domain-containing protein	1,47577651
CV_{3370}		anaerobic C1-dicarboxylate transporter	2 5020028
CV_{3404}		nitric-ovido reductase large subunit	2,3939930 5 /685717/
CV_{3494}		TotP/AcrP family transcriptional regulator	1 16400554
CV_{3500}		NADPH-dependent ovidoreductase	1,10400334
CV_{3501}		alkono roductaso	1,75791597
CV_{3551}		dibudroorotate oxidase	1,307 13203
CV_{3643}		multicopper ovidase family protein	1,72023304
CV_3043		oxygen-independent coproporphyringgen III	1,00779070
CV_3648	hemN	oxidase	2,8192908
CV_3649		methyl-accepting chemotaxis protein	1,07842882
CV_3709	ppsA	phosphoenolpyruvate synthase	1,50431542
CV_3711		translation initiation factor Sui1	1,09738171
CV_3725		DUF3313 family protein	2,35679235
CV_3755	dtpA	dipeptide/tripeptide permease DtpA	1,44187354
CV_3839	fdnG	formate dehydrogenase-N subunit alpha	1,2885641
CV_3840	fdxH	formate dehydrogenase subunit beta	1,44918144
CV_3841		formate dehydrogenase subunit gamma	1,0555616
CV_3852		hypothetical protein	1,15516306
CV_3868		DUF3761 domain-containing protein	1,17703669
CV_3917		CoA transferase	1,65156341
CV_3918		acyl-CoA dehydrogenase	2,16094614
CV_3919		IcIR family transcriptional regulator	2,17243511
CV_3922		TetR/AcrR family transcriptional regulator	2,01527032
CV_3923		efflux RND transporter periplasmic adaptor subunit	1,7776772
CV_3924		efflux RND transporter permease subunit	1,92859819
CV_3992	суоЕ	protoheme IX farnesyltransferase	1,58331292
CV_3995	суоВ	cytochrome o ubiquinol oxidase subunit I	1,14593236
CV_4005		glutathione S-transferase N-terminal domain- containing protein	1,04492349
CV 4012	rfbA	alucose-1-phosphate thymidylyltransferase RfbA	1.13887479
CV 4065		DUF459 domain-containing protein	1,21423282
CV 4084		U32 family peptidase	4,77068926
CV 4085		U32 family peptidase	4,21659729
CV 4086		SCP2 sterol-binding domain-containing protein	4,41666637
CV 4087		GGDEF domain-containing protein	2,03125449
_ CV_4092		NAD-dependent succinate-semialdehyde	1,04488467
CV 4096		PLP-dependent aminotransferase family protein	1.01721354
CV 4103		OmpW family protein	2.25623951
CV 4134		hypothetical protein	1,19319075
CV_4154	Int	apolipoprotein N-acyltransferase	1,01883973
		· · · ·	

CV_4167	rpIO	50S ribosomal protein L15	1,12271465
CV_4168	rpmD	50S ribosomal protein L30	1,56646222
CV_4169	rpsE	30S ribosomal protein S5	1,37104889
CV_4170	rplR	50S ribosomal protein L18	1,48137187
CV_4171	rplF	50S ribosomal protein L6	1,33041098
CV_4172	rpsH	30S ribosomal protein S8	1,18680948
CV_4173	rpsN	30S ribosomal protein S14	1,06645496
CV_4174	rplE	50S ribosomal protein L5	1,14243603
CV_4213		spermidine/putrescine ABC transporter substrate- binding protein	1,0225549
CV_4282		alkaline phosphatase D family protein	1,23798034
CV_4322		YbjQ family protein	1,05016747
CV_RS13280		DUF2249 domain-containing protein	8,2928993
CV_RS23255		hypothetical protein	1,48288101
CV_RS23680		DUF3149 domain-containing protein	2,77312142

Tabela Suplementar 4. Genes diferencialmente expressos em alta densidade celular (WT^{ADC}).

Open Reading frame	Gene	Function	log₂ Fold Change (WT ^{ADC} /WT ^{BDC} strain)
		Downregulated genes	
CV_0001	dnaA	chromosomal replication initiator protein DnaA	-1,4776806
CV_0011		hypothetical protein	-1,4937738
CV_0028		MBL fold metallo-hydrolase	-2,2740837
CV_0032		NUDIX hydrolase	-1,8817969
CV_0033		ribose-phosphate pyrophosphokinase-like domain-containing protein	-1,3360025
CV_0034		nicotinate phosphoribosyltransferase	-1,8774135
CV_0045		isopenicillin N synthase family oxygenase	-1,8452285
CV_0048		MFS transporter	-2,4222769
CV_0052		uroporphyrinogen-III synthase	-1,0176792
CV_0061		LysR family transcriptional regulator	-1,0555336
CV_0063		DUF2145 domain-containing protein	-1,1865262
CV_0064		hypothetical protein	-1,249296
CV_0065		DEAD/DEAH box helicase	-1,0534292
CV_0079		glutamyl-tRNA reductase	-2,0802292
CV_0080	prfA	peptide chain release factor 1	-1,8415398
CV_0084		helix-turn-helix transcriptional regulator	-1,6522837
CV_0086		B12-binding domain-containing radical SAM protein	-1,3334442
CV_0090		hypothetical protein	-2,1372725
CV_0105		DUF3460 family protein	-1,404148
CV_0106		class I SAM-dependent methyltransferase	-1,8053876
CV_0107		biopolymer transporter ExbD	-1,4334495
CV_0108		cell envelope integrity protein ToIA	-1,1219538
CV_0113		aspartate/glutamate racemase family protein	-1,5640497
CV_0127		dCMP deaminase family protein	-1,0563757
-----------	------------	---	------------
CV_0139		hypothetical protein	-1,5036878
		bifunctional 4-hydroxy-2-oxoglutarate	
CV_0143		aldolase/2-dehydro-3-deoxy-phosphogluconate	-2,4663052
		aldolase	2 4069244
CV_0144	f	phosphogluconate denydratase	-3,4968244
CV_0145	ZWI	glucose-o-prospriate denydrogenase	-2,487549
CV_0146	pgi	6-pnospnogluconolactonase	-1,8427769
CV_0147	(D		-1,4885621
CV_0148	hexR	transcriptional regulator HexR	-1,7009118
CV_0158		molybdopterin-dependent oxidoreductase	-2,2809361
CV_0161	purE	5-(carboxyamino)imidazole ribonucleolide mutase	-1,5016854
CV 0162		5-(carboxyamino)imidazole ribonucleotide	-1 1000553
CV_0102		synthase	-1,1099555
CV_0163	fos	fosfomycin resistance glutathione transferase	-1,639969
CV_0164		DNA alkylation repair protein	-2,2720538
CV_0189		phosphoglycerate kinase	-1,5255828
CV_0191	tkt	transketolase	-1,0640291
CV_0207		response regulator transcription factor	-1,2874175
CV_0218		LysR family transcriptional regulator	-1,101999
CV_0225	waaA	lipid IV(A) 3-deoxy-D-manno-octulosonic acid transferase	-1,1356531
CV_0227		hypothetical protein	-1,3532727
CV_0231		HlyC/CorC family transporter	-1,5322879
CV_0235	thiC	phosphomethylpyrimidine synthase ThiC	-1,0311125
CV_0240		GGDEF domain-containing protein	-1,4554196
CV_0249	pyk	pyruvate kinase	-1,7051531
CV_0263		OprD family outer membrane porin	-1,5556071
CV_0266		U32 family peptidase	-1,4201627
CV_0272		hypothetical protein	-1,4662204
CV_0280		YkgJ family cysteine cluster protein	-1,941099
CV_0290		NAD(P)H-dependent oxidoreductase	-1,4855085
CV_0309		transglutaminase-like cysteine peptidase	-1,0151105
CV_0313		hypothetical protein	-3,2903669
CV_0314		GNAT family N-acetyltransferase	-2,6343741
CV_0320	hutC	histidine utilization repressor	-2,7262261
CV_0321		imidazolonepropionase	-1,9247361
CV_0322		formimidoylglutamase	-1,5563212
CV_0366		inositol monophosphatase family protein	-1,2954414
CV_0373		NYN domain-containing protein	-1,0948811
CV_0374		ABC transporter substrate-binding protein	-2,3441237
CV_0379		M48 family metallopeptidase	-1,0661165
CV_0381		YaeQ family protein	-1,2372857
CV_0383		DEAD/DEAH box helicase	-3,6881515
CV_0397		DUF3857 domain-containing protein	-1,5015901
CV_0398		biopolymer transporter ExbD	-2,4181781
CV_0399		MotA/TolQ/ExbB proton channel family protein	-2,1320911
CV_0400		energy transducer TonB	-1,9700243
			-

CV_0401	hslV	ATP-dependent protease subunit HsIV	-2,0632905
CV_0402	hslU	ATP-dependent protease ATPase subunit HsIU	-1,2263218
CV_0433		efflux transporter outer membrane subunit	-1,51915
CV_0434		multidrug efflux RND transporter permease subunit	-1,8985367
CV_0435		efflux RND transporter periplasmic adaptor subunit	-1,5335053
CV_0436		TetR family transcriptional regulator	-1,025686
CV_0437		ABC transporter ATP-binding protein	-1,712318
CV_0438		ABC transporter permease	-2,1827887
CV_0439		BolA/IbaG family iron-sulfur metabolism protein	-2,6738963
CV 0440	murA	UDP-N-acetylglucosamine 1-	-2,3262951
-		Carboxyvinyitransferase	4 2000572
CV_0442			-1,3900573
CV_0451		succinyidiaminopimeiate transaminase	-1,0468015
CV_0456		sodium:proton antiporter	-1,2907874
CV_0460		nypothetical protein	-1,8502197
CV_0485	rfaE2	D-giycero-beta-D-manno-neptose 1-phosphate	-1,7649809
CV 0486		hiotin[acetyl-CoA-carboxylase] ligase	-1 1365441
CV_0487		type III pantothenate kinase	-1 469014
CV_0488		SPOR domain-containing protein	-1 4025093
CV_0489		DI JE1275 domain-containing protein	-1,4020000
CV_{0404}			-1,0343404
01_0494		hifunctional adenosylcohinamide	-1,2030707
CV_0495	cobU	kinase/adenosylcobinamide-phosphate guanylyltransferase	-1,1818122
CV 0496		cobalamin-binding protein	-1.147858
CV 0499		5-formvltetrahvdrofolate cvclo-ligase	-1.4833998
CV 0509		LvsR family transcriptional regulator	-1.2210306
CV 0513		type I secretion system permease/ATPase	-2.4420956
		HIvD family type I secretion periplasmic	_, : _ = = = = = = = = = = = = = = = = = =
CV_0514		adaptor subunit	-2,0119187
CV_0515		glycosyltransferase	-1,2452301
CV_0517	rlmH	23S rRNA (pseudouridine(1915)-N(3))- methyltransferase RImH	-3,431358
CV_0518	rsfS	ribosome silencing factor	-3,0844691
CV_0519	nadD	nicotinate-nucleotide adenylyltransferase	-1,6425451
CV_0521		hypothetical protein	-3,9856422
CV_0526	aceE	pyruvate dehydrogenase (acetyl-transferring), homodimeric type	-1,1219972
CV_0527	aceF	dihydrolipoyllysine-residue acetyltransferase	-1,5577981
CV_0528	lpdA	dihydrolipoyl dehydrogenase	-1,4719327
CV_0537		response regulator	-1,7952362
CV_0544	dusB	tRNA dihydrouridine synthase DusB	-1,0968652
CV_0550		L-threonylcarbamoyladenylate synthase	-1,795846
CV_0560	gap	type I glyceraldehyde-3-phosphate dehydrogenase	-1,7266175
CV_0569		queuosine precursor transporter	-1,009324

CV_0578	guaD	guanine deaminase	-3,700988
CV_0581		LysR family transcriptional regulator	-1,2717108
CV_0585		RNA polymerase sigma factor	-1,4763441
CV_0591	psd	phosphatidylserine decarboxylase	-1,117971
CV_0596		hypothetical protein	-1,7821245
CV_0608		SCO family protein	-1,6835553
CV_0610		ATP phosphoribosyltransferase	-1,2549952
CV_0611	hisD	histidinol dehydrogenase	-1,1665724
CV 0612		hypothetical protein	-1,6898187
CV_0621		phosphoribosyl-ATP diphosphatase	-1,110826
CV_0625	tatC	twin-arginine translocase subunit TatC	-1.237215
CV 0626		DUF2069 domain-containing protein	-1.5536233
CV_0627		MCP four helix bundle domain-containing protein	-1,4417489
CV 0641		toprim domain-containing protein	-1,6486851
CV 0642		DUF1484 family protein	-3,1679245
CV_0643		hypothetical protein	-3,3996124
CV_0644		hypothetical protein	-3,2665307
CV_0650		hypothetical protein	-1.3450476
CV_0651		tvrosine-type recombinase/integrase	-2.1619953
CV_0659	tsaA	tRNA (N6-threonylcarbamoyladenosine(37)- N6)-methyltransferase TrmO	-1,1074531
CV_0661	mnmG	tRNA uridine-5-carboxymethylaminomethyl(34) synthesis enzyme MnmG	-1,9713726
CV_0662	rsmG	16S rRNA (guanine(527)-N(7))- methyltransferase RsmG	-1,0499448
CV_0665		ATP synthase subunit I	-1,1714044
CV_0667	atpE	F0F1 ATP synthase subunit C	-1,3113858
CV_0668		F0F1 ATP synthase subunit B	-1,3915482
CV_0669		F0F1 ATP synthase subunit delta	-1,6842149
CV_0670		F0F1 ATP synthase subunit alpha	-1,3611187
CV_0671	atpG	F0F1 ATP synthase subunit gamma	-1,5923379
CV_0672	atpD	F0F1 ATP synthase subunit beta	-1,7044931
CV_0673		F0F1 ATP synthase subunit epsilon	-1,7349111
CV_0679		helix-turn-helix transcriptional regulator	-1,5741107
CV_0689		transporter	-1,1051825
CV_0697		adenylosuccinate synthase	-1,9715506
CV_0699		LysR family transcriptional regulator	-1,078799
CV_0713		methyl-accepting chemotaxis protein	-1,3238643
CV_0715		LysR family transcriptional regulator	-1,7166409
CV_0742		nucleoid-associated protein	-1,2485138
CV_0744		DUF805 domain-containing protein	-3,6373729
CV_0749		glycosyltransferase	-1,3633965
CV_0750		DegT/DnrJ/EryC1/StrS aminotransferase family protein	-1,1437778
CV_0751		EamA family transporter	-1,4460896
CV_0752		glycosyltransferase family 39 protein	-1,9240573
CV_0758		outer membrane beta-barrel protein	-5,3052761
CV_0759		alpha/beta fold hydrolase	-1,4802389

CV_0766		DHA2 family efflux MFS transporter permease subunit	-2,2681728
CV_0767		EmrA/EmrK family multidrug efflux transporter periplasmic adaptor subunit	-3,1961327
CV_0768		efflux transporter outer membrane subunit	-3,4075116
CV_0769		MarR family transcriptional regulator	-3,6635087
CV_0787		hypothetical protein	-2,0863095
CV_0788		TIGR01212 family radical SAM protein	-4,6780007
		transporter substrate-binding domain-	4 5552405
CV_0792		containing protein	-1,5553195
CV_0793		4Fe-4S binding protein	-1,1124036
CV_0796		iron transporter	-1,549353
CV_0811		DUF3025 domain-containing protein	-1,0105758
CV_0817		glycosyltransferase family 4 protein	-1,8612567
CV_0818		glycosyltransferase	-1,3576539
CV_0819		NAD-dependent epimerase/dehydratase family protein	-1,2791105
CV_0823		hypothetical protein	-2,1415549
CV_0824		glycosyltransferase family 4 protein	-2,2991027
CV_0825	msbA	lipid A export permease/ATP-binding protein MsbA	-2,1130285
CV_0828	aroK	shikimate kinase AroK	-1,360818
CV_0839		LysR family transcriptional regulator	-1,8914932
CV_0842		hypothetical protein	-1,4973926
CV_0844		hypothetical protein	-1,0742329
CV_0847	ispB	octaprenyl diphosphate synthase	-2,0173925
CV_0848	rpIU	50S ribosomal protein L21	-2,4801321
CV_0849	rpmA	50S ribosomal protein L27	-2,0196748
CV_0850	obgE	GTPase ObgE	-1,7409914
CV_0861	C C	AAA family ATPase	-1,4069136
CV_0865		alpha/beta hydrolase	-1,0719559
CV_0871		APC family permease	-1,5970381
CV 0878		STAS domain-containing protein	-1,2571466
CV_0884		methyltransferase domain-containing protein	-3,2455801
CV_0885		hypothetical protein	-2.5364933
CV 0886		ferredoxinNADP reductase	-1.6510684
CV 0905		glutathione S-transferase family protein	-1,1032845
CV_0906	actP	cation/acetate symporter ActP	-1.8309748
CV_0907	aou	DUF485 domain-containing protein	-1 9728343
CV_0913		DLIE535 domain-containing protein	-1 5697936
CV_0918		TRAP transporter small permease	-2 0728588
CV_0919		TRAP transporter substrate-binding protein	-1 0912503
CV_0921		chromate resistance protein	-1 5324464
CV_0925		spermidine/putrescine ABC transporter	-1,3487266
CV_0927		oxygen-independent coproporphyrinogen III	-1,542686
CV 0934		inorganic phosphate transporter	-1.9052069
CV_0937	pstC	phosphate ABC transporter permease subunit	-1,0726642
	-	TSIU	

