WANDER CAIRO ALBERNAZ

ESTUDO ELETROFORETICO DOS POLIPEPTIDES DA GLÂNDULA SALIVAR DE BRADYSIA HYGIDA NO DESENVOLVIMENTO

Dissertação apresentada à Faculdade de Medicina de Ribeirão Preto - USP para obtenção do título de Mestre em Ciências. (Bioquímica)

Orientador: Dr. H. Sauaia

Ribeirão Preto
1976
Dedico este trabalho à:

Hirom e Yolanda, meus pais

Irlandes, companheira de todos os instantes

Lister e Miriam, meus filhos
Agradecimentos

Ao Prof. Dr. Heni Sauaia, pela orientação.

Ao Prof. Dr. José Salum, pelo apoio.

À Universidade Federal de Goiânia e especialmente ao Departamento de Bioquímica e Biofísica do Instituto de Ciências Biológicas.

À CAPES pela bolsa de estudos.

A todos que de uma maneira ou de outra nos auxiliaram na realização deste trabalho.
ÍNDICE

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUÇÃO</td>
<td>1</td>
</tr>
<tr>
<td>II. MATERIAL E MÉTODOS</td>
<td>7</td>
</tr>
<tr>
<td>2.1. Material biológico</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Métodos</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1. Obtenção das glândulas e preparo das amostras</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2. Eletroforese em gel de poliacrilamida</td>
<td>11</td>
</tr>
<tr>
<td>a. Equipamento</td>
<td>11</td>
</tr>
<tr>
<td>b. Confecção dos géis</td>
<td>13</td>
</tr>
<tr>
<td>c. Aplicação das amostras e eletroforese</td>
<td>14</td>
</tr>
<tr>
<td>d. Fixação, coloração e remoção do excesso de corante</td>
<td>15</td>
</tr>
<tr>
<td>e. Secagem do gel</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3. Administração de precursores radioativos</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4. Fluorografia</td>
<td>17</td>
</tr>
<tr>
<td>2.2.5. Densitometria</td>
<td>18</td>
</tr>
<tr>
<td>2.2.6. Soluções empregadas para utilizar o sistema de eletroforese descontínua de Laemmli (1970)</td>
<td>18</td>
</tr>
</tbody>
</table>
III. RESULTADOS .. 21
 3.1. Gênis coloridos 21
 3.2. Perfil de síntese de proteínas 25

IV. DISCUSSÃO .. 32

V. RESUMO E CONCLUSÕES 36

VI. SUMMARY AND CONCLUSIONS 37

VII. REFERÊNCIAS BIBLIOGRÁFICAS 38

Apêndice .. 49
ABREVIACOES

BIS - N,N'-metileno-bis-acrilamida
DMSO - Sulfôxido de dimetila
DNA - Ácido desoxirribonucleico
HCl - Ácido clorídrico
PPO - 2,5-Difeniloxazol
RNA - Ácido ribonucleico
SDS - Dodecil sulfato de sódio
TCA - Ácido tricloroacético
Temed - N,N,N',N'-Tetrametiletilenodiamina
Tris - Tris(hidroximetil)-aminometano
I. INTRODUÇÃO
A hipótese de que os pufes cromossômicos sejam manifestação de atividade gênica, proposta inicialmente com base em estudos sobre quironomídeos (BEERMANN, 1952) e sciarídeos (BREUER e PAVAN, 1952), tem recebido crescente número de verificações positivas, que se tornam progressivamente mais convincentes.

Um dos primeiros trabalhos a apoiar a hipótese é o de BEERMANN (1961). Na glândula salivar das larvas do gênero Chironomus, há um grupo de 4 células especiais, que em diversas espécies, como C. pallidivittatus, apresentam no cromossoma IV um anel de Balbiani adicional, ausente nas outras células da glândula. No citoplasma dessas células e no ducto da glândula, distinguem-se grânulos de secreção de tamanho considerável. Em C. tentans, as células especiais não produzem tais grânulos e são também desprovidas do anel de Balbiani adicional. Nos híbridos resultantes do cruzamento de C. pallidivittatus e C. tentans, as células especiais produzem quantidade intermediária de grânulos de secreção e apresentam no cromossoma IV, no sítio correspondente ao anel de Balbiani adicional, um anel de Balbiani heterozigoto, isto é, presente apenas em um dos cromossomas IV.

Essa linha de trabalho teve continuação nos estudos de GROSSBACH (1969, 1973), que procurou estudar através de eletrofo-
rese em gel de poliacrilamida, a composição da saliva dos quirornomídeos e relacioná-la com dados citogenéticos resultantes também de cruzamento entre espécies diferentes. Com base nesse tipo de informação, GROSSBACH relaciona três pufes com três polipeptídeos diferentes.

Em Acricotopus lucidus, PANITZ (1967) e BAUDISH e PANITZ (1968) induziram a regressão de um dos anéis de Balbiani por administração de giberelina A₃. A incorporação de uridina naquele sítio cromossômico foi então fortemente diminuída. Além disso, houve evidências de que naquelas condições deixava de ser sintetizada uma proteína que contém hidroxiprolina.

Os trabalhos do grupo de Estocolmo (EDSTROM, 1974; HOSICK e DANHEOLT, 1974; EDSTROM e LAMBERT, 1975) demonstraram em C. tentans frações de RNA citoplasmático dotado de poli-A hibridizam-se "in situ" com os anéis de Balbiani 1 e 2. Além disso, mostraram que na fração polissômica, ocorre RNA de peso molecular semelhante ao do RNA extraído de anéis de Balbiani isolados por microdissecção.

