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Resumo

As projeções do aquecimento global e do aumento de eventos climáticos extremos (Pai-

nel Intergovernamental Sobre Mudanças Climáticas (IPCC) são especialmente importantes

para as áreas mais populosas, que penalizarão os grupos mais vulneráveis. O Sudeste do

Brasil é um exemplo, que contribui com mais de 50 % do Produto Interno Bruto nacional,

e abriga mais de 40 % da população. No entanto, as tendências históricas de temperatura

não são homogêneas ao redor do globo, e particularmente na região Sudeste, devido a efei-

tos de distribuição de aerossóis, cobertura de superf́ıcie e circulações locais. Este estudo

visa atribuir os principais fatores que contribuem para a determinação da variabilidade

espacial e das tendências de temperatura no Sudeste. Com o modelo estat́ıstico de Ribes

et al. (2017) estimou-se um aumento de 1.1 oC em 50 anos na temperatura média regional

observada, que não pode ser explicado sem o aumento de gases de efeito estufa, e que mais

de 50 % da incerteza na estimativa dos parâmetros ajustados vem da variabilidade dos

modelos do Coupled Model Intercomparison Project (CMIP5). Na escala local, utilizando

52 estações meteorológicas no Sudeste, com um modelo estat́ıstico Aditivo Generalizado

(GAM), estimou-se a variabilidade espacial da média de temperautra mı́nima e máxima

(Tmin e Tmax), respectivamente, que foram significativamente controladas pelos fatores

de zonalidade e continentalidade (posição geográfica) e altitude (' 5.0 oC), pela cobertura

de superf́ıcie segundo o Índice de Vegetação de Diferença Normalizada (NDVI) para Tmin

(' 3.0 oC) e pela cobertura de nuvens para Tmax (' 3.5 oC). Ainda, a análise do controle

do NDVI sugere uma resposta heterogênea de Tmin que deve levar em conta a distri-

buição da cobertura vegetal mais localizada. A variabilidade temporal de temperatura de

longo prazo em cinco estações meteorológicas no estado de SP mostrou que a tendência

ajustada pelo GAM traz informações mais acuradas da variabilidade se comparada com o



ajuste linear, revelando uma provável influência do efeito de urbanização nas tendências

da temperatura mı́nima, coerente com o crescimento da população nas cidades estudadas.

Palavras-chave: tendências de temperatura do ar, modelo aditivo generalizado, atri-

buição de mudança climática, modelos estat́ısticos, mudança de uso da terra.



Abstract

The projected global warming and increase in extreme events reported by the Inter-

governmental Panel on Climate Change (IPCC) are important concerns for the most po-

pulated areas, that will impact mainly the most vulnerable. Southeast Brazil (SEB), for

example, contributes more than 50 % of the national Gross Domestic Product (GDP)

and houses more than 40 % of the country’s population. However, these trends are not

homogeneous throughout the globe, because of internal variability, aerosol distribution,

and changes in land use, for example. Therefore in this study, we aim to we attribute

the main contributors to temperature spatial variability, and trends in Southeast Brazil.

Using Ribes et al. (2017) statistical model, we have found a 1.1 oC increase in the regi-

onal average temperature in 50 years, that can not be explained without the increase in

anthropogenic greenhouse gases, and that more than 50 % of the uncertainty in the para-

meters estimation of the statistical model comes from the climate model variability, that

comes from Coupled Model Intercomparison Project (CMIP5). At a local level, using 52

weather stations in SEB, with the Generalized Additive Model (GAM), we have estimated

the average minimum and maximum temperature spatial variability for minimum and ma-

ximum temperature (Tmin and Tmax, respectively), are mostly influenced by changes in

geographical position and altitude (' 5.0 oC), with contribution from land cover with the

Normalized Difference Vegetation Index (NDVI) for Tmin (' 3.0 oC) and cloud cover for

Tmax (' 3.5 oC). Also, NDVI analysis suggests a heterogeneous response to Tmin that

needs to account for regional and local vegetation. The long-range temperature variabi-

lity in five selected weather stations in São Paulo show that the estimated GAM trend

gives more accurate information about the variability of temperature anomalies, compared

to the linear fit, revealing a probable influence of urbanization in minimum temperature



trends, which agrees with the changes in population in the selected sites.

Keywords: Air temperature trends, generalized additive models, climate change attri-

bution, statistical models, land cover change.
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Chapter 1

Introduction

Southeast Brazil is an area of great economic importance, contributing more than 50 %

of the country’s Gross Domestic Product (GDP) (IBGE, 2018b). It has various economic

activities like agriculture, industry, and services, in addition to important water reservoirs

used for hydric and energy supply. It is an area that is home to 40 % of the country’s

population (IBGE, 2018a), with large migration of people from other regions of the country

(IBGE, 2012). It has a complex topography (Figure 1.1), with emphasis on Serra do Mar

on the coast of the states of Paraná, São Paulo, and Rio de Janeiro, where it reaches

elevations of 1,000 meters in a few tens of kilometers from the coastline. Also, Serra da

Mantiqueira and Serra do Espinhaço reach up to 1,500 meters above sea level.

The climate in Southeast Brazil shows significant variability, with higher accumulated

precipitation in the south portion and lower in the north, marked by hot and wet summers

and cold and dry winters (Reboita et al., 2010). Summer is characterized by the mani-

festation of the South Atlantic Convergence Zone (SACZ), responsible for a significant

part of the precipitation (Ambrizzi and Ferraz, 2015), while in winter, cold fronts are the

most frequent cause of rainfall in the region, especially in the south (Foss et al., 2017).

The South Atlantic Subtropical High-Pressure system also has an important role in the

climate of the area, especially in winter when it is closest to the coast of Brazil, causing

persistence of days with low cloud cover and increasing air temperature near the surface

(Sun et al., 2017). Also, local scale effects should be mentioned, such as continentality

with an important influence from the Atlantic Ocean sea surface temperature in the regi-

mes of temperature and precipitation near the coast, caused by an atmospheric pattern of

circulation known as sea breeze (Oliveira et al., 2003).
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Figure 1.1: Map of Southeast Brazil highlighted by the black rectangle limited by the coordinates of

53.4oW, 26.5oS and 39oW, 12.7oS. The states are highlighted as well as the area of Serra do Mar, Serra da

Mantiqueira, and Serra do Espinhaço, important regions of complex topography. Shaded is the altitude

above sea level in meters.

Given the economic importance of the region, with activities that depend directly

on the climate, as well as a large populational density, with a high number of vulnerable

people, the impacts of anthropogenic climate change should be considered. The projections

from the Sixth Assessment Report from the Intergovernmental Panel on Climate Change

(IPCC) suggest an increase in global temperature between 2.7 e 5.7 oC until the end of the

twentieth-first century, compared to the period of 1995 to 2014 for the highest emission

scenario (Lee et al., 2021), as well as an increase in the frequency of events with extreme

precipitation (Li et al., 2021). Currently, some of those events have already being observed,

like drought in the state of São Paulo in 2014/2015, which was the lowest precipitation

anomaly on record, based on measurements that started in 1961 (Coelho et al., 2015), but

there is no evidence of being influenced by the increase in greenhouse gases (Otto et al.,

2015). However, extreme precipitation events like the one that occurred in 2020 in Minas

Gerais became 70 % more likely due to anthropogenic activities, with a loss of 56 lives and
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millions of dollars (Dalagnol et al., 2022).

Despite the increase in global temperature due to the increase in greenhouse gases, there

is regional and local variability in the observed temperature trends due to internal varia-

bility, aerosol distribution, and changes in land use. The last one is difficult to estimate,

with Lott et al. (2020) suggesting a contribution that decreases the global temperature by

-0.06 oC 10 yr.−1 due to the exposed surface in the poles, that reflects the incoming solar

radiation. In China, Sun et al. (2016) show that urbanization contributed to a third of the

1.44 oC increase in temperature between 1961 e 2013. At the local scale, Sugahara et al.

(2012), for example, suggests a heating effect of 0.16 oC 10 yr.−1 e 0.17 oC 10 yr.−1 for

maximum and minimum temperature, respectively, for the city of São Paulo in Brazil, due

to urbanization since the 1960s.

1.1 Objectives

From the context given above, this study aims to attribute the main contributors to

temperature spatial variability, and trends in Southeast Brazil over recent years, and the

main questions to be answered are:

• Does the increase in greenhouse gas concentration contribute to the observed tem-

perature trends in Southeast Brazil between 1955 and 2004?

• What are the main geographical controls of spatial variability of mean temperature

in Southeastern Brazil?

• Does land cover change influence the variability of the observed trends in local tem-

perature?

As specific objectives we highlight:

• Use a novel methodology for detection and attribution of temperature trends;

• Separate the main sources of uncertainty in the attribution of trends;

• Calculate the influence of vegetation on the spatial variability of the average tempe-

rature in Southeast Brazil
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• Verify the difference from linear fit to estimate temperature trends and other non-

linear methods

The document is divided into four chapters: Chapter 2 is a study of Detection & At-

tribution of temperature trends in Southeast Brazil using the methodology proposed by

Ribes et al. (2017). Chapter 3 used a non-linear additive model to determine the contribu-

tion of different factors to the spatial variability of the average temperature in Southeast

Brazil. Chapter 4 evaluates temperature trends using linear and non-linear methods for

local weather stations and possible sources. Finally, Chapter 5 brings conclusions of the

study based on the previous chapters and also gives suggestions for future studies.



Chapter 2

Attribution of detected trends in Southeast Brazil

The results that are presented in this chapter were published in Geophysical Rese-

arch Letters (de Abreu et al., 2019).

2.1 Introduction

The Detection and Attribution (D&A) problem consists in demonstrating that observed

trends are significant and different, in a statistical sense, from what can be explained by

internal variability, which are caused by the interaction of low and high frequency climate

components capable of producing long time-scale variations causing the impression of an

identifiable trend, without any external forcings. After the identification of the trend, the

causal attribution to different types of forcings can be made, which could be from natural

sources like volcanic aerosols or changes in incoming solar radiation, or anthropogenic

sources like increase in greenhouse gases, aerosols, or changes in land use (Mitchell et al.,

2001).

Experimentation with introducing different kinds of forcings in the climate system and

comparing them is not feasible, so we rely on model simulations and statistical analysis

for the attribution task. For example, Stott et al. (2000) uses simulations with either

natural or anthropogenic forcings to attribute the increase in global temperature. The

standard approach uses linear regression models called optimal fingerprint (Hegerl et al.,

1996; Allen and Tett, 1999; Allen and Stott, 2003) where scaling factors on simulated

signals are estimated with a range of uncertainty. The magnitude of the scaling factor and

its confidence interval is then used to make inferences about the causation of a particular

forcing or a set of forcings that are statistically significant to explain the observed changes.
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Using the methodology indicated above, Bindoff et al. (2013) shows attributable global

warming due to anthropogenic forcings between 0.6 and 0.8 oC between 1951 to 2010 from

the global temperature, which is consistent with the observed trends. In the sub-national

scale, we could only find three recent studies (Wang et al., 2017; Wan et al., 2019; Wang

et al., 2018). These studies found a human influence in temperature trends in Western

China, regional Canadian change, and in extreme temperature indices in 17 subcontinent

regions worldwide. The study of Karoly and Stott (2006) also detected a human influence

on Central England temperature.

In Brazil, there are no studies focusing on the attribution of long-term observed trends,

only attribution of weather events, which compare the probabilities of occurring a selected

event in the actual world with a natural world, without human influence (Otto et al.,

2015; Abreu et al., 2018). Studies have shown an increase of more than 3 oC in the

city of São Paulo between 1940 and 2010 (Silva Dias et al., 2013). Also, the frequency

of warm nights (minimum temperature above 90 % percentile) have increased while cold

nights (minimum temperature below 10 % percentile) have decreased with statistically

significant trends over Southeast Brazil (Vincent et al., 2005). Other observational studies

have been made in South America and on individual cities in the state of São Paulo,

to analyze whether a change in temperature could be detected and if these were due

to increasing greenhouse gases and other forcings (Marengo, 2001; Blain et al., 2009).

Although these studies find statistically significant trends in observations, the authors

suggest these changes could be either due to increase in greenhouse gases from climate

change or local factors like urbanization and land use changes from agricultural production,

that could have a significant impact on observed trends.

Therefore, this study aims to answer the question of whether observed temperature

changes in Southeast Brazil can be attributed to human and natural forcings. Southeast

Brazil is the geopolitical region in Brazil that comprises the states of São Paulo, Rio de

Janeiro, Minas Gerais and Esṕırito Santo and is responsible for more than 50 % of Brazil

Gross Domestic Product (GDP) with a broad range of economic activities that includes

agriculture, mineral extraction, automobile industries and others (IBGE, 2018b). More

than 40 % of Brazil’s population live in this region and it contains two of the most important

cities of the country, São Paulo and Rio de Janeiro (IBGE, 2018a). The high exposure

makes the region vulnerable to changes in climate, like droughts in major cities (Coelho
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et al., 2015) and impacts on agricultural production due to an increase of temperature

(Marengo, 2001; Camargo, 2010).

2.2 Material and Methods

2.2.1 Attribution model

In this study we use the attribution model presented in Ribes et al. (2017), hereafter

referenced as R17. We changed some of the notation from R17 to keep the notation

consistent throughout the thesis. Let’s assume that the true observed climate response for

a particular variable, like temperature, can be expressed as a vector y∗ with n time steps

that is the sum of the i = 1, . . . , nf true responses from the individual forcings x∗i which

are also vectors with n time steps:

y∗ =

nf∑
i=1

x∗i (2.1)

y = y∗ + εεεy (2.2)

xi = x∗i + εεεxi
(2.3)

This means that the observed response y is a sum of the true response with a random

noise term (εεεy ∼ N(0,ΣΣΣy)), which arises from internal variability and observational error,

while the observed response from the individual forcings xi are a sum of the true response

for that particular forcing and a random noise term (εεεxi
∼ N(0,ΣΣΣxi

)) that is a composition

of internal variability and model error.

Maximum likelihood estimation is then used to obtain estimates for y∗ and x∗i which

gives a -2 log-likelihood function of the form:

l(x∗1, . . . ,x
∗
nf

) =

(
y −

nf∑
i=1

x∗i

)T

ΣΣΣ−1y

(
y −

nf∑
i=1

x∗i

)
+

nf∑
i=1

(xi − x∗i )
T ΣΣΣ−1xi

(xi − x∗i ) + cte.

(2.4)

That, when maximized, can be used to find the estimates ŷ∗ and x̂∗i :

ŷ∗ = y + ΣΣΣy(ΣΣΣy + ΣΣΣx)−1(x− y) (2.5)

x̂∗i = xi + ΣΣΣxi
(ΣΣΣy + ΣΣΣx)−1(y − x) (2.6)
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Where ΣΣΣx =
∑nf

i=1 ΣΣΣxi
and x =

∑nf

i=1 xi. ŷ∗ and x̂∗i are unbiased estimators for y∗ and

x∗i with the following distributions:

ŷ∗ ∼ N
(
y∗, (ΣΣΣ−1y + ΣΣΣ−1x )−1

)
(2.7)

x̂∗i ∼ N

x∗i ,

ΣΣΣ−1xi
+

(
ΣΣΣy +

∑
j 6=i

ΣΣΣxj

)−1−1 (2.8)

The estimates ŷ∗ and x̂∗i can be used to calculate the true influence of each individual

forcing. Also, a series of statistical tests can be used to detect their contribution. For

example, the null hypothesis that y∗ = 0 means that the detected trend is due to internal

variability only and can be tested using as a basis the likelihood ratio test where yTΣΣΣ−1y y
H0∼

χ2
n. The consistency test for any subset of individual forcings can also be tested using H0

as follows:

(y − xI)
T (ΣΣΣy + ΣΣΣxI

)−1(y − xI)
H0∼ χ2

n (2.9)

Where I is a subset of forcings from 1 to nf , ΣΣΣxI
=
∑

i∈I ΣΣΣxi
and xI =

∑
i∈I xi.