CV_0940	secG	preprotein translocase subunit SecG	-1,7570593
CV_0941		NADH-quinone oxidoreductase subunit A	-1,4711572
CV_0943		NADH-quinone oxidoreductase subunit C	-1,0170809
CV_0944		NADH-quinone oxidoreductase subunit D	-1,2046682
CV_0945	nuoE	NADH-quinone oxidoreductase subunit NuoE	-1,2299049
CV_0946	nuoF	NADH-quinone oxidoreductase subunit NuoF	-1,3531288
CV 0947		NADH-quinone oxidoreductase subunit G	-1,2706506
CV_0948	nuoH	NADH-quinone oxidoreductase subunit NuoH	-1,7351421
CV_0949	nuol	NADH-quinone oxidoreductase subunit Nuol	-1,8138114
CV_0950		NADH-quinone oxidoreductase subunit J	-1,9126624
CV_0951	nuoK	NADH-quinone oxidoreductase subunit NuoK	-2,0220893
CV_0952	nuoL	NADH-quinone oxidoreductase subunit L	-1,5236941
CV_0953		NADH-quinone oxidoreductase subunit M	-1,5716602
CV_0954	nuoN	NADH-quinone oxidoreductase subunit NuoN	-1,6816319
CV_0955		DUF2818 family protein	-1,6010168
CV_0963		methionine adenosyltransferase	-1,5363408
CV 0075		CesT family type III secretion system	-1 1201673
Cv_0973		chaperone	-1,1291075
CV_0979	ptsG	PTS glucose transporter subunit IIBC	-2,1196462
CV 0980	ptsP	phosphoenolpyruvateprotein	-2,5174051
	1	pnospnotransferase	0.0040000
CV_0981		Doxx family protein	-2,0340032
CV_0983		DUF 3426 domain-containing protein	-1,4776109
CV_0984	prmA	505 ribosomal protein L11 methyltransferase	-1,1944371
CV_0985	accC	subunit	-1,2464312
		acetyl-CoA carboxylase biotin carboxyl carrier	4 0777455
CV_0986		protein	-1,3777455
CV_0987	aroQ	type II 3-dehydroquinate dehydratase	-2,3781633
CV 0988	aueA	tRNA preQ1(34) S-adenosylmethionine	-1.9138501
	90.07	ribosyltransferase-isomerase QueA	.,
CV_0991	ubiB	ubiquinone biosynthesis regulatory protein	-1,5757182
CV 0998		autotransporter domain-containing protein	-1 0304253
CV_1002		CobD/ChiB family protein	-1 3280575
CV_1003		DEAD/DEAH box belicase	-1 2348251
CV_1005		cation transporter	-2 1200899
CV 1025	flhΔ	flagellar biosynthesis protein FlhA	-1 1559781
CV 1029		GntR family transcriptional regulator	-1 2200797
CV 1036		sigma 54-interacting transcriptional regulator	-1 0700367
CV 1037		RtcB family protein	-1 5866146
CV 1057		helix-turn-helix transcriptional regulator	-1.5643068
CV 1058		hypothetical protein	-1.4759057
CV 1061	prfB	peptide chain release factor 2	-1.1639496
CV 1079	_	LysR family transcriptional regulator	-1,6130305
CV 1080		methyl-accepting chemotaxis protein	-1.8280048
CV 1081		methyl-accepting chemotaxis protein	-2,6427115
CV 1090		hypothetical protein	-1.3105771
CV 1103	coaD	pantetheine-phosphate adenvlvltransferase	-1,1373844
			,

CV_1104		class I SAM-dependent methyltransferase	-2,0199272
CV_1109		potassium channel protein	-2,0434637
CV_1116		LysR family transcriptional regulator	-1,1040493
CV_1126	grxC	glutaredoxin 3	-1,8751922
CV_1129		NAD(P)-dependent glycerol-3-phosphate dehydrogenase	-1,2096245
CV_1132		FAD-dependent monooxygenase	-1,2462587
CV_1133		LysR family transcriptional regulator	-2,1812849
CV_1137	adhE	bifunctional acetaldehyde-CoA/alcohol dehydrogenase	-3,4000713
CV_1141		hypothetical protein	-3,4776097
CV_1151		CidA/LrgA family protein	-2,5357478
CV_1152		LrgB family protein	-2,0178783
CV_1156		acyl-CoA thioesterase	-1,325729
CV_1159		GtrA family protein	-1,2657639
CV_1161		glycosyltransferase family 39 protein	-1,0237121
CV_1162		peptide MFS transporter	-3,3639227
CV_1182		reactive intermediate/imine deaminase	-2,5542124
CV_1194		ABC transporter permease	-3,6840379
CV 1195		glycine betaine ABC transporter substrate-	-2.2290052
01/ 4400		binding protein	_,
CV_1196		ABC transporter permease	-1,9320819
CV_1197		ABC transporter ATP-binding protein	-2,014122
CV_1205		MFS transporter	-4,6424677
CV_1207		hypothetical protein	-1,2038962
CV_1237		hypothetical protein	-1,4801774
CV_1241		immunity protein 32	-1,1386957
CV_1246		DUF3987 domain-containing protein	-1,6825558
CV_1249		GNAT family N-acetyltransferase	-1,6385072
CV_1256	rnhA	ribonuclease HI	-1,1663561
CV_1273		amino acid ABC transporter permease	-2,0926222
CV_1274		amino acid ABC transporter permease	-2,8565889
CV_1283		pirin family protein	-1,143952
CV_1295		fimbria/pilus periplasmic chaperone	-1,2572426
CV_1296		fimbria/pilus outer membrane usher protein	-1,7154615
CV_1297		hypothetical protein	-1,5441075
CV_1317		proQ/FINO family protein	-2,1939261
CV_1328		methyl-accepting chemotaxis protein	-1,1093521
CV_1343	_	DedA family protein	-1,754071
CV_1344	secF	protein translocase subunit SecF	-1,4282692
CV_1345	secD	protein translocase subunit SecD	-1,2387132
CV_1346	yajC	preprotein translocase subunit YajC	-1,3561915
CV_1348	thrS	threoninetRNA ligase	-1,5048977
CV_1349	infC	translation initiation factor IF-3	-1,1361492
CV_1350	rpml	50S ribosomal protein L35	-2,6146397
CV_1351	rpIT	50S ribosomal protein L20	-2,4129063
CV_1352	pheS	phenylalaninetRNA ligase subunit alpha	-1,1228673
CV_1353		phenylalaninetRNA ligase subunit beta	-1,2755428
CV_1359		TMEM165/GDT1 family protein	-1,8000805

CV_1378	efp	elongation factor P	-2,4139163
CV_1391		LysR family transcriptional regulator	-1,5548785
CV_1408		L-serine ammonia-lyase	-5,2739775
CV_1409		HAAAP family serine/threonine permease	-5,6465532
CV_1411		formate transporter FocA	-4,3874016
CV_1412	pflB	formate C-acetyltransferase	-3,0569055
CV_1421		ABC-F family ATP-binding cassette domain- containing protein	-1,7564767
CV_1425		RtcB family protein	-1,7930176
CV_1429		RHS repeat-associated core domain- containing protein	-2,2980877
CV_1445		porin family protein	-1,6989609
CV_1447		DUF748 domain-containing protein	-1,2094599
CV_1460	rimP	ribosome maturation factor RimP	-1,6055115
CV_1463	rbfA	30S ribosome-binding factor RbfA	-1,2588726
CV_1464	truB	tRNA pseudouridine(55) synthase TruB	-2,9309161
CV_1465	rpsO	30S ribosomal protein S15	-2,723562
CV_1472	-	hypothetical protein	-2,5731361
CV_1476		hypothetical protein	-2,913165
CV 1481		3-deoxy-7-phosphoheptulonate synthase	-2,4679042
CV_1482	dhbA	2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase	-2,3709521
CV_1483		isochorismatase	-1,9029717
CV_1484		(2,3-dihydroxybenzoyl)adenylate synthase	-1,8958689
CV_1485		isochorismate synthase	-1,7424273
CV_1486		non-ribosomal peptide synthetase	-2,7669089
CV_1488		iron ABC transporter permease	-1,0939621
CV_1489		ABC transporter substrate-binding protein	-1,5133925
CV_1490		DUF2218 domain-containing protein	-1,6489913
CV_1491		TonB-dependent receptor	-1,4450097
CV 1514		alkaline phosphatase	-1,7668144
CV 1516	hrpA	ATP-dependent RNA helicase HrpA	-2,2445723
CV 1528		glutathionylspermidine synthase family protein	-1,7506927
CV 1529		DUF350 domain-containing protein	-2.2332721
CV 1530	pta	phosphate acetvltransferase	-3.3529214
CV 1531	1	acetate kinase	-4.0035643
CV_1532		aromatic ring-hydroxylating dioxygenase subunit alpha	-1,426759
CV 1534		DMT family transporter	-1,196023
CV 1537		RNA-binding transcriptional accessory protein	-1.9327415
CV 1593		MATE family efflux transporter	-2.5717915
CV 1594		hypothetical protein	-1.5326863
CV_1602		transporter substrate-binding domain-	-5,0018449
CV 1613		class I SAM-dependent methyltransferase	-1,5265945
CV_1632	pcnB	polynucleotide adenylyltransferase PcnB 2-amino-4-hydroxy-6-	-1,2275453
CV_1633	folK	hydroxymethyldihydropteridine diphosphokinase	-1,806304

CV_1634		deoxynucleoside kinase	-1,3019578
CV_1644		acyl-CoA desaturase	-1,0340521
CV_1653	hemG	protoporphyrinogen oxidase	-3,0747061
CV_1655		hypothetical protein	-1,7874102
CV_1656		glycinetRNA ligase subunit beta	-1,1033274
CV_1657	gmhB	D-glycero-beta-D-manno-heptose 1,7- bisphosphate 7-phosphatase	-1,4733272
CV_1658		1-acyl-sn-glycerol-3-phosphate acyltransferase	-1,1864927
CV_1661		sodium:proton antiporter	-2,0934391
CV_1662		carbon starvation protein A	-5,2443
CV_1663		hypothetical protein	-2,4108841
CV_1664	yehT	two-component system response regulator BtsR	-2,0880405
CV_1665		sensor histidine kinase	-5,099216
CV_1670		sodium-dependent transporter	-2,6259497
CV_1681		ABC transporter substrate-binding protein	-1,5383413
CV_1690		ATP-binding protein	-1,1158072
CV_1691		RNA-binding S4 domain-containing protein	-1,284374
CV_1692		oxidoreductase	-1,4402502
CV_1693		PHP domain-containing protein	-1,1342623
CV_1695		site-2 protease family protein	-2,033005
CV_1734		ToIC family protein	-1,8191189
CV_1735		ATP-binding cassette domain-containing protein	-1,1564658
CV_1742		glutaminetRNA ligase/YqeY domain fusion protein	-1,5761407
CV_1743		bifunctional UDP-sugar hydrolase/5'- nucleotidase	-1,1900207
CV_1745		6-phosphofructokinase	-1,4657004
CV_1746		cysteinetRNA ligase	-1,2335074
CV_1747	rpmE	50S ribosomal protein L31	-2,8532618
CV_1748		glycosyltransferase family 39 protein	-1,406161
CV_1756	cas1f	type I-F CRISPR-associated endonuclease Cas1	-1,4768107
CV_1769		MFS transporter	-3,7204475
CV_1770		response regulator transcription factor	-1,1217195
CV_1771		sensor histidine kinase	-1,8198518
CV_1794		iron ABC transporter permease	-2,0545244
CV_1798		leucyl/phenylalanyl-tRNAprotein transferase	-1,3642188
CV_1818		RluA family pseudouridine synthase	-1,1129804
CV_1861		MFS transporter	-2,4585125
CV_1886		hypothetical protein	-1,3627566
CV_1892		MFS transporter	-1,1741956
CV_1897		chitinase	-2,4201858
CV_1898	infA	translation initiation factor IF-1	-1,6785901
CV_1899		hypothetical protein	-3,624625
CV_1900		PLP-dependent aminotransferase family protein	-1,053351
CV_1901		LysE family translocator	-3,3365592
CV_1902		isochorismatase family protein	-2,116197

	hypothetical protein	-1,0609719
	NUDIX domain-containing protein	-1,9385045
	NupC/NupG family nucleoside CNT transporter	-2,4527894
rlmD	23S rRNA (uracil(1939)-C(5))- methyltransferase RImD	-1,1966912
	PLP-dependent aminotransferase family protein	-1,0224545
	LysE family translocator	-1,6297611
	hypothetical protein	-1,8580104
	tRNA 5-hydroxyuridine modification protein YegQ	-1,3649787
argF	ornithine carbamoyltransferase	-1,3212842
	MFS transporter	-1,5440714
	hypothetical protein	-2,8237461
	restriction endonuclease	-2,5575133
	trimeric intracellular cation channel family protein	-1,2289104
	FMN-dependent NADH-azoreductase	-1,8196928
	MFS transporter	-1,268225
	sodium-dependent nucleoside transporter	-3,1129206
cadA	cadmium-translocating P-type ATPase	-1,2512412
	YajQ family cyclic di-GMP-binding protein	-1,5582513
	DMT family transporter	-3,1527024
rnc	ribonuclease III	-1,2464207
recO	DNA repair protein RecO	-1,8480268
	holo-ACP synthase	-1,1210981
	LysR family transcriptional regulator	-1,0875395
rpsB	30S ribosomal protein S2	-3,1944994
•	elongation factor Ts	-3,0950904
	UMP kinase	-1,1390206
	phosphatidate cytidylyltransferase	-1,2111601
	1-deoxy-D-xylulose-5-phosphate reductoisomerase	-1,2686344
rseP	RIP metalloprotease RseP	-1,4030075
lpxD	UDP-3-O-(3-hydroxymyristoyl)glucosamine N- acyltransferase	-1,3828615
rnhB	ribonuclease HII	-1,3226386
	DNA-deoxyinosine glycosylase	-1,3241606
fes	enterochelin esterase	-1,7055263
	MbtH family protein	-6,1188737
entS	enterobactin transporter EntS	-1,4157566
	hypothetical protein	-1,84305
	multidrug efflux RND transporter permease subunit	-1,5725699
	hypothetical protein	-1,0564975
	hypothetical protein	-1,2738891
	nuclear transport factor 2 family protein	-1,52491
	methionine ABC transporter ATP-binding protein	-1,0063828
	Paal family thioesterase	-1,0317764
	rImD argF cadA rnc recO rpsB rseP IpxD rnhB fes entS	hypothetical proteinNUDIX domain-containing proteinNupC/NupG family nucleoside CNT transporter23S rRNA (uracil(1939)-C(5))- methyltransferase RImDPLP-dependent aminotransferase family proteinLysE family translocator hypothetical proteinLysE family translocator hypothetical proteintRNA 5-hydroxyuridine modification protein YegQargFornithine carbamoyltransferasemFS transporter hypothetical protein restriction endonuclease trimeric intracellular cation channel family proteinFMN-dependent NADH-azoreductase MFS transportercadAcadmium-translocating P-type ATPase YajQ family cyclic di-GMP-binding protein DMT family transporterrncrncrncrncnolo-ACP synthase LysR family transcriptional regulatorrpsB30S ribosomal protein S2 elongation factor Ts UDP-3-O-(3-hydroxymyristoyl)glucosamine N- acyltransferasernkBribonuclease HII DNA-deoxyinosine glycosylasefesenterobelin esterase MbH family proteinentsenterobactin transporter EntS hypothetical proteinhypothetical protein multidrug efflux RND transporter EntS hypothetical proteinhypothetical proteinnuclear transport factor 2 family protein methonine ABC transporter Farse Npothetical proteinnuclear transport factor 2 family proteinphosphatidat cytily protein methonine ABC transporter Farsehypothetical protein hypothetical proteinhypothetical protein hypothetical protein<

CV_2319		hypothetical protein	-2,9110205
CV_2320		hypothetical protein	-3,7246795
CV_2342		thymidine kinase	-1,5056331
CV_2345		23S rRNA (adenine(2030)-N(6))-	-1,4296764
CV 2346		tRNA pseudouridine(65) synthase TruC	-1.8801603
CV 2348		ABC transporter ATP-binding protein	-1.9956864
CV 2349		ABC transporter permease	-2.4232585
CV 2350		ABC transporter permease	-2.4850673
CV 2380		sodium-dependent transporter	-1 2870016
CV_2384		TetR/AcrR family transcriptional regulator	-1 3863511
CV 2385		mechanosensitive ion channel	-1.4634724
CV 2386		peptide chain release factor 3	-1 1748033
CV_2391	nusR	transcription antitermination factor NusB	-1 1137693
CV_2410	tvnA	translational GTPase TypA	-1 4312504
01_2110	iy priv	anaerobic ribonucleoside-triphosphate	1,1012001
CV_2412	nrdD	reductase	-2,0779474
CV_2413	nrdG	anaerobic ribonucleoside-triphosphate reductase activating protein	-1,390928
CV_2429		voltage-gated chloride channel family protein	-1,08468
CV 2437		DUF3304 domain-containing protein	-1,371185
CV_2442		sodium:calcium antiporter	-1,8808332
CV_2446		ketoacyl-ACP synthase III	-1,9395295
CV 2447		NAD(P)-dependent oxidoreductase	-2,7069317
CV 2448		MBL fold metallo-hydrolase	-3,1987059
CV 2449		coenzyme F390 synthetase	-2,2669739
CV_2450		phosphatase PAP2 family protein	-2,4702287
CV_2452		acyl-CoA desaturase	-3,0188749
CV_2467		BMP family ABC transporter substrate-binding	-2,1181922
CV 2468		hypothetical protein	-1 544311
CV_2474			-1 1137386
CV_{2532}	moaA	GTP 3' 8-cyclase MoaA	-2 5096024
01_2002	mourt	type IV pili methyl-accepting chemotaxis	2,0000021
CV_2534		transducer N-terminal domain-containing protein	-1,2786236
CV 2543		nitrate reductase subunit alpha	-1,7643932
CV 2544		NarK family nitrate/nitrite MFS transporter	-1,1802046
CV 2545		NarK/NasA family nitrate transporter	-1,5114519
CV 2566		LysR family transcriptional regulator	-1,0276042
CV 2679	yhjQ	cellulose synthase operon protein YhjQ	-1,2929956
CV 2681	,	multidrug/biocide efflux PACE transporter	-1,2300925
CV 2682		LysR family transcriptional regulator	-1,2099749
CV 2711		NnrS family protein	-1.9175135
CV_2730		amino acid permease	-1,6541992
CV 2740		hypothetical protein	-1,5370345
		tRNA (adenosine(37)-N6)-	,
CV_2757	tsaD	threonylcarbamoyltransferase complex transferase subunit TsaD	-1,9200774