As ricas possibilidades de análise genética e citogenética em Drosophila foram elegantemente exploradas por KORGE (1975) para relacionar, de modo fortemente sugestivo, dois pufes cromossômicos com duas frações eletroforéticas da secreção salivar. Um dos pufes correspondente às bandas 3C₁₁ e 3C₁₂ do cromossoma X e o outro está compreendido na secção que vai de
66D₂ a 72E₅ do cromossoma III. Além de demonstrar tal relação por meio de procedimentos clássicos de cruzamento e de recombinação, KURGE adiciona ainda a evidência de que a fração electroforética correspondente ao pufe do cromossoma X guarda clara relação quantitativa com as variações de dose da seção 3C de vidas a deficiências e a duplicações.

Ainda em Drosophila, três trabalhos recentes trouxeram apoio importante à ideia de que a indução de pufes cromossomicos corresponde a ativação de genes particulares. Já era conhecido que a sujeição de larvas de Drosophila a uma elevação de temperatura (a 37°C, por exemplo) induz nos cromossomas politélicos da glândula salivar a expansão de pufes que normalmente não ocorrem (RI TÖSSA, 1962). Os mesmos pufes são induzíveis por anoxia (RI TÖSSA, 1964; BREU GEL, 1966). A administração de ecdisona às larvas ou a incubação das glândulas salivares em meio que contenha o hormônio também induzem a expansão de pufes (CLEVER e KARLSON, 1960; CLEVER, 1961; BERENDES, 1967; CROUSE, 1968; ASHBURNER, 1970, 1972). TISSIÈRES, MITCHELL e TRACY (1974) estudaram em Drosophila o perfil de síntese de proteínas da glândula salivar e de outros tecidos larvais durante o período pré-pupal. Verificaram que o perfil de síntese de proteínas da glândula salivar varia consideravelmente no desenvolvimento, como seria de esperar das numerosas modificações no padrão de pufes próprias dessa fase do desenvolvimento. Verificaram tam-
bêm considerável modificação, ainda que menor, no perfil de síntese de proteínas nos túbulos de Malpighi, e variações muito mais modestas no tecido cerebral. Nas glândulas salivares sujeitas a choque térmico, detectaram a aparecimento de 7 ou 8 frações protêicas novas, número que concorda de perto com o de novos pufes então induzidos. A síntese de frações protêicas de mesma mobilidade é também induzida em tecidos desprovidos de cromossomas politênicos, tais como, discos imaginais, cérebro de larvas e cérebro de adultos. Embora, como soi acontecer com trabalhos dessa natureza, a correlação entre pufes induzidos e a síntese de novas frações protêicas tenha caráter circunstancial, o conjunto das observações é fortemente sugestivo. LEWIS, HELMSING e ASHBURNER (1975) confirmaram esses resultados e mostraram ainda que o grau de indução da síntese de novas proteínas, assim como o tamanho dos pufes induzidos, está correlacionado com a intensidade do choque térmico.

Nos sciarídeos, os cromossomas da glândula salivar de senvolvem, ao fim do quarto estádio larval, além de pufes comuns, mais de uma dezena de pufes especiais, chamados de pufes DNA. Estes se caracterizam pelo fato de serem acompanhados e, frequentemente precedidos, de síntese desproporcional de DNA no sitio cromossômico implicado em sua formação (BREUER e PA VAN, 1955; FICQ e PAVAN, 1957; RUDKIN e CORLETTE, 1957; GABRU SEWYCS-GARCIA, 1964, 1971; CROUSE e KEYL, 1968; PERONDINI e DES sen, 1969; PAVAN e DA CUNHA, 1969 a,b) e pelo fato de seu desenvolvimento depender de que haja síntese de DNA (SAUAIA, LAICINE e ALVES, 1971). Esses pufes são específicos de glândula salivar; em certas espécies, como Bradysia hygída, o padrão de pufes de DNA chega a ser específico de região glandular. Duram relativamente pouco tempo e ocorrem em sequência altamente reprodutível.

Em Rhynchosciara, os estudos bioquímicos até agora realizados (BONALDO, FLOETER, TOLEDO e LARA, 1976) indicam que o RNA extraído de pufes B₂, isolados por microdissecção, consiste principalmente de uma fração 16S e que o aparecimento no citoplasma de um RNA 16S, dotado de poli-A, está estreitamente relacionada com a abertura daquele pufe. Além disso, das frações de RNA marcado extraído de núcleos isolados por microdissecção somente a de 16S marca, em condições de hibridização molecular "in situ", o pufe B₂. Esses dados constituem importante evidên
cia de que, dentre os pufes de DNA, pelo menos o pufe B_2 está implicado na produção de um RNA mensageiro.

A finalidade do presente trabalho é verificar se, durante a fase de desenvolvimento em que ocorrem os pufes de DNA no sciarídeo *Brady sia hygida*, há variações do perfil eletroforetico de extratos da glândula salivar ou no perfil de síntese de proteínas desse tecido.
II. MATERIAL E MÉTODOS
2.1. Material biológico

O ciclo de Bradysia hygida (SAUAIA e ALVES, 1968) dura cerca de 36 dias à temperatura de 20°C, em condições de cultura semelhantes às padronizadas por LARA, TAMAKI e PAVAN para Rhynchosciara americana (LARA, TAMAKI e PAVAN, 1965). Da eclosão à muda pré-pupal, as larvas passam por quatro estádios. O último inicia-se no 129 dia e nele as larvas atingem tamanho máximo, que nas fêmeas é de 10 a 12 mm de comprimento e 1 mm de diâmetro. Estas foram as utilizadas nos experimentos.

