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RESUMO 

 

Januário, L. A. F. Otimização da resistência a nematódeos gastrointestinais em 

ovinos Santa Inês: uma abordagem de seleção genômica, machine learning e 

análise de imagens. 2023. Tese (Doutorado) – Faculdade de Medicina de Ribeirão 

Preto, Universidade de São Paulo, Ribeirão Preto, 2023. 

 

A infecção por nematoides gastrointestinais representa uma grande ameaça à 

saúde e produtividade das populações de ovinos, sendo o Haemonchus contortus a 

espécie mais patogênica. Este estudo analisou uma população de ovinos Santa Inês 

e foi composto por cinco capítulos com os seguintes objetivos: Capítulo 1) Revisão da 

literatura; Capítulo 2) Avaliar a viabilidade de usar características fenotípicas 

facilmente mensuráveis, a fim de predizer ovinos susceptíveis a nematoides 

gastrointestinais por meio do uso de métodos de “Machine Learning”; Capítulo 3) 

Analisar imagens da conjuntiva ocular para classificar os níveis de anemia com base 

nos escores de Famacha© (FAM); Capítulo 4) Examinar o padrão genético aditivo de 

valores genéticos estimados (EBVs) para características indicadoras de resistência a 

nematoides gastrointestinais; Capítulo 5) Avaliar a acurácia de modelos paramétricos 

(GBLUP, BayesA, BayesB e Lasso Bayesiano – BLASSO) e redes neurais artificiais 

(BRANN) na predição genômica de características indicadoras de resistência a 

nematoides gastrointestinais. No Capítulo 2, os animais foram classificados em 

resistentes, resilientes e suscetíveis de acordo com a contagem de ovos nas fezes 

(OPG) e volume globular (VG), e os métodos de classificação foram ajustados usando 

as informações de classe de idade, mês de registro, fazenda, sexo, FAM, peso 

corporal e escore de condição corporal como preditores. No Capítulo 3, um modelo 

“Random Forest” (RF) foi usado para segmentar as imagens. Após a segmentação, 

os quantis de intensidade de cor (1, 10, 20, 30, 40, 50, 60, 70, 80, 90 e 99%) em cada 

canal de imagem (vermelho, azul e verde) foram determinados e usados como 

variáveis explanatórias nos modelos de classificação, sendo o FAM 1 a 5 as classes 

a serem previstas. No Capítulo 4, os EBVs para FAM, VG e OPG foram estimados por 

inferência bayesiana em um modelo animal uni-característico. Em seguida, análises 

de agrupamento foram realizadas usando os EBVs para FAM, VG e OPG para 

identificar animais resistentes, resilientes e suscetíveis a nematoides gastrointestinais. 



 

 

 

No Capítulo 5, a acurácia e o erro de predição foram obtidos para VG, OPG e FAM 

usando modelos paramétricos e redes neurais artificiais. Os resultados sugerem que 

o uso de características facilmente mensuráveis pode fornecer informações úteis para 

apoiar decisões de manejo a nível de fazenda. Os resultados das análises de imagem 

indicam que é possível prever com sucesso o FAM, especialmente para escores 2 a 

4, em ovinos por meio de análise de imagem e modelo de RF usando imagens da 

conjuntiva ocular coletadas em condições de fazenda. O agrupamento dos animais 

resistente apresentou EBVs positivos para VG e negativos para FAM e OPG, sendo 

os animais mais desejáveis para serem usados como candidatos a seleção para 

melhorar geneticamente a resistência à nematoides gastrointestinais. Em resumo, os 

modelos paramétricos são adequados para a predição de valores genéticos 

genômicos de VG, OPG e FAM em ovinos, devido à similaridade da acurácia 

encontradas entre eles. Apesar disso, o uso do modelo GBLUP é recomendado devido 

ao seu menor custo computacional e à possibilidade de incorporar animais não 

genotipados na análise usando procedimentos “Single-step”. 

 

Palavras chave: Nematódeos gastrointestinais. Ovis aries. Machine Learning. 

Análise de Imagem. Seleção Genômica.



 

 

 

ABSTRACT 

 

Januário, L. A. F. Optimization of resistance to gastrointestinal nematodes in 

Santa Inês sheep: a genomic selection, machine learning and image analysis 

approach. 2023. Tese (Doutorado) – Faculdade de Medicina de Ribeirão Preto, 

Universidade de São Paulo, Ribeirão Preto, 2023. 

 

Gastrointestinal nematode infection represents a major threat to the health and 

productivity of sheep populations, and the Haemonchus contortus is the most 

pathogenic species. This study analyzed a population of Santa Ines sheep and it was 

composed of five chapters with the following objectives: Chapter 1) Literature review; 

Chapter 2) To evaluate the feasibility of using easily-measured phenotypic traits in 

order to predict the susceptibility of sheep to gastrointestinal nematodes through the 

use of machine learning methods; Chapter 3) To analyze ocular conjunctiva images to 

classify anemia levels based on Famacha© scores (FAM); Chapter 4) To examine the 

additive-genetic patterns of estimated breeding values (EBVs) for indicator traits of 

resistance to gastrointestinal nematodes; Chapter 5) To assess the accuracy of 

parametric models (GBLUP, BayesA, BayesB e Bayesian Lasso – BLASSO) and 

artificial neural networks (BRANN) in genomic predictions of indicator traits of 

resistance to gastrointestinal nematodes. In the Chapter 2, the animals were classified 

into resistant, resilient, and susceptible according to fecal egg count (FEC) and packed 

cell volume (PCV), and the methods were fitted using the information of age class, the 

month of record, farm, sex, FAM, body weight, and body condition score as predictors. 

In the Chapter 3, a random forest model (RF) was used to segment the images. After 

segmentation, the quantiles of color intensity (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 

99%) in each image channel (red, blue, and green) were determined and used as 

explanatory variables in the classification models, and the FAM 1 to 5 were the target 

classes to be predicted. In the Chapter 4, The EBVs for FAM, PCV, and FEC were 

estimated by Bayesian inference in a single-trait animal model. After, cluster analyses 

were done using the EBVs for FAM, PCV, and FEC in order to identify animals that are 

resistant, resilient, and susceptible to gastrointestinal nematodes. In the Chapter 5, the 

prediction accuracy and mean squared errors were obtained for PCV, FEC, and FAM 

using parametric models and artificial neural network. The results suggest that the use 



 

 

 

of easily measurable traits may provide useful information for supporting management 

decisions at the farm level. The image analysis results indicate that is possible to 

successfully predict Famacha© score, especially for scores 2 to 4, in sheep via image 

analysis and RF model using ocular conjunctiva images collected in farm conditions. 

The resistant cluster presented positive EBVs for PCV and negative for FAM and FEC, 

being consisted of the most desirable animals to be used as selection candidates in 

order to genetically improve resistance to gastrointestinal nematodes. In summary, 

parametric models are suitable for genome-enabled prediction of PCV, FEC and FAM 

in sheep, due to the small differences in accuracy found between them. Despite this, 

the use of the GBLUP model is recommended due to its lower computational costs and 

the possibility of incorporating non-genotyped animals into the analysis using single-

step procedures. 

 

Keywords: Gastrointestinal nematodes. Ovis aries. Machine learning. Image analysis. 

Genomic selection. 
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CHAPTER 1 – GENERAL CONSIDERATION 

 

1. INTRODUCTION 

Brazil has approximately 20 million sheep, with about 70% located in the 

Northeast region (IBGE, 2021). The adaptation of these animals to the region, along 

with the favorable farming characteristics and technological advancements, make 

sheep farming an attractive option for producers in various regions, especially in the 

Northeast (IBGE, 2014). However, Brazilian sheep farming, like in other countries with 

a tropical climate, faces a significant challenge in the form of infections caused by 

gastrointestinal nematodes (GIN). The primary cause of GIN is the highly pathogenic 

parasite Haemonchus contortus, which results in significant economic losses due to 

decreased productivity and animal death, as well as expenses related to the use of 

anthelmintics for control (ADDUCI et al., 2022). Moreover, the overuse of anthelmintics 

has resulted in the development of parasite resistance (KUISEU et al., 2021; SZEWC 

et al., 2021). 

To reduce the problems associated with GIN, alternatives such as selection 

based on phenotypic traits and genetic/genomic selection can be implemented. The 

latter option involves identifying sheep that are resistant to gastrointestinal nematodes 

and incorporating them into breeding programs for genetic improvement of sheep 

populations. One breed of sheep known to be resistant to gastrointestinal nematodes 

is the Santa Inês, a breed derived from crosses of Morada Nova, Bergamasca, and 

the native Crioula breed (AMARANTE et al., 2004). 

Studies have evaluated the feasibility of making decisions based on phenotypic 

and genetic selection using measures such as fecal egg count (FEC), packed cell 

volume (PCV), and the Famacha© method (FAM), which have been found to be highly 

correlated with resistance to GIN (VAN WYK and BATH, 2002; SELVAM, 2021, 2022; 

FREITAS et al., 2022, 2023). However, there are few genomic selection studies that 

focus on indicator traits for GIN resistance in sheep. 

Sheep infected with gastrointestinal nematodes can be classified into three 

categories based on their response to infection: resistant, resilient, and susceptible 

(WOOLASTON and BAKER, 1996). Currently, this classification is done using 

phenotypic traits such as fecal egg count and packed cell volume (POLLOT et al., 

2004; BISHOP, 2012; MCMANUS et al., 2014; MARQUES et al., 2018; FREITAS et 
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al., 2023). However, these parameters require laboratory resources, which increases 

the cost for farmers. To reduce these costs, easily-measured phenotypic such as body 

weight, body condition score, age class, month of record and sex could be explored to 

identify susceptible animals and support management decisions at the farm level. 

The Famacha© method is a useful tool for identifying parasitized animals 

through the diagnosis of anemia, providing scores based on visual assessment of 

ocular conjunctiva coloration (VAN WYK and BATH, 2002). However, this method is 

prone to error as it requires a subjective evaluation from the professional performing 

the analysis. Developing high-throughput measurements of traits such as diagnostic 

image analysis can help improve accuracy and eliminate human subjectivity in 

assessment. 

Genetic improvement can also play a role in controlling GIN infections by 

selecting animals with genetic resistance to gastrointestinal nematodes. Genetic 

variability is crucial for achieving genetic progress, and the estimation of genetic 

parameters combined with multivariate analyses can group animals based on their 

estimated breeding values, helping to identify the most suitable candidates for 

selection based on additive-genetic patterns for indicator traits of gastrointestinal 

nematode resistance (FREITAS et al., 2022). 

With the advent of genomic information, molecular information has provided a 

shift in animal breeding. High-density single nucleotide polymorphism (SNP) panels 

have expanded the horizons for the study of complex traits controlled by multiple genes 

with small effects and improved marker-assisted selection in animal and plant breeding 

programs (XU et al., 2020). Including molecular marker information in genomic 

prediction models has also increased the accuracy of breeding value prediction in 

genomic selection (MEUWISSEN et al., 2001). However, the performance of genomic 

selection models depends on numerous factors, including the methodology used to 

estimate genomic breeding values, so the choice of statistical method must be carefully 

considered before implementing genomic selection in breeding programs. 

 

2. GENERAL OBJECTIVES 

The objectives of this study are as follows: 
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1. To evaluate the feasibility of using readily available, easily-measured 

phenotypic traits in order to predict the susceptibility of sheep to gastrointestinal 

nematodes through the use of machine learning methods. 

2. To analyze ocular conjunctiva images to automatically classify anemia levels 

based on Famacha© scores. 

3. To examine the pattern of estimated breeding values for indicator traits of 

resistance to gastrointestinal nematodes, in terms of genetic additivity. 

4. To assess the accuracy of parametric models and artificial neural networks in 

predicting indicator traits of resistance to gastrointestinal nematodes in Santa 

Inês sheep through genomic predictions. 

 

2.1 Specific objectives 

For Objective 1:  

 Compare the performance of different methods for classifying sheep as 

resistant, resilient, or susceptible to gastrointestinal nematodes using 

multinomial logistic regression (MLR), random forest (RF), linear discriminant 

analysis (LDA), and artificial neural network (ANN). 

 Assess the suitability of the top-performing classification model for each farm. 

For objective 2: 

 To compare the performance of two classification models (MLR and RF). 

 To assess the effectiveness of the top-performing classification model in three 

sheep farms. 

For objective 3:  

 To classify sheep into resistant, resilient, and susceptible groups based on their 

additive-genetic patterns for resistance to gastrointestinal nematodes. 

 To determine the best candidates for selection by analyzing their genetic 

patterns. 

 

3. LITERATURE REVIEW 

3.1 Brazilian Santa Inês breed 

The Santa Inês breed is a hair sheep variety that originated from Northeast 

Brazil, resulting from crossbreeding of Morada Nova, Bergamasca, and the indigenous 

Crioula sheep with a rough wool coat (Figure 1). This breed has become the fastest-
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growing in Brazil, with approximately 39% of the country's sheep herds consisting of 

Santa Inês sheep, distributed across 1,185 counties (MCMANUS et al., 2014). 

 

 

Figure 1. Ram of the Santa Ines breed.  

Source: Personal Archive. 

