FÁBIO ANDRÉ PEROSI

ESTRUTURA CRUSTAL DO SETOR CENTRAL DA PROVÍNCIA TOCANTINS UTILIZANDO ONDAS P, S E FASES REFLETIDAS COM DADOS DE REFRAÇÃO SÍSMICA PROFUNDA

SÃO PAULO 2006

FÁBIO ANDRÉ PEROSI

ESTRUTURA CRUSTAL DO SETOR CENTRAL DA PROVÍNCIA TOCANTINS UTILIZANDO ONDAS P, S E FASES REFLETIDAS COM DADOS DE REFRAÇÃO SÍSMICA PROFUNDA

Tese apresentada ao Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo para a obtenção do título de Doutor. Área de concentração: Geofísica

Orientador: Prof. Dr. Jesus Antonio Berrocal Gomez

Co-Orientador: Prof^a. Dr^a. Liliana Alcazar Diogo

SÃO PAULO

Folha de Aprovação

FÁBIO ANDRÉ PEROSI

ESTRUTURA CRUSTAL DO SETOR CENTRAL DA PROVÍNCIA TOCANTINS UTILIZANDO ONDAS P, S E FASES REFLETIDAS COM DADOS DE REFRAÇÃO SÍSMICA PROFUNDA

Tese apresentada ao Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo para a obtenção do título de Doutor. Área de Concentração: Geofísica

Aprovado em:

Banca Examinadora

Prof. Dr. Jesus Antônio Berrocal Goméz IAG-USP

Prof. Dr. Renato Luiz Prado IAG - USP

Prof. Dr. Reinhardt Fuck IG - UnB

Dr. Mário Araújo Neto CENPE - Petrobrás

Prof. Dr. João Carlos Dourado IG - UNESP Rio Claro

Dedicatória

À Simone

Agradecimentos

Quero expressar o meu sincero agradecimento ao meu orientador, Prof. Dr. Jesus Antonio Berrocal Gomez, tanto pelo seu profissionalismo na orientação e coordenação nos trabalhos acadêmicos, quanto pelo apoio amigo passado a cada momento do desenvolvimento deste trabalho. À Profa. Dra. Liliana Alcazar Diogo, pela receptividade e colaboração no desenvolvimento deste trabalho.

Agradeço à FAPESP pelo fomento à essa pesquisa no país e ao CNPq pelo apoio dado durante o estágio em Menlo Park, CA, no U. S. Geological Survey (USGS).

Agradeço ao Dr. Walter D. Mooney, pela coordenação e orientação na pesquisa, ao Shane Detweiler, pelo apoio tanto técnico, quanto pessoal e aos demais funcionarios da USGS que colaboraram comigo durante o estágio. Ao Prof. Dr. Robert Mereu, que também visitava o USGS, por seus ótimos conselhos durante a interpretação. Ao Prof. Dr. Simon Kemplerer e ao Prof. Dr. Jerry M. Harris pela receptividade no Departamento de Geociências na Stanford University.

Agradeço a todos os professores do IAG, que auxiliaram direta e indiretamente no desenvolvimento desta pesquisa. Em especial ao Prof. Dr. Marcelo Sousa de Assumpção, pelos conselhos dados nos pareceres dos relatórios e a Profa. Dra. Yára Regina Marangoni pelo auxílio com mapas e dados gravimétricos.

Aos Funcionários do IAG que por sua paciência e simpatia tornaram mais agradáveis as longas horas passadas no interior da instituição. Aos amigos do IAG que acabam sendo nossa segunda família. Ao pessoal da UnB que também esteve presente nos trabalhos de campo e nas discussões.

Agradeço aos meus familiares, à minha mãe, minha avó, minha tia e primos, meus tios que sempre fizeram o possível para me apoiar mesmo não estando aqui em São Paulo. Aos amigos gaúchos aqui em São Paulo, em especial aos padrinhos, Ismael e Adriane. Um agradecimento muito especial e cheio de saudade aos amigos brasileiros em Stanford, espero que obtenham sucesso em suas jornadas.

Finalmente, à Simone, que amo muito, que está ao meu lado nos melhores momentos e

também nos mais difíceis e suportou o meu humor nesses momentos. Ao pequeno (não tão pequeno assim) Mateus, mas de coração enorme, que é muito especial na minha vida. Aos meus enteados Gabi e Augusto, por deixarem minha vida muito longe de ser monótona. À Dona Geni, à Valéria e ao Thor pelos cafezinhos e almoços e jantares e lanches e ... À Thanya e Oswaldo pelo a apoio insistente dado nesta fase final de trabalho. Agradeço também a todos os familiares que estiveram e estão sempre prontos a ajudar. E à Vitória, ao Amigão e à Mia companheiros fiéis, sempre ao lado nas horas de trabalho em casa.

Epígrafe

"Be careful with your wish. You may get it..."

Sumário

Lista de Figuras	ix
Lista de Tabelas	xix
Resumo	xxi
Abstractx	xii
1 Introdução	1
1.1 Características da Crosta Continental	4
1.1.1 Definições de Crosta e Manto Superior	4
1.1.2 Aspectos Globais da Crosta Continental	5
1.2 Objetivo	10
1.3 Conteúdo da Tese	10
2 Geologia Regional	12
2.1 Aspectos Genéricos	12
2.2 Faixa Araguaia	17
2.3 Faixa Brasília	17
2.3.1 Arco Magmático de Goiás	17
2.3.2 Maciço de Goiás	18
2.3.3 Faixa de Dobras e Empurrões de Antepaís	20
2.3.4 Síntese Tectônica	20
2.4 Cráton São Francisco	21

3	Metodologia	22
3.1	Procedimentos e Características Básicas do Método de Refração Sísmica Pro- funda	23
3.2	Principais Aspectos do Experimento de Refração Sísmica Profunda deste Tra- balho	23
3.3	Razão de Poisson e $\mathbf{V}_P/\mathbf{V}_S$	25
3.4	O Programa TTInvers	25
3.5	O Programa MacRay	26
3.6	Procedimento Empregado	26
4	Resultados Obtidos	28
4.1	Porangatu	31
4.1	.1 Descrição	31
4.1	.2 Modelos 1D da linha sísmica L1-Porangatu	31
4.1	.3 Modelos 2D da linha sísmica L1-Porangatu	32
4.2	Cavalcante	35
4.2	.1 Descrição	35
4.2	.2 Modelos 1D da linha sísmica L2-Cavalcante	35
4.2	.3 Modelos 2D da linha sísmica L2-Cavalcante	35
5	Interpretação e Discussão	38
6	Conclusões	49
Re	eferências	51
Ap	pêndice A – Leitura dos Tempos - Linha L1-Porangatu	55
Ap	pêndice B – Leitura dos Tempos - Linha L2-Cavalcante	67

Apêndice C – Modelos 1D - Linha L1-Porangatu
Apêndice D – Modelos 2D - Linha L1-Porangatu 86
Apêndice E – Seções Sísmicas para Onda P - Linha L1-Porangatu 94
Apêndice F – Seções Sísmicas para Onda S - Linha L1-Porangatu102
Apêndice G – Modelos 1D - Linha L2-Cavalcante110
Apêndice H – Modelos 2D - Linha L2-Cavalcante119
Apêndice I – Seções Sísmicas para Onda P - Linha L2-Cavalcante 125
Apêndice J – Seções Sísmicas para Onda S - Linha L2-Cavalcante 131
ERRATA

Lista de Figuras

Figura 1	Modelos de velocidades sísmicas considerados representativos da estru- turação profunda da crosta continental brasileira obtidos com a análise da onda P.	3
Figura 2	Mapa de localização dos perfis - os triângulos laranjas são as posições da base de dados continentais e os pontos azuis as posições da base de dados oceânicos (Christensen & Mooney, 1995 e USGS, 2002).	5
Figura 3	Diagramas de seções crustais para diferentes ambientes tectônicos conti- nentais. A crosta é dividida em crosta superior, média e inferior, com a espessura de cada uma das camadas variando de acordo com a ambiente tectônico (Christensen & Mooney, 1995).	6
Figura 4	Velocidade média versus densidade média para uma variedade de tipos de rochas a uma pressão equivalente a 20 km de profundidade e temperatura de 309°C (Christensen & Mooney, 1995).	7
Figura 5	Modelo da petrologia média da crosta continental em função da profun- didade. A curva formada pelos círculos sólidos representa a velocidade média da crosta continental e as curvas formadas por símbolos vazados as rochas especificadas no lado esquerdo da própria figura. As barras horizontais são o desvio padrão. Os gráficos mostram a variação de den- sidade e concentração de SiO2 do modelo, respectivamente (modificado de Christensen & Mooney, 1995 - é apresentada apenas uma parte da	0
	tigura).	8

- Figura 6 Comparação entre razões de Poisson e velocidades das ondas P obtidas no campo (ovais hachuradas) e em laboratório (retângulos hachurados). R = zona de rift; Pc = escudo Pré-Cambriano; Pz = Crosta Paleozóica. 9
- Figura 7 Diagrama de blocos com detalhes da distribuição de velocidades e espessura das camadas da crosta para diferentes ambientes tectônicos. Os terrenos de escudo e plataforma estão individualizados, sugerindo diferenças na composição da crosta inferior (Holbrook et al., 1992).
 9
- Figura 8 Seção crustal hipotética mostrando de forma integrada a distribuição média de velocidades e espessura das camadas crustais para diferentes ambientes tectônicos, inferidos a partir de dados de refração sísmica profunda (Holbrook et al., 1992).
 10
- Figura 9 Mapa geológico da Província Tocantins com a localização dos experimentos de refração sísmica profunda e indicação da região de estudo. 13
- Figura 10 Mapa de localização da região do trabalho de Ussami & Molina (1999). 14
- Figura 11 Modelos crustais ao longo de dois perfis gravimétricos distintos (a) anomalia Bouguer; (b) modelos gravimétrico (números são densidades em g/cm³); (c) seção geológica da crosta superior; (d) seção geológica interpretativa até o manto superior baseada nos resultados combinados de modelagem gravimétrica e de flexura, estimando a profundidade média do embasamento sob a Faixa Araguaia baseado em dados magnéticos e na espessura dos sedimentos Quaternários da bacia da Ilha do Bananal. AC (Cráton Amazônico), GM (Maciço de Goiás) e SFC (Cráton do São Francisco) (Ussami & Molina, 1999).

Figura 13 Modelo gravimétrico (isostático) e geológico da parte norte da Bacia do Paraná ao longo do perfil A-A' da Figura 12 (Molina et al., 1989). ... 16

Figura 14	Localização dos corpos que influenciaram consideravelmente a chegada	
	das ondas sísmicas nesta região. Na parte superior é apresentada uma foto	
	de satélite e na parte inferior da figura é apresentado o mapa geológico	
	dessa região. O anortosito é o corpo, na cor lilás, próximo ao tiro $\mathrm{EX14}$	
	e o granito está representado na cor vermelha, próximo ao tiro $\mathrm{EX15}$	
	(modificado de Soares et al., 2006a).	19

Figura 15	Secão sísmica do tiro EX11 mostrando as chegadas das ondas P e S.	
	Filtrada de 2-10 Hz e sem aplicação de velocidade de redução	29

Figura 16	Modelo 1D	referente ao	tiro EX11 -	Linha L1-Porangatu.		33
-----------	-----------	--------------	-------------	---------------------	--	----

Figura 17 Modelo 2D referente a onda P da Linha L1-Porangatu 34

Figura 22 Modelo 2D final juntando as duas linhas sísmicas para a modelagem gra-

vimétrica. Os valores preto no interior do modelo são as densidades e em vermelho as velocidades da onda P. Estão em destaque a região do Lineamento Transbrasiliano, onde foi necessário incluir mais uma coluna de densidades, e a forte descontinuidade lateral entre os tiros EX23 e EX25, onde foi necessário variar muito o valor da densidade. Nesse local seria a interface entre o Cráton São Francisco e a faixa de dobras e empurrões. 43

Figura 23	Mapa gravimétrico da região mostrando o forte gradiente gravimétrico	
	dessa região	5

Figura 26	Modelo 1D referente ao tiro EX11 - Linha L 1-Porangatu - sentido EX11 \rightarrow EX17 $\hfill \longrightarrow$	75
Figura 27	Modelo 1D referente ao tiro EX12 - Linha L 1-Porangatu - sentido EX12 \rightarrow EX17 $\hfill \longrightarrow$ EX17	76
Figura 28	Modelo 1D referente ao tiro EX13 - Linha L1-Porangatu - sentido EX13 \rightarrow EX17	77

Figura 29	Modelo 1D referente ao tiro EX13 - Linha L 1-Porangatu - sentido EX13 \rightarrow EX11 $\hfill \longrightarrow$	78
Figura 30	Modelo 1D referente ao tiro EX14 - Linha L1-Porangatu - sentido EX14 \rightarrow EX17 $\hfill \longrightarrow$	79
Figura 31	Modelo 1D referente ao tiro EX14 - Linha L 1-Porangatu - sentido EX14 \rightarrow EX11 $\hfill \ldots$	80
Figura 32	Modelo 1D referente ao tiro EX15 - Linha L 1-Porangatu - sentido EX15 \rightarrow EX17 $\hfill \ldots$	81
Figura 33	Modelo 1D referente ao tiro EX15 - Linha L 1-Porangatu - sentido EX15 \rightarrow EX11 $\hfill \ldots$	82
Figura 34	Modelo 1D referente ao tiro EX16 - Linha L 1-Porangatu - sentido EX16 \rightarrow EX17 $\hfill \longrightarrow$	83
Figura 35	Modelo 1D referente ao tiro EX16 - Linha L 1-Porangatu - sentido EX16 \rightarrow EX11 $\hfill \ldots$	84
Figura 36	Modelo 1D referente ao tiro EX17 - Linha L 1-Porangatu - sentido EX17 \rightarrow EX11	85
Figura 37	Modelo 2D referente à Linha L1-Porangatu - Tiro EX11; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S	87
Figura 38	Modelo 2D referente à Linha L1-Porangatu - Tiro EX12; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo	

	e traçado de raios para onda S	88
Figura 39	Modelo 2D referente à Linha L1-Porangatu - Tiro EX13; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S	89
Figura 40	Modelo 2D referente à Linha L1-Porangatu - Tiro EX14; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S	90
Figura 41	Modelo 2D referente à Linha L1-Porangatu - Tiro EX15; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S	91
Figura 42	Modelo 2D referente à Linha L1-Porangatu - Tiro EX16; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S	92
Figura 43	Modelo 2D referente à Linha L1-Porangatu - Tiro EX17; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S	93
Figura 44	Seção Sísmica para onda P - Tiro EX11 - Velocidade de Redução 6.00 km/s	95
Figura 45	Seção Sísmica para onda P - Tiro EX12 - Velocidade de Redução 6.00 km/s	96
Figura 46	Seção Sísmica para onda P - Tiro EX13 - Velocidade de Redução 6.00 km/s	97

Figura 47 Seção Sísmica para ond
a ${\rm P}$ - Tiro EX14 - Velocidade de Redução 6.00

$\rm km/s$	6	98

Figura 48	Seção Sísmica para onda P - Tiro EX15 - Velocidade de Redução 6.00 km/s
Figura 49	Seção Sísmica para onda P - Tiro EX16 - Velocidade de Redução 6.00 km/s
Figura 50	Seção Sísmica para onda P - Tiro EX17 - Velocidade de Redução 6.00 km/s
Figura 51	Seção Sísmica para onda S - Tiro EX11 - Velocidade de Redução 3.46 km/s
Figura 52	Seção Sísmica para onda S - Tiro EX12 - Velocidade de Redução 3.46 $\rm km/s$ $\ldots\ldots\ldots104$
Figura 53	Seção Sísmica para onda S - Tiro EX13 - Velocidade de Redução 3.46 km/s
Figura 54	Seção Sísmica para onda S - Tiro EX14 - Velocidade de Redução 3.46 km/s
Figura 55	Seção Sísmica para onda S - Tiro EX15 - Velocidade de Redução 3.46 km/s
Figura 56	Seção Sísmica para onda S - Tiro EX16 - Velocidade de Redução 3.46 km/s
Figura 57	Seção Sísmica para onda S - Tiro EX17 - Velocidade de Redução 3.46 km/s

Figura 58	Modelo 1D referente ao tiro EX21 - Linha L2-Cavalcante - sentido EX21 \rightarrow EX27
Figura 59	Modelo 1D referente ao tiro EX23 - Linha L2-Cavalcante - sentido EX23 \rightarrow EX27 $\ldots \ldots 112$
Figura 60	Modelo 1D referente ao tiro EX23 - Linha L2-Cavalcante - sentido EX23 \rightarrow EX21 \ldots 113
Figura 61	Modelo 1D referente ao tiro EX25 - Linha L2-Cavalcante - sentido EX25 \rightarrow EX27 $\ldots 114$
Figura 62	Modelo 1D referente ao tiro EX25 - Linha L2-Cavalcante - sentido EX25 \rightarrow EX21 \ldots 115
Figura 63	Modelo 1D referente ao tiro EX26 - Linha L2-Cavalcante - sentido EX26 \rightarrow EX27 $\ldots \ldots 116$
Figura 64	Modelo 1D referente ao tiro EX26 - Linha L2-Cavalcante - sentido EX26 \rightarrow EX21 $\ldots \ldots 117$
Figura 65	Modelo 1D referente ao tiro EX27 - Linha L2-Cavalcante - sentido EX27 \rightarrow EX21 $\qquad \ldots \qquad 118$
Figura 66	Modelo 2D referente à Linha L2-Cavalcante - Tiro EX21; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S
Figura 67	Modelo 2D referente à Linha L2-Cavalcante - Tiro EX23; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo

e traçado de raios para onda S $\qquad \ldots 121$

Figura 68	Modelo 2D referente à Linha L2-Cavalcante - Tiro EX25; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S
Figura 69	Modelo 2D referente à Linha L2-Cavalcante - Tiro EX26; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S
Figura 70	Modelo 2D referente à Linha L2-Cavalcante - Tiro EX27; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S
Figura 71	Seção Sísmica para onda P - Tiro EX21 - Velocidade de Redução 6.00 km/s
Figura 72	Seção Sísmica para onda P - Tiro EX23 - Velocidade de Redução 6.00 km/s
Figura 73	Seção Sísmica para onda P - Tiro EX25 - Velocidade de Redução 6.00 km/s
Figura 74	Seção Sísmica para onda P - Tiro EX26 - Velocidade de Redução 6.00 km/s
Figura 75	Seção Sísmica para onda P - Tiro EX27 - Velocidade de Redução 6.00 km/s
Figura 76	Seção Sísmica para onda S - Tiro EX21 - Velocidade de Redução 3.46

Figura 77	Seção Sísmica para onda S - Tiro EX23 - Velocidade de Redução 3.46
	km/s
Figura 78	Seção Sísmica para onda S - Tiro EX25 - Velocidade de Redução 3.46
	km/s
Figura 79	Seção Sísmica para ouda S - Tiro EX26 - Velocidade de Redução 3.46
i igaia to	$\label{eq:km/s} km/s \qquad \dots $
Figura 80	Seção Sísmica para onda S - Tiro EX27 - Velocidade de Redução 3.46
	km/s

Lista de Tabelas

Tabela 1	Listagem e características dos levantamentos sísmicos para estudo da estrutura crustal, utilizando explosõesde pedreiras, algumas com tempo controlado, as três últimas com fontes próprias controladas, realizados no Brasil. RSS - Rede Sismográfica de Sobradinho	2
Tabela 2	Tabela com as médias das velocidades das ondas P e S e razão $\mathbf{V}_P/\mathbf{V}_S$	48
Tabela 3	Leituras dos tempos para o tiro EX11. Valores 999,00 indicam que não foram feitas leituras na determinada estação	55
Tabela 4	Leituras dos tempos para o tiro EX12. Valores 999,00 indicam que não foram feitas leituras na determinada estação	57
Tabela 5	Leituras dos tempos para o tiro EX13. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	59
Tabela 6	Leituras dos tempos para o tiro EX14. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	61
Tabela 7	Leituras dos tempos para o tiro EX15. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	63
Tabela 8	Leituras dos tempos para o tiro EX16. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	64

Tabela 9	Leituras dos tempos para o tiro EX17. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	66
Tabela 10	Leituras dos tempos para o tiro EX21. Valores 999,00 indicam que não foram feitas leituras na determinada estação	67
Tabela 11	Leituras dos tempos para o tiro EX23. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	69
Tabela 12	Leituras dos tempos para o tiro EX25. Valores 999,00 indicam que não foram feitas leituras na determinada estação	71
Tabela 13	Leituras dos tempos para o tiro EX26. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	72
Tabela 14	Leituras dos tempos para o tiro EX27. Valores 999,00 indicam que não foram feitas leituras na determinada estação.	73

Resumo

PEROSI, F. A. Estrutura crustal do setor central da Província Tocantins utilizando ondas P, S e fases refletidas com dados de refração sísmica profunda. 2006. 160 f. Tese (Doutorado) - Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, 2006.

Esta pesquisa está baseada na execução de duas linhas de refração sísmica profunda de 300 km de extensão (L1-Porangatu e L2-Cavalcante) atravessando de oeste para leste o setor central da Província Tocantins, utilizando em cada linha 120 sismógrafos digitais e explosões com tempo controlado e cargas entre 500 e 1000 kg de explosivos a cada 50 km; foram utilizados receptores GPS para o controle da hora e das coordenadas geográficas dos pontos de registro e de explosões. Esse tipo de experimento, com essas condições é pioneiro no Brasil. Os dados deste experimento, considerados de boa qualidade, permitiram, inicialmente, a elaboração de modelos 1D, para cada tiro, utilizando o programa TTInvers. Estes modelos foram relacionados sucessivamente para representar camadas com características semelhantes em um modelo preliminar para modelagem em 2D, que foi realizada com o programa MacRay. Os modelos 2D obtidos representam o resultado final da distribuição de velocidades sísmicas da crosta sob essas linhas. Estes resultados mostram a crosta sob o setor central da Província Tocantins com espessura variando entre 36 e 43 km, cujos parâmetros estão correlacionados com as principais estruturas geológicas existentes na superfície. Os valores médios de V_P e da razão V_P/V_S na Província Tocantins variam em torno de 6,5 km/s e 1,74, respectivamente, com exceção da faixa de dobras e empurrões cujos valores são 6,3 km/s e 1,73. Sob o Cráton São Francisco esses valores são 6,8 km/s e 1,74. Existem indícios de ter ocorrido uma dupla subducção na Província Tocantins, na porção oriental, com o Cráton São Francisco subduzindo para oeste (em ~ 760 Ma) e na porção ocidental, com o Cráton Amazônico subduzindo para leste (em ~ 620 Ma). O modelo gravimétrico, obtido neste trabalho em função do modelo sísmico, se ajusta adequadamente com os dados gravimétricos observados, utilizando densidades teóricas ligeiramente modificadas, dentro dos limites permitidos pela função utilizada para calcular essas densidades com base nos valores de V_P deste trabalho. As densidades do manto adotadas para a modelagem levaram em conta as idades Paleoproterozóica, sob o Cráton SãoFrancisco menos denso (3,31 g/cm³) e com maior V_P (8,26 km/s), e Neoprotorozóica, sob a Província Tocantins, mais densa $(3,34 \text{ g/cm}^3)$ e com menor V_P (8,07 km/s).

Palavras-chave: Refração Sísmica Profunda; Província Tocantins; Estrutura Crustal Sísmica; Velocidade das Ondas P e S; Modelo Gravimetrico.

Abstract

PEROSI, F. A. Crustal structure of central sector of Tocantins Province by using P and S waves as well as reflected phases with deep seismic refraction data. 2006. 160 f. Thesis (Doctoral) - Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, 2006.

