• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.14.2023.tde-17112023-151156
Documento
Autor
Nome completo
Caio Morelli Vicentini
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2023
Orientador
Banca examinadora
Marques, Leila Soares (Presidente)
Conceição, Rommulo Vieira
Gervasoni, Fernanda
Nardy, Antonio Jose Ranalli
Vlach, Silvio Roberto Farias
Título em inglês
The contribution of chaotic dynamics on the genesis of Chapecó silicic rocks from Paraná-Etendeka Magmatic Province: an experimental approach
Palavras-chave em inglês
Chaotic Dynamics at High-Temperature
Chapecó-type Silicic Rocks
Experimental Petrology at High-Temperature
Mafic-Felsic Mutual Contamination
Magma Mixing
Paraná-Etendeka Magmatic Province
Resumo em inglês
Mixing dynamics is thought to decisively influence volcanism on Earth. Magma mixing is pointed to occur under chaotic dynamics in nature based on several field observations of fractal patterns (i.e., scale invariant) emerging on geological sites. Using a chaotic mixing approach, this work is the first attempt to experimentally study the mutual contamination between mafic and felsic phases using natural samples from the Paraná-Etendeka Magmatic Province (PEMP) as end-members. Our final aim is to unravel the origin of the high-Ti Chapecó dacites from PEMP, distinguishing between Chapecó-Guarapuava (CGD) and Chapecó-Ourinhos dacites (COD). A campaign of four chaotic mixing experiments was performed using an apparatus that operates at high temperatures (i.e., Texp > 1,000 °C) under 1 atm pressure to mix silicate melts with stark contrasting rheologies (i.e., viscosities) by means of controlled chaotic dynamics. Experiments 1, 2 and 3 consist in the mixing of 80% of an identical basaltic glass (high-Ti Pitanga type from PEMP) with 20% of rhyolitic glasses that vary according to the experiment (rocks from the Paraná Basin basement) at a constant temperature Texp = 1,350 °C. Experiment 4 is the mixing of 80% of a dacitic glass (high-Ti CGD from PEMP) with 20% of a rhyolitic glass (the identical used in Exp2) at Texp = 1,500 °C. After experiments, morphological aspects of the experimental products include stretched and folded filaments of alternating phases, confirming that chaotic dynamics was achieved. In the experiments 1, 2 and 3, orbicular structures containing dendritic crystals and remnant portions of glass in the basaltic area were described for the first time. The observed dendritic areas of the basaltic regions point towards an early crystallization process during the initial quenching, and that the crystallization process occurs heterogeneously. In Exp4, sections develop fractal structures that are expected theoretically (i.e., Poincaré sections). The fractal dimension Dbox = 1.60(3) calculated for a representative section is similar to literature data. Chemical transects along contact zones between the interconnected end-members confirm chemical exchanges (or contamination) between the melts, which occur by diffusion. The highest contamination degrees in the mafic phases are observed for SiO2, K2O, Cs, Rb, U, Th and Pb (trace elements were not determined in Exp4). As a consequence, these elements depict strong non-linear curves when plotted against other elements. Regarding trace analyses, the group of elements V, Sc, Sr, Cs, Rb, U and Th (G1) show normal diffusion profiles, whilst the elements Ga, Nb, Zr, Y, Ba, REE, Ta, Hf and Pb (G2) show uphill diffusion. It causes anomalous concentrations along chemical transects and a more marked non-linear behaviour in inter-elemental plots associated to G2. For all experiments, the elemental mobility along the contact areas was quantified calculating the normalized variance (2n), which consistently indicates the connection between viscosity and mobility for major/minor (all experiments) and for G1 elements (experiments 1, 2 and 3). Moreover, it was identified that the most mobile elements present low (< 1.0) or high field strength Z/r2 (> 4.0). In the case of G2 elements, the most expressive values of (2n) are associated to the smallest initial gradients (e.g., Ga, Nb and