As in R17, Ordinary Least Square (OLS; Allen and Tett, 1999) is also used to compare

the results found with the proposed methodology. The OLS method assumes a linear

dependency between the simulated responses xi and the observed one y. A scaling factor

βββ is then estimated by β̂ββOLS which can be used for inference:

β̂ββOLS = (XTΣΣΣ−1y X)−1XTΣΣΣ−1y y (2.10)

Where X = [x1, . . . ,xnf
]. The main differences between the two methods is that the

proposed one does not include a scaling factor and explicitly include observational and

model uncertainty. Therefore, ΣΣΣy in OLS is calculated using only internal variability.

2.2.2 Estimation of the covariance matrices

One difficulty of the proposed method arises from the estimation of the covariance

matrices ΣΣΣx and ΣΣΣy which are assumed to be known. The approach suggested in R17

is to use the ”models are statistically indistinguishable from the truth”paradigm which,

from a Bayesian perspective, where the true value is considered to be a non-deterministic
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quantity that is part of a underlying distribution, assumes that the models and the truth

are taken from the same distribution. Under this assumption the covariance matrices can

be estimated by:

ΣΣΣy = ΣΣΣobs︸︷︷︸
Observational error

+ ΣΣΣv,︸︷︷︸
Internal variability

(2.11)

ΣΣΣxi
=

(
1 +

1

nm

)
Σ̂ΣΣm︸ ︷︷ ︸

Model error

+
1

n2
m

nm∑
j=1

ΣΣΣv

nj︸ ︷︷ ︸
Internal variability

(2.12)

Where nj is the number of ensemble members for the jth model, nm is the number of

available models. The matrix ΣΣΣv is the covariance matrix due to internal variability only,

while ΣΣΣobs is the observational error. The model error Σ̂ΣΣm is given by:

Σ̂ΣΣm =
1

nm − 1

(
SSM − nm − 1

nm

nm∑
j=1

ΣΣΣv

nj

)
(2.13)

Where SSM =
∑nm

j=1(wj − w)2 which is the squared difference between the jth model

ensemble mean wj and the multi model mean w.

Another difficulty comes from the inversion of the covariance matrices, required to

compute the desired quantities. For example, a natural candidate for the estimation of ΣΣΣv

is the sample covariance matrix Σ̂̂Σ̂Σv = ZZT/m, where Z is a n×m matrix with m vectors

of ”pseudo-observations”that comes from the control simulation, or in our case, from the

within-ensemble difference, used to represent internal variability. However, in climate

sciences the size of the covariance matrices is usually large and therefore, the number m of

realizations needed to compute the covariance matrix accurately is also large. For example,

if n/m > 1 the rank of Σ̂̂Σ̂Σv is at most m and the matrix is therefore non invertible. However,

even when n/m ≤ 1 but the ratio is non negligible this lead to a numerically ill-conditioned

matrix that when inverted amplifies the error substantially (Figure 2.1; Ledoit and Wolf,

2004). A usual approach is to use the Moore-Penrose pseudo-inverse, which implies the

truncation of the matrix to the k leading Empirical Orthogonal Functions (EOFs) where

k << m focusing on the main patterns of variability (Allen and Tett, 1999; Hegerl et al.,

1996). Another approach, which is used in this study, is to regularize the matrix:

Σ̂̂Σ̂Σvr = ρIn + λΣ̂̂Σ̂Σv (2.14)
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The values ρ and λ are obtained using the method described in Ledoit and Wolf (2004)

and used in Ribes et al. (2009) and Ribes et al. (2013). An example of the effect of the

regularization is shown in Figure 2.1 for different ratios of n/m using the identity matrix

as the true covariance matrix. As the number of realization m increases in respect to

the number of features n, the eigenvalues of the sample covariance matrix converge to 1s

which are the theoretical values. In Figure 2.1a the number of realizations is ten times

higher than the number of features and there is still a spread of the estimated eigenvalues,

with an overestimation of the highest eigenvalues and an underestimation of the smallest

ones. This error is amplified by the inversion of the sample covariance matrix, which is

more evident in Figure 2.1b when m is only double the number of features. With the

regularization, even in cases when n/m > 1 the eigenvalues are closer to the theoretical

ones.
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Figure 2.1: True eigenvalues (dashed black line) from a covariance matrix given by the identity matrix

I, compared with the ones calculated from the sample covariance matrix and the regularized estimate for

different ratios of n/m. The eigenvalues are ordered from the highest to the lowest and the estimated

values for ρ and λ for the regularization from Eq. 2.14 are given in the title. The eigenvalues for the

inverse of the sample covariance matrix are also shown whenever possible. Adapted from Ledoit and Wolf

(2004).

2.2.3 Data and preprocessing

Gridded temperature observations from the Climatic Research Unit Temperature, ver-

sion 4 dataset (CRUTEM4) are used in this study to estimate the observed trends in

temperature for Southeast Brazil. This dataset uses homogenized weather stations, has

been corrected for urbanization effects, and provides monthly anomalies on a 5o × 5o lati-

tude/ longitude grid from 1850 to present (Jones et al., 2012). The area selected for this

study comprises all of the land in Southeast Brazil, bounded by 53.4oW, 26.5oS and 39oW,

12.7oS (Figure 2.2a).
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Figure 2.2: Region of interest comprising all states in Southeast Brazil highlighted by the black box

bounded by 53.4oW, 26.5oS and 39oW, 12.7oS. The states and capitals of each states are highlighted in

the figure (black points), as well as some populous regions (grey points).

The area-averaged anomalies were calculated using the procedure described in Morice

et al. (2012), in which a weight is attributed to each grid cell that is proportional to its

area. After that the annual averages are calculated. We focus on three distinct periods:

1955 to 2004, 1935 to 2004 and 1955 to 2014. The first period was selected because it

is when the trend is most significant, observations are more reliable, and simulated sig-

nals for different forcings are available. The second period was selected as a sensitivity

test with a longer period of data. The third period expands the analysis for ten years to

include a clear signal of the detected trend using only the all forcings simulation, which

includes both anthropogenic and natural forcings. For 2005 to 2014 simulations using Re-

presentative Concentration Pathway 8.5 (RCP8.5) from the models of the Coupled Model

Intercomparison Project Phase 5 (CMIP5; Table A.1) were used. Ten-year averages were

then computed to increase the signal to noise ratio and the temporal mean subtracted from

the data in order to focus only on the anomalies following Ribes et al. (2013). Therefore,

the size n of the vectors xi and y are five for the 1955-2004 period, seven for 1935-2004
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and six for 1955-2014.

In this study we use simulations from the Community Earth System Model (Hurrell

et al., 2013) to understand which of the various uncertainties (internal variability, obser-

vational error and model error) are most important. We use 34 members from the large

ensemble (CESM-LE) (Kay et al., 2015) driven with both natural and anthropogenic for-

cings (ALL), a 3-member ensemble with solar and volcanic forcings (NAT) and a 3-member

ensemble driven only with greenhouse gases (GHG). Simulated data are interpolated to

the CRUTEM4 5o × 5o grid and masked by the observational monthly mean dataset. The

CMIP5 models in Table A.1 are also used to compute model error and the multi-model

ensemble mean is also used to attribute changes in temperature due to one or a subset of

the listed forcings.

We consider the effects of greenhouse gases (GHG), natural influences (solar and volca-

nic; NAT) and other anthropogenic forcings (OA, mostly aerosols and land use changes).

Therefore, using the notation introduced in section 2.2.1, we have xGHG, xNAT and xOA

respectively, where the latter is calculated as: xOA = xALL − xNAT − xGHG, where xALL

is the all forcings simulation. To calculate the covariance matrices ΣΣΣy, ΣΣΣxGHG
, ΣΣΣxNAT

and

ΣΣΣxOA
the covariance matrix for internal variability (ΣΣΣv) is required. This is done by cal-

culating the within-ensemble differences from the large CESM-LE ensemble. In order to

be consistent with the OLS approach Σ̂ΣΣv is split into two covariance matrices, one used

to pre-whiten the data and other for uncertainty estimates in β̂ββOLS. This is achieved by

splitting the members from the large ensemble into two subsets of 17 members (34 mem-

bers form CESM-LE divided by two) and then calculating Σ̂ΣΣv1 and Σ̂ΣΣv2 using this subset

of simulations, used in equations 2.11 and 2.12, respectively.

To determine which of the different errors is dominant we carry out three main analyses:

• We use only internal variability (ΣΣΣv) to compute ΣΣΣy and ΣΣΣxi
;

• We include observational error (Σ̂ΣΣobs) from CRUTEM4 for the estimation of ΣΣΣy;

• We include model errors (Σ̂ΣΣm) for the estimation of xGHG, xNAT and xOA and their

respective covariance matrices. The covariance matrices for internal variability (Σ̂ΣΣv1

and Σ̂ΣΣv2) are calculated using the regularization approach described in section 2.2.2

In order to calculate the observational uncertainty Σ̂ΣΣobs we consider the correlated error

(Σ̂ΣΣcorr) by using 100 ensemble members of the land only component of HadCRUT4 and the



14 Chapter 2. Attribution of detected trends in Southeast Brazil

uncorrelated errors (Σ̂ΣΣuncorr) from the same dataset. The ensemble members are generated

based on the spatial and temporal uncertainties that are correlated (Morice et al., 2012).

Therefore, Σ̂ΣΣobs = Σ̂ΣΣcorr+Σ̂ΣΣuncorr. The model error covariance matrix (Σ̂ΣΣm) is conservatively

estimated using the CMIP5 models that are indicated in Table A.1 using equation 2.13.

In all cases we assume that the mean values for x∗i comes from the CESM-LE ensemble,

which means that nm = 1 for calculating internal variability in equation 2.12. This is done

also on the third step, when the CMIP5 models are included to calculate Σ̂ΣΣm, to make

the analysis consistent with the previous steps. We carry out a final analysis where we

estimate the xi from the CMIP5 multi-model average (nm > 1). Throughout this study,

internal variability was computed from CESM-LE.

From the best estimates of the true signal (ŷ∗ and x̂∗i ) calculated using R17 method,

trends are estimated using linear regression. We used 1000 random samples with replace-

ment generated from the covariance matrices from equations 2.7 and 2.8 to estimate the

uncertainty from the estimated trends. The 5 % and 95 % percentiles are considered as

the lower and upper threshold, respectively. For OLS, the model response is scaled by

β̂ββOLS to calculate the trend by linear regression and estimate the warming/cooling rate to

be compared with R17 best estimates trends. We also show 5-95 % ranges for OLS.

2.3 Results and Discussion

The observed anomalies for Southeast Brazil from CRUTEM4 (Figure 2.3) shows a

warming trend, from the decadal averages, of 0.22 [0.15 to 0.31] oC per decade between

1955 and 2004, which is equivalent to a 1.1 [0.7 to 1.5] oC over this period for the ave-

rage temperature. The ALL simulation, which contains both natural and anthropogenic

forcings, captures the observed warming for the period with a correlation of 0.60, which

suggests that about 40 % of the observed inter-annual to multi-decadal variability is forced

by natural and anthropogenic forcings. This happens because each ensemble member has

its own internal variability that is not necessarily in phase with the observation, so when

we calculate the average, the internal variability tends to cancel out, and the signal is

mostly from the external forcings (natural + anthropogenic).

The GHG simulation has a similar trend compared to CRUTEM4 and ALL between

1955 and 2004, with a correlation of 0.39. This suggests much of the observed temperature
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increase in Southeast Brazil could be due to greenhouse gases only. The NAT simulation

suggests a slight cooling of about 0.25 oC in the early 1990s from the 1991 Pinatubo

eruption, which is also apparent in ALL. The estimated OA signal, which is calculated

from the difference of ALL to GHG and NAT, cools until about 1980 and warms after

that, with a linear correlation of 0.25 with observations in the 1955-2004 time window.

This result might be due to changes in emissions of sulphur dioxide from Europe and

North America, which had rapidly increased starting at the beginning of the 20th century

and then declined from the 1970s due to emission control policies (Hoesly et al., 2018).
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Figure 2.3: Ten-years moving average of annual temperature anomalies, between 1920 and 2017 for

CRUTEM4 (black line), ALL (blue line), GHG (red line) and NAT (green line) simulations. Other

Anthropogenic (OA; orange line) is ALL minus GHG and NAT ensemble means. Shading indicates the

model spread (5 to 95 % range). Correlations between CRUTEM4 annual anomalies and 1955-2004

ensemble means are displayed in the labels. The anomalies are calculated with respect to 1961 to 1990

climatology.

First we calculate the best estimates of the OLS scaling factors (β̂ββOLS) which are shown

in Figure 2.4. We can see that the observed signal is underestimated for the GHG signal,

specially for the 1955-2004 period with a value of 1.81 [1.11 to 2.51], being approximately

-44 % [= 100× (1/βGHG−1)] lower than the observation. However, the signal is consistent

with unit in the 1935-2014 period, which means that it is clearly detected by the method.
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On the other hand, OA and NAT have large uncertainties, being consistent with zero,

which means that their signal is undetected in the OLS estimation.
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Figure 2.4: Best estimate of the OLS scaling factors and their 5-95 % confidence interval for other

anthropogenic (OA, orange), natural (NAT, green), greenhouse gases (GHG, red) and all forcings (ALL,

blue) for the periods between: (a) 1955-2004; (b) 1935-2004 and (c) 1955-2014.

The best estimates of ŷ∗ and x̂∗i are calculated using the R17 statistical model, using

CESM as reference in three steps to understand the importance of the different types of

uncertainties, as described in section 2.2.3:

• Using only internal variability to estimate the error (R17 iv only);

• Including observational error (R17 iv + obs)

• Including model error (R17 iv + obs + model)

After that, the linear trends in temperature are computed using the raw model data

and the R17 estimates using each of the different errors and they are compared with each

other.
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Figure 2.5: Temperature trends calculated from decadal averages for the observations (CRUTEM4) and

each individual forcing (OA, NAT and GHG) using R17 three signal models best estimates (x̂∗
i and ŷ∗)

for the different steps of analysis that include: (1) Internal variability only to estimate the covariance

matrices (iv only, circle); (2) Inclusion of observational error (iv + obs, triangle down) and (3) inclusion

of observational error and model error (iv + obs + model, triangle up). The estimated trend using the

multi model ensemble mean (MMM iv + obs + model, x symbol) and the CESM/CRUTEM4 raw data

(diamond) are also included (Raw data; x and y from R17 notation) as well as the OLS estimate after

scaling by β̂ββOLS (squares). The trends for ALL are based on R17 one signal model best estimates and is

displayed in the shaded area in left of Figures (a) and (b). Figure (a) shows the trends between 1955 and

2004 and (b) for 1935 to 2004 (c) for 1955 to 2014 using RCP8.5 to extend the simulations after 2005.