This research is based on an execution of two lines of deep seismic refraction of 300 km of extension (L1-Porangatu and L2-Cavalcante), crossing over central sector of Tocantins Province from west to east by using, in each line, 120 digital seismographs and explosions with controlled time and explosive charges between 500 and 1,000 kg in each 50 km; GPS receivers were employed in order to control the time and geographical coordinates from recording and shot points. This kind of experiment under these explained conditions is pioneer in Brazil. Initially experiment data, which have been considered of good quality, allowed the elaboration of 1D models, using TTInvers program. Successive models were related to represent layers with similar characteristics in a preliminary model aiming of modelling in 2D, accomplished with MacRay program. Obtained 2D models represent the final result of seismic velocity distribution from crust beneath L1 and L2 lines. Results show crust under central section of Tocantins Province with thickness varying from 36 to 43 km, and whose parameters are correlated to main geological structures existents in surface. V_P as well as V_P/V_S ratio mean values vary about 6.5 km/s and 1.74, respectively, with the exception of fold-and-thrust belt, whose values are 6.3 km/s and 1.73. Those values reach 6.8 km/s and 1.74 beneath São Francisco craton. There are indicia of double subduction occurred in the eastern portion of Tocantins Province with São Francisco Cráton subducting to west (in ~ 760 Ma), as well as in the western portion, with Amazon Cráton subducting to east (in ~ 620 Ma). The gravimetric model, obtained in this work in terms of seismic model, adequately adjusts with observed gravimetric data by using theoretical densities slightly modified, within limits allowed by the function employed to calculating the densities based on V_P values achieved from this work. Adopted mantle densities to modelling took in consideration Paleoproterozoic age, beneath São Francisco Cráton, less dense (3.31 g/cm³), and with higher V_P (8.26 km/s), as well as Neoproterozoic one, beneath Tocantins Province, denser (3.34 g/cm³), and with lower V_P (8.07 km/s).

Key-words: Deep Seismic Refraction; Tocantins Province; Seismic Crustal Structure; P and S Waves Velocities; Gravimetric Model.

1 Introdução

Este trabalho sobre Refração Sísmica Profunda faz parte do Projeto Temático de Equipe "Estudos Geofísicos e Modelo Tectônico dos Setores Central e Sudeste da Província Tocantins, Brasil Central", aprovado pela FAPESP através do Processo No. 96/1566-0, que foi desenvolvido pelo Instituto de Astronomia, Geofísica e Cinências Atmosféricas da Universidade de São Paulo (IAG/USP) e o Instituto de Geociências da Universidade de Brasília (IG/UnB) e que contou também com a colaboração do Observatório Sismológico da Universidade de Brasília (SIS/UnB) e do Instituto Brasileiro de Geografia e Estatística (IBGE). Teve como finalidade principal efetuar estudos geofísicos e geológicos nos setores Central e Sudeste da Província Tocantins, objetivando um melhor entendimento da estruturação tectônica da região e sua dinâmica atual.

Os estudos que foram executados no Projeto Temático, inéditos no Brasil, tiveram como objetivo utilizar de maneira combinada ferramentas geofísicas e geológicas com vistas a uma melhor compreensão da compartimentação geotectônica de uma extensa área orogenética Neoproterozóica, constituída pela Província Tocantins.

Antes dos experimentos de refração sísmica deste projeto, foram efetuadas algumas tentativas de levantamentos de refração sísmica profunda, utilizando explosões de pedreiras e sismógrafos com registro analógico em número inferior a 20 (Giese & Shutte, 1975; Bassini, 1986; Mignona, 1987; Alarcon, 1989; Pedreschi, 1989) e com uma quantidade similar de sismógrafos, porém digitais (Pereira, 1995) ver Tabela 1.

Item	Local	Coordenada	Registradores	Fonte/Hora origem	Offset total /	Referência
					Offset pto registro	
a	Itabira/MG	$19^{\circ}37$ 'S	Analógicos em papel	Pedreiras /	$180 \ \mathrm{km}/$ 5-7 km	Giese e Schutte, 1975
		$43^{\circ}13'W$		Som da explosão		
b	Reservatório de	$09^{\circ}00$ 'S	RSS* /	Pedreiras /		Dias, Fernandes
	Sobradinho/BA	$41^{\circ}00'W$	Analógicos em papel	Som da explosão		e Berrocal, 1980
с	Reservatório de	09°00'S	RSS* /	Pedreiras /		Knize, Berrocal
	$\operatorname{Sobradinho}/\operatorname{BA}$	$41^{\circ}00'W$	Analógicos em papel	Som da explosão		e Oliveira, 1984
d	UHE Emborcação/MG	$16^{\circ}48$ 'S	Analógicos em papel	Pedreira /	$300~\mathrm{km}/~35~\mathrm{km}$	Veloso, 1984
	\rightarrow Brasília/DF	$47^{\circ}35'W$		Sensor próximo		
е	Sorocaba-	$23^{\circ}18$ 'S	Analógicos em papel	Pedreiras /	$320~\mathrm{km}/~25~\mathrm{km}$	Bassini, 1986
	Itataia/SP	$45^{\circ}58'W$	e fita	Som da explosão		
f	Sorocaba-	$23^{\circ}32$ 'S	Analógicos em fita	Pedreiras /	$70~{ m km}/~3~{ m km}$	Mignogna, 1987
	$\operatorname{Barueri}/\operatorname{SP}$	$47^{\circ}08'W$		Som da explosão		
g	Reservatório de	09°00'S	Analógicos em papel	Pedreiras /	$100~\mathrm{km}/242~\mathrm{km}$	Alarcon, 1989
	$\operatorname{Sobradinho}/\operatorname{BA}$	$41^{\circ}00'W$	e fita	Som da explosão	$5~{ m km}/~15~{ m km}$	
h	Reservatório de	$09^{\circ}00$ 'S	Analógicos em papel	Pedreiras /	$232~\mathrm{km}/~15~\mathrm{km}$	Pedreschi, 1989
	$\operatorname{Sobradinho}/\operatorname{BA}$	$41^{\circ}00'W$	e fita	Som da explosão		
i	${ m Formiga}/{ m MG}$	$20^{\circ}12$ 'S	Digital em disco rígido	Explosões controladas	$85~\mathrm{km}/~6.5~\mathrm{km}$	Pereira, 1995
		$45^{\circ}18'W$				
j	Nuporanga/SP	$20^{\circ}43$ 'S	Digital em disco rígido	Explosões controladas	$12~\mathrm{km}/~\mathrm{0.9~km}$	Yamabe, 1999
		$47^{\circ}47'W$				
k	Furnas/MG	$21^{\circ}00$ 'S	Digital (triaxial)	microtremores /	$300~{ m km}~/~12~{ m km}$	Assumpção, 1994;
		$45^{\circ}30'W$	em disco rígido	\exp losões controladas		Assumpção et al., 2001
1	Minaçu-Brasília	$14^{\circ}30$ 'S	Digital em disco rígido	Explosões controladas	$220 { m ~km} / 10 { m ~km}$	Soares, Berrocal
		$48^{\circ}00'W$				& Antunes, 2001
m	Santa Juliana/MG	$19^{\circ}27$ 'S	Digital em fita magnética /	Explosões controladas	$300~\mathrm{km}/~2.5~\mathrm{km}$	Perosi, 2000
		$47^{\circ}30'W$	disco rígido	a cada 50 km		
n	Porangatu e	$13^{\circ}88'S$	Digital em fita magnética /	Explosões controladas	$300~\mathrm{km}/~2.5~\mathrm{km}$	Soares, Fuck e Berrocal, 2005
	Cavalcante/GO	$46^{\circ}85'W$	disco rígido	a cada 50 km		Soares, Berrocal & Antunes, 2001

Tabela 1: Listagem e características dos levantamentos sísmicos para estudo da estrutura crustal, utilizando explosõesde pedreiras, algumas com tempo controlado, as três últimas com fontes próprias controladas, realizados no Brasil. RSS - Rede Sismográfica de Sobradinho

Os levantamentos de refração sísmica profunda efetuadas na Província Tocantins como parte do Projeto Temático, são pioneiros no Brasil por utilizarem mais de uma centena de sismógrafos com registro digital operando simultaneamente e explosões diretas e reversas, com hora de origem controlada, programadas exclusivamente para estes experimentos. Os trabalhos realizados com dados deste experimento, também estão listados na Tabela 1.

Os modelos gerados pelos experimentos da Tabela 1 apresentam boa concordância entre si. No entanto para utilizá-los como auxílio na interpretação de dados da estrutura crustal deve-se levar em conta os parâmetros de aquisição e os problemas que ocorreram em cada experimento. Após análise dessas observações foram selecionados seis modelos como os mais representativos (itens a, h, k, l e n, da Tabela 1) que estão mostrados na Figura 1 abaixo:

Figura 1: Modelos de velocidades sísmicas considerados representativos da estruturação profunda da crosta continental brasileira obtidos com a análise da onda P.

1.1 Características da Crosta Continental

Considerando que este trabalho é um estudo de refração sísmica profunda, que tem por finalidade estudar a crosta e o manto superior, é conveniente apresentar as definições de crosta terrestre e manto superior, assim como compilações relevantes existentes na literatura especializada sobre estudos da estrutura crustal efetuados em vários regiões da Terra.

1.1.1 Definições de Crosta e Manto Superior

Segundo Meissner (1986), a crosta terrestre é definida utilizando vários critérios, entre os quais serão utilizados neste trabalho os seguintes:

- 1. Definição sismológica: a crosta é a cobertura externa do planeta na qual a velocidade da onda P é menor que 7,6 km/s ou a velocidade da onda S menor que 4,4 km/s.
- 2. Definição gravimétrica: a crosta é a cobertura externa da Terra na qual a densidade das rochas é menor que 3,1 g/cm 3 = 3,1 T/m 3.
- 3. Definição litológica: a crosta é a cobertura externa da Terra que consiste predominantemente de sedimentos, gnaisses, granito, granodiorito, gabro, anfibolito e granulito para a crosta continental e sedimentos, basaltos, gabros e serpentinitas para a crosta oceânica.

A definição do manto, principalmente do manto superior, também é relevante nesta apresentação para entender melhor as características da crosta terrestre. As definições do manto superior de acordo com Meissner (1986), correspondentes aos critérios especificados acima, são:

- O manto superior é a zona abaixo da crosta terrestre com velocidade da onda P superior a 7,6 km/s (geralmente maior que 7,8 km/s) e a velocidade da onda S superior a 4,4 km/s (geralmente maior que 4,5 km/s).
- 2. O manto superior é a zona com densidade maior que 3,1 g/cm3 ou 3,1 T/m3, subjacente a crosta terrestre.

 O manto superior é a zona que consiste predominantemente de rochas ultramáficas como peridotitos (mesmo dunita) e eclogitos.

1.1.2 Aspectos Globais da Crosta Continental

Antes de tratar sobre os estudos geofísicos da crosta continental no Brasil, serão apresentadas as características da crosta continental para regiões intraplaca em geral, já que a região de estudo deste trabalho, o território brasileiro, se encontra na porção intraplaca continental da Placa Sul-Americana. As características apresentadas são uma visão geral na estrutura de velocidades sísmicas e na composição da crosta continental. As características apresentadas estão baseadas em alguns trabalhos que sintetizam o conhecimento atual a respeito da crosta continental, tais como: o livro de Meissner (1986), os artigos de Holbrook et al. (1992) e Christensen & Mooney (1995), e a seção Crustal Structure (USGS, 2002) obtida na internet.

O artigo de Christensen & Mooney (1995) apresenta a compilação de 560 trabalhos (Figura 2) sobre a determinação da estrutura (profundidade-velocidade sísmica) da crosta continental. Para essa compilação foram utilizados critérios de confiabilidade e precisão haja vista a grande quantidade de dados e as diferentes épocas em que os resultados foram publicados, sempre dando preferência para publicações mais recentes ou com melhor qualidade de dados. Em resumo, os autores consideraram aptos em torno de 90% dos trabalhos.

Figura 2: Mapa de localização dos perfis - os triângulos laranjas são as posições da base de dados continentais e os pontos azuis as posições da base de dados oceânicos (Christensen & Mooney, 1995 e USGS, 2002).

O parâmetro básico mais procurado da crosta continental é a sua espessura total. Nesse trabalho essa espessura total foi calculada de duas maneiras: uma, através da média dos dados obtidos dos 560 perfis; e a outra, através de uma média ponderada considerando-se as regiões em que se localizam os perfis. Para média normal (sem peso) foi obtido o valor de 39.2 ± 8.5 km, para a média ponderada foi obtido o valor de 41.0 ± 6.2 km, essa diferença no valor deve-se principalmente ao fato da inclusão de novos dados da União Soviética (região de plataforma continental e escudo entre 40 - 50 km). A ponderação foi feita considerando-se: 79% de plataformas e escudos, 15% orógenos, 9% crosta estendida, 6% arcos continentais e 1% rifts (Figura 3). A crosta continental mais fina relatada é de 16 km (Triângulo Afar, Etiópia) e a mais espessa é de 72 km (Platô Tibetano, China).

Figura 3: Diagramas de seções crustais para diferentes ambientes tectônicos continentais. A crosta é dividida em crosta superior, média e inferior, com a espessura de cada uma das camadas variando de acordo com a ambiente tectônico (Christensen & Mooney, 1995).

A velocidade crustal média é um parâmetro bem determinado através dos dados de refração sísmica. A velocidade crustal média obtida foi 6.45 ± 0.23 km/s, e a média ponderada também coincidiu com este valor. A velocidade sísmica da onda P do manto superior (chamada de onda P normal, Pn) obtida foi de 8.07 ± 0.21 km/s, o valor obtido através da média ponderada foi de 8.09 ± 0.20 km/s.

As correlações entre as velocidades das ondas sísmicas e a densidade são impor-

tantes porque permitem estimar a densidade crustal para criar um modelo gravimétrico obtido através de dados de refração sísmica ou porque a densidade das rochas pode ser utilizada para modelar a estrutura da crosta com as velocidades sísmicas. Na Figura 4 é apresentado um gráfico da velocidade média versus a densidade média para diversos tipos de rochas. A solução não-linear (pontilhada) nessa figura é recomendada para fazer os cálculos gravimétricos do contraste de densidade crosta-manto.

Figura 4: Velocidade média versus densidade média para uma variedade de tipos de rochas a uma pressão equivalente a 20 km de profundidade e temperatura de 309°C (Christensen & Mooney, 1995).

Comparando a curva de velocidade média da crosta continental com a de diferentes tipos de rocha, como se mostra na Figura 5, Christensen & Mooney (1995) propõem um modelo da petrologia crustal com a crosta continental formada por uma combinação de rochas metamórficas (granito gnaisse, tonalitos gnaisse, anfibolito e granulitos máficos) com o grau metamórfico aumentando com a profundidade. Entre 25-30 km ocorre, normalmente, uma transição da fácies anfibolito para fácies granulito. Granulitos máficos e granulitos máficos granatíferos, na base da crosta, formam a crosta inferior. A densidade crustal do modelo varia de 2660 kg/m³ na superfície a 3100 kg/m³ no limite crosta/manto e a concentração de SIO₂ de 78% no topo a 47% na base da crosta.

Holbrook et al. (1992) apresentam resultados similares aos de Christensen & Mooney (1995). A principal diferença desse artigo é que são utilizados dados provenientes de alguns experimentos com ondas S. Desse modo foi determinada a razão de Poisson para várias unidades tectônicas. Por exemplo, para plataformas e escudos, caso em que

Figura 5: Modelo da petrologia média da crosta continental em função da profundidade. A curva formada pelos círculos sólidos representa a velocidade média da crosta continental e as curvas formadas por símbolos vazados as rochas especificadas no lado esquerdo da própria figura. As barras horizontais são o desvio padrão. Os gráficos mostram a variação de densidade e concentração de SiO2 do modelo, respectivamente (modificado de Christensen & Mooney, 1995 - é apresentada apenas uma parte da figura).

o Brasil se enquadra, o valor da razão de Poisson determinada está no intervalo de 0,24 e 0,27. Na Figura 6 é apresentado o gráfico Razão de Poisson versus Velocidade da onda P.

Outra diferença entre os trablhos de Holbrook et al. (1992) e Christensen & Mooney (1995), é que neste último os resultados são dados para profundidades de 5 em 5 km ou de 10 em 10 km e em Holbrook et al. (1992) se divide a crosta em três partes: superior, média e inferior, mas sua interpretação se restringe á crosta média e inferior. As velocidades da onda P determinadas para a crosta média são entre 6,0 e 7,1 km/s e para a crosta inferior são 6,4 e 7,5 km/s, ver Figuras 7 e 8. A distribuição de velocidades na crosta inferior é considerada bi-modal (6,7-6,8 km/s ou 7,0-7,2 km/s) abaixo de escudos, plataformas, margens passivas, rifts e platôs vulcânicos, sugerindo uma influência de atividade magmática máfica/ultramáfica ou um alto grau de metamorfismo para a umentar as velocidades da onda P.

Figura 6: Comparação entre razões de Poisson e velocidades das ondas P obtidas no campo (ovais hachuradas) e em laboratório (retângulos hachurados). R = zona de rift; Pc = escudo Pré-Cambriano; Pz = Crosta Paleozóica.

Figura 7: Diagrama de blocos com detalhes da distribuição de velocidades e espessura das camadas da crosta para diferentes ambientes tectônicos. Os terrenos de escudo e plataforma estão individualizados, sugerindo diferenças na composição da crosta inferior (Holbrook et al., 1992).

Figura 8: Seção crustal hipotética mostrando de forma integrada a distribuição média de velocidades e espessura das camadas crustais para diferentes ambientes tectônicos, inferidos a partir de dados de refração sísmica profunda (Holbrook et al., 1992).

1.2 Objetivo

O presente trabalho de doutorado está inserido nos estudos de refração profunda do Projeto Temático antes mencionado. No qual, foram levantadas três linhas de refração de aproximadamente 300 km de extensão uma no setor Sudeste e duas, que são o objeto de estudo deste trabalho, no setor Central da Província Tocantins. O projeto de doutorado aqui proposto, tem por objetivo a redução, o processamento, a análise dos dados correspondentes às ondas S e outras fases secundárias e a interpretação dos resultados obtidos nos experimentos de refração sísmica profunda que foram elaborados no setor Central da Província Tocantins. Esta interpretação também utilizará as informações das ondas P, dos dados gravimétricos e tectônicos desta região. Será elaborado, como produto final, um modelo de velocidades sísmicas contendo as características físicas das principais descontinuidades na crosta terrestre e manto superior, existentes sob esse setor.

1.3 Conteúdo da Tese

O conteúdo deste trabalho é apresentado na seguinte seguinte seqüência:

- Capítulo 1 Introdução: nesse capítulo são apresentadas características gerais dos experimentos de refração sísmica efetuados pelo mundo e características específicas do experimento utilizado neste trabalho. Também é apresentada uma revisão bibliográfica com informações de trabalhos nacionais e internacionais pertinentes ao tipo e à região de estudo desta pesquisa.
- Capítulo 2 Geologia Regional: nesse capítulo são apresentados aspectos gené-

ricos sobre o contexto geológico da Província Tocantis e das principais unidades atravessadas pela linha de refração sísmica.

- Capítulo 3 Metodologia: nesse capítulo são apresentados os procedimentos e características gerais do método de refração sísmica profunda e os principais aspectos deste experimento em particular, bem como informações sobre os programas utilizados.
- Capítulo 4 Resultados Obtidos: nesse capítulo são apresentados os resultados obtidos para as duas linhas sísmicas e como estes resultados foram alcançados.
- Capítulo 5 Interpretação e discussão: nesse capítulo é feita a interpretação dos resultados e a discussão destes resultados baseados nas informações geológicas e geolísicas conhecidas até o momento.
- Capítulo 6 Conclusões: nesse capítulo são apresentadas as considerações finais a respeito dos modelos obtidos.
- Referências
- Apêndices: nos apêndices são apresentadas as figuras obtidas durante o processo de análise, processamento e elaboração dos modelos obtidos nesta pesquisa.

2 Geologia Regional

2.1 Aspectos Genéricos

A Província Tocantins é uma mega-entidade litotectônica, de direção aproximadamente N-S, erigida entre os Crátons Amazônico e São Francisco-Congo (Almeida et al., 1981) no ciclo orogenético Pan-Africano/Brasiliano, durante o Neoproterozóico, ocasião em que amalgamou-se o supercontinente do Gondwana (Unrug, 1992).

Este supercontinente viria a fragmentar-se novamente, a partir do Paleozóico-Mesozóico, resultando na abertura dos oceanos Atlântico e Índico atualmente conhecidos e na individualização dos atuais continentes da América do Sul, África e Antártida, no sub-continente da Austrália e na formação do bloco continental da Índia.

A Província Tocantins foi constituída durante a Orogênese Brasiliana Neoproterozóica como o resultado de uma convergência de três blocos continentais representados pelos Crátons Amazônico, São Francisco/Congo e Paranapanema, este último se encontra atualmente sob a Bacia do Paraná.

A Provícia Tocantins compreende as Faixas Araguaia e Paraguai, fazendo fronteira com o limite leste do Cráton Amazônico, e a Faixa Brasília, na margem oeste do Cráton São Francisco, segundo Pimentel et al. (2000b) e Dardenne et al. (2000). (Ver Figura 9 mapa de localização.

A Faixa Brasília, que é a principal unidade desta província, ocupa uma área alongada N-S de aproximadamente 1.000 km de extensão, e está dividida de oeste para leste em Arco Magmático de Goiás de idade Neoproterozóica, Maciço de Goiás do Arqueano/Paleoproterozóico e o cinturão de dobras e empurrões de antepaís, com embasamento Paleoproterozóico, com o grau metamórfico decrescendo a medida que se segue no sentido leste. Um núcleo metamórfico de alto grau, chamado Complexo Anápolis-Itauçu, é exposto ao sul da região de estudo, em torno do eixo central desta faixa.

Figura 9: Mapa geológico da Província Tocantins com a localização dos experimentos de refração sísmica profunda e indicação da região de estudo.

Ussami & Molina (1999) (ver Figuras 10 e 11) efetuaram estudos gravimétricos, magnéticos e de flexura para explicar a formação da Faixa Araguaia com a colisão dos crátons Amazônico e São Francisco durante o neoproterozóico. No trabalho de Molina et al. (1989) (ver Figuras 12 e 13) é apresentado um modelo onde há indícios de intrusões magmáticas na crosta média/inferior, durante o vulcanismo Mesozóico através da interpretação de dados gravimétricos na região Norte da Bacia do Paraná. A região deste último trabalho fica próxima ao setor Sul da Província Tocantins, onde foi realizada a linha de refração sísmica profunda L3-Santa Juliana (Perosi, 2000) e colaborou com informações sobre a espessura estimada da crosta naquela região. Nesses dois trabalhos de estudos gravimétricos a profundidade da descontinuidade de Moho é estimada em torno de 35 km. No trabalho de Perosi (2000) a profundidade de Moho foi modelada entre 38 e 41 km de profundidade (Berrocal et al., 2004).

Figura 10: Mapa de localização da região do trabalho de Ussami & Molina (1999).

Em Marangoni, Assumpção e Fernandes (1995) é sugerido um modelo de sutura para a região pesquisada (Faixa Araguaia, Maciço Meridiano de Goiás e Faixa Uruaçu -Brasília) com uma profundidade para a descontinuidade de Moho sugerida entre 40 e 45

Figura 11: Modelos crustais ao longo de dois perfis gravimétricos distintos (a) anomalia Bouguer; (b) modelos gravimétrico (números são densidades em g/cm³); (c) seção geológica da crosta superior; (d) seção geológica interpretativa até o manto superior baseada nos resultados combinados de modelagem gravimétrica e de flexura, estimando a profundidade média do embasamento sob a Faixa Araguaia baseado em dados magnéticos e na espessura dos sedimentos Quaternários da bacia da Ilha do Bananal. AC (Cráton Amazônico), GM (Maciço de Goiás) e SFC (Cráton do São Francisco) (Ussami & Molina, 1999).

Figura 12: Mapa de Localização da porção setentrional da Bacia do Paraná e detalhe da anomalia Bouguer (Molina et al., 1989).

Figura 13: Modelo gravimétrico (isostático) e geológico da parte norte da Bacia do Paraná ao longo do perfil A-A' da Figura 12 (Molina et al., 1989).

km.

Estes resultados obtidos com dados gravimétricos são compatíveis com os obtidos com dados sísmicos neste projeto, no entanto através da RSP é possível obter mais detalhes e informações da estrutura crustal, utilizando na interpretação final as informaões da gravimetria.