 

One reason for its widespread presence is its high adaptability to different 

climates in Brazil. In addition, the Santa Inês sheep have desirable characteristics such 

as good meat production, rusticity, low nutritional requirements, strong maternal ability, 

and low susceptibility to endoparasites and ectoparasites (PAIM et al., 2013). Studies 

have shown that Santa Inês sheep are more resistant to infections from gastrointestinal 

nematodes than the Suffolk and Ile de France breeds (AMARANTE et al., 2004; 

BRICARELLO et al., 2005; ROCHA et al., 2005). Female Santa Inês sheep are also 

unique in that they have a low reproductive seasonality (BALARO et al., 2015), and 

show estrus with lambs at their feet, leading to a faster production cycle. 

 

3.2 Impact of gastrointestinal nematodes on sheep farming 

The presence of gastrointestinal nematodes is a major concern for the growth 

of sheep farming, with Haemonchus contortus being the primary parasite. Its high 

prevalence due to climatic conditions, high pathogenicity, and high prolificity (a female 

can lay up to 5,000 eggs per day) make it a highly harmful parasite (EMERY et al., 

2016). The impact of parasitic infections on animal health can result in untreated 

individuals becoming ill (ALAM et al., 2020). In terms of production, the consequences 

include slowed growth, decreased production of wool, meat, and milk, low reproductive 
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efficiency, low resistance to diseases, and high mortality rates (JARDIM, 1974; 

COBON and O’SULLIVAN, 1992). 

Sheep infected with gastrointestinal nematodes can be classified into three 

categories based on their response to the parasitic infection: resistant, resilient, and 

susceptible. Animals that are resistant are less likely to be infected, as their immune 

response helps to prevent the establishment of the parasite, without any negative 

impact on production (ALBERS et al., 1987). Resilience refers to the animal's ability to 

maintain its production performance in the face of a disease challenge (BISHOP, 2012; 

ALBERS et al., 1987). On the other hand, susceptible animals are those that become 

infected with the parasites and experience a high degree of anemia and impaired 

production. To prevent the spread of the disease to other populations, it's essential to 

identify and select animals that are resistant to the disease. 

For a long time, controlling gastrointestinal nematodes in small ruminants has 

been achieved through the use of anthelmintics and pasture management (RODRIGO, 

2017). However, due to the indiscriminate use of anthelmintics, which has led to 

parasite resistance, and the complexities of pasture management, along with the long 

lifespan of infective larvae in the environment, it has become increasingly urgent to 

develop alternative control techniques to prevent production losses. 

 

3.3 Sheep resistance to gastrointestinal nematodes 

An alternative to controlling gastrointestinal parasites is selecting for resistant 

animals (LI et al., 2001; FREITAS et al., 2022). These animals are able to eliminate 

infective larvae or inhibit the development of immature parasites (BALIC et al., 2000). 

Herds that consist of resistant animals and implement efficient pasture management 

are a sustainable alternative for preventing parasite infections, leading to increased 

production (GREEFF and KARLSSON, 2020). 

Several studies have concluded that some breeds are naturally more resistant 

to parasitic infections than others (AMARANTE et al., 2004; ROCHA et al., 2005; 

BRICARELLO et al., 2005). In Brazil, the Santa Inês breed has been considered the 

most resistant (AMARANTE et al., 2004; ROCHA et al., 2005; BRICARELLO et al., 

2005). 

The packed cell volume (PCV), fecal egg count (FEC), and Famacha© method 

(FAM) are the most commonly used methods for diagnosing the degree of infection 
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with gastrointestinal nematodes (POLLOT et al., 2004; BISHOP, 2012; MCMANUS et 

al., 2014; MARQUES et al., 2018; FREITAS et al., 2023). The FEC is used to count 

eggs of parasites present in the gastrointestinal tract of small ruminants (ALBERS et 

al., 1987), and animals with a zero or close to zero egg count per gram of feces are 

considered resistant. PCV measurements are closely related to resistance to 

gastrointestinal nematodes as they indicate the intensity of anemia and 

hypoproteinemia. The Famacha© method is widely used to detect sheep that are 

unable to cope with H. contortus infection through visual assessment of ocular 

conjunctiva coloration (OLIVEIRA et al., 2018; FREITAS et al., 2022; 2023). H. 

contortus causes anemia, which results in changes in the color of the ocular 

conjunctiva from deep red in healthy sheep to shades of pink or white in non-healthy 

sheep (SINGH and SWARNKAR, 2012; EL-ASHRAM et al., 2017). 

So far, resistance based on phenotype has been evaluated for management 

purposes at the farm level, with resistant animals not needing treatment and 

susceptible animals requiring treatment and attention. Additionally, genetic resistance 

to gastrointestinal parasites is a sustainable alternative for reducing losses due to GIN 

infections and forming future resistant herds by selecting for genetically resistant 

animals. 

Amarante (2004) have shown that resistance or susceptibility to parasitism is 

genetically determined. The traits used to assess resistance, such FEC, PCV, and 

FAM, have adequate genetic variability to respond to selection in the Santa Inês breed. 

According to Berton et al. (2017), the FAM method is expected to yield a higher genetic 

gain compared to the other methods. The studies by Berton et al. (2017), Oliveira et 

al. (2018), and Freitas et al. (2022) have demonstrated that genetic progress in 

research and commercial herds can be achieved through selection for resistance to 

nematode gastrointestinal infections. 

 

3.4 Analysis to identify animals parasitized by gastrointestinal nematodes 

3.4.1 Machine learning for classification  

Machine learning (ML) models have been widely used for classification 

purposes in various fields. These models are generally modifications or extensions of 

linear models, which allow for nonlinear relationships between variables and handling 

of collinearity and high-dimensional data (GOLDSTEIN et al., 2017; MULLAINATHAN 
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and SPIESS, 2017). ML algorithms have been utilized in different aspects of the 

livestock industry, such as detecting estrus in dairy cows (ANDRADE et al., 2021), 

classifying pathologies in animal necropsy reports (BOLLIG et al., 2020), and 

categorizing dairy cattle breeds (MOAWED et al., 2017). The best method for a 

particular task depends on the problem being studied. The results, in conjunction with 

farm-level management strategies, can lead to reduced costs and more effective 

interventions, such as reducing deworming in GIN infected herds. Furthermore, 

predicting the likelihood of a particular outcome can aid in formulating, evaluating, and 

directing animal management and production practices. 

Other techniques have been developed to address nonlinear relationships 

between variables. One example is the Multilayer Perceptron (MPL), which creates 

layers of neurons, mathematical processing units that receive inputs and produce 

outputs according to different response functions. Another is the Random Forest, a 

decision tree methodology that outputs classifications or estimates based on the 

average of all trees. The Random Forest is currently the most widely used ML method 

due to its ability to handle both linear and nonlinear variables and its low variance, 

which results in higher prediction accuracy compared to logistic regression and simple 

decision trees (SOUZA, 2017). 

Combining multivariate techniques with ML concepts can also enhance model 

performance, such as linear discriminant analysis (a supervised learning method for 

classification). Linear discriminant analysis is a generalization of Fisher's linear 

discriminant and is used for pattern recognition and ML to find a linear combination of 

features that separates or characterizes different classes of objects or events. The 

resulting combination can be used as a linear classifier or to reduce dimensionality 

before further classification. It is expected that the use of ML models will lead to 

improved performance with a practical level of accuracy for application at the farm 

level, allowing for more precise classification of animals as susceptible and resistant. 

 

3.4.2 Image analysis 

Several computer vision techniques have been developed due to 

advancements in image capture and the growing demand for more accurate 

information (SZELISKI, 2010). Computer vision simulates human vision, in which there 

is an image input, and the output is an interpretation as a whole or partially. It has 
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medium-level processes such as segmentation or classification operations, and high-

level processes related to cognition tasks associated with human vision. 

An image can be defined as a two-dimensional function, f(x,y), where x and y 

are spatial coordinates and the amplitude of f represents the intensity or gray level of 

the image at a given point (pixel). Computer vision uses a set of machine learning 

techniques, such as random forests and artificial neural networks, to extract 

information from images (LEE et al., 2015). In this context, the texture of objects plays 

a prominent role, as it can be easily highlighted by our interpretation of black-and-white 

images. In addition, colors provide additional details to complement our inferences 

about the objects in question, serving as a more detailed classifier (KHODASKAR and 

LADHAKE, 2014). 

The next important step in image processing is segmentation, which consists of 

partitioning the image into regions of interest to extract features from these regions. To 

achieve efficient pattern recognition, accurate and robust segmentation is crucial 

(CHAOU et al., 2015). After the feature extraction step, the identification and 

recognition of these features are followed by their classification. 

In this study, we aim to automatically classify anemia based on the Famacha© 

method in sheep infected with Haemonchus contortus using ocular conjunctiva 

images. The Famacha© method is based on the Famacha© card (Figure 2) and has 

been created to detect sheep unable to cope with H. contortus infection by determining 

clinical anemia based on the visual assessment of ocular conjunctiva coloration (VAN 

WYK and BATH, 2002). For this task, there are no reports in the literature of the use 

of image analysis to automatically classify Famacha© score using ocular conjunctiva 

images of sheep. 
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Figure 2.  Application of the Famacha© method. 

Source: Personal Archive. 

 

3.5 Analysis to identify animals genetically resistant to gastrointestinal 

nematodes 

3.5.1 Estimation of genetic parameters and cluster analysis 

The selection of the best individuals for indicator traits of resistance to 

gastrointestinal nematodes (FEC, PCV, and FAM) can have a positive impact on the 

production chain. However, simply selecting individuals based on their phenotypes is 

not enough to guarantee the selection of animals with higher breeding value 

(BOUJENANE and DIALLO, 2017). Effective selection requires genetic evaluations 

and knowledge of the relevant genetic parameters (SAFARI et al., 2005). 

To improve indicator traits of resistance to gastrointestinal nematodes, it is 

crucial to accurately estimate genetic parameters. This will ensure accurate predictions 

of breeding values and allow for effective selection. Many sheep breeding programs 

aim to select animals that are resistant to gastrointestinal nematodes based on these 

indicator traits (ZVINOROVA et al., 2016; BERTON et al., 2017; OLIVEIRA et al., 2018; 

HAYWARD, 2022; FREITAS et al., 2022). However, because genetic parameters can 

vary between populations and environments, it is important to estimate them in the 

population where selection will be applied. 

Traits with moderate to high estimated heritability will respond more efficiently 
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to selection compared to traits with low heritability (DOVALE et al., 2013). The indicator 

traits of resistance to gastrointestinal nematodes have a low to moderate magnitude 

of heritability. Despite this, investment in the selection of genetically superior animals 

for these traits is justified because the genetic gains obtained through breeding will be 

permanent. 

In breeding programs, selection must be balanced and take into account the 

primary economic traits of interest. Selecting for multiple traits using weighted selection 

can reduce the risk of harm to any one trait due to genetic correlations. Thus, 

combining estimates of genetic parameters with cluster analysis can help in the 

decision-making process for selecting animals that will have the greatest positive 

impact on desired traits in the population. 

The Santa Inês breed presents adequate genetic variability for the selection of 

indicator traits of resistance to gastrointestinal nematodes (BERTON et al., 2017). 

Therefore, cluster analysis can be a useful alternative for finding and grouping animals 

that are genetically similar based on traits of interest. 

 

3.5.2 Genomic Selection 

Genomic prediction is a method for evaluating the genetic potential of 

individuals for selection, based on the genotypes of single nucleotide polymorphisms 

(SNPs). When applied to animal breeding, it is known as genomic selection. The 

impact of SNPs on genomic selection is estimated using data from molecular markers 

and phenotypic records (MEUWISSEN et al.; 2001). The foundation of this 

methodology is the linkage disequilibrium between SNPs and quantitative trait loci 

(QTLs). Genomic prediction through regression models can be performed in two steps. 

The first step uses a reference population with both phenotypic and genotypic 

information to estimate the impact of the markers. The second step uses only marker 

information from candidate animals (VANRADEN et al., 2009). 

In animal breeding, several genome-enabled prediction methods, such as 

Bayesian Alphabet, often make use of shrinkage or regularization processes to impose 

prior assumptions about the genetic architecture of complex traits (DE LOS CAMPOS 

et al., 2013). The GBLUP method replaces the traditional relationship matrix with a 

genomic relationship matrix based on markers (G). BayesA, as described by 

Meuwissen et al. (2001), allows for different variances across segments of the 
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genome. It uses a scaled-t density as the prior distribution for SNP effects. BayesB 

also allows for different genetic variances explained by each locus and uses a two-

component mixture prior, with a point of mass at zero and non-null effects following a 

scaled-t distribution with a prior probability π. 

Artificial neural networks (ANNs) are mathematical information processing 

systems that mimic the human brain. Like the human brain, ANNs process input 

information (such as marker data) through interconnected artificial neurons, which can 

learn complex relationships between predictor variables and the target in an adaptive 

way through appropriate learning algorithms (BISHOP, 2006). Neural network methods 

have also been proposed for predicting genomic breeding values. ANNs are non-linear 

and can model complex functions. There are several architectures for ANNs, including 

the number of hidden layers and the number of neurons in each layer, as well as the 

type of activation function performed at each neuron. One of the most commonly used 

in genome-enabled prediction is the Multilayer Perceptron (MLP). MLP neural 

networks are of the feed-forward multilayer type, where learning is performed using a 

dataset (Figure 3). 