CV_2758		ATP-binding cassette domain-containing protein	-1,3501717
CV_2759		transporter substrate-binding domain-	-1,8263161
CV 2763		phosphoribosylanthranilate isomerase	-1.0555217
CV 2785		helix-turn-helix domain-containing protein	-1.0759969
CV_{2844}		winged belix-turn-belix transcriptional regulator	-2 7227141
CV_{2845}			-2,7227141
012040		efflux RND transporter periplasmic adaptor	-2,5015005
CV_2847		subunit	-2,7227647
CV_2848		efflux transporter outer membrane subunit	-2,0520078
CV_2849		alpha/beta hydrolase	-1,9646665
CV_2851		TIGR03862 family flavoprotein	-1,9331355
CV_2852		methyl-accepting chemotaxis protein	-2,664128
CV 2853	dbpA	ATP-dependent RNA helicase DbpA	-1,4879479
_ CV_2860	,	7-cyano-7-deazaguanine/7-aminomethyl-7- deazaguanine transporter	-1,1276022
CV 2890		hypothetical protein	-2,5746414
CV 2892		DEAD/DEAH box helicase	-3.5712685
CV 2910		hypothetical protein	-2.7698033
CV 2915	IntF	LPS export ABC transporter permease LptF	-1.0516705
CV 2922		GMP reductase	-2 2521621
CV 2957		dluconokinase	-7 1440378
CV 2958		MES transporter	-3 7950453
CV_2980		restriction endonuclease Eco57	-1 5364433
CV_2987		Crp/Enr family transcriptional regulator	-1 7655172
CV_2001		FliM/FliN family flagellar motor switch protein	-1 120168
CV_3005	fliD	flagellar biosynthetic protein Flip	-1 8056170
CV_3005	fihD	flagellar type III socration system protein FlbR	1 072002
CV_{3021}	כוווו	N appendix upper in secretion system protein 1 mb	1 1000140
CV_3031		IN-adelyimuramoyi-L-alahine amiuase	-1,1002140
CV_3041		family protein	-1,2164718
CV_3045		integration host factor subunit beta	-2,61406
CV_3046	rpsA	30S ribosomal protein S1	-1,9414164
CV_3047		(d)CMP kinase	-1,6790735
CV_3049		nucleoside triphosphate	-1,3235398
CV 3050		cvtochrome b	-1 1501566
CV_3077		oxidoreductase	-3 3140226
CV_{3082}		GGDEE domain-containing protein	-1 68/5/69
CV_{3100}	matA	magnesium translocating P type ATPace	2 6020425
CV_3100	ШуtА	flagellar type III secretion system nore protein	-3,0929425
CV_3127	fliP	FliP	-1,1932329
CV_3162		iron ABC transporter permease	-1,2947174
CV_3164		thiamine ABC transporter substrate-binding protein	-1,3370818
CV_3183		outer membrane protein transport protein	-3,8448183
CV_3186		UDP-2,3-diacylglucosamine diphosphatase	-1,5114508
CV_3188		TonB-dependent receptor	-1,3164094
CV_3207		DUF1415 domain-containing protein	-1,5443249

CV_3208		1-acyl-sn-glycerol-3-phosphate acyltransferase	-1,8472765
CV_3213		hypothetical protein	-2,0258201
CV_3222		LysR family transcriptional regulator	-1,5050607
CV_3224		FAD-dependent oxidoreductase	-1,1413198
CV_3225		DUF1365 domain-containing protein	-1,5487009
CV_3226		class I SAM-dependent methyltransferase	-1,3603766
CV_3229		cryptochrome/photolyase family protein	-1,3579548
CV_3293	nth	endonuclease III	-1,3467809
CV_3298		carbohydrate porin	-5,0646352
CV_3299	treC	alpha,alpha-phosphotrehalase	-3,8770911
CV_3300	treP	PTS system trehalose-specific EIIBC component	-4,3969783
CV_3303		LysR family transcriptional regulator	-1,6942514
CV_3310		hypothetical protein	-2,7564132
CV_3311		DUF465 domain-containing protein	-2,277486
CV_3317	sgrR	HTH-type transcriptional regulator SgrR	-1,1666046
CV_3325		AsmA family protein	-1,523271
CV_3326		cation:proton antiporter	-1,1597839
CV_3344	kdsB	3-deoxy-manno-octulosonate cytidylyltransferase	-1,1993552
CV_3345		Trm112 family protein	-1,4109831
CV_3351		winged helix-turn-helix transcriptional regulator	-1,0579064
CV_3356		oxidative damage protection protein	-1,2889904
CV_3364		DUF475 domain-containing protein	-1,0617999
CV_3366	frdD	fumarate reductase subunit FrdD	-1,2760273
CV_3367		hypothetical protein	-1,4819117
CV_3368		succinate dehydrogenase/fumarate reductase iron-sulfur subunit	-2,198285
CV_3369	frdA	fumarate reductase (quinol) flavoprotein subunit	-2,4252807
CV_3370		anaerobic C4-dicarboxylate transporter	-5,9223415
CV_3371	coq7	2-polyprenyl-3-methyl-6-methoxy-1,4- benzoquinone monooxygenase	-1,0011924
CV_3384	greB	transcription elongation factor GreB	-1,0855604
CV_3385		NUDIX domain-containing protein	-1,9038538
CV_3387	scpB	SMC-Scp complex subunit ScpB	-1,9723389
CV_3394		PLP-dependent transferase	-1,5267182
CV_3395		pyridoxal-phosphate dependent enzyme	-1,6912492
CV_3396		class I SAM-dependent methyltransferase	-2,2062041
CV_3402	mnmA	tRNA 2-thiouridine(34) synthase MnmA	-1,1012433
CV_3403		MFS transporter	-1,1823092
CV_3409		dicarboxylate/amino acid:cation symporter	-1,1089555
CV_3410	pabC	aminodeoxychorismate lyase	-2,0561179
CV_3411		aminodeoxychorismate synthase component I	-1,7299414
CV_3412	fabF	beta-ketoacyl-ACP synthase II	-1,4733757
CV_3413	acpP	acyl carrier protein	-1,6529815
CV_3414	fabG	3-oxoacyl-ACP reductase FabG	-1,6551514
CV_3415	fabD	ACP S-malonyltransferase	-1,774694
CV_3416		ketoacyl-ACP synthase III	-2,3760374

CV_3417	plsX	phosphate acyltransferase PIsX	-2,5666706
CV_3418	rpmF	50S ribosomal protein L32	-1,7270385
CV_3419		DUF177 domain-containing protein	-2,3207393
CV_3420	maf	septum formation protein Maf	-1,4678115
CV_3421		SAM-dependent methyltransferase	-1,052364
CV_3432		amino acid permease	-2,0669631
CV_3455	rpmG	50S ribosomal protein L33	-2,6784252
CV_3456	rpmB	50S ribosomal protein L28	-2,670873
CV_3462		RnfH family protein	-1,5260215
CV_3479		DMT family transporter	-1,956205
CV_3482		LysR family transcriptional regulator	-1,5372362
CV_3500		NADPH-dependent oxidoreductase	-2,24514
CV_3501		alkene reductase	-1,5607467
CV_3507	queC	7-cyano-7-deazaguanine synthase QueC	-2,0164275
CV_3508	-	6-carboxytetrahydropterin synthase	-2,3678271
CV_3509	queE	7-carboxy-7-deazaguanine synthase	-1,2162176
CV_3526	-	cytochrome-c peroxidase	-1,2134432
CV/ 2520		ATP phosphoribosyltransferase regulatory	1 6609546
CV_3529		subunit	-1,0000340
CV 3541	rlmN	23S rRNA (adenine(2503)-C(2))-	-1.5206684
	in all i	methyltransferase RImN	4 004000
CV_3542	пак	nucleoside-dipnosphate kinase	-1,881683
CV_3546		pnage noiin family protein	-1,5332066
CV_3548		recombination-associated protein RdgC	-1,1192363
CV_3551		dinydroorotate oxidase	-3,7291437
		nypotnetical protein	-1,6146955
		nistone deacetylase family protein	-2,3331989
CV_{3559}		hypothetical protein	-1,5704906
CV_3560		nypothetical protein	-1,0609455
		ion transporter	-1,0648938
CV_{3574}		phosphoadenylyl-suifate reductase	-1,5188366
CV_{3575}	CySB		-1,0740266
CV_3577		ABC-F Tamily AT Pase	-1,5830944
CV_3583		phosphalase PAP2 family protein	-1,8179676
CV_3584	prmC	peplide chain release factor N(5)-giularnine methyltransferase	-1,5998941
CV 3585	matF	magnesium transporter	-2 6529314
	ingt_	monofunctional biosynthetic peptidoglycan	2,0020011
CV_3586	mtgA	transglycosylase	-1,5108194
CV_3591		PAS domain-containing sensor histidine kinase	-1,3390531
CV_3617		DUF3108 domain-containing protein	-1,0960146
CV_3619		chloride channel protein	-1,2884401
CV_3635		anaerobic C4-dicarboxylate transporter	-3,0451403
CV_3636		MarR family transcriptional regulator	-2,3553201
CV_3637		50S ribosomal protein L9	-2,3773151
CV_3638		30S ribosomal protein S18	-2,4103529
CV_3639	priB	primosomal replication protein N	-2,7354416
CV_3640	rpsF	30S ribosomal protein S6	-2,2577338
CV_3644	-	inositol monophosphatase	-1,7412588

CV_3645		RNA methyltransferase	-2,0033589
CV_3646		DUF1853 family protein	-1,1727562
CV_3648	hemN	oxygen-independent coproporphyrinogen III oxidase	-3,3225266
CV_3649		methyl-accepting chemotaxis protein	-1,9287298
CV_3650		sodium:alanine symporter family protein	-3,5268588
CV_3668	clpS	ATP-dependent Clp protease adapter ClpS	-1,2465331
CV_3670	xerD	site-specific tyrosine recombinase XerD	-1,0410588
CV_3672	rpIS	50S ribosomal protein L19	-2,9816876
CV_3673	trmD	tRNA (guanosine(37)-N1)-methyltransferase TrmD	-3,3764262
CV_3674	rimM	ribosome maturation factor RimM	-2,1499759
CV_3675	rpsP	30S ribosomal protein S16	-1,6466017
CV_3677		cation transporter	-1,6206203
CV_3695		N-acetyl-gamma-glutamyl-phosphate reductase	-1,8064145
CV_3696	rpsl	30S ribosomal protein S9	-1,4417669
CV_3697	rpIM	50S ribosomal protein L13	-1,9588413
CV_3702		bifunctional (p)ppGpp synthetase/guanosine- 3',5'-bis(diphosphate) 3'-	-1,7034491
CV 3703	mutY	A/G-specific adenine divcosvlase	-1 4220858
CV_3707	matri	dicarboxylate/amino acid cation symporter	-1.6515722
CV_3711		translation initiation factor Sui1	-1 7567315
CV_3713		helix-turn-helix domain-containing protein	-1 0606249
CV_3724	mltG	endolytic transglycosylase MItG	-1 6298237
CV_3725	init C	DUE3313 family protein	-4 0755621
CV_3730		FadR family transcriptional regulator	-2 2154984
CV_3740	aspS	aspartatetRNA ligase	-1.1099289
CV_3741	acpe	DUF502 domain-containing protein	-1 4833036
CV_3747	rnsT	30S ribosomal protein S20	-1 9902199
CV_3748	murJ	murein biosynthesis integral membrane protein	-2,1356868
CV 3749		CPBP family intramembrane metalloprotease	-2.6992663
CV_3750	queF	NADPH-dependent 7-cyano-7-deazaguanine reductase QueF	-1,4040683
CV_3755	dtpA	dipeptide/tripeptide permease DtpA	-2,9360465
CV_3756		LysR family transcriptional regulator	-1,5836707
CV_3757	lysA	diaminopimelate decarboxylase	-1,5085507
CV_3761		DUF1223 domain-containing protein	-2,2792603
CV_3765		30S ribosomal protein S21	-2,2803015
CV_3770	gmk	guanylate kinase	-2,3208761
CV_3776		PadR family transcriptional regulator	-1,3700868
CV_3780	arcC	carbamate kinase	-1,4167183
CV_3781		ornithine carbamoyltransferase	-1,8419749
CV_3782		arginine deiminase	-3,3487397
CV_3783	arcD	arginine-ornithine antiporter	-5,309262
CV_3784		CDP-6-deoxy-delta-3,4-glucoseen reductase	-1,0420916
CV_3792		DedA family protein	-1,0214318

CV 3798	rlmE	23S rRNA (uridine(2552)-2'-O)-	-1,633996
		methyltransterase RIME	4 7407070
CV_3/99		The family RINA-binding protein	-1,/12/0/9
CV_3800		DUF4149 domain-containing protein	-1,3212519
CV_3801	greA	transcription elongation factor GreA	-1,5987824
CV_3833	tth	signal recognition particle protein	-1,4938274
CV_3846		trypsin-like serine protease	-1,9654762
CV_3852		hypothetical protein	-1,1491149
CV_3853		AlpA family phage regulatory protein	-1,863157
CV_3854		hypothetical protein	-3,210323
CV_3895		hemin uptake protein HemP	-2,4058258
CV_3897		hemin-degrading factor	-2,2664032
CV_3907		MFS transporter	-2,6195943
CV_3908	smc	chromosome segregation protein SMC	-1,6360538
CV_3912	ylq⊢	ribosome biogenesis G I Pase YIqF	-1,126624
CV_3913		DUF3820 family protein	-1,1853349
CV_3923		efflux RND transporter periplasmic adaptor subunit	-1,437157
CV_3924		efflux RND transporter permease subunit	-2,3609986
CV_3966		hypothetical protein	-1,2441942
CV_3968		hypothetical protein	-1,3259235
CV_3969	tssF	type VI secretion system baseplate subunit TssF	-1,2743098
CV_3970		hypothetical protein	-1,7605676
CV_3973		DUF3304 domain-containing protein	-1,5803672
CV_3980	tssM	type VI secretion system membrane subunit TssM	-1,1505467
CV_3981		M15 family metallopeptidase	-1,8464002
CV_3992	cyoE	protoheme IX farnesyltransferase	-6,4786308
CV_3993	cyoD	cytochrome o ubiquinol oxidase subunit IV	-5,9633863
CV_3994	суоС	cytochrome o ubiquinol oxidase subunit III	-5,9809889
CV_3995	суоВ	cytochrome o ubiquinol oxidase subunit I	-5,4911554
CV_3996	суоА	ubiquinol oxidase subunit II	-3,8206444
CV_4013	rfbC	dTDP-4-dehydrorhamnose 3,5-epimerase	-1,0848452
CV_4014	groL	chaperonin GroEL	-1,4659615
CV_4015	groES	co-chaperone GroES	-1,5508605
CV_4016		glycosyltransferase family 4 protein	-1,7830122
CV_4021		glycosyltransferase family 4 protein	-1,7550402
CV_4022		hypothetical protein	-1,7143333
CV_4023		peptidoglycan bridge formation glycyltransferase FemA/FemB family protein	-2,295544
CV_4024		CatB-related O-acetyltransferase	-1,5951237
CV_4025		hypothetical protein	-1,9315399
CV_4026		oligosaccharide flippase family protein	-2,2625154
CV_4027		hypothetical protein	-1,9280771
CV_4028		acylneuraminate cytidylyltransferase family protein	-1,6222159
CV_4029		GNAT family N-acetyltransferase	-2,0957287
CV_4030		CBS domain-containing protein	-1,4200034

CV_4032		DegT/DnrJ/EryC1/StrS family	-1,227282
CV 4029	altP	alutamata synthasa larga subunit	1 2222072
CV_{4030}	упь	giulanale synthase large suburni	-1,2322073
CV_{4051}		amine acid APC transporter permoase	-3,043911
CV_4052		transporter substrate-binding domain-	-2,7940499
CV_4053		containing protein	-1,77979
CV_4054		hypothetical protein	-2,5591893
CV_4055	ychF	redox-regulated ATPase YchF	-2,3998399
CV 4056	pth	aminoacyl-tRNA hydrolase	-2,5901364
CV 4057	rpIY	50S ribosomal protein L25	-3,1951631
		ribose-phosphate pyrophosphokinase	-1,0109856
CV 4059	isnF	4-(cytidine 5'-diphospho)-2-C-methyl-D-	-2 1195856
CV 4064	1002	erythritol kinase	1 9267406
CV_4004		DUE450 domain containing protain	-1,0307400
CV_4065		MPOAT family protein	-2,0007014
CV_4066		MBOAT family protein	-2,0067185
CV_4070		ABC transporter ATP-binding protein	-1,9536713
CV_4079		domain-containing protein	-1,2506399
CV 4080		GspH/FimT family pseudonilin	-2 5010842
0.1		prepilin-type N-terminal cleavage/methylation	2,0010042
CV_4081		domain-containing protein	-2,163949
CV_4082		hypothetical protein	-1,3870082
CV_4084		U32 family peptidase	-5,1465999
CV_4085		U32 family peptidase	-3,65278
CV_4086		SCP2 sterol-binding domain-containing protein	-3,0992362
CV_4087		GGDEF domain-containing protein	-2,1913121
CV_4098		pyrimidine 5'-nucleotidase	-3,5138354
CV_4103		OmpW family protein	-3,6527464
CV_4108		YggL family protein	-1,3108066
CV_4109		YdcF family protein	-1,0306258
CV_4115		polysaccharide biosynthesis protein	-1,9558165
CV_4116		GNAT family N-acetyltransferase	-2,4748816
CV_4117		sugar transferase	-1,3510953
CV_4118		DegT/DnrJ/EryC1/StrS family aminotransferase	-1,5068186
CV 4119		glycosyltransferase family 4 protein	-1,9422567
		glycosyltransferase family 4 protein	-1,9885916
CV 4122		acyltransferase	-1,5618417
CV 4123		oligosaccharide flippase family protein	-1,5110428
CV 4125		N-acetyltransferase	-1,0631045
CV 4126		hypothetical protein	-1,730558
CV_4127		Gfo/Idh/MocA family oxidoreductase	-1,4025442
CV 4128		YdcF family protein	-1,5190941
CV_4130		polyamine aminopropyltransferase	-1,2131693
	ttcA	tRNA 2-thiocytidine(32) synthetase TtcA	-1,605554
CV 4142		formyl transferase	-1,3516463
		pseudouridylate synthase	-1,3102353
		· · · ·	