No sexto dia do quarto estádio nota-se no dorso das larvas, logo atrás da cápsula da cabeça, a formação de pequenas manchas que se modificam em tamanho e forma durante o desenvolvimento e que, por isso, se prestam para a avaliação da idade larval (GABRUSEWYCEZ-GARCIA, 1964). A figura 1-A mostra padrões de manchas oculares característicos de diferentes idades de B. hygida (SAUAIA, 1971).

A larva possui um par de glândulas salivares aproximadamente tão longas quanto o próprio corpo. Nas glândulas é possível distinguir seis partes, mas é conveniente considerar ao todo três regiões (fig.1B): anterior (S₁), granulosa (S₂) e pos...
Fig.1-A - Diferentes padrões de manchas oculares ao longo da segunda metade do quarto estádio larval em *Brasysia hystrix*. 13X. Original de H. Sáuia.

B - Par de glandulas salivares, de larva fêmea, na idade correspondente ao padrão m3 de manchas oculares. S1 - região anterior; S2 - região granulosa; S3 - região posterior (mucosa). 15X. Original de M.A.R. Alves.
terior ou mucosa (S_3).

Em *B. hygida* os primórdios dos pufes de DNA começam a formar-se na idade correspondente ao padrão m_3 de manchas oculares (Fig.1-A). Vinte horas depois, na idade m_7, abrem-se os primeiros pufes de DNA nas regiões S_1 e S_3. A região S_2 praticamente não forma pufes de DNA (*ALVES* e *Sauaia*, 1975; *ALVES*, 1975). Oito a dez horas depois de m_7, ocorre a expansão de um segundo grupo de pufes de DNA, quando os do primeiro grupo já estão regredidos. Em pupa jovem, virtualmente todos os pufes de DNA se apresentam regredidos ao exame citológico. Ao mesmo tempo em que se expandem e regredem os pufes de DNA, ocorrem também numerosos pufes de RNA em cada cromossoma (*Sauaia*, *Laicine* e *Alves*, 1971).

2.2. Métodos

2.2.1. Obtenção das glândulas e preparo das amostras

As larvas foram dissecadas em salina de *Bender* (*Krieder* e *Plaut*, 1972) gelada sobre lâmina de vidro ao estereomicroscópio. Para isso, utilizam-se duas pinças, uma de ponta fina, aplicada logo atrás da cápsula da cabeça, e outra, de ponta romba, aplicada à extremidade posterior do animal. Ligeira tração rompe o corpo da larva à altura da primeira pinça; presos a cabeça, saem o par de glândulas salivares e parte do trato digestivo, juntamente com tecido gorduroso. Imediatamente, o conjunto.
era agitado por alguns instantes em TCA a 10%. As glândulas, limpas eram transferidas para outro vidro de relógio embriológico contendo também TCA a 10%. Os vidros de relógio eram mantidos em banho gelado.

As regiões glandulares, S_1, S_2 e S_3, eram separadas com estilete e transferidas para tubos de ensaio com capacidade para 1 ml, cheios de TCA a 10%, gelado. Colhidas todas as regiões glandulares dos vidros de relógio, a solução de TCA era removida dos tubos e substituída por solução. A (página 18) também gelada, para neutralizar o resíduo de TCA (LAICINE, comunicação pessoal). Agitava-se por rotação até que os fragmentos de tecido adquirissem cor ligeiramente azulada. O tampão era vertido e cada tubo recebia 50 µl de solução de amostra (página 19). Os tubos eram cobertos com plástico fino (Zapp) e permaneciam assim até o dia seguinte. Com estilete, perfurava-se então o plástico e aqueciam-se os tubos em água fervendo durante 90 segundos.

O número de regiões glandulares utilizadas em cada amostra está indicado no quadro abaixo.

<table>
<thead>
<tr>
<th>Idade</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>m3</td>
<td>20</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>m7</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>m7+8 h</td>
<td>21</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Pupa</td>
<td>21</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
Desse modo, a quantidade total de proteínas por amostra foi sempre de aproximadamente 80 microgramas, conforme as determinações de LAICINE (comunicação pessoal) feitas em amostras equivalentes a estas, pelo método LOWRY, ROSEBROUGH, FARR e RANDALL (1951).

2.2.2. Elêtroforese em gel de poliacrilamida

a) Equipamento

Foi utilizado o dispositivo de SAUAIA e LAICINE. A célula de elêtroforese, construída em plástico, consiste de duas partes que, apostas uma à outra, delimitam o espaço a ser ocupado pelo gel. A unidade assim formada, aberta nas duas extremidades e capaz de repousar sobre sua própria base, termina superiormente por uma plataforma mais espessa e mais larga, que se adapta aos bordos do reservatório inferior como se fosse uma tampa. O reservatório superior é sobreposto à essa plataforma; uma janela retangular em seu fundo circunda a abertura da célula (Fig.2).

Uma das hemi-células recebe nos bordos um filete de graxa (Lubriseal) produzido por seringa hipodérmica cuja ponta é passada ao longo de uma régua. As partes da célula são postas de cabeça para baixo sobre placa de vidro e deslizadas uma contra a outra. Aplicam-se grampos de plástico nas bordas da unidade...
Fig. 2 - A e B placas componentes da célula de eletroforese. C um dos grampos. D sistema de eletroforese, montado, em corte sagital.
de. A base da célula recebe também um filete de graxa, e e mon-
tada sobre uma peça de acrílico munida de saliências que limi-
tam o deslizamento. A célula fica assim pronta para receber a-
solução desejada.