 

Figure 3. Topology of a multilayer perceptron (MLP) neural network with three neurons 

in the input layer, three in the intermediate layer and one in the output layer. The input 

information is x1, x2 and x3. The synaptic weights between neurons in adjacent layers 

are represented by wjk, where j are the neurons in the input layer and k are the neurons 
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in the intermediate layer; is the weighted sum given by ,  g(.) is the 

activation function and �̂�∗ is the predicted value. 

 

For genome-enabled prediction, a particular advantage is that ML methods are 

model-free, in other words, there is no necessity to impose a specific genetic structure, 

so that, no assumptions are required about the genetic architecture of the target traits. 

However, results considering empirical applications of machine learning algorithms on 

real data still have been few explored, particularly for Santa Ines sheep.  

In this scenario, using genomic prediction methods for the identification of 

genetically resistance to GIN becomes a promising strategy, allowing to achieve higher 

genetic gains by the improvement of prediction accuracy and decrease on generation 

intervals (MEUWISSEN et al. 2013). Notably, the success of genomic-assisted 

selection depends directly on the prediction accuracy, which is associated, among 

other factors, with the used statistical method and the genetic architecture of the 

interest traits. 
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CHAPTER 3. IMAGE ANALYSIS TO AUTOMATICALLY CLASSIFY ANEMIA 

BASED ON FAMACHA© SCORE IN SHEEP INFECTED WITH HAEMONCHUS 

CONTORTUS USING OCULAR CONJUNCTIVA IMAGES 

 

Abstract: Haemonchus contortus is the most pathogenic blood-feeding parasitic in sheep, 

responsible to cause anemia and consequently changes in the color of the ocular conjunctiva, 

from the deep red of healthy sheep to shades of pink to practically white of non-healthy sheep. 

In this context, the Famacha© method has been created for detecting sheep unable to cope with 

the infection by H. contortus, through visual assessment of ocular conjunctiva coloration. Thus, 

the objectives of this study were (1) to extract ocular conjunctiva image features to 

automatically classify Famacha© score and compare two classification models (multinomial 

logistic regression - MLR and random forest - RF), and (2) to evaluate the applicability of the 

best classification model on three sheep farms. The dataset consisted of 1,156 ocular 

conjunctiva images from 422 animals. RF model was used to segment the images, i.e. to select 

the pixels that belong to the ocular conjunctiva. After segmentation, the quantiles (1, 10, 20, 

30, 40, 50, 60, 70, 80, 90, and 99%) of color intensity in each image channel (red, blue, and 

green) were determined and used as explanatory variables in the classification models, and the 

Famacha© scores 1 (non-anemic) to 5 (severely anemic)  were the target classes to be predicted 

(1= 162 images, 2= 255 images, 3= 443 images, 4= 266 images, 5= 30 images). For objective 

1, the performance metrics (precision and sensitivity) were obtained using MLR and RF models 

considering data from all farms randomly split. For objective 2, a leave-one-farm-out cross-

validation technique was used to assess prediction quality across three farms (A= 726 images, 

B= 205 images, and C= 225 images). The RF provided the best performances in predicting 

anemic animals, as indicated by the high values of sensitivity for Famacha© score 3 (80.9%), 

4 (46.2%), and 5 (60%) compared to the MLR model. The precision of the RF was 72.7% for 

Famacha© score 1 and 62.5% for Famacha© score 2. These results indicate that is possible to 



 

48 

 

successfully predict Famacha© score, especially for scores 2 to 4, in sheep via image analysis 

and RF model using ocular conjunctiva images collected in farm conditions. As expected, 

model validation excluding entire farms in cross-validation presented a lower prediction 

quality. Nonetheless, this setup is closer to reality because the developed models are supposed 

to be used across farms, including new ones, and with different environments and management 

conditions. 

 

Keywords: gastrointestinal nematodes, machine learning, Ovis aries, random forest 

 

1. INTRODUCTION 

Gastrointestinal nematode infection represents a major threat to the health, welfare, and 

productivity of sheep populations worldwide (Mcrae et al., 2015). Haemonchus contortus is 

one of the most common and economically significant blood-feeding parasites of small 

ruminants, responsible for causing anemia and consequently changes in the color of the ocular 

conjunctiva, from the deep red of healthy sheep to shades of pink to practically white of non-

healthy sheep (Singh and Swarnkar, 2012; El-Ashram et al., 2017). The most commonly used 

methods to control this gastrointestinal parasite are based on the use of anthelmintics (Szewc et 

al., 2021). However, parasite resistance to anthelmintics has escalated to such an extent that 

new strategies are urgently required to address this problem (Kuiseu et al., 2021). 

Strategies that are not based on the chemical treatment of entire herds or expensive 

laboratory tests (blood or fecal) to identify parasitized animals have been receiving special 

attention. In this context, the Famacha© method has been widely used for detecting sheep 

unable to cope with the infection by H. contortus, through visual assessment of ocular 

conjunctiva coloration (Oliveira et al., 2018; Freitas et al., 2022; Freitas et al., 2023). It is the 

easiest and cheapest method to identify parasitized animals with H. contortus as Famacha© 
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only requires trained professionals. From a productive standpoint, this is a very important 

ability because it enables real-time diagnosis of parasitic disease. 

On the other hand, this method is error-prone, since it requires a subjective evaluation 

from the professionals performing the analysis. This can lead to misdiagnoses, resulting in 

parasitized animals not receiving treatment, or non-parasitized animals being unnecessarily 

treated. Moreover, visual evaluation by trained professionals is labor-intensive and difficult to 

scale up in large production systems, highlighting the importance of developing high-

throughput measurements of economically important traits, such as diagnostic by image 

analyses.  

Due to the evolution of technology in image capture and the growing demand for more 

accurate and quickly accessible information, several computer vision techniques have been 

developed recently (Szeliski, 2010). Digital image processing techniques are characterized by 

their attempts to reproduce, using statistical and mathematical methods, the recognition and 

interpretation mechanisms of the human vision system. For this recognition, it is necessary to 

extract information from the images, and to facilitate the extraction of this information, 

computer vision employs a set of machine learning techniques (Lee et al., 2015), including 

random forest and artificial neural networks. In this context, image analysis can be of great help 

for more accurate identification of parasitized animals using images of the ocular conjunctiva, 

eliminating human subjectivity in assessment. Thus, the objectives of this study were (1) to 

extract ocular conjunctiva image features to automatically classify anemia based on Famacha© 

scores and compare two classification models (multinomial logistic regression – MLR and 

random forest – RF), and (2) to evaluate the applicability of the best classification model on 

three sheep farms. 
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2. MATERIAL AND METHODS 

2.1 Animals and data acquisition  

The dataset consisted of 422 sheep and 1,156 ocular conjunctiva images and records of 

Famacha© score collected in three farms located in São Paulo State, Brazil: Farm A 

(Jardinopolis, latitude: 21°01′04″ S; longitude: 47°45′50″ W), Farm B (Cravinhos, latitude: 

21°20′25″ S; longitude: 47°43′46″ W) and Farm C (Nova Odessa, latitude: 22°46′39″ S, 

longitude: 47°17′45″ W) (Table 1). The experimental procedures were conducted following the 

recommendations of the Institutional Animal Care and Use Committee of the Animal Science 

Institute, Nova Odessa, São Paulo, Brazil (protocol code CEUA Nº. 267-18, 3rd October 2018). 

The Famacha© score was measured using Famacha© card (Figure 1) to compare 

different color shades of the ocular conjunctiva with a standard scale from 1 to 5: 1 (non-

anemic, n= 162 images), 2 (non-anemic, n= 255 images), 3 (mildly anemic, n= 443 images), 4 

(anemic, n= 266 images), and 5 (severely anemic, n= 30 images), which correspond to red, 

pink-red, pink, pink-white and white, respectively (Van Wyk and Bath, 2002). 

A pool of feces samples was collected directly from the rectal ampoule and separated 

for the preparation of larvae culture to establish the genera of nematodes prevalent in the herd 

(Roberts and O’Sullivan, 1950). The results showed that the main genus of gastrointestinal 

nematode found during the study was Haemonchus (63%) followed by Trichostrongylus (24%), 

Cooperia (7%), and Oesophagostomum (6%) (Oliveira et al., 2018; Freitas et al., 2023). 

The images from the ocular conjunctiva were acquired using an Apple smartphone 

camera (model iPhone 8, digital 12 megapixels).  The data acquisition was performed over six 

months, from January to July 2019, and Famacha© score was measured by the same team of 

trained professionals.  
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2.2 Trainable segmentation using local features and random forest model 

Local features refer to a pattern or distinct structure found in an image. They are usually 

associated with an image patch that differs from its immediate surroundings by texture, color, 

or intensity (Crommelinck et al., 2016). A pixel-based segmentation was computed using local 

features based on color intensity and textures at different scales, extracted using the 

feature.multiscale_basic_features function from the scikit-image library implemented in 

Python. The automated segmentation method was developed and trained based on an image of 

the animal's right face with exposure of the ocular conjunctiva inside the barn and collected 

during the day with natural lighting (Figure 2A). In the training image, we manually created 

different boxes of identification for each component of the image (Figure 2B). Four regions 

were segmented: ocular conjunctiva, hands or gloves, hair, and eye, and the ocular conjunctival 

region was selected and captured through a mask (Figure 2C).  The pixels contained in the mask 

were used to train a random forest classifier using the scikit-learn library in Python. Once the 

classifier was trained using the user-selected feature data, the trained classifier was applied to 

other images (Figure 2E).  

From the pixels predicted as ocular conjunctiva using the trained pixel classifier for each 

new image, we included two conditions to select the ocular conjunctiva region with more 

accuracy. The first condition was the size of the ocular conjunctiva, with a threshold between 

500 and 50,000 pixels, and the second condition was that the correct region should be the one 

closest to the center of the image, ensuring that no other region would be identified as the ocular 

conjunctiva. After segmentation, 768 color intensities were extracted from the image channels 

(red =256, blue =256, and green =256).  

 

2.3 Segmentation evaluation with Intersection over Union 

After the segmentation process, the segmentation evaluation was performed using the 
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Intersection over Union (IoU) metric, which measures the ratio of intersection area over the 

union area of the ground truth region and the segmented region. The identification of ground 

truth region was performed using the Draw ROIs tool, available for Matlab program 

(MathWorks Inc.). We calculate the IoU metric for 65 random images between the prediction 

and ground truth (Figure 3). The IoU metric can be described as: 

IoU =  
|𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

|𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|
 

where reference = ground truth (real area of the ocular conjunctiva), and prediction = segmented 

results. 

 

2.4 Canonical correlation analysis 

To reduce the dimension of the color intensity traits extracted from the ocular 

conjunctiva region (256 color intensities for each channel, blue, green, and red) during the 

segmentation process, we determined the quantiles (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 

99%) of color intensity in each channel (red, blue, and green) and we performed canonical 

correlation analysis (CCA) to find the linear relationship between the intensity of color 

extracted in each image and quantiles of the intensity of the color in each channel, aiming to 

determine if the selected quantiles could be used as an indicator to represent the original color 

intensity of each image channel. 

 

2.5 Classification models 

Multinomial logistic regression (MLR) and random forest (RF) models were used to 

classify the animals according to Famacha© score. The hyperparameter values were set to the 

default values available in the library used for the MLR. For RF, we performed tuning analyses 

to find the best hyperparameters for the model. For the tuning of the RF model, 80% of the total 

dataset was used in a 5-fold cross-validation strategy with 10 random replicates. The best 
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architectures for the RF model had 1 mtry (number of features to consider at each split point) 

and 500 trees with an accuracy of 0.51. After finding the best hyperparameters for RF, we 

performed MLR and RF analyses with a full tuning set (80% of the dataset) to train the models, 

whereas 20% excluded from the dataset from the tuning analysis was used to test the model's 

predictive ability.  

The classification methods were fitted using the information of quantiles for blue, green, 

and red channels (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99%) as explanatory variables, and 

the Famacha© scores (1 to 5) as the target classes to be predicted. The metrics used for 

comparing the models’ performance were precision and sensitivity. The classification metrics 

were calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 𝑥 100% 

 

Sensitivity =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 𝑥 100% 

 

in which TP = number of true positives, FP = number of false positives, and FN = number of 

false negatives. 

Sensitivity was used to select the best model for classifying anemic animals that 

presented Famacha© scores from 3 to 5. Sensitivity is important when it is concerned with 

identifying positive outcomes (anemic animals) and the cost of a false positive is low (animals 

classified as anemic when they are not), as long as the model identifies as many actual positives 

as possible. Precision was used to select the best models to classify non-anemic animals, with 

Famacha© scores from 1 or 2. Precision looks at the ratio of true positives to predicted 

positives. This metric is most often used when there is a high cost for having false positives (in 

this case, classification of non-anemic animals when they are not indeed).  

The analyses were performed through the R software (R Core Team, 2018), using the 

mlbench, caret, and e1071 packages for tuning analyses, randomForest package for RF analyses 
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(Liaw and Wiener, 2002), and nnet package for MLR analyses (Venables and Ripley, 2002). 

 

2.6 Extrapolating classification for farms  

We performed classification analyses using the leave-one-farm-out cross-validation 

technique for three farms (Farm A = 726 images, Farm B = 205 images, and Farm C = 225 

images). Before performing the classification analyses, the tuning analyses of the RF model 

were performed using images from two farms in a 5-fold cross-validation strategy with 10 

random replicates. Namely, the RF model was tuned three times, excluding a different farm at 

each round of tuning. The best architectures for the RF model were 1 mtry and 1,500 trees with 

an accuracy of 0.49 for Farm A, 7 mtry and 1,500 trees with an accuracy of 0.57 for Farm B, 

and 6 mtry and 1,000 trees with an accuracy of 0.62 for Farm C. 

