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ciais para superar obstáculos e garantir a continuidade da pesquisa.
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Resumo

Medições precisas das relações de escala de raios-X em aglomerados de galáxias são

fundamentais para investigar a cosmologia e estudar processos barionicos no meio intra-

aglomerado. A correlação entre a luminosidade de raios-X e a massa total dos aglomerados,

conforme estabelecida no modelo auto-similar puramente gravitacional (Kaiser 1986), for-

nece um padrão de referência. Contudo, desvios desse modelo tornam-se evidentes quando

processos não gravitacionais, como resfriamento radiativo e feedback por AGNs, exercem

influência, podendo resultar em uma evolução temporal da relação M − LX .

Até o desenvolvimento deste trabalho, a calibração precisa da relação M − LX e

sua evolução, utilizando estimativas de massa por lentes gravitacionais e uma metodo-

logia estat́ıstica consistente, estava ausente na literatura. Nossa abordagem utiliza o

catálogo COnstrain Dark Energy with X-ray clusters (CODEX), constrúıdo meticulosa-

mente através de seleções no óptico e em raios-X de aglomerados na área de sobreposição

do Rosat All Sky Survey (RASS) e do Sloan Digital Sky Survey (SDSS). Analisamos 101

aglomerados de galáxias do CODEX para os quais temos estimativas de massa por lentes

gravitacionais. Este método se destaca no projeto por ser senśıvel a toda a matéria do

aglomerado, sem a necessidade de suposições sobre a dinâmica do sistema.

Introduzindo um modelo bayesiano hierárquico para a análise da relação de escala,

consideramos erros de medição heteroscedásticos, dispersão intŕınseca, funções de seleção

no óptica e em raios-X, e os critérios de construção da subamostra. Nossa amostra de

aglomerados CODEX se ajusta bem a uma lei de potência no espaço logaŕıtmico, com

uma inclinação de 0,3±0,05, valor significativamente menor do que a previsão auto-similar.

Também relatamos um parâmetro de evolução de 1,54 ± 0,55, um valor estatisticamente

significativo para inferir uma certa evolução positiva da relação de escala.



Ao investigarmos esses resultados intrigantes, destacamos nossa abordagem estat́ıstica

distinta e nossa análise centrada em uma amostra de aglomerados de alta massa como

posśıveis fatores. Também conjecturamos sobre os efeitos de feedback por AGNs e um

posśıvel viés de evolução devido a uma dependência com o redshift da distribuição de

LX . Observamos ainda que, em comparação com estudos anteriores, nosso trabalho foi o

primeiro a refinar ainda mais o parâmetro de evolução para erros abaixo do valor medido.



Abstract

Precise measurements of X-ray scaling relations in galaxy clusters are imperative to

probe cosmology and to study baryonic processes in the intercluster medium. The functio-

nal form of the correlation between X-ray luminosity and the total mass of galaxy clusters

is well established in the purely gravitational self-similar model (Kaiser 1986). However,

deviations from this model become apparent when non-gravitational processes, such as

radiative cooling and AGN feedback, exert influence, potentially leading to a temporal

evolution of the M − LX relation.

Up until this work, precise calibration of the M − LX relation and its evolution, em-

ploying weak lensing mass estimates and a consistent statistical methodology, was still lac-

king. Our calibration utilizes the COnstrain Dark Energy with X-ray clusters (CODEX)

catalog, which was thoroughly constructed by adopting an X-ray and optical selection of

clusters in the superposition area of Rosat All Sky Survey (RASS) and Sloan Digital Sky

Survey (SDSS). We analyze 101 CODEX galaxy clusters for which we have weak lensing

mass estimates. This method is a distinction of the project since it is sensitive to the entire

matter of the cluster, with no assumptions needed for the system dynamics.

By introducing a Bayesian hierarchical model for scaling relation analysis, we account

for heteroscedastic measurement errors, intrinsic scatter, optical and X-ray selection func-

tions, and the subsample’s construction criteria. The CODEX weak-lensing sample is well

fit by a power law in log space with a slope of 0.3±0.05, which is significantly shallower

than the self-similar prediction. We also report an evolution parameter of 1.54 ± 0.55,

which is statistically significant to infer a positive evolution of the scaling relation.