CV_4148		hypothetical protein	-1,1524865
CV_4151		PhoH family protein	-1,2607192
CV_4152	ybeY	rRNA maturation RNase YbeY	-1,4992719
CV_4153	-	CBS domain-containing protein	-1,1057972
CV_4154	Int	apolipoprotein N-acyltransferase	-3,0273228
CV_4158		glutaminase	-1,3371304
CV_4159	rplQ	50S ribosomal protein L17	-2,5098465
CV_4160	rpoA	DNA-directed RNA polymerase subunit alpha	-2,7198709
CV_4161	rpsD	30S ribosomal protein S4	-2,5176625
CV_4162	rpsK	30S ribosomal protein S11	-2,4563423
CV_4163	rpsM	30S ribosomal protein S13	-2,7092016
CV_4164	rpmJ	50S ribosomal protein L36	-2,9181441
CV_4165	infA	translation initiation factor IF-1	-3,0921111
CV_4166	secY	preprotein translocase subunit SecY	-3,5265527
CV_4167	rplO	50S ribosomal protein L15	-3,491865
CV_4168	rpmD	50S ribosomal protein L30	-3,6749885
CV_4169	rpsE	30S ribosomal protein S5	-3,4289291
CV_4170	rplR	50S ribosomal protein L18	-3,4603724
CV_4171	rplF	50S ribosomal protein L6	-3,2459558
CV_4172	rpsH	30S ribosomal protein S8	-3,1075626
CV_4173	rpsN	30S ribosomal protein S14	-3,0951895
CV_4174	rplE	50S ribosomal protein L5	-3,2592613
CV_4175	rpIX	50S ribosomal protein L24	-3,2557201
CV_4176	rpIN	50S ribosomal protein L14	-3,7226209
CV_4177	rpsQ	30S ribosomal protein S17	-2,999131
CV_4178	rpmC	50S ribosomal protein L29	-3,0147163
CV_4179	rpIP	50S ribosomal protein L16	-2,7397566
CV_4180	rpsC	30S ribosomal protein S3	-2,8669127
CV_4181	rpIV	50S ribosomal protein L22	-3,1517974
CV_4182	rpsS	30S ribosomal protein S19	-3,0489625
CV_4183	rplB	50S ribosomal protein L2	-2,8549922
CV_4184	rpIW	50S ribosomal protein L23	-2,920427
CV_4185	rpID	50S ribosomal protein L4	-2,7423627
CV_4186	rplC	50S ribosomal protein L3	-2,6356742
CV_4187	rpsJ	30S ribosomal protein S10	-2,6253172
CV_4188	tuf	elongation factor Tu	-2,4602024
CV_4189	fusA	elongation factor G	-2,152153
CV_4190	rpsG	30S ribosomal protein S7	-1,9908223
CV_4191	rpsL	30S ribosomal protein S12	-1,9279143
CV_4192	rpoC	DNA-directed RNA polymerase subunit beta'	-1,9382172
CV_4193	rpoB	DNA-directed RNA polymerase subunit beta	-1,6657785
CV_4194	rpIL	50S ribosomal protein L7/L12	-3,5041267
CV_4195	rplJ	50S ribosomal protein L10	-4,1458269
CV_4196	rplA	50S ribosomal protein L1	-2,9288872
CV_4197	rplK	50S ribosomal protein L11	-3,0283157
CV_4198	nusG	transcription termination/antitermination protein NusG	-2,4848841
CV_4199	secE	preprotein translocase subunit SecE	-2,1639379

CV_4200	tuf	elongation factor Tu	-1,4464896
CV_4202	rsmD	16S rRNA (guanine(966)-N(2))- methyltransferase RsmD	-1,4645041
CV_4212		glutamate 5-kinase	-1,1665659
CV_4213		spermidine/putrescine ABC transporter substrate-binding protein	-2,5679587
CV_4216	ribB	3,4-dihydroxy-2-butanone-4-phosphate synthase	-1,120459
CV_4225	ruvC	crossover junction endodeoxyribonuclease RuvC	-1,3255361
CV_4227		hypothetical protein	-1,4160873
CV_4228		phosphotransferase	-1,2219429
CV_4236		GyrI-like domain-containing protein	-1,0142695
CV_4241		hypothetical protein	-1,2025874
CV_4242		HlyC/CorC family transporter	-1,0167384
CV_4252	fxsA	membrane protein FxsA	-1,0076091
CV_4260		HAMP domain-containing protein	-1,5766513
CV_4261		DUF4390 domain-containing protein	-1,0989149
CV_4278		carbohydrate kinase family protein	-2,4945399
CV_4290		LysR family transcriptional regulator	-1,456725
CV_4302		BCCT family transporter	-3,0261372
CV_4317		MdfA family multidrug efflux MFS transporter	-2,2749579
CV_4318		acyl-protein synthase	-2,0948084
CV_4320		AMP-binding protein	-1,7131449
CV 4321		GNAT family N-acetyltransferase	-2,0270217
CV 4331		sulfurtransferase TusA family protein	-1,283558
CV 4340		cell division protein FtsQ/DivIB	-1,3531408
CV 4344	ftsW	putative lipid II flippase FtsW	-1.0006681
$\frac{1}{2}$		phospho-N-acetylmuramoyl-pentapeptide-	4,0004,004
CV_4346		transferase	-1,0391801
CV_4349		cell division protein	-1,035212
CV_4352	mraZ	division/cell wall cluster transcriptional	-1,5201831
CV_4354	gatB	Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase subunit GatB	-1,2520198
CV_4356	gatC	Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase subunit GatC	-1,1861312
CV_4358	mreC	rod shape-determining protein MreC	-1,0900474
CV_4359	mreD	rod shape-determining protein MreD	-1,0666461
CV_4360	mrdA	penicillin-binding protein 2	-1,721927
CV 4361	rodA	rod shape-determining protein RodA	-1,4934981
CV 4365		MarC family NAAT transporter	-1,4032476
CV 4369		sodium-dependent transporter	-2,0352246
CV_4374		patatin-like phospholipase family protein	-1,1753396
CV 4375		GNAT family N-acetvltransferase	-1,5684894
CV_4377	bioH	pimeloyl-ACP methyl ester esterase BioH	-1,2371069
 CV_4383	trmL	tRNA (uridine(34)/cytosine(34)/5- carboxymethylaminomethyluridine(34)-2'-O)-	-1,7837204
		methyltransferase TrmL	

CV_4384		septal ring lytic transglycosylase RIpA family protein	-1,9258919
CV_4385		YihA family ribosome biogenesis GTP-binding protein	-1,3271327
CV 4389		TerC family protein	-1.2396872
CV 4390		GIY-YIG nuclease family protein	-1.6357093
CV 4391		hypothetical protein	-3,1853084
CV 4400		neptidase domain-containing ABC transporter	-1 8211207
CV 4404	vidC	membrane protein insertase YidC	-1 8670334
	yiae	membrane protein insertion efficiency factor	1,0070001
CV_4405	yidD	YidD	-2,7591926
CV_4406		ribonuclease P protein component	-2,6668054
CV_4407	rpmH	50S ribosomal protein L34	-2,1979096
CV_RS00670		hypothetical protein	-1,8481387
CV_RS01785		chloride channel protein	-1,3791648
CV_RS03115		WbuC family cupin fold metalloprotein	-1,2235903
CV_RS03635		GrpB family protein	-1,3212415
CV_RS03820		hypothetical protein	-2,8687805
CV_RS04125		EAL domain-containing protein	-2,2637551
CV_RS04200		hypothetical protein	-2,2132269
CV_RS04825		DUF971 domain-containing protein	-1,5979434
CV_RS04835		sterol-binding protein	-1,4570826
CV_RS05175		hypothetical protein	-1,1489678
CV_RS06615		DUF1289 domain-containing protein	-1,5695312
CV_RS07440		hypothetical protein	-1,1522507
CV_RS07960		helix-turn-helix domain-containing protein	-3,1737637
CV_RS11985		sterol desaturase family protein	-2,295543
CV_RS13035		hypothetical protein	-4,5871315
CV_RS13195		two pore domain potassium channel family	-1,5069713
CV RS13435		hypothetical protein	-1 0661519
CV_RS15795		cold-shock protein	-1 9034483
CV_RS15905		DUE3833 domain-containing protein	-1 6699271
CV_RS15910		SDR family NAD(P)-dependent oxidoreductase	-1 5759079
CV_RS16730		hypothetical protein	-3 5295276
CV_RS17530		hypothetical protein	-5 5712089
CV_RS19035		hypothetical protein	-2 5850627
	. –	type VI secretion system-associated protein	2,0000021
CV_RS19720	tag⊢	TagF	-1,2777384
CV_RS20400		glycosyltransferase family 4 protein	-1,7155764
CV_RS23115		plasmid pRiA4b ORF-3 family protein	-1,7082791
CV_RS23215		RNA methyltransferase	-1,1119954
CV_RS23240		hypothetical protein	-2,0333028
CV_RS23255		hypothetical protein	-2,8439555
CV_RS23325		hypothetical protein	-2,9507821
CV_RS23350		hypothetical protein	-3,4915499
CV_RS23565		hypothetical protein	-5,1914785
CV_RS23665		hypothetical protein	-2,9574828
CV_RS23680		DUF3149 domain-containing protein	-3,7058354

CV_RS23695		hypothetical protein	-1,4745009
CV_RS23720		hypothetical protein	-2,1526478
CV_RS23830		sugar transferase	-2,5504009
CV_RS23960	rsml	16S rRNA (cytidine(1402)-2'-O)- methyltransferase	-1,1746627
		Upregulated genes	
CV 0008		DUF1484 family protein	1,74081984
CV_0043		sel1 repeat family protein	1,50481062
CV_0056		M20/M25/M40 family metallo-hydrolase	3,18509468
CV_0057		peptidase M4 family protein	1,88861392
CV_0071		hypothetical protein	2,39889734
CV_0073		sigma-54-dependent Fis family transcriptional regulator	1,53174
CV_0077		TonB-dependent receptor	1,78663718
CV_0081		cytochrome c	1,01630718
CV_0096		glycoside hydrolase family 16 protein	1,21606868
CV_0120		glutamate/aspartate ABC transporter substrate-binding protein	1,87017789
CV_0168		twin-arginine translocation signal domain- containing protein	2,1512318
CV_0172		depolymerase	2,8776845
CV_0182		response regulator	1,81743276
CV_0183		2'-5' RNA ligase family protein	2,11813767
CV_0193		O-methyltransferase	2,68124498
CV_0194		glutathione S-transferase	1,99344111
CV_0204		transporter substrate-binding domain- containing protein	1,09121605
CV_0209		organic hydroperoxide resistance protein	2,90883503
CV_0210		MarR family transcriptional regulator	1,32658817
CV_0211		hypothetical protein	1,67938438
CV_0212		alpha/beta fold hydrolase	1,16399727
CV_0213		quinone oxidoreductase	2,11158221
CV_0222		CBS domain-containing protein	1,07537923
CV_0241		PTS sugar transporter subunit IIA	2,12724611
CV_0244		EthD family reductase	3,4828853
CV_0246		VOC family protein	1,25254164
CV_0247		ester cyclase	1,33728815
CV_0251	glpK	glycerol kinase GlpK	1,35848322
CV_0255		hypothetical protein	2,76237615
CV_0256		hypothetical protein	5,10424039
CV_0258	ugpC	sn-glycerol-3-phosphate ABC transporter ATP- binding protein UgpC	1,03594925
CV_0262		extracellular solute-binding protein	1,23068977
CV_0271		MBL fold metallo-hydrolase	1,93552419
CV_0273		alkaline phosphatase family protein	2,23553234
CV_0274		helix-turn-helix domain-containing protein	1,37265914
CV_0275		RidA family protein	1,12937147
CV_0276		antibiotic biosynthesis monooxygenase	1,07622636
CV_0277		nuclear transport factor 2 family protein	1,78279034

CV_0278		hypothetical protein	1,44882079
CV_0286		TerB family tellurite resistance protein	1,36744296
CV_0289	gstA	glutathione transferase GstA	2,72700393
CV_0296		hypothetical protein	2,36584565
CV_0297		short chain dehydrogenase	2,55911178
CV_0302		hypothetical protein	5,31556777
CV_0303		indolepyruvate ferredoxin oxidoreductase family protein	4,39181394
CV_0315		peptidase M3	2,08237105
CV_0317		hypothetical protein	2,42528848
CV_0319		DUF962 domain-containing protein	1,90118236
CV_0329		GNAT family N-acetyltransferase	2,92285599
CV_0330		DUF4243 domain-containing protein	1,45350473
CV_0331		aspartate/tyrosine/aromatic aminotransferase	1,55099959
CV_0340		tail fiber assembly protein	1,10865977
CV_0343		baseplate J/gp47 family protein	1,06358592
CV_0350		phage tail sheath subtilisin-like domain- containing protein	1,00726532
CV_0358		alpha/beta hydrolase	3,08642982
CV_0360		SGNH/GDSL hydrolase family protein	1,11462003
CV_0362		SGNH/GDSL hydrolase family protein	1,20040442
CV_0369	pyrB	aspartate carbamoyltransferase	1,71257896
CV_0370		aspartate carbamoyltransferase regulatory subunit	1,66416722
CV_0392		sigma-54-dependent Fis family transcriptional regulator	2,47393453
CV_0393		aldehyde dehydrogenase family protein	9,47708158
CV_0394		class I SAM-dependent methyltransferase	2,36593665
CV_0403		MFS transporter	1,6888576
CV_0405		branched-chain amino acid ABC transporter substrate-binding protein	2,50879222
CV_0408		hypothetical protein	1,21159807
CV_0409		phage tail sheath subtilisin-like domain- containing protein	1,34358793
CV_0410		phage major tail tube protein	1,39295662
CV_0441		patatin-like phospholipase family protein	1,12620842
CV_0454		hypothetical protein	1,36095988
CV_0464		DUF4347 domain-containing protein	1,62876683
CV_0465		ToIC family protein	2,08960609
CV_0466		efflux RND transporter periplasmic adaptor subunit	1,91803484
CV_0468		GNAT family N-acetyltransferase	2,20933921
CV_0469		hypothetical protein	3,44667658
CV_0470		tail fiber protein	4,26862026
CV_0472		response regulator	2,76631773
CV_0475		ParA family protein	1,22726031
CV_0532		GNAT family N-acetyltransferase	1,21788463
CV_0553		lytic polysaccharide monooxygenase	2,80583233
CV_0554		lytic polysaccharide monooxygenase	3,14526651
CV_0559		PTS transporter subunit EIIC	1,21597333

CV_0565		hemerythrin domain-containing protein	2,22224938
CV_0579		carboxymuconolactone decarboxylase family protein	2,77362375
CV_0580		DUF2798 domain-containing protein	3,09463114
CV_0600	ctaD	cytochrome c oxidase subunit I	1,53991611
CV_0606		COX15/CtaA family protein	1,09756324
CV 0656		BON domain-containing protein	1,0045068
CV_0675		DUF4440 domain-containing protein	1.82519992
CV_0685		hypothetical protein	1.89006365
CV_0694		patatin-like phospholipase family protein	3,78007914
CV_0695		3-hydroxybutyrate dehydrogenase	3 23578888
CV_0701	dkaB	2.5-didebydrogluconate reductase DkgB	1 50953372
CV_0707	икур	2,0-didenydrogidconate reductase DkyD	1,00900072
		DHA2 family offlux MES transporter permases	1,04074003
CV_0708		subunit	1,22377633
CV_0709		HlyD family secretion protein	1,06691988
CV_0714		NAD(P)-dependent oxidoreductase	1,57386054
CV_0717		hypothetical protein	1,92967748
CV_0718		poly(3-hydroxybutyrate) depolymerase	2,50532493
CV_0721		RebB family R body protein	3,77268792
CV_0722		RebB family R body protein	4,38930526
CV_0723		RebB family R body protein	6,14156866
CV_0724		RebB family R body protein	7.22921219
CV 0725		hypothetical protein	3,17556188
CV 0726		hypothetical protein	4 44271455
CV_0727		lysozyme	1 59479955
CV_0728		hypothetical protein	1 77372039
CV_0720		nypolitelical protein	2 22447008
CV_0723		polytydroxybutytate depolytherase	2,22447000
CV_0731			5,00003913
CV_0732		nypotnetical protein	5,32222136
CV_0733		RebB family R body protein	5,34636366
CV_0734		DUF4239 domain-containing protein	5,15463049
CV_0735		DUF2589 domain-containing protein	4,79145011
CV_0736		DUF2589 domain-containing protein	6,04805697
CV_0737		RNA polymerase sigma factor	6,01381701
CV_0753		hypothetical protein	4,0126139
CV_0754		hypothetical protein	1,89915031
CV_0755		hypothetical protein	1,53188522
CV_0756		hypothetical protein	2,79052459
CV_0762		carbon starvation protein A	2,38864362
CV_0763		YeiH family putative sulfate export transporter	2,25732782
CV_0785	metW	methionine biosynthesis protein MetW	1.35903707
CV_0789	msrP	protein-methionine-sulfoxide reductase	1,5210305
_		catalytic subunit IVISIP	
CV_0790		YedZ	2,26021379
CV_0803	hemA	5-aminolevulinate synthase	1,71405191
CV_0804		TauD/TfdA family dioxygenase	1,74761305
CV_0808		NADP-dependent oxidoreductase	1,5097912