A fonte de alimentação utilizada, construída no Laborató-
tório de Eletrônica da Faculdade de Filosofia, Ciências e Le-
tras de Ribeirão Preto, é de tensão variável e corrente constan-
te.

b. Confecção dos géis

A solução C (pág.19) é introduzida na célula através de uma seringa (prolongada por tubo de polietileno para alcançar o fundo) até a altura de 105 mm. Para o obtenção de uma superfície plana do gel, emprega-se uma peça de Plexiglas (STUDIER, 1973) um pouco mais estreita do que o leito da célula. Nos espaços laterais, o capeamento é feito com solução de SDS a 0,1%. Após a polimerização, que ocorre em aproximadamente 20 a 25 minutos, a peça sólida é retirada e a superfície do gel é lavada várias vezes com a mesma solução de SDS.

Insere-se, então, um pente formador de poços, construí-
do também em Plexiglas. Essa peça possui guias externas que ca-
valgam a plataforma da célula e assegura posição precisa dos
moldes das bolsas de amostra a meio caminho entre as paredes da
unidade. Uma vez instalado, o pente deixa nos cantos da célula espaço suficiente para a introdução ou a remoção de líquido por meio de uma pipeta de Pasteur. A solução D, (pág. 19) para gel de empilhamento, é assim introduzida até uma altura de 25 mm e capeada com solução de SDS. Depois de 15 minutos, com o pente em posição, verte-se a solução de capeamento e introduz-se tampão de eletrodo (solução E) (pág. 20). O pente é retirado e o tampão é renovado duas vezes.

c. Aplicação das amostras e eletroforese

Cada amostra, mais densa que o tampão que preenche os poços, é introduzida por meio de pipeta capilar ligada por tubo de polietileno a uma seringa de tuberculina. O êmbolo da seringa é empurrado por um parafuso, contra a tensão de duas molas. O sistema permite controle preciso do volume de amostras e da velocidade com que a mesma é introduzida no poço.

Imediatamente após a aplicação da última amostra, a célula é introduzida no reservatório inferior, já com tampão de eletrodo, evitando-se a formação de bolhas sob a base da célula. O reservatório superior, com vaselina na base, é assentado sobre a plataforma superior da célula e cheio com o mesmo tampão.

As eletroforeses foram feiras com corrente constante.
de 20mA e tensão variável; esta, que no início do experimento era de 60 V atingia 160-170 V ao fim da corrida, que se considera terminada quando a faixa azul (devida ao azul de bromofenol) chegava a 1 cm da base inferior da célula. A duração da eletroforese variou de 3 horas e 15 minutos a 3 horas e 25 minutos.

d. Fixação, coloração e remoção do excesso de corante

O gel era retirado da placa e imerso em TCA a 50% (LAEMMLI, 1970), onde permanecia, sob agitação suave, até o dia seguinte. Era então tingido em solução F recém-preparada (pági na 20) a 37°C, com agitação periódica, por 2 horas. Seguiam-se banhos repetidos em ácido acético a 7%, até que se obtivesse contraste satisfatório entre as bandas e o fundo.

e. Secagem do gel

O dispositivo usado para secar o gel é uma placa de vidro poroso presa em uma armação metálica dotada de uma saída lateral (SAUAIA, não publicado). O gel de empilhamento é removido e o de separação é posto sobre um retângulo de papel Whatmann 3 MM colocado sobre a placa porosa. A superfície do gel é aplicada uma película de Zapp e todo o sistema é introduzido em um saco plástico Reynolds Brown-in-Bag (LAEMMLI e FAURE, 1973) O conjunto é colocado em estufa a 90°C e ligado a uma bomba de vá
Os gêis secos foram armazenados entre lâminas de vidro presas uma à outra com fita adesiva.

2.2.3. Administração de precursores radioativos

Foi utilizada uma solução contendo 14 amino-ácidos marcados 14C (Amersham-Searle, CFB.104). A atividade específica da solução era de 54 mCi/mAtomo e sua concentração 50 µCi/ml.

A mistura foi injetada nas larvas segundo uma modificação do procedimento de SAUAIA, LAICINE e ALVES (1977). O sistema de injeção consiste de uma agulha de vidro, de diâmetro aproximadamente igual a 30 micrômetros na ponta, conectada a um tubo de polietileno (PE-60) que contém a solução a ser administrada; este tubo se liga, por um capilar de vidro, a outro tubo de polietileno, ligado por sua vez a uma microseringa de 100 microlitros (Hamilton 710) por intermédio de uma agulha hipodérmica (20/8). A partir do capilar do vidro, todo o sistema é cheio com óleo mineral (SAUAIA e ALMEIDA, não publicado). A seringa está montada em um suporte, juntamente com um micrômetro de precisão, que empurra o êmbolo. A cada volta do tambor do micrômetro ocorre a ejeção de 1 µl. Os volumes injetados foram: 2 µl nas idades m3, m7 e m7+8h, e 1 µl por pupa.

A larva era colocada ao estereomicroscópio, sobre papel úmido e a agulha era nela introduzida entre dois segmentos
medianos. Girava-se o tambor do micrômetro esperava-se um minuto. A agulha era retirada lentamente para evitar vazamento e a larva era depositada em recipiente de plástico (formas de fazer gelo) com terra úmida e comida.

2.2.4. Fluorografia

Foi empregado o procedimento de BONNER e LASKEY (1974), com modificações apropriadas para gel de 3 mm de espessura. Removido o excesso de corante, o gel passa pelo seguinte tratamento: imersão, por 1 hora, em volume de DMSO aproximadamente igual a 20 vezes o do gel, seguida de outro banho de idênticas condições. O gel é, então, imerso em solução de PPO (22,2%) em DMSO; nesta etapa, o volume da solução é aproximadamente 4 vezes o do gel. Decorridas 6 horas verte-se a solução de PPO e o gel é imerso em água (20 vezes o volume do gel). Depois de uma hora, a água é renovada e o gel aí permanece até o dia seguinte, quando se troca a água para uma permanência de uma hora ou mais. Segue-se a secagem do gel.