After finding the best hyperparameters for RF, we performed the analysis with a full 

tuning set (2 farms) to train the models, whereas one farm excluded from the tuning dataset was 

used to test the model's predictive ability. The RF was fitted using the information of quantiles 

for blue, green, and red channels (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99%) as explanatory 

variables, and the Famacha© scores (1 to 5) as the target classes to be predicted. These analyses 

were performed to explore the classification performance of the models in predicting 

Famacha© scores for a specific farm that was not used to build the model, simulating the use 

of our predictive system in new, previously unseen farms.  The metrics used for comparing the 

models’ performance were precision and sensitivity, as described previously. 

 

3. RESULTS AND DISCUSSION 

3.1 Segmentation evaluation  

The proposed segmentation method with local features and RF model presented an 

average IoU of 0.70 ± 0.08. Figure 3 shows the segmentation results along with the 
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corresponding ground truth of the ocular conjunctiva area of five animals. It is observed in the 

results of the average of IoU (0.70± 0.08) and in Figure 3, where the segmentation results of 

ocular conjunctiva areas achieved by the proposed segmentation model are close to the ground 

truth. It is demonstrated that the proposed local features combined with the RF method have 

good localization accuracy and reliable segmentation ability. Additionally, a benefit of using 

our proposed method, as opposed to convolution neural networks (CNNs), is the potential for 

efficient model training with just a single image, offering a more streamlined approach. 

 

3.2 Canonical correlation analysis 

After segmentation, we extracted 768 values of intensity of the color in each image (256 

intensity of color for each channel, blue, green, and red) and determined the quantiles of color 

intensity in each channel (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 99%), in order to reduce the 

dimension of the color intensity traits extracted in the ocular conjunctiva region by 

segmentation process. 

In this context, the CCA was performed to assess whether the selected quantiles could 

be used as an indicator of the intensities of color extracted from the original image. The number 

of canonical correlations extracted from the analysis was equal to the number of variables in 

the smaller set, resulting in 33 canonical correlations (Table 2). Thus, the canonical correlation 

ranged from 0.70 for the 99% quantile of the red channel to 0.94 for the 1% quantile of the blue 

channel (Table 2). The CCA suggested that the 11 quantiles evaluated of color intensity in each 

image channel measured are highly correlated with the 768 values extracted from the original 

image. Therefore, 11 quantiles were selected for each channel as explanatory variables, totaling 

33 explanatory variables. 
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3.3 Classification models 

Among the metrics used to compare the classification performance across models, the 

most suitable model combines higher sensitivity for anemic animals (Famacha© scores 3, 4, 

and 5) and the highest precision for non-anemic animals (Famacha© scores 1 and 2). This 

specific criterion was chosen to evaluate the prediction ability of the models, because it 

considers the balance among productivity, cost reduction, and treating the anemic animals 

(parasitized animals) in the herd, making the production system more sustainable. It was found 

that among the two models tested, the RF model presented the best classification performances 

for all Famacha© scores. 

The RF model provided the best performances in predicting anemic animals, as 

indicated by the high values of sensitivity for Famacha© scores 3 (80.9%), 4 (46.2%), and 5 

(60%) compared to the MLR model (Table 3). The poorest performance for the anemic animals’ 

class was achieved with MLR for the Famacha© score 5, which did not identify any animal 

(sensitivity = 0) (Table 3). The precision of the RF was 72.7% for Famacha© score 1 and 62.5% 

for Famacha© score 2 presenting better results than the MLR model (Table 3). 

The differences between the classification performances of the models can be explained 

by the ability of each algorithm to learn the complex relationship between the input variables 

(quantiles) and the Famacha© score. Machine learning methods, different from regression 

methods, can derive a model from available data without previous knowledge of the relationship 

between variables (McQueen et al., 1995; Kotsiantis et al., 2007). In addition, RF offers a non-

linear approach, robust and able to capture non-linear relationships between input and target 

variables, as opposed to MLR which is a generalized linear model (Goldstein et al., 2017; 

Mullainathan and Spiess, 2017). The higher predictive performances found using RF might 

indicate that there is some non-linear component in the relationship between ocular conjunctiva 

color and Famacha© score. 
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3.4 Classification performance of leave-one-farm-out cross-validation technique 

According to the results, the RF was the most suitable model for classifying all 

Famacha© scores (Table 3), as indicated by the metrics used to evaluate the performance of the 

classification models. We further investigated the performance of RF model across farms by 

alternating the data from one specific farm as the testing set and the remaining farms as the 

training set. The prediction quality of RF for Famacha© score using this leave-one-farm-out 

cross-validation technique presented better sensitivity for Famacha© score 3 in farms A 

(66.4%), and C (77.8%), and for score 4 in farm B (44.4%) (Table 3). While the precision for 

Famacha© score 1 (non-anemic animals) showed the best results in farm C (50%) (Table 3). 

The identification of anemic animals with Famacha© score of 5 was not possible on any farm 

(Table 3). 

The strategy that omits records for the same animal from the training data set has been 

carried out in some areas of animal production and it is employed for validating the model's 

predictive ability in a setup that is closer to reality (Shetty et al., 2017; Dorea et al., 2018; Freitas 

et al., 2023). The RF model performed using leave-one-farm-out cross-validation technique did 

not present competitive predictive ability compared with RF performed with data randomly 

split. Inflation in the classification performance may have occurred when sheep were split 

randomly, and animal images of the same farm were kept in both the training and testing sets.  

Dorea et al. (2018) investigated this topic hypothesizing that even excluding an animal 

from the training data set, conditions related to external factors such as weather, diet, season, 

management, and others would inflate the prediction quality. As expected, model validation 

excluding entire farms in cross-validation presented a lower prediction quality. Nonetheless, 

this setup is closer to reality because the developed models are supposed to be used across 

farms, including new ones, with different environments and management conditions. However, 

the difference in the unbalanced number of images and Famacha© scores from each farm may 
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have contributed to the lower quality of the results (Table 1).  

In summary, it is feasible to predict the Famacha© score, especially for scores 2 to 4, 

from ocular conjunctiva images in sheep, providing key information for management decisions 

on the farm eliminating human subjectivity in assessment. Nonetheless, future studies will be 

required to improve Famacha© score classification performance metrics by using a larger 

dataset and images obtained from other breeds. Furthermore, in order that the Famacha© score 

estimation method based on image analysis can be easily applied to production of sheep 

farming, automation of the method would be considered in future studies. In addition, it should 

be noted that our dataset was imbalanced (Table 1), the number of observations categorizing 

extreme Famacha© scores (1 and 5) was smaller than the other Famacha© scores (2, 3, and 4). 

Therefore, a broader assessment using a balanced dataset will be required to increase the 

reliability of Famacha© score classification models. 

Overall, the use of image analysis to automatically classify Famacha© score in sheep 

farming is still incipient. There are no reports in the literature on the use of image analysis 

combined with RF model for classifying Famacha© score using ocular conjunctiva images in 

sheep. This reinforces the importance of the present work, which will certainly open the way 

for further studies and future applicability at the field level. 

 

4. CONCLUSION 

 The results indicate that it is possible to successfully predict Famacha© scores, especially 

for scores 2 to 4, in sheep via image analysis and random forest classification model using 

ocular conjunctiva images collected in farm conditions.  As expected, model validation 

excluding entire farms presented a lower prediction quality. Nonetheless, this setup is closer to 

reality because the developed models are supposed to be used across farms, including new ones, 

with different environments and management conditions. 
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Tables 

Table 1. Number of images obtained according to farm and Famacha© score. 

Famacha© 

Score 

Farm  

A B C Total 

1 58 1 103 162 

2 188 24 43 255 

3 277 121 45 443 

4 183 54 29 266 

5 20 5 5 30 

Total 726 205 225 1,156 
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Table 2. Canonical correlation for the quantiles of color intensity in each image channel (red, 

blue, and green) and 768 color intensities extracted from the original image (256 intensity of 

color for each channel, blue, green and red). 

 Canonical Correlation 

Quantiles 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% 

Blue 0.94 0.91 0.90 0.90 0.90 0.88 0.88 0.87 0.87 0.86 0.86 

Green 0.85 0.84 0.84 0.83 0.83 0.82 0.82 0.82 0.81 0.81 0.80 

Red 0.79 0.78 0.77 0.77 0.76 0.76 0.74 0.74 0.72 0.72 0.70 
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Table 3. Precision and sensitivity for the classification of Famacha© score (1 to 5in commercial 

sheep according to different methods (multinomial logistic regression - MLR, and random 

forest - RF) trained with information of quantiles for blue, green, and red image channel (1, 10, 

20, 30, 40, 50, 60, 70, 80, 90, and 99%) as explanatory variables. 

  Farms randomly split1 Leave one-farm-out2 

Famacha© 

Score 

 

Metrics (%) 

Model3 RF model 

MLR RF Farm A Farm B Farm C 

 

1 

Sensitivity 51.61 51.61 55.17 0 1.94 

Precision 55.17 72.73 15.69 0 50.00 

 

2 

Sensitivity 43.64 54.54 5.85 41.67 53.49 

Precision 51.06 62.50 36.67 33.33 25.27 

 

3 

Sensitivity 69.66 80.90 66.43 42.98 77.78 

Precision 55.86 60.00 39.15 62.65 29.66 

 

4 

Sensitivity 42.31 46.15 5.46 44.44 17.24 

Precision 51.16 61.54 45.45 30.00 41.67 

 

5 

Sensitivity 0 60.00 0 0 0 

Precision 0 100.00 0 0 0 

1Training set: 80% of the dataset; Testing: 20% of the dataset. 

2Cross-validation technique: performance of RF across farms by alternating the data from one 

specific farm as the testing set and the remaining farms as the training set. 

3MLR, Multinomial logistic regression; RF, random forest. 
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Figures 

 

Figure 1.  Application of the Famacha© method. 

Source: Personal Archive.
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Figure 2. Diagram of the segmentation steps comprising image analyses. According to the steps 

performed in image used for training, A is the original image, B is the image with boxes created 

to identify different regions (ocular conjunctiva, hands or gloves, hair, and eye), and C is the 

image after segmentation by random forest model. In segmentation steps for testing images, D 

is the original image, E is image after segmentation with the random forest model, and F is the 

ocular conjunctiva region selected after segmentation and condition of size (threshold between 
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500 to 50,000 pixels) and localization of the region of interest (region closest to the center of 

the image). G, H, and I are histograms of the intensities of blue (n= 256), green (n= 256), and 

red (n= 256), respectively, using only the pixels contained in the detected ocular conjunctiva 

region. 
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Real 

image 

     

 

Ground 

truth 

     

 

Segmented 

image 

     

IoU 0.80 0.89 0.67 0.62 0.85 

Figure 3. From top to bottom are real images, ground truth, segmentation results, and IoU 

metric of the proposed segmentation method with local features and random forest model. 
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Abstract: Infection caused by gastrointestinal nematodes is an important issue for animal 

health and production. Controlling worm infections improves the sustainability of the sheep 

industry. Genetic selection of animals that are resistant to gastrointestinal nematodes is another 

strategy to render sheep production more sustainable by decreasing the use of anthelmintics. 

The aims of this study were (1) to explore the additive-genetic pattern of EBVs for Famacha© 

(FAM), packed-cell volume (PVC), and fecal egg counts (FEC) of Santa Ines sheep, (2) to 

propose a classification of animals that are resistant, resilient and susceptible to gastrointestinal 

nematodes based on their additive-genetic patterns, and (3) to identify the most suitable animals 

for selection based on their genetic pattern. A dataset of 2,241 records from 747 animals was 

used to predict the breeding values for indicator traits of resistance to gastrointestinal nematodes 

with THRGIBBS1F90 and to carry out cluster analyses was used R software. Three clusters of 

animals were found in the population using hierarchical cluster analysis of the breeding values 

for FAM, PCV and FEC. Each cluster was characterized by different additive-genetic patterns 

identified by k-means non-hierarchical cluster analysis. Among a total of 747 animals, 196 were 

classified as resistant, 288 as resilient, and 263 as susceptible. Cluster analysis is a valuable tool 

for data screening that permits to evaluate only selection candidates based on their additive-

genetic pattern for gastrointestinal nematode resistance. EBVs for FEC were decisive to divide 

the population into resilient, resistant and susceptible animals. It is also important to include 

the EBVs for PCV and FAM to adequately distinguish resistant from resilient animals. Finally, 

the resistant cluster consisted of the most desirable animals to be used as selection candidates 

in order to genetically improve resistance to infection with gastrointestinal nematodes. This 

cluster contained animals with the most appropriate additive-genetic pattern to achieve the 

breeding goal, with positive breeding values for PCV and negative breeding values for FAM 

and FEC. 
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1. INTRODUCTION 

Haemonchus contortus is a common gastrointestinal nematode that affects sheep in 

tropical and subtropical areas (Starling et al., 2019). This nematode causes anemia, decreasing 

productivity and increasing sheep mortality and thus leading to economic losses (Tehrani et al., 

2012; Atlija et al., 2016; Starling et al., 2019). 