2.2 Faixa Araguaia

A Faixa Araguaia é representada na região de estudo por rochas metasedimentares do Neoproterozóico dos grupos Estrondo e Tocantins, cobrindo o embasamento ortognaissico Arqueano do Cráton Amazônico para oeste, a nordeste se encontram os complexos Paleoproterozóicos de Rio dos Mangues e Porto Nacional. Rochas máficas e ultramáficas associadas ao embasamento e rochas supracrustais, presentes nesta faixa, são interpretadas como remanescentes ofiolíticos. (Alvarenga et al., 2000; Paixao e Nilson, 2002).

2.3 Faixa Brasília

2.3.1 Arco Magmático de Goiás

O Arco Magmático de Goiás é formado por gnaisses derivados de rochas plutônicas (principalmente tonalitos) a assinatura isotópica e geoquímica indica que provém de uma crosta continental relativamente jovem. Existe uma sequência que vai desde basaltos até riolitos. Os basaltos têm a mesma assinatura das ilhas vulcânicas do Pacífico, que provam a existência de um ambiente oceânico.

Supõe-se que o Arco Magmático se estende para o norte, em direção ao Estado do Pará, e para o sul, por baixo da Bacia do Paraná até chegar as Nappes Socorro-Guaxupé no setor sul da Faixa Brasília. Existem, neste arco, gnaisses derivados de rochas plutônicas (alcalinas, tonalíticas), seqüências vulcano-sedimentares (as rochas mais antigas têm composição química similar a dos arcos magmáticos modernos) e granitos (mais jovens, intrudidos após a formação da crosta, não estão deformados). Se encontra também a presença de pequenos corpos ultramáficos que podem ser testemunho da crosta oceânica inferior ou do manto residual, estes pequenos corpos estão incrustados nos gnaisses ou na sequência vulcano-sedimentar. As idades das rochas da extremidade oeste do Arco Magmático de Goiás estão entre 690 Ma e 570 Ma (mais ao oeste).

O Arco Magmático de Goiás é um terreno jovem representado por um mosaico de rochas metaploutônicas, com a composição variando de tonalito a granodiorito, com uma minoria de diorito e granito, expostos entre faixas estreitas de seqüências vulcanosedimentares. É considerado um formador de um sistema de arco de ilhas, originalmente definido em Arenópolis (Pimentel & Fuck, 1992) e Mara Rosa (Pimentel et al, 1997). Sua continuidade na direção norte, pelo menos até a Bacia do Parnaíba, foi estabelecida recentemente (Fuck et al., 2001). O Lineamento Transbrasiliano marca seu limite oeste com a Faixa Araguaia, incluindo os granulitos Porto Nacional ao norte. Dentro do Arco Magmático de Goiás, para leste de Porangatu e cruzando a linha sísmica L1-Porangatu, existe um afloramento de anortosito de forma circular com aproximadamente 15 km de diâmetro, que influenciou consideravelmente o traçado de raios sísmicos (ver Figura 14).

2.3.2 Maciço de Goiás

Este maciço é formado por rochas do Arqueano e do Paleoproterozóico. As faixas de greenstone de Crixás, Guarinos, Pilar de Goiás, Faina e Serra de Santa Rita, bem como os complexos gnaissicos associados de Uvá, Caiçara, Anta, Caiamar, Moquém e Hidrolina caracterizam o bloco Arqueano na parte sul do maciço(Pimentel et al., 2000b). O bloco Paeloproterozóico é composto de um embasamento ortognaissico coberto por rochas metasedimentares fortemente dobradas do grupo Serra da Mesa. Para leste encontramse os complexos máficos-ultramáficos de Barro Alto, Niquelândia e Cana Brava e as seqüências vulcano-sedimentares associadas de Juscelândia, Idaianápolis e Palmeirópolis, respectivamente, representam o limite leste do Maciço de Goiás. Similaridades entre os complexos máficos-ultramáficos sugere que eles foram originalmente formados por um corpo estratiforme contínuo e único, de quase 350 km de comprimento, interpretado como parte de um rift continental (Filho & Pimentel, 2000; Pimentel et al., 2000b; Pimentel, Filho & Armstrong, 2004).

O limite entre o Maciço de Goiás e o Arco Magmático de Goiás do Neoproterozóico, a oeste é marcado pelas zonas de cisalhamento Rio dos Bois e Mandinópolis. A leste da falha do Rio dos Bois encontra-se o plúton Serra Dourada, um corpo de 65 km de comprimento por 20 km de largura, atravessado pela linha L1-Porangatu. Esta linha sísmica passa ao sul do Complexo de Cana Brava, entretanto os tiros EX16 e EX21 foram efetuados dentro do complexo, na porção sul do mesmo (ver Figura 14).

Figura 14: Localização dos corpos que influenciaram consideravelmente a chegada das ondas sísmicas nesta região. Na parte superior é apresentada uma foto de satélite e na parte inferior da figura é apresentado o mapa geológico dessa região. O anortosito é o corpo, na cor lilás, próximo ao tiro EX14 e o granito está representado na cor vermelha, próximo ao tiro EX15 (modificado de Soares et al., 2006a).

2.3.3 Faixa de Dobras e Empurrões de Antepaís

O embasamento exposto, as rochas metasedimentares e metavulcânicas dos Grupos Araí e Paranoá formam a parte leste da faixa de dobras e empurrões de antepaís da Faixa Brasília na região de estudo. Os contatos geológicos são principalmente falhas de empurrão e reversas, com transporte tectônico em direção ao cráton São Francisco. Ao longo da Serra Geral do Paranã, o faixa de dobras e empurrões de antepaís fica sobre o Grupo Bambuí, que por sua vez cobre, alternadamente e sub-horizontalmente, as rochas do embasamenteo do Cráton São Francisco. Para o oeste, se encontra o sistema de falhas Rio Maranhão, que é uma zona de cisalhamento regional, que representa o limite com o Maciço de Goiás. (Fonseca, Dardenne e Uhlein,1995).

Esta divisa está marcada por um abrupto gradiente de anomalia gravimétrica regional, considerado como a assinatura de uma zona de sutura. (Lesquer et al., 1981, Feininger, Dantas & Girardi, 1991, Strieder and Nilson, 1992, Marangoni, Assumpção e Fernandes (1995). O metamorfismo aumenta na direção oeste, passando por fácies xisto verde perto da borda do Cráton São Francisco até fácies anfibolito e granulito no eixo central da faixa.

2.3.4 Síntese Tectônica

O conhecimento geológico atual da Província Tocantins sugere um cenário de um oceano aberto que teria sido formado aproximadamente há 900 Ma, entre os crátons Amazônico, São Francisco/Congo e Paranapanema. A subducção da bacia oceânica começou por volta de 890 Ma, levando ao primeiro sistema de arco de ilhas em Arenópolis e Mara Rosa (Pimentel, Fuck & Gioia, 2000). Em torno de 750-790 Ma, os crátons Paranapanema e São Francisco foram suturados, resultando na porção sul da Faixa de Dobramentos Brasília. Parte do terreno de arco jovem aparentemente colidiu com o Maciço de Goiás, por volta de 760 Ma. O fechamento final aconteceu por volta 630-600 Ma com a colisão entre os crátons Amazônico e São Francisco/Paranapanema, fechando o Oceano de Goiás e definindo a maioria das atuais características tectônicas do Brasil central (Soares, 2006b).

2.4 Cráton São Francisco

A linha L2-Cavalcante de refração sísmica entra apenas na borda oeste do cráton São Francisco, alcançando as coberturas neoproterozóicas do Supergrupo São Francisco em Goiás e as coberturas sedimentares (Fanerozóicas) da Formação Urucuia, no oeste da Bahia, nesta região há uma elevação na altitude em relação ao resto da linha sísmica.

3 Metodologia

O método de refração sísmica profunda é amplamente utilizado desde a década de 1920. O primeiro trabalho utilizando este método, no Brasil, foi na década de 1970 por Giese (1975). Entretanto, o primeiro experimento de refração sísmica profunda realizado no Brasil utilizando equipamento digital e explosões controladas para este fim, aconteceu em 1998 (Berrocal et al., 2004), o qual gerou os dados utilizados nesta tese.

A maioria dos detalhes da estrutura da crosta provém de estudos que utilizam os métodos sísmicos, segundo mostram, entre outros, autores como Sheriff & Geldart (1982), Dobrin (1985) e Meissner (1986). Entretanto, a avaliação dos processos isostáticos e dos valores da densidade cumprem um papel importante na definição mais realística do campo tectônico. Da mesma forma, medições de esforços e aplicações dos métodos magnéticos, eletromagnéticos e geotérmicos contribuem significativamente para o nosso conhecimento atual das feições crustais.

No método de refração sísmica são utilizadas fontes de energia, passivas (sismos) e, principalmente, ativas (explosões) e geofones e registradores (sismógrafos) para captar e armazenar as perturbações produzidas por estas fontes depois de terem percorrido as camadas do interior da Terra contendo informações sobre as características dessas camadas. Uma característica importante do método de refração sísmica profunda é que seu comprimento em superfície deve ser de 6 a 8 vezes maior do que a profundidade que se deseja estudar. Por exemplo, na presente pesquisa utilizam-se linhas de 300 km de extensão para alcançar-se uma profundidade de aproximadamente 50 km. Uma vantagem do método da refração sísmica é permitir a cobertura de uma extensa região em um curto espaço de tempo, se comparado ao método de reflexão sísmica, e a um custo bem menor que este método. Os levantamentos de refração sísmica permitem a obtenção de um modelo representativo de velocidades dos principais substratos existentes na região auscultada, através da análise do tempo de propagação das ondas sísmicas desde a fonte até os sismógrafos, embora sem o detalhe obtido no método de reflexão sísmica.

3.1 Procedimentos e Características Básicas do Método de Refração Sísmica Profunda

Sob circunstâncias favoráveis os dados de refração podem fornecer dados estruturais e litológicos, porém, geralmente, somente as informações estruturais são obtidas. Em regiões onde o levantamento de refração é efetuado pela primeira vez temos dois objetivos principais: determinar, a grosso modo, a forma e a profundidade do embasamento e a natureza ou o tipo de rochas das principais unidades litológicas com base na velocidade das ondas sísmicas que as atravessam. A identificação dos eventos de refração é bem mais simples que os de reflexão sísmica . Contudo, não é trivial identificar os diferentes eventos de refração sísmica, quando existem vários refratores.

A interpretação dos resultados do método de refração sísmica freqüentemente é baseada principalmente nas primeiras chegadas, porque estas permitem maior precisão na determinação dos tempos de propagação. Quando utilizamos as chegadas secundárias, principalmente de ondas refletidas e ondas S, temos que selecionar um ciclo posterior no trem de ondas e estimar o tempo de propagação através do tempo medido. Entretanto, se as velocidades baseadas nas chegadas secundárias forem precisas, representam uma informação muito útil. (Sheriff & Geldart, 1982).

Nos sismogramas de refração sísmica profunda normalmente as fases refratadas nas camadas mais profundas da crosta apresentam uma amplitude pequena, as vezes mascarada pelo ruído, todavia as fases refletidas nessas camadas apresentam sinais com maior amplitude, principalmente nas proximidades dos pontos de refração crítica que permitem definir melhor a interface crosta/manto (descontinuidade de Mohorovicic, ou simplesmente Moho), motivo pelo qual este método é conhecido também como método de reflexão de ângulo amplo (wide-angle reflection).

Os fundamentos do método de refração sísmica podem ser encontrados nos textos de prospecção sísmica, tais como Dobrin (1985), Sheriff & Geldart (1982).

3.2 Principais Aspectos do Experimento de Refração Sísmica Profunda deste Trabalho

Os dados utilizados nesta pesquisa de doutorado foram obtidos da execução de duas linhas sísmicas localizadas no setor central da Província Tocantins. Cada linha

sísmica tem a extensão de aproximadamente 300 km com 120 pontos de registro (digital) separados a cada 2,5 km, distribuídos ao longo de estradas principais e secundárias. A cada 50 km, aproximadamente, foi realizado um tiro.

O explosivo utilizado foi uma emulsão química (IBEMUX), com velocidade de detonação de 5.200 m/s. Esse explosivo foi bombeado para o interior de furos de 6 polegadas de diâmetro com profundidades variadas (40 a 65 metros) feitos especialmente para este experimento.

A maior parte do equipamento (registradores SGR, relógios mestres para sincronização do equipamento e unidades de tiro) foram cedidos pelo Projeto PASSCAL (Program for the Array Seismic Studies of Continetal Lithosphere) que é uma das facilidades oferecidas para a comunidade sismológica internacional pelo IRIS (Incorporated Research Institutions for Seismology). O controle de tempo dos registradores e das unidades de tiro era feito por GPS.

Neste trabalho são utilizadas as leituras dos tempos de chegadas da onda P, onda S e das reflexões de ângulo crítico, ou amplo, das camadas mais profundas da crosta terrestre, especialmente de Moho.

Os experimentos sísmicos são realizados principalmente com onda P, a onda S normalmente faz parte do ruído, porém as leis da reflexão, refração e de outros processos que sofrem os raios sísmicos, se aplicam igualmente para ondas S e P. Deste modo, como a velocidade da onda S depende apenas da constante elástica μ , que mede a rigidez dos corpos, e da densidade (ρ), enquanto a velocidade da onda P depende também da constante elástica de Lamé λ , a razão de velocidades V_P/V_S fornece informações importantes sobre a litologia, especialmente entre folhelos e outros tipos de rochas, e sobre a natureza de fluídos intersticiais. Além disso, o módulo de cisalhamento ao longo das zonas de falhas parece mudar pouco antes da ocorrência de um sismo, por esse motivo um esforço considerável está sendo dedicado ao desenvolvimento de técnicas para se utilizar esta informação que pode ser obtida da velocidade da onda S.

Nos processos de refração e reflexão das ondas sísmicas são gerados dois tipos de ondas: P e SV, se a onda incidente for uma onda P ou SV. As ondas SH incidentes sempre geram fases SH refratadas e refletidas. Para identificar com segurança a onda S é necessário o registro sísmico nas três componentes, onde a onda S é registrada melhor nas componentes horizontais. Neste experimento, que utilizou explosões em poços como fonte de energia, a onda S gerada é mais fraca do que a onda S gerada em sismos naturais, porque é uma fase convertida. Uma explosão inicialmente só gera ondas P, entretanto de acordo com o Princípio de Huygens cada ponto de uma frente de onda pode ser considerado como uma nova fonte de onda, onde parte da energia da onda P é convertida em onda SV. Neste experimento foram utilizados geofones operando na componente vertical, o que faz o sinal registrado da onda S ser mais fraco ainda, pois é registrado apenas parte da energia nessa componente. Esses fatores dificultam a determinação da chegada da onda S com precisão.

3.3 Razão de Poisson e V_P/V_S

Na maior parte das rochas das camadas mais superficiais da Terra os valores de λ e μ não são muito diferentes, de modo que a razão de Poisson, sem considerar essa diferença resulta em $\sigma = 0.25$ o que resulta em $V_P = \sqrt{3}V_S$.

A importância em se determinar o valor da razão de Poisson para vários níveis crustais é poder inferir quais as litologias existentes nas profundidades delimitadas pelos principais refratores. Além de auxiliar na determinação da composição química da crosta e manto superior, a razão de Poisson também pode indicar o estado de porosidade/fratura. Geralmente ocorre uma diminuição na razão V_P/V_S se as fraturas estiverem secas, e um aumento nessa razão se a fraturas estiverem saturadas com água. Esta propriedade de utilizar a variação da razão de Poisson no estudo da profundidade de penetração de água na crosta superior é importante em relação ao desencadeamento de sismos. (Assumpção, 1978)

Em profundidades da crosta inferior, a razão de Poisson não é muito afetada pela mudança de temperatura onde não existe fusão parcial. Um pequeno grau de fusão parcial pode diminuir muito mais a V_S em relação à V_P assim aumentando a razão de Poisson significativamente. Em regiões tectonicamente ativas, a razão de Poisson pode ser útil para identificar áreas da crosta inferior e do manto superior onde existe fusão parcial.

3.4 O Programa TTInvers

O TTInvers é um programa escrito pelo Prof. Robert Mereu, da University of Western Ontario, para modelagem de estruturas em uma dimensão (1D) utilizando dados sísmicos. Embora, o TTInvers modele somente camadas horizontais, permite uma modelagem interativa, pois não é necessário sair do programa e editar o arquivo texto com os parâmetros do modelo. Também possibilita a visualização das curvas caminhotempo das ondas S simultaneamente com as curvas das ondas P e de onde estariam as fases com maior amplitude nas curvas caminho-tempo. Este programa roda em Linux.

3.5 O Programa MacRay

O MacRay é um programa escrito por Jim Luetgert (1992) do U.S. Geological Survey para modelagem de estruturas em duas dimensões (2D) utilizando dados sísmicos, especialmente de refração. Embora seja baseado nas mesmas rotinas matemáticas do programa SEIS (Cerveny, Molotkov & Psencik, 1977), a interface gráfica do MacRay possibilita a utilização de mais recursos na modelagem, por exemplo, a visualização imediata dos novos raios sísmicos após qualquer alteração no modelo estrutural, ou simular o disparo de vários tiros simultaneamente para auxiliar na modelagem da topografia de uma interface. Uma desvantagem deste pacote é que atualmente só roda em computadores Macintosh.

Esse programa também possibilita a modelagem simultânea de dados sísmicos com dados gravimétricos ou de gradiente térmico (ainda não totalmente implementado). No caso dos dados gravimétricos, dada uma função de densidade por velocidade da onda P, o programa calcula a resposta gravimétrica levando em conta o modelo estrutural de velocidades sísmicas construído a partir dos dados sísmicos.

3.6 Procedimento Empregado

Os levantamentos de refração sísmica profunda são normalmente efetuados em arranjos lineares. Os tempos registrados necessitam ser corrigidos em certos parâmetros, como altitude, hora da explosão, distâncias e solo intemperizado. Depois são colocados em seções sísmicas numa escala de tempo reduzido, os registros individuais são, geralmente, normalizados (impressos relativamente à maior amplitude); analisam-se as freqüências a fim de escolher o filtro mais apropriado. Em termos gerais, a interpretação das seções de refração sísmica profunda são efetuadas em três etapas:

• Avaliação em uma dimensão (1D) da estrutura velocidade-profundidade por aplica-

ção de métodos diretos e fórmulas simples, como resolver um caso de duas camadas com velocidades constantes (fórmulas de interceptação time-crossover). (Meissner, 1986)

- Traçamento de raios em duas dimensões (2D) para a verificação dos principais ramos das curvas caminho-tempo utilizando cálculos de modelos e rotinas interativas (geralmente por tentativa e erro), objetivando encontrar um ajuste entre as curvas caminho-tempo calculadas e as observadas. (ver Cerveny, Molotkov & Psencik, 1977; apud Meissner, 1986).
- Elaboração dos sismogramas sintéticos e suas modificações interativas para achar uma correspondência entre as amplitudes calculadas e observadas, entre as curvas caminho-tempo teóricas e reais, e finalmente para toda a seção sísmica, incluindo eventos múltiplos (Fuchs & Mueller, 1971; Braile & Smith, 1975; apud Meissner, 1986).

4 Resultados Obtidos

Neste capítulo são apresentadas as seções sísmicas para as ondas P e S em tempo reduzido para as duas linhas sísmicas. Para as seções das ondas P foi utilizada uma velocidade de redução de 6,00 km/s e para as seções das ondas S foi utilizada uma velocidade de redução de 3,46 km/s, utilizando estas velocidades os eventos refratados das ondas P e S podem ser correlacionados mais facilmente.

Na figura 15 é apresentada uma seção sísmica em tempo real a fim de se verificar a qualidade dos sinais obtidos na maior parte deste experimento de refração sísmica profunda.

Os sinais das explosões foram processados e analisados através do programa SAC (Seismic Analysis Code; Tapley and Tull, 1991). Foram lidos nos sismogramas os tempos de chegada da onda P direta e refratadas nas diversas camadas da crosta sob cada linha sísmica. Todas as leituras foram feitas de forma sistemática marcando-se o tempo no início do sinal da fase utilizando-se filtros passa-banda quando necessário.

Para manter a legibilidade das figuras das seções sísmicas optou-se por não colocar a marca das leituras nessas figuras. As leituras das chegadas das ondas P, S e de algumas fases refletidas são apresentadas nas Tabelas 3, 4, 5, 6, 7, 8 e 9 para a linha sísmica L1-Porangatu, no Apêndice A (na página 55) e nas Tabelas 10, 11, 12, 13 e 14 para a linha sísmica L2-Cavalcante , no Apêndice B, na página 67.

Nessas tabelas, o campo estação indica a posição do registrador na linha e seu número de identificação, o campo distância apresenta a distância em quilômetros das estações em relação à fonte e os campos tempo de chegadas das ondas P, S e reflexões indicam o tempo de percurso, em segundos, desde a fonte até a estação com precisão de milisegundos. O tempo dos registradores e das unidades de disparo foram controlados com GPS.

Os modelos 1D, construídos com o programa TTInvers, são as primeiras aproxi-

Figura 15: Secão sísmica do tiro EX11 mostrando as chegadas das ondas P e S. Filtrada de 2-10 Hz e sem aplicação de velocidade de redução.

mações para a construção dos modelos 2D. Apesar desses modelos 1D serem elaborados apenas com camadas horizontais, permitem indentificar as principais refrações e reflexões das ondas P e das ondas S, simultaneamente, para modelos reais com camadas inclinadas. Isto é obtido porque o programa permite utilizar os dados em tempo reduzido, cujo o valor da velocidade de redução para os dados da onda S é o valor da velocidade de redução do dados da onda P dividido por $\sqrt{3}$ (V_S=V_P/ $\sqrt{3}$), ou seja, utilizando valor da razão de Poisson, $\sigma = 0, 25$ (Winardhi & Mereu, 1997; Musacchio et al., 1997).

A interface gráfica desse programa é simples, porém eficiente, uma vez que através de comandos no teclado é possível ajustar o modelo e acompanhar as mudanças em tempo real (sem perdê-lo de vista). Além de permitir o ajuste da escala e dos valores dos eixos do modelo, é possível escolher o modelo incial entre um número determinado de modelos sugeridos, cada um com um número diferente de camadas e, também, se serão mostradas as curvas caminho-tempo para as ondas P e S simultaneamente ou individualmente. Existe a opção de mostrar a curva caminho-tempo como uma linha contínua simples ou como uma linha com astericos, neste caso os asteriscos indicam onde chegariam as fases com maiores amplitudes. Quando o tiro modelado não está em um extremo da linha sísmica é necessário criar dois modelos separadamente, pois o programa só permite distâncias positivas.

Os parâmetros dos modelos resultantes do programa TTInvers permitem elaborar um modelo 2D preliminar combinando os resultados dos diferentes tiros de cada linha sísmica. Esses parâmetros indicam as velocidades e profundidades das camadas de cada modelo e as curvas caminho-tempo indicam a distância aproximada onde essas velocidades ocorrem. É necessário ter cuidado com camadas existentes no modelo que não aparecem como primeiras chegadas.

Os modelos 2D, construídos com o programa MacRay, apresentam informações das velocidades das ondas P e ondas S e, também outras informações que dependem do valor destas, como a Razão de Poisson ou razão V_P/V_S . O programa MacRay apresenta os resultados em janelas independentes, uma para o modelo com traçado de raios e outra para as curvas caminho-tempo.

A modelagem 2D no MacRay é feita a partir de um modelo inicial geralmente baseado nos resultados de modelos 1D. Estes modelos 1D são indicadores importantes dos parâmetros iniciais, pois quanto mais informações trouxerem os modelos 1D, mais consistente será o modelo 2D inicial e mais rápida será a etapa de construção do modelo final. Entretanto, nem sempre o modelo 2D final preserva todas as características dos modelos 1D, pois os modelos 2D são criados com a utilização simultânea de vários tiros diretos e reversos e para satisfazer essa condição é necessário inserir outras características como camadas inclinadas, degraus topográficos de algumas camadas e gradientes laterais de velocidade, entre outras.

4.1 Porangatu

4.1.1 Descrição

A linha sísmica L1-Porangatu incia-se na cidade de São Miguel do Araguaia, às margens do Rio Araguaia e vai até a cidade de Minaçu, ambas no Estado de Goiás. Nesta linha todos os 7 tiros (EX11, EX12, EX13, EX14, EX15, EX16 e EX17, de oeste para leste respectivamente) foram registrados e com um bom nível sinal/ruído. A onda S também foi relativamente identificada com nitidez. Como particularidade desta linha sísmica pode-se destacar a presença de um anortosito na superfície, com velocidade alta, e também a presença de um corpo granítico que influenciou consideravelmente os tempos de chegada nesta região, nas proximidades dos tiros EX14 e EX15, respectivamente (Figura 14).