CV_0826		pilus assembly protein FimV	1,32994418
CV_0829		type IV pilus secretin PilQ	1,03928303
CV_0852		ABC transporter substrate-binding protein	1,84563667
CV_0856		DUF333 domain-containing protein	1,10076076
CV_0864		haloacid dehalogenase type II	2,53485978
CV 0867		superoxide dismutase	1,41589251
CV_0868		DUF1842 domain-containing protein	3,1412554
CV_0870	tpx	thiol peroxidase	1,36884235
CV_0895		TonB-dependent copper receptor	3,64644454
CV_0896		HAMP domain-containing histidine kinase	3,05109555
CV_0897		response regulator	3,77902977
CV_0898		long-chain-fatty-acidCoA ligase	2,14498324
CV_0912		flavin reductase family protein	1.24786689
CV 0969	hopD	4-hydroxyphenylpyruvate dioxygenase	2.01412659
CV_0970		homogentisate 1.2-dioxygenase	1.7032905
CV 0971		fumarylacetoacetate hydrolase family protein	1,4259534
CV 0972	maiA	malevlacetoacetate isomerase	1.13658113
CV 0978	cfa	cyclopropane fatty acyl phospholipid synthase	1.39626146
CV 0992		NAD(P)/FAD-dependent oxidoreductase	1.47470877
CV 0993		MFS transporter	2.46051205
CV 0994		Xcc1710-like domain-containing protein	1.26394628
		chemotaxis response regulator protein-	0.4000.440.4
CV_1009		glutamate methylesterase	2,16394404
CV_1011		methyl-accepting chemotaxis protein	1,56363384
CV_1012		purine-binding chemotaxis protein CheW	2,70243497
CV_1014		chemotaxis protein CheA	1,85442511
CV_1039		cytochrome c5 family protein	2,43348281
CV_1040		FAD-binding protein	3,24957286
CV_1041		DSD1 family PLP-dependent enzyme	3,99621033
CV_1052		hypothetical protein	3,56518965
CV_1086		glutathione S-transferase family protein	2,09041794
CV_1094		IscS subfamily cysteine desulfurase	1,36212988
CV_1097		ABC transporter substrate-binding protein	1,90752472
CV_1102		VOC family protein	2,26923711
CV_1107		glutathione peroxidase	1,14148573
CV_1120	fumC	class II fumarate hydratase	1,23676563
CV_1121	acnA	aconitate hydratase AcnA	3,44627537
CV_1144		DinB family protein	1,93244005
CV_1153		Cd(II)/Pb(II)-responsive transcriptional regulator	1,85186822
CV_1154	cadA	cadmium-translocating P-type ATPase	1,45425159
CV_1163		tryptophanase	2,06252552
CV_1164		glutathione S-transferase family protein	2,75265022
CV_1169		FixH family protein	1,1747995
CV_1171	ccoP	cytochrome-c oxidase, cbb3-type subunit III	1,06587385
CV_1184	eutC	ethanolamine ammonia-lyase subunit EutC	3,25613394
CV_1185		ethanolamine ammonia-lyase subunit EutB	2,86910702
CV_1186	eat	ethanolamine permease	1,98327001

CV_1188		HDOD domain-containing protein	1,19177564
CV_1189		response regulator	2,45687478
CV_1190		response regulator	1,61812019
CV_1221		class I SAM-dependent methyltransferase	1,42324287
CV_1222		aldehyde dehydrogenase	3,23096792
CV_1224		CRISPR-associated helicase/endonuclease Cas3	1,74349434
CV_1225	cas5c	type I-C CRISPR-associated protein Cas5	2,14918505
CV_1226	cas8c	type I-C CRISPR-associated protein Cas8c/Csd1	2,47695143
CV_1227	cas7c	type I-C CRISPR-associated protein	2,73574556
CV_1228	cas4	CRISPR-associated protein Cas4	2,93022469
CV_1229	cas1c	type I-C CRISPR-associated endonuclease Cas1	2,27459658
CV_1230	cas2	CRISPR-associated endonuclease Cas2	2,49404794
CV_1260	rpiA	ribose-5-phosphate isomerase RpiA	1,0606445
CV_1266		heavy-metal-associated domain-containing protein	1,12990113
CV_1267		DUF190 domain-containing protein	1,86460758
CV_1270		S9 family peptidase	2,53858075
CV_1272		glycoside hydrolase family 1 protein	2,74363172
CV_1284		hydrolase	2,02471419
CV_1285		amidohydrolase	1,26742101
CV_1292		carboxypeptidase M32	2,36487895
CV_1298		hypothetical protein	1,42020912
CV_1299		MHS family MFS transporter	3,76491366
CV_1300		GMC family oxidoreductase N-terminal domain-containing protein	2,36978081
CV_1302		AraC family transcriptional regulator	1,29216381
CV_1309		N-acetylmuramoyl-L-alanine amidase	1,0563963
CV_1311		hypothetical protein	1,03100063
CV_1312		hypothetical protein	2,04390252
CV_1313		DJ-1/PfpI family protein	2,62291762
CV_1324		OsmC family protein	1,86887124
CV_1325		thioredoxin family protein	2,08679313
CV_1326		hypothetical protein	1,78874076
CV_1330		enoyl-CoA hydratase/isomerase family protein	2,59428076
CV_1331		alpha/beta fold hydrolase	1,19833394
CV_1333	potA	polyamine ABC transporter ATP-binding protein	3,40249262
CV_1334		FAD-binding oxidoreductase	2,72310493
CV_1340		trypsin-like serine protease	1,55559059
CV_1358		methyl-accepting chemotaxis protein	1,17920351
CV_1366		phasin family protein	1,63566789
CV_1369		ricin-type beta-trefoil lectin domain protein	1,55077178
CV_1371		DUF3472 domain-containing protein	1,17772336
CV_1372		hypothetical protein	2,06986535
CV_1381		response regulator transcription factor	1,37877139
CV_1382		DUF2861 family protein	1,29430433

CV_1385		MASE1 domain-containing protein	1,45554426
CV_1386		acyl-CoA-binding protein	2,14166396
CV_1395		galactose mutarotase	4,18698093
CV_1396		ABC transporter substrate-binding protein	3,1845633
CV_1397		HAD family phosphatase	3,72527729
CV_1398		MFS transporter	3,2223675
CV_1399		NUDIX domain-containing protein	3,70324969
CV_1400	mtnP	S-methyl-5'-thioadenosine phosphorylase	4,25715792
CV_1401		fatty acid desaturase	4,1436269
CV_1402		HAD family hydrolase	4,53595371
CV_1403		FAD-dependent oxidoreductase	4,26744747
CV_1404		DegT/DnrJ/EryC1/StrS family aminotransferase	3,91036335
CV_1405		NUDIX hydrolase	3,68795796
CV_1406		DegT/DnrJ/EryC1/StrS family aminotransferase	4,6399182
CV_1407		Gfo/Idh/MocA family oxidoreductase	3,73707697
CV_1414		copper homeostasis protein CutC	2,13523826
CV_1415	ggt	gamma-glutamyltransferase	2,73468632
CV_1416		GNAT family N-acetyltransferase	2,55561539
CV_1418		response regulator transcription factor	1,61134458
CV_1419		histidine kinase	1,07038431
CV_1434		DUF1304 domain-containing protein	2,2112555
CV_1436		aspartate aminotransferase family protein	2,57180841
CV_1437		CoA-acylating methylmalonate-semialdehyde dehydrogenase	2,44413331
CV_1438		GNAT family N-acetyltransferase	1,04905139
CV_1439		SRPBCC family protein	2,33697973
CV_1440		chitinase	2,977894
CV_1442		murein L,D-transpeptidase catalytic domain family protein	1,09636009
CV_1444		hypothetical protein	1,31109203
CV_1448		glutamine synthetase	1,8300028
CV_1451		PLP-dependent aminotransferase family protein	1,76076796
CV_1452	ccoG	cytochrome c oxidase accessory protein CcoG	2,27782111
CV_1459		long-chain-fatty-acidCoA ligase	1,1910431
CV_1475		hypothetical protein	1,77976414
CV_1494		alpha/beta hydrolase	2,33432872
CV_1499	astD	succinylglutamate-semialdehyde dehydrogenase	1,18395047
CV_1500	astB	N-succinylarginine dihydrolase	1,0915787
CV_1507		transporter substrate-binding domain- containing protein	1,27523765
CV_1508		YdcF family protein	1,23817769
CV_1523		response regulator transcription factor	1,49122776
CV_1541		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	1,52878244
CV_1543		hypothetical protein	1,30140123
CV_1544		diiron oxygenase	1,16191355

CV_1547		ferredoxin family protein	1,3245585
CV_1549		DUF1289 domain-containing protein	1,32917529
CV_1550		hypothetical protein	1,03925194
CV_1551		DUF4180 domain-containing protein	2,22883445
CV_1553		enoyl-CoA hydratase/isomerase family protein	1,31090695
CV_1554		VOC family protein	1,8834208
CV_1573		HoxN/HupN/NixA family nickel/cobalt transporter	1,12662772
CV_1577		3'(2'),5'-bisphosphate nucleotidase CysQ	1,61747179
CV_1579		response regulator	1,18288142
CV_1590		MAPEG family protein	3,08610404
CV_1600		hypothetical protein	2,02800165
CV_1603		GNAT family N-acetyltransferase	2,14495615
CV_1620		EAL domain-containing protein	1,20900415
CV_1621		PAS domain S-box protein	1,57349831
CV_1626		efflux RND transporter permease subunit	2,20368561
CV_1627		efflux RND transporter periplasmic adaptor subunit	2,24925292
CV_1628		efflux transporter outer membrane subunit	2,20711696
CV_1640	rraA	ribonuclease E activity regulator RraA	2,75384423
CV_1641	aceA	isocitrate lyase	3,75679959
CV_1646		porin	1,43886704
CV_1648	hemB	porphobilinogen synthase	1,0196053
CV_1668		hypothetical protein	1,47512673
CV_1674		xanthine dehydrogenase family protein molybdopterin-binding subunit	1,0890917
CV_1675		XdhC family protein	1,12596797
CV_1678		ABC transporter ATP-binding protein	1,63414181
CV_1683		NAD(P)/FAD-dependent oxidoreductase	1,10575303
CV_1686		hypothetical protein	1,03755051
CV_1713	asnB	asparagine synthase (glutamine-hydrolyzing)	1,57176478
CV_1720	ppk2	polyphosphate kinase 2	1,13155046
CV_1723		hypothetical protein	1,14182166
CV_1724		glyoxylate/hydroxypyruvate reductase A	1,01450209
CV_1731		GNAT family N-acetyltransferase	2,44450107
CV_1744		fucose-binding lectin II	1,50440072
CV_1751	cas6f	type I-F CRISPR-associated endoribonuclease Cas6/Csy4	4,15365163
CV_1752	csy3	type I-F CRISPR-associated protein Csy3	4,49717477
CV_1753	csy2	type I-F CRISPR-associated protein Csy2	3,48726844
CV_1754	csy1	type I-F CRISPR-associated protein Csy1	2,9539416
CV_1757	-	HDOD domain-containing protein	1,84061398
CV_1758		acetoacetateCoA ligase	2,33129502
CV 1759		hydroxymethylglutaryl-CoA lyase	3,13981832
CV_1760		Gyrl-like domain-containing protein	3,32953899
CV_1761		tetratricopeptide repeat protein	3,26175064
CV_1762		acetyl/propionyl/methylcrotonyl-CoA carboxylase subunit alpha	3,67243632
CV_1763		enoyl-CoA hydratase/isomerase family protein	3,55301499

CV_1764	methylcrotonoyl-CoA carboxylase	3,59726475
CV_1765	nuclear transport factor 2 family protein	3,18670427
CV_1766	isovaleryl-CoA dehydrogenase	3,84452369
CV_1774	pyridoxamine 5'-phosphate oxidase family protein	1,79481214
CV_1775	glutathione S-transferase	1,47602906
CV_1778	GNAT family N-acetyltransferase	1,17614485
CV_1780	AMP-binding protein	3,45736674
CV_1781	YecA family protein	1,15618867
CV_1782	hypothetical protein	1,04249127
CV_1783	DUF5610 domain-containing protein	2,21589648
CV_1784	DUF5610 domain-containing protein	1,89605411
CV_1789	PrkA family serine protein kinase	3,68104162
CV_1790	YeaH/YhbH family protein	3,7242395
CV_1791	SpoVR family protein	3,86014002
CV_1809	MmgE/PrpD family protein	1,17968547
CV_1813	malonic semialdehyde reductase	1,76132235
CV_1821	hypothetical protein	3,00641885
CV_1834	hypothetical protein	2,47004166
CV_1839	HD domain-containing protein	1,53246769
CV_1850	methyl-accepting chemotaxis protein	1,85580435
CV_1858	hypothetical protein	2,31546426
CV_1859	hypothetical protein	3,59490936
CV_1860	penicillin-binding protein	1,59950921
CV_1875	hypothetical protein	1,02394044
CV_1884	amidohydrolase	3,02008046
CV_1885	DUF3100 domain-containing protein	2,26903541
CV_1891	OmpA family protein	1,03490214
CV_1895	thioredoxin family protein	1,29585217
CV_1904	O-acetylserine/cysteine exporter	1,36936532
CV_1905	DJ-1/PfpI family protein	1,00136827
CV_1911	YbaK/EbsC family protein	2,20372809
CV_1916	PAS domain-containing protein	2,2655438
CV_1918	hemagglutinin repeat-containing protein	1,44254467
CV_1934	aminotransferase class V-fold PLP-dependent enzyme	2,04867138
CV_1941	acyl-CoA thioesterase	1,37511324
CV_1943	hypothetical protein	5,505123
CV_1945	DNA-3-methyladenine glycosylase I	2,10532258
CV_1946	fliW flagellar assembly protein FliW	2,00747373
CV_1957	polyamine ABC transporter substrate-binding protein	2,00052174
CV_1958	ABC transporter permease subunit	2,02768954
CV_1959	ABC transporter permease subunit	2,02774419
CV_1960	DUF3138 family protein	3,06391048
CV_1964	pyridoxamine 5'-phosphate oxidase family protein	1,85584506
CV_1965	S8/S53 family peptidase	1,90364882
CV_1968	S8/S53 family peptidase	1,2398754

CV_1976		efflux RND transporter permease subunit	1,05825148
CV_1977		hypothetical protein	2,30596274
CV_1978		ABC transporter substrate-binding protein	2,16252981
CV_1979		ABC transporter permease	2,09677468
CV_1980		ABC transporter permease	1,66292446
CV_1981		ABC transporter ATP-binding protein	2,32035473
CV_1982		TonB-dependent receptor	3,52960813
CV_1983		hypothetical protein	2,09047651
CV_1986		biopolymer transporter ExbD	1,99433229
CV_1987		M13 family metallopeptidase	1,74697746
CV_1989		porin	1,92244279
CV_1997		hypothetical protein	1,41930126
CV_1998		hypothetical protein	1,10516482
CV_2001		M9 family metallopeptidase N-terminal domain- containing protein	1,53873209
CV_2013		DUF3141 domain-containing protein	2,30971608
CV_2019		aldehyde dehydrogenase	3,97975555
CV_2022	ald	alanine dehydrogenase	2,75344555
CV_2023		gamma-glutamyl-gamma-aminobutyrate hydrolase family protein	3,17160559
CV_2024		glutamine synthetase	3,43139761
CV_2025		aspartate aminotransferase family protein	3,85978954
CV_2031		hypothetical protein	1,11223149
CV_2038		T3SS effector OspC family protein	2,36854294
CV_2043		NAD(P)H-quinone oxidoreductase	2,10551864
CV_2048	dapA	4-hydroxy-tetrahydrodipicolinate synthase	1,06532175
CV_2051		NAD(P)-dependent alcohol dehydrogenase	1,62681407
CV_2053	prpF	2-methylaconitate cis-trans isomerase PrpF	1,26735507
CV_2054	acnD	Fe/S-dependent 2-methylisocitrate dehvdratase AcnD	1,53327356
CV_2055		putative glycolipid-binding domain-containing protein	1,32573555
CV_2056	prpC	2-methylcitrate synthase	1,87594221
CV_2057	prpB	methylisocitrate lyase	1,23043718
CV_2058	rpoE	RNA polymerase sigma factor RpoE	1,56760664
CV_2059		sigma-E factor negative regulatory protein	1,68003464
CV_2060		MucB/RseB C-terminal domain-containing protein	1,16925082
CV_2061		DegQ family serine endoprotease	1,54929268
CV_2062		glutaredoxin family protein	1,68210711
CV_2073	nagZ	beta-N-acetylhexosaminidase	1,46022907
CV_2074		hypothetical protein	1,27044093
CV_2075		competence/damage-inducible protein A	1,13737479
CV_2077		hypothetical protein	1,23228999
CV_2080		S9 family peptidase	2,48712818
CV_2081	mmsB	3-hydroxyisobutyrate dehydrogenase	3,97754343
CV_2082		enoyl-CoA hydratase/isomerase family protein	3,59654059
CV_2083		enoyl-CoA hydratase	3,43798495
CV_2084		acyl-CoA dehydrogenase family protein	4,24187407

CV_2085		CoA-acylating methylmalonate-semialdehyde dehydrogenase	4,4720643
CV_2086		3-hydroxybutyryl-CoA dehydrogenase	4,03348938
CV_2087		MerR family DNA-binding transcriptional regulator	1,25834108
CV_2088		acetyl-CoA C-acyltransferase	3,64958283
CV_2090		hypothetical protein	1,24765346
CV_2094		branched-chain amino acid transaminase	1,21005529
CV_2095	glnE	bifunctional [glutamateammonia ligase]- adenylyl-L-tyrosine phosphorylase/[glutamate ammonia-ligase] adenylyltransferase	1,73485459
CV_2097		carbon-nitrogen hydrolase family protein	1,72101205
CV_2098	tldD	metalloprotease TldD	1,74442097
CV_2101		helix-turn-helix domain-containing protein	2,32062831
CV_2103		DUF1302 domain-containing protein	1,35869951
CV_2111		DNA adenine methylase	1,28728507
CV_2112		hypothetical protein	2,21776288
CV_2113		hypothetical protein	1,3891685
CV_2114		phage tail protein	1,85926101
CV_2117		phage baseplate assembly protein V	2,24333628
C\/ 2129		phage tail sheath subtilisin-like domain-	1 99645109
CV_2120		containing protein	1,00045100
CV_2130		Gp37 family protein	1,91287271
CV_2131		DUF1320 domain-containing protein	4,39456083
CV_2134		hypothetical protein	2,15411227
CV_2136		hypothetical protein	1,07173299
CV_2156		DDE-type integrase/transposase/recombinase	1,02385344
CV_2157		AAA family ATPase	1,65643406
CV_2158		hypothetical protein	2,11306699
CV_2163		HU family DNA-binding protein	1,3978534
CV_2172		phosphomannomutase/phosphoglucomutase	1,10052323
CV_2178		MFS transporter	1,54036029
CV_2179		anthranilate synthase component I	1,11416021
CV_2186		glyoxalase	2,09498838
CV_2190		GNAT family N-acetyltransferase	1,56528099
CV_2212		hypothetical protein	1,29955116
CV_2213		response regulator	1,56683889
CV_2214		molybdopterin-dependent oxidoreductase	5,80451609
CV_2215		EAL domain-containing response regulator	2,25960316
CV_2216		hypothetical protein	1,91949101
CV_2221		GAF domain-containing protein	1,4165864
CV_2224		IS3 family transposase	1,86899302
CV_2228		NarK/NasA family nitrate transporter	2,13972253
CV_2229		nitrate reductase	2,44150059
CV_2243		VOC family protein	1,60364031
CV_2244		oxygen-insensitive NAD(P)H-dependent nitroreductase NfsB	1,81470163
CV_2245		alkene reductase	1,22289843
CV_2249		hypothetical protein	1,96832637