The numbers above the marker shows the ratio between the uncertainty relative to the best estimate (x̂∗
i

and ŷ∗) of the iv only case calculated as in equation 2.12.

Our results, using the different types of error, consistently find a detectable impact of



18 Chapter 2. Attribution of detected trends in Southeast Brazil

greenhouse gases on Southeast Brazil temperature as seen by the estimated linear trends

in Figure 2.5a and b. The inclusion of observational error (iv + obs) did not cause a

significant increase in uncertainty, suggesting that observational error is not a relevant

source of error for estimating the true response of the temperature trends. On the other

hand, model error (iv + obs + model) is a major source of uncertainty for calculating R17

best estimates. When separating the errors that comes from iv + obs from the ones that

come from model, we see that roughly 50 % of the total uncertainty comes from model

error. As an example, the uncertainties in the CESM GHG forced trend for the CESM

model are 2.1 times larger when including model uncertainty compared with the estimates

when just internal variability is considered, for the 1955-2004 period.

In the case where all sources of error are used (iv + obs + model) the CESM OA

signal indicates a small warming and large uncertainty -0.06 oC to 0.18 oC, mostly due to

model error which is consistent with the observed warming according to the chi-squared

test defined in Eq. 2.9 (Table 2.1). However, for the 1935 to 2004 time window OA

makes no statistically significant contribution to the observed trends. Given this and the

conservative estimates of model error for R17, we think that OA alone does not explain

changes in Southeast Brazil

In the analysis that we mentioned previously we used CESM as the mean to define the

forced signals and all CMIP5 models from Table A.1 to estimate Σ̂ΣΣm, which may not be

ideal since we assume a Gaussian uncertainty centered around CESM which lies towards

the tail of the CMIP5 model distribution, with a trend that corresponds to the tenth lowest

trend from the 35 models available for the ALL experiment. Therefore we estimate the

true response signals, including all uncertainties, using the CMIP5 multi-model ensemble

mean (R17 MMM iv + obs + model). Between 1955-2004 (Figure 2.5a) we also find a

significant contribution to the observed warming from GHG. A trend of 0.19 oC to 0.30

oC per decade is found that is equivalent to a 0.95 oC to 1.50 oC warming in this 50 year

period. NAT and OA are small and have significant uncertainties which makes it difficult

to draw any conclusion regarding the impact of those forcings for this time scale and for

the study region. Contrary to using CESM OA signal, CMIP5 OA multi-model ensemble

mean does not show consistency with the observed warming in the 1955 to 2004 time

window, with a trend of -0.07 oC to 0.01 oC per decade.
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Table 2.1 - Hypothesis testing χ2 p-value for individual forcings from R17 model in cases where (1) Internal

variability only was used to estimate the covariance matrices (iv only); (2) Inclusion of observational error

(iv + obs); (3) inclusion of observational error and model error (iv + obs + model) and (4) considering

the multi model mean as the ensemble mean instead of CESM large ensemble (MMM iv + obs + model).

The results presented here are for the 1955-2004 and 1935-2004 time window.

Forcing/Error iv only iv + obs iv + obs + model
MMM

iv + obs + model

1955-2004

Internal-Variability 0.00 0.00 0.00 0.00

OA 0.01 0.02 0.36 0.03

NAT 0.00 0.00 0.02 0.01

GHG 0.66 0.70 0.84 0.98

All forcings (GHG+NAT+OA) 0.70 0.73 0.96 0.96

ALL 0.35 0.43 0.74 0.86

1935-2004

Internal-Variability 0.00 0.00 0.00 0.00

OA 0.00 0.00 0.00 0.00

NAT 0.00 0.00 0.01 0.00

GHG 0.73 0.78 0.92 0.95

All forcings (GHG+NAT+OA) 0.36 0.47 0.82 0.48

ALL 0.01 0.06 0.21 0.36

Changing the time window of the analysis to begin in 1935 (Figure 2.5b) reduces the

uncertainty bars but results remain consistent with the 1955-2004 analysis. For the 1935-

2004 time window the GHG trend is 0.15 oC to 0.23 oC per decade that is equal to a

1.05 oC to 1.61 oC warming in 70 years, which is also consistent with the observed trend.

Our results are consistent with OLS even though this estimate shows a higher positive

trend and uncertainty for GHG. Using data from 1955 to 2014 from the ALL simulation

increases the signal to noise ratio, reducing the uncertainty bars when considering model

error, which implies the simulated warming signal is more consistent across the different

models. The results are also compatible with the observed trends which continues to imply

a forced component.

2.4 Conclusions

The current study has used a novel Detection & Attribution method from Ribes et al.

(2017) to attribute temperature changes of approximately 1.1 oC per 50 years for Southeast



20 Chapter 2. Attribution of detected trends in Southeast Brazil

Brazil, and answer the question of whether or not the observed trends can be attributed

to the increase in greenhouse gases. Using the CMIP5 multi-model ensemble mean gave a

trend of 0.95 oC to 1.50 oC per 50 years from GHG which suggests anthropogenic activities

made a substantial contribution to the observed trend with no significant contribution from

natural or non-greenhouse gases anthropogenic sources. The results seem to be robust to

change in time window of the analysis and by taking account of both observational and

model errors. Using CESM as the model mean to investigate which error is dominant in

this analysis showed that more than half of the error may come from model uncertainty.

It might be possible to reduce this uncertainty by rejecting some models that are very

different from the observations. The inclusion of model error had a significant impact in

the uncertainty of CESM OA warming signal for 1955-2004 which was not supported by the

multi-model mean and by changes in the time window that did not reveal any contribution

from other anthropogenic sources.

When other attribution studies are considered, we see that warming trend in Southeast

Brazil due to anthropogenic activities is consistent with other regions. A trend of 0.19

oC to 0.30 oC per decade due to GHG was found in this study, with a small contribution

from other anthropogenics, of -0.07 oC to 0.01 oC per decade. The IPCC AR5 reported an

attributable warming trend of 0.08 oC to 0.21 oC, for global temperature, per decade due to

GHG (Bindoff et al., 2013). GHG trends, that are comparable to the overall anthropogenic

trends for SE Brazil, are consistent with regional studies for Western China, Canada and

Central England that showed attributable decadal warming trends due to anthropogenic

activities of 0.19 oC to 0.30 oC, 0.07 oC to 0.23 oC and 0.14 oC to 0.26 oC, respectively

(Wang et al., 2018; Wan et al., 2019; Karoly and Stott, 2006). However, unlike these

regional studies we are able to calculate contributions from three different forcings. The

results shown in this study, of a significant anthropogenic induced warming in a regional

scale, also suggests that human induced climate change is becoming very strong at human

relevant scales.



Chapter 3

Effects of local vegetation and geographical regional

controls in near-surface air temperature for

Southeastern Brazil

The results that are presented in this chapter were published in Atmosphere (de Abreu

et al., 2022).

3.1 Introduction

The average global near-surface air temperature increased 0.85 oC [0.69 oC to 0.95

oC] between 1995-2014 relative to 1850-1900, dominated by increasing anthropogenic gree-

nhouse gases and a minor contribution from aerosols and other natural sources that range

from months to decades as solar radiation, volcanism, sea salt, and mineral dust (Gu-

lev et al., 2021). However, this warming rate showed a large spatial variability across

continental areas due to other anthropogenic factors like land cover change, increasing

urbanization, and aerosols from industrial processes that contribute to either warming or

cooling at the regional scale (Doblas-Reyes et al., 2021). For Southeastern Brazil (SEB),

a large and populated region larger than 900,000 km2, with more than 89 million inha-

bitants, de Abreu et al. (2019) reported warming of 1.1 oC in 50 years (1955 to 2004)

using CRUTEM4 data (Jones et al., 2012), well above the global average, but also attri-

buted mostly to greenhouse gases and in agreement with the global scale effect (Bindoff

et al., 2013). However, at SEB there is a lack of information about the spatial variability

of temperature trends, and only local studies are available (Blain et al., 2009; Marengo,

2001). We suspected even more about the spatial variability by analyzing historical trends
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from 52 weather stations in SEB. They showed a mean of 0.25 oC 10 yr−1 across stations

for daily averaged temperature, which compared well with the regional mean of de Abreu

et al. (2019), but with a high range of values showing both cooling and warming trends,

of +0.02 to +0.51 oC 10 yr−1 for minimum daily temperature (Figure 3.1a), from -0.01

to +0.46 oC 10 yr−1 for average temperature (Figure 3.1b), and from -0.1 to +0.60 oC 10

yr−1 for maximum daily temperature (Figure 3.1c).
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Figure 3.1: (a) Minimum daily temperature (Tmin) linear trend for the stations in southeastern Brazil

between 1985 and 2010, in oC 10 yr−1, ordered from the lowest trend to the highest; (b) same as (a) but

for daily average temperature (Tavg); (c) same as (a) but for maximum daily temperature (Tmax). Solid

lines are the 95 % confidence interval, vertical solid line is the average of all stations. ∗ The dotted vertical

line in (b) is the southeastern Brazil average temperature trend estimated from CRUTEM4 calculated in

(de Abreu et al., 2019).

The pattern with a pronounced spatial heterogeneity in temporal temperature trends

(Figure 3.1) motivated us to investigate in depth the geographical spatial controls of the

long-term mean temperature. Various authors reported connections between the temporal
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trends and the controls affecting the mean near air-surface temperature, for example, the

land cover (Camilloni and Barros, 1997; Kalnay and Cai, 2003; Wang and Yan, 2016) and

topography (Ceppi et al., 2012; Kagawa-Viviani and Giambelluca, 2020), that can possibly

enhance or diminish how the large-scale controls, like the greenhouse gases contribution,

affect the local response of temporal changes. Therefore, to identify the likely controls

of local-regional variability in temporal trends, we have first to guarantee the physical

consistency of the measurements, and then obtain the controls of variability in the mean

state of temperature.

The SEB contributes over 50 % of the national Gross Domestic Product (GDP) with

services, agricultural and industrial goods, as well as headwaters for hydroelectricity and

human water supply, where the impacts of climate change are risky due to significant

exposure and vulnerability (Hunt et al., 2018; Nobre et al., 2011; Pereira et al., 2017).

The region is spatially complex in topography and land cover, where latitudinal variation

explains up to 50 % of average temperature range, and longitude, which is a proxy for

continentality, has a lower impact (Alvares et al., 2013). Rodŕıguez-Lado et al. (2007)

used a linear regression model to study the patterns of spatial variability of temperature

in the state of São Paulo, which is part of the SEB, with altitude and latitude as indepen-

dent variables, with no significant impact on longitude. The influence of continentality is

confounded with the effects of two large mountain ranges placed parallel to the coastline

(Serra do Mar and Serra da Mantiqueira), wherein a combined effect of sea breeze and

orographic circulation both contribute to cloud cover and cold air advection (Silva Dias

et al., 1995). In SEB the land cover in rural areas is dominated by pastureland and sugar-

cane plantations, and an increasing urbanization that enhances local warming (Oke et al.,

2017). For example, the urban heat island effect in the city of São Paulo was characterized

by accelerated expansion of urban areas since the early twentieth century, and is partly res-

ponsible for increasing local air temperature (Silva Dias et al., 2013). However, the urban

heating is not homogeneous over it spatial extent and depends on many different physical

factors such as diurnal cycle, atmospheric turbulence, thermal properties of constructed

materials, and urban morphology as well as the background temperature (Camilloni and

Barros, 1997; Zhao et al., 2014; Manoli et al., 2019). On this subject, Kagawa-Viviani

and Giambelluca (2020) used multiple linear regression at the regional scale in Hawaii and

showed a dependency of the spatial distribution of minimum temperature with vegetation
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and wind speed, which was not observed for maximum temperature, that had a depen-

dency with precipitation and cloud cover. Also, other features might explain the effects at

the local scale with complex topography, like slope and aspect (Sun and Zhang, 2016).

In general, the studies of attribution of spatial variability of temperature in SEB are

modest, using a limited set of independent variables that did not include likely effects of

land cover and cloud cover caused by mesoscale circulation (Alvares et al., 2013; Rodŕıguez-

Lado et al., 2007). To contribute to this understanding, multiple linear regression (MLR)

is advantageous, as a simple and parsimonious model for explicit quantification of different

independent variables. However, MLR has intrinsic restrictions, like assuming a linear

relationship between the dependent and independent variables. The Generalized Additive

Model (GAM) was developed to overcome this limitation, as a generalization of the Genera-

lized Linear Model (GLM). GAM fits smoothing functions to build relationships between

a set of predictors and the predicted variable instead of assuming a linear dependency

(Wood, 2017). Still, relationships in GAM can be easily interpreted graphically for each

independent variable, and provide inferences about individual contributions, differently

from more complex non-linear methods like neural networks and other ”black box”types

of models.

Our objective is to assess the influence of local vegetation and regional scale geophysical

controls on the spatial variability of near-surface temperature in Southeastern Brazil. Using

a wide network of weather stations, and with the attempt to understand and describe a

simple way of showing the dependencies of temperature with the geophysical features of

zonality and continentality, altitude, cloud cover, and as a novelty the influence of local

vegetation, with parsimonious linear (MLR) and non-linear (GAM) models.

3.2 Materials and Methods

3.2.1 Weather station information

We used the average minimum and maximum air temperature data (Tmin, and Tmax,

respectively) calculated from daily data, from a network of weather stations in Southeast

Brazil (INMET, IAC, ICEA, and IAG institutes) (Figure 3.2). We only used conventional

weather stations that are installed according to standards about site selection and exposure,

and used the longest available period to compute the climate means (WMO, 1967, 2018).
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We selected the years from 1985 to 2010, which was optimum because of satellite data

availability to calculate the Normalized Difference Vegetation Index (NDVI) values and

by maximizing the number of available stations from IAC network, which was available

until 2010. We quality controlled the available data by first checking metadata for the

exact location of each station to calculate NDVI and fill in missing information about

altitude. The second step included comparing the timeseries with predefined thresholds

of physically plausible values, persistency of repeated values, and discarding data outside

the boundaries defined by three times the standard deviation. We also compared it with

nearby stations when more than six of them were available in a 100 km radius of the target

stations, according to Meek and Hatfield (1994) and Shafer et al. (2000). Weather stations

that were moved during the selected period were not used in the analysis, resulting in 52

stations that met all requirements (Table B.1). A total of 15 stations have between 10-30

% of missing data for Tmin and 20 stations for Tmax, and only five have between 20-30

% for both Tmin and Tmax.

To interpolate this large number of missing data we used an EOF based method des-

cribed in Beckers and Rixen (2003). Henn et al. (2013) showed that this method is more

suitable to interpolate longer periods of data. We start with a first guess for the missing

variables based on the average of each station and then apply the Singular Value Decom-

position (SVD) to the matrix X (n × s dimensions, where n = the number of days, s

= number of stations) whose columns are each station and the rows are each day in the

selected time window:

X = UDVT (3.1)

U is the matrix of eigenvectors for XXT , D is the diagonal matrix with the singular

values and V is the matrix of eigenvectors for XTX. A number m of components are

retained to reconstruct the original matrix and produce a new estimate of the missing

data.