A localização dos pontos de registro nessa linha ficaram bastante próximos do traçado teórico da mesma pela existência de estradas e caminhos que facilitaram o acesso aos pontos previamente definidos no mapa. A topografia desta linha sísmica é praticamente plana, com uma variação máxima de 100 metros (de 400 a 500 m de altitude) até as proximidades do tiro EX14. A segunda metade após o tiro EX14, a topografia é bastante acidentada com variações de até 500 m (de 500 a 1000 m de altitude).

4.1.2 Modelos 1D da linha sísmica L1-Porangatu

Os resultados do programa TTInvers apresenta os modelos 1D como o mostrado na Figura 16 que é a imagem idêntica ao que se vê na tela do computador durante a modelagem.

Na parte superior da Figura 16 é apresentado o traçado das curvas caminhotempo, na parte inferior da figura são apresentados os parâmetros do gráfico (no canto esquerdo), as camadas modeladas com seus valores de velocidade no topo, na base, espessura, profundidade inicial, profundidade final e razão de Poisson (na parte central) e o modelo 1D obtido na modelagem (no canto direito).

Nesse exemplo específico (Figura 16) é apresentado o tiro EX11 da linha L1-Porangatu, tiro direto no sentido oeste-leste, modelado com 5 camadas horizontais. As partes com maior densidade de símbolos nas linhas indicam onde seriam observadas as fases sísmicas com amplitudes maiores. Os asteriscos vermelhos correspondem ás chegadas da onda P refratada e refletida e os círculos verdes correspondem, unicamente, às chegadas da onda S refratada. Entre 120 e 180 km, observa-se um afastamento das leituras das ondas P e S, em relação á curva caminho-tempo, esse afastamento deve-se á presença do anortosito e do corpo granítico, mencionados anteriormente. Nesse modelo também é possível observar a presença de uma camada oculta (4^a . camada) cuja refração chega após as refrações das 3^a . e 5^a . camadas.

Os modelos 1D para a linha sísmica L1-Porangatu, obtidos com o programa TTInvers, estão no apêndice C (página 74).

4.1.3 Modelos 2D da linha sísmica L1-Porangatu

Na figura 17, os asteriscos coloridos são os tiros, no interior de cada camada são mostrados os valores da velocidade da onda P, da velocidade da onda S e da razão de Poisson. Perceber qua a figura não está em escala de 1:1 (profundidade x distância), assim feições, como a topografia de Moho, parecem ser mais acentuadas do que realmente são. Na mesma figura são apresentados os traçados de raios sísmicos e as curvas caminhotempo obtidas com o programa MacRay.

Os modelos 2D para a linha sísmica L1-Porangatu, obtidos com o programa MacRay, estão no apêndice D (página 86). Nestas figuras são apresentados os modelos 2D com os traçados de raios e as curvas caminho-tempo para cada tiro da linha sísmica.

As seções sísmicas da onda P estão no Apêndice E na página 94 e as seções sísmicas da onda S estão no Apêndice F na página 102.

Figura 16: Modelo 1D referente ao tiro EX11 - Linha L1-Porangatu.

Figura 17: Modelo 2D referente a onda P da Linha L1-Porangatu

4.2 Cavalcante

4.2.1 Descrição

A linha sísmica L2-Cavalcante inicia-se em Minaçu, cruza a cidade de Posse (EX25) (última cidade no Estado de Goiás, cruzada pela linha sísmica) e termina na Fazenda Pratudão já no Estado da Bahia. Nesta linha os tiros EX21, EX23, EX25, EX26 e EX27 foram eficientes, e os tiros EX22 e EX24 não foram registrados. De um modo geral, comparando-se com os tiros da linha L1-Porangatu, os tiros da linha L2-Cavalcante não foram tão claros, tanto para onda P, quanto para onda S.

Nesta linha sísmica, ao contrário da linha sísmica L1-Porangatu, os pontos estão distribuídos de forma muito irregular devido a falta de caminhos de acesso aos pontos pré-determinados no mapa, resultando em uma linha descontínua com várias direções. A topografia, nessa linha, é muito acidentada com variações de mais de 500 metros durante toda a sua extensão (de 500 a mais de 1000 m de altitude).

4.2.2 Modelos 1D da linha sísmica L2-Cavalcante

A seguir é apresentado um exemplo específico (Figura 18) do tiro EX21 da linha L2-Cavalcante, tiro direto no sentido oeste-leste, modelado com 5 camadas horizontais. Algumas das fases refletidas da descontinuidade de Moho podem ser observadas em torno dos 140 km. Nesse modelo, como no modelo 1D apresentado para a linha sísmica L1-Porangatu na seção anterior, também é possível observar a presença de uma camada oculta (4^{*a*}. camada) cuja refração chega após as refrações das 3^{*a*}. e 5^{*a*}. camadas.

Os modelos 1D desta linha sísmica são apresentados no Apêndice G na página 110.

4.2.3 Modelos 2D da linha sísmica L2-Cavalcante

Os modelos 2D da linha L2-Cavalcante são similares aos modelos 2D obtidos para linha L1-Porangatu. Abaixo é apresentado o modelo final 2D, onde são mostrados os valores das velocidades da onda S, a título de exemplificação, juntamente com o seu traçado de raios sísmicos. Pode-se observar que neste modelo existem apenas 5 tiros, o tiro EX22 e o tiro EX24 não foram registrados para esta linha sísmica.

Figura 18: Modelo 1D referente ao tiro EX21 - Linha L2-Cavalcante.

Os modelos 2D para esta linha sísimica são apresentados no Apêndice H na página 119.

As seções sísmicas da onda P estão no Apêndice I na página 125 e as seções sísmicas da onda S estão no Apêndice J na página 131.

Figura 19: Modelo 2D referente a onda S da Linha L2-Cavalcante

5 Interpretação e Discussão

Conforme os resultados apresentados no capítulo anterior, pode-se considerar que os experimentos de refração sísmica profunda executados neste projeto apresentaram uma qualidade satisfatória de dados, que foram bem melhores para a onda P do que para a onda S, como era de se esperar, de acordo com o discutido no item 3.2 do capítulo 3. As seções sísmicas reduzidas da linha L1-Porangatu e da linha L2-Cavalcante permitiram efetuar interpretações preliminares confiáveis sobre a estrutura das camadas da crosta com base nas primeiras chegadas da onda P e fases P refletidas para elaborar o modelo 1D e conferir com esse modelo as chegadas da onda S. Desta forma, a velocidade da onda S foi determinada com maior confiança, com a qual foi estimada a razão de Poisson em cada camada.

Os modelos 1D de tiros sucessivos foram relacionados para representar camadas com características semelhantes utilizadas na elaboração do modelo preliminar para a modelagem em duas dimensões, que foi realizada com o programa MacRay. Os modelos 2D das Figuras 20 e 21 representam o resultado final do processamento com os dados de refração sísmica profunda de velocidades sísmicas da crosta sob as linhas sísmicas de L1-Porangatu e L2-Cavalcante, respectivamente.

O resultado final dos modelos das Figuras 20 e 21 mostra uma crosta sob o setor central da Província Tocantins com 36 a 45 km de espessura, com variações que aparentemente se correlacionam com as unidades geológicas superficiais. Abaixo da Faixa Araguaia a espessura da crosta é em torno de 44 km, enquanto que debaixo do Arco Magmático de Goiás sofre uma afinamento até 36 km de espessura. Na direção leste a crosta vai ficando mais espessa de modo que na interface entre o Maciço de Goiás e a faixa de dobras e empurrões de antepaís atinge 43 km de profundidade. Novamente a espessura da crosta se afina na região de contato entre a faixa de dobramentos e o Cráton São Francisco atingindo uma espessura de 40 km. Finalmente, o modelo mostra um novo espessamento da crosta sob o Cráton São Francisco onde chega a 47 km de

Figura 20: Modelo 2D final para a linha L1-Porangatu. Os valores da velocidade da onda P estão em preto e os valores da velocidade da onda S estão em azul.

Figura 21: Modelo 2D final para a linha L2-Cavalcante. Os valores da velocidade da onda P estão em preto e os valores da velocidade da onda S estão em azul.

profundidade.

Podemos definir a crosta sob o setor central da Província Tocantins como estando composta de uma crosta superior com profundidade variando entre 12 e 18 km, formada por 3 camadas com espessuras e V_P médias de 0,05 km e 2,0 km/s, 5,0 km e 5,9 km/s e 11,0 km e 6,2 km/s. Uma crosta média com profundidade variando de 20 a 30 km e com uma velocidade média de 6,5 km/s. E uma crosta inferior com profundidade variando de 36 a 43 km e velocidade média de 6,8 km/s, sem considerar a camada máfica inferior sob a Faixa Araguaia, ou até 45 km se considerada esta camada.

A porção oeste do modelo da linha sísmica L1-Porangatu (Figura 20) mostra um ligeiro mergulho das camadas na direção leste sugerindo a ocorrência de um processo de subducção do Cráton Amazônico sob a Província Tocantins, que teria ocorrido em épocas mais recentes (depois de 620 Ma) da formação dessa província. Inclusive a camada mais profunda no extremo oeste desse modelo apresenta uma velocidade relativamente mais alta (7,1 km/s) do que a camada mais profunda do Arco Magmático de Goiás (6,9 km/s) que poderia corresponder uma porção da crosta profunda do Cráton Amazônico, conforme sugerido por Soares et al. (2006a,b). Esta sugestão é suportada pelos resultados obtidos no presente trabalho: os valores médios da velocidade da onda P e da razão V_P/V_S na crosta sob a Faixa Araguaia são de 6,7 km/s e de 1,74, respectivamente, incluindo a camada de alta velocidade. Sem esta camada, esses valores são 6,6 km/s e 1,74, que são os mesmos do Arco Magmático de Goiás (ver Tabela 2), mostrando que o Arco Magmático e a Faixa Araguaia possuem as mesmas características sísmicas. Essa estrutura proposta é similar às de outras zonas covergentes do Proterozóico, por exemplo, nos Pirineus e nos Alpes Suiços, onde segundo Meissner & Mooney (1992), uma camada de crosta inferior máfica de uma placa subduzida aparentemente foi separada e avançou sob a placa superior.

O Arco Magmático apresenta uma estrutura superficial muito significativa para a modelagem dos dados de refração sísmica profunda. Se trata de um afloramento de anortosito de aproximadamente 15 km de diâmetro e de profundidade desconhecida. Essa feição afeta o tempo de chegada das ondas sísmicas de forma muito clara, por ser um corpo de velocidade anormalmente alta (V_P em torno de 7,0 km/s), efeito este que pode ser observado nas seções sísmicas da linha L1-Porangatu, por exemplo, entre 130 e 170 km de distância no tiro EX11 (Figura 44). Esse corpo anômalo foi possível de ser modelado utilizando o programa MacRay, para o qual foi estimada uma espessura de 2 km e velocidade de 7,0 ± 0,05 km/s. Além desse anortosito, outro fator que influenciou consideravelmente o tempo de chegada das ondas sísmicas, foi a presença de um corpo granítico com velocidade sísmica em torno de 5,9 km/s, localizado a aproximadamente 5 km a leste do anortosito.

Um aspecto importante no Arco Magmático de Goiás é a menor espessura da crosta e os valores médios de $V_P = 6,5$ km/s e de $V_P/V_S=1,74$, serem menores que os esperados para os arcos de ilha modernos (6,7 km/s e 1,9, Zandt and Ammon, 1995). Aparentemente essa menor espessura poderia significar que a camada inferior máfica da crosta do antigo sistema de arco de ilhas está faltando, provavelmente por um processo de delaminação. Soares et al. (2006b) sugerem uma ascenção do manto astenosférico ocupando o vazio deixado por esta camada máfica, o que teria dado origem a anomalia gravimétrica positiva existente nesta parte da linha.

A divisa entre o Arco Magmático e o Maciço de Goiás estaria aparentemente determinada pelo início do espessamento da crosta por volta dos 175 km de distância no modelo da linha L1-Porangatu (Figura 20) e sua projeção superficial correspoderia ao sistema de falhas Rio dos Bois. A divisa do Arco Magmático com a Faixa Araguaia corresponde ao alto gravimétrico existente entre os tiros EX12 e EX13 como veremos mais adiante.

O Maciço de Goiás é a menor unidade em torno de 50 km de extensão localizada entre os tiros EX15 e EX16. Nas camadas mais profundas da crosta nota-se o início do aumento da espessura da crosta, aumentando de 38 a 43 km. A projeção deste ponto mais profundo coincide na superfície com o sistema de falhas Rio Maranhão, que é uma zona de cisalhamento regional e que pode ser considerado a divisa entre o Maciço de Goiás e a faixa de dobras e empurrões. Esta unidade tem valores médios de V_P e de razão V_P/V_S de 6,5 km/s e 1,74, respectivamente, valores esses muito parecidos com os do Arco Magmático de Goiás.

A faixa de dobras e empurrões de antepaís tem a máxima espessura da crosta (43 km) no setor central da Província Tocantins. No extremo leste sofre um afinamento em torno de 3 km sob a região de Cavalcante, onde também as camadas inferiores da crosta apresentam uma variação lateral de velocidade expressiva que poderia representar, em profundidade, a interface entre esta faixa e o Cráton São Francisco, como se sugere na Figura 21. A expressão superficial desta descontinuidade lateral coincide em superfície com a descontinuidade Paranã, nas proximidades de Nova Roma.

Finalmente, o modelo da linha L2-Cavalcante (Figura 21) mostra uma unifor-

midade na espessura das crostas superior e média, sob o Cráton São Francisco, cujas profundidades estão em torno de 13 e 30 km, respectivamente e com velocidades V_P decrescendo em relação às velocidades medidas sob a faixa de dobramentos, de 6,18 a 6,08 km/s e de 6,41 a 6,23 km/s, respectivamente. Já a crosta inferior, apresenta um espessamento, cuja profundiade varia de 40 a 47 km e um aumento anômalo de velocidade da onda P de 6,73 a 6,96 km/s. A velocidade da onda S nessas camadas diminui e aumenta correspondentemente à da onda P.

Outro aspecto importante da modelagem 2D, utilizando o programa MacRay, é a possibilidade de utilizar a modelagem gravimétrica, em termos de anomalias Bouguer, para correlacionar os resultados obtidos na modelagem sísmica com os dados gravimétricos existentes na área de estudo. Na Figura 22 se apresenta o resultado dessa modelagem gravimétrica para o conjunto das duas linhas sísmicas em termos das densidades para cada bloco de velocidades.

Para efetuar a modelagem gravimétrica, inicialmente, os valores teóricos das densidades do modelo gravimétrico são calculados utilizando a função $\rho = a + bV_P$, sugerida por Christensen & Mooney (1995), que relaciona a velocidade da onda P com a densidade através das constantes $a \in b$ fornecidas por esses autores para determinadas profundidades crustais. Além das constantes $a \in b$, também é fornecido o desvio padrão para a estimativa de erro de ρ em função de V_P.

Para correlacionar os dados teóricos com os dados reais o programa permite variar os valores teóricos de densidade provenientes do modelo sísmico. Essas variações devem ser pequenas para permanecerm dentro do erro estimado pelo desvio padrão e não comprometer as velocidades do modelo sísmico.

Para ajustar os valores gravimétricos reais com os valores teóricos, além dos pequenos ajustes do valores individuais de densidade, foi necessário criar uma coluna com valores de densidade ligeiramente diferentes dos valores vizinhos, como no caso da coluna inserida entre os tiros EX12 e EX13, da linha L1-Porangatu, com a finalidade de elevar a curva gravimétrica calculada em resposta ao modelo. Essa coluna adicional coincide com a interface lateral entre a Faixa Araguaia e o Arco Magmático de Goiás e o alto gravimétrico resultante com essa coluna coincide com Lineamento Transbrasiliano.

Uma particularidade dos valores teóricos calculados para este modelo é que a presença do anortosito, nas proximidades do tiro EX14, provoca uma elevação abrupta da anomalia gravimétrica. Esta elevação não permitia continuar a modelagem com os

Figura 22: Modelo 2D final juntando as duas linhas sísmicas para a modelagem gravimétrica. Os valores preto no interior do modelo são as densidades e em vermelho as velocidades da onda P. Estão em destaque a região do Lineamento Transbrasiliano, onde foi necessário incluir mais uma coluna de densidades, e a forte descontinuidade lateral entre os tiros EX23 e EX25, onde foi necessário variar muito o valor da densidade. Nesse local seria a interface entre o Cráton São Francisco e a faixa de dobras e empurrões.

dados gravimétricos subseqüentes. Para continuar a modelagem foi utilizado o artifício de eliminar esse corpo anômalo utilizando valores de densidade compatíveis com os valores próximos da mesma camada. Desse modo, a curva do modelo gravimétrico apresentada na Figura 22 supõe que o anortosito não existe, concordando com os dados gravimétricos reais, que provavelmente não o atravessaram.

Nas proximidades do tiro EX16 observa-se um gradiente negativo acentuado (ver Figura 23) na curva de dados gravimétricos que coincide com a interface entre o Maciço de Goiás e a faixa de dobras e empurrões e a da porcão mais profunda da crosta da Província Tocantins. Esse gradiente negativo não poderia ser modelado apenas considerando as características da crosta, nesse caso foi necessário adotar valores de densidade no manto que satisfaçam as anomalias observadas ao longo das linhas L1-Porangatu e L2-Cavalcante. Estes valores de densidade utilizados na modelagem estão de acordo com o proposto por Soares et al. (2006a), que considera que o manto sob crátons de idade Arquana/Paleoproterozóica são menos densos que os mantos de crátons de idade Neoproterozóica, devido à possibilidade de serem menos ricos em FeO e mais frios, de acordo ao proposto por Artemieva and Mooney (2001), O'Reilly et al. (2001), Durrheim and Mooney (1994) e Hawkesworth et al. (1990). Por esse motivo a velocidade das ondas sísmicas pode ser maior nos crátons mais antigos, como se observa nos modelos de velocidade sísmica obtidos no presente trabalho (Figuras 20 e 21), onde a V_P sob a Faixa Araguaia, Arco Magmático e o Maciço de Goiás é 8,07 km/s e sob a faixa de dobras e o Cráton São Francisco é de 8,26 km/s.

Com essas características foi possível obter o modelo gravimétrico apresentado na Figura 22 que se ajustou de forma satisfatória com os dados gravimétricos existentes, utilizando os valores de densidade de 3,34 para o manto Neoproterozóico e de 3,31 para o manto Paleoproterozóico. Na Figura 24 é apresentado o modelo gravimétrico incluindo o anortosito onde se nota o efeito notório da alta densidade desse corpo, que chegou a afetar os tempos de percurso das ondas sísmicas cujos raios atravessaram esse corpo e que foi considerado na modelagem sísmica. Entretanto, para chegar ao modelo gravimétrico final foi necessário adotar alguns valores de densidade acima da estimativa de erro sugerida por Christensen & Mooney (1995), os quais estão destacados no modelo da Figura 22. Este resultado mostra que existe uma anomalia que foi modelada com velocidades sísmicas relativamente altas, que correspondem aos valores anômalos de densidade que estão localizados no que seria a interface entre a faixa de dobras e empurrões e o Cráton São Francisco.

Figura 23: Mapa gravimétrico da região mostrando o forte gradiente gravimétrico dessa região.

As características da porção da crosta sob o Cráton São Francisco obtidas nos modelos sísmicos e gravimétricos do presente trabalho, sugerem a ocorrência de outra zona de subducção que teria ocorrido antes de 760 Ma, da porcão oceânica da placa São Francisco sob o pretérito Arco de Ilhas de Goiás, como se observa no esquema da Figura 25. Esse esquema, sugerido por Soares et al. (2006b), mostra o provável processo de evolução da formação da Província Tocantins e sugere também o processo de subducção da porção oceânica da placa Amazônica sob o pretérito Arco de Ilhas de Goiás, que começou em torno de 620 Ma, e que teria concluído quando os crátons Amazônico, São Francisco e Paranapanema colidiram por volta de 500 Ma terminando de formar a Província Tocantins.

Figura 24: Modelo 2D final, incluido o efeito do anortosito na modelagem gravimétrica. Os valores em rosa são as razões V_P/V_S .

Figura 25: Evolução da Província Tocantins durante o ciclo Brasiliano. a) Uma grande bacia oceânica, Oceano Goiás, começou a ser consumido com o movimento da placa São Francisco para oeste, subduzindo um abiente de arco de ilhas em WNW e o Cráton Paranapanema em SSW; b) O Cráton São Francisco colidindo contra o sistema de arco de ilha, comprimindo o Maciço de Goiás entre eles, formando o norte da Faixa Brasília; c) os crátons Paranapanema e São Francisco colidem, formando a parte sul da Faixa Brasília. O esforço continua e a subducção inverteu, consumindo a litosfera oceânica relativa à placa Amazônica, e d) colisão da litosfera do Cráton Amazônico contra a Faixa Brasília e o Cráton Paranapanema, formando o Brasil central. (Soares et al., 2006b)

Faixa Araguaia					Faixa Araguaia sem camada mais profunda				
Camada	Espessura (km)	Vp (km/s)	Vs (km/s)	V_P/V_S	Camada	Espessura (km)	Vp (km/s)	Vs (km/s)	$\mathrm{V}_P/\mathrm{V}_S$
1	0,08	2,00	1,17	1,86	1	0,08	2	1,17	1,86
2	2,04	5,75	$3,\!44$	$1,\!67$	2	2,04	5,75	$3,\!44$	$1,\!67$
3	$10,\!27$	6,17	$3,\!53$	1,75	3	$10,\!27$	$6,\!17$	$3,\!53$	1,75
4	7,3	6,6	$3,\!78$	1,75	4	$7,\!3$	6,6	3,78	1,74
5	15,7	6,9	$3,\!96$	1,74	5	15,7	6,9	3,96	1,75
6	8,3	$7,\!13$	4,08	1,75					
	Média	$6,\!66$	$3,\!82$	1,74		Média	$6,\!55$	3,76	1,74
Arco Magmático de Goiás					Maciço de Goiás				
Camada	Espessura (km)	Vp (km/s)	Vs (km/s)	V_P/V_S	Camada	Espessura (km)	Vp (km/s)	Vs (km/s)	V_P/V_S
1	0,09	3,32	1,24	1,84	1	0,09	3,32	1,34	1,84
2	$3,\!67$	6,01	$3,\!43$	1,75	2	$3,\!67$	$5,\!89$	$3,\!37$	1,75
3	10,3	$6,\!19$	$3,\!54$	1,75	3	10,30	$6,\!19$	$3,\!54$	1,75
4	7,20	$6,\!47$	3,71	1,75	4	8,20	$6,\!47$	3,71	1,75
5	15,7	$6,\!85$	$3,\!94$	1,74	5	$17,\!80$	$6,\!85$	3,94	1,74
	Média	$6,\!50$	3,73	1,74		Média	$6,\!51$	3,73	1,74
Faixa de dobras e empurrões					Faixa de dobras e empurrões próximo ao Cráton SãoFrancisco				
Camada	Espessura (km)	Vp~(km/s)	Vs $(\rm km/s)$	V_P/V_S	Camada	Espessura (km)	Vp (km/s)	Vs (km/s)	$\mathrm{V}_P/\mathrm{V}_S$
1	0,04	2,00	1,17	1,71	1	0,04	2,00	1,17	1,71
2	5,70	$5,\!80$	$3,\!37$	1,72	2	5,70	$5,\!87$	$3,\!40$	1,73
3	$12,\!60$	$6,\!18$	$3,\!55$	1,74	3	12,60	$6,\!11$	$3,\!48$	1,76
4	9,30	$6,\!41$	3,70	1,73	4	9,30	$6,\!43$	3,71	1,73
5	12,30	6,73	$3,\!91$	1,72	5	15,00	6,96	4,03	1,73
	Média	6,34	$3,\!67$	1,73		Média	$6,\!69$	3,71	1,74
Cráton São Francisco									
Camada Espessura (km) Vp (km/s) Vs (km/s) V_P/V_S									
1	0,06	$3,\!65$	1,99	1,86	1				
2	$1,\!30$	5,74	$3,\!32$	1,73					
3	11,00	$6,\!08$	$3,\!43$	1,77					
4	17,90	$6,\!23$	$3,\!59$	1,73					
5	$17,\!30$	$6,\!96$	4,03	1,73					
	Média	6,77	3,70	1,74					

Tabela 2: Tabela com as médias das velocidades das ondas P e S e razão $\mathrm{V}_P/\mathrm{V}_S$
6 Conclusões

Os experimentos de refração sísmica profunda executados neste projeto apresentaram uma qualidade satisfatória de dados, que foram bem melhores para a onda P do que para a onda S, como era de se esperar. O programa MacRay utilizado neste trabalho se mostrou ser uma ferramenta muito versátil para o processamento e modelagem de dados de refração sísmica que além da facilidade de alterar os parâmetros dos modelos, permite utilizar várias cores para representar os raios sísmicos e, além disso, permite modelar outros dados geofísicos, como dados gravimétricos, fluxo térmico, etc.