CV_2255	anil	sugar O-acetyltransferase	6,71278815
CV_2256	aniQ	aspartate aminotransferase family protein	7,12035454
CV_2257	aniP	hypothetical protein	6,47871678
CV_2258	aniN	SDR family oxidoreductase	6,55911738
CV_2259	aniM	DUF1349 domain-containing protein	5,64971394
CV_2260	aniH	HAD-IIB family hydrolase	6,22329092
CV_2261	aniK	methyltransferase	4,62121706
CV_2262	aniL	MFS transporter	2,82458254
CV_2263		RHS repeat-associated core domain- containing protein	3,06009426
CV_2264		hypothetical protein	1,9599343
CV_2265		hypothetical protein	1,45218353
CV_2266		GDSL family lipase	2,91180221
CV_2267		hypothetical protein	1,25048026
CV_2272		hypothetical protein	1,3780147
CV_2273		hypothetical protein	1,94575876
CV_2292		hypothetical protein	2,37921713
CV_2301	serC	3-phosphoserine/phosphohydroxythreonine transaminase	1,16765892
CV_2309		PTS fructose transporter subunit IIC	5,87669614
CV_2310		PTS fructose transporter subunit IIB	6,10814946
CV_2311	ptsP	phosphoenolpyruvateprotein phosphotransferase	5,66249428
CV_2312	manA	mannose-6-phosphate isomerase, class I	5,48447725
CV_2313		helix-turn-helix transcriptional regulator	3,65423727
CV_2321	recN	DNA repair protein RecN	1,06756081
CV_2325	msrA	peptide-methionine (S)-S-oxide reductase MsrA	1,40132097
CV_2328		GNAT family N-acetyltransferase	2,17964758
CV_2331		hypothetical protein	1,12708972
CV_2336		glutamine amidotransferase	1,00797897
CV_2337		GNAT family N-acetyltransferase	1,89907544
CV_2338		GNAT family N-acetyltransferase	1,635104
CV_2341		VOC family protein	1,46689327
CV_2353		protein-disulfide reductase DsbD	1,15621715
CV_2354		alpha/beta hydrolase	1,55509171
CV_2355	pheA	prephenate dehydratase	1,17476099
CV_2358		phospho-2-dehydro-3-deoxyheptonate aldolase	1,30023528
CV_2364	phbB	acetoacetyl-CoA reductase	1,83457801
CV_2374		TerB family tellurite resistance protein	2,08265329
CV_2376		universal stress protein	1,46411073
CV_2379	argE	acetylornithine deacetylase	2,24569499
CV_2381		hypothetical protein	1,2746787
CV_2383		hypothetical protein	3,18998043
CV_2398		response regulator	1,22269261
CV_2399		response regulator	2,58274359
CV_2416		MFS transporter	2,66085441
CV_2417		hypothetical protein	4,53194601

CV_2418	orgB	type III secretion system linker protein OrgB	3,63450365
CV_2419	orgA	oxygen-regulated invasion protein OrgA	2,75191478
CV_2420		EscJ/YscJ/HrcJ family type III secretion inner membrane ring protein	4,09559241
CV_2421	prgJ	type III secretion system inner rod protein PrgJ	4,11177448
CV_2422		type III secretion system needle complex protein	4,97824279
CV_2423		PrgH/EprH family type III secretion apparatus protein	2,63410268
CV_2424		glutathione S-transferase N-terminal domain- containing protein	1,74725344
CV_2426		SOS response-associated peptidase family protein	1,16965857
CV_2431		hypothetical protein	2,14860991
CV_2432		metallophosphoesterase	2,73662324
CV_2433		CHAT domain-containing protein	1,91106009
CV_2435		DUF2726 domain-containing protein	1,55008441
CV_2457		ABC transporter permease	1,96647115
CV_2459		ABC transporter ATP-binding protein	1,61273713
CV_2460	hlyD	secretion protein HlyD	1,21772955
CV_2469		GNAT family N-acetyltransferase	1,57582083
CV_2481		branched-chain amino acid ABC transporter substrate-binding protein	2,63032703
CV_2484		DUF418 domain-containing protein	1,1237172
CV_2490		twin-arginine translocation signal domain- containing protein	1,22805375
CV_2492		AraC family transcriptional regulator	1,11764764
CV_2493		Ohr family peroxiredoxin	1,59745298
CV_2497		two-component system response regulator	2,0409438
CV_2504	sodB	superoxide dismutase [Fe]	1,12511984
CV_2505		EAL domain-containing protein	1,81095362
CV_2506		chemotaxis response regulator protein- glutamate methylesterase	1,50719976
CV_2507		protein-glutamate O-methyltransferase CheR	1,60924455
CV_2508		purine-binding chemotaxis protein CheW	2,95183369
CV_2509		MCP four helix bundle domain-containing protein	2,35300124
CV_2510		chemotaxis protein CheA	1,9387054
CV_2512		response regulator	4,42226873
CV_2515	purF	amidophosphoribosyltransferase	1,65382086
CV_2525		beta-propeller fold lactonase family protein	1,63028623
CV_2529		DUF484 family protein	2,06503384
CV_2530		hypothetical protein	1,70160561
CV_2533	mobB	molybdopterin-guanine dinucleotide biosynthesis protein B	1,55329361
CV_2561		hypothetical protein	1,86608921
CV_2563		hypothetical protein	3,99290786
CV_2564		hypothetical protein	3,91489628
CV_2565		SDR family oxidoreductase	1,83776782
CV_2567		amino acid transporter	2,50694213

CV_2571		M23 family metallopeptidase	4,08545288
CV_2572		cytosine permease	2,71405168
CV_2573		diguanylate cyclase	1,42404871
CV_2577		type III secretion system translocon protein	1,07651554
CV_2578		SycD/LcrH family type III secretion system chaperone	1,1233522
CV_2580		secretion protein EspA	1,11945389
CV_2592		lytic polysaccharide monooxygenase	1,60720538
CV_2599		two component system response regulator	1,31030271
CV_2605		hypothetical protein	3,50641721
CV_2606	sctQ	type III secretion system cytoplasmic ring protein SctQ	1,85024269
CV_2613		hypothetical protein	1,40470498
CV_2614		cupin domain-containing protein	2,60518331
CV_2615		acyl carrier protein	2,75077361
CV_2616	sipA	SPI-1 type III secretion system effector SipA	3,32030715
CV_2617	sctA	type III secretion system needle tip protein SctA	2,89575637
CV_2618		IpaC/SipC family type III secretion system needle tip complex protein	2,72388307
CV_2619		type III secretion system needle tip complex protein	2,53123511
CV_2620	sicA	type III secretion system translocator chaperone SicA	2,45480724
CV_2624		system export apparatus protein	1,74159957
CV_2625		protein	1,41069083
CV_2626		protein	1,4131952
CV_2628	sctN	type III secretion system ATPase SctN	1,9324423
CV_2629	spaK	SPI-1 type III secretion system chaperone SpaK	2,48556254
CV_2634		two-component sensor histidine kinase	1,42533315
CV_2635		response regulator	1,21426779
CV_2636		hypothetical protein	1,79959112
CV_2637	dsbG	thiol:disulfide interchange protein DsbG	1,57421986
CV_2638		hypothetical protein	3,05171952
CV_2639		hypothetical protein	2,04275569
CV_2642		Bax inhibitor-1/YccA family protein	1,36428317
CV_2643		PAS domain S-box protein	1,35010317
CV_2644		fused response regulator/phosphatase	2,11435329
CV_2649	dsdC	DNA-binding transcriptional regulator DsdC	1,10988954
CV_2651		hypothetical protein	3,42692157
CV_2658		hypothetical protein	1,61163224
CV_2659		pnenylacetate-CoA oxygenase subunit Paal	1,56528186
CV_2660		Paal family thioesterase	1,3251488
CV_2670		amidonydrolase	5,47022105
CV_2684		hypothetical protein	3,54403337
CV_2685		ABC transporter ATP-binding protein	1,72482514

CV_2686		ABC transporter permease	1,42088829
CV_2687		ABC transporter permease	1,56234445
CV_2688		ABC transporter substrate-binding protein	1,85141432
CV_2696		hypothetical protein	3,65964033
CV_2697		TldD/PmbA family protein	2,92581126
CV_2716		PilZ domain-containing protein	1,01928704
CV_2717		S8 family serine peptidase	3,29565233
CV_2718		hypothetical protein	2,85957178
CV_2719		acetyl-CoA C-acyltransferase	1,89806711
CV_2720		3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase family protein	1,70239291
CV_2728	yiaY	L-threonine dehydrogenase	2,03974757
CV_2744		hypothetical protein	1,81182284
CV_2745		glutathione S-transferase N-terminal domain- containing protein	1,49854572
CV_2748		heavy metal translocating P-type ATPase	1,31535166
CV_2749		class I SAM-dependent methyltransferase	1,16697649
CV_2753		thioredoxin family protein	2,25959489
CV_2754		AraC family transcriptional regulator	1,56260578
CV_2755		NADH-quinone oxidoreductase subunit B	2,46207089
CV_2761		tryptophan synthase subunit alpha	1,05270884
CV_2762	trpB	tryptophan synthase subunit beta	1,14174101
CV_2769		DUF3955 domain-containing protein	1,22326887
CV_2773		DUF3955 domain-containing protein	1,31636481
CV_2777		hypothetical protein	1,45783399
CV_2778	leuB	3-isopropylmalate dehydrogenase	1,8756758
CV_2781		GFA family protein	1,08015005
CV_2782	leuD	3-isopropylmalate dehydratase small subunit	1,6622271
CV_2783		hypothetical protein	1,49196499
CV_2784	leuC	3-isopropylmalate dehydratase large subunit	1,41184338
CV_2789	phaC	class I poly(R)-hydroxyalkanoic acid synthase	2,87351611
CV_2790		acetyl-CoA C-acetyltransferase	2,90989931
CV_2796		aminopeptidase P family protein	1,9469402
CV_2799		alpha/beta fold hydrolase	1,54556531
CV_2800		hypothetical protein	1,01587063
CV_2801		hypothetical protein	1,34475381
CV_2802		non-ribosomal peptide synthetase	2,87128028
CV_2803		non-ribosomal peptide synthetase	2,30705558
CV_2804		aspartate aminotransferase family protein	2,06106994
CV_2812		putative motility protein	1,62205464
CV_2816		PhoH family protein	2,81834529
CV_2818		methionyl-tRNA formyltransferase	1,37921602
CV_2819		aspartate aminotransferase family protein	1,89901285
CV_2824		aldehyde dehydrogenase (NADP(+))	1,95322669
CV_2825		dihydrodipicolinate synthase family protein	1,73350765
CV_2830		alkaline phosphatase family protein	1,5296381
CV_2831		hypothetical protein	3,6071309
CV_2832		ferritin-like protein	4,21012294

CV_2833		3-dehydroquinate synthase	2,82227918
CV_2834	eboE	metabolite traffic protein EboE	3,44590511
CV 2835		EboA domain-containing protein	2,54741007
CV 2836		TatD family hydrolase	3,32555637
CV_2837		VOC family protein	3.54054187
CV 2842		DUF1801 domain-containing protein	2.14687473
CV 2843		patatin-like phospholipase family protein	1.03185902
CV 2850		YkgJ family cysteine cluster protein	1,72274231
CV 2854		hypothetical protein	3 10661613
CV_2862		LLM class flavin-dependent oxidoreductase	1 99741814
CV_2864	agn7	aguanorin 7	2 27683024
01_2004	aqpz	filamentous bemagglutinin N-terminal domain-	2,27000024
CV_2872		containing protein	1,47250763
0		ShIB/FhaC/HecB family hemolysin	4 4 4 0 0 0 4 0 4
CV_2873		secretion/activation protein	1,14028424
CV_2891		EAL domain-containing protein	1,22987947
CV_2894		glycoside hydrolase family 9 protein	3,05491804
CV_2895		ROK family transcriptional regulator	1,99828007
CV_2900		hypothetical protein	1,11110275
CV_2903		cation:proton antiporter	1,48898119
CV_2904		glutamatecysteine ligase	2,25543463
CV 2906		hypothetical protein	1,9084615
CV 2921		MaoC family dehydratase	1,58080659
CV 2925		exopolyphosphatase	2.13633252
CV 2928		paraslipin	1.62350499
CV 2935		chitinase	2.90803735
CV 2936		hemin receptor	1.9898234
	-	poly-beta-1.6 N-acetyl-D-glucosamine	.,
CV_2941	pgaC	synthase	1,04734073
CV 2042	ngaB	poly-beta-1,6-N-acetyl-D-glucosamine N-	1 03/7078/
01_2342	руав	deacetylase PgaB	1,03470704
CV_2946		3'-5' exonuclease	1,31412873
CV_2947		hypothetical protein	2,25170562
CV_2950		DUF3313 domain-containing protein	1,12496021
CV_2959		nucleotidyltransferase domain-containing	1,98592845
CV 2967		ubiquinone biosynthesis protein UbiB	1.20940354
		cvstine ABC transporter substrate-binding	4 55505047
CV_2969		protein	1,55535917
CV_2971		hypothetical protein	2,52677369
CV_2994	fliD	flagellar filament capping protein FliD	1,24810742
CV_3008		response regulator	1,11999676
CV_3011		flagellin D	1,41772011
CV_3012		serine carboxypeptidase	1,94204502
CV 3013		CoA transferase	1,10500403
CV_3014		MFS transporter	1,4500488
 CV_3016	rbsB	ribose ABC transporter substrate-binding protein RbsB	1,65811012
CV_3018		sugar ABC transporter ATP-binding protein	1,49383832
CV_3019	rbsD	D-ribose pyranase	2,10360946

CV_3020	rbsK	ribokinase	1,99247621
CV_3026		lactate permease LctP family transporter	2,10457941
CV_3027		FAD-binding oxidoreductase	1,20612999
CV_3028		iron-sulfur cluster-binding protein	1,13215026
CV_3029		lactate utilization protein	1,26825383
CV_3030		(Fe-S)-binding protein	1,01557757
CV_3052	ptsP	phosphoenolpyruvateprotein phosphotransferase	2,27327996
CV_3053	pfkB	1-phosphofructokinase	2,94224353
CV_3054		PTS fructose transporter subunit IIBC	2,44235331
CV_3057		glutathione S-transferase	1,94881816
CV_3059		hypothetical protein	1,0926391
CV_3074		hypothetical protein	1,46342901
CV_3075		DUF3443 domain-containing protein	1,82915646
CV_3078		hypothetical protein	1,25389359
CV_3079	radC	DNA repair protein RadC	1,09086947
CV_3084		NAD-glutamate dehydrogenase	1,20302568
CV_3098		hypothetical protein	2,13995243
CV_3111		GspH/FimT family pseudopilin	1,25307963
CV 3115		hypothetical protein	2,26713417
CV_3116		type IV pilin protein	2,52234601
CV 3143		hypothetical protein	3,60742781
CV_3151		hypothetical protein	1.27333075
CV 3155		GNAT family N-acetyltransferase	1.81019193
CV 3157		kinase inhibitor	2.39344045
CV 3158		helix-turn-helix transcriptional regulator	1.75968275
CV 3169		winged helix DNA-binding protein	1.4552397
CV 3173	рхрА	5-oxoprolinase subunit PxpA	1.09018603
CV 3176	DCD	pyroglutamyl-peptidase I	1,53493691
CV 3182	10.010	cysteine dioxygenase family protein	2,52517747
CV_3201		Paal family thioesterase	1.30713094
CV_3202		hypothetical protein	1 07588084
CV_3204		dienelactone hydrolase family protein	2 07092226
CV_3205		Hot domain-containing protein	1 27352008
CV_3209		alvoine zinner 2TM domain-containing protein	1 65882871
CV_3211		histidine phosphatase family protein	1 05081812
CV_{3218}		threonylcarbamoyl-AMP synthese	2 12846704
CV_3210		hypothetical protein	1 87529804
CV_{3220}		DI IE2309 domain-containing protein	2 27218701
CV_{3220}		NADH-quipopo ovidoreductoso subupit l	2,27210791
CV_{3221}		hypothetical protoin	2 04254802
CV_{3231}		MorP family DNA binding protein	2,04204002
CV_3235 CV_3236		type 1 glutamine amidotransferase domain-	2,28254331
CV 3240		LysE family translocator	1 27029203
CV_{3243}		MFS transporter	1 23162470
CV_{3248}		PAS domain S-box protein	1 67305177
CV 2256		AraC family transcriptional regulator	1 92612507
0 1 0200			1,52012537