As we investigate these intriguing findings, we point out our distinctive statistical

approach and our analysis focused on a high-mass cluster sample as potential factors. We



also conjecture the effects of AGN feedback and a possible evolution bias due to a redshift

dependence of the LX distribution. We also note that, when compared with previous

studies, our work was the first to further constrain the evolution parameter to errors below

the measured value.
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Chapter 1

Introduction

1.1 Cosmological background

During the first decade of the 20th century, the widespread acceptance of the Lorentz

transformations and the formulation of the special theory of relativity unified the once se-

parate concepts of time and space, combining them into a single four-dimensional quantity.

The spacetime coordinate system, composed of three elements for the spatial dimensions

and one element for time, is usually represented as xµ = {ct, x, y, z}. If before the length

of a certain object or the duration of a certain event was unaffected by the observer’s

rest frame, these properties are no longer invariant in the four-dimensional spacetime. In

this new scenario, the quantity that remains constant under changes in coordinates is the

so-called spacetime interval, defined as:

ds2 = gµνdx
µdxν , (1.1)

where gµν is the metric tensor representing the main theoretical assumptions of the system

we are interested in.

A physical assumption that permeates all the different models currently accepted in

cosmology is the well-known ’Cosmological Principle’, which was first clearly mentioned

by Newton at the end of the 17th century. Essentially it places all points in the Universe

on an equal footing by stating that their properties do not change according to location

or direction, making any place undistinguished to any other. This may seem off when we

consider the lack of uniformity seen in the structures surrounding us, such as the abundance

of astronomical objects in some regions while others are essentially empty spaces. This is

to say that the Universe must be homogeneous and isotropic on large scales, over ∼ 200
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Mpc (Lima Neto, 2020; Scrimgeour et al., 2012).

The general metric system gµν used to describe our Universe must then respect such

Cosmological Principle. From the isotropic assumption, it follows that, if the Universe

expands or contracts, this phenomenon must be global (i.e. independent of spatial co-

ordinates), leading to the definition of a scale factor a = a(t). As for the homogeneous

assumption, it states that our metric must be the same at every point in space, such that

we must have gµν(x
α) = gµν .

With Eintein’s theory of general relativity published in 1915, we also introduce gra-

vitation to our spacetime framework, where gravity is essentially a manifestation of the

curvature of the spacetime. One of the simplest examples of a metric system is that of

a static universe with no gravity (i.e. free-fall) and hence no curvature of the spacetime,

which is called the Minkowski metric, given by ds2 = c2dt2 − dx2 − dy2 − dz2.

The more general metric representing an expanding (or contracting) homogeneous and

isotropic universe with a certain curvatureK, is the so-called Friedmann–Lemâıtre–Robertson–Walker

metric (FLRW):

ds2 = c2dt2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
. (1.2)

Indeed, the expansion of our Universe was conjectured in the 1920s with the works of

Hubble (1929) and Lemâıtre (1927), who showed that galaxies are moving away with

velocities proportional to their distances, expressed as v = H0D. The expansion rate is

time-dependent and is called the Hubble-Lamaitre parameter H(t) = ȧ(t)/a(t), with its

present value denoted as H(t0) = H0. In this scenario, the scale factor is linked to the

redshift as

a(z) =
1

(1 + z)
. (1.3)

Furthermore, Einstein’s field equations relate the metric system, which describes how

spacetime behaves, to the total matter content of our Universe. Here the term ’matter’

is used in a more broad sense, which includes baryonic matter, dark matter, radiation,

and dark energy. The amount of each component affects the expansion rate differently, for

example,
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non-relativistic matter→ ρm ∝ a−3

relativistic matter and radiation→ ρr ∝ a−4

dark energy→ ρΛ ∝ a0.