Os resultados obtidos no presente trabalho de refração sísmica profunda mostra um modelo da crosta sob o setor central da Província Tocantins com espessura variando entre 36 e 43 km, cujos parâmetros estão correlacionados com as principais estruturas geológicas existentes na superfície. A Faixa Araguaia com uma espessura em torno de 36 km ($V_P = 6,6$ km/s e $V_P/V_S=1,74$). O Arco Magmático de Goiás com espessura de 36 km ($V_P = 6,5$ km/s e $V_P/V_S=1,74$). O Maciçode Goiás com uma espessura variando entre 36 e 43 km ($V_P = 6,5$ km/s e $V_P/V_S=1,74$). O Maciçode Goiás com uma espessura variando entre 36 e 43 km ($V_P = 6,5$ km/s e $V_P/V_S=1,74$). A faixa de dobras e empurrões tem a maáxima espessura da crosta nesse setor, 43 km ($V_P = 6,3$ km/s e $V_P/V_S=1,73$). Debaixo do Cráton São Francisco esses valores são 6,8 km/s e 1,74.

Existem indícios, no modelo obtido neste trabalho, de haver ocorrido uma dupla subducção na Província Tocantins. Na porção leste, com o Cráton São Francisco subduzindo para oeste, que teria ocorrido por volta de 760 Ma. E, na porção oeste com o Cráton Amazônico subduzindo para leste, que provavelmente começou em torno de 620 Ma. Este processo teria concluido, de acordo com Soares et al. (2006b), por volta de 500 Ma quando os crátons Amazônico, São Francisco e Paranapanema colidira, terminando de formar a Província Tocantins.

O modelo gravimétrico, obtido neste trabalho em função do modelo sísmico, se ajusta adequadamente com os dados gravimétricos observados, utilizando densidades teóricas ligeiramente modificados, dentro dos limites permitidos pela função utilizada para o calcular essas densidades com base nos valores de V_P deste trabalho. As densidades do manto adotadas para a modelagem levaram em conta as idades Paleoproterozóica, sob o Cráton SãoFrancisco, menos denso (3,31 g/cm³) e com maior V_P (8,26 km/s), e Neoprotorozóica, sob a Província Tocantins, mais densa (3,34 g/cm³) e com menor V_P (8,07 km/s).

Referências

ALARCON, S. Modelo Preliminar de Estrutura Crustal com Dados da Linha de Refração Sísmica Caraiba (BA)-Trindade(PE). 1989.

ALMEIDA, F. d. et al. Brazilian structural provinces: an introduction. *Earth Sciences Review*, Special Issue 17, p. 1–29, 1981.

ALVARENGA, C. J. S. de et al. Tectonic evolution of south america. In: _____. [S.l.]: Cordani U.G. and Milani, E. J. and Thomaz Filho, A. and Campos, D. A., 2000. cap. Paraguay and Araguaia Belts, p. 183–193.

ARTEMIEVA, I.; MOONEY, W. Thermal thickness and evolution of precambrian lithosphere: A global study. *Journal of Geophysical Research*, v. 106, n. B8, p. 16,387–16,414, 2001.

ASSUMPÇÃO, M. Studies of Crustal Shear Waves and Poisson's Ratio. Tese (Doutorado) — University of Edinburg, Department of Geophysics, December 1978.

ASSUMPÇÃO, M. Preliminary crustal model for se brazilian shield based on local earthquakes in southern minas gerais. In: *Regional Assembly in South America*. Brasília: [s.n.], 1994.

ASSUMPÇÃO, M. et al. Upper mantle anisotropy in se and central brazil from sks splitting. In: SBGF (Ed.). Sétimo Congresso Internacional da Sociedade Brasileira de Geofísica – Resumos Expandidos. [S.l.: s.n.], 2001. II, p. 1355–1358.

BASSINI, A. M. Levantamento Sismográfico na região Sudeste do Brasil. Dissertação (Mestrado) — IAG/USP, 1986.

BERROCAL, J. et al. Deep seismic refraction and gravity crustal model and tectonic deformation in tocantins province, central brazil. *Tectonophysics*, v. 388, p. 187–199, June 2004.

BRAILE, L. W.; SMITH, R. B. Geophys. J. R. Astron. Soc., v. 40, p. 145–176, 1975.

CERVENY, V.; MOLOTKOV, J.; PSENCIK, I. *Ray Methods in Seismology*. Prague: Charles University, 1977.

CHRISTENSEN, N. I.; MOONEY, W. D. Seismic velocity structure and composition of the continental crust: A global view. *Journal of Geophysical Research*, v. 100, n. B7, p. 9761–9788, June 1995.

DARDENNE, M. A. Tectonic evolution of south america. In: _____. [S.l.]: Cordani U.G. and Milani, E. J. and Thomaz Filho, A. and Campos, D. A., 2000. cap. The Brasilia Fold Belt, p. 231–263.

DIAS, L.; FERNANDES, C.; BERROCAL, J. Estrutura crustal na área do reservatório de sobradinho. In: XXXI Congresso Brasileiro de Geologia. [S.l.: s.n.], 1980. v. 2, p. 352.

DOBRIN, M. B. Introduction to Geophysical Prospecting. 3th edition. ed. [S.I.]: McGraw-Hill, Inc., 1985.

DURRHEIM, R. J.; MOONEY, W. D. Evolution of precambrian lithosphere: seismological and geophysical constraints. *J. Geophys. Res.*, v. 99, n. B8, p. 15,359–15,374, 1994.

FEININGER, T.; DANTAS, J.; GIRARDI, V. Gravity interpretation and possible regional significance of the niquelândia layered basic-ultrabasic complex, goiás, brazil. *Journal of South American Earth Sciences*, v. 4, n. 4, p. 343–350, 1991.

FILHO, C. F.; PIMENTEL, M. Sm-nd isotope systematics and ree-hf-ta-th data of troctolites and their amphibolitized equivalents of the niquelândia complex upper layered series central brazil: further constraints for the timing of magmatism and high grade metamorphism. *Journal of South American Earth Sciences*, v. 7, n. 13, p. 647–659, 2000.

FONSECA, M.; DARDENNE, M.; UHLEIN, A. Faixa brasília, setor setentrional: estilos estruturais e arcabouço tectônico. *Revista Brasileira de Geociências*, v. 4, n. 25, p. 267–278, 1995.

FUCHS, K.; MUELLER, G. Geophys. J. R. Astron. Soc., v. 23, p. 417–433, 1971.

FUCK, R. A. et al. Nd isotopes, u-pb single grain and shrimp zircon ages from basement rocks of the tocantins province. In: MINERIA, S. N. de Geologia y (Ed.). *III South American Symposium on isotope geology*. Santiago: [s.n.], 2001. Extended abstract volume (CD-ROM) v.1, p. 141–144.

GIESE, P.; SHUTTE, J. Preliminary report on the results of seismic measurments in the brazilian coastal mountains. Copia com Prof. Dr. Jesus Berrocal - IAG/USP. 1975.

HAWKESWORTH, C. J. et al. Continental mantle lithosphere, and shallow level enrichment processes in the earth's mantle. *Earth and Planetary Science Letters*, v. 96, n. 256-268, 1990.

HOLBROOK, W.; MOONEY, W.; NICOLAS, I. Continental lower crust. In: _____. [S.l.]: Elsevier, 1992. Developments in Geotectonics 23, cap. 1 - The seismic velocity structure of the deep continental crust, p. 1–34.

KNIZE, S.; BERROCAL, J.; OLIVEIRA, D. M. d. Modelo preliminar de velocidades sísmicas da crosta através de explosões locais registradas pela rede sismográfica de sobradinho. *Rev. Bras. Geofísica*, v. 2, n. 2, p. 95–104, 1984.

LESQUER, A. et al. Signification structurale des anomalies gravimetriques de la partie sud du craton de sao francisco (bresil). *Tectonophysics*, v. 76, p. 273–293, 1981.

LUETGERT, J. MacRay is a general purpose two-dimensional seismic ray-tracer for Macintosh. [S.l.], March 2004. Disponível em: <http://quake.wr.usgs.gov/research/software/index.html#Ray>. MARANGONI, Y.; ASSUMPÇÃO, M.; FERNANDES, E. P. Gravimetria em goiás, brasil. *Revista Brasileira de Geofísica*, v. 13, n. 3, p. 205–219, 1995.

MEISSNER, R. The Continental Crust - A Geophysical Approach. [S.1.]: Academic Press, 1986. (International Geophysics Series, v. 34).

MEISSNER, R.; MOONEY, W. Continental crustal evolution. *Eos Trans. AGU*, p. 584, 1992.

MIGNONA, T. C. Modelo preliminar da estrutura da porção superior da crosta entre Sorocaba e Barueri – SP. 1987.

MOLINA, E. C. et al. Interpretação dos dados gravimétricos da parte norte da bacia do paraná. *Rev. Bras. Geoc.*, v. 2, n. 19, p. 187–196, 1989.

MUSACCHIO, G. et al. Composition of the crust in the grenville and appalachian provinces of north america inferred from vp/vs ratios. *Journal of Geophysical Research*, v. 102, n. B7, p. 15,225–15,241, July 1997.

O'REILLY, S. et al. Are lithospheres forever? tracking changes in subcontinental lithospheric mantle through time. *GSA Today*, p. 4–10, April 2001.

PAIXAO, M.; NILSON, A. Fragmentos ofiolíticos da faixa araguaia: caracterização geológica e implicações tectônicas. In: NORTE, S. núcleo (Ed.). *Contribuições à geologia da Amazônias à geologia da Amazônia.* [S.l.: s.n.], 2002. v. 3, p. 85–103.

PEDRESCHI, E. S. Modelo Regional Preliminar da Estrutura Crustal na Região do Reservatório de Sobradinho com Dados de Refração Sísmica Profunda. 1989.

PEREIRA, M. R. S. Perfil Sísmico na Região de Formiga – MG utilizando o Método de Refração Sísmica Profunda. 1995.

PEROSI, F. A. Refração Sísmica Profunda no Setor Sudeste da Província Tocantins. Dissertação (Mestrado) — IAG/USP, 2000.

PIMENTEL, M.; FILHO, C. F.; ARMSTRONG, A. Shrimp u-pb and sm-nd ages of the niquelândia layered complex: Meso- (1.25 ga) and neoproterozoic (0.79 ga) extensional events in central brazil. *Precambrian Research (in press)*, 2004.

PIMENTEL, M.; FUCK, R. Neoproterozoic crustal accretion in central brazil. *Geology*, v. 20, p. 375–379, 1992.

PIMENTEL, M.; FUCK, R.; GIOIA, S. The neoproterozoic goiás magmatic arc, central brazil: a review and new sm-nd isotopic data. *Revista Brasileira de Geociências*, v. 1, n. 30, p. 35–39, 2000a.

PIMENTEL, M. et al. Tectonic evolution of south america. In: _____. [S.l.]: Cordani U.G. and Milani, E. J. and Thomaz Filho, A. and Campos, D. A., 2000b. cap. The Basement of the Brasilia Fold Belt and the Goias Magmatic Arc, p. 195–229.

PIMENTEL, M. et al. The mara rosa arc in tocantins province: further evidence for neoproterozoic crustal accretion in central brazil. *Precambrian Research*, v. 81, p. 299–310, 1997.

SHERIFF, R.; GELDART, L. *Exploration Seismology: history, theory and data acquisition.* [S.I.]: Cambridge University Press, 1982.

SOARES, J. et al. Seismic characteristics of central brazil crust and upper mantle:a deep seismic refraction study. *Journal of Geophysics Research (in press)*, 2006a.

SOARES, J. et al. Geophysical evidence of amazon subduction in central brazil: a new insight into tocantins province evolution. *Tectonophysics (in press)*, 2006b.

SOARES, J. E.; FUCK, R. A.; BERROCAL, J. Geophysical signature of the lithosphere at the western border of sao francisco plate. In: *Anais do III Simpósio sobre o Cráton do São Francisco*. Salvador, BA: [s.n.], 2005. p. 48–51.

SOARES, J. E. P.; BERROCAL, J.; ANTUNES, J. A. The cavalcante and minaçubrasília deep seismic refraction lines: a travel time interpretation of crustal structure in central brazil. In: Sétimo Congresso Internacional da Sociedade Brasileira de Geofísica – Resumos Expandidos. [S.1.: s.n.], 2001. II, p. 1308–1311.

STRIEDER, A.; NILSON, A. Mélange ofiolítica nos metassedimentos araxá de abadiânia (go) e implicações tectficas regionais. *Rev. Bras. Geoc.*, v. 2, n. 22, p. 204–215, 1992.

TAPLEY, W. C.; TULL, J. E. SAC - Seismic Analysis Code - Users Manual. Mail Stop L-205, Livermore, CA, 94550, July 1991.

UNRUG, R. The supercontinent cycle and gondwanaland assembly: Component cratons and the timing of suturing events. *Journal of Geodynamics*, v. 4, n. 16, p. 215–240, 1992.

USGS. Crustal Structure. 2002. Disponível em: http://quake.wr.usgs.gov/study/CrustalStructure>.

USSAMI, N.; MOLINA, E. C. Flexural modeling of the neoproterozoic araguaia belt, central brazil. *Journal of South America Earth Sciences*, v. 12, p. 87–98, 1999.

VELOSO, J. A. V. Informação preliminar da crosta através de sísmica de refração. *Ciências da Terra*, n. 10, p. 19–20, 1984.

WINARDHI, S.; MEREU, R. F. Crustal velocity structure of the superior and grenville provinces of the southeastern canadian shield. *Can. J. Earth Sci.*, v. 34, p. 1167–1184, 1997.

YAMABE, T. H. Estudos Geofísicos para Explicar a Sismicidade Induzida e Orientar a Exploração de Água Subterrânea em Nuporanga - SP. Tese (Doutorado) — IAG/USP, 1999.

ZANDT, G.; AMMON, C. J. Continental crust composition constrained by measurements of crustal poisson's ratio. *Nature*, v. 374, p. 152–154, March 1995.

APÊNDICE A – Leitura dos Tempos - Linha L1-Porangatu

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	001-5011	-28,747	4,937	8,723	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	003-508	-17.385	2.975	5.130	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	004-509	-12.144	2.1011	3.701	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	005-510	-6.713	1.216	2.110	
11008-5134,5140,7901,35211010-51510,1181,6972,85311011-51712,8462,1323,72411013-51818,2943,1055,37211017-521128,6494,9128,56511019-52333,6525,72510,00711020-52536,3186,10910,65211021-52638,8596,56411,291111026-53651,07118,52414,60311028-53855,9929,31515,98711030-53358,8929,81317,09711031-53961,49410,20517,39211032-54063,87810,62918,28011035-53571,081111,77520,36511036-54273,47712,16621,05311037-53775,64212,55021,68311038-54378,15912,95722,40711039-54680,31013,32023,19411042-551188,83214,67025,47311043-55292,241115,24726,60911044-55395,20715,73427,34211045-55497,00916,10628,11211045-55497,00916,10628,11211045-55497,00916,10628,87511045-55497,00916,10628,12911045-	11	007-512	0.790	0.188	999.000	
11010-51510,1181,6972,85311011-51712,8462,1323,72411013-51818,2943,1055,37211017-521128,6494,9128,56511018-52231,0045,2449,13911020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011024-53555,9929,31515,98711030-53358,8929,81317,09711032-54063,87810,62918,28011032-54063,87810,62918,28011034-541168,69511,40419,60811035-53571,081111,77520,36511036-54273,47712,16621,05311037-53775,64212,25021,68311038-54378,15912,95722,40711040-581188,75713,68423,71311041-54985,77314,16424,43611042-551188,83214,67025,47311044-55497,00916,10628,11211045-55497,00916,10628,11211045-55497,00916,10628,11211045-55497,00916,10628,11211045-55497,00916,10628,1121104	11	008-513	4.514	0.790	1.352	
11011-51712,3462,1323,72411013-51818,2943,1055,37211017-521128,6494,9128,56511018-52231,0045,2449,13911019-52333,6525,72510,00711020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011026-53651,07118,52414,60311030-53358,8929,81317,09711031-53961,49410,20517,39211032-54063,87810,62918,28011035-53571,081111,77520,36511036-54273,47712,16621,05311037-53775,64212,55021,68311038-54380,31013,32023,19411042-551188,83214,67025,47311042-551188,83214,67025,47311042-551188,83214,67025,47311042-55497,00916,10628,11211044-55395,20715,73427,34211042-55497,00916,10628,11211044-55395,20715,73427,34211044-55395,20715,73427,34211045-55497,00916,10628,11211	11	010-515	10.118	1.697	2.853	
11013-51818,2943,1055,37211017-521128,6494,9128,56511019-52333,6525,72510,00711020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011026-53651,07118,52414,60311028-53855,9929,31515,98711030-53358,8929,81317,09711032-54063,87810,62918,28011032-54063,87810,62918,28011034-541168,69511,40419,60811035-53571,081111,77520,36511037-53775,64212,55021,68311038-54378,15912,95722,40711039-54680,31013,32023,19411040-581182,75713,68423,71311041-55395,20715,73427,34211042-551188,83214,67025,47311043-55292,241115,24726,60911042-551188,83214,67028,11211042-55497,00916,10628,11211044-55395,20715,73427,34211044-55494,30016,47728,36011044-555130,41621,52937,49411 <td>11</td> <td>011-517</td> <td>12.846</td> <td>2.132</td> <td>3.724</td> <td></td>	11	011-517	12.846	2.132	3.724	
11017-521128,6494,9128,66511018-52231,0045,2449,13911019-52333,6525,72510,00711020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011026-53651,07118,52414,60311028-53855,9929,31515,98711030-53358,8929,81317,09711031-53961,49410,20517,39211032-54063,87810,62918,28011034-541168,69511,40419,60811035-53571,081111,77520,36511036-54273,47712,16621,05311038-54378,15912,95722,40711039-54680,31013,32023,19411041-54985,77314,16424,43611042-551188,83214,67025,47311043-55292,241115,24726,60911044-55395,20715,73427,34211045-55497,00916,10628,11211045-55497,00916,16628,87511049-5611102,49417,11629,77811045-55491,00916,47728,36011045-55491,00916,10628,11211 <td>11</td> <td>013-518</td> <td>18,294</td> <td>3,105</td> <td>5.372</td> <td></td>	11	013-518	18,294	3,105	5.372	
11018-52231,0045,2449,13911019-52333,6525,72510,00711020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011028-53855,9929,31515,98711030-53358,8929,81317,09711031-53961,49410,20517,33211032-54063,87810,62918,28011034-541168,69511,40419,60811035-53571,081111,77520,36511036-54273,47712,16621,05311037-53775,64212,55021,68311038-54378,15912,95722,40711039-54680,31013,32023,19411040-581182,75713,68423,71311041-54985,77314,16424,43611042-551188,83214,67025,47311043-55292,241115,24726,60911044-55398,39016,47728,36011045-55497,00916,10628,11211048-560102,49417,11629,77811048-569117,31419,494999,00011048-560136,42322,20736,87111058-572125,04120,64336,1031	11	017-5211	28.649	4.912	8.565	
11019-52333,6525,72510,00711020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011026-53651,07118,52414,60311028-53855,9929,31515,98711030-53358,8929,81317,09711031-53961,49410,20517,39211032-54063,87810,62918,28011035-53571,081111,77520,36511036-54273,47712,16621,05311038-54378,15912,95722,40711039-54680,31013,32023,19411042-551188,83214,67025,47311042-551188,83214,67025,47311043-55292,241115,24726,60911044-55395,20715,73427,34211045-55497,00916,10628,11211046-55898,39016,47728,36011047-5599.9,47816,66628,87511048-560102,49417,11629,77811048-560102,49417,11629,77811048-560102,49417,11629,77811048-569117,31419,494999,00011058-578130,41621,52937,494 <t< td=""><td>11</td><td>018-522</td><td>31.004</td><td>5.244</td><td>9.139</td><td></td></t<>	11	018-522	31.004	5.244	9.139	
11020-52536,3186,10910,65211021-52638,8596,56411,291111024-53446,2627,74412,99011026-53651,07118,52414,60311028-53855,9929,31515,98711030-53358,8929,81317,09711031-53961,49410,20517,39211032-54063,87810,62918,28011034-541168,69511,40419,60811035-53571,081111,77520,36511036-54273,47712,16621,05311038-54378,15912,95722,40711039-54680,31013,32023,19411040-581182,75713,68423,71311041-54985,77314,16424,43611043-55292,241115,24726,60911044-55395,20715,73427,34211045-55497,00916,10628,11211046-55898,39016,47728,36011047-55999,47816,66628,87511048-560102,49417,11629,77811048-561104,88617,37330,11311053-578130,41621,52937,49411058-578130,41621,52937,49411058-578136,37822,07938,891 <td< td=""><td>11</td><td>019-523</td><td>33.652</td><td>5.725</td><td>10.007</td><td></td></td<>	11	019-523	33.652	5.725	10.007	
11021-52638,8596,56411,291111024-53446,2627,74412,99011026-53651,07118,52414,60311028-53855,9929,31515,98711030-53358,8929,81317,09711031-53961,49410,20517,39211032-54063,87810,62918,28011034-541168,69511,40419,60811036-54273,47712,16621,05311036-54273,47712,16621,05311036-54378,15912,95722,40711039-54680,31013,32023,19411041-54985,77314,16424,43611042-551188,83214,67025,47311043-55292,241115,24726,60911044-55395,20715,73427,34211045-55497,00916,10628,11211046-55898,39016,47728,36011047-55999,47816,66628,87511048-560102,49417,11629,77811048-5611104,88617,37330,11311058-578130,41621,52937,49411059-579133,30221,96638,12911064-585144,36623,37540,73811065-586146,68523,73541,061<	11	020-525	36.318	6,109	10.652	
11 $024-534$ $46,262$ $7,744$ $12,990$ 11 $026-536$ $51,0711$ $8,524$ $14,603$ 11 $028-538$ $55,992$ $9,315$ $15,987$ 11 $030-533$ $58,892$ $9,813$ $17,097$ 11 $031-539$ $61,494$ $10,205$ $17,392$ 11 $032-540$ $63,878$ $10,629$ $18,280$ 11 $034-5411$ $68,695$ $11,404$ $19,608$ 11 $035-535$ $71,0811$ $11,775$ $20,365$ 11 $037-537$ $75,642$ $12,550$ $21,683$ 11 $037-537$ $75,642$ $12,550$ $21,683$ 11 $038-543$ $78,159$ $12,957$ $22,407$ 11 $039-546$ $80,310$ $13,320$ $23,194$ 11 $041-549$ $85,773$ $14,164$ $24,436$ 11 $042-5511$ $88,832$ $14,670$ $25,473$ 11 $043-552$ $92,2411$ $15,247$ $26,609$ 11 $044-553$ $95,207$ $15,734$ $27,342$ 11 $046-558$ $98,390$ $16,477$ $28,360$ 11 $047-559$ $99,478$ $16,666$ $28,875$ 11 $048-560$ $102,494$ $17,116$ $29,778$ 11 $048-560$ $102,494$ $17,373$ $30,113$ 11 $053-579$ $133,302$ $21,966$ $38,129$ 11 $064-587$ $130,416$ $21,529$ $37,494$ 11 $059-579$ $133,302$ $21,966$ 3	11	021-526	38,859	6.564	11.2911	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	024-534	46.262	7.744	12.990	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	026-536	51.0711	8.524	14.603	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	028-538	55,992	9.315	15.987	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	030-533	58 892	9.813	17 097	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	031-539	61,494	10.205	17.392	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	032-540	63.878	10.629	18,280	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	034-5411	68 695	11 404	19,608	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	035-535	71.0811	11 775	20,365	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	036-542	73 477	12 166	21,053	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	037-537	75 642	12,500	21,683	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	038-543	78 159	12,000	22 407	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	039-546	80 310	13 320	22,401	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	040-5811	82 757	13 684	23 713	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	041-549	85 773	14 164	24 436	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	042-5511	88 832	14 670	25 473	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	043-552	92 2411	15 247	26,609	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	044-553	95 207	15 734	27,342	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	045-554	97.009	16,106	28.112	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	046-558	98,390	16 477	28,360	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	047-559	99.478	16.666	28,875	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	048-560	102,494	17,116	29,778	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	049-5611	104.886	17.373	30,113	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	053-569	117 314	19 494	999,000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	056-572	125 041	20 643	36 103	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	057-575	127,777	20.872	36.871	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	058-578	130,416	21.529	37.494	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	059-579	133 302	21,966	38 129	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	060-580	135,423	22,238	38.637	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	061-582	136.378	22.079	38.891	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	064-585	144.366	23.375	40.738	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	065-586	146.685	23,735	41.061	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	067-588	152,163	24,859	42.809	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	068-589	154.552	25,126	44.148	26.887
	11	069-590	156,832	25,756	999,000	