CV_3263		hypothetical protein	2,60177438
CV_3265		hypothetical protein	2,86868269
CV_3268		LodA/GoxA family CTQ-dependent oxidase	2,6828833
CV_3270	vioE	violacein biosynthesis enzyme VioE	3,35765311
CV_3271	vioD	tryptophan hydroxylase VioD	3,16441297
CV_3272	vioC	FAD-dependent monooxygenase	2,16562131
CV 3273	vioB	iminophenyl-pyruvate dimer synthase VioB	1,25880307
CV_3274	vioA	FAD-dependent oxidoreductase	1,8740247
CV 3276		polyisoprenoid-binding protein	1,64243103
CV 3281		cation acetate symporter	1,22458266
CV 3282	acs	acetateCoA ligase	1,69605489
CV_3284		methyltransferase domain-containing protein	1,85848298
_ CV_3288		carboxymuconolactone decarboxylase family protein	2,14927604
CV_3290		3-methyl-2-oxobutanoate hydroxymethyltransferase	4,18182952
CV_3291		LysR family transcriptional regulator	1,20481727
CV_3297		hypothetical protein	1,917918
CV_3304		malate synthase A	2,96324094
CV_3305		SIMPL domain-containing protein	1,73327162
CV_3308		20G-Fe dioxygenase family protein	1,76937759
CV_3313		protease modulator HfIC	1,53229805
CV_3316		chitinase C-terminal domain-containing protein	2,37050238
CV_3323		lytic polysaccharide monooxygenase	2,35511357
CV_3333	raiA	ribosome-associated translation inhibitor RaiA	2,45328931
CV_3341		DUF3369 domain-containing protein	1,24551887
CV_3357	ppk1	polyphosphate kinase 1	1,03035025
CV_3358		DUF456 family protein	1,02793509
CV_3380		M3 family metallopeptidase	2,5573063
CV_3381		M3 family metallopeptidase	1,98054165
CV_3383		MarR family transcriptional regulator	1,55804422
CV_3388		GNAT family N-acetyltransferase	1,47562647
CV_3399	bfr	bacterioferritin	1,84257198
CV_3426		ABC transporter substrate-binding protein	1,15450959
CV_3429	gcvP	aminomethyl-transferring glycine debydrogenase	1,29262677
CV 3435	cheD	chemoreceptor glutamine deamidase CheD	2.27357886
CV_3436		chemotaxis response regulator protein- glutamate methylesterase	1,89070936
CV_3437		chemotaxis protein CheR	2,17778492
CV_3438		PAS domain-containing protein	2,27957823
CV_3441		chemotaxis protein CheW	1,46351135
CV_3442		chemotaxis protein CheW	1,67496326
CV_3443		response regulator	1,42780877
CV_3444		STAS domain-containing protein	2,626951
CV_3450		chemotaxis protein CheA	1,11812753
CV_3467		DUF883 domain-containing protein	2,41271036
CV_3468		phage holin family protein	1,70843831
CV_3469		hypothetical protein	1,00090423
CV_3474		class I SAM-dependent methyltransferase	1,44937463
--------------	----------------	---	------------
CV_3486		VOC family protein	2,41264947
CV_3502		S9 family peptidase	1,52396889
CV_3503		PAS domain S-box protein	1,75747355
CV_3504		diguanylate cyclase	2,13030774
CV 3505		fused response regulator/phosphatase	1,71596657
CV_3506		protease	5,41029981
CV_3511		DUF2282 domain-containing protein	1,02681231
CV_3512		DUF2282 domain-containing protein	1,91845274
CV_3513		DUF692 domain-containing protein	1,05494057
_ CV_3514		putative DNA-binding domain-containing	1,55512928
CV 3515		DoxX family protein	1.56005952
CV 3519		S8 family serine peptidase	3.46562621
CV 3521		hypothetical protein	1.22122272
CV 3522		oxidoreductase	1.21822861
CV 3549		catalase	3,15583849
CV 3563		O-acetyl-ADP-ribose deacetylase	1.20376998
CV 3589	alnA	type I glutamateammonia ligase	1 19750721
CV_3596	<i>g</i> ,,, (hypothetical protein	2 53963314
CV_3597		pyridoxal-phosphate dependent enzyme	2 23577896
CV_3598		phenylacetateCoA ligase family protein	2 57081701
CV_3600		MFS transporter	1 11134363
0.0000	_	5-methyltetrahydropteroyltriglutamate	1,1110-000
CV_3604	metE	homocysteine S-methyltransferase	2,51814877
CV_3606		LrgB family protein	1,25971759
CV_3609		hypothetical protein	1,93931808
CV_3628		GNAT family N-acetyltransferase	1,76331856
CV_3629		GNAT family N-acetyltransferase	1,75158353
CV_3630		GNAT family N-acetyltransferase	1,23195939
CV_3633		hydrolase	2,41968988
CV_3652	uqpQ	glycerophosphodiester phosphodiesterase	2,52065474
CV_3653	0.	sn-glycerol-3-phosphate import ATP-binding protein UgpC	1,43223765
CV_3654	ugpE	sn-glycerol-3-phosphate ABC transporter permease UgpE	1,04767019
CV_3655	ugpA	sn-glycerol-3-phosphate ABC transporter permease UgpA	1,73442417
CV_3656	ugpB	sn-glycerol-3-phosphate ABC transporter substrate-binding protein UgpB	2,31046546
CV_3657		cytochrome d ubiquinol oxidase subunit II	3,00281522
CV_3658		cytochrome ubiquinol oxidase subunit I	3,26511144
CV_3659		GbsR/MarR family transcriptional regulator	3,73293297
CV_3660		glycerate kinase	1,3999928
CV_3662		hypothetical protein	2,84003854
CV_3667		cold-shock protein	1,60904547
CV_3683		DUF3488 domain-containing transglutaminase family protein	1,12484726
CV_3687	lepB	signal peptidase I	1,67902723
CV_3715	trpS	tryptophantRNA ligase	1,00361075

CV_3717		CreA family protein	1,02351509
CV_3732		DUF2946 family protein	1,46677654
CV_3743	fabl	enoyl-ACP reductase Fabl	2,55327206
CV_3744		phosphate acetyltransferase	2,47980406
CV_3745		acetate/propionate family kinase	2,09453002
CV_3754		MOSC domain-containing protein	1,33454928
CV_3760		hypothetical protein	1,06595913
CV_3774		hypothetical protein	1,14186392
CV_3778		patatin-like phospholipase family protein	2,87588577
CV_3779		hypothetical protein	3,88437489
CV_3790		DUF2189 domain-containing protein	1,08504523
CV_3816		acyl-CoA dehydrogenase	1,2288899
CV_3819		MaoC family dehydratase	2,17853702
CV_3829		porin	2,76466521
CV_3831		helix-hairpin-helix domain-containing protein	2,68131074
CV_3835		hypothetical protein	2,50372375
CV_3865		B12-binding domain-containing radical SAM protein	1,94928626
CV_3866		methyl-accepting chemotaxis protein	1,20275263
CV_3878		flagellin	2,22569677
CV_3881		B12-binding domain-containing radical SAM protein	1,50339385
CV_3894		S-methyl-5'-thioinosine phosphorylase	1,36692227
CV_3917		CoA transferase	1,40923905
CV_3918		acyl-CoA dehydrogenase	3,42869276
CV_3919		IcIR family transcriptional regulator	1,30350527
CV_3920		CBS domain-containing protein	1,92988533
CV_3926	gabT	4-aminobutyrate2-oxoglutarate transaminase	2,44388874
CV_3927	gabD	NADP-dependent succinate-semialdehyde dehydrogenase	2,737115
CV_3928		glyoxalase/bleomycin resistance/dioxygenase family protein	2,5230953
CV_3931		chitosanase	4,3193798
CV_3932		CopG family transcriptional regulator	1,00768021
CV_3934		hypothetical protein	1,04871754
CV_3935		M15 family metallopeptidase	1,32050567
CV_3940		hypothetical protein	1,6590561
CV_3941		outer membrane lipoprotein-sorting protein	1,49785593
CV_3942		ABC transporter permease	1,37840544
CV_3943		ABC transporter ATP-binding protein	1,1866686
CV_3944		NAD(P)-dependent oxidoreductase	1,81291456
CV_3945		alcohol dehydrogenase catalytic domain- containing protein	2,43289571
CV_3946		FAD-dependent oxidoreductase	2,31479789
CV_3947	fabG	3-oxoacyl-ACP reductase FabG	3,18264159
CV_3948		beta-ketoacyl synthase	3,70834413
CV_3949		beta-ketoacyl-[acyl-carrier-protein] synthase family protein	2,84362108
CV_3950		(3R)-hydroxymyristoyl-ACP dehydratase	3,74434219

CV_3951		hypothetical protein	3,89945311
CV_3952		methyltransferase domain-containing protein	2,91492512
CV_3953		SDR family oxidoreductase	2,32788069
CV_3954		polyprenyl synthetase family protein	2,54474453
CV_3955		hypothetical protein	2,38714747
CV_3956		UbiA family prenyltransferase	1,77735444
CV_3957		HAD hydrolase-like protein	2,05479275
CV_3958		polyprenyl synthetase family protein	2,01038643
CV_3959	asnB	asparagine synthase (glutamine-hydrolyzing)	2,45594777
CV_3960		isopentenyl phosphate kinase family protein	2,93214536
CV_3961		(5-formylfuran-3-yl)methyl phosphate synthase	4,38957979
CV_4045		ferredoxinNADP reductase	1,5060716
CV_4047		isoaspartyl peptidase/L-asparaginase	1,11355727
CV_4094		GNAT family N-acetyltransferase	1,56050506
CV_4095		rhodanese-like domain-containing protein	1,66783649
CV_4106		hypothetical protein	2,55301005
CV_4107		hypothetical protein	2,44120994
CV_4112	aspA	aspartate ammonia-lyase	4,65807508
CV_4114		hypothetical protein	1,27113119
CV/4208		O-antigen ligase C-terminal domain-containing	1 06166500
014200		protein	1,00100309
CV_4209		pilin	3,63729992
CV_4221		BON domain-containing protein	2,09359246
CV_4239		cysteine hydrolase	2,00689706
CV_4240		chitinase	1,8231576
CV_4253		DNA starvation/stationary phase protection protein	1,00191134
CV_4266		LysM peptidoglycan-binding domain-containing protein	1,08309744
CV_4282		alkaline phosphatase D family protein	1,20979804
CV_4288		mechanosensitive ion channel	2,15493794
CV_4298		glutamine synthetase	2,1142693
CV_4305		M13 family metallopeptidase	2,54903392
CV 4308		transporter substrate-binding domain-	1.21207607
01/ 4000	<i></i>	containing protein	1,00011050
CV_4309	ItaE	low-specificity L-threonine aldolase	1,93811052
CV_4312		nypothetical protein	6,83747526
CV_4329	. –	peptide ABC transporter substrate-binding protein	1,54554594
CV_4338	ftsZ	cell division protein FtsZ	1,13443366
CV_4364		copper chaperone PCu(A)C	3,57018682
CV_4370		amino acid permease	1,09705421
CV_4392		ABC transporter substrate-binding protein	1,53558365
CV_4393		ABC transporter permease	1,58718493
CV_4394		ABC transporter ATP-binding protein	1,92435498
CV_4395		ABC transporter permease	1,61890168
CV_RS00435		META domain-containing protein	1,63645185
CV_RS01135		hypothetical protein	2,33186247
CV_RS01290		hypothetical protein	1,83840956

CV_RS01330	hypothetical protein	2,63076075
CV RS02280	HlyD family efflux transporter periplasmic	1,45571544
01_1002200	adaptor subunit	1,10011011
CV_RS03725	YbdD/YjiX family protein	2,59452534
CV_RS08210	hypothetical protein	1,71339057
CV_RS09155	hypothetical protein	1,47817232
CV_RS09720	aminotransferase class I/II-fold pyridoxal phosphate-dependent enzyme	2,79887374
CV_RS10725	AraC family transcriptional regulator	1,35584194
CV_RS10890	hypothetical protein	4,68374124
CV_RS11800	hypothetical protein	3,0919108
CV_RS11955	CHAD domain-containing protein	1,48152971
CV_RS12990	hypothetical protein	1,98939696
CV_RS15000	hypothetical protein	1,04782983
CV_RS20350	hypothetical protein	2,36170552
CV_RS22115	methyl-accepting chemotaxis protein	1,65038908
CV_RS22125	response regulator	1,70986689
CV_RS22315	methyl-accepting chemotaxis protein	1,86720827
CV_RS22830	GNAT family N-acetyltransferase	2,14538258
CV_RS22945	hypothetical protein	1,10601157
CV_RS23080	hypothetical protein	3,14771171
CV_RS23425	hypothetical protein	1,25587695
CV_RS23955	phage tail protein	1,12274683

Tabela Suplementar 5. Genes diferencialmente expressos em ΔCV_1243 .

Open Reading Frame	Function	log₂ Fold Change ≥2 (WT vs. ΔCV_1243)
	Genes activated by H-NS in the WT strain	
CV_1243	H-NS histone family protein	2,193965431

Tabela Suplementar 6. Genes diferencialmente expressos em ΔCV_1363 .

Open Reading Frame	Function	log₂ Fold Change ≥2 (WT vs. ΔCV_1363)
	Genes repressed by H-NS in the WT strain	
CV_0430	hypothetical protein	-3,589354837
CV_0431	probable bacteriophage protein	-2,689065212
CV_0432	probable tail fiber assembly protein	-2,348947035
CV_0513	type I secretion system permease/ATPase	-3,329899168
CV_0514	HlyD family type I secretion periplasmic adaptor subunit	-3,496184502
CV_0515	glycosyltransferase	-3,566823823
CV_0516	calcium-binding hemolysin	-3,487194827
CV_1182	cbb3-type cytochrome c oxidase subunit 3	-4,143560372
CV_1219	MFS transporter	-2,793160532
CV_1243	H-NS histone family protein	-2,38361158

CV_1247	hypothetical protein	-2,05332333
CV_1364	hypothetical protein	-2,222625611
CV_1428	hypothetical protein	-2,370690308
CV_1468	ShIB/FhaC/HecB family hemolysin secretion/activation protein	-2,817405074
CV_1480	hypothetical protein	-2,083354929
CV_1541	beta-ketoacyl-[acyl-carrier-protein] synthase family protein	-3,879201393
CV_1542	MaoC family dehydratase	-3,869615025
CV_1543	hypothetical protein	-3,921409744
CV_1544	diiron oxygenase	-3,975043042
CV_1545	NAD(P)/FAD-dependent oxidoreductase	-3,899029019
CV_1546	3-oxoacyl-ACP reductase FabG	-3,745667929
CV_1547	ferredoxin family protein	-3,637758946
CV_1548	DUF3995 domain-containing protein	-3,622638951
CV_1549	DUF1289 domain-containing protein	-2,767134454
CV_1865	alpha/beta fold hydrolase	-3,035903294
CV_1869	response regulator transcription factor	-2,408269141
CV_1870	transporter substrate-binding domain-containing protein	-3,548790651
CV_1872	hypothetical protein	-2,609836585
CV_1873	hypothetical protein	-3,75124505
CV_1874	hypothetical protein	-2,334690198
CV_1875	hypothetical protein	-2,808648036
CV_1886	hypothetical protein	-3,414568579
CV_1887	RHS repeat protein	-3,711915271
CV_1888	trypsin-like peptidase domain-containing protein	-2,211553594
CV_2255	sugar O-acetyltransferase	-5,778172204
CV_2256	aspartate aminotransferase family protein	-5,385342778
CV_2257	hypothetical protein	-5,171004608
CV_2258	SDR family oxidoreductase	-4,979855385
CV_2259	DUF1349 domain-containing protein	-4,653513065
CV_2260	HAD-IIB family hydrolase	-4,210163009
CV_2261	methyltransferase	-3,833413332
CV_2262	MFS transporter	-3,190332619
CV_2263	RHS repeat-associated core domain-containing protein	-2,132516826
CV_2453	hypothetical protein	-2,815428156
CV_2561	hypothetical protein	-2,158612042
CV_2574	secretion protein	-2,031326232
CV_2575	hypothetical protein	-2,500587205
CV_2576	hypothetical protein	-2,880569652
CV_2577	type III secretion system translocon protein	-2,853285874
CV_2578	SycD/LcrH family type III secretion system chaperone	-2,988840813
CV_2579	secretion protein EspA	-3,094823702
CV_2580	secretion protein EspA	-3,208278067
CV_2581	hypothetical protein	-2,855097922
CV_2582	secretion protein EspA	-3,933817956
CV_2583	probable secreted protein EspA (CPI1)	-4,108652489

CV_2592	lytic polysaccharide monooxygenase	-2,630523024
CV_2593	hypothetical protein	-3,379938325
CV_2600	two component system sensor kinase	-2,313174461
CV_2602	EscV/YscV/HrcV family type III secretion system export apparatus protein	-2,415799301
CV_2603	EscN/YscN/HrcN family type III secretion system ATPase	-2,284987909
CV_2769	DUF3955 domain-containing protein	-2,349317381
CV_2770	hypothetical protein	-2,631427654
CV_2802	non-ribosomal peptide synthetase	-2,836144315
CV_2803	non-ribosomal peptide synthetase	-2,883954568
CV_2804	aspartate aminotransferase family protein	-2,560703948
CV_2866	hypothetical protein	-3,003834734
CV_2867	hypothetical protein	-3,320789992
CV_2868	hypothetical protein	-2,77366383
CV_2869	hemagglutinin repeat-containing protein	-3,457963397
CV_2910	hypothetical protein	-2,079105462
CV_3031	N-acetylmuramoyl-L-alanine amidase	-3,252733977
CV_3544	hypothetical protein	-2,886979694
CV_3545	M15 family metallopeptidase	-3,832174034
CV_3546	phage holin family protein	-3,562201047
CV_3547	hypothetical protein	-2,473249058
CV_3566	hypothetical protein	-5,025366908
CV_4270	50S ribosomal protein L18	-2,382641972
CV_4271	50S ribosomal protein L6	-2,746052296
CV_4291	30S ribosomal protein S12	-2,343450723
CV_4292	DNA-directed RNA polymerase subunit beta'	-2,134551372
CV_4293	DNA-directed RNA polymerase subunit beta	-2,50857504
	Genes activated by H-NS in the WT strain	
CV_1363	H-NS CV_RS06665	6,125116986

Tabela Suplementar 7. Genes diferencialmente expressos em $\Delta CV_{1243/1363}$.