Em câmara escura, o gel seco é aposto a uma chapa radiográfica X-OMAT RP/S 54, Kodak, (RANDERATH, 1970) e as duas películas são colocadas entre duas lâminas de vidro presas uma a outra com fita adesiva. O conjunto, protegido da luz, é deixado em um congelador a -80°C. (O congelador foi gentilmente ce
dido pelo Dr. José Alberto Mello Oliveira, do Departamento de Patologia desta Faculdade). Decorridas 100 horas, a montagem é transferida para um recipiente de Isopor e, cerca de 2 horas depois, é daí retirada para atingir mais rapidamente a temperatura da câmara escura, 20°C. O filme radiográfico é mergulhado no revelador para películas de raio-X (KODAK) por 5 minutos, lavado em ácido acético a 2% e imerso em fixador para películas de raios-X, (Kodak), também por 5 minutos. Durante todo o processoamento, a agitação é contínua. O filme é lavado em água corrente, em água destilada e posto a secar.

2.2.5. Densitometria

A densitometria dos fluorogramas foi feita em um espec trofotofluorômetro Aminco-Bowman (como acessório UNISCAN) ligado a registrador Shimadzu (R-101). Utilizou-se luz de 544 nm e fenda de 0,1 mm.

2.2.6. Soluções empregadas para utilizar o sistema de ele troforese descontínua de LAEMMLI (1970)

A. Tampão de Neutralização

<table>
<thead>
<tr>
<th>Solução</th>
<th>Volumes (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl 0,5M pH 6,8</td>
<td>0,5 ml</td>
</tr>
<tr>
<td>Azul de Bromofenol 0,01%</td>
<td>1,0 ml</td>
</tr>
<tr>
<td>Água q.s.p.</td>
<td>10,0 ml</td>
</tr>
</tbody>
</table>
B. Amostra

Tris-HCl 0,25M pH 6,8 125 µl
Glicerina ... 50 µl
2-Mercaptoetanol 25 µl
SDS a 4% 250 µl
Azul de Bromofenol 0,01% 50 µl

C. Gel de separação

Tris-HCl 2,25M pH 8,8 4,0 ml
Sol. de acrilamida (30%) e bis (0,8%) 6,0 ml
SDS a 4% 600 µl
Temed ... 10 µl
Persulfato de amôneo a 10% 100 µl
Água q.s.p. 24 ml
Essa solução corresponde a um gel com T = 7,7% e C = 2,6%; (conferir a notação de HJERTEN, MAURER, 1971)

D. Gel de empilhamento

Tris-HCl 0,5 M pH 6,8 1,0 ml
Sol. de acrilamida (30%) e bis (0,8%) 650 µl
SDS a 4%................................. 100 µl
Temed................................. 4 µl
Persulfato de amôneo a 10%........ 20 µl
Água q.s.p............................... 4,0 ml
Essa solução corresponde a um gel com T = 5% e C = 2,6%

E. Tampão de elêtrodo, pH 8,3

Glicina................................. 28,8 g
Tris....................................... 6,0 g
SDS...................................... 1,0 g
Água q.s.p............................... 1000 ml

F. Corante

TCA 50% 50 ml
Coomassie Blue R..................... 50 mg
III. RESULTADOS
3.1. Géis coloridos

Estudamos inicialmente os padrões eletroforéticos das três regiões glandulares nas idades m3, m7, oito horas depois de m7 (m7+8 h) e pupa jovem. Em cada experimento, foram comparados os padrões eletroforéticos das três regiões glandulares de idade m7 com o padrão eletroforético correspondente a uma das três outras idades.

Os padrões eletroforéticos foram estudados em fotografias dos géis. Foram estabelecidas arbitrariamente seis zonas ao longo dos padrões (Fig.3, 4 e 5). Em cada zona, as bandas foram numeradas e examinadas meticulosamente nas diferentes raias do gel. O número total de bandas variou, segundo o experimento e a região glandular, de 38 a 56. Mas, os padrões eletroforéticos da mesma região glandular em idades diferentes, quando comparados no mesmo gel, foram praticamente os mesmos; excetuam-se as pequenas diferenças assinaladas nas figuras 3, 4 e 5, assim como diferenças de intensidade em algumas poucas bandas fracas.

Por outro lado, quando se compararam os padrões eletroforéticos de regiões diferentes, na mesma idade, verificam-se diferenças muito claras.

Verificamos assim que o perfil de polipéptides presen-
Fig. 3 - Padrão eletroforético das regiões glandulares S_1, S_2 e S_3; nas idades m_3 e m_7. Coloração por Coomassie Blue. A, B, C, D, E, e F indicam as seis zonas nas quais foram subdivididas as fotografias para fins de estudo. 1,5 X
Fig. 4 - Padrão eletroforético das regiões glandulares S₁, S₂ e S₃; nas idades m7 e m7+8 horas. Coloração por Coomassie Blue. A, B, C, D, E e F indicam as seis zonas nas quais foram subdivididas as fotografias para fins de estudo. 1,5 X
Fig. 5 - Padrão eletroforético das regiões glandulares S_1, S_2 e S_3; nas idades m7 e pupa. Coloração por Coomassie Blue. A, B, C, D, E e F indicam as seis zonas nas quais foram subdivididas as fotografias para fins de estudo. 1,5 X.
tes em cada uma das três regiões glandulares quase não varia de m3 a pupa jovem de modo detectável pelo método utilizado.