Tabela 3: Leituras dos tempos para o tiro EX11. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
11	071-592	162,079	26,187	45,655	27,588
11	073-594	167,295	26,983	46,776	
11	074 - 596	171,076	27,585	47,822	
11	075 - 597	173,173	28,146	49,028	
11	076-598	176,083	28,374	49,647	
11	077 - 599	178,970	28,941	50,202	30,072
11	078-600	181,308	29,468	50,967	
11	081-603	185,340	30,329	52,502	
11	082-604	187,5111	30,663	53,117	
11	083-605	190,262	31,047	$53,\!615$	
11	084-606	193,407	31,456	53,982	
11	085-608	195,869	31,782	54,839	
11	086-609	198,0011	32,130	55,632	
11	087-612	201,250	32,860	56,437	
11	088 - 595	203,197	32,928	57,085	
11	090-615	$208,\!613$	34,058	58,745	
11	098-623	227,730	35,968	62,116	
11	100-625	232,993	36,575	63,258	37,283
11	102-627	236,604	37,036	63,953	37,609
11	103-628	239,201	37,380	64,627	
11	105-630	244,006	37,994	65,855	
11	106-6311	245,398	38,109	66,499	
11	107-633	246,514	38,200	66,757	
11	108-6411	249,076	38,518	67,261	
11	109-642	252,469	38,970	999,000	
11	112-645	258,890	39,739	68,675	
11	113-646	261,598	40,190	69,459	
11	116-659	268,970	41,172	999,000	42,520
11	118-664	278,269	42,364	999,000	44,000
11	120-670	284,381	43,005	999,000	44,959

T :	Enter 7 a	Distânsis (lass)	$O_{\rm T}$ l $D_{\rm T}$	O_{12} I_{12} $G_{1}(z)$	$\mathbf{D} \cdot \mathbf{H} = \tilde{\mathbf{c}} \cdot \mathbf{c}$
Tiro	Estaçao	Distancia (km)	Onda P (s)	Onda S (s)	Reflexao (s)
12	001-501	-87,130	14,497	999,000	
12	003-508	-76,166	12,594	21,557	
12	004-509	-70.966	11.835	20.394	
12	005-510	-65 576	10.985	19.078	
12	005-510	-05,570	10,900	17,000	
12	007-512	-59,149	9,850	17,099	
12	008-513	-54,723	9,167	15,870	
12	011-517	-46,762	7,891	13,584	
12	013-518	-41,148	7,410	12,680	
12	017-521	-30,448	5,090	8.779	
12	018-522	-28,001	4 611	8,065	
10	010 522	25,001	4.944	7 245	
12	019-525	-20,427	4,244	7,345	
12	020-525	-22,860	3,794	6,470	
12	021-526	-20,291	3,410	5,899	
12	024-534	-15,259	2,161	3,754	
12	026-536	-10,583	1,365	2,448	
12	028-538	-5 779	0 564	0 992	
12	030 533	0.130	0.015	000.000	
12	030-333	-0,159	0,015	999,000	
12	031-539	2,849	0,513	0,850	
12	032-540	4,953	0,908	1,558	
12	034-541	9,742	1,717	3,008	
12	035-535	12,161	2,114	3,707	
12	036-542	14,521	2,467	4,354	
12	037-537	16.694	2.865	4.944	
19	038 549	10.944	2,000	5 764	
12	030-545	13,244	3,239	0,704 C 402	
12	039-546	21,330	3,642	6,403	
12	040-581	23,767	4,007	7,042	
12	041-549	26,783	4,520	7,942	
12	042-551	29,880	5,053	8,757	
12	043-552	33,351	5,646	9,716	
12	044-553	36.379	6.136	10.674	
12	045-554	38,399	6.482	11.218	
12	046 558	40.030	6 827	11 001	
12	040-550	40,050	7 107	12 220	
12	047-559	41,707	7,107	12,229	
12	048-560	44,834	7,583	13,020	
12	049-561	47,607	7,989	13,917	
12	053-569	60,350	10,152	17,636	
12	055-570	64,963	10,875	18,945	
12	056-572	67,731	11,214	19,323	
12	057-575	70,360	11.686	20,404	
12	058-578	72,970	12 116	21 124	
12	050 570	75 671	12,110	21,121	
12	060 590	77,660	12,001	21,100	
12	000-580	77,000	12,015	22,100	
12	061-582	78,656	12,653	21,975	
12	064-585	86,375	13,837	23,966	
12	065-586	88,570	14,191	24,424	
12	067-588	94,328	15,126	26,246	
12	068-589	96,816	15,708	27,157	
12	069-590	98,284	15,878	27,748	
12	071_592	104 241	17 000	29.614	
10	073 504	100.479	101/0	20,014	
10	073-094	114.010	10,140	21 001	
12	074-390	114,019	10,042	51,981	
12	075-597	116,070	18,982	32,814	
12	076-598	119,094	19,954	34,736	
12	077-599	122,138	20,159	35,406	21,831
12	078-600	124,519	20,609	36,289	22,129
12	080-602	126,795	21,476	37,153	
12	081-603	128.527	21.726	37,616	
12	082-604	130 643	22 043	38 086	
19	083.605	133 /00	22,040	38 863	
12	000-000	126,499	22,440	20,000	
12	084-606	130,698	22,981	39,876	0.1155
12	085-608	139,760	23,241	40,089	24,182
12	086-609	141,160	23,438	40,766	24,458
12	087-612	144,444	24,140	41,761	25,004
12	088-595	146,260	24,415	42,193	25,322
12	090-615	152,103	25,526	44,366	25,910
12	092-617	156.685	26.066	45,105	26.073
12	093-618	158 559	26 426	46,006	
14	000-010	1 100,000	20,720	1 10,000	

Tabela 4: Leituras dos tempos para o tiro EX12. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda $P(s)$	Onda S (s)	Reflexão (s)
12	098-623	170,342	28,014	47,884	
12	100-625	175,678	28,843	50,114	
12	102-627	179,203	29,413	51,022	29,831
12	103-628	181,710	29,718	51,310	
12	106-631	188,258	30,491	52,681	
12	107-633	189,546	30,603	52,994	31,184
12	108-641	192,188	31,420	999,000	
12	109-642	195,512	31,371	54,202	32,156
12	111-644	199,366	32,340	55,799	
12	112-645	202,107	32,810	$56,\!682$	
12	113-646	204,777	33,125	57,508	34,378
12	116-659	211,727	33,599	58,297	34,675
12	118-664	220,968	34,788	60,545	35,551
12	120-670	226,814	35,332	61,584	

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
13	001-501	-126,784	20,745	35,892	
13	003-508	-115.646	19,166	33,137	
13	005-510	-104.985	17.699	30,516	
13	008-513	-94,190	15.844	27.467	
13	017-521	-70,143	11.657	20.272	11.784
13	019-523	-65,160	10.872	18.521	10.953
13	020-525	-62 693	10,397	17 986	10,510
13	021-526	-60 136	10.067	17 275	10,017
13	024-534	-55 104	8 740	15 124	9 349
13	024-004	-45 725	7 266	12 656	0,040
13	030-533	-40,720	6 759	999,000	
13	031-539	-37 025	6 357	10.958	
13	032 540	35 451	5 000	10,306	
13	034 541	30.038	5.917	0.007	
13	035 535	-30,330	4 871	8 3 3 6	
13	036 542	26,561	4,071	7 577	
13	030-542	-20,501	4,430	7.978	
13	038 543	224,031	3 012	6 737	
10	020 546	-22,740	2 520	6,006	
10	039-340	-20,427	3,520	0,090 E 279	
10	040-581	-16,100	3,121	0,010	
10	041-549	-14,602	2,077	4,400	
10	042-001	-11,090	2,031	3,000	
10	043-332	-0,202	1,444	2,027	
13	044-553	-0,033	0,976	1,709	
13	040-554	-2,528	0,454	0,776	
13	046-558	1,009	0,063	0,108	
13	047-559	4,146	0,717	1,241	
13	048-560	6,212	1,074	1,850	
13	049-561	9,471	1,530	2,652	
13	053-569	21,455	3,620	6,132	
13	055-570	25,468	4,234	7,179	
13	056-572	28,196	4,664	7,889	
13	057-575	30,695	5,090	8,588	
13	058-578	33,255	5,562	9,636	
13	059-579	35,829	5,981	10,355	
13	060-580	37,755	6,234	10,749	
13	061-582	38,763	6,088	10,558	
13	064-585	46,412	7,236	12,453	
13	067-588	54,376	8,400	14,674	
13	068-589	56,880	8,759	15,179	
13	069-590	58,336	9,220	999,000	
13	071-592	64,283	9,985	17,319	
13	073-594	69,520	10,763	18,704	
13	074-596	74,266	11,498	20,019	
13	075-597	76,291	12,074	21,239	12,897
13	076-598	79,352	12,313	21,760	13,382
13	077-599	82,452	12,850	22,883	13,926
13	078-600	84,843	13,752	24,319	
13	080-602	87,103	14,637	999,000	
13	082-604	90,916	15,283	999,000	10 510
13	083-605	93,806	15,686	999,000	18,516
13	084-606	97,018	16,176	28,234	18,835
13	085-608	99,356	16,410	28,713	19,318
13	086-609	101,414	16,749	29,014	19,546
13	087-612	104,700	17,335	30,099	
13	090-615	112,461	19,132	33,071	
13	092-617	116,895	20,405	999,000	
13	095-620	123,283	20,856	35,612	00.000
13	098-623	130,415	21,548	37,286	23,623
13	100-625	135,761	22,651	39,177	24,254
13	102-627	139,270	23,173	40,266	24,750
13	103-628	141,764	23,348	40,929	
13	105-630	140,781	24,473	42,334	
13	106-631	148,369	24,729	42,869	00.145
13	107-033	149,697	24,859	42,986	20,145
13	108-641	152,358	25,167	43,501	26,533
13	109-642	155,660	25,803	44,716	

Tabela 5: Leituras dos tempos para o tiro EX13. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda $P(s)$	Onda S (s)	Reflexão (s)
13	111-644	159,544	26,468	45,849	
13	112-645	162,296	27,067	999,000	27,931
13	113-646	164,953	27,367	47,276	28,321
13	116-659	171,807	28,415	49,376	
13	117-663	176,330	29,072	50,334	
13	118-664	181,036	30,078	51,125	

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
14	003-508	-167.332	27,3795	47,742	28,516
14	004-509	-162.09	26.5057	46.363	27,739
14	005-510	-156 656	26,1256	45 446	26 985
14	007 512	150,000	20,1200	42 0220	26,300
14	011 512	-100,214	24,0000	40,0552	20,374
14	011-517	-130,300	23,2711	40,5520	24,525
14	013-518	-132,753	22,3213	38,6549	23,718
14	017-521	-122,024	20,2415	999	22,294
14	018-522	-119,478	19,6292	999	20,062
14	019-523	-117,062	19,1148	33,6533	19,72
14	020-525	-114,625	18,768	32,797	19,347
14	021-526	-112,074	18,3933	32,0245	19,044
14	024-534	-107,048	17,417	30,0318	18,131
14	028-538	-97,687	16,2228	27,8751	
14	030-533	-92,01	15.26	999	
14	031-539	-89,858	14,7317	999	
14	032-540	-87.41	14,3385	24,8733	
14	034-541	-82 793	13 5795	23 4878	
14	035-535	-80.644	13 2067	29,4070	
14	030-555	78 261	19,2007	000	
14	030-542	-76,201	12,1129	01 5000	
14	031-331	-70,203	12,481	21,5028	
14	038-543	-74,057	12,1351	20,728	
14	039-546	-71,72	11,7531	20,077	
14	040-581	-69,246	17,48	999	
14	041-549	-65,934	10,7206	18,532	
14	042-551	-62,647	10,186	17,9415	
14	043-552	-59,031	9,60848	16,7786	
14	044-553	-55,91	9,11237	15,6112	
14	045-554	-53,611	8,76416	14,756	
14	046-558	-51,899	8,409	14,503	
14	047-559	-50,487	8,376	14,421	
14	048-560	-47,464	$7,\!67$	13,139	
14	049-561	-45,139	7,31779	12,7538	
14	053-569	-33,192	5,397	9,294	
14	056-572	-25,337	4,1168	7,22328	
14	057-575	-22,55	3.67905	6,59225	
14	058-578	-19.962	3.28513	5.738	
14	059-579	-16.891	2.7755	4.776	
14	060-580	-14.648	2.38422	4.12969	
14	061-582	-13,767	2.64037	4.55807	
14	064-585	-5 593	1 33954	999	
14	065-586	-3 454	0 90054	999	
14	067-588	3.087	0.527	999	
14	068 580	5.654	0,015	1 202	
14	060 500	6716	0.02702	1,202	
14	009-090	10,710	1 64690	1,010	
14	071-092	12,41	1,04002	4,10	
14	073-594	11,022	2,43209	4,221	
14	075 507	23,103	2,00/1/	4,909	
14	075-597	25,49	3,92175	0,85710	
14	077 500	28,054	4,20409	(,29156	
14	077-599	31,944	4,7491	8,111	
14	078-600	34,31	5,33294	9,3129	0.007
14	081-603	38,08	6,43402	11,1262	6,862
14	082-604	40,002	6,79261	11,979	7,131
14	083-605	42,982	7,21184	12,3072	7,581
14	084-606	46,19	7,72187	13,2267	8,043
14	085-608	48,34	8,11978	14,1616	8,384
14	086-609	50,276	8,44203	14,8401	8,675
14	087-612	53,554	9,10518	15,7809	9,159
14	090-615	61,571	10,4979	18,2324	
14	092-617	65,497	11,08	19,327	
14	093-618	67,039	11,3363	19,6798	
14	095-620	71,474	12,1496	20,9756	
14	098-623	78,564	13,109	22,873	
14	100-625	83,936	14,359	24,7486	
14	102-627	87,398	14,9578	25,9578	
14	103-628	89,855	15,2035	26,2473	
14	105-630	94,939	16,1135	28,0091	

Tabela 6: Leituras dos tempos para o tiro EX14. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda $P(s)$	Onda S (s)	Reflexão (s)
14	106-631	96,607	16,3618	28,3796	
14	107-633	98,036	16,5884	28,744	
14	108-641	100,74	16,9681	29,1511	
14	109-642	103,986	17,4987	30,2137	
14	111-644	107,938	18,1645	31,1412	
14	112-645	110,712	18,7184	32,48	
14	113-646	113,334	19,1609	33,0861	
14	117-663	124,452	20,861	36,431	
14	118-664	129,152	21,6553	37,799	
14	120-670	134,902	22,897	39,247	

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
15	017-521	-156,354	25,996	44,463	
15	018-522	-153,769	25,479	43,836	
15	019-523	-151,482	25,199	43,183	
15	020-525	-149,163	24,779	999,000	
15	021-526	-146.649	24,445	42.249	
15	024-534	-141.675	23.348	999.000	
15	026-536	-137,170	22,788	40.097	
15	028-538	-132 504	21 983	999,000	
15	030-533	-126 888	21 444	36 971	
15	031-539	-124 942	21,111	36 731	
15	032-540	-122 514	20.815	999,000	
15	034-541	-118.046	20,010	999,000	
15	035-535	-116,009	10 786	34 254	
15	036 542	113 673	10,700	000,000	
15	027 527	111 760	10,000	22 012	
15	037-337	-111,700	19,230	000,000	
10	030-545	-109,078	10,400	999,000	
15	039-546	-107,330	18,030	999,000	
15	040-581	-104,900	18,210	999,000	
15	041-549	-101,563	17,478	30,321	
15	042-551	-98,263	16,891	29,450	
15	043-552	-94,642	16,185	999,000	
15	044-553	-91,519	15,690	999,000	
15	045-554	-89,010	15,279	999,000	
15	046-558	-87,069	14,964	999,000	
15	047-559	-85,052	14,650	24,936	
15	048-560	-81,985	14,060	23,806	
15	049-561	-79,251	13,580	23,751	
15	055-570	-61,855	10,690	18,593	
15	056-572	-59,087	9,684	999,000	
15	057-575	-56,477	9,310	999,000	
15	059-579	-51,314	8,562	14,818	
15	060-580	-49,494	8,426	999,000	
15	061-582	-48,464	7,973	999,000	
15	064-585	-41,519	7,353	999,000	
15	065-586	-39,864	6,919	11,768	
15	067-588	-33,544	6,334	10,834	
15	068-589	-30,910	5,813	999,000	
15	069-590	-29,714	5,210	999,000	
15	071-592	-24,431	4,638	999,000	
15	073-594	-19,803	3,715	6,327	
15	074-596	-12,896	3,513	999,000	
15	075-597	-10,966	2,339	3,805	
15	076-598	-7,821	1,993	3,252	
15	077-599	-4,682	1,487	2,454	
15	078-600	-2,334	0,871	1,419	
15	080-602	0,089	0,062	999,000	
15	081-603	1,709	0,441	0,746	
15	082-604	3,884	0,874	1,502	
15	083-605	6,684	1,314	2,302	
15	084-606	9,896	1,781	3,069	
15	085-608	12,263	2,177	3,743	
15	086-609	14,378	2,532	4,362	
15	087-612	17,639	3,208	5,586	
15	088-595	19,562	3,548	6,146	
15	107-633	62,884	11,028	19,487	
15	108-641	65,470	11,485	20,174	
15	109-642	68,844	12,035	21,127	