Sheep infected by gastrointestinal nematodes can be classified as resistant, resilient and 

susceptible according to their immune response to parasitic infections (Woolaston and Baker, 

1996). The immune system of resistant animals controls the parasite infection by preventing 

the establishment of infective larvae and/or eliminating those already implanted in the 

gastrointestinal tract (Albers et al., 1987). Resilient animals exhibit normal productivity and 

remain healthy despite high levels of infection (Bishop, 2012, Albers et al., 1987). Susceptible 

animals do not have resilience or resistance and have high parasite egg counts in feces and 

anemia, resulting in low meat production and health problems (Woolaston and Baker, 1996). 

The detection of resilient, resistant and susceptible animals is therefore important to minimize 

economic losses.  

Anthelmintics are the most common treatment to control gastrointestinal infections 

caused by nematodes (Alba-Hurtado; Muñoz-Guzmán, 2012; Calvete et al., 2014; Atlija et al., 

2016). However, their intensive use has rendered the parasites resistant to the drugs and has 

increased anthelmintic residues in the environment (Beynon, 2012, Shalaby, 2013).  
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Atlija et al. (2016) found that genetic selection of sheep for resistance decreased the use 

of anthelmintics. In addition, some sheep breeds, like Santa Ines, are naturally more resistant 

to parasitic infections than others (Rocha et al., 2011; McManus et al., 2014). Oliveira et al 

(2018) reported that traits related to parasite resistance (FAM and FEC) were negatively 

correlated with body weight and condition score while PCV had positive correlation with body 

weight and condition score. So, those traits can be taking into account to improve the herd 

genetically to parasite resistance and for productivity. However, selection must be done in a 

balanced because some traits related to parasite resistance can affect productivity traits 

positively and others negatively. Multivariate cluster analysis is an exploratory tool to divide 

samples into groups based on a set of traits. It groups similar individuals based on a set of traits, 

minimizing the heterogeneity of animals within groups and maximizing heterogeneity between 

groups (Hair et al., 2009). Thus, grouping animals based on their estimated breeding values 

(EBVs) may help detect the most suitable candidates for selection based on the additive-genetic 

patterns for traits associated with resistance to gastrointestinal nematodes. 

The aims of this study were (1) to explore the additive-genetic pattern of EBVs for 

Famacha© (FAM), packed-cell volume (PVC), and fecal egg counts (FEC) of Santa Ines sheep, 

(2) to propose a classification of animals that are resistant, resilient and susceptible to 

gastrointestinal nematodes based on their additive-genetic patterns, and (3) to identify the most 

suitable animals for selection based on their genetic pattern. 

 

2. MATERIAL AND METHODS 

2.1 Description of the data 

Experimental procedures were conducted following the recommendations of the 

Institutional Animal Care and Use Committee of the Beef Cattle Research Center, Animal 

Science Institute, Sertãozinho, São Paulo, Brazil (CEUA No. 267-18). 
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Pedigree had 4,780 animals and dataset had 2,241 phenotypes from 747 Santa Ines sheep 

(666 females and 81 males) monthly recorded during two periods: from July 2013 to October 

2014 and from August 2018 to December 2020. The animals were on average 2.5 years old and 

84% of the animals with known birth date records were adults and lambs. The animals came 

from five farms in São Paulo State: Cravinhos (latitude: 21°20′25″ S; longitude: 47°43′46″ W), 

Jardinopolis (latitude: 21°01′04″ S; longitude: 47°45′50″ W), Nova Odessa (latitude: 22°46′39″ 

S, longitude: 47°17′45″ W), Pontal (latitude: 21°01′21″ S; longitude: 48°02′14″ W), and 

Serrana (latitude: 21°12′41″ S; longitude: 47°35′44″ W). According to Köppen’s climate 

classification, these cities have a humid subtropical climate (Cravinhos, Nova Odessa, and 

Serrana) and a tropical climate with a dry season (Jardinopolis and Pontal) (Alvares et al., 

2014). 

Faecal samples were collected directly from the animals using a rectal ampoule. FEC 

was determined using the modified McMaster technique described by Gordon and Whitlock 

(1939) and modified by Ueno and Gonçalves (1998). FEC was log10 transformed (FEC + 1) to 

approximate it to a normal distribution. 

Blood samples were collected into vacutainer tubes containing EDTAK3 by puncture of 

the jugular vein. PCV was measured by the microhematocrit centrifugation technique (Schalm 

et al., 1975).  

FAM was measured using the Famacha© card (Van Wyk; Bath, 2002) to compare 

different color shades of the ocular conjunctiva with a standard scale from 1 to 5: 1 (non-

anemic), 2 (non-anemic), 3 (mildly anemic), 4 (anemic), and 5 (severely anemic), which 

correspond to red, pink-red, pink, pink-white and white, respectively (Vatta et al., 2001).  

 

2.2 Estimated breeding values 

The covariance components for FAM, PCV and FEC were estimated by Bayesian 
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inference in a single-trait animal model using the THRGIBBS1F90 program (Misztal et al., 

2008). The model included the fixed effects of contemporary group (farm, year and season of 

record), sex, and additive genetic, permanent environment and residual random effects. 

A total of 100,000 samples were generated after a stochastic simulation process, with 

10,000 burn-in samples and a thinning interval of 25 samples in order to obtain 3,600 effective 

samples for the estimation of (co)variance components and genetic parameters. Convergence 

was monitored using the Geweke criterion (p>0.05) and by visual inspection of trace plots of 

the variance components. The stationary trend around the mean of the trace plots indicated 

convergence of the parameters (Fig. 1). 

INSERT FIGURE 1 

The posterior estimates were obtained with POSTGIBBSF90 (Misztal, 2008). The 

complete model can be written in matrix notation as: 

𝑦 = 𝑋𝛽 + 𝑍𝑎 +𝑊𝑝𝑒 +  𝜀 

where y is the vector of trait values in all individuals; 𝛽, 𝑎, and pe are the solution vectors for 

the fixed effects, additive genetic and permanent environmental random effects, respectively; 

X, Z, and W are the incidence matrices for the fixed effects, additive genetic and permanent 

environmental effects, respectively, and 𝜀 is the vector for the residual random effect. 

The assumptions for the random effects and (co)variance components are: 

𝛽 ∝ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑦|𝛽, 𝑎, 𝑝𝑒, 𝐺𝑎 , 𝑃, 𝑅 ~ 𝑁𝑀𝑉[𝑋𝛽 + 𝑍𝑎 +𝑊𝑝𝑒 +  𝜀] 

𝑎|𝐺𝑎 ~ 𝑁𝑀𝑉[0, (𝐺𝑎⨂𝐴)] 

pe|P ~ 𝑁𝑀𝑉[0, (𝑃⨂𝐼𝑛)] 

𝜀|𝑅 ~ 𝑁𝑀𝑉[0, (𝑅⨂𝐼𝑛)] 

𝐺𝑎|𝑆𝑔, 𝜐𝑔 ~ 𝐼𝑊[𝑆𝑔 𝜐𝑔 , 𝜐𝑔] 

𝑃|𝑆𝑝𝑒 , 𝜐𝑝𝑒 ~ 𝐼𝑊[𝑆𝑝𝑒 𝜐𝑝𝑒 , 𝜐𝑝𝑒]  
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𝑅|𝑆𝑟, 𝜐𝑟 ~ 𝐼𝑊[𝑆𝑟 𝜐𝑟 , 𝜐𝑟], 

where A, Ga, P, R, and In are the relationship matrices based on the pedigree, direct genetic 

covariance, permanent environment, residual and identity matrices, respectively; ⨂ is the 

Kronecker product, and Sg and 𝜐g; Spe and 𝜐pe; Sr and 𝜐r are the a priori values and degrees of 

freedom for additive genetic, permanent environmental and residual (co)variances, 

respectively. 

A threshold model was used for FAM, which assumes that the underlying (liability) 

scale has a normal continuous distribution (Gianola and Sorensen, 2002): 

𝑈 | 𝜃 ~ 𝑁(𝑊𝜃, 𝐼𝜎𝑒
2) 

where 𝑈 is the underlying scale vector of order r; 𝜃′ = (𝛽′, 𝑎′, 𝑝𝑒′) is the vector of location 

parameters of order s, with 𝛽 defined as fixed effect; a and pe are the solution vectors for 

additive genetic and permanent environmental random effects, respectively; W is the known 

incidence matrix of order rxs; I is the identity matrix of order rxr, and 𝜎𝑒
2 is the residual variance.  

Considering that the variable in the underlying distribution is not observable, 𝜎𝑒
2 = 1 is 

adopted which allows identification of the variable in the likelihood function (Gianola and 

Sorensen, 2002). This assumption is a standard procedure in the analysis of categorical data 

using threshold models. Categorical traits are determined by non-observable continuous 

variables on an underlying scale, in which initial threshold values were fixed for t (tmin, t1, ... , 

tj-1, tmax), t1 < t2 ...< tj-1, where j is the number of categories (thresholds). Thus, the observable 

data depend on the underlying variable, which is limited by two unobservable thresholds 

(Gianola and Foulley, 1983). To understand the joint probability density function of the 

parameters, given the hyperparameters, it is necessary to know the observed values y 

distribution, which is conditioned by the continuous and threshold observations. FAM was 

divided into five categories (1 to 5). Thus, the categories of FAM for each animal i (yi) were 

defined by Ui on the underlying scale: 
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𝑦𝑖 =

{
 
 

 
 
1 𝑖𝑓 𝑡0 < 𝑈𝑖  ≤  𝑡1
2 𝑖𝑓 𝑡1 < 𝑈𝑖  ≤  𝑡2
3 𝑖𝑓 𝑡2 < 𝑈𝑖  ≤  𝑡3
4 𝑖𝑓 𝑡3 < 𝑈𝑖  ≤  𝑡4
5 𝑖𝑓 𝑡4 < 𝑈𝑖  ≤  𝑡5

 𝑖 = 1,…, n 

where n is the number of observations for each category. 

After the t0 to t5 thresholds were specified for FAM, one of the thresholds (t1 to t5) was 

adjusted to an arbitrary constant. In this case, it was assumed that t1 = 0, with the vector of 

estimable thresholds being defined as: 

𝑡 = [

𝑡2
𝑡3
𝑡4

]. 

Since the observations are conditionally independent, the likelihood function is defined 

by the product of contributions of each record. Thus, the conditional probability that yi falls into 

category j (j = 1 to 5), given vectors 𝛽, 𝑎, 𝑝𝑒, and 𝑡, can be written as: 

𝑃𝑟(𝑦𝑖 = 𝑗 | 𝛽, 𝑎, 𝑝𝑒, 𝑡) = 𝑃𝑟(𝑡𝑗−1 < 𝑈𝑗 < 𝑡𝑗|𝛽, 𝑎, 𝑝𝑒, 𝑡) 

= Φ(𝑡𝑗 − 𝑋
′
𝑖𝛽 − 𝑍

′
𝑖𝑎 −𝑊

′
𝑖𝑝𝑒) − Φ(𝑡𝑗−1 − 𝑋

′
𝑖𝛽 − 𝑍

′
𝑖𝑎 −𝑊

′
𝑖𝑝𝑒) 

= 𝑃𝑟(𝑦𝑖 | 𝛽, 𝑎, 𝑝𝑒, 𝑡), 

where yi is the response of animal i assuming value 1, 2, 3, 4, or 5 if the observation belongs to 

the first, second, third, fourth, or fifth category, respectively; t is the threshold value for which 

an arbitrary value will be fixed since it is not estimable; Ui is the value for the underlying 

variable for animal I, and Φ is the cumulative distribution function of a standard normal variable 

(i.e., indicator of a function with value 1 if the expression is true and 0 if it is false). 

 

2.3 Cluster analysis 

Cluster analyses were done using the predicted breeding values (EBVs) for FAM, PCV 

and FEC in order to identify animals that are resistant, resilient, and susceptible to 

gastrointestinal nematodes based on the additive-genetic pattern of each trait. Hierarchical 
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cluster analyses were performed with the R program (Development Core Team, 2018) with the 

Ward algorithm (1963). The dissimilarity measure between animals was the Euclidean distance. 

EBVs for all traits were standardized using the standard normal distribution. The NbClust 

package (Charrad et al., 2014) was used to determine the optimum number of clusters in the 

population. Non-hierarchical clustering with k-means method was done to visualize the 

additive-genetic pattern of the clusters from hierarchical cluster analysis. 

 

3. RESULTS 

According to 26 indices from NbClust package (Charrad et al., 2014), three clusters 

divided the population based on the EBVs for FAM, PCV and FEC (Fig. 2). The additive-

genetic patterns of the EBVs for the traits were different in each cluster (Fig. 3). Resistant, 

resilient and susceptible animals were classified according to FEC values in each cluster. This 

trait is the main indicator of gastrointestinal nematode resistance (Pollot et al., 2004; Bishop, 

2012; McManus et al., 2014). Among a total of 747 animals, 196 were classified as resistant 

(26.24%), 288 as resilient (38.55%), and 263 as susceptible (35.21%). 

INSERT FIGURES 2 AND 3 

The additive-genetic pattern of the resistant cluster revealed animals with positive EBVs 

for PCV and negative EBVs for FAM and FEC (Fig. 3). Resilient animals had positive EBVs 

for PCV and FEC and negative EBVs for FAM (Fig. 3). The susceptible cluster included 

animals with positive EBVs for FAM and FEC and negative EBVs for PCV (Fig. 3). 