X′ = U[:, 1:m]D[1:m, 1:m]V[:, 1:m]T (3.2)

The new values of X′ where missing data were located are the new estimated values for

X, while the non missing values are kept unchanged. This process is repeated iteratively
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until convergence is reached. To calculate the optimal number m of EOFs to be used in

the interpolation we randomly introduce 2 % of missing data that is used to calculate the

root mean squared error (RMSE). The m with the lowest RMSE is then chosen to perform

the interpolation.

Figure 3.2: Geographical position of the weather stations used in this research. Each station is iden-

tified by a colored point according to the different networks they belong (red: Instituto de Astronomia,

Geof́ısica e Ciências Atmosféricas/Universidade de São Paulo (IAG); blue: Instituto Agronômico de Cam-

pinas/Secretaria de Agricultura e Abastecimento de São Paulo (IAC); orange: Instituto Nacional de Me-

teorologia (INMET); green: Instituto de Controle do Espaço Aéreo/Ministério da Aeronáutica (ICEA)).

Shading represents the altitude in meters. Upper case and bold letters are the federal states delimited by

the grey solid lines, and italic highlight the location of three important mountain chains: Serra do Mar,

Serra da Mantiqueira, and Serra do Espinhaço.

We used m = 5, which had an RMSE of 1.4 oC for minimum temperature. As a

comparison, using inverse distance weighting (IDW) resulted in an RMSE of 2.1 oC. The

lower RMSE is in part resulted by the fact that the SVD decomposition incorporates both

spatial and temporal information about the station that is being interpolated, differently

than IDW which only uses spatial information. When dealing with sparse networks like
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the one we are using this is particularly useful to interpolate large gaps as shown in Figure

3.3. IDW is able to capture the seasonal variability in the gap between 1985 and 1990

from the nearby stations, however it has an offset of about 5 oC, differently than the

EOF method that preserves the temporal average. Also, the interpolated values with the

EOF method are closer to the observed range while with IDW it is not uncommon to see

artificial minimums. After the interpolation of missing values, we homogenized the data

(described in Section B.2), which is important to reduce the influence of random errors,

detected through breakpoints in the timeseries, and caused by changes in instruments, drift,

transcribing errors, that are not available in the metadata. We kept, however, stations

where changes in NDVI and land use possibly occurred.
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Figure 3.3: Daily average temperature in oC for the station inm10 after the quality control (blue) and

after the interpolation (orange) for: (a) The EOF method described in Beckers and Rixen (2003); (b)

Inverse Distance Weighting (IDW).

We used NDVI estimated by Landsat 5 satellite data (with 30 m of spatial resolution),

using all available images for each of the 26 years of data. Then, the temporal average was
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calculated (Figure B.4). We computed the spatial average using a circle with a variable

radius with the origin at the station coordinates. After a sensitivity analysis with the

length of the radius, we selected 300 m for the consolidated averages, based on the highest

correlation with Tmin in the annual aggregation (Figure B.5a). Altitude was selected

from metadata when available, and we used the estimates from Shuttle Radar Topography

Mission (SRTM,Farr et al., 2007) when not. Cloud cover was estimated from a 15-year

average (2000-2014) from the MODIS satellite with 1 km of spatial resolution (Wilson and

Jetz, 2016).

3.2.2 Statistical model

We used two models to represent the spatial variability of air temperature: Multiple

Linear Regression and Generalized Additive Model (described in more detail in Section

B.3), which can be expressed as the sum of smoothing functions fj (Hastie et al., 2009):

Y = α +

p∑
j=1

fj(Xj) + ε (3.3)

Where Y is the dependent variable (Tmin, Tmax), α is the intercept term, Xj is the

jth independent variable (j = 1, ..., p; p = number of regressors), and ε is the residual

error which has a normal distribution with zero mean and constant variance. The smo-

othing functions in Equation 3.3 have the ability to fit non-linear relations between the

independent and dependent variables, however they are fitted following a penalized least

squares algorithm to penalize too wiggly functions preventing an overfit of the model. The

Generalized Cross Validation (GCV) is used to estimate the penalization for each variable

(Wood, 2017). By doing so, if the penalization is large we can even fit linear relations

between the predictor and predicted variable. We used the concept of estimated degrees

of freedom (edf) to determine whether or not the relations are linear since if edf ≥ 2, there

is strong evidence that a nonlinear function might be the best fit (Wood, 2017). We used

the following source equation to fit the GAM:

T̂ = α̂ + f̂1(altitude) + f̂2(NDVI) + f̂3(cloud cover) + f̂4(lon, lat) (3.4)

Every function f̂ is fitted using the mgcv package for R (Wood, 2017), and the estimator

α̂ is the spatial sample mean of the dependent variable T . The model was fitted individually
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using the average from daily data for each of the following time aggregations: summer

(December, January, and February), winter (June, July, and August), and annual (January

to December). We highlight the usage of a single term for representing the zonal and

continental effects through f4(lon, lat) that will be discussed in more detail in the results.

GAM is based on smoothing functions that require many different parameters to re-

present non-linear dependencies and therefore have a greater degree of complexity when

compared with MLR. In the case of MLR, the model that we used is analogous to Equation

3.4, where fj(Xj) = βjXj and, therefore:

T̂ = α̂ + β̂1altitude + β̂2NDVI + β̂3cloud cover + β̂4lon + β̂5lat (3.5)

Equation 3.5 has a maximum of six degrees of freedom, one for each regressor, while a

GAM model can have more estimated degrees of freedom, depending on the nonlinearities

found in the data. Therefore we compare the results for Equations 3.4 and 3.5 with the

same regressors.

The models were evaluated according to the Bayesian Information Criteria (BIC),

BIC = nSSE − n log n + p log n, where SSE is the sum of squared residuals and n is the

number of data samples. The lower the BIC, the lower the error; however, a penalization

term accounts for the number of parameters in the model, prioritizing more parsimonious

models with fewer parameters. To ensure that we are using the most conservative model,

we tested all possible combinations of terms from Equations 3.4 and 3.5 (15 possibilities

for GAM and 31 for MLR) and selected the model in which all terms were statistically

significant with a 5 % significance level and with the lowest BIC. A flow chart of the main

steps is presented in Figure 3.4.

To detect if collinearity effects would be a problem in the model, affecting the inter-

pretation of the results, we calculate the variance inflation factor (VIF), which estimates

how much of the variance of the parameters in the regression is inflated in comparison

with the case where they are linearly independent. The maximum value of VIF was 1.64

for latitude, which is inside the range of recommended values and should not cause any

significant problems due to the collinearity of the regressors (Kutner et al., 2005).
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Figure 3.4: Flow chart of the main steps taken in the methods, including data source preprocessing,

statistical methods (Simple Linear Regression (SLR), Multiple Linear Regression (MLR), and Generalized

Additive Model (GAM)), and selecting the best model for the analysis.

3.3 Results and Discussion

To elucidate the possible dependency of the average temperature with the selected re-

gressors (latitude, longitude, NDVI, and cloud cover), we show the scatter plot for the

annual average Tmax and Tmin (Figure 3.5) with each independent variable for a visual

inspection of the relationship between them. We notice a wide range of average tempe-

ratures of almost 10 oC, to be more precise, between 12.4 and 21.8 oC (17.3 ± 2.0 oC)
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for Tmin and between 23.8 and 32.9 oC (28.5 ± 2.3 oC) for Tmax. We fitted the simple

linear regression (SLR), and all scaling factors are statistically significant (p-value < 5 %),

except for Tmax and longitude (p-value = 0.28), suggesting that there is a dependency

between each pair of variables. Based solely on the scaling factor, Tmax has a greater sen-

sitivity than Tmin with latitude and cloud cover, while Tmin is more sensitive to NDVI,

longitude, and altitude. In particular, we notice an atypical pattern between Tmax and

altitude, with a heterogeneous distribution of points close to altitudes of zero meters.
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Figure 3.5: Scatter plot of the average annual maximum (red) and minimum (blue) temperature for each

station, with the following independent variables: (a) latitude, (b) longitude, (c) altitude, (d) NDVI, (e)

cloud cover. The solid line is the univariate linear regression fitted using ordinary least squares with the 95

% confidence interval in shading. The equation and estimated parameters are located above each scatter

plot, with the p-value of the scaling factor in parenthesis.

3.3.1 Model fitting

The estimated model parameters for MLR (β̂j) and GAM (edf) are available in Table

3.1, with the respective R2 and BIC for the fitted model. They show that both models

have a high percentage of the explained variance for temperature, with R2 between 86 %
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and 94 %. GAM explains a higher percentage than MLR, with a difference of almost 9 %

for Tmax and 7 % for Tmin, and a lower BIC. For Tmax, MLR had five degrees of freedom

(number of statistically significant independent variables), while for GAM there were 8.9

edfs (sum of the individual edfs for each independent variable). For Tmin MLR showed

four degrees of freedom, while GAM had 10.3 edfs.

We noticed that the fitted functions using GAM are significant for Tmax with (lon,

lat), altitude, and cloud cover, and Tmin with (lon, lat), altitude, and NDVI. For MLR,

the fitted linear functions were the same as GAM, except for longitude, which was not

statistically significant for Tmin. The fitted function for NDVI using GAM has an edf

close to 1, which suggests a linear relation with Tmin, with no significant gain compared

to MLR. Still, for Tmin, the relationship with altitude was slightly non-linear (edf =

1.55). For Tmax, the edf of altitude and cloud cover is close to 2, suggesting a non-linear

relationship. For both Tmin and Tmax, the function s(lon, lat) was the one with the

highest edf, 7.71 and 5.40, respectively. The MLR fitted latitude for both Tmin and Tmax,

but longitude only for Tmax, differently from SLR, in which both Tmin have a significant

dependency on longitude (Figure 3.5b). There is a higher complexity when fitting the

MLR with different variables leading to a non-significant relationship between Tmin and

longitude. For both models, there was a consensus with NDVI only being significant for

Tmin, and cloud cover only for Tmax.

Table 3.1 - Estimated degrees of freedom (edf), and scaling factors β̂j of each independent variable. R2

is the coefficient of determination, and BIC is the Bayesian Information Criteria. Only terms with p-value

< 0.01 are displayed.

Generalized Additive Model (GAM) Multiple Linear Regression (MLR)

Tmax

(edf)

Tmin

(edf)

Tmax

β̂j

Tmin

β̂j

Intercept 28.5 17.3 Intercept 37.5 27.5

- - - lon -0.17 -

s(lon,lat) 5.40 7.71 lat 0.44 0.26

s(altitude) 1.95 1.55 altitude -0.003 -0.005

s(NDVI) - 1.00 NDVI - -6.04

s(cloud cover) 1.56 - cloud cover -0.10 -

R2 94.3 % 93.4 % R2 85.8 % 86.1 %

BIC 125.8 127.2 BIC 155.4 136.4
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3.3.2 Regional range of GAM parameters

The absolute contribution in degrees Celsius for each of the individual functions of

GAM, and their variability is presented in Figure 3.6. The contribution due to the geo-

graphical position, s(lon,lat), showed a zonal distribution with negative values to the south

and positive to the north for both Tmin and Tmax (Figure 3.6a and d). This pattern was

mainly expected from the differential radiative heating at the surface, but we noticed,

especially for Tmin, a zonal deformation in the shape of an inverted ”U”, probably due

to the complex terrain to the east of the inverted ”U”, which had a greater cooling for

nighttime temperature (Figure 3.6a). In those areas of Serra da Mantiqueira and Serra

do Espinhaço (Figure 3.2), the mountain-valley circulation contributes to creating areas of

significant cooling, usually close to the valleys (Martin et al., 2019). For Tmax, the identi-

fied pattern of s(lon,lat) shows a meridional gradient parallel to the coast, consistent with

the well-established thermal contrast between ocean and continent around noon (Oliveira

and Silva Dias, 1982; Silva Dias et al., 1995). This variability of s(lon,lat) and its diffe-

rence between Tmin and Tmax points to the importance of using the multiple parameter

term with longitude and latitude, which were not evident when using SLR (Figure 3.5b),

because of the simplification in the spatial dependency.

The near-surface air temperature variation with altitude (in oC per km of elevation)

across a region is known as the terrestrial lapse-rate (TLR), which is firstly influenced by

the vertical temperature profile in the atmosphere, which is represented by the ascension

of a parcel of air under adiabatic process, that expands and cools down, according to the

dry adiabatic lapse-rate Γd = -9.8 oC km−1. In reality, Γd is summed with different effects

that may affect Tmax and Tmin differently, from local to regional processes. For example,

Li et al. (2015) showed a dependency of TLR increasing over warmer and wetter areas in

China. Martin et al. (2019) showed lower absolute values of TLR for Tmin than Tmax

in the mountain ranges of Southeastern Brazil, which was attributed to the nighttime

thermal belt at about 200 m up the valley bottom. This tends to reduce the cooling rate

with altitude, having significant seasonal variability that marks the observed lapse-rate,

measured by radiosonde, with an average global value of γ = -6.5 oC km−1 (Wallace and

Hobbs, 2006). The TLR is estimated based on γ but restricted to surface measurements

that are grouped regionally, where microclimatic phenomenons are added, like the type
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and hydrological state of the underlying vegetation, types of urbanization like, for example,

local climate zones, and etc. (Kirchner et al., 2013; Li et al., 2015; Martin et al., 2019;

Wanderley et al., 2019).
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Figure 3.6: Contribution of GAM terms, in oC, for the annual mean of Tmin (a, b, c) and Tmax (d, e, f).

In (a) and (d), is the function related to the geographical position s(lon, lat); in (b) and (e) is the altitude

in meters above sea level (a.s.l.); (c) the NDVI and (f) the cloud cover in %. In (a) and (d) we show the

position of each station used to fit the model. In (b), (c), (e), and (f): the points are the partial residual

of the given function, and the fitted GAM response is displayed as a solid line with a 95 % confidence

interval

With GAM we tried to identify the relationship between temperature and altitude,

analogous to the TLR. We estimated a reduction of Tmin and Tmax with altitude under

a range of regional response of approximately 6 oC (Figures 3.6b and 3.6e), similarly to

SLR (Figure 3.5c), but with very distinct response patterns between Tmin and Tmax.

For Tmin, the variability is well established and with a slightly non-linear response (edf

= 1.55), with an approximate variation of -4.4 oC km−1, roughly estimated using the

difference between the highest and lowest altitudes. Differently, for Tmax we noticed that

the sensitivity for changes in altitude is low in the first 500 m above sea level (a.s.l.), but

it is more well established above 500 m. We estimated the TLR between 500 and 1200
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m a.s.l., equal to -7.0 oC km−1 for Tmax and -4.0 oC km−1 for Tmin. This value of TLR

for Tmax is steeper than Tmin and is reasonably comparable with the estimates of -7 oC

km−1 from a study made in a rural area in a 10 km2 basin in complex terrain in Serra da

Mantiqueira (Martin et al., 2019).

The cloud cover response acts by reducing temperature as cloud cover increases, due to

the increased albedo cooling effect, and it is statistically significant in GAM only for Tmax

(Figure 3.6f). Its contribution is lower than functions like s(lon, lat) and s(altitude), but it

is still relevant with an amplitude of about 2 oC, with a cloud cover variation between 40

% and 75 %. The contribution for Tmax was not very clear between 40 and 55 % of cloud

cover, but it is better established between 55 % to 75 %, with a temperature reduction of

almost 2 oC for a 20 % increase in cloud cover (Figure 3.6f).