(1.4)

Using the solutions of Einstein’s field equations for the FLRW metric one can find the

Friedmann equation:

ȧ2

a2
=

8πG

3
ρ− Kc2

a2
. (1.5)

By setting K = 0, we can define a critical density today as

ρc,0 = 3H2
0/8πG . (1.6)

We can also describe the ratio of each matter component as a dimensionless density Ω =

ρ/ρc,0. Using this notation, and introducing ΩK = Kc2/ȧ2 as a ’curvature component’, we

can rewrite equation 1.5 as

H2(t) =
ȧ2

a2
= H2

0 [ΩΛ + Ωra
−4 + Ωma

−3 + ΩKa
−2] . (1.7)

Various ratios of these matter components may describe distinct epochs of our universe,

i.e., different behaviors in the expansion and growth of structures. A flat universe with

only non-relativistic, pressureless, matter (Ωm = 1) is called an Einstein-de Sitter Universe

and is a good approximation for a matter-dominated epoch of our Universe, such as during

the formation of most structures we observe today. The standard Λ Cold Dark Matter

(ΛCDM) Universe, on the other hand, assumes a predominance of dark energy (around

70%) and no radiation, and it is the most adopted model to describe our local Universe.

Throughout this work, we assume a flat ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7 and

H0 = 70 h70 km s−1 Mpc−1, unless stated otherwise.
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1.1.1 Structure formation

In our current understanding of an expanding Universe, the Cosmological Principle -

and the observed structures we find today - suggest the presence of primordial fluctuations

in an otherwise extremely homogeneous early Universe, that inflated rapidly, intensifying

the density contrasts. Over time, the gravitational instability in regions of overdensity

grows until reaching the collapse stage, ultimately resulting in the formation of a structure.

The strong gravitational influence from the most massive peaks of overdensity in the

early universe leads to the formation of large filamentary structures, which eventually

creates what we now observe to be a ’Cosmic Web’. The collapse of dark matter (DM)

halos through accretion, necessary for the formation of galaxy clusters, occurs in the ’nodes’

of these filamentary structures, as illustrated in figure 1.1.

Figure 1.1: A N-body simulation for the formation of filamentary structures and of galaxy clusters. The

figure taken from Rich (2010) shows four epochs, using 5123 particles in a volume of 20h−1 Mpc.

According to the most accepted model of cold dark matter (CDM), the objects we

observe today in the Universe would have been formed in a hierarchical manner (Press

and Schechter, 1974; White and Rees, 1978; Blumenthal et al., 1984). In this scenario,
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the first structures would have been small (M ∼ 106M⊙) and progressively merged during

the evolution of the Universe, giving rise to larger objects. Therefore, in a Universe filled

with large structures and low-density regions, galaxy clusters stand out for being the most

massive systems that have already reached a certain degree of dynamic maturity.

1.2 Galaxy clusters

At the end of the 18th century, astronomers Charles Messier and William Herschel

realized that galaxies - at the time perceived only as diffuse objects (nebulae) - tended to

cluster. The discovery that such nebulae were in fact galaxies like the Milky Way, only

observed at great distances, was made by Edwin Hubble in the 1920s, and from this moment

on began the most in-depth studies on clusters of galaxies (Hubble, 1925, 1926). During

the following decade, measurements of velocity dispersion of galaxies in some clusters (e.g.

Coma and Virgo clusters) showed that the masses of these structures were more than 200

times greater than the observed mass of all cluster stars, if one assumes the systems were

in virial equilibrium (Zwicky, 1933; Smith, 1936). To explain this discrepancy between

masses, astronomer Fritz Zwicky coined the term ’dark matter’ when referring to a large

amount of non-visible matter that supposedly permeates the clusters. Over the course of

the century, even with more accurate measurements of stellar masses and the discovery

that a large amount of mass is actually present in the form of hot gas throughout the

cluster, the need for the presence of DM in galaxy clusters became increasingly evident.

Besides being an important structure for studying DM properties, galaxy clusters are also

thought to store characteristics of the Universe at the time they were formed. For example,

the baryonic content in clusters is expected to approach the cosmological baryon fraction

f = Ωbary/Ωm (Angelinelli et al., 2023; Kravtsov and Borgani, 2012).
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Figure 1.2: Near-infrared image of galaxy cluster SMACS 0723 from NASA’s James Webb Space Telescope.