Animals in the resilient cluster had mean FEC and PCV of 1,719.44 eggs/g and 32%, 

respectively, and 77.87% of the animals were classified as Famacha© 1 and 2. Animals in the 

resistant cluster had mean FEC and PCV of 243.37 eggs/g and 31%, respectively, and 68.37% 

of the animals were classified as Famacha© 1 and 2. The mean FEC and PCV in the susceptible 

cluster were 2,057.41 eggs/g and 28%, respectively, and 40.3% of the animals were classified 
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as Famacha© 3, 4 and 5 (Table 1 and Fig. 3). 

INSERT TABLE 1 

 

4. DISCUSSION 

Non-hierarchical cluster analysis using three traits (EBVs for FAM, FEC and PCV) 

divided the population into three clusters. It can be used as a pre-screening tool to identify 

desirable animals for selection based on their additive-genetic pattern. Resistant animals can be 

used as selection candidates to genetically improve the resistance to gastrointestinal nematode 

infection because of their positive EBVs for PCV and negative EBVs for FAM and FEC (Fig. 

3). 

In this study, the EBVs and phenotypic values for FEC differed between the resistant 

and resilient groups despite their similar FAM classification (Fig. 3 and Table 1). This can be 

explained because resilient animals tolerate parasitic infections without production losses. 

Thus, these animals may not have anemia even if they are infected with parasites. According to 

Albers et al. (1987) and Marques et al. (2018), resilient animals can withstand the effects of 

infection even in the presence of high FEC. On the other hand, resistant animals resist parasitic 

infection by eliminating the parasite.  

It is extremely important to distinguish resilient and resistant animals because the former 

may have a high parasitic load and can contaminate the environment, causing environmental 

impacts (Bishop, 2012). Romjali et al. (1996) and Gauly and Ehrhardt (2001) suggested the use 

of FEC to identify and select animals resistant to gastrointestinal nematodes. If selection were 

done based only on FAM and PCV, without considering FEC, resilient animals would have 

been selected together with resistant animals, compromising the breeding goals.  

According to Albers et al. (1987), selection of genetically resistant sheep would 

considerably increase productivity and genetic gains in resistance to gastrointestinal nematode 



 

 

80 

 

infection. However, selection of resilient animals would slow down the rates of genetic progress 

and is not desirable because these animals have high parasitic loads even in the absence of 

anemia (Albers et al., 1987). Furthermore, high loads of gastrointestinal nematodes can affect 

the animal’s shape and reproduction rate, decreasing genetic progress and increasing the 

generation interval (Woolaston and Baker, 1996).  

Using EBVs for FEC, FAM, and PCV together is appropriate to distinguish resistant 

and resilient animals. Stear et al. (1995) and Marques et al. (2018) suggested that the use of 

more than one trait increases the efficiency in identifying resistant, resilient and susceptible 

animals.  

 

5. CONCLUSION 

Cluster analysis is a valuable tool for data screening that permits to evaluate only 

selection candidates based on their additive-genetic pattern for gastrointestinal nematode 

resistance. EBVs for FEC were decisive to divide the population into resistant, resilient and 

susceptible animals. It is also important to include the EBVs for PCV and FAM to adequately 

distinguish resistant from resilient animals. Finally, the resistant cluster consisted of the most 

desirable animals to be used as selection candidates in order to genetically improve resistance 

to infection with gastrointestinal nematodes. This cluster contained animals with the most 

appropriate additive-genetic pattern to achieve the breeding goal, with positive breeding values 

for PCV and negative breeding values for FAM and FEC. 
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Tables 

Table 1. Number of animals (N) and means and standard deviations of PCV and FEC phenotype 

values by cluster in Santa Ines sheep. 

   Traits  

Clusters N PCV (%) FEC (eggs/g) FEC (log)1 

Resilient 288 32±0.04 1,719.00±3,376.71 2.67±0.93 

Resistant 196 31±0.04 243.37±1,112.96 0.69±1.16 

Susceptible 263 28±0.04 2,057.41±4,792.64 2.70±0.96 

PCV: packed cell volume; FEC: fecal egg count. 

a log10 (FEC + 1) transformation. 
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Figure Captions 

Figure 1. Trace-plots of (co)variance components for Famacha© method (FAM), packed cell 

volume (PCV) and fecal egg count (FEC) for additive-genetic variance (A), permanent effect 

variance (B), and residual variance (C). 

 

Figure 2. Dendrogram obtained by hierarchical cluster analysis using Euclidian distance based 

on estimated breeding values for Famacha© method (FAM), packed cell volume (PCV), and 

fecal egg count (FEC). Rectangles delimit the individuals in each cluster. 

 

Figure 3. Additive-genetic pattern obtained by k-means non-hierarchical cluster analysis using 

standardized estimated breeding values (EBVs) for Famacha© method (FAM), packed cell 

volume (PCV), and fecal egg count (FEC). 
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CHAPTER 5. GENOME-ENABLED PREDICTION OF INDICATOR TRAITS OF 

RESISTANCE TO GASTROINTESTINAL NEMATODES IN SHEEP USING 

PARAMETRIC MODELS AND ARTIFICIAL NEURAL NETWORKS 

 

Abstract: This study aimed to assess the predictive ability of parametric models and artificial 

neural network method for genomic prediction of the following indicator traits of resistance to 

gastrointestinal nematodes in Santa Inês sheep: packed cell volume (PCV), fecal egg count 

(FEC), and Famacha© method (FAM). After quality control, the number of genotyped animals 

was 551 (PCV), 548 (FEC), and 565 (FAM), and 41,676 SNPs. The average prediction accuracy 

(ACC) calculated by Pearson correlation between observed and predicted values and mean 

squared errors (MSE) were obtained using genomic best unbiased linear predictor (GBLUP), 

BayesA, BayesB, Bayesian least absolute shrinkage and selection operator (BLASSO), and 

Bayesian regularized artificial neural network (three and four hidden neurons, BRANN_3 and 

BRANN_4, respectively) in a 5-fold cross-validation technique. The average ACC varied from 

moderate to high according to the trait and models, ranging between 0.418 and 0.546 (PCV), 

between 0.646 and 0.793 (FEC), and between 0.414 and 0.519 (FAM). Parametric models 

presented nearly the same ACC and MSE for the studied traits and provided better accuracies 

than BRANN. The GBLUP, BayesA, BayesB and BLASSO models provided better accuracies 

than the BRANN_3 method, increasing by around 23.16, 23.16, 23.44 and 22.88% (PCV), and 

18.54, 18.54, 18.64, 18.54% (FEC), respectively. Likewise, there was an increase of ACC of 

20.23% (FAM) comparing all parametric models and BRANN_4. In conclusion, parametric 

models are suitable for genome-enabled prediction of indicator traits of resistance to 

gastrointestinal nematodes in sheep. Due to the small differences in accuracy found between 

them, the use of the GBLUP model is recommended due to its lower computational costs. 

 

Keywords: bayesian alphabet, genomic selection, machine learning, Ovis aries, predictive 
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1. INTRODUCTION 

Infection by gastrointestinal nematodes (GIN) is one of the main sanitary issues in small 

ruminants (Szewc et al., 2021) and has a great impact on animal health and productivity, 

negatively affecting the quantity and quality of production (Mavrot et al., 2015, Castagna et al., 

2021). The adoption of anthelmintic is widely used to reduce in-farm GIN infections. However, 

the indiscriminate use of these compounds has resulted in serious problems of parasite 

resistance to anthelmintics (Kuiseu et al., 2021; Szewc et al., 2021). In addition, there is a 

growing demand from consumers to produce chemical-free food and increasing concern about 

animal welfare (Aboshady et al., 2020). 

One of the alternatives for controlling gastrointestinal parasite infections is the selection 

of genetically resistant animals, a promising avenue to increase the productivity of animals in 

the presence of infectious diseases (Mulder and Rashidi, 2017; Aboshady et al., 2020). The 

search for genetically resistant animals, which tolerate the effects of helminthic infections, 

combined with efficient pasture management, has become a sustainable alternative for the 

prophylaxis of parasites, resulting in increased production (Greeff & Karlsson, 2020). 

The identification of animals infected by GIN can be performed by fecal egg count 

(FEC), packed cell volume (PCV), and Famacha© method (FAM), being these measures highly 

correlated with the resistance to gastrointestinal nematode (Van Wyk & Bath, 2002; Selvam, 

2021; 2022; Ferreira et al., 2021). 

The genetic selection of animals for economically important traits is traditionally based 

on the phenotypic records and the pedigree information, which have been combined to compute 

best linear unbiased predictions (BLUP) of the genetic merit, as described by Henderson (1975). 

Additionally, the inclusion of modern molecular information in genetic evaluations has 
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contributed to increasing the accuracy of breeding values prediction and reducing the 

generation interval (Meuwissen et al., 2001; Meuwissen et al. 2013). 

Genomic selection (Meuwissen et al., 2001) has been successfully used in some animal 

breeding programs, and in others, its practice has been investigated (Knol et al., 2016; Brito et 

al., 2017; Mrode et al., 2018; Alves et al., 2020). The availability of high-density single 

nucleotide polymorphism (SNP) panels broadened the horizons for the study of complex traits 

controlled by several genes with small effects and enabled improvements in marker-assisted 

selection in both animal and plant breeding programs (Xu et al., 2020). Meuwissen et al. (2001) 

introduced the concept of predicting the genetic merit of selection candidates based on their 

genotypes for SNPs. This methodology is known as genomic prediction and can be used in 

genomic selection, in which the selection of animals is based on breeding values estimated 

through information from SNPs, accelerating genetic gains in breeding programs (Voss-Fels et 

al., 2019). 

Several models for applying genomic selection have been proposed (Heslot et al. 2012). 

The differences between statistical modeling in genomic studies are related to the type of 

relationship assumed between target traits and explanatory covariates (linear or nonlinear), the 

type of genomic information (full marker matrix, subset of genotypes, genomic relationship 

matrix) and strategies used to address the problem of estimating genomic breeding values from 

models that have a large number of parameters with a small number of observations (González-

Recio et al., 2014).  

Parametric approaches have been shown to be effective for whole genome-enabled 

prediction. Nonetheless, these methods assume an assumption about the genetic architecture of 

the trait that does not always hold in practice. In recent years there has been a growing interest 

in using Machine Learning (ML) methods (semi and non-parametric methods) for genome-

enabled prediction (Ehret et al. 2015; Naderi et al. 2016; Alves et al., 2020), mainly due to the 
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theoretical flexibility offered by such models and the ability to intuitively explore linear and 

non-linear relationships between a response variable (the phenotype) and several other predictor 

variables (the genotypes) (Alves et al., 2020).  

In addition, the increasing availability of mixed content information combined with a 

boost in computational processing power lead to the development and application of ML 

approaches in different areas (Nayeri et al., 2019), such as in genomic selection. According to 

Xu et al. (2020), the performance of genomic selection is associated with numerous factors, one 

of which is the methodology for estimating genomic breeding values. Therefore, the choice of 

the statistical method to be applied must be considered before the implementation of genomic 

selection in breeding programs. Thus, this study aimed to assess the predictive ability of 

parametric models and artificial neural networks for genomic prediction of indicator traits of 

resistance to gastrointestinal nematodes in Santa Inês sheep. 

 

2. MATERIAL AND METHODS 

2.1 Phenotypic data 

The experimental procedures were conducted following the recommendations of the 

Institutional Animal Care and Use Committee of the Animal Science Institute, Nova Odessa, 

São Paulo, Brazil (protocol code CEUA Nº. 267-18, 3rd October 2018). 

The dataset comprised 5,108 phenotypic records of 1,549 Santa Inês sheep for packed 

cell volume (PCV), 4,228 phenotypic records of 1,459 Santa Inês sheep for fecal egg count 

(FEC), and 5,522 phenotypic records of 1,701 Santa Inês sheep for Famacha© method (FAM), 

recorded in two periods: from 2013 to 2014, and from 2018 to 2020. The animals came from 

six farms located in the Southeast and South regions of Brazil: Cravinhos (latitude: 21°20′25″ 

S; longitude: 47°43′46″ W), Jardinopolis (latitude: 21°01′04″ S; longitude: 47°45′50″ W), Nova 

Odessa (latitude: 22°46′39″ S, longitude: 47°17′45″ W), Pontal (latitude: 21°01′21″ S; 
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longitude: 48°02′14″ W), Serrana (latitude: 21°12′41″ S; longitude: 47°35′44″ W), and 

Ventania (latitude: 24°14'45" S; longitude: 50°14'34" W).  

Blood samples were collected by puncture of the jugular vein and disposed into 

vacutainer tubes containing EDTAK3. PCV was measured by the microhematocrit 

centrifugation technique (Schalm et al., 1975). Fecal samples were collected directly from the 

rectal ampoule of the animals. FEC was determined using the modified McMaster technique 

described by Gordon and Whitlock (1939). FEC was log10 transformed (FEC + 1) to 

approximate it to a normal distribution. The Famacha© diagnosis was made using the 

Famacha© card, which compares the different shades of the ocular conjunctiva on a five-point 

scale corresponding to the colors robust red (non-anemic - 1), red-pink (non-anemic - 2), pink 

(mildly anemic - 3), pink-white (anemic - 4), and white (severely anemic - 5), respectively (Van 

Wyk & Bath, 2002). 