Tabela 7: Leituras dos tempos para o tiro EX15. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
	16	004-509	-231,902	36.266	63,439	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	005-510	-226 468	35 734	62 19	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	007-512	-220,100	34 104	60 3202	
	10	011 517	-220,030	20 501	00,5252	
16 017-321 -191,966 30,577 53,396 16 019-523 -187,015 30 999 16 020-525 -184,59 29,0854 51,177 16 021-526 -184,59 29,0854 51,177 16 022-526 -182,041 29,309 50,769 16 026-536 -177,018 28,332 48,64 16 036-533 -167,662 26,982 999 28,062 16 035-535 -150,554 24,731 999 25,710 16 035-535 -150,554 24,731 999 25,710 16 035-535 -148,16 24,297 41,6113 16 037-537 -146,135 24,0288 999 16 043-551 -132,504 21,8046 37,3974 16 042-551 -132,504 21,8093 36,6376 22,422 16 044-553 -123,592 20,5142 999 21,919 16 045-54 -123,559 20,5542 999 21,919	16	011-517	-208,227	32,521	999	
	16	017-521	-191,966	30,8577	53,996	
	16	018-522	-189,412	30,54	53,049	
	16	019-523	-187,015	30	999	
	16	020-525	-184,59	29,6854	51,177	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	021-526	-182.041	29,309	50,769	
	16	024-534	-177.018	28 332	48.64	
	16	024-004	179.416	20,002	47 156	
	10	020-550	-172,410	21,1009	47,150	00.000
	16	028-538	-167,662	26,982	999	28,062
	16	030-533	-161,984	26,397	999	
$ \begin{bmatrix} 6 & 032 \cdot 540 & -157, 369 & 25, 73 & 44, 1128 \\ 16 & 034 \cdot 541 & -152, 73 & 25, 023 & 999 \\ 16 & 035 \cdot 535 & -150, 554 & 24, 731 & 999 & 25, 710 \\ 16 & 037 \cdot 537 & -146, 135 & 24, 0288 & 999 \\ 16 & 038 \cdot 543 & -143, 878 & 23, 643 & 40, 2179 \\ 16 & 040 \cdot 581 & -139, 064 & 22, 923 & 999 \\ 16 & 041 \cdot 549 & -135, 775 & 22, 532 & 37, 9346 \\ 16 & 042 \cdot 551 & -132, 504 & 21, 8046 & 37, 3974 \\ 16 & 043 \cdot 552 & -128, 902 & 21, 1993 & 36, 6251 \\ 16 & 044 \cdot 553 & -125, 792 & 20, 7138 & 36, 0376 & 22, 422 \\ 16 & 045 \cdot 554 & -123, 559 & 20, 3542 & 999 & 22, 097 \\ 16 & 046 \cdot 558 & -121, 873 & 19, 865 & 999 & 21, 919 \\ 16 & 048 \cdot 560 & -117, 346 & 19, 2487 & 33, 1667 & 21, 327 \\ 16 & 048 \cdot 560 & -117, 346 & 19, 2487 & 33, 1667 & 21, 327 \\ 16 & 049 \cdot 561 & -114, 488 & 18, 863 & 999 & 21, 129 \\ 16 & 055 \cdot 570 & -97, 471 & 16, 058 & 999 \\ 16 & 055 \cdot 570 & -97, 471 & 16, 058 & 999 \\ 16 & 055 \cdot 575 & -91, 985 & 14, 9481 & 999 \\ 16 & 055 \cdot 575 & -91, 985 & 14, 9481 & 999 \\ 16 & 055 \cdot 575 & -94, 726 & 15, 1289 & 26, 3002 \\ 16 & 057 \cdot 575 & -91, 985 & 14, 9481 & 999 \\ 16 & 056 \cdot 58 & -86, 373 & 13, 7222 & 24, 08 \\ 16 & 065 \cdot 58 & -75, 537 & 12, 8129 & 22, 1199 \\ 16 & 065 \cdot 586 & -73, 336 & 12, 3938 & 21, 3644 \\ 16 & 067 \cdot 588 & -67, 637 & 11, 619 & 19, 887 \\ 16 & 074 \cdot 596 & -49, 305 & 8, 86504 & 15, 157 \\ 16 & 074 \cdot 596 & -49, 305 & 8, 86504 & 15, 157 \\ 16 & 075 \cdot 597 & -47, 183 & 8, 20766 & 14, 169 \\ 16 & 075 \cdot 598 & -44, 583 & 7, 89613 & 13, 42 \\ 16 & 076 \cdot 598 & -44, 583 & 7, 89613 & 13, 42 \\ 16 & 076 \cdot 598 & -44, 583 & 7, 89613 & 13, 42 \\ 16 & 076 \cdot 598 & -47, 935 & 6, 37713 & 11, 1066 \\ 16 & 081 - 603 & -36, 321 & 6, 08473 & 10, 5526 \\ 16 & 088 - 609 & -24, 978 & 4, 02007 & 6, 83092 \\ 16 & 085 - 608 & -27, 054 & 43, 8137 & 7, 478 \\ 16 & 003 - 618 & -07, 614 & 438137 & 7, 478 \\ 16 & 003 - 618 & -07, 618 & 32, 999 \\ 16 & 003 - 618 & -00, 768 & 1, 23165 & 2, 18433 \\ 16 & 093 - 618 & -00, 76 & 1, 8285 & 999 \\ 16 & 003 - 618 & -00, 685 & 1, 85176 & 999 \\ 16 & 100 - 625 & 10, 895 & 1, 85176 & 999 \\ 16 & 100 - 625 & 10, 895 & 1, $	16	031-539	-159,818	26,082	44,6836	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	032-540	-157,369	25,73	44,1128	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	034-541	-152.73	25.023	999	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	035-535	-150 554	24 731	999	25 710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	026 542	149.16	24,101	41 6112	20,110
	10	030-342	-140,10	24,291	41,0115	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	037-537	-140,135	24,0288	999	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	038-543	-143,878	23,643	40,2179	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	039-546	-141,551	23,334	39,6807	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	040-581	-139,064	22,923	999	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	041-549	-135,775	22.532	37.9346	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	042-551	-132 504	21 8046	37 3974	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	042 552	128,002	21,0040	26 6251	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	043-352	-126,902	21,1995	30,0231	00,400
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	044-553	-125,792	20,7138	36,0376	22,422
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	045-554	-123,559	20,3542	999	22,097
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	046-558	-121,873	19,865	999	21,919
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	047-559	-120,389	19,685	999	21,710
16049-561-114,8818,86399921,12916053-569-102,48816,60399921,12916055-570-97,47116,05899916056-572-94,72615,128926,300216057-575-91,98514,948199916058-578-89,34514,591999916060-580-84,37313,722224,0816061-582-83,40514,017823,899516064-585-75,53712,812922,119916066-586-73,33612,393821,364416067-588-67,63711,61919,88716068-589-65,21511,22919,047616071-592-57,7129,9401317,217716075-597-47,1838,2076614,16916076-598-44,5837,8961313,4216076-598-44,5837,9861313,4216078-600-40,1327,0433512,164316081-603-36,3216,0847310,552616082-604-34,1415,518899,6460416085-608-27,0644,381377,47816086-609-24,9784,020076,8309216086-609-24,9784,020076,8309216086-609-24,9784,020076,8309216096-615-20,2383,291015,5467416090-61	16	048-560	-117.346	19.2487	33.1667	21.327
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	049-561	-114.88	18 863	999	21 129
16 $053-570$ $-97,471$ $16,005$ 999 16 $055-570$ $-94,726$ $15,1289$ $26,3002$ 16 $057-575$ $-91,985$ $14,9481$ 999 16 $058-577$ $-89,345$ $14,5919$ 999 16 $059-579$ $-86,466$ $14,113$ 999 16 $060-580$ $-84,373$ $13,7222$ $24,08$ 16 $061-582$ $-83,405$ $14,0178$ $23,8995$ 16 $066-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $068-589$ $-65,215$ $11,229$ $19,0476$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $077-599$ $-42,204$ $7,41751$ $12,774$ 16 $076-598$ $-44,583$ $7,80613$ $13,42$ 16 $076-598$ $-44,583$ $7,80613$ $13,42$ 16 $076-599$ $-42,204$ $7,41751$ $12,774$ 16 $078-600$ $-40,132$ $7,04335$ $12,1643$ 16 $081-603$ $-36,321$ $6,08473$ $10,5526$ 16 $082-604$ $-34,141$ $5,51889$ $9,64604$ 16 $087-612$ $-22,599$ $3,68974$ $6,52$ 16 $086-609$ $-24,978$ $4,02007$ $6,83092$ 16 $087-612$ $-22,599$	16	052 560	102.499	16,000	000	21,125
16 $055-570$ $-97,471$ $16,058$ 999 16 $055-572$ $-94,726$ $15,1289$ $26,3002$ 16 $057-575$ $-91,985$ $14,9481$ 999 16 $058-578$ $-89,345$ $14,5919$ 999 16 $059-579$ $-86,466$ $14,113$ 999 16 $060-580$ $-84,373$ $13,7222$ $24,08$ 16 $061-582$ $-83,405$ $14,0178$ $23,8995$ 16 $064-585$ $-75,537$ $12,8129$ $22,1199$ 16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $075-597$ $-47,183$ $8,20766$ $14,169$ 16 $076-598$ $-44,583$ $7,89613$ $13,42$ 16 $078-600$ $-40,132$ $7,04335$ $12,1643$ 16 $081-603$ $-36,321$ $6,087713$ $11,1066$ 16 $081-603$ $-32,063$ $5,15236$ $9,15917$ 16 $085-608$ $-27,064$ $4,38137$ $7,478$ 16 $086-609$ $-24,978$ $4,02007$ $6,83092$ 16 $088-595$ $-20,$	10	055-509	-102,400	10,003	999	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	055-570	-97,471	16,058	999	
16 $057-575$ $-91,985$ $14,9481$ 999 16 $058-578$ $-89,345$ $14,5919$ 999 16 $060-580$ $-84,373$ $13,7222$ $24,08$ 16 $061-582$ $-83,405$ $14,0178$ $23,8995$ 16 $064-585$ $-75,537$ $12,8129$ $22,1199$ 16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $068-589$ $-65,215$ $11,229$ $19,0476$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $075-597$ $-47,183$ $8,20766$ $14,169$ 16 $076-598$ $-44,583$ $7,89613$ $13,422$ 16 $077-599$ $-42,204$ $7,41751$ $12,774$ 16 $078-600$ $-40,132$ $7,04335$ $12,1643$ 16 $08-602$ $-37,935$ $6,37713$ $11,1066$ 16 $081-603$ $-36,321$ $6,08473$ $10,5526$ 16 $082-604$ $-34,141$ $5,51889$ $9,64004$ 16 $085-608$ $-27,064$ $4,38137$ $7,478$ 16 $086-609$ $-24,978$ $4,02007$ $6,83092$ 16 $085-618$ $-20,238$ $3,29101$ $5,54674$ 16 $090-615$ $-20,238$ $3,29101$ $5,54674$ 16 $090-615$	16	056-572	-94,726	15,1289	26,3002	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	057-575	-91,985	14,9481	999	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	058-578	-89,345	14,5919	999	
16 $060-580$ $-84,373$ $13,7222$ $24,08$ 16 $061-582$ $-83,405$ $14,0178$ $23,8995$ 16 $064-585$ $-75,537$ $12,8129$ $22,1199$ 16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $068-589$ $-65,215$ $11,229$ $19,0476$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $075-597$ $-47,183$ $8,20766$ $14,169$ 16 $076-598$ $-44,583$ $7,89613$ $13,42$ 16 $077-599$ $-42,204$ $7,41751$ $12,774$ 16 $086-602$ $-37,935$ $6,37713$ $11,1066$ 16 $082-604$ $-34,141$ $5,51889$ $9,64604$ 16 $083-605$ $-32,063$ $5,15236$ $9,15917$ 16 $084-606$ $-29,571$ $4,82707$ $8,273$ 16 $085-608$ $-27,064$ $4,38137$ $7,478$ 16 $086-609$ $-24,978$ $4,02007$ $6,83092$ 16 $087-612$ $-22,599$ $3,68974$ $6,52$ 16 $088-595$ $-20,244$ $3,25413$ $5,55378$ 16 $090-615$ $-20,238$ $3,29101$ $5,54674$ 16 $092-617$ $-14,415$ $2,2568$ $3,96915$ 16 $093-618$ <td>16</td> <td>059-579</td> <td>-86,466</td> <td>14.113</td> <td>999</td> <td></td>	16	059-579	-86,466	14.113	999	
16 $061-582$ $-83,405$ $14,0178$ $23,8995$ 16 $064-585$ $-75,537$ $12,8129$ $22,1199$ 16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $068-589$ $-65,215$ $11,229$ $19,0476$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $075-597$ $-47,183$ $8,20766$ $14,169$ 16 $076-598$ $-44,583$ $7,89613$ $13,42$ 16 $077-599$ $-42,204$ $7,41751$ $12,774$ 16 $078-600$ $-40,132$ $7,04335$ $12,1643$ 16 $081-603$ $-36,321$ $6,08473$ $10,5526$ 16 $082-604$ $-34,141$ $5,51889$ $9,64604$ 16 $083-605$ $-32,063$ $5,15236$ $9,15917$ 16 $084-606$ $-29,571$ $4,82707$ $8,273$ 16 $086-609$ $-24,978$ $4,02007$ $6,83092$ 16 $088-595$ $-20,264$ $3,25413$ $5,55378$ 16 $092-617$ $-14,415$ $2,2568$ $3,96915$ 16 $093-618$ $-10,76$ $1,68285$ 999 16 $095-620$ $7,689$ $1,23165$ $2,18433$ 16 $098-623$ $10,895$ $1,85176$ 999 </td <td>16</td> <td>060-580</td> <td>-84 373</td> <td>13 7222</td> <td>24.08</td> <td></td>	16	060-580	-84 373	13 7222	24.08	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	061 582	83 405	14 0178	23 8005	
16 $064-585$ $-73,336$ $12,3129$ $22,1199$ 16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $068-589$ $-65,215$ $11,229$ $19,0476$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $075-597$ $-47,183$ $8,20766$ $14,169$ 16 $076-598$ $-44,583$ $7,89613$ $13,42$ 16 $076-598$ $-44,583$ $7,89613$ $13,42$ 16 $077-599$ $-42,204$ $7,41751$ $12,774$ 16 $078-600$ $-40,132$ $7,04335$ $12,1643$ 16 $081-603$ $-36,321$ $6,08473$ $10,5526$ 16 $082-604$ $-34,141$ $5,51889$ $9,64604$ 16 $083-605$ $-32,063$ $5,15236$ $9,15917$ 16 $084-606$ $-29,571$ $4,82707$ $8,273$ 16 $085-608$ $-27,064$ $4,38137$ $7,478$ 16 $08-612$ $-22,599$ $3,68974$ $6,52$ 16 $093-618$ $-10,76$ $1,68285$ 999 16 $093-618$ $-10,76$ $1,68285$ 999 16 $098-623$ $10,895$ $1,85176$ 999 16 $102-627$ $18,516$ $3,15214$ $5,36734$ <tr< td=""><td>10</td><td>001-582</td><td>-05,405</td><td>14,0170</td><td>25,8995</td><td></td></tr<>	10	001-582	-05,405	14,0170	25,8995	
16 $065-586$ $-73,336$ $12,3938$ $21,3644$ 16 $067-588$ $-67,637$ $11,619$ $19,887$ 16 $068-589$ $-65,215$ $11,229$ $19,0476$ 16 $071-592$ $-57,712$ $9,94013$ $17,2177$ 16 $073-594$ $-52,483$ $9,14334$ $15,6395$ 16 $074-596$ $-49,305$ $8,86504$ $15,157$ 16 $075-597$ $-47,183$ $8,20766$ $14,169$ 16 $076-598$ $-44,583$ $7,89613$ $13,42$ 16 $077-599$ $-42,204$ $7,41751$ $12,774$ 16 $078-600$ $-40,132$ $7,04335$ $12,1643$ 16 $081-603$ $-36,321$ $6,08473$ $10,5526$ 16 $082-604$ $-34,141$ $5,51889$ $9,64604$ 16 $083-605$ $-32,063$ $5,15236$ $9,15917$ 16 $085-608$ $-27,064$ $4,38137$ $7,478$ 16 $085-608$ $-27,064$ $4,32413$ $5,55378$ 16 $087-612$ $-22,599$ $3,68974$ $6,52$ 16 $093-618$ $-10,76$ $1,68285$ 999 16 $093-618$ $-10,76$ $1,68285$ 999 16 $096-620$ $7,689$ $1,23165$ $2,18433$ 16 $095-620$ $7,689$ $1,23165$ $2,18433$ 16 $095-620$ $7,689$ $1,23165$ $2,18433$ 16 $102-627$ $18,516$ $3,15214$ $5,36734$ <td>16</td> <td>064-585</td> <td>-75,537</td> <td>12,8129</td> <td>22,1199</td> <td></td>	16	064-585	-75,537	12,8129	22,1199	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	065-586	-73,336	12,3938	21,3644	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	067-588	-67,637	11,619	19,887	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	068-589	-65,215	11,229	19,0476	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	071-592	-57.712	9,94013	17.2177	
16 074.596 $-49,305$ $8,86504$ $15,157$ 16 075.597 $-47,183$ $8,20766$ $14,169$ 16 076.598 $-44,583$ $7,89613$ $13,42$ 16 077.599 $-42,204$ $7,41751$ $12,774$ 16 078.600 $-40,132$ $7,04335$ $12,1643$ 16 080.602 $-37,935$ $6,37713$ $11,1066$ 16 081.603 $-36,321$ $6,08473$ $10,5526$ 16 082.604 $-34,141$ $5,51889$ $9,64604$ 16 083.605 $-32,063$ $5,15236$ $9,15917$ 16 084.606 $-29,571$ $4,82707$ $8,273$ 16 085.608 $-27,064$ $4,38137$ $7,478$ 16 085.608 $-27,064$ $4,25413$ $5,55378$ 16 087.612 $-22,599$ $3,68974$ $6,52$ 16 087.612 $-22,599$ $3,25413$ $5,55378$ 16 090.615 $-20,238$ $3,29101$ $5,54674$ 16 092.617 $-14,415$ $2,2568$ $3,96915$ 16 093.618 $-10,76$ $1,68285$ 999 16 095.620 $7,689$ $1,23165$ $2,18433$ 16 098.623 $10,895$ $1,85176$ 999 16 102.627 $18,516$ $3,15214$ $5,36734$ 16 102.627 $18,516$ $3,15214$ $5,89996$	16	073-594	-52 483	9 14334	15 6395	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	074 506	40,305	8 86504	15 157	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	074-030	47 192	8,00504 8,00766	14 160	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	070-097	-41,100	0,20700	14,109	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	076-598	-44,583	7,89613	13,42	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	077-599	-42,204	7,41751	12,774	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	078-600	-40,132	7,04335	12,1643	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	080-602	-37,935	6,37713	11,1066	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	081-603	-36.321	6.08473	10.5526	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	082-604	_34 141	5 51880	9 64604	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	002-004	22,141	5 15994	0.15017	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	003-003	-52,005	0,10200	9,10917	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	084-606	-29,571	4,82707	8,273	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	085-608	-27,064	4,38137	7,478	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	086-609	-24,978	4,02007	6,83092	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	087-612	-22,599	3,68974	6,52	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	088-595	-20.264	3,25413	5,55378	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	090-615	-20 238	3 20101	5 54674	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	009 617	14 415	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 06015	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	092-017	-14,410	2,2008	5,90915	
$ \begin{bmatrix} 16 & 095-620 & 7,689 & 1,23165 & 2,18433 \\ 16 & 098-623 & 10,895 & 1,85176 & 999 \\ 16 & 100-625 & 15,861 & 2,69657 & 999 \\ 16 & 102-627 & 18,516 & 3,15214 & 5,36734 \\ 16 & 103-628 & 20,492 & 3,43542 & 5,89996 \\ \end{bmatrix} $	16	093-618	-10,76	1,68285	999	
$ \begin{vmatrix} 16 & 098-623 & 10,895 & 1,85176 & 999 \\ 16 & 100-625 & 15,861 & 2,69657 & 999 \\ 16 & 102-627 & 18,516 & 3,15214 & 5,36734 \\ 16 & 103-628 & 20,492 & 3,43542 & 5,89996 \end{vmatrix} $	16	095-620	7,689	1,23165	2,18433	
	16	098-623	10,895	1,85176	999	
$ \begin{vmatrix} 16 & 102-627 & 18,516 & 3,15214 & 5,36734 \\ 16 & 103-628 & 20,492 & 3,43542 & 5,89996 \end{vmatrix} $	16	100-625	15,861	2,69657	999	
16 103-628 20,492 3,43542 5,89996	16	102-627	18,516	3,15214	5,36734	
	16	103-628	20.492	3,43542	5,89996	

Tabela 8: Leituras dos tempos para o tiro EX16. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda $P(s)$	Onda S (s)	Reflexão (s)
16	105-630	26,026	4,47367	7,534	
16	106-631	28,247	4,85133	8,495	
16	107-633	30,318	5,21637	9,29551	
16	108-641	33,152	5,78885	10,253	
16	109-642	35,888	6,19163	999	
16	111-644	40,077	6,86341	11,961	
16	112-645	42,865	7,31646	999	
16	113-646	45,221	8,00226	13,7848	
16	116-659	50,558	8,84631	15,2336	
16	117-663	54,912	9,51741	999	
16	118-664	59,56	10,326	999	
16	120-670	64,999	10,9855	19,0101	

ſ	Tiro	Estação	Distância (km)	Onda $P(s)$	Onda S (s)	Reflexão (s)
ľ	17	005-510	-275,589	42,0559	999	
l	17	019-523	-236,533	36,5828	63,8688	
	17	021-526	-231.636	36.028	62.5354	
	17	024-534	-223 996	35 0346	61 0245	
	17	028-538	-214 652	33 9541	59 3303	
	17	020-533	214,002	33 3038	000	
	17	030-333	-211,709	22 1500	999	
	17	031-039	-209,058	35,1509	57,008	22.020
	17	032-540	-207,194	32,8542	57,0286	33,832
	17	034-541	-202,617	32,2865	56,0888	33,314
	17	035-535	-200,49	32,0801	55,5262	33,152
	17	037-537	-196,122	31,4253	54,8421	32,545
	17	038-543	-193,916	31,2092	54,2922	32,253
	17	039-546	-191,58	30,9576	53,8383	31,874
ĺ	17	041-549	-185,794	30,2512	52,3731	31,197
1	17	042-551	-182,508	29,8739	999	
	17	043-552	-178.892	29.4527	999	
	17	044-553	-175.77	29,1094	999	
	17	045-554	-173.439	28.6837	49,7327	29.596
	17	046-558	-171 653	28 4095	49 1851	_0,000
	17	047-550	-160 027	28,1000	48 0018	
	17	041-559	-166 864	20,2021	900	28 882
	17	048-500	-100,004	27,5907	999	20,002
	17	055-509	-101,00	20,1010	999	
	17	055-570	-146,8	24,48	999	
	17	059-579	-135,97	22,6545	39,3092	
	17	060-580	-133,975	22,419	38,8305	
	17	061-582	-132,977	22,2386	38,6046	
	17	064-585	-125,356	21,3739	999	
	17	067-588	-117,351	20,2168	35,0039	
	17	068-589	-114,834	19,8246	999	
	17	069-590	-113,3918	19,455	999	
1	17	071-592	-107,473	18,6239	999	
	17	073-594	-102,244	17,8323	30,9614	
	17	074-596	-97.812	17.448	29.8041	
	17	075-597	-95.723	16.8083	29.2072	
	17	077-599	-89.917	15,7117	27.1476	
	17	078-600	-87 593	15 2905	999	
	17	081-603	-83 562	14 2738	24 6639	
	17	081-005	81.38	13 8225	24,0033	
	17	082-004	-01,50	12 420	23,0133	
	17	083-005	-76,075	10,429	23,2030	
	17	085 600	-10,012	12,9811	22,3373	
	17	085-608	-73,07	12,5648	21,8032	
	17	086-609	-70,912	12,1871	999	
	17	087-612	-67,7	11,7659	20,3884	
	17	088-595	-65,701	11,3761	19,969	
	17	092-617	-55,38	9,80507	17,585	
	17	098-623	-41,302	7,36977	12,965	
	17	100-625	-35,955	6,5225	11,302	
	17	102-627	-32,465	5,78901	10,19	
	17	103-628	-30,084	5,35569	9,461	
	17	105-630	-24,932	4,50358	7,868	
	17	106-631	-23,492	4,25666	7,441	
	17	107-633	-22,629	4,1211	7,264	
	17	108-641	-20.361	3,75556	6,624	
	17	109-642	-16.859	3,10922	5,53	
	17	111-644	-13,992	2.63959	4,486	
	17	112-645	-12 052	2,33462	4 013	
	17	116-650	002	0.068	900	
	17	117-663	4 749	1.05564	1 78	
	17	118.664	0.425	1 86074	3 255	
	17	120.004	3,420	1,00974	5,500	
	17	120-670	10,445	⊿,99	0,22	

Tabela 9: Leituras dos tempos para o tiro EX17. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

APÊNDICE B – Leitura dos Tempos - Linha L2-Cavalcante

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
21	001-501	0,13	0,06	999,00	
21	002-503	10,89	1,92	999,00	
21	003-508	12,65	2,13	999,00	
21	005-513	16,56	2,73	4,81	
21	011-517	30,31	5,22	8,90	
21	012-518	33,15	5,81	10,02	
21	013-520	35,89	6,16	10,89	
21	015-522	40,08	7,31	999,00	
21	016-523	42,87	7,52	999,00	
21	017-525	45,22	7,97	14,00	
21	018-526	49,05	8,65	15,18	
21	019-531	47,63	8,45	14,27	
21	020-533	50,14	8,95	16,06	
21	021-534	52,04	9,39	16,31	
21	022-535	54,91	9,61	16,41	
21	024-537	59,56	10,44	18,15	
21	025-538	61,50	10,68	18,16	
21	026-539	63,78	11,05	19,27	
21	027-540	69,94	11,12	19,33	
21	029-542	69,94	12,01	20,82	
21	032-549	84,76	14,34	24,77	
21	033-551	86,90	14,68	24,98	
21	034-552	88,94	15,18	26,33	
21	038-558	94,15	15,94	27,83	
21	042-560	103.48	17,79	30.21	18.13
21	045-569	110,10	18,60	32,20	18,94
21	046-570	111,96	18,89	32,59	19,21
21	047-572	114,96	19,46	34,28	19,66
21	048-621	117,04	19,82	34,64	20,07
21	051-579	122,16	20,61	35,56	20,81
21	052-580	124,40	21,01	36,29	21,13
21	053-581	126,32	21,32	36,73	23,48
21	054-582	128,92	21,74	37,60	23,91
21	055-583	131,17	22,10	38,07	24,17
21	056-584	134,40	$22,\!63$	38,55	24,55
21	058-586	139,73	23,46	39,33	25,55
21	059-587	143,49	24,12	42,96	25,90
21	061-589	148,31	24,94	$43,\!69$	26,42
21	062 - 590	151,32	25,23	44,57	27,05
21	065 - 594	158,71	26,30	46,09	27,81
21	067 - 595	162,56	27,20	46,96	28,27
21	069-596	167,52	28,19	48,10	28,89
21	071-597	172,70	28,71	49,15	29,52
21	072 - 598	177,90	29,45	50,11	30,23
21	073-599	180,12	29,90	50,61	30,62
21	074-600	183,07	30,34	52,48	31,05
21	075-601	185,71	30,78	53,03	31,46
21	077-603	189,93	31,42	53,82	32,01

Tabela 10: Leituras dos tempos para o tiro EX21. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda $P(s)$	Onda S (s)	Reflexão (s)
21	078-604	192,56	31,83	54,76	
21	079-605	194,47	31,97	55,01	
21	082-609	212,06	34,17	59,59	
21	087-617	222,22	35,17	62,51	36,46
21	088-618	225,00	35,43	60,54	37,07
21	089-619	227,88	35,85	61,17	37,30
21	091-620	234,34	36,38	62,47	
21	093-622	238,93	36,99	$64,\!61$	
21	095-623	245,53	37,52	65,20	
21	097-625	252,25	38,94	67,33	
21	102-630	264,36	40,36	69,53	42,81
21	103-631	266,12	40,55	70,23	43,14
21	105-641	272,60	41,45	71,03	44,23
21	106-642	275,80	41,87	72,33	44,65
21	108-644	277,28	42,02	$73,\!18$	44,79
21	109-645	280,04	42,43	73,95	45,05
21	111-646	285,46	42,89	74,52	45,91
21	113-647	290,65	$43,\!67$	75,15	46,81
21	116-659	297,43	44,32	76,51	47,58
21	117-663	299,99	44,95	77,33	48,02
21	118-664	302,51	45,24	77,93	48,17
21	119-665	305,26	45,39	79,10	48,67
21	120-670	307,01	45,72	79,88	49,84