REEs). Considering data from G1 and G2, it is proposed that differences up to 30% in the initial gradient enhance considerably the probability of uphill diffusion. In respect to the Exp4, expected (2n) patterns emerge in comparison with the values computed using available data from Chapecó dacites. It supports the generation of COD from the interaction of pre-existing CGD melts with crustal material. In respect to the linear mixing model LM, initial calculations are in disagreement with our experimental results regarding the best contaminant candidate on the formation of the Chapecó dacites. Taking into account the same degree of evolution derived from Ti contents, different pairs of trace elements lead to distinct contamination degrees f. The intervals of f are: i) 0.2 to 0.5 to generate CGD from Exp2 results; and ii) 0.3 to 0.7 to generate COD from Exp1 results. The best fits (i.e., similar f) are found for elements of G1 and Ti (such as Rb, Sr, U and Th) although REE and Pb are in good agreement as well. Data from Exp4 well reproduce the COD chemical behaviour of major compounds that usually act as network formers in melts (Fe, Al, Ti and Si). The experimental data produced in this thesis suggest that magma mixing might develop a central role on Chapecó dacites genesis by means of a chaotic dynamics. Reproduced features, such as morphological, chemical and frequency patterns, are similar to the PEMP dacitic rare outcrops, particularly for elements that present expressive initial gradients in the mixing system. It points towards short interaction times, low convective forces, and a predominance of density driven separation of contrasting melts (i.e., simulated conditions) as possible mechanisms involved in the genesis of these rocks. Further studies on trace elements (e.g., Exp4) and isotopic systems in the hybrid experimental glasses are necessary and may shed more light on the genesis of such relevant silicic magmatism.
Título em português
A contribuição da dinâmica caótica à gênese das rochas do tipo Chapecó da Província Magmática Paraná-Etendeka: um estudo experimental
Palavras-chave em português
Contaminação Mútua em Sistemas Máfico-Félsico
Dinâmica Caótica a Altas Temperaturas
Mistura de Magmas
Petrologia Experimental em Altas Temperaturas
Província Magmática Paraná-Etendeka
Rochas Silicáticas do tipo Chapecó
Resumo em português
O vulcanismo terrestre é influenciado de modo relevante pela dinâmica de misturas. Na natureza, a mistura de magmas ocorre possivelmente sob princípios dinâmicos caóticos, pensamento baseado na observação de padrões fractais (i.e., independentes de escala) em diversos trabalhos de campo. Deste modo, este trabalho é a primeira tentativa de se estudar experimentalmente a contaminação mútua entre fases máficas e félsicas usando amostras naturais da Província Magmática Paraná-Etendeka (PEMP) como membros da mistura, levando-se em consideração uma dinâmica caótica governando este processo. O objetivo é avançar no conhecimento sobre a origem dos dacitos do tipo Chapecó da PEMP, distinguindo entre os dacitos Chapecó-Guarapuava (DCG) e os Chapecó-Ourinhos (DCO). Portanto, uma campanha de quatro experimentos de mistura caótica foi realizada usando um aparato experimental que opera em altas temperaturas (i.e., Texp > 1000 °C) sob pressão de 1 atm para misturar melts silicáticos com reologias contrastantes (i.e, viscosidade). Os experimentos 1, 2 e 3 consistem na mistura de 80% de um vidro basáltico idêntico (o tipo alto-Ti Pitanga da PEMP) com 20% de vidros riolíticos que variam de acordo com o experimento (rochas do embasamento da Bacia do Paraná) a uma temperatura constante Texp = 1350 °C. Já o experimento 4 consiste na mistura de 80% de um vidro dacítico (o tipo alto-Ti DCG da PEMP) com 20% de um vidro riolítico (o mesmo utilizado no Exp2) a uma temperatura Texp = 1500 °C. Após os experimentos, os aspectos morfológicos dos produtos experimentais incluíram filamentos estirados e dobrados de fases alternadas, confirmando que a dinâmica caótica foi reproduzida. Nos experimentos 1, 2 e 3, foram descritas pela primeira vez estruturas orbiculares