The s(NDVI) contribution is to reduce the temperature as NDVI increases, which is

statistically significant in GAM only for Tmin (Figure 3.6c), with an approximately linear

function. The amplitude is close to 2.5 oC between minimum and maximum NDVI values,

comparable with the amplitude from cloud cover for Tmax, and is lower than the altitude

response.

The NDVI range is relatively wide, from 0.15 to 0.61, where most weather stations are

located in urban or suburban areas (Figure B.7), and the minority are in rural areas. As

a rough estimate, we suppose a NDVI of 0.4 as a threshold in which below this value the

vegetation cover is too low, with a predominance of built-up areas, and 0.65 as a threshold

which above this value there is a high vegetation cover (Lambin and Ehrlich, 1996; Bhang,

2014), even though there are no exact values of NDVI that separate areas with low or high

vegetation cover, especially when considering urban areas. In our sample data, we have

54 % of stations with NDVI < 0.4 and none of them with NDVI > 0.65. However, this

does not imply that the pixels used to compute the average in a 300 m radius circle (with

a spatial resolution of 30 m), do not contain areas with NDVI > 0.65, like in urban parks

and rural areas, as we will discuss in the next section about the heterogeneity of land use.

The variability of s(NDVI) that is inversely proportional to NDVI has probably the

same causes of the urban heat island, the increase in stored energy inside the urban canopy

during the day and a slow release in the form of longwave radiation that is persistent

throughout the night, heating the air temperature (Oke et al., 2017). The increase in

Tmax can occur, primarily due to the increase in the Bowen ratio in the built-up areas,
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but this is not a consensus due to losses from atmospheric turbulence (Oke et al., 2017).

However, our analysis did not show a statistically significant response between Tmax and

NDVI for both GAM and MLR, even though the SLR showed (Figure 3.5d). This is

possibly due to the correlation between NDVI and latitude (Pearson correlation of -0.38,

with p-value < 0.01) that affects the estimation of the parameters (Kutner et al., 2005).

3.3.3 Seasonality of GAM response

We further use GAM in a more detailed manner by fitting the summer and winter

averages to see how the seasonality changes the estimated functions (Figure 3.7). For

Tmin, the geographical position function, s(lon,lat), had a more significant contribution

during winter, when horizontal gradients are more prominent, with a north-south difference

of about 8 oC (Figure 3.7b), while in summer they are at most 3 oC (Figure 3.7a). For

maximum temperature, the seasonality response was similar to Tmin, with meridional

gradients above 8 oC in winter and lower than 3 oC in summer.

For the altitude function, we noticed little seasonal variation for Tmax (Figure 3.7g),

where the lower sensitivity remains for altitudes that are lower than 500 m a.s.l., but with

a steeper gradient above this altitude. For Tmin, we especially noticed that the dispersion

around the fitted function was larger during winter than during summer, mostly in weather

stations with an altitude lower than 500 m (Figure 3.7c). Kirchner et al. (2013) and Li

et al. (2015) suggest that this is related to the increase of days with thermal inversions

during winter, decreasing the lapse-rate. In fact, Martin et al. (2019) showed that in small

basins of meso-γ scale in Southeastern Brazil, the lapse-rate for Tmin is positive in the

first 200 m of altitude, being more intense during winter, where it is limited by the thermal

belt of the nocturnal boundary layer, and it becomes negative for altitudes higher than

200 m. It seems like this effect is incorporated in some of the analyzed stations, which

helps to explain the pattern in winter (Figure 3.7c), but being difficult to quantify it.
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Figure 3.7: Contribution of GAM terms, in oC, for the seasonal mean of Tmin (a, b, c and d) and Tmax

(e, f, g and h) for summer and winter. (a), (b), (c) and (f) shows the geographical position, s(lon, lat);

altitude in (c) and (g); NDVI in (d); and cloud cover in (h). In (a), (b), (c) and (f) we show the position

of each station used to fit the model. In (c), (d), (g) and (h),: the points are the partial residual of the

given function, and the fitted GAM response is displayed as a solid line with a 95 % confidence interval.

The cloud cover functions were statistically significant only for winter (Figure 3.7h) and

showed an amplitude of approximately 4 oC for cloud cover changes between 20 and 70 %,

comparable with the response from altitude and (lat, lon). The NDVI function for Tmin

was significant for both seasons, with higher amplitude in winter (3 oC) than in summer

(1.5 oC), even though there is a higher dispersion in winter (Figure 3.7e). Southeastern

Brazil is characterized by dry winters and consequent lower cloud cover (Reboita et al.,

2010), also seen in Figure 3.7h, where values are mostly below 50 %. This characteristic can

potentially increase local contributions from vegetation and urbanization, with clear sky

nights that are favorable to promote heating in urban areas (low NDVI) when compared

to rural areas (high NDVI) (Oke et al., 2017).

3.3.4 Impact of land use heterogeneity in urban areas

As discussed in the previous sections, we found a correlation between minimum tempe-

rature and NDVI defined in a 300 m radius circle (hereafter referenced as NDVI300) and

for Tmax but only in the SLR case, with no statistical significance in GAM and MLR.

However, other factors may influence the signal’s amplitude, like wind speed which increa-

ses this spatial variability when wind speed is low (Section S4). There is also the possibility
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of contribution from urban heat islands that may extend up to 60 km from the city center

(Hicks et al., 2010), with great seasonal variability from parameters that are related to

land cover and temperature of the order of 103 m (Suomi et al., 2012).

According to Stewart (2011), the spatial homogeneity of land cover up to the order of

103 m is important to evaluate the contributions from land use in urban temperature and

urban heat island. Therefore, we reevaluated the spatial distribution of NDVI in an area of

higher land cover spatial heterogeneity around the weather station. We take the example

of the city of São Paulo, with a large urbanized area of 2,310 km2, and two stations that

are separated by a distance of approximately 4 km: iag01 (Figure 3.8a and 3.8b) located

inside a park with more vegetation and higher NDVI, that is however surrounded by a

densely urbanized area with lower NDVI; and ice03 (Figure 3.8a and 3.8c) station located

in an airport with low NDVI in all surrounding area. On the other hand, we also identified

two other stations, one at the north of SEB (inm07) (Figure 3.8a and 3.8d) and another

one at the south (inm37) (Figure 3.8a and 3.8e) with different NDVI spatial distributions.

After finding differences in NDVI distribution, one of them in the same city, we reasses-

sed the GAM for the prediction of average Tmin and Tmax, by considering the influence

of NDVI by a smoother with multiple predictors using NDVI300 and NDVI3000 (NDVI

defined in a 3,000 m radius circle), referenced as s(NDVI300, NDVI3000). This term consi-

ders the local scale land use (NDVI300) and the regional scale (NDVI3000), which involves

transport at the scale of the urban boundary layer. We chose the radius of 3,000 m to

capture the influence of the regional scale based on the leveling off of NDVI correlation

with temperature, as noticed in Figure B.5.

We fitted the GAM with s(NDVI300, NDVI3000), which was statistically significant

for Tmin in all temporal aggregations, but not Tmax, similarly to the previous models

using s(NDVI300) only. However, by using the term with multiple parameters, there was

a best overall fit, with an increase of the explained variance from 93.4 % to 96.1 %, and a

reduction in the BIC, from 127.2 to 123.7 (Table B.4).
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Figure 3.8: (a) Map of southeastern Brazil with all weather stations in this study, with a highlight for:

iag01, ice03, inm08 e inm37; annual average NDVI (1985 to 2010) for: (b) iag01, (c) ice03, (d) inm08 e

(e) inm37.

We did not notice a significant difference in the patterns associated with s(altitude)

and s(lon, lat), but there are relevant applications to s(NDVI300, NDVI3000), as shown

in Figure 3.9. The pattern of the function for the annual average Tmin shows negative

values and colder weather stations (blue area in Figure 3.9a), which are dominated by high

values of NDVI. In the opposite direction, the positive values represent warmer stations

(red area in Figure 3.9a), that covers the entire range of NDVI. Still, in the annual average

Tmin, in general, NDVI3000 was greater than NDVI300, as shown by the position of most

stations distributed around the 1:1 line (Figure 3.9a). This implies that the areas closest to

the station’s position have relatively lower green cover than the surrounding areas (up to

3,000 m). There are few but important exceptions, like iag01 and inm08, that are relatively

warm stations with high NDVI300, positioned in local areas with more vegetation than the

surrounding areas (Figures 3.8b,d and 3.9a). With respect to the seasonality of s(NDVI300,

NDVI3000), the amplitude of the contribution was greater in winter, with approximately

± 2 oC (Figure 3.9c), when compared to the summer, which was ± 1 oC (Figure 3.9b).
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Figure 3.9: Contribution from the s(NDVI300, NDVI3000) function from GAM, in oC, for minimum

temperature in the following time aggregations: (a) annual, (b) summer, and (c) winter. The black dots

represent the NDVI in each station, with the names highlighting the position of the stations given in

Figure 3.8. The arrows indicate changes in the contribution of s(NDVI300, NDVI3000) due to changes in

NDVI at given direction (increase or decrease of NDVI). The dashed line is the 1:1 line, where NDVI300

= NDVI3000.

An application of the function s(NDVI300, NDVI3000) is to verify how a hypothetical

change in NDVI would contribute to altering the temperature in a given weather station.

For example, shifting the station iag01 in the x direction (as displayed by the arrows in

Figure 3.9a) by reducing the NDVI300 (keeping NDVI3000 constant), there is little tem-

perature change, however, shifting it in the y direction and increasing NDVI3000 (keeping

NDVI300 constant) leads to a decrease in temperature by reaching the blue part of the

plot. Another example with a different result is the station inm37 which has high values of

both NDVI300 and NDVI3000. In this case, a decrease in NDVI300 (keeping NDVI3000

constant) with changes in the x direction, increases temperature when reaching the war-

mer side of the plot, as well as a change in the y direction with a reduction of NDVI3000

(keeping NDVI300 constant). We used a large spatial domain to fit the model, that ex-

presses the combined effects of a large sampling, and that might not be the ideal approach

to detect changes at individual stations. Despite that, our simplified method used both
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the regional and local scale NDVI to suggest how the temperature relationship with NDVI

depends on the heterogeneity of land-cover distribution across these scales.

3.4 Conclusions

With the purpose to assess the influence of local vegetation and regional scale geophy-

sical controls on the spatial variability of near-surface temperature, we used 26 years of

meteorological measurements from 52 conventional weather stations in Southeast Brazil.

We used parsimonious statistical models of MLR and GAM, that helped to obtain the

relationships of temperature with regional geophysical features (zonality, continentality,

topography, and cloud cover) and local scale vegetation. The fitting of the average near-

surface Tmax and Tmin showed the best overall performance with GAM, which used a

single function to describe the combined effect of zonality and continentality, and for NDVI

at local (300 m) and regional scale (3,000 m).

Our results were generally consistent with the knowledge established in the literature.

However, some studies relied on larger areas (up to 104 m of radius) due to uncertainties in

the information of station position, to attribute relationships of land-use and near-surface

air temperature (Wang et al., 2017; Cao et al., 2019). As a novelty, our results fitted

the dependency of geographical position and temperature with a non-linear method that

represents the background climate conditions. Considering the additive property of the

model we have on top of the spatial distribution, at least for Southeast Brazil, the land-

use component, represented by NDVI, showed that, the variability of the near-surface air

temperature is mostly correlated with local scale NDVI (300 m radius). Still, there is a

combined effect of local vegetation with regional vegetation (3,000 m) that represents the

complexity of heterogeneous surfaces.

In GAM, the independent variables that accounted for the variation of the annual

average Tmin were geographical position and altitude, each with an amplitude of ' 5

oC, and the NDVI that contributed with an amplitude of ' 3 oC. Similarly, the variables

that accounted for Tmax variation were geographical position and altitude, each with an

amplitude of ' 5 oC, and cloud cover that contributed with an amplitude of ' 3.5 oC. The

seasonality of the amplitude of each fitted function was relatively small across variables,

except for the geographical position and altitude in the Tmin model, which was slightly
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higher in winter compared to the annual mean.

Limitations of the proposed method are present, among them the fact that GAM is

less generalizable than MLR, making it harder to extrapolate its results to other regions.

Another limitation is the low density of stations available in the area that meet all required

criteria for the analysis. The main geographical patterns are similar to those of Alvares

et al. (2013) and Rodŕıguez-Lado et al. (2007), but a higher density is important for

the characterization of the impact of land use heterogeneity. It would also help define

more localized relationships with land use and topography, which would benefit from high-

resolution data. For example, Local Climate Zones in the vicinity of the weather stations

have information about architectural and urban morphology that are relevant to the surface

energy budget (Stewart and Oke, 2012), as well as topographic aspect and slope (Sun and

Zhang, 2016).

Finally, our results stress the need to clarify the causality of near-surface air tempe-

rature, at both the mean state and the temporal trends. Improving prediction of local

temperature is key to adapting to global climate change and increasing urbanization. Es-

pecially in urban areas, it is recognized the need to achieve levels of climate resilience that

assimilate current changes of the earth system. This issue can be driven partially through

nature-based solutions (Mallick et al., 2021; McClymont et al., 2020), whereby public po-

licies can design green spaces, using quantifying metrics that predict the possible effects

distributed within in the urban space.



Chapter 4

Long-range temperature trends in Southeast Brazil

weather stations, and urbanization impact

4.1 Introduction

The increase in global temperature of 0.85 oC [from 0.65 to 1.06 oC] between 1880 and

2012 is mainly attributed to the rise in anthropogenic emitted greenhouse gases (Gulev

et al., 2021). However, there are significant regional differences in the recorded trends due

to various causes like, for example, aerosols, internal variability, land cover, and topography

(Doblas-Reyes et al., 2021). Climate simulations suggest a further increase in temperature

and precipitation extremes, which are particularly impactful in more urbanized areas (Li

et al., 2021). In Southeast Brazil (SEB), a region with more than 40 % of the population

of Brazil (IBGE, 2018a), many different urban areas are affected by these changes, like

the metropolitan region of São Paulo (MRSP), with more than 21 million inhabitants

(SEADE, 2022). Examples of this vulnerability in MRSP are the hydrological drought in

2014 that compromised the human, industrial, and agricultural water supply on a regional

scale (Coelho et al., 2015), and the 2001 drought (Cavalcanti and Kousky, 2004) that led

to a shortage of energy supply.

Studies using long-range climate stations were made in SEB to detect and quantify

trends in air temperature, which try to connect the results with the increase in greenhouse

gases and local features like land cover changes and urbanization. From a regional pers-

pective, Regoto et al. (2021) identified a statistically significant increase in both maximum

and minimum temperature, Tmax and Tmin, respectively, with a larger trend for Tmax,

and de Abreu et al. (2019) attributes a great part of this warming due to anthropogenic

influence. In São Paulo, Sugahara et al. (2012) identified a significant trend of 0.26 oC
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10 yr.−1 for Tmax and 0.30 oC 10 yr.−1 for Tmin between 1958 and 2004, which is larger

than the regional average and the authors suggest an influence from urbanization. The

increase in temperature is linked with changes in other climatic variables, like an increase

in extreme precipitation events and a decrease in fog formation (Mühlig et al., 2020).

In other cities in the state of São Paulo, like Piracicaba and Campinas, Blain et al.