Function	log₂ Fold Change ≥2 (WT vs. ΔCV_1243/1363)
Genes repressed by H-NS in the WT strain	
hypothetical protein	-3,87733
hypothetical protein	-5,41734
hypothetical protein	-4,99633
hypothetical protein	-5,51359
winged helix-turn-helix transcriptional regulator	-2,43566
cytochrome c	-2,48201
hypothetical protein	-2,14745
GNAT family N-acetyltransferase	-2,12553
NAD(P)/FAD-dependent oxidoreductase	-2,39027
LysR family transcriptional regulator	-2,18108
LysR family transcriptional regulator	-2,13898
	Function Genes repressed by H-NS in the WT strain hypothetical protein hypothetical protein hypothetical protein hypothetical protein winged helix-turn-helix transcriptional regulator cytochrome c hypothetical protein GNAT family N-acetyltransferase NAD(P)/FAD-dependent oxidoreductase LysR family transcriptional regulator LysR family transcriptional regulator

CV_0267	hypothetical protein	-3,46741
CV_0268	hypothetical protein	-4,55496
CV_0269	MAPEG family protein	-3,59911
CV_0299	hypothetical protein	-2,61327
CV_0343	baseplate J/gp47 family protein	-2,26062
CV_0344	phage GP46 family protein	-2,99547
CV_0345	phage baseplate assembly protein	-2,18265
CV_0346	tail protein	-2,59447
CV_0347	DNA circularization N-terminal domain-containing protein	-2,5276
CV_0371	hypothetical protein	-2,01771
CV_0427	probable phage-related lysozyme	-2,20163
CV_0429	hypothetical protein	-2,23783
CV_0430	hypothetical protein	-4,14709
CV_0431	probable bacteriophage protein	-3,16521
CV_0432	tail fiber assembly protein	-2,64362
CV_0445	STAS domain-containing protein	-2,78318
CV_0513	type I secretion system permease/ATPase	-3,46141
CV_0514	HlyD family type I secretion periplasmic adaptor subunit	-4,1713
CV_0515	glycosyltransferase	-4,16621
CV_0516	calcium-binding hemolysin	-3,78337
CV_0540	cysteine hydrolase	-2,03634
CV_0568	chorismate-binding protein	-2,24911
CV_0606	COX15/CtaA family protein	-2,04964
CV_0638	hypothetical protein	-2,74914
CV_0696	transcriptional regulator GcvA	-2,01154
CV_0709	HlyD family secretion protein	-2,58611
CV_0710	efflux transporter outer membrane subunit	-3,0206
CV_0729	polyhydroxybutyrate depolymerase	-2,4542
CV_0730	hypothetical protein	-2,72129
CV_0731	patatin-like phospholipase family protein	-2,76836
CV_0840	hypothetical protein	-2,74077
CV_0842	hypothetical protein	-3,31785
CV_0843	hypothetical protein	-3,83035
CV_0844	hypothetical protein	-2,83223
CV_1004	hypothetical protein	-2,52419
CV_1079	LysR family transcriptional regulator	-2,02716
CV_1182	reactive intermediate/imine deaminase	-4,32496
CV_1214	hypothetical protein	-2,15858
CV_1216	DUF932 domain-containing protein	-3,11782
CV_1217	hypothetical protein	-3,39698
CV_1218	hypothetical protein	-2,0211
CV_1219	MFS transporter	-3,95081
CV_1220	hypothetical protein	-2,78488
CV_1221	class I SAM-dependent methyltransferase	-3,02225
CV_1222	aldehyde dehydrogenase	-3,41611
CV_1226	type I-C CRISPR-associated protein Cas8c/Csd1	-2,05097

CV_1228	CRISPR-associated protein Cas4	-2,51769
CV_1231	hypothetical protein	-2,59443
CV_1237	hypothetical protein	-3,69479
CV_1238	RHS repeat protein	-3,81391
CV_1239	probable rhs-related transmembrane protein related	-3,50939
CV_1240	hypothetical protein	-3,15592
CV 1242	hypothetical protein	-3,09659
	inovirus-type Gp2 protein	-4,5288
CV 1245	DUF3987 domain-containing protein	-2,10382
CV 1246	hypothetical protein	-2,01701
CV 1247	IS3 family transposase	-3,8212
CV 1338	hypothetical protein	-3,19163
C)/ 1220	transporter substrate-binding domain-containing	E 01209
Cv_1339	protein	-5,91596
CV_1428	hypothetical protein	-4,70738
CV 1468	ShIB/FhaC/HecB family hemolysin	-3,76182
	secretion/activation protein	0,10102
CV_1479	hypothetical protein	-2,29049
CV_1480	hypothetical protein	-2,25967
CV_1521	hypothetical protein	-2,29815
CV_1540	hypothetical protein	-2,06222
CV_1541	beta-ketoacyl-[acyl-carrier-protein] synthase family	-4,23496
CV 1542	MaoC family dehydratase	-4 2922
CV 1543	hypothetical protein	-4 09476
CV 1544	diiron oxygenase	-4 16046
CV 1545	NAD(P)/FAD-dependent oxidoreductase	-4 12158
CV_1546	3-oxoacyl-ACP reductase FabG	-3 87915
CV 1547	ferredoxin family protein	-3 90719
CV_1548	DI IF3995 domain-containing protein	-3 73193
CV_1549	DUF1289 domain-containing protein	-3 15604
CV 1842	phosphonate C-P lyase system protein PhnK	-2 04542
CV 1862	xylulokinase	-2 92579
CV 1863	hypothetical protein	-7 99521
CV 1864	Hot domain-containing protein	-3 54603
CV 1865	alpha/beta fold hydrolase	-6 55174
CV_1866	hypothetical protein	-6 49227
CV_1867	hypothetical protein	-4 08844
CV 1868	hypothetical protein	-3 25634
CV 1869	response regulator transcription factor	-4 64925
01/1000	transporter substrate-binding domain-containing	1,01020
CV_1870	protein	-5,05951
CV_1871	hypothetical protein	-3,91639
CV_1872	hypothetical protein	-7,3644
CV_1873	hypothetical protein	-6,85702
CV_1874	hypothetical protein	-6,63901
CV_1875	hypothetical protein	-5,96158
CV_1876	hypothetical protein	-4,24049

CV 1878	autotransporter outer membrane beta-barrel	-4,7482
- C)/ 1070	domain-containing protein	2 01 5 21
CV_1879	cupin domain-containing protein	-3,01521
CV_1886	nypotnetical protein	-4,36507
CV_1887		-4,23643
CV_1888	trypsin-like peptidase domain-containing protein	-2,93334
CV_1968	58/553 family peptidase	-2,09763
CV_2006	nypotnetical protein	-3,43554
CV_2074	nypotnetical protein	-2,04111
CV_2100	nypotnetical protein	-2,94286
CV_{2236}	Fe(3+)-siderophore ABC transporter permease	-2,18638
CV_2247		-2,17961
CV_2255	sugar O-acetyitransferase	-5,83445
CV_2256	aspartate aminotransferase family protein	-5,35195
CV_2257	nypotnetical protein	-5,10538
CV_2258	SDR family oxidoreductase	-4,90601
CV_2259	DUF1349 domain-containing protein	-4,72161
CV_2260	HAD-IIB family hydrolase	-4,39423
CV_2261	metnyitransferase	-3,90563
CV_2262	MFS transporter	-3,23697
CV_2263	RHS repeat-associated core domain-containing protein	-2,87612
CV_2264	hypothetical protein	-2,20906
CV_2265	hypothetical protein	-2,62585
CV_2279	hypothetical protein	-3,05796
CV_2280	hypothetical protein	-3,08714
CV_2281	hypothetical protein	-3,02967
CV_2288	DUF3443 domain-containing protein	-3,67666
CV_2289	probable taurine transport system substrate-binding protein	-5,93061
CV_2290	ABC transporter ATP-binding protein	-5,8975
CV_2291	ABC transporter permease	-5,46957
CV_2453	hypothetical protein	-2,98616
CV_2536	hypothetical protein	-2,05868
CV_2561	hypothetical protein	-2,32791
CV_2562	penicillin-binding protein 1C	-2,616
CV_2571	M23 family metallopeptidase	-2,0622
CV_2574	secretion protein	-2,55246
CV_2575	hypothetical protein	-3,03935
CV_2576	hypothetical protein	-3,43811
CV_2577	type III secretion system translocon protein	-3,33603
CV_2578	SycD/LcrH family type III secretion system chaperone	-3,71674
CV_2579	secretion protein EspA	-3,64153
CV_2580	secretion protein EspA	-3,64662
CV_2581	hypothetical protein	-3,92474
CV_2582	secretion protein EspA	-4,5662
CV_2583	probable secreted protein EspA	-5,09166
CV_2584	helix-turn-helix transcriptional regulator	-2,64468

CV_2585	type III secretion system needle protein SsaG	-2,05596
CV_2586	EscG/YscG/SsaH family type III secretion system needle protein co-chaperone	-2,54329
CV_2587	type III secretion system inner rod subunit Sctl	-2,90456
CV_2588	type III secretion inner membrane ring lipoprotein SctJ	-2,48517
CV_2589	hypothetical protein	-3,20733
CV_2590	type III secretion system gatekeeper subunit SctW	-2,21375
CV_2591	cytochrome b/b6 domain-containing protein	-4,01291
CV_2592	lytic polysaccharide monooxygenase	-4,30653
CV_2593	hypothetical protein	-4,56096
CV_2594	type III secretion system stator protein SctL	-3,32078
CV_2600	two component system sensor kinase	-2,59813
CV_2602	EscV/YscV/HrcV family type III secretion system export apparatus protein	-3,19951
CV_2603	EscN/YscN/HrcN family type III secretion system ATPase	-3,59125
CV_2605	hypothetical protein	-2,48923
CV_2606	type III secretion system cytoplasmic ring protein SctQ	-2,38451
CV_2667	transposase	-2,86732
CV_2668	hypothetical protein	-2,86902
CV_2672	cellulose biosynthesis protein BcsE	-2,00588
CV_2769	DUF3955 domain-containing protein	-2,75352
CV_2770	hypothetical protein	-3,13045
CV_2772	hypothetical protein	-2,49622
CV_2802	non-ribosomal peptide synthetase	-3,74177
CV_2803	non-ribosomal peptide synthetase	-3,42949
CV_2804	aspartate aminotransferase family protein	-2,87854
CV_2814	Smr/MutS family protein	-2,13438
CV_2848	efflux transporter outer membrane subunit	-2,32362
CV_2864	aquaporin Z	-2,38827
CV_2866	hypothetical protein	-4,05936
CV_2867	hypothetical protein	-4,24016
CV_2868	hypothetical protein	-3,78619
CV_2869	hemagglutinin repeat-containing protein	-4,29786
CV_2870	hypothetical protein	-2,79581
CV_2871	hemagglutinin repeat-containing protein	-2,45316
CV_2910	hypothetical protein	-4,29233
CV_2930	Ycil family protein	-2,97148
CV_3031	N-acetylmuramoyl-L-alanine amidase	-6,99802
CV_3033	hypothetical protein	-2,27169
CV_3054	PTS fructose transporter subunit IIBC	-2,16952
CV_3058	GNAT family N-acetyltransferase	-2,48522
CV_3140	low molecular weight phosphotyrosine protein phosphatase	-2,43634
CV_3142	hypothetical protein	-2,05795
CV_3243	MFS transporter	-2,3968
CV_3366	fumarate reductase subunit FrdD	-2,13108

CV_3469	hypothetical protein	-2,17213		
CV_3544	hypothetical protein	-3,0902		
CV_3545	M15 family metallopeptidase	-4,04548		
CV_3546	phage holin family protein	-4,11581		
CV_3547	hypothetical protein	-2,49063		
CV_3557	hypothetical protein	-2,16032		
CV_3566	hypothetical protein	-5,33668		
CV_3803	leucine efflux protein LeuE	-2,36998		
CV_3919	IcIR family transcriptional regulator	-2,4826		
CV_3960	isopentenyl phosphate kinase family protein	-3,19318		
CV_4018	hypothetical protein	-2,58986		
CV_4019	UDP-N-acetyl-D-mannosamine dehydrogenase	-2,49537		
CV_4020	UDP-N-acetylglucosamine 2-epimerase (non- hydrolyzing)	-2,37517		
CV_4021	glycosyltransferase family 4 protein	-2,36784		
CV_4022	hypothetical protein	-2,34879		
CV_4023	peptidoglycan bridge formation glycyltransferase FemA/FemB family protein	-2,03973		
CV_4136	acyl-CoA dehydrogenase family protein	-2,02934		
CV_4270	hypothetical protein	-2,33793		
CV_4271	hypothetical protein	-3,67653		
CV_4272	hypothetical protein	-2,92482		
CV_4291	3-oxoadipyl-CoA thiolase	-2,28477		
CV_4292	MFS transporter	-2,09314		
CV_4293	thioester reductase domain-containing protein	-2,44521		
CV_4368	AzID domain-containing protein	-2,15103		
Genes activated by H-NS in the WT strain				
	Genes activated by H-NS in the WT strain			
CV_0238	hypothetical protein	2,198983		
CV_0238 CV_0255	hypothetical protein hypothetical protein	2,198983 3,308267		
CV_0238 CV_0255 CV_0362	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein	2,198983 3,308267 2,543333		
CV_0238 CV_0255 CV_0362 CV_0974	Genes activated by H-NS in the WT strain hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase	2,198983 3,308267 2,543333 4,361856		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone	2,198983 3,308267 2,543333 4,361856 3,637401		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298	Genes activated by H-NS in the W1 strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein hypothetical protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363 CV_2001	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363 CV_2001 CV_2001	Genes activated by H-NS in the W1 strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363 CV_1363 CV_2001 CV_2038 CV_2292	Genes activated by H-NS in the W1 strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1298 CV_1363 CV_2001 CV_2038 CV_2292 CV_2417	Genes activated by H-NS in the W1 strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein hypothetical protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363 CV_2001 CV_2001 CV_2038 CV_2292 CV_2417 CV_2418	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein hypothetical protein type III secretion system linker protein OrgB	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827 2,603609		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1298 CV_1363 CV_2001 CV_2038 CV_2292 CV_2417 CV_2418 CV_2419	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein hypothetical protein type III secretion system linker protein OrgB oxygen-regulated invasion protein OrgA	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827 2,603609 2,185114		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363 CV_2001 CV_2001 CV_2038 CV_2292 CV_2417 CV_2418 CV_2419 CV_2420	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein type III secretion system linker protein OrgB oxygen-regulated invasion protein OrgA EscJ/YscJ/HrcJ family type III secretion inner membrane ring protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827 2,603609 2,185114 3,300449		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1298 CV_1363 CV_2001 CV_2038 CV_2292 CV_2417 CV_2418 CV_2419 CV_2420 CV_2420	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein hypothetical protein type III secretion system linker protein OrgB oxygen-regulated invasion protein OrgA EscJ/YscJ/HrcJ family type III secretion inner membrane ring protein type III secretion system inner rod protein PrgJ	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827 2,603609 2,185114 3,300449 3,944817		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1298 CV_1363 CV_2001 CV_2038 CV_2001 CV_2038 CV_2292 CV_2417 CV_2418 CV_2419 CV_2420 CV_2420 CV_2422 CV_2422	Genes activated by H-NS in the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein type III secretion system linker protein OrgB oxygen-regulated invasion protein OrgA EscJ/YscJ/HrcJ family type III secretion inner membrane ring protein type III secretion system inner rod protein PrgJ type III secretion system needle complex protein prgH/EprH family type III secretion apparatus	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827 2,603609 2,185114 3,300449 3,944817 3,432964 2,728658		
CV_0238 CV_0255 CV_0362 CV_0974 CV_0975 CV_1243 CV_1298 CV_1363 CV_2001 CV_2001 CV_2038 CV_2292 CV_2417 CV_2418 CV_2419 CV_2420 CV_2420 CV_2422 CV_2423	Genes activated by H-NS In the WT strain hypothetical protein hypothetical protein SGNH/GDSL hydrolase family protein tyrosine phosphatase CesT family type III secretion system chaperone H-NS histone family protein hypothetical protein hypothetical protein hypothetical protein H-NS histone family protein H-NS histone family protein M9 family metallopeptidase N-terminal domain- containing protein T3SS effector OspC family protein hypothetical protein hypothetical protein hypothetical protein type III secretion system linker protein OrgB oxygen-regulated invasion protein OrgA EscJ/YscJ/HrcJ family type III secretion inner membrane ring protein type III secretion system inner rod protein PrgJ type III secretion system needle complex protein PrgH/EprH family type III secretion apparatus protein	2,198983 3,308267 2,543333 4,361856 3,637401 2,105697 2,468346 6,757803 2,104105 3,660311 2,978654 3,154827 2,603609 2,185114 3,300449 3,944817 3,432964 2,728658		

CV_2616	SPI-1 type III secretion system effector SipA	2,504187
CV_2617	type III secretion system needle tip protein SctA	3,316533
CV_2618	IpaC/SipC family type III secretion system needle tip complex protein	3,312895
CV_2619	type III secretion system needle tip complex protein	3,89608
CV_2620	type III secretion system translocator chaperone SicA	4,478653
CV_2621	EscU/YscU/HrcU family type III secretion system export apparatus switch protein	2,251509
CV_2622	SpaR/YscT/HrcT type III secretion system export apparatus protein	2,023078
CV_2623	EscS/YscS/HrcS family type III secretion system export apparatus protein	2,766978
CV_2624	EscR/YscR/HrcR family type III secretion system export apparatus protein	2,815511
CV_2627	secretory protein, associated with virulence	2,574173
CV_2628	type III secretion system ATPase SctN	2,240982
CV_2629	SPI-1 type III secretion system chaperone SpaK	2,686123
CV_2630	EscV/YscV/HrcV family type III secretion system export apparatus protein	2,661798
CV_2631	YopN/LcrE/InvE/MxiC type III secretion system gatekeeper	3,263244
CV_2632	EscC/YscC/HrcC family type III secretion system outer membrane ring protein	3,801505
CV_2633	AraC family transcriptional regulator InvF	2,612205
CV_2854	hypothetical protein	3,498076
CV_2994	flagellar filament capping protein FliD	2,046913
CV_3011	flagellin D	3,243916
CV_3323	lytic polysaccharide monooxygenase	2,370824