3.2. Perfil de síntese de proteínas

O perfil de síntese de proteínas foi analisado nas mesmas idades anteriormente examinadas. As larvas de idade m3 foram escolhidas segundo o tamanho das manchas oculares (Fig.1-A). As de m7 foram separadas em m6 (cerca de 1 hora antes de m7) e colocadas em placa de Petri, com terra úmida; ao atingirem m7, receberam a injeção de aminoácidos radioativos. Para a idade m7+8 horas, o tempo foi contado após as larvas terem atingido m7. As pupas eram jovens, isto é, receberam a injeção ainda quando sua cutícula não se tinha amarelado. O volume injetado foi de 1 µl para as pupas e de 2 µl para as larvas. O tempo de incorporação foi sempre de 1 hora.

As amostras foram analisadas pelo mesmo sistema de ele troforese. Os géis foram processados para fluorografia e os fluorogramas foram densitometrados e fotografados. Foram obtidos para cada idade pelo menos dois perfis fluorográficos independentes. Para a idade m7, que era representada em todos os experimentos, obtivemos pelo menos seis fluorogramas independentes.

O método de detecção utilizado não produz resposta linear na película radiográfica (LASKEY e MILLS, 1975), o aparelho usado na varredura dos fluorogramas produz perfis de trans.
missão e não de densidade óptica. Além disso as bandas fluorográficas não tem largura uniforme, estas três condições excluem a possibilidade de tratamento quantitativo adequado. Para obter, todavia, uma descrição geral das principais variações no perfil de síntese de proteínas segundo as idades larvais estudadas (esquema da fig.9) foi feita uma classificação das bandas fluorográficas com base no exame visual meticuloso dos fluorogramas, de suas fotografias (fig.6,7 e 8) e dos perfís de transmissão registrados (ver apêndice pag.49). Foram incluídas no esquema somente as bandas distinguíveis visualmente e que apresentasem clara e reproduzível variação de intensidade de uma idade larval para outra. As bandas que se adequassem a esses dois requisitos foram classificadas em três categorias. A categoria I (bandas fortes) são aquelas cujo mínimo de transmissão atingisse, em pelo menos um dos experimentos independentes realizados para cada idade larval, valor inferior a 15%; a categoria II (bandas médias) incluiu, das bandas restantes, aquelas que atingissem, em um dos experimentos, valores de transmissão inferiores a 50%. As demais foram incluídas na categoria III (fracas). Desse modo, deixaram de ser incluídas no esquema da fig. 9 bandas que, embora intensas, não satisfizeram plenamente os critérios explicados acima. Nas fotografias dos fluorogramas (Fig. 6, 7 e 8) assinalam-se os níveis nos quais se distinguem frações incluídas no esquema da fig.9.
Fig.6 - Fluorografia de gel de eletroforese em que se compararam os perfis de S₁, S₂ e S₃ nas idades m₃ e m₇. Tempo de exposição 100 horas. 1,5 X.
Fig. 7 - Fluorografia de gel de eletroforese em que se comparam os perfis de S_1, S_2 e S_3 nas idades m7 e m7+8 horas. Tempo de exposição 100 horas. 1,5 X.
Fig. 8 - Fluorografia de gel de eletroforese em que se compararam os perfis de S1, S2 e S3 nas idades m7 e pupa.
Tempo de exposição 100 horas. 1,5 X.
Fig. 9 - Diagrama demonstrativo das frações eletroforéticas, detectadas por fluorografia, que variaram de modo evidente e reprodutível segundo as diferentes idades larvais. Está também representado o fluorograma correspondente à idade de pupa, para mostrar que quase todas as frações eletroforéticas deixam de ser detectadas por sua radioatividade.

- bandas fortes (I)
- bandas médias (II)
- bandas fracas (III)
Foram registradas 16 variações em S_1, 19 em S_2 e 12 em S_3. Mesmo sem recurso a métodos eletroforêtnicos de maior resolução, é provável que se demonstre maior número de variações do que este se for evitada a sobrecarga, perceptível nas fotografias das raias correspondentes às regiões glandulares S_1 e S_3.
IV. DISCUSSÃO
Os padrões eletroforéticos coloridos, obtidos em gel homogêneo, em uma só dimensão, quase não variam quando se analisa a mesma região glandular nas diferentes idades estudadas (BÉEN e RASCH, 1972; LAICINE, 1972; TOLEDO FILHO, YANG e PAVAN, 1972). Há diferenças claras entre regiões glandulares diferentes na mesma idade, mas, para a mesma região, o padrão eletroforético é bastante uniforme ao longo do desenvolvimento. Embora seja alta a sensibilidade da coloração com Coomassie Blue, a capacidade de discriminação do sistema é evidentemente baixa, se se leva em conta a complexidade do material estudado. As bandas evidenciadas nos géis devem, seguramente, corresponder a misturas de polipeptídeos de mobilidade semelhantes, de modo que variações qualitativas consideráveis podem passar despercebidas. Além disso, para cada uma das regiões glandulares, o sistema utilizado não distingue proteínas formadas em uma certa idade de outras provindas de idades anteriores, ou mesmo, de outras regiões da glândula. Também não distinguiria frações que possam ser tomadas da hemolinfa.