(2009) reported a significant increase in minimum temperature for the entire series of

Campinas and a no trend in Piracicaba between 1947 and 1976, with the authors suggesting

influence from local radiative forcings like urbanization and internal variability as the main

responsible for these differences. More recently, Alvares et al. (2022) identified an increase

of 0.9 oC between 1917 and 2016 and a transition between climate types in Piracicaba,

from a more subtropical climate to a more tropical one, with an increase in temperature

in winter.

Most studies rely on the definition of a linear trend to calculate the changes in tempe-

rature, and other climate variables, in the last few decades. However, there is no reason

to believe this is always the case, with the slope being highly dependent on the interval of

the time series (Peng-Fei et al., 2015; Xu et al., 2021). Other methods, which are nonli-

near, can be used to estimate the trend, like the Empirical Mode Decomposition (EMD),

wavelets, and Generalized Additive Model (GAM) (Franzke, 2010; Hartmann et al., 2013;

Simpson, 2018; Coelho et al., 2008), adding information about the time evolution of the

trend. In the most recent Intergovernmental Panel on Climate Change (IPCC) report, for

example, they computed global warming as a difference from 1850-1900 period instead of

using linear regression, since the linear trend underestimates the current warming by at

least 0.2 oC (Gulev et al., 2021).

Therefore, in this study, our objective is to quantify the trends in long-term climate

stations from Southeast Brazil, and its variability in time for maximum and minimum

temperature using a nonlinear method, more specifically GAM, and compare it with linear

regression.
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4.2 Materials and Methods

4.2.1 Weather stations

After an extensive automation process that took part in the last few decades, just a few

conventional weather stations with a long record (> 50 years) were maintained (Alvares

et al., 2022). Also, as shown by de Abreu et al. (2022) there is great spatial variability in

temperature in Southeast Brazil from geographical position and altitude. Therefore, we

focus our analysis on a small area in SEB for minimum and maximum temperatures for

the stations in São Paulo. We used three stations in the city of São Paulo (iag, mrs, and

cgn), one in Campinas and another one in Piracicaba (Table 4.1).

Table 4.1 - Geographical location of the analyzed stations, period in years, and the city where it is

contained.

id latitude (o) longitude (o) altitude (m) city period

iag -23.651242 -46.622424 799 São Paulo 1933-2018

mrs -23.496389 -46.62 802 São Paulo 1961-2018

cgn -23.623106 -46.657749 785 São Paulo 1951-2018

cpn -22.867442 -47.072914 667 Campinas 1901-2018

pcb -22.708333 -47.633333 546 Piracicaba 1917-2018

The stations iag, mrs, and cgn are located in the city of São Paulo, where the dominant

land cover type is urban infrastructure, but with some differences among the stations

(Figure 4.1). iag is located in a vegetated area in the south of the city, while cgn is close to

iag but with a predominance of urban infrastructure. mrs is located further north in São

Paulo and in an urbanized area. In the case of cpn, the station is located in a vegetated

region inside Instituto Agronômico de Campinas (IAC), with most of the city development

to the south, similar to pcb station located in Piracicaba. The station cpn was moved in

1956, but according to Mello et al. (1994), the series can still be considered homogeneous,

being used in other studies (Astolpho et al., 2004; Blain et al., 2009), so we decided to

keep the series for the whole period that was made available.
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Figure 4.1: Geographical position of the weather stations used in this research. Shading represents

the altitude in meters. The dotted white line delimits the urban area estimated from nighttime lights

(naturalearthdata.com). In the bottom row is a 6 km × 6 km square surrounding each weather station

with Google Earth image as the background.

The metropolitan region of São Paulo has great economic importance for the country,

with the city development starting in the 1930s and gaining momentum after 1950. The

state reached a contribution to the national GDP of 50 % in the 1970s with an extensive

horizontal urban area (Silva and Fonseca, 2013). From the population data (Table 4.2)

in Campinas and Piracicaba, there is a significant population increase at the beginning

of the series and in the 1960∼1980s, which is more significant in Campinas, with a 76 %

increase from 1970 to 1980. This increase in population, especially in Campinas, is directly

related to the decentralization of the industry in São Paulo in the 1970s, causing a larger

migration of people to the interior of the state (Baeninger, 2001).

naturalearthdata.com
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Table 4.2 - Total population for the cities of São Paulo, Campinas, and Piracicaba, with the percentage

of increase from one year to the other in parenthesis (IBGE, 2012, 2001, 1992, 1980, 1971, 1962, 1954,

1950, 1926, 1905, 1892, 1874).

Year São Paulo Campinas Piracicaba

1872 31,385 - -

1890 64,934 (106%) - -

1900 239,820 (269%) 67,694 25,374

1920 579,033 (141%) 115,602 (70%) 67,732 (166%)

1940 1,326,261 (129%) 129,940 (12%) 76,416 (12%)

1950 2,198,096 (65%) 152,547 (17%) 87,835 (14%)

1960 3,825,351 (74%) 217,219 (42%) 115,403 (31%)

1970 5,978,977 (56%) 375,864 (73%) 152,505 (32%)

1980 8,587,665 (43%) 664,559 (76%) 214,295 (40%)

1991 9,626,894 (12%) 846,084 (27%) 283,540 (32%)

2000 10,405,867 (8%) 969,396 (14%) 329,158 (16%)

2010 11,253,503 (8%) 1,080,113 (11%) 364,571 (10%)

4.2.2 Statistical Model

To estimate how the trend varies in time we used the Generalized Additive Model

(GAM) and compare it with linear regression (LR). Both of them can be represented as

(Hastie et al., 2009):

Y = α + f(Year) + ε (4.1)

Where Y is the annual minimum or maximum temperature, α is the intercept term,

f(Year) is a function of the year, and ε is the residual error which has a normal distribution

with zero mean and constant variance. In the case of linear regression, f(Year) = βYear,

and the estimate of β, β̂ is estimated using ordinary least squares (OLS). The GAM is

a generalization of Generalized Linear Models (GLM) and, therefore of linear regression,

where f(Year) is a smooth function fitted using penalized least squares that penalizes

too wiggly functions (Wood, 2017). The penalization is determined using the Generalized

Cross Validation (GCV) so that even linear functions can be fitted using GAM, and we

can estimate if the relationship between temperature and time is linear or non-linear using

the estimated degrees of freedom (edf). We use the mgcv package for R (Wood, 2017) for

fit the GAM.
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We compare the linear regression with GAM based on the coefficient of determination

(R2) and Bayesian Information Criteria (BIC). We fit the series of both minimum and

maximum temperature for the five selected stations and for the global average temperature.

To compute the global annual timeseries we use the Berkeley Earth Data (Rohde and

Hausfather, 2020), a gridded product which has data since 1850 and a grid spacing of 1o ×

1o in latitude and longitude. We use a weighted average of the area of each grid box, similar

to Morice et al. (2012). Both the stations and global average are represented in the form

of annual mean temperature anomalies, computed based on the 1981-2010 climatology.

4.3 Results and Discussion

We first applied LR and GAM to minimum and maximum temperature for the global

average (Figure 4.2). For both Tmin and Tmax the timeseries (Figure 4.2a and b) have an

increase from the beginning of the series up to 1940, when it is mostly constant until the

1980s, when the temperature starts to rise again in an almost linear way, with a warming

rate of approximately 0.26 oC 10 yr−1 for Tmin and 0.30 oC 10 yr−1 for Tmax according

to the GAM fitted curve. Little is known about the causes of the slowdown between 1940

and 1980, with influences from internal variability or increase in aerosols emission during

this period being the most probable causes (Trenberth, 2015; Xu et al., 2022).
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Figure 4.2: Annual mean temperature anomaly in oC for minimum temperature (Tmin) and maximum

temperature (Tmax) for global average temperature with the fitted GAM and LR estimates (a and b);

residuals of the linear fit (c and d), residuals of the GAM fit (e and f).

The linear regression fits a curve with a constant warming rate of 0.15 oC 10 yr−1

for Tmin and 0.10 oC 10 yr−1, which is very different from the GAM estimate. The

coefficient of determination R2 is higher for GAM (Table 4.3), especially for Tmax with

86.4 % compared to 65.6 % from LR, with a lower BIC. The residuals from LR (Figure

4.2c and d) also show a more defined pattern of the linear fit overestimating temperature

at the 1980s and underestimating at the end of the series, while GAM residuals (Figure

4.2e and f) are more randomly distributed around the zero, which is more consistent with

the assumption of normal residues.
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Table 4.3 - Coefficient of determination (R2) in percentage, and Bayesian Information Criteria (BIC) for

both linear regression (LR) and Generalized Additive Model (GAM) for each of the fitted timeseries (iag,

mrs, cgn, cpn, pcb, and the global mean). The estimated degrees of freedom (edf) is also available.

Variable Global iag mrs cgn cpn pcb

BIC (LR)

Tmin

-33.25 112.11 76.10 99.68 122.99 215.04

BIC (GAM) -56.27 110.82 76.10 98.29 121.49 114.77

R2 (LR) 87.4 78.3 62.0 71.6 81.3 34.0

R2 (GAM) 91.3 79.7 62.0 74.0 84.1 56.4

edf 5.46 2.00 1.00 2.07 4.75 5.22

BIC (LR)

Tmax

29.74 156.89 105.97 140.91 258.33 205.50

BIC (GAM) -59.50 156.89 107.64 142.52 237.64 207.78

R2 (LR) 65.6 50.4 54.4 39.5 50.1 28.7

R2 (GAM) 86.4 50.4 57.9 46.0 64.7 32.6

edf 5.43 1.00 2.58 3.22 5.22 2.73

We then fit the weather station’s timeseries with LR and GAM and present the results

in Figure 4.3. For minimum temperature, the trends in the city of São Paulo (iag, mrs,

and cgn) fitted with GAM are almost the same as LR, especially in mrs. In iag and cgn,

however, there are changes from the linear fit in the boundaries of the series, with GAM

showing lower values at the start and end of the series compared to the LR. This means

that the rate of change in Tmin is decreasing with time. When we compare the anomalies

of the weather stations with the global mean (Figure 4.2a) we have a significant difference

at the beginning, with the stations showing larger negative anomalies, which means that

the stations in the city of São Paulo have a significantly higher average temperature in the

reference period (1981-2010) than in the past when compared to the global average. For

iag, for example, there is a difference of almost 1 oC in the 1930s. The R2 (Table 4.3) is

similar between the two methods, but higher for GAM, varying between 62 % in mrs and

79.7 % in iag, with a lower BIC.
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Figure 4.3: Annual temperature anomaly in oC for minimum temperature (Tmin) and maximum tem-

perature (Tmax) for stations iag (a and b); mrs (c and d), cgn (e and f), cpn (g and h), pcb (i and j).

The dashed line is the linear trend calculated with the ordinary least squares method, colored solid line

represents the GAM fitted trend. The shaded colors represents the confidence interval (CI) of 95 % of the

GAM fitted curve.

In the case of cpn and pcb we have longer timeseries, and the difference between the

GAM and linear regression is more evident. Both series Tmin show an increase up until

1940s, when there is a slower warming rate up until 1970s in cpn and 1980s, which is when

the the differences between LR and GAM are more evident, especially for pcb. After that,

an increase of almost 1 oC is recorded for both series which starts to decline after 2000.

The anomalies in pcb, and cpn weather stations have a more similar pattern to the global

temperature than the stations in São Paulo, with an exception for the end of the series

that shows more constant temperatures.

There are larger differences among the stations in the city of São Paulo for maximum
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temperature. For example, both iag and mrs show an increasing trend with GAM, which

is close to the LR, especially for iag, while cgn suggests that Tmax starts to level off after

1980. The linear trend, however, cannot capture this kind of difference, underestimating

the warming rate from the 1970s to 1990s, and overestimating after that. The difference

between the measured timeseries and the global average for iag is similar to Tmin, with

significant warming at the beginning of the series.

In the stations cpn and pcb, located in the state’s interior, there are also differences in

the trends for Tmax between the GAM fitted curve and LR. In cpn there is an overestima-

tion of the temperature anomalies by LR until the 1930s, and an underestimation between

1940 and 1980, when Tmax is more constant. After that, the temperature increases again

by almost 1 oC in 40 years. For pcb there is a similar pattern, but the difference from LR

is lower than cpn. The coefficient of determination has a significant improvement for cpn,

from 50.1 % using LR to 64.7 % with GAM (Table 4.3), a lower BIC and an edf of 5.22,

similar to the global average. However, for pcb there is a lower R2 and higher BIC using

GAM.

We then calculate the instantaneous trend for every decade, given by the derivative

of the GAM fitted curve at the given point (Figure 4.4). For minimum temperature, the

warming rate is more than double the regional average for the São Paulo stations (iag, mrs,

and cgn) at the beginning of the series, with a maximum value of 0.50 oC 10 yr.−1 in 1960

for cgn. The warming rate decreases with time in cgn and iag, closer to the global average

of 0.26 oC 10 yr.−1 in 2010. For cpn we have a different pattern, where the warming rate is

especially higher than the global average in 1970 and 1980 reaching up to 0.34 oC 10 yr.−1

in 1980. In pcb, Tmin has a significant increase between 1980 and 2000, with a maximum

of 0.56 oC 10 yr.−1.
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Figure 4.4: Instantaneous trend, given by the derivative of the GAM fitted curve at the given point in

time, for each station and Southeast Brazil global average for minimum (a) and maximum temperature

(b). The estimated value we calculated using GAM fitted curve, which is also compared with the linear

fit. The bold letter shows where the derivative is statistically significantly different from zero, with a

confidence interval (CI) of 95 %.

de Abreu et al. (2022) shows that the vegetation in Southeast Brazil explains an impor-

tant part of the spatial variability of the average temperature, especially for Tmin, with

a high degree of complexity depending on the spatial heterogeneity of land cover. The

minimum temperature is mainly affected by urbanization with an increased stored heat

during the day that is slowly released to the air during the night, increasing Tmin (Oke

et al., 2017). Also, as discussed in previous studies (Sugahara et al., 2012; de Lima and

Rueda, 2018), there is a likely impact of urbanization in São Paulo trends for both tem-

perature and precipitation. This could be the effect that we see in iag, mrs and cgn, since

there is significant urbanization in the decades prior to 1980 and a considerable warming

rate that is not observed in the global average temperature and in cpn and pcb. After
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that, the population increases in São Paulo at a much slower rate (Table 4.2), land cover

is mostly the same, with urban infrastructure dominating the area (Figure 4.5), and the

instantaneous trend for Tmin is closer to the global average. According to Jones et al.

(2008) the differences in trends between rural and urban sites tend to decrease over time

after the urban area is established.

In cpn and pcb, there was much slower warming between 1940 and 1980, comparable

to the global average. In the following decades, the increase in temperature at a higher

rate of change than the global average could also suggest the influence of urbanization

since the urban expansion was most significant at a later time in Campinas and Piracicaba

than in São Paulo (Table 4.2). Blain et al. (2009) even suggests that most of the increase

in Tmin in Campinas might be due to localized effects. After the 2000s, there was also

a decrease in temperature trend in those stations. Many studies call the period between

1998-2012, when trends decreased, the ”global warming hiatus”(Trenberth, 2015; Medhaug

et al., 2017), that could have several possible causes such as radiative forcing or internal

variability, most specifically the negative phase of the Pacific Decadal Oscillation (PDO).