 

2.2 Estimated breeding values 

Before performing the genomic prediction analyses, the variance components for PCV, 

FEC, and FAM were estimated by Bayesian inference in a single-trait animal model using the 

THRGIBBS1F90 program (Misztal et al., 2008). The model included the fixed effects of 

contemporary group (farm, year, and season of record), sex, birth season, and the linear effect 

of age class (1: 0-150 days of age, 2: 151-550 days of age; 3: > 550 days of age) as a covariate 

for all traits, and additive genetic, permanent environment and residual random effects. The 

seasons of record collection and birth were defined as dry winter (May to October) and rainy 

summer (November to April). The number of animals included in the pedigree was 4,823. 

A total of 500,000 Gibbs samples were generated after a stochastic simulation process, 

with the first 100,000 samples used as burn-in and a thinning interval of 25 samples, resulting 

in 16,000 effective samples for the estimation of variance components and genetic parameters. 
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Convergence was monitored using the Geweke criterion (p>0.05) and by visual inspection of 

trace plots of the variance components. The posterior estimates were obtained with 

POSTGIBBSF90 (Misztal, 2008). The complete model can be written in matrix notation as: 

𝑦 = 𝑋𝛽 + 𝑍𝑎 +𝑊𝑝𝑒 +  𝜀 

where y is the vector of trait values in all individuals; 𝛽, 𝑎, and pe are the solution vectors for 

the systematic effects, additive genetic and permanent environmental random effects, 

respectively; X, Z, and W are the incidence matrices for the systematic effects, additive genetic 

and permanent environmental effects, respectively, and 𝜀 is the vector for the residual random 

effect. 

A threshold model was used for FAM, which assumes that the underlying (liability) 

scale has a normal continuous distribution (Gianola & Sorensen, 2002): 

𝑈 | 𝜃 ~ 𝑁(𝑊𝜃, 𝐼𝜎𝑒
2) 

where 𝑈 is the underlying scale vector of order r; 𝜃′ = (𝛽′, 𝑎′, 𝑝𝑒′) is the vector of location 

parameters of order s, with 𝛽 defined as fixed effect; a and pe are the solution vectors for 

additive genetic and permanent environmental random effects, respectively; W is the known 

incidence matrix of order rxs; I is the identity matrix of order rxr, and 𝜎𝑒
2 is the residual variance.  

The estimated breeding values (EBV) obtained with single-trait animal models were 

then used as response variables in genomic prediction analyses for PCV, FEC and FAM. The 

variance components and heritability are presented in Table 1. 

 

2.3 Genotypic data  

Genotyping was performed using the Ovine SNP50 Genotyping BeadChip (Illumina, 

Inc), presenting 54,516 SNPs with an average interval of 50.9 kb, which were validated in more 

than 75 breeds of the Ovis aries species, including the Santa Inês breed.  

Genotype quality control (QC) was performed by an iterative process using R software 
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(R Development Core Team 2018). Non-autosomal and duplicated SNPs were removed from 

the genotypic dataset, SNP with a call rate lower than 0.90, minor allele frequency (MAF) lower 

than 0.05, and with a p-value less than 10−5 for the Hardy-Weinberg Equilibrium (HWE) test 

were removed from the dataset. Animals with a call rate lower than 0.90 were excluded. After 

QC, the number of genotyped animals was 551 for PCV, 548 for FEC and 565 for FAM. The 

number of SNPs passing the QC criteria was 41,676. The final dataset structure and summary 

statistics for the response variables used in the genome-based analyses are presented in Table 

2. 

 

2.4 Genomic prediction models 

2.4.1 Parametric prediction models 

In this study, the genomic best linear unbiased predictor (GBLUP), BayesA, BayesB, 

and Bayesian least absolute shrinkage and selection operator (BLASSO) models were 

employed using the BGLR (Bayesian generalized linear regression) package, available for R 

(Pérez & De Los Campos 2014). These models are well-documented methodologies for 

genomic selection, presenting conceptual differences concerning the prior assumptions 

assigned to marker effects. The GBLUP model can be described as follows: 

𝒚∗ = 𝟏𝒏𝜇 + 𝒁𝒈 + 𝒆 

in which 𝒚∗is the vector of response variables (EBV); 𝟏𝒏 is an n × 1 vector of 1 s; μ represents 

the overall mean; Z is the incidence matrix relating the animals to the direct genomic breeding 

values (DGV); g is the vector of DGV, assumed to follow a normal distribution N(0, G𝜎𝑔
2), 

where G is the marker-based genomic relationship matrix and 𝜎𝑔
2 stands for the markers’ 

genetic variance; and e is the vector of random residual effects, assumed to follow a normal 

distribution N(0, I𝜎𝑒
2), where I is an identity matrix and 𝜎𝑒

2 is the residual variance. The G-

matrix was calculated according to VanRaden (2008): 
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𝑮 =
(𝑴− 𝑷)(𝑴− 𝑷)𝑇

2∑ 𝑝𝑗(1 − 𝑝𝑗)
𝑚
𝑗=1

 

in which M represents a matrix containing individual animal marker genotypes (coded as 0, 1, 

and 2 for the genotypes AA, AB and BB respectively) of dimension n × s (n = number of 

animals and s = number of SNPs) and P is a matrix with elements of column j coded as 2𝑝𝑗, 

where 𝑝𝑗 is the estimated frequency of the allele B for the jth SNP. 

 BayesA was described by Meuwisse et al., (2001), and considers that the variance can 

be different for the segments of the genome. For this method, the prior distribution for the SNPs 

effects has a scaled-t density. BayesB also considers that the genetic variance explained by each 

locus can be different (Meuwissen et al., 2001). In summary, BayesB uses a two-component 

mixture prior, with a point of mass at zero and nonnull effects following a scaled-t distribution 

with prior probability π. 

As presented by Meuwissen et al. (2001), Bayesian regression can be used when there 

are more predictors than observations (p>>n) as is the case with genomic data. Therefore, the 

estimates 


  are not unique, as the matrix X'X does not have a complete rank. An interesting 

approach to the situation described above is the use of the LASSO regression method 

(Tibshirani, 1996), which solves the problem using the penalty function: 
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  is the sum of the absolute values of the 

marker effects  . In this model, the penalty is applied to the sum of the model parameters. 
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LASSO has its Bayesian version called Bayesian least absolute shrinkage and selection operator 

(BLASSO) (Park; Casella, 2008). Tibshirani (1996) reported that LASSO estimates can be 

interpreted as the mode of the   posterior distribution of models with Gaussian distribution 

for likelihood,   
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ie xyNyp   and the prior distribution of marker 

effects as the product of p-independent double-exponential distributions, with zero mean, such 

that      j

p

jp    exp2/| 1 , being  


,,|argmaxˆ 2ypLASSO   

The parametric models were implemented using a Gibbs sampling algorithm with 

50,000 iterations, considering a burn-in period of 20,000 and a thinning interval of 10 iterations. 

 

2.4.2 Bayesian regularized artificial neural networks 

Artificial neural networks (ANN) are connectionist models that use sophisticated 

nonlinear techniques, capable of modeling complex functions. ANN is inspired by the human 

nervous system, and the learning acquired from the dataset is stored in synaptic connections 

found between artificial neurons. Linking with the linear models, to facilitate the understanding 

of ANN, the synapses would be the weights of linear regression models, the neurons of the 

input layer would be the predictor variables and the neurons of the output layer would be the 

response variable. In the present study, a single hidden layer feed-forward ANN was used, 

formed by an input layer that receives the explanatory variables, one hidden layer containing 

the neurons (processing units), and an output layer (Fig. 1).   

Each input neuron j (j=1, 2, ..., s input neurons) connects to each neuron k of the 

adjacent middle layer via synaptic weights (𝑤𝑗𝑘, k = 1, 2, …, n hidden layer neuron), and a 

model intercept neuron (𝑏𝑘) connected to hidden neurons and output layer neurons (Fig. 1). The 

response generated in each neuron k of the hidden layer is given by 𝑦𝑘 = g(𝑎𝑘), where 𝑎𝑘 is the 

synaptic function, which is the linear combination between the normalized variables x weighted 
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by the synaptic weights 𝑤𝑗𝑘 and added to the intercept 𝑏𝑘. The synaptic function 𝑎𝑘 is given 

by: 

𝑎𝑘 = 𝑏𝑘 +∑𝑤𝑗𝑘𝑥𝑗

𝑛

𝑗=1

 

The value generated by 𝑎𝑘 is transformed in the hidden layer through the activation 

function (or transfer function) g(𝑎𝑘). A widely used nonlinear activation function is the 

hyperbolic tangent, where the response amplitude is in the interval (-1,1). This function is ideal 

for predicting genomic values since they can assume positive and negative values. Here, the 

hyperbolic tangent activation function was adopted: 

 

where e is the neperian number. 

The response activated in the hidden layer neuron is propagated to the output layer 

neuron as: 

 

where 𝑎𝑙 is the input value in the output layer neuron and 𝑏𝑙 is the output layer neuron 

intercept. After that, 𝑎𝑙 is activated by the activation function g(𝑎𝑙), which is a linear activation 

function. 

Different numbers of neurons in the hidden layer (three, BRANN_3; and four, 

BRANN_4) were tested to assess the ANN architecture with the best predictive ability, and 

1,000 epochs were adopted in the analyses. The analyses of neural networks with Bayesian 

regularization were performed using the BRNN package (Pérez-Rodríguez et al., 2013) of the 

R program (R Development Core Team, 2018). 

 

kk

kk

aa

aa

k
ee

ee
)g(a










 
 
















m

k

l

n

j

jkjkkkl bxwbgwa
1 1



 

 

100 

 

2.5 Cross-validation and comparison criteria 

The models’ predictive ability was evaluated using a 5-fold cross-validation technique, 

in which the full dataset was randomly divided into five folds with approximately equal sizes. 

The genotypes and phenotypes from four folds were used as training data for fitting the models, 

whereas the fold held out from the training set was used to test the model's predictive ability. 

This process was performed five times, using different folds for training in each round and 

omitting a fold for validation of the models. The first adopted criterion for comparing the 

predictive ability among models was prediction accuracy (ACC). The ACC was computed as 

the linear correlation between observed and estimated values, r(EBV, GEBV). The second 

prediction ability criterion was the mean squared error (MSE), computed as: 

1

𝑁𝑣𝑎𝑙
∑ (𝑦𝑣𝑎𝑙

𝑁𝑣𝑎𝑙

1
− �̂�𝑣𝑎𝑙)

2 

in which 𝑁𝑣𝑎𝑙 represents the number of animals in the kth cross-validation testing fold (k = 1, 

2, ..., 5), �̂�𝑣𝑎𝑙 is the vector of estimated values (GEBV) and 𝑦𝑣𝑎𝑙 is the vector of observed values 

(EBV). The predictive ability metrics (ACC and MSE) are presented as the averages of the 

values computed for each cross-validation testing fold. 

 

3. RESULTS AND DISCUSSION 

3.1 Predictive ability of models 

The average ACC varied from moderate to high according to the trait and models 

considered, ranging between 0.418 and 0.546 for PCV, between 0.646 and 0.793 for FEC, and 

between 0.414 and 0.519 for FAM. The MSE presented higher variations between parametric 

models and the BRANN method, with differences ranging from 0.130 to 0.325 for FEC, and 

from 0.026 to 0.058 for FAM, and smaller differences for PCV (0.0002 to 0.0003) (Table 3). 

We expected to obtain higher prediction accuracies for traits with higher heritability. 
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However, prediction accuracies for PCV (h2 = 0.30±0.04) were lower than those obtained for 

FEC (h2 = 0.21±0.03) (Table 3). The same was observed by Alves et al. (2020) for reproductive 

traits in Nellore cattle reporting higher prediction accuracy using different models for early 

pregnancy (h2 = 0.30±0.01) compared with scrotal circumference (h2 = 0.43±0.01). Some 

factors might influence genomic evaluation accuracy other than the accuracy of SNP effect 

estimation that depends on heritability magnitudes and the size (N) of the reference population, 

such as the structure of the genome and the genetic architecture of the trait, besides the type of 

response variable, the relationship between training and validation populations and training 

population design (Lorenz & Smith 2015; Boichard et al., 2016; Fernandes Junior et al., 2016; 

Naderi et al., 2016; Mehrban et al., 2017; Zhu et al., 2021).  

Additionally, the accuracy of genomic evaluation may be also affected by the statistical 

method, marker density, and MAF (Atefi et al., 2016; Zhang et al., 2019, Zhu et al., 2021). The 

investigation of factors that influence the accuracies of genomic evaluation is necessary, 

especially when adopting new parameters, for example, by increasing the number of markers, 

the computational time also increases considerably, especially for Bayesian alphabet methods, 

due to the increase in the number of unknown parameters that need to be estimated. 

Furthermore, for simple traits that are controlled by one or several genes with large effects, 

higher marker density can cause a lower prediction accuracy, whereas, for traits with complex 

genetic architecture, the prediction accuracy can be improved by increasing the marker density 

(Zhang et al., 2019).  