Por outro lado, o perfil de radioatividade devida à incorporação de aminoácidos marcados apresenta variações nítidas segundo a idade na mesma região glandular. Os resultados aqui apresentados para Bradysia hygida são semelhantes aos obtidos
por TISSIÈRES, MITCHELL e TRACY (1974) no tocante ao período pré-pupal em Drosophila. Também em Rhynchosciara estão sendo demonstradas variações no perfil de síntese de proteínas durante o período pré-pupal. WINTER, BIANCHI, TERRA e LARA (1976) relatam que ao atingir o pufe B2B máxima expansão na região anterior da glândula salivar de R.americana, ocorre a síntese de dois novos polipeptídeos, cuja radioatividade ainda aumenta com o tempo, para declinar mais tarde e ser sucedida pela de uma terceira fração nova. Experimentos aqui não relatados mostram que ao suprimir-se o desenvolvimento dos pufes de DNA em Brady sia hygida, pela administração de hidroxiuréia em idade apropriada, obtêm-se modificações consideráveis e reprodutíveis no perfil de síntese de proteínas da glândula salivar.

O conjunto de tais resultados indica claramente que o tipo de abordagem que procuramos estudar no presente trabalho é promissor no tocante à investigação do papel dos pufes cromossômicos no desenvolvimento da glândula salivar, embora se encontre ainda em fase incipiente. As informações existentes não permitem distinguir em que medida as modificações do perfil de síntese de proteínas da glândula salivar durante o período pré-pupal se devem à utilização de mensageiros pré-existentes aos pufes cujo aparecimento com elas coincide, e em que medida resultam de modificações no perfil de transcrição. Diversos trabalhos em quironomídeos (DOYLE e LAUFER, 1969; CLEVER, STORBECK
e Romball, 1969; Clever, 1969; Clever, 1972) mostraram que a incorporação global de aminoácidos pela glândula salivar não é sensível à actinomicina D se esta for administrada depois de breve período inicial do último estádio larval. Esses trabalhos indicam que RNAs mensageiros nesse material podem, de fato, ter longevidade considerável, mas não excluem que tenham ocorrido, sob a ação do antibiótico utilizado, variações qualitativas cuja somatória global simule inalteração no sínthete de proteínas. O estudo do efeito de inibidores da síntese de RNA sobre o perfil de síntese de proteínas em glândulas salivares de dipteros restringe-se, por enquanto, às modificações induzidas por choque térmico (Lewis, Hemsing e Ashburner, 1975) e ainda não foram extendidas às que ocorrem ao longo do desenvolvimento normal.

A mera coincidência no tempo entre aparecimento de pufes cromossômicos e modificações no perfil de síntese de proteínas não constitui mais do que evidência circunstancial para uma relação causal entre os dois tipos de eventos. Por outro lado, é possível inibir seletivamente e com variada intensidade uma classe de pufes cromossômicos - os pufes de DNA - em sciarídeos (Saúaia, Laicine e Alves, 1971) e essa inibição pode ser conseguida por vários agentes (Ribeiro e Saúaia, 1975; Almeida e Saúaia, 1975). Além disso, os pufes de DNA de Bradysia hygida obedecem a certo grau de especificidade segundo o tipo celular.
(ALVES e SAUAIA, 1975) e é possível modificar diferentemente o comportamento de diferentes pufes de DNA (da COSTA e SAUAIA, não publicado). Assim, se é improvável que se consigam mais que evidências circunstanciais através de sistemas que estudem pufes cromossômicos e proteínas específicas, também é verdadeiro que tais evidências poderão ser refinadas a ponto de adquirirem em seu conjunto peso considerável.
V. RESUMO E CONCLUSÕES
Foram comparados qualitativamente os perfis eletrofóreticos de extratos totais das três regiões da glândula salivar de Bradysia hygida (Diptera Sciaridae) em três idades diferentes do período pré-pupal e empupa jovem. A eletroforese foi feita em gel homogêneo de poliacrilamida em uma só dimensão segundo o método de LAEMMLI (1970). Foram também estudados, nas mesmas condições, por fluorografia, os perfis de síntese de proteínas depois de administração, por injeção, de mistura de aminoácidos 14C.

Os padrões eletroforéticos coloridos, embora diferentes segundo a região glandular quase não variam nas diversas idades estudadas. Ao contrário, descobrem-se muitas variações reprodutíveis nos perfis fluorográficos.

Esses resultados mostram que ao longo do período pré-pupal em B. hygida, o perfil de síntese de proteínas apresenta claras modificações. Discutem-se as implicações desses resultados no tocante à investigação a respeito do papel dos pufes de DNA.
VI. SUMMARY AND CONCLUSIONS
The electrophoretic patterns of total extracts from three regions of the salivary gland of *Bradysia hygida* (Diptera Sciaridae) were qualitatively compared at three ages during the pre-pupal stage and at the age of young pupa. The electrophoresis was carried out in homogeneous polyacrylamide gels, in one dimension, according to the method of LAEMMLI (1970). The patterns of protein synthesis were also studied (BONNER & LASKEY, 1974) under the same conditions, after the administration by injection of a mixture of 14C-aminoacids.

The stained electrophoretic patterns, although different for different gland regions, show almost no variation at different ages. The fluorographic patterns, however, exhibit many reproducible changes according to age.

These results indicate that, throughout the pre-pupal period in *B. hygida*, the patterns of protein synthesis undergo definite modifications. The implications of this observation for the study of the role of the DNA puffs is discussed.
VII. REFERÊNCIAS
BIBLIOGRÁFICAS
Efeito da 5-bromodeoxiuridina sobre desenvolvimento dos pufes de DNA.
Ciência e Cultura, 27(7): 247.

Cromossomas politênicos de Bradysia hygida: Especificidade do padrão de pufes de DNA segundo o tipo celular.

Especificidade dos padrões de formação dos pufes de DNA segundo o tipo celular.
Ciência e Cultura, 27(7): 245.

Function and structure of polytene chromosomes during insect development.

Patterns of puffing activity in the salivary gland chromosomes of Drosophila.
VI. Induction by ecdysone in salivary glands of D. melano-
gaster cultured in vitro.
Chromosoma, 38: 255.