A Pearson correlation between the PDO and Tmin series, using the annual mean, of 0.49

and 0.38 is statistically significant between cpn and pcb weather stations, respectively,

suggesting that they might be related.

1985

iag
(a)

mrs
(b)

cgn
(c)

cpn
(d)

pcb
(e)

2018

(f) (g) (h) (i) (j)

Non Observed

Water

Non vegetated area

Farming

Non Forest Natural Formation

Forest

Figure 4.5: land cover from MapBiomas version 5.0 classification (Souza et al., 2020) in a 6 km × 6 km

box around each weather station coordinates, for the years of 1985 (a-e) and 2018 (f-j).

For maximum temperature, the global average temperature trend shows a significant

increase after 1980 with the GAM method, reaching 0.30 oC 10 yr.−1 in 2010, while the

linear trend is much lower, 0.10 oC 10 yr.−1. We see this same pattern of increasing warming

rate also locally in cpn, and pcb. For cgn, however, there is a decrease in the temperature
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trend over time, with -0.03 oC 10 yr.−1 in 2010, which is not statistically different from zero.

In iag the temperature trend fitted by the GAM is linear with the same warming rate, while

for mrs there is an increase in warming up until 2000 with 0.47 o 10 yr.−1 and decreases to

0.35o 10 yr.−1. The effect of urbanization in Tmax is more complex than for Tmin, with

no significant warming or even cooling in some areas (Oke et al., 2017; de Abreu et al.,

2022; Kalnay and Cai, 2003). In São Paulo, for example, Freitas et al. (2007) shows an

interaction between the urban heat island effect and sea breeze circulation, and Umezaki

et al. (2020) shows a higher spatial heterogeneity of the urban heat island effect during the

afternoon than during the night. During the day, cloud cover, and therefore precipitation,

plays an important role in temperature spatial variability (de Abreu et al., 2022), with a

decrease of temperature in areas with a larger cloud cover, due to the increased albedo

cooling effect. From a regional perspective, Zilli et al. (2019) shows a poleward shift of the

South Atlantic Convergence Zone (SACZ) in recent decades that affects the cloud cover

patterns, and Regoto et al. (2021) shows that the stations in São Paulo are in a transition

area where stations show negative precipitation trends to the north and positive trends to

the south.

4.4 Conclusions

Many studies use a prior definition of a linear trend to calculate the increase in tem-

perature in the last few decades, which is not always the best fit. Therefore, we used the

Generalized Additive Model (GAM) to evaluate the temporal temperature variability in

long-term weather stations in São Paulo state. We used five stations, three located in the

city of São Paulo (iag, mrs, and cgn). The population in 2010 was over 11 million inha-

bitants, and the urbanization process was most expressive in the 1950s. We also used one

station in Campinas (cpn), and another one in Piracicaba (pcb), where the urbanization

process was most expressive after the 1970s.

We used the non-linear estimate to compare with the linear fit in the selected stations,

where for Tmin, the stations in São Paulo had an almost linear trend, with a decrease

in instantaneous trend over time, from 0.40 oC 10 yr.−1 in 1940 to 0.24 oC 10 yr.−1 in

2010, for iag station, close to the global average (0.26 oC 10 yr.−1 in 2010). Even though

no objective method was used to attribute the changes to land cover only, the observed
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changes from regional trends agree with the literature on the impact of urbanization on

the increase of minimum temperature (Oke et al., 2017; Kalnay and Cai, 2003; de Abreu

et al., 2022). In Campinas and Piracicaba the variability is more closely related to the

global average, with a much slower warming during 1940 and 1980 than in São Paulo and

a subsequent increase in temperature.

The departure from the linear trend is even more apparent for maximum temperature

in a few stations like mrs, cgn, cpn, and pcb. Stations like pcb, mrs and iag have a similar

pattern of increasing maximum temperature trend over time, which is different from cgn

and cpn where temperature anomalies are almost constant after a particular year. Those

differences might have other causes, like cloud cover and precipitation, since the effect of

urbanization in Tmax is not as evident as for Tmin.

We should consider other possible causes for the observed differences among the weather

stations, like other local features, in which more extensive work should be done. However,

in the current study, we addressed the limitations of using a linear trend to compute the

trend in the selected stations and how a non-linear estimate can reveal more details about

temperature changes, like urbanization impacts.



Chapter 5

Conclusions and future work

5.1 Conclusions

Given the climate projections of an increase in temperature and precipitation extremes

at the global scale, the current work aimed to bridge different aspects of temperature

variability and attribution in Southeastern Brazil, from local to regional scale analysis.

At the regional scale, we used the concept of Detection and Attribution (D&A) and the

novel statistical model from Ribes et al. (2017) to attribute the observed trend in average

temperature of 1.1 oC in 50 years. The results showed that we can not explain the recent

warming only with internal variability and natural forcing, and anthropogenic greenhouse

gases being the main contributor. We should also point that model error is the main source

of uncertainty in the estimation of the parameters, with more than half of the error coming

from it.

Even tough greenhouse gases are the major source of the observed warming in Southe-

astern Brazil, we noted pronounced differences in the trends of individual weather stations,

which led us to analyze the main regional geographical controls of the average temperature.

By using a non-linear model, the Generalized Additive Model (GAM) and 26 years of data

from 52 weather stations, we showed that geographical position and altitude accounted for

the largest spatial variability of ' 5.0 oC for both minimum and maximum temperature,

Tmin and Tmax, respectively. For Tmin however, NDVI has a statistically significant

contribution of approximately 3 oC, while for Tmax cloud cover is more important. Also,

we suggest there is a heterogeneity in the Normalized Difference Vegetation Index (NDVI)

response, that needs to account for regional and local NDVI.

Since land cover is an important sources of local variability in temperature for Southeast
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Brazil, and as reported by other studies (Oke et al., 2017; Kalnay and Cai, 2003; Kagawa-

Viviani and Giambelluca, 2020) we decided to look at local long range temperature trends

in the state of São Paulo, in the cities of São Paulo, Campinas, and Piracicaba. Using the

GAM we give more detail to the temporal variability of the temperature anomalies than

by using a linear fit. For Tmin a rapid increase in the magnitude of the multidecadal trend

is observed for São Paulo stations at beginning of the series, reaching up to 0.40 oC 10

yr.−1 in 1940 and slowly decreasing in recent decades. In Piracicaba and Campinas, Tmin

trends are more consistent with the global average, with a period of much slower warming

during 1940 and 1980 than in São Paulo, and a subsequent increase in temperature. This

is consistent with the urbanization process that started first in São Paulo and a migration

further inland in the 1970s due to industry decentralization policies (Baeninger, 2001). For

maximum temperature the effect is not so evident, and other sources of variability might

be of interest like cloud cover and precipitation.

In a more broad perspective, in this study we were able to show that greenhouse

gas concentration is the main driver of regional temperature trends in Southeast Brazil.

These changes are similar to the global temperature changes, which suggests that impacts

of anthropogenic global warming is becoming more relevant at smaller scales. However,

other sources of temperature variation should be accounted for, like land cover and vege-

tation, which has complex spatial distribution but are relevant at the local scale average

temperature, and trend, and are key to adapt urban areas to the effects of human induced

climate change.

5.2 Future work

The results found in this research suggest important future work that could be done:

• The detection and attribution of regional trends in other variables like precipitation,

and indices related to extreme events. This work could also be expanded to other

areas of Brazil, and South America;

• Expand the attribution analysis with data from the Coupled Model Intercomparison

Project Phase 6 (CMIP6);

• Incorporate information about the Local Climate Zones (LCZ) in the analysis of
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temperature dependency with land use;

• High resolution long-range dynamic simulations in metropolitan areas of Southeast

Brazil to evaluate the impact of different land use types in temperature and precipi-

tation patterns;
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Appendix A

Complementary information of Chapter 1

A.1 CMIP5 models

Table A.1 - CMIP5 models used for the attribution study. ALL is the simulations with both anthropogenic

and natural forcings, NAT is the simulation with only natural forcings, and GHG is the simulation with

only greenhouse gases. The experiment for that used the 1955-2014 time period used the RCP8.5 scenario

to extended the ALL run.

Model ALL NAT GHG RCP8.5

ACCESS1-0 1 - - 1

ACCESS1-3 3 - - 1

BCC-CSM1-1 3 1 1 1

BCC-CSM1-1-M 3 - - 1

BNU-ESM 1 1 1 1

CCSM4 8 4 3 6

CESM-LE 34 - - 34

CESM1-CAM5 3 3 3 3

CESM1-FASTCHEM 3 - - -

CESM1-WACCM 4 - - 3

CMCC-CESM 1 - - 1

CMCC-CM 1 - - 1

CMCC-CMS 1 - - 1

CNRM-CM5 10 6 6 5

CNRM-CM5-2 1 - - -

CSIRO-Mk3-6-0 - 5 5 -
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CanESM2 - 5 5 -

FGOALS-g2 - - 1 -

FIO-ESM 3 - - 3

GFDL-CM2p1 10 - - -

GFDL-CM3 5 3 - 1

GFDL-ESM2G 3 - - 1

GFDL-ESM2M 1 - - -

GISS-E2-H 18 10 - -

GISS-E2-H-CC 1 - - 1

GISS-E2-R 25 10 5 -

GISS-E2-R-CC 1 - - 1

HadGEM2-CC 1 - - -

HadGEM2-ES 4 4 - 4

INMCM4 1 - - 1

IPSL-CM5A-LR 6 3 - 4

IPSL-CM5A-MR 3 3 3 -

IPSL-CM5B-LR 1 - - 1

MPI-ESM-LR 3 - - -

MPI-ESM-MR 3 - - 1

MPI-ESM-P 2 - - -

NorESM1-M 3 - 1 1

NorESM1-ME 1 - - -



Section A.2. CRUTEM4 decadal anomalies 79

A.2 CRUTEM4 decadal anomalies
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Figure A.1: Decadal anomalies for CRUTEM4 dataset. Also is displayed the ±1 standard deviation

as shaded calculated using 100 ensemble members of the land only component of HadCRUT4 and the

uncorrelated errors from the same dataset. The labels in x axis shows the decade that the anomaly was

calculated with respecto the 1925 to 2014 climatology.
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Complementary information of Chapter 2

B.1 Weather stations

Table B.1 - Geographical position and altitude of the stations used in this study. The stations that start

with ”iag”are from the Instituto de Astronomia, Geof́ısica e Ciências Atmosféricas/Universidade de São

Paulo (IAG); ”iac”from the Instituto Agronômico de Campinas/Secretaria de Agricultura e Abastecimento

de São Paulo (IAC); ”inm”from the Instituto Nacional de Meteorologia (INMET); and ”ice”from the

Instituto de Controle do Espaço Aéreo/Ministério da Aeronáutica (ICEA).

id latitude (o) longitude (o) altitude (m) id latitude (o) longitude (o) altitude (m)

inm01 -13.332407 -44.617374 551 inm27 -21.461019 -47.579512 620

inm02 -13.251097 -43.405365 447 inm28 -21.226130 -44.979666 916

inm03 -14.089070 -46.366530 830 inm29 -21.769990 -43.364328 936

inm04 -14.949727 -46.235795 854 inm30 -21.204389 -41.905670 123

inm05 -15.902500 -52.245278 327 inm31 -21.742500 -41.332778 15

inm06 -15.854722 -48.966111 766 inm32 -22.022222 -42.364444 516

inm07 -15.789722 -47.925833 1161 inm33 -22.126273 -45.043327 930

inm08 -15.549167 -47.338889 938 inm34 -22.451111 -44.444722 439

inm09 -15.915229 -46.107120 523 inm35 -23.325556 -51.141667 566

inm10 -15.448054 -44.366321 480 inm36 -23.496389 -46.620000 785

inm11 -16.009560 -41.281027 647 inm37 -25.010777 -50.853734 808

inm12 -14.297500 -43.771389 455 inm38 -24.786944 -49.999167 994

inm13 -16.673056 -49.263889 748 inm39 -25.502846 -50.637609 881

inm14 -16.366268 -46.889321 595 inm40 -25.536111 -48.528333 4

inm15 -16.686333 -43.843759 645 inm41 -23.480000 -47.426667 597

inm16 -16.154862 -42.284921 476 iac01 -22.867442 -47.072914 667

inm17 -16.580810 -39.783182 197 iac02 -22.252333 -48.565944 599

inm18 -17.859776 -42.852647 919 iac03 -21.446076 -46.986794 662

inm19 -17.739444 -39.258611 6 iac04 -24.610217 -47.883792 43

inm20 -18.170278 -47.958056 857 iac05 -22.968783 -45.452533 568

inm21 -18.713975 -39.848749 39 iac06 -21.207042 -47.871414 632

inm22 -19.020355 -43.433948 663 iac07 -23.285510 -47.898402 574

inm23 -19.735765 -42.137222 609 iag01 -23.651242 -46.622424 799

inm24 -20.439722 -49.983611 510 ice01 -22.999617 -47.143638 657

inm25 -20.584314 -47.382427 1003 ice02 -23.221937 -45.868239 646

inm26 -20.316038 -40.317225 18 ice03 -23.623106 -46.657749 802

B.2 Timeseries homogenization

Many tests used to detect breakpoints in timeseries are available in the literature, and

each of them may perform better than the others depending on specific situations, making

the use of multiple tests an approach that is favorable to ensure that there are a lower
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number of false alarms, i. e., the detection of breakpoints that are artificial (Wijngaard

et al., 2003). Hence, we use two independent tests to detect the change points, the Standard

Normal Homogeneity Test (SNHT; Alexandersson and Moberg (1997)) and Pettitt test

(Pettit, 1979; Verstraeten et al., 2006). If both tests find a breakpoint in a two-year time

window of the other one we apply the correction as in Alexandersson and Moberg (1997),

if only one of the tests identify a given change point we discard it and no correction is

applied.

The selected tests are applied in a difference series Q from the candidate station Yk and

a reference series Rk, which is a key point in determining the locations of the breakpoints.

We follow the method described in Alexandersson and Moberg (Alexandersson and Moberg,

1997) where for a particular time i, Rk is the weighted average of the Xj sites based on

the squared correlation ρj between the site and the candidate series Yk:

Rki =

∑
j 6=k ρ

2
j [Xji −Xj + Y ]∑

j 6=k ρ
2
j

(B.1)

For each candidate station, the reference series is calculated using all stations with a

correlation above 0.7, with an altitude difference lower than 500 m and a distance of less

than 300 km from the candidate series, similar to El Kenawy et al. (2013). Figure B.1

shows a summary of the characteristics between the candidate stations and the ones used to

compute their reference series. The median correlation is above 0.9 with an interquartile

range that is greater than 0.85, indicating a high correlation between stations, with a

median distance between stations close to 200 km because of the somewhat low station

density. The altitude difference has more than 50 % of the distribution between 60 and

300 m, and we see a highly skewed distribution for the number of stations used for each

candidate series, with more stations using fewer nearby stations than a higher number.
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Figure B.1: Boxplot that summarizes the relationship between the candidate series and the surrounding

stations used to calculate the reference series Rk for Tmin and Tmax: (a) Correlation; (b) Distance

between stations; (c) Altitude difference; (d) the number of stations used to compute Rk.