contendo cristais dendríticos e porções remanescentes de vidro na zona basáltica. As áreas dendríticas observadas nas regiões basálticas apontam para um processo de cristalização precoce durante o início do resfriamento, e que o processo de cristalização ocorre de forma heterogênea. No Exp4, as secções desenvolvem estruturas fractais que são previstas teoricamente (i.e., secções de Poincaré). A dimensão fractal Dbox = 1,60(3) calculada para uma secção representativa se assemelha à dados encontrados na literatura. Os perfis químicos ao longo de zonas de contato entre as fases confirmam que houve trocas química (ou contaminação) entre os membros, as quais ocorrem por difusão. Os graus de contaminação mais elevados nas fases máficas são observados para SiO2, K2O, Cs, Rb, U, Th e Pb (os elementos traço não foram determinados no Exp4). Consequentemente, estes elementos apresentam curvas não lineares bem demarcadas quando comparados com outros elementos. Relativamente às análises de traços, o grupo de elementos V, Sc, Sr, Cs, Rb, U e Th (G1) apresenta perfis de difusão normais, enquanto que os elementos Ga, Nb, Zr, Y, Ba, REE, Ta, Hf e Pb (G2) apresentam uma difusão tipo uphill (i.e., contrária ao gradiente químico). Em todos os experimentos, a mobilidade elementar ao longo das interfaces foi quantificada calculando a variância normalizada (2n), que indica consistentemente a ligação entre a viscosidade e a mobilidade dos elementos maiores/menores (em todos os experimentos) e para os elementos de G1 (experimentos 1, 2 e 3). Além disso, foi identificado que os elementos com maior mobilidade apresentam baixo (< 1,0) ou alto field strenght Z/r2 (> 4,0). No caso dos elementos de G2, os valores mais expressivos de (2n) estão associados aos menores gradientes químicos iniciais (e.g., Ga, Nb e REEs). Considerando-se os dados de G1 e G2, propõe-se que diferenças de até 30% no gradiente inicial aumentam consideravelmente a probabilidade de ocorrência do fenômeno de difusão uphill. Em relação ao Exp4, padrões esperados de (2n) emergem em comparação com os valores calculados usando os dados disponíveis de análises químicas nos dacitos do tipo Chapecó. Na comparação com o modelo de mistura linear LM, os cálculos iniciais estão em desacordo com os resultados dos experimentos de mistura caótica no que diz respeito ao melhor candidato a contaminante para a formação do Chapecó. Considerando-se o mesmo grau de evolução derivado dos teores de Ti, diferentes pares de elementos traço resultam em graus de contaminação f distintos. Os intervalos de f encontrados são: i) 0,2 a 0,5 para gerar DCG a partir dos resultados do Exp2; e ii) 0,3 a 0,7 para gerar DCO a partir dos resultados do Exp1. Os melhores ajustes (i.e., f semelhante) são encontrados para pares de elementos de G1 e Ti (como Rb, Sr, U e Th), embora ETRs e Pb também se ajustem bem ao modelo LM. Os dados do Exp4 reproduzem bem o comportamento químico dos principais componentes dos DCO, que geralmente atuam como formadores de rede cristalina (Fe, Al, Ti e Si). Os dados experimentais produzidos nesta tese sugerem que a mistura de magmas, via dinâmica caótica, pode ter desenvolvido um papel central na gênese dos dacitos do tipo Chapecó. As características reproduzidas, tais como padrões morfológicos, químicos e de frequência, são semelhantes aos afloramentos dacíticos raros da PEMP, particularmente no caso de elementos que apresentam gradientes iniciais expressivos no sistema. Estes fatores apontam para curtos tempos de interação, forças convectivas reduzidas e uma predominância da separação dos melts contrastantes devido ao contraste de densidade (i.e., condições simuladas) como possíveis mecanismos envolvidos na génese destas rochas. São necessários mais estudos sobre o comportamento dos elementos traço (e.g., Exp4) e dos sistemas isotópicos nos vidros experimentais híbridos, os quais poderão elucidar ainda mais a gênese deste relevante magmatismo silicático.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
CMV_2023_Corr.pdf (74.55 Mbytes)
Data de Publicação
2023-11-21
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.