In their unique position among other astronomical objects, galaxy clusters have become

ideal laboratories for testing models of structure formation, constraining parameters of

cosmological models, and for unveiling dark matter properties (e.g. Voit, 2005; Allen et al.,

2011). Several other astrophysical phenomena also have galaxy clusters as a focus of

interest, such as the physics of the hot and ionized gas in the intercluster medium, and the

effects of perturbations caused by non-gravitational energy sources such as Active Galactic

Nuclei (AGN) (McNamara and Nulsen, 2007). Therefore, it is not surprising that the quest

to understand the formation and evolution of these objects has become one of the central

efforts of modern astrophysics.

1.2.1 The intracluster medium

According to the hierarchical model, in the formation of large structures such as galaxy

clusters, the gas is heated to high temperatures by adiabatic compression and shocks during

the collapse, when it reaches hydrostatic equilibrium within the potential well itself. Once

sufficiently dense, the cluster begins to cool, triggering star formation and accretions into

supermassive black holes, which can result in energy injection by supernovae (SN) and

AGNs (Kravtsov and Borgani, 2012).

The general notion of when a cluster reaches its dynamical maturity - or ’relaxation’ -

is given by the virial equilibrium, i.e. when we apply the virial theorem to a static system

of an ideal fluid with no external pressure (Mo et al., 2020); on which case we obtain
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− 2K = W , (1.8)

where K and W are the kinetic and internal energies, respectively.

The collapse described in this scenario also results in the formation of the intracluster

medium (ICM), consisting of a diffuse plasma composed mainly of ionized hydrogen and

helium atoms, but which can be enriched with heavier atoms by feedback processes (e.g.

SN and AGNs). The ICM represents most of the volume of normal baryonic matter in

clusters, with a mass up to ten times greater than the stellar mass in member galaxies

(Mo et al., 2020) - only ∼ 5% of the mass in clusters of galaxies is due to stars, and about

∼ 15% is contributed by the intergalactic gas, whereas the remaining ∼ 80% consists of

dark matter (Schneider, 2015).

The intracluster gas is very rarefied, with a central density of approximately 10−2 <

n < 10−3 cm−3, and an average temperature of T ∼ 107 − 108K (Lima Neto, 2020). In

this configuration, it can be considered that most of the free electron population of the

ICM are thermal (i.e. non-relativistic), which is consistent with the strong X-ray emission

observed by these structures (section 1.4).

1.3 Self-similar model

Due to the general complexity of galaxy cluster systems, their formation is usually

approximated by non-dissipative models, which are very successful in predicting the exis-

tence and functional form of correlations between cluster properties. One of the models

adopted is the so-called self-similar model, proposed by Kaiser (1986), and is based on

three main assumptions: (1) clusters form from the gravitational collapse of peaks of the

initial density field in an Einstein-de Sitter Universe (Ωm = 1), guaranteeing a scale-free

collapse; (2) the amplitudes of the density fluctuations are power law functions of the size

of these fluctuations, such that the initial perturbations are also scale-free; and finally, (3)

that other processes that influence halo properties do not introduce new scales to the mo-

del (Kravtsov and Borgani, 2012). By adopting such assumptions, we consider clusters to

be scale versions of each other, and hence it is expected that the main physical properties

of any cluster (e.g. LX , TX , velocity dispersion) can be described by power laws.

To obtain these power laws, apart from the self-similar hypothesis, we also consider a
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spherically symmetric system in which the intracluster medium is in thermal equilibrium

inside the potential well, and hence the hydrostatic equilibrium equation (HE) is valid:

∇P (r) = −ρ(r)∇Φ(r) . (1.9)

Adopting the equation of state for an ideal gas, we can write the pressure and potential

gradients as
dP

dr
=

d

dr

(
kBTρ

µmp

)
;

dΦ

dr
=

GM

r2
, (1.10)

where µ is the mean molecular weight of the gas, mp is the proton mass and ρ is the mass

density.

Substituting these expressions in the HE equation, it is possible to infer the mass M

within a characteristic radius R as being proportional to RT .

M =
kB

Gµmp

TR