To detect an inhomogeneity, the test goes as follows: (1) We calculate the reference

series Rk so we can obtain the difference series Q; (2) The SNHT and Pettitt tests are

applied so we can identify the change points. Since both tests only identify a single change

point, we check whether or not the station has multiple change points by dividing the

series into smaller subsections: one before the change point and another one after it. The

test is then reapplied for each subsection and this process is repeated iteratively until no

more breakpoints are found or the series length is shorter than 12 months; (4) We compare

the breakpoints found in the SNHT and Pettit test and select only the ones that are in a

two-year time window of the other; (5) The correction is applied to the candidate series

based on its difference with the reference series.

An important source of inhomogeneity is caused by changes in the local environment

like vegetation growing in the station’s surroundings or gradual warming caused by urba-

nization which are key features that we would like to preserve for our analysis. However,

the tests described here only deal with step changes and may homogenize a series around

a breakpoint that is part of a larger trend. Therefore, to deal with this limitation, we

classify the change points based on five models as in Menne and Williams Jr (2009) (Table

B.2):
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Table B.2 - Models used to classify the breakpoints timeseries. p is the number of parameters used to fit

the model, εi is a random noise term, and µ and β are the parameters estimated to fit the model (Menne

and Williams Jr, 2009).

Model Description Parameters (p)

M1 Qi = µ+ εi 1

M2 Qi = µ+ βi+ εi 2

M3 Qi =

µ1 + εi i ≤ a

µ2 + εi i > a
3

M4 Qi =

µ1 + βi+ εi i ≤ a

µ2 + βi+ εi i > a
4

M5 Qi =

µ1 + β1i+ εi i ≤ a

µ2 + β2i+ εi i > a
5

To select the most suitable model we use the one with the lowest Bayesian Information

Criteria (BIC) that aims to weight the sum of squared errors by the number of parameters

added. With this classification, we only homogenize the breakpoints classified as either

M3, M4, or M5. M1 model represents a constant value, while M2 is supposed to show bre-

akpoints inside a longer trend, which could be caused by changes in the local environment,

for example.
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Figure B.2: (a) Histogram of the correction applied for all stations; (b) Scatter plot of the trend for

minimum temperature with the raw data versus the homogenized data; (c) same as (b) but for maximum

temperature.

A total of 36 and 35 stations were homogenized for minimum and maximum tempe-

rature, respectively. The correction applied in each breakpoint is shown in Figure B.2a,

indicating that most corrections are lower than ± 1 oC, with a few of them reaching values

as low as -2 oC for minimum temperature. The impact of the homogenization procedure
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on the trend tends to smooth the difference between stations for both Tmin and Tmax

(Figure B.2b and c).

B.3 Generalized Additive Model (GAM)

In this section we give some basic information about how generalized additive models

(GAM) are derived from a penalized least squares perspective and some useful definitions

that are intended to help the unfamiliar reader with the topic. We only consider the case

where the residual is normally distributed, which is the case that we go through in the

main text, and because the derivation is easier to follow in the authors opinion. Therefore,

even tough we define the section as ”Generalized Additive Models”we are actually dealing

with additive models which are the special case of GAMs when the residual is normally

distributed. The text is based on Wood (2017) and Hastie et al. (2009) which are highly

recommended sources if the reader wants a more thorough explanation.

Let’s consider that we can represent a random variable Y as a sum of smooth functions

f(X) plus a random noise term ε ∼ N(0, σ2), as represented by:

Y = f(X) + ε =

q∑
k=0

βkbk(X) + ε (B.2)

Where βk is the scaling parameter for the smooth function, bk is a basis function and

q is the number of basis functions. For example, for a cubic spline, we have that:

bk = Xk, k = 0, ..., 3

b(3+l) = (X − ζl)3+, l = 1, ..., L

(B.3)

Where ζl is the l-th knot and ()+ is positive when the difference inside the parenthesis

is greater than zero and zero otherwise, and in this case q = L + 4. Considering that we

have i = 1, . . . , n samples, we can represent the spline function f(X) from B.2 in matrix

notation as:

f = Xβββ (B.4)

In which the i-th row of X is represented by Xi = [b0(xi), b1(xi), . . . , bq(xi)] and βββ =

[β0, β1, . . . , βq]
T . An example is presented in Figure B.3 where maximum temperature is
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fitted as a function of altitude in two different ways: the first using third degree B-Splines

(Figure B.3a) and the second using a second degree polynomial (Figure B.3b). In both

cases the function f(X) will be given as the sum of the basis function multiplied by their

respective scaling parameter.
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Figure B.3: Fitted maximum temperature as a function of altitude using: (a) Third degree B-Splines; (b)

Second degree polynomial.

In the case of additive models, we consider a variable y, which could be temperature,

for example, that can be represented as the sum of a number p of independent variables,

like altitude, latitude and longitude, that are represented as smooth function defined by

Eq. B.2. Therefore:

yi =

p∑
j=1

f(xj,i) + εi (B.5)

Where εi ∼ N(0, σ2). In matrix notation:

y = Xβββ + εεε (B.6)

In which X = [X1 : . . . : Xp] and βββ = [β1β1β1
T : . . . : βpβpβp

T ]T . Instead of using ordinary

least squares to obtain an estimator for βββ, we use the penalized least squares, in order to

penalize functions that are too wiggly, giving preference for simpler functions. This means

that we have to minimize the following equation:

RSS(βββ, λ1, ..., λp) = (y −Xβββ)T (y −Xβββ) + βββTSβββ (B.7)

Which is the residual sum of squares, given by the first term in the right hand side of
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Eq. B.7, plus a penalization term, given by the second term in the right hand side of Eq.

B.7. The term S is given by:

S =


λ1S1 0 . . . 0

0 λ2S2 . . . 0

0 0
. . . 0

0 0 . . . λpSp

 (B.8)

And the entry from row i and column k from Sj is Sj,ik =
∫
bki(xk)

′′bjk(xj)
′′dx. The

parameter λj controls the degree of penalization for wiggly functions. As λj →∞, penali-

zation increase and fj tends to a linear function, while if λj = 0 the penalization is minimal

and the resulting function will be an interpolator in all points. Computing the derivative

of Eq. B.7 with respect to βββ and equating to zero:

β̂̂β̂β = (XTX + S)−1XTy (B.9)

From this result we can define the smooth matrix A = X(XTX + S)−1XT . Here we

introduce the concept of estimated degrees of freedom as edf = tr(A), in an analogous form

of the multiple linear regression case (MLR). For example, in MLR with p independent

variables, we have that A = X(XTX)−1XT since there is no penalization, and therefore

the number of degrees of freedom is:

edf = tr(A) = tr(Ip) = p (B.10)

Where Ip is the identity matrix of size p × p. In the additive model, since there is

penalization in β̂̂β̂β the edf will give a more appropriate measure of the degrees of freedom

from the model, even if more parameters are used than the estimated edf. We can even

estimate the edf of each βi. If P = (XTX + S)−1XT we have that edf = tr(XP). Now,

if P0
i is the matrix P with all rows equal to zero, with exception of the i-th row, the

effective degrees of freedom for βi is given by edfβi = tr(XP0
i), and therefore the edf of

each fj will be given by the sum of the edfs of each βi ∈ βββj. If the edf is close to unit this

means that the penalization is greater and a linear function could represent satisfactorily

the dependency between independent and dependent variable, while higher values of edf

indicate that non linear relationships are more appropriate to represent the given term.
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From Eq. B.9 it is possible to find the expected value and variance of the estimator β̂̂β̂β,

which are given, respectively, by:

E[β̂̂β̂β] = (XTX + S)−1XTXβββ (B.11)

V[β̂̂β̂β] = (XTX + S)−1XTX(XTX + S)−1σ2 (B.12)

It is easy to see that E[β̂ĵβĵβj] is not an unbiased estimator of βjβjβj, however, if βjβjβj = 000 we

also have that E[β̂ĵβĵβj] = 000, so we can test the null hypothesis that βjβjβj = 000. In that case we

have that β̂ĵβĵβj ∼ N(000,V[β̂ĵβĵβj]) and that:

β̂ĵβĵβj
TV[β̂ĵβĵβj]

−1β̂ĵβĵβj
H0∼ χ2

d (B.13)

If V[β̂ĵβĵβj] is of full rank, with d = dim(β̂ĵβĵβj). However, because of the penalization term,

usually V[β̂ĵβĵβj] is not full rank, so we use V[β̂ĵβĵβj]
r− which is the rank r pseudo-inverse of

the covariance matrix, where r = rank(V[β̂ĵβĵβj]). We have also to estimate the variance σ2,

which is assumed to be unknown, using the sum of the squared error:

σ̂2 =
(y −Ay)T (y −Ay)

n− tr(A)
(B.14)

Finally, we combine B.13 and B.14 so that under H0 : βjβjβj = 000:

β̂ĵβĵβj
TV[β̂ĵβĵβj]

r−β̂ĵβĵβj/r

σ̂2/(n− edf)

H0∼ Fr,edf (B.15)

Which can be used to calculate the associated p-values for each one of the p independent

variables and determine if they are statistically significant in the model.
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B.4 Number of NDVI images
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Figure B.4: Average number of images by season (summer and winter), for each available station. Vertical

bars represent the ±1 standard deviation.

B.5 Wind speed

The wind speed is an important factor to consider when quantifying the absolute con-

tribution of each of the estimated functions, especially for land use (Oke et al., 2017;

Kagawa-Viviani and Giambelluca, 2020), as suggested by Figure B.5. We noticed that the

correlation is higher for days when wind speed is lower, below the 25 % percentile (P25),

when compared to samples for days when wind speed is higher, above the 75 % percentile

(P75). Therefore, we filtered daily Tmin and Tmax for days when wind speed was below

P25 and above P75, and calculated temperature averages for the different temporal ag-

gregations considered in this study: annual, summer, and winter. Daily wind speed was

obtained for the gridded data of Xavier et al. (2015), in which we interpolated the data to

each station coordinate.
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Figure B.5: Pearson correlation between the minimum and maximum temperature, Tmin and Tmax, res-

pectively, and the NDVI in the annual, summer, and winter aggregations, based on the average between

1985 and 2010. The NDVI was calculated as the average of the pixels surrounding the station coordinates,

considering a radius that varies according to the x-axis. The average temperature was calculated consi-

dering: (a) all available data; (b) only days when the wind speed was lower than the 25 % percentile; (c)

only days when the wind speed was greater than the 75 % percentile.

We fitted the GAM individually and we present the amplitude of each function in

Figure B.6, which was calculated as the difference between the maximum and minimum

values of each function. Only statistically significant functions with a p-value below 5 %

were considered. We noticed that the function of geographical position s(lon,lat) (Figures

B.6a,d) has a greater amplitude in winter for Tmin when wind speed is below P25, while

during summer the greater amplitude occurs when wind speed is above P75, suggesting

a more intense thermal gradient. For cloud cover (Figure B.6f) the amplitude was also

higher in winter for P75, while in summer it was not statistically significant.
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Figure B.6: Amplitude (difference between maximum and minimum values) of the contribution of each

individual function of the GAM for three different datasets: 1) all data, 2) only days when wind speed was

below the 25 % percentile (¡ P25) and 3) only days when the wind speed was above the 75 % percentile

(¿ P75). The model was fitted individually for Tmin and Tmax in each of the given seasons (annual,

summer, and winter) and for each of the three different datasets. Figures (a)-(c) represent the results for

minimum temperature and figures (d)-(g) are for maximum temperature. The vertical lines represent the

95 % confidence interval.

The function s(altitude) (Figures B.6b,e) showed greater variability in summer for

Tmin, with no significant difference between the different ranges of wind speed, while

for Tmax even though there was no major variation between seasons the amplitude was

greater for the case when wind speed is above P75. Still, for NDVI (Figure B.6c) there

is an increased contribution for cases when wind speed is low for minimum temperature,

being 50 % higher than P75 in winter and approximately 75 % in the annual case. During

summer, the differences are lower and not very significant. For Tmax s(NDVI) was not

statistically significant in any of the cases.
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B.6 Urban Infrastructure timeseries
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Figure B.7: Average annual urban fraction between 1985 and 2010 for the selected stations. The urban

fraction was calculated as an average of all pixels inside a circle with a 300 m radius around each station

based on MapBiomas version 5.0 classification (Souza et al., 2020).
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B.7 GAM complementary results
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Figure B.8: Contribution of each function in the GAM, in oC, using all available independent variables

as in Equation 2, even the ones that were not statistically significant, for the annual mean of Tmin (a, b,

c, d) and Tmax (e, f, g, h). In (a) and (e), is the function related to the geographical position s(lon, lat);

in (b) and (f) is the altitude in meters above sea level; (c) and (g) the NDVI; (f) and (h) the cloud cover.

In (a) and (d) we show the position of each station used to fit the model. In (b), (c), (d), (f), (g) and

(h): the points are the partial residual of the given function and the fitted GAM response is displayed as

a solid line with a 95 % confidence interval.
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Figure B.9: Contribution of each function in the GAM, in oC, using all available independent variables

as in Equation 2, even the ones that were not statistically significant, for the seasonal mean of Tmin (a, b,

c, d and e) and Tmax (f, g, h, i and j) for summer and winter. (a), (b), (f) and (g) shows the geographical

position, s(lon, lat); altitude in (c) and (h); NDVI in (d) and (i); and cloud cover in (e) and (j). In (a),

(b), (f) and (g) we show the position of each station used to fit the model. In (c), (d), (e), (h), (i) and

(j),: the points are the partial residual of the given function and the fitted GAM response is displayed as

a solid line with a 95 % confidence interval.
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Table B.3 - Results from the Generalized Additive Model (GAM) for maximum and minimum temperature

(Tmax and Tmin, respectively) for summer and winter. We show the estimated degrees of freedom (edf),

the coefficient of determination (R2), and the Bayesian Information Criteria (BIC). Only the terms that

were statistically significant with a p-value < 0.01 are displayed.

Summer Winter

Tmax

(edf)

Tmin

(edf)

Tmax

(edf)

Tmin

(edf)

Intercept 29.8 19.8 Intercept 26.6 13.9

s(lon,lat) 4.53 7.40 s(lon,lat) 5.60 7.92

s(altitude) 1.93 1.00 s(altitude) 1.95 1.69

s(NDVI) - 1.00 s(NDVI) - 1.00

s(cloud cover) - - s(cloud cover) 1.00 -

R2 85.9 % 95.7 % R2 95.8 % 87.7 %

BIC 125.1 74.7 BIC 137.4 186.4

Table B.4 - Results for the Generalized Additive Model (GAM) for minimum temperature in annual,

summer and winter aggregations, using the s(NDVI300, NDVI3000) function for fitting. We also show the

results for the model with s(NDVI300) as comparison. We show the estimated degrees of freedom (edf),

the coefficient of determination (R2), and the Bayesian Information Criteria (BIC). Only the terms that

were statistically significant with a p-value < 0.01 are displayed.

Annual Summer Winter

s(lon,lat) 8.50 7.88 8.62

s(altitude) 1.00 1.00 1.00

s(ndvi 300m, ndvi 3000m) 6.79 6.01 6.77

s(cloud cover) - - -

R2 96.1 % 97.3 % 92.1 %

BIC 123.7 72.5 186.4

R2 s(NDVI300) only 93.4 % 95.7 % 87.7 %

BIC s(NDVI300) only 127.2 74.7 186.4
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