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
23	001 501	00.58	17.14	20.06	
20	001-501	-99,08	17,14	29,90	
23	002-503	-89,97	16,23	27,84	
23	003-508	-87,59	15,50	26,17	
23	004-512	-84 56	15 06	25.93	
20	007-012	-04,00	14.05	20,00	
23	005-513	-83,49	14,95	25,27	
23	011-517	-70,38	12,16	20,26	
23	012-518	-67.70	11.72	19.93	
	012 520	64.49	11 10	10.44	
23	013-520	-04,42	11,10	19,44	
23	016-523	-57,76	10,05	17,08	
23	018-526	-50,78	8,87	15,29	
23	019-531	-51 85	9.07	15 76	
20	010 001	40.25	0.71	15.97	
23	020-533	-49,35	8,71	15,37	
23	021-534	-47,53	8,34	14,38	
23	022-535	-44.74	7.73	999.00	
23	024-537	-40.26	7 10	12 31	
20	024-001	-40,20	1,10	12,01	
23	025-538	-38,60	6,91	12,05	
23	026-539	-36,83	6,62	999,00	
23	027-540	-36.72	6.59	999.00	
	020 542	26.00	6,61	11.54	
20	029-042	-50,90	0,01	11,04	
23	032-549	-19,16	3,40	5,53	
23	033-551	-16,84	2,96	4,81	
23	034-552	-14 82	2.64	4.40	
20	026 554	0.00	1 70	2,10	
23	030-334	-9,99	1,79	2,91	
23	038-558	-5,33	1,01	999,00	
23	042-560	5,12	0.94	1.59	
23	045-560	1 28	2 20	3.88	
20	040-000	1,20	2,23	5,00	
23	046-570	15,69	2,78	4,60	
23	047-572	17,87	3,10	5,39	
23	048-621	20.18	3.56	6.03	
	051 570	31 21	5 30	8,00	
20	051-579	51,21	5,59	8,90	
23	052-580	34,74	5,89	9,72	
23	053-581	38,28	6,46	10,59	
23	054-582	41.57	7.03	12.00	
	055 583	44.44	7 53	12.74	
20	055-565	44,44	7,00	12,14	
23	056-584	43,10	7,29	999,00	
23	058-586	46,40	7,84	$13,\!68$	
23	059-587	47.59	8.25	14.39	
	061 580	59.59	8.05	15 50	
23	001-369	52,55	8,95	10,09	
23	062-590	53,96	9,63	16,78	
23	065-594	62,55	10,55	18,14	
23	067-595	66.31	11.27	19.78	
	060 506	71 57	10.00	21.25	
40 00	003-090	71,07	12,22	21,20	19 57
23	071-597	77,13	13,20	22,55	13,57
23	072-598	79,75	13,53	23,34	13,98
23	073-599	82.08	13.99	24.32	14.30
22	074-600	85.04	14 25	24 01	14 68
40	075 001	00,04	14.00	05 41	15.05
23	075-601	87,69	14,83	25,41	15,05
23	077-603	91,97	15,53	26,30	15,81
23	078-604	94.68	16.04	27.45	16.19
22	079-605	06.30	16 38	28.85	
20	010-000	119.79	10,00	20,00	
23	082-609	113,72	19,03	32,79	
23	087-617	122,83	20,44	34,57	
23	088-618	125.56	20.95	36.30	23.41
23	089-619	128/10	21 74	36.80	23 70
40	001 000	195.05	21,14	20,00	20,10
23	091-620	135,05	22,76	38,76	24,69
23	093-622	139,68	23,47	40,31	25,25
23	095-623	146,24	24.48	42,22	25.90
23	097-625	152 87	25.68	44 79	, -
 	100 020	164.00	20,00	10 00	20.10
23	102-630	104,92	21,12	48,66	30,16
23	103-631	166,67	27,99	48,90	
23	104-633	170,15	28,15	49,64	29,78
23	105-641	173 14	29.18	50 51	Í
20	106 041	176.95	20,10	E1 00	
23	100-042	1/0,35	29,57	31,23	
23	108-644	177,92	29,81	51,70	30,47
23	109-645	180,70	30.27	52,35	31.15
23	111-646	186.16	31 21	53.83	31 77
20	119 049	101.20	91.00	55,05	20.00
23	113-647	191,39	31,88	$_{55,50}$	32,62

Tabela 11: Leituras dos tempos para o tiro EX23. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
23	116-659	198,25	32,78	57,18	
23	117-663	200,85	33,10	$57,\!60$	
23	118-664	203,40	33,40	58,19	
23	119-665	206, 18	33,78	59,25	
23	120-670	208,04	33,95	60,93	

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
25	002-503	-230.25	32.84	56.52	
25	003-508	-200.80	32 60	55 49	
25	005 513	106 74	31.68	54.42	
20	011 517	-190,74	31,00	59.99	
25	011-517	-183,98	30,24	52,23	
25	012-518	-181,36	30,00	52,17	
25	013-520	-178,02	29,53	50,83	
25	019-531	-165,08	26,86	46,20	
25	021-534	-160.27	26.39	45,50	
25	024-537	-152.69	24.87	44 10	26.65
25	025-538	-150 70	24.75	12,00	25 579
20	020-000	-100,10	24,10	42,30	20,013
20	020-559	-146,40	20,20	42,33	20,24
25	029-542	-143,51	24,43	41,22	24,934
25	032-549	-131,51	22,10	38,70	23,832
25	033-551	-129,10	21,71	38,28	$23,\!617$
25	034-552	-126,89	21,41	37,41	
25	036-554	-122.68	20.72	36.65	
25	042-560	-109.32	18 47	31.90	
25	045-569	-102.27	17.40	30.07	
25	045-505	100.26	16.04	20.27	
20	040-370	-100,20	10,94	29,21	
25	047-572	-97,30	16,50	28,65	
25	048-621	-95,18	16,18	27,87	
25	051-579	-91,05	15,49	26,55	
25	052-580	-89,52	15,27	26,16	
25	053-581	-88,64	14.97	25,77	
25	054-582	-86.88	14.67	24.61	
25^{-5}	055-583	-85.50	14 45	24 53	
25	056-584	-79.94	13 50	21,00	
20	050-504	72.07	19.50	22,25	
20	050-500	-13,91	12,04	21,07	
25	059-587	-69,08	11,75	19,99	
25	061-589	-64,47	10,98	19,01	
25	062-590	-60,89	10,19	17,59	
25	067-595	-50,51	8,39	14,55	
25	069-596	-46,19	7,91	13,67	
25	071-597	-42,04	7,14	12,09	
25	072-598	-34,28	5.82	9,98	
25	073-599	-32.07	5.43	9.23	
25^{-5}	074-600	-29.13	4 97	8 24	
25	075-601	-26.51	4 51	7.62	
25	075-001	-20,01	2,01	6.20	
20	077-005	-22,50	5,92	0,59	
25	078-604	-19,84	3,40	5,70	
25	079-605	-17,72	3,20	5,10	
25	083-612	5,86	1,06	1,83	
25	086-615	18,47	3,27	5,65	
25	087-617	20,17	3,51	5,90	
25	088-618	22,25	3,91	6,63	
25	089-619	23,58	4,16	7,32	
25	091-620	26.39	4,67	8,05	
25	093-622	29.95	5.22	8,84	
25	095-623	36 52	6.22	10.82	
25	097-625	44 03	7 56	12 0/	
20	102 620	44,00 56,00	1,50	12,34	
20	102-050	50,92	9,70	10,79	
25	103-631	59,32	10,04	17,35	
25	104-633	63,33	10,70	18,12	
25	105-641	66,48	11,17	19,32	
25	106-642	69,69	11,73	20,27	
25	108-644	79,39	12,45	21,60	
25	109-645	76,87	13,02	22,59	
25	111-646	82.61	13.95	24.29	
25	113-647	88.10	14.91	25.68	
25	116-659	95 37	15,96	27 71	
25	117-663	98.16	16.46	28 59	
20	118 664	100.00	16.01	20,02	
20 95	110-004	102.90	17.20	20,99	
20	119-005	103,89	17,29	30,05	
25	120-670	105,83	17,68	31,00	

Tabela 12: Leituras dos tempos para o tiro EX25. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
26	002-503	-249,79	38,88	67,40	
26	003-508	-247,42	38,45	67,04	
26	005-513	-243,32	38,22	65,36	
26	012-518	-227.36	35.95	999.00	
26	013-520	-224.16	35.42	62.24	
26^{-5}	017-525	-214.78	35.13	60.54	
26	019-531	-211.69	34.77	59.82	
26	020-533	-209 13	34 54	999.00	
26	024-537	-199.81	32.89	57.34	33.66
26	025-538	-197.98	32,33	56 25	33 23
26	026-539	-195.88	31 75	55.33	32.81
26	020-555	-175.07	29.57	51.93	30.49
20	032-545	-173.64	23,51	50.64	20.37
20	034-552	-171.47	20,20	48.18	29,57
20	042 560	155.81	26 55	46,10	23,01
20	042-500	140.40	20,00	40,55	
20	045-509	-149,40	20,00	43,90	
20	040-570	-147,01	24,65	43,13	
20	048-021	-142,60	24,41	42,12	
20	051-579	-140,05	23,99	41,50	
20	052-580	-139,51	23,08	41,10	
20	053-581	-139,04	23,50	40,41	
26	054-582	-137,56	23,12	40,11	
26	055-583	-136,40	22,83	39,04	04.00
26	056-584	-130,33	21,83	36,90	24,22
26	058-586	-124,20	21,04	35,99	23,65
26	059-587	-118,57	20,00	33,98	22,87
26	061-589	-114,32	19,29	33,10	22,36
26	062-590	-109,84	18,00	31,45	
26	067-595	-100,98	16,78	29,04	
26	071-597	-93,43	14,36	25,04	
26	072-598	-83,60	14,07	23,66	
26	073-599	-81,77	13,72	22,95	
26	074-600	-79,04	13,33	22,59	
26	077-603	-72,92	12,39	21,15	
26	078-604	-70,75	11,99	20,57	
26	079-605	-68,16	$11,\!61$	20,06	
26	082-609	-51,78	8,80	15,86	
26	086-615	-39,64	6,78	11,86	
26	087-617	-37,14	6,56	11,36	
26	088-618	-34,32	6,09	10,66	
26	089-619	-31,50	5,70	9,60	
26	091-620	-25,77	4,73	7,91	
26	093-622	-21,75	4,00	6,58	
26	095-623	-15,17	2,87	4,80	
26	097-625	-7,65	1,70	2,92	
26	101-629	3,12	0,82	1,24	
26	102-630	5,28	1,16	2,10	
26	103-631	$7,\!68$	1,50	3,11	
26	104-633	11,73	2,21	4,11	
26	105-641	$14,\!85$	2,78	5,23	
26	106-642	18,03	3,28	5,83	
26	108-644	23,05	4,07	7,02	
26	109-645	25,92	4,60	8,18	
26	111-646	$31,\!50$	5,52	9,20	
26	113-647	36,90	6,44	10,80	
26	116-659	44,11	7,50	13.03	
26	117-663	46.89	8,01	13.84	
26	118-664	49.62	8,45	14.61	
26	119-665	52.61	8,85	15.41	
26	120-670	54,53	9,24	16,16	
~		- ,~~	- ,= -	- ,	

Tabela 13: Leituras dos tempos para o tiro EX26. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

Tiro	Estação	Distância (km)	Onda P (s)	Onda S (s)	Reflexão (s)
27	017-525	-261,84	42,51	73,11	
27	024-537	-248,14	41,18	71,93	
27	025-538	-246,47	41,01	71,25	42,711
27	026-539	-244,58	40,81	70,81	
27	029-542	-242,14	40,55	70,26	42,524
27	032-549	-222,37	37,12	64,29	
27	034-552	-218,07	36,36	62,76	
27	038-558	-213,21	35,25	60,90	
27	040-559	-207,72	34,62	59,90	
27	042-560	-204,33	33,93	58,59	
27	045-569	-198.56	33.01	57,72	
27	046-570	-197.34	32.56	56.99	
27	047-572	-194.24	32.11	56.18	
27	048-621	-192.49	31.89	55.89	
27	051-579	-191.94	31.80	55.16	
27	052-580	-191 20	31.57	54 83	
27	053-581	-191 11	31.55	54 80	
27	054-582	_189.92	31.36	54.60	
27	055-583	-189.01	31.15	54 31	
27	056-584	-182.47	30.20	52 52	
21	058-586	-176.29	20,23	50.37	
21	050 587	170.16	29,42	40.20	
21	061-589	-166.25	20,40	49,29	
21	065 504	156.06	21,34	45,70	
21	067 505	-150,50	20,44	45,07	
21	071 507	146.87	23,00	44,27	
27	071-597	-135.80	23,22	30.82	
27	072-590	-13/ 31	22,00	30.23	24.612
21	073-535	-131.76	22,00	38 55	24,012
27	075-601	-129 53	21.98	37 72	23,882
27	077-603	-126,10	21,50 21.57	37 31	23 434
27	078-604	-120,10	21,07	34.68	20,101
27	079-605	-124,14	21,20	32.60	
27	082-609	-105.84	17.57	30.47	
27	082-003	-88.02	15.02	26.15	
21	088 618	86.11	14.56	25,10	
21	080-010	-83 71	14,50	20,00	
21	003-019	-03,71	14,15	24,52	
27	091-020	-69.53	10.62	18 10	
21	095-025	60.53	10,02	18,10	
21	095-025	62.02	0.60	16,10	
21	102 630	40.41	8.42	14.64	
21	102-030	-49,41	8 10	12,04	
21	104 622	40,00	7 27	10,55	
21	104-033	-42,74	6.00	12,50	
27	105-041	-39,00	6.30	12,20	
21	100-042	-30,00	5.60	0.52	
21	100-044	_28.87	5 1 2	8,50	
21	111.646	-20,01	4.99	7.02	
21	113.647	-20,10	3 27	5.51	
21	116-650	_10.36	2.07	3.54	
21	117.662	_7 57	2,07	9.76	
21	118.664	_1,51	1.00	2,70	
21	110-004	-4,04	0.40	1,90	
27	120-670	-0.24	0.12	0.22	
	120-010	0,44	0,14	0,22	1

Tabela 14: Leituras dos tempos para o tiro EX27. Valores 999,00 indicam que não foram feitas leituras na determinada estação.

APÊNDICE C – Modelos 1D - Linha L1-Porangatu

Figura 26: Modelo 1D referente ao tiro EX11 - Linha L
1-Porangatu - sentido EX11 \rightarrow EX17

Figura 27: Modelo 1D referente ao tiro EX12 - Linha L
1-Porangatu - sentido EX12 \rightarrow EX17

Figura 28: Modelo 1D referente ao tiro EX13 - Linha L
1-Porangatu - sentido EX13 \rightarrow EX17

Figura 29: Modelo 1D referente ao tiro EX13 - Linha L
1-Porangatu - sentido EX13 \rightarrow EX11

Figura 30: Modelo 1D referente ao tiro EX14 - Linha L
1-Porangatu - sentido EX14 \rightarrow EX17

Figura 31: Modelo 1D referente ao tiro EX14 - Linha L
1-Porangatu - sentido EX14 \rightarrow EX11

Figura 32: Modelo 1D referente ao tiro EX15 - Linha L
1-Porangatu - sentido EX15 \rightarrow EX17

Figura 33: Modelo 1D referente ao tiro EX15 - Linha L
1-Porangatu - sentido EX15 \rightarrow EX11

Figura 34: Modelo 1D referente ao tiro EX16 - Linha L
1-Porangatu - sentido EX16 \rightarrow EX17

Figura 35: Modelo 1D referente ao tiro EX16 - Linha L
1-Porangatu - sentido EX16 \rightarrow EX11

Figura 36: Modelo 1D referente ao tiro EX17 - Linha L
1-Porangatu - sentido EX17 \rightarrow EX11

APÊNDICE D – Modelos 2D - Linha L1-Porangatu

Figura 37: Modelo 2D referente à Linha L1-Porangatu - Tiro EX11; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S

Figura 38: Modelo 2D referente à Linha L1-Porangatu - Tiro EX12; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S

Figura 39: Modelo 2D referente à Linha L1-Porangatu - Tiro EX13; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminhotempo e traçado de raios para onda S

Figura 40: Modelo 2D referente à Linha L1-Porangatu - Tiro EX14; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S

Figura 41: Modelo 2D referente à Linha L1-Porangatu - Tiro EX15; a) Curvas caminho-tempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S

Figura 42: Modelo 2D referente à Linha L1-Porangatu - Tiro EX16; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminhotempo e traçado de raios para onda S

Figura 43: Modelo 2D referente à Linha L1-Porangatu - Tiro EX17; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S

APÊNDICE E – Seções Sísmicas para Onda P - Linha L1-Porangatu

Figura 44: Seção Sísmica para onda P - Tiro EX11 - Velocidade de Redução 6.00 km/s

Figura 45: Seção Sísmica para onda P - Tiro EX12 - Velocidade de Redução 6.00 km/s

Figura 46: Seção Sísmica para onda P - Tiro EX13 - Velocidade de Redução 6.00 km/s

Figura 47: Seção Sísmica para onda P - Tiro EX14 - Velocidade de Redução 6.00 km/s

Figura 48: Seção Sísmica para onda P - Tiro EX15 - Velocidade de Redução 6.00 km/s

Figura 49: Seção Sísmica para onda P - Tiro EX16 - Velocidade de Redução 6.00 km/s

Figura 50: Seção Sísmica para onda P - Tiro EX17 - Velocidade de Redução 6.00 km/s

APÊNDICE F – Seções Sísmicas para Onda S - Linha L1-Porangatu

Figura 51: Seção Sísmica para onda S - Tiro EX11 - Velocidade de Redução 3.46 km/s

Figura 52: Seção Sísmica para onda S - Tiro EX12 - Velocidade de Redução 3.46 km/s

Figura 53: Seção Sísmica para onda S - Tiro EX13 - Velocidade de Redução 3.46 km/s

Figura 54: Seção Sísmica para onda S - Tiro EX14 - Velocidade de Redução 3.46 km/s

Figura 55: Seção Sísmica para onda S - Tiro EX15 - Velocidade de Redução 3.46 km/s

Figura 56: Seção Sísmica para onda S - Tiro EX16 - Velocidade de Redução 3.46 km/s

Figura 57: Seção Sísmica para onda S - Tiro EX17 - Velocidade de Redução 3.46 km/s

APÊNDICE G – Modelos 1D - Linha L2-Cavalcante

Figura 58: Modelo 1D referente ao tiro EX21 - Linha L2-Cavalcante - sentido EX21 \rightarrow EX27

Figura 59: Modelo 1D referente ao tiro EX23 - Linha L2-Cavalcante - sentido EX23 \rightarrow EX27

Figura 60: Modelo 1D referente ao tiro EX23 - Linha L2-Cavalcante - sentido EX23 \rightarrow EX21

Figura 61: Modelo 1D referente ao tiro EX25 - Linha L2-Cavalcante - sentido EX25 \rightarrow EX27

Figura 62: Modelo 1D referente ao tiro EX25 - Linha L2-Cavalcante - sentido EX25 \rightarrow EX21

Figura 63: Modelo 1D referente ao tiro EX26 - Linha L2-Cavalcante - sentido EX26 \rightarrow EX27

Figura 64: Modelo 1D referente ao tiro EX26 - Linha L2-Cavalcante - sentido EX26 \rightarrow EX21

Figura 65: Modelo 1D referente ao tiro EX27 - Linha L2-Cavalcante - sentido EX27 \rightarrow EX21

APÊNDICE H – Modelos 2D - Linha L2-Cavalcante

Figura 66: Modelo 2D referente à Linha L2-Cavalcante - Tiro EX21; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminhotempo e traçado de raios para onda S

Figura 67: Modelo 2D referente à Linha L2-Cavalcante - Tiro EX23; a) Curvas caminhotempo e traçado de raios para ond
a ${\rm P};$ b) Curvas caminho-tempo e traçado de raios para ond
a ${\rm S}$

Figura 68: Modelo 2D referente à Linha L2-Cavalcante - Tiro EX25; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminhotempo e traçado de raios para onda S

Figura 69: Modelo 2D referente à Linha L2-Cavalcante - Tiro EX26; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminhotempo e traçado de raios para onda S

Figura 70: Modelo 2D referente à Linha L2-Cavalcante - Tiro EX27; a) Curvas caminhotempo e traçado de raios para onda P; b) Curvas caminho-tempo e traçado de raios para onda S

APÊNDICE I – Seções Sísmicas para Onda P - Linha L2-Cavalcante

Figura 71: Seção Sísmica para onda P - Tiro EX21 - Velocidade de Redução 6.00 km/s

Figura 72: Seção Sísmica para onda P - Tiro EX23 - Velocidade de Redução 6.00 km/s

Figura 73: Seção Sísmica para onda P - Tiro EX25 - Velocidade de Redução 6.00 km/s

Figura 74: Seção Sísmica para onda P - Tiro EX26 - Velocidade de Redução 6.00 km/s

Figura 75: Seção Sísmica para onda P - Tiro EX27 - Velocidade de Redução 6.00 km/s

APÊNDICE J – Seções Sísmicas para Onda S - Linha L2-Cavalcante

Figura 76: Seção Sísmica para onda S - Tiro EX21 - Velocidade de Redução 3.46 km/s

Figura 77: Seção Sísmica para onda S - Tiro EX23 - Velocidade de Redução 3.46 km/s

Figura 78: Seção Sísmica para onda S - Tiro EX25 - Velocidade de Redução 3.46 km/s

Figura 79: Seção Sísmica para onda S - Tiro EX26 - Velocidade de Redução 3.46 km/s

Figura 80: Seção Sísmica para onda S - Tiro EX27 - Velocidade de Redução 3.46 km/s

ERRATA

Poucas alterações foram feitas nos Capítulos 1, 2, 3 e 4, as principais alterações ficam a cargo das Figuras 1 e 14 e das Figuras 52 à 57 (no Apêndice F). Estas últimas apresentavam a curva caminho-tempo deslocada em relação à origem. A seção Referências também foi revisada.

Se você está interessado em mais informações sobre a logística e equipamento utilizados na aquisição dos dados deste experimento de Refração Sísmica Profunda sugiro ler a minha dissertação de mestrado *Refração Sísmica Profunda no Setor Sudeste da Província Tocantins* (Perosi, 2000) disponível na Biblioteca do IAG e também na internet no site: http://www.saber.usp.br.

As figuras modificadas e as referências revisadas seguem em anexo.

Capítulo 1

Página 2 - Tabela 1 - Item j - Referência: Yamabe, 1999.

Página 3 - Figura 1 - Modificada e complementada com mapa de localização.

Página 5 - Figura 2 - Referência: Christensen e Mooney, 1995 e USGS, 2002.

Capítulo 2

Página 12 - Terceiro parágrafo, leia-se: **"A Província Tocantins foi constituída durante a Orogênese Brasiliana Neoproterozóica como o resultado..."** ao invés de "A Província Tocantins foi constituída durante o Orógeno Brasiliano Neoproterozóico como o resultado... ".

Página 13 - Na legenda geológica da Figura 9, leia-se: **"Faixa Brasília"** ao invés de "Arco Magmático de Goiás".

Página 17 - Item 2.3.1 - Segundo parágrafo, leia-se: "As idades das rochas da extremidade oeste do Arco Magmático de Goiás estão entre 690 Ma e 570 Ma (mais ao oeste)." ao invés de "As idades das rochas da extremidade oeste do Arco Magmático de Goiás estão entre 1100 Ma e 750 Ma, a maioria é mais jovem."

Página 19 - Figura 14 - Foi adicionada a legenda geológica.

Página 21 - Item 2.4, leia-se: "...coberturas sedimentares (Fanerozóicas) da Grupo Urucuia, ..." ao invés de "...coberturas sedimentares (Fanerozóicas) do Grupo Bambuí, ...".

Capítulo 3

Página 25 - Item 3.3 - Equações que relacionam velocidade das ondas P e S com os parâmetros elásticos do meio e equação que relaciona Razão de Poisson (σ) com Razão Vp/Vs.

$$V_P = \sqrt{\frac{\lambda + 2\mu}{\rho}}; \quad V_S = \sqrt{\frac{\mu}{\rho}} e \quad \sigma = \frac{1}{2} \left[1 - \frac{1}{\left(\frac{V_P}{V_S}\right)^2 - 1}\right]$$

Capítulo 4

Página 35 - Segundo parágrafo do Item 4.2.1:

"As seções sísmicas da onda P estão no Apêndice E na página 94 e as seções sísmicas da onda S estão no Apêndice F na página 102."

Na verdade é o **último parágrafo do Item 4.1.3 na página 32**, pois estes apêndices se referem à linha sísmica L1-Porangatu.