Considering the different models, small differences were observed in terms of predictive 

ability between the parametric genome-enabled prediction models for all traits (Table 3). This 

finding agrees with the literature, which has reported small differences in accuracies between 

GBLUP and Bayesian regression models (Mehrban et al., 2017; Alves et al., 2020; Lopes et al., 

2020; Kjetså et al., 2022). Some characteristics belonging to the data may limit the observation 
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of greater differences in prediction accuracy between the models, such as the size of the linkage 

disequilibrium, the effective population size, insufficient sample size to infer a large number of 

coefficients (n<p) and the complex nature of the traits studied (a large number of small-effect 

QTLs) (Howard et al., 2014; Mehrban et al., 2017; Alves et al., 2020). 

The BRANN method showed major differences in predictive abilities, providing the 

poorest predictive skill for the studied traits (Table 3). The GBLUP, BayesA, BayesB, and 

BLASSO models provided better accuracies than the BRANN_3 method, increasing the ACC 

by around 23.16, 23.16, 23.44 and 22.88% for PCV, and 18.54, 18.54, 18.64, 18.54% for FEC, 

respectively. Likewise, there was an increase of ACC of 20.23% for FAM, comparing all 

parametric models and BRANN_4. The BRANN_3 model showed lower ACC than the 

BRANN_4 model in 2.34 and 0.31% for PCV and FEC, respectively, and higher ACC than the 

BRANN_4 model in 0.96% for FAM. The lowest MSE values were also observed for the 

parametric models for all studied traits. Accordingly, the parametric models are considered less 

biased than the BRANN method. Considering our results, the BRANN method did not present 

competitive predictive ability compared with the parametric approaches, presenting lower 

prediction accuracies and higher MSE than parametric models for all traits evaluated.  

Previous studies demonstrated that the performance of ML methods can vary between 

different species and traits (Yan & Wang, 2022). In addition, studies suggested that ML 

methods can produce competitive predictions to classical animal breeding models like 

parametric models (e.g., GBLUP) (Naderi et al., 2016; Nayeri et al., 2019). Nonetheless, the 

simulation study reported that ML methods tend to present worse behavior when the traits are 

affected by many loci with small effects (Naderi et al. 2016), which seems to be the case in the 

present study.  Other factors such as the size of the training set, the magnitude of heritability, 

the size of the linkage disequilibrium in the population, and the process of fitting parameters 

can also impact the performance of ML models (Montesinos-López et al., 2021). 
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The results found by the BRANN method can be explained by the simple network 

architecture adopted in this study, consisting of a single hidden layer with three or four neurons. 

Meher et al. (2022), evaluating the performance of different methods for genomic prediction, 

also found that artificial neural networks did not perform best for any trait. However, the authors 

identified strategies, such as feature selection and seeded starting weights, that increased the 

ANN's performance to near the level of other algorithms (Bayesian and BLUP alphabets). 

Possibly, one could achieve further improvement in predictive performance with different 

strategies, as mentioned by Meher et al. (2022), in addition, to other regularization techniques, 

such as dropout and early stop, and other optimization algorithms. Alves et al. (2020) also 

mentioned other approaches to improvement of ANN's performance, such as increasing the 

number of hidden layers and neurons and using other activation functions.  

Overall, the empirical results from this study indicate that parametric models are 

suitable for genome-enabled prediction of indicator traits of resistance to gastrointestinal 

nematodes in Santa Inês sheep. In this regard, the application of BRANN for predicting 

indicator traits of resistance to gastrointestinal nematodes in this sheep population should be 

further evaluated and elucidated in future studies, especially different architectures and deep 

learning techniques, in addition, other ML methods, such as support vector regression and 

random forest. 

 

3.2 Computational time 

Regarding the mean computational time, the GBLUP (11.12 mins) was the most 

efficient method evaluated (Table 4). In contrast to the methods of the Bayesian alphabet that 

have a greater number of unknown parameters, the GBLUP has only n+1 unknown parameters, 

due to its architecture being based on (semi)definite (G) symmetric positive kernels to find the 

similarity between the animals (Alves et al., 2020). This finding agrees with Meher et al. (2022), 
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where the GBLUP is computationally efficient and meets the requirements predicting especially 

for traits with complex genetic architecture.  

Considering the different methods, GBLUP demands considerably less time than 

BayesA (380.12 mins), BayesB (425.04 mins), BLASSO (395.10 mins) BRANN_3 (510.06 

mins), and BRANN_4 (1,301.85 mins) methods. The less time-efficient methods were 

BRANN_3 and BRANN_4 (Table 4). The high computational burden in ANNs methods is due 

to increases in the number of hidden neurons for the ANNs and, for this reason, BRANN_4 

presented 60.82% less computational efficiency than BRANN_3. The machine used for 

implementing the models for PCV, FEC and FAM had an Intel Xeon Bronze 3104 with CPU 

of 6 cores and 1.70 GHz frequency, and 120GB total RAM memory + 15x HPE 8GB 1Rx8 

PC4-2666V-R. 

 

4. CONCLUSION 

The results indicate that parametric models (GBLUP, BayesA, BayesB and BLASSO) 

are suitable methods for genome-enabled prediction of indicator traits of resistance to 

gastrointestinal nematodes in Santa Inês sheep. Due to the small difference in accuracy found 

between them, the use of the GBLUP model is recommended due to its lower computational 

cost and the possibility of incorporating non-genotyped animals into the analysis using single-

step procedures. 
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Tables 

Table 1 Additive (𝜎𝑎
2), permanent environment (𝜎𝑝𝑒

2 ), and residual (𝜎𝑒
2) variance components 

and heritability (ℎ2) estimates for indicator traits of resistance to gastrointestinal nematodes in 

Santa Inês sheep. 

Trait1 𝜎𝑎
2(𝑆𝐸) 𝜎𝑝𝑒

2 (𝑆𝐸) 𝜎𝑒
2(𝑆𝐸) ℎ2 (𝑆𝐸) 

PCV (%) 0.0006 (9.04 x 10-5) 0.0003 (6.71 x 10-5) 0.0011 (6.71 x 10-5) 0.30 (0.04) 

FEC (eggs/g) 0.37 (0.05) 0.09 (0.04) 1.26 (0.03) 0.21 (0.03) 

FAM (score) 0.12 (0.04) 0.05 (0.03) 0.38 (0.12) 0.22 (0.05) 

1PCV, packed cell volume; FEC, fecal egg count; FAM, Famacha© method. 
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Table 2 Descriptive statistics for the estimated breeding values (EBV) used in the genomic 

analyses. 

 Genotyped animals EBV 

Trait1 Males Females Total Mean (SD) Minimum Maximum 

PCV 102 449 551 0.003 (0.02) -0.07 0.05 

FEC 102 446 548 -0.17 (0.58) -1.57 1.01 

FAM 103 462 565 -0.06 (0.19) -0.61 0.56 

1PCV, packed cell volume; FEC, fecal egg count; FAM, Famacha© method. 
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Table 3 Prediction accuracy (ACC), mean squared error (MSE) and standard deviations (SD) 

for Packed cell volume (PCV), Fecal egg count (FEC) and Famacha© method (FAM) were 

obtained with different genome-enabled linear prediction models and artificial neural networks 

in a 5-fold cross-validation technique. 

Trait Model1 ACC (SD) MSE (SD) 

 

 

 

PCV (%) 

GBLUP 0.544 (0.06) 0.0002 (3.72x10-5) 

BayesA 0.544 (0.06) 0.0002 (3.72x10-5) 

BayesB 0.546 (0.06) 0.0002 (3.78x10-5) 

BLASSO 0.542 (0.06) 0.0002 (3.62x10-5) 

BRANN_3 0.418 (0.06) 0.0003 (3.44x10-5) 

BRANN_4 0.428 (0.06) 0.0003 (3.44x10-5) 

 

 

FEC (eggs/g) 

GBLUP 0.793 (0.03) 0.130 (0.004) 

BayesA 0.793 (0.03) 0.130 (0.004) 

BayesB 0.794 (0.03) 0.130 (0.004) 

BLASSO 0.793 (0.03) 0.130 (0.004) 

BRANN_3 0.646 (0.05) 0.325 (0.04) 

BRANN_4 0.648 (0.05) 0.322 (0.05) 

 

 

FAM (score) 

GBLUP 0.519 (0.05) 0.026 (0.0008) 

BayesA 0.519 (0.04) 0.026 (0.0008) 

BayesB 0.519 (0.04) 0.026 (0.0008) 

BLASSO 0.519 (0.04) 0.026 (0.0007) 

BRANN_3 0.418 (0.11) 0.056 (0.0131) 

BRANN_4 0.414 (0.12) 0.058 (0.0152) 

1GBLUP, Genomic best linear unbiased prediction; BLASSO, Bayesian least absolute 

shrinkage and selection operator; BRANN_3 and BRANN_4, Bayesian regularized artificial 
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neural networks using 3 and 4 hidden neurons, respectively. 

 

Table 4 Average computation time (in minutes) to complete all iterations of the 5-fold cross-

validation technique according to the different genome-enabled prediction methods. 

 

Trait1 

Method2 

GBLUP BayesA BayesB BLASSO BRANN_3 BRANN_4 

PCV 10.78 375.60 428.40 391.20 410.27 1,450.49 

FEC 11.19 381.35 421.72 396.91 446.51 1,144.32 

FAM 11.40 383.40 425.01 397.20 673.40 1,310.73 

Average 11.12 380.12 425.04 395.10 510.06 1,301.85 

1PCV, packed cell volume (%); FEC, fecal egg count (eggs/g); FAM, Famacha© method 

(score). 2GBLUP, Genomic best linear unbiased prediction; BLASSO, Bayesian LASSO; 

BRANN_3 and BRANN_4, Bayesian regularized artificial neural networks using 3 and 4 

hidden neurons, respectively. 
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Figure 

 

Figure 1 Topology of a single hidden layer feed-forward artificial neural network with three 

neurons in the input layer, three in the intermediate layer and one in the output layer. The input 

information is x1, x2 and x3. The synaptic weights between neurons in adjacent layers are 

represented by wjk, where j are the neurons in the input layer and k are the neurons in the 

intermediate layer; is the weighted sum given by ,  g(.) is the activation function 

and �̂�∗ is the predicted value. 
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FINAL CONSIDERATIONS 

 

The results of machine learning models to classify resistant, resilient, and 

susceptible animals suggest that the use of readily available records and easily-

measured variables such as body weight, body condition score, farm, sex, age class, 

record month, and Famacha© score may contribute to the identification of susceptible 

animals and support management decisions at the farm level, potentially reducing 

economic losses due to parasitic infection with higher prevalence of H. contortus 

parasites. The best performances for classifying susceptible and resistant animals 

were achieved by multinomial logistic regression and linear discriminant analysis. The 

animals identified as resistant can also be incorporated as selection candidates into 

breeding programs for the genetic improvement of sheep populations. 

The image analysis results indicate that it is possible to successfully predict 

Famacha© scores, particularly scores 2 to 4, in sheep through image analysis and the 

use of a random forest classification model using ocular conjunctiva images collected 

in farm conditions. Model validation excluding entire farms in cross-validation resulted 

in lower prediction quality, but it is closer to reality as the developed models are 

intended to be used across farms, including new ones, with different environments and 

management conditions. In the future, automation of the method for Famacha© score 

estimation based on image analysis may be considered to facilitate its application in 

sheep farming production. 

Cluster analysis was found to be a valuable tool for data screening that allows 

the evaluation of only selection candidates based on their additive-genetic pattern for 

gastrointestinal nematode resistance. Estimated breeding values for fecal egg count 

were decisive in dividing the population into resistant, resilient, and susceptible 

animals, and it is important to include estimated breeding values for packed cell volume 

and Famacha© score to distinguish resistant from resilient animals effectively. The 

resistant cluster consisted of the most desirable animals to be used as selection 

candidates for genetic improvement of resistance to infection with gastrointestinal 

nematodes. 

The results of genome-enabled prediction analysis indicate that parametric 

models (GBLUP, BayesA, BayesB, and BLASSO) are suitable methods for genome-

enabled prediction of indicator traits of resistance to gastrointestinal nematodes in 
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Santa Inês sheep. The GBLUP model was recommended due to its lower 

computational cost and the possibility of incorporating non-genotyped animals into the 

analysis using single-step procedures, despite the small difference in accuracy found 

between the models. 

Finally, the evaluation of the use of machine learning models for classifying 

resistance, resilience, and susceptibility to gastrointestinal nematodes and image 

analysis for classifying anemia using Famacha© scores in Santa Ines sheep is still in 

its early stages. There are also few reports in the literature on the use of genomic 

prediction of indicator traits of resistance to gastrointestinal nematodes, emphasizing 

the importance of the present work, which opens the way for further studies and future 

applicability at the field level. 

In conclusion, the results of this study suggest that the use of machine learning 

models, image analysis, and genome-enabled prediction techniques can effectively 

contribute to the identification and classification of susceptible, resilient, and resistant 

animals in Santa Ines sheep populations with respect to gastrointestinal nematode 

infections. The use of readily available records and easy-to-measure variables in 

machine learning models, the ability of image analysis to predict Famacha© scores, 

and the suitability of parametric models for genome-enabled prediction of resistance 

indicator traits are all promising results. The resistant animals identified through these 

techniques can be considered for selection in breeding programs to improve the 

genetic resistance to gastrointestinal nematodes infections in sheep populations. 

Although the evaluation of these techniques is still incipient, this work highlights their 

potential and opens the way for further studies and future applicability in the field of 

livestock genomics. 

 