Kontrolle eines biochemischen Merkmals in den Speicheldrüsen von Acricotopus lucidus durch einen Balbiani-Ring.

Cellular and secretory proteins of the salivary glands of Sciara coprophila during the larval–pupal transformation.

Chromomerenkonstanz und Spezifische Modifikation der Chromosomenstruktur in der Entwicklung und Organdifferenzierung von Chironomus tentans.
Chromosoma, 5: 139.

Ein Balbiani-Ring als Locus einer Speicheldrüsen-mutation.
Chromosoma, 12: 1.

The hormone ecdysone as effector of specific changes in the pattern of gene activities of Drosophila hydei.
Chromosoma, 22: 274.
Characterization of the RNA transcribed from a "DNA puff" in
Ciência e Cultura, 28(7): 264.

A film detection method for tritium-labelled proteins and
nucleic acids in polyacrylamide gels.

Gens na Diferenciação
Ciência e Cultura, 3(4): 115.

Behaviour of polytene chromosomes of Rhyncosciara angela at
different stages of development.
Chromosoma, 7: 371.

Puff induction in larval salivary gland chromosomes of Dro-
sophila hydei Sturtevant.
Genetica, 37: 17.

Genaktivitäten in den Riesenchromosomes von Chironomus
tentans und ihre Beziehungen zur Entwicklung. I. Genak-

Chromosome activity and cell function in polytenic cells.
II. The formation of secretion in the salivary glands cells of Chironomus.

Induktion von Puff-veränderungen in den Speicheldrüsenchromosomen von Chironomus tentans durch Ecdyson.

Chromosome activity and cell function in polytenic cells.
I. Protein synthesis at various stages of larval development.

CROUSE, H.V. (1968).
The role ecdysone in DNA-puff formation and DNA synthesis in the polytene chromosomes of Sciara coprophila.
Extra replications in the "DNA-puffs" of *Sciara coprophila*.
Chromosoma, 25: 357.

Requirements of ribonucleic acid synthesis for the formation of salivary gland specific proteins in larval *Chironomus tentans*.

Gene and information diversity in eucaryotes.

Autoradiography of polytene chromosomes of *Rhynchosciara angelae* at different stages of development.

Cytological and autoradiographic studies in *Sciara coprophila* salivary chromosomes.
Chromosoma, 15: 312.

Studies in polytene chromosomes of sciarids.

Chromosoma, 33: 421.

Chromosoma, 28: 136.

Chromosome puffs and gene expression in polytene cells.

Isolation and characterization of polysomes from Chironomus salivary glands.

Studies on nucleolar RNA synthesis in Drosophila melanogaster.

Cleavage of structural proteins during the assembly of the head of Bacteriophage T4.

Maturation of the head of Bacheriophage T4.
J.Mol.Biol. 80: 575.

Efeito da inibição da síntese de DNA sobre a glândula salivar de Bradysia hygida.
Tese de Doutoramento. Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo.

Laboratory culture of Rhynchosciara angelae.

Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography.

Parallel changes in puffing activity and patterns of proteins synthesis in salivary glands of Drosophila.

Protein measurements with Folin phenol reagents.
Disc electrophoresis and related techniques of polyacryl
amide gel electrophoresis.
Ed.Fischbeck - Pág. 1 - Walter de Gruyter.

Localization of RNA from heat-induced polysomes at puff si
tes in Drosophila melanogaster.

PANITZ, R. (1967).
Funktionelle Veränderungen an den Riesenchromosomen nach
Behandlung mit Gibberellinen.

Gene amplification in ontogeny and phylogeny of animals.

Chromosomal activities in Rhynchosciara and other sciaridae.

Heterozygous puffs in Sciara ocellaris.

An evaluation of film detection methods for weak β-emitters, particularly tritium.
Anal. Biochem., 34: 188.

Inibição do desenvolvimento dos pufes de DNA pelo 2,3-diidro-1H-imidazo (1,2-b) pirazol.
Ciência e Cultura, 27(7): 245.

A new puffing pattern induced by temperature shock and DNP in Drosophila.
Experientia, 18: 571.

Experimental activation of specific loci in polytene chromosomes of Drosophila

Disproportionate synthesis of DNA in a polytene chromosome region.

Cromossomas politênicos de *Bradysia hygida*. Inibição do desenvolvimento dos pufes de DNA pela hidroxiuréia.
Tese de Doutoramento. Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo.

A description of a new species of *Bradysia* (Diptera, Sciasidae).

Hydroxyurea inhibition of DNA puff development in the salivary gland chromosomes of *Bradysia hygida*.
Chromosoma, 34: 129.

Analysis of *Drosophila* mRNA by in situ hybridization: sequences transcribed in normal and heat shocked Culture Cells.
Cell, 4: 395.

Analysis of Bacteriophage T7 early RNAs and proteins on slab gels.

Protein synthesis in salivary glands of *Drosophila melano*
gaster: Relation to chromosome puffs.
J.Mol.Biol. 84: 389.

Proteinas durante o desenvolvimento de Rhynchosciara.
Ciência e Cultura, 24(6): 184.

Padrão de síntese proteica em glândulas salivares de Rhynchosciara no fim da vida larval.
Ciência e Cultura, 28(7): 264.

Salivary gland proteins of a Chironomus thummi strains
with a additional Balbiani ring.
Apêndice

Traçados da transmissão dos fluorogramas
Região S_1

m_7
Região S₁
m7+8h
Região S_1 pupa
Região S_2

m_3
Região S2
m₇
Região S_2

m_{7+8h}
Região S₂
pupa
Região S₃
m₇+₈h
Região S₃

pupa
Região S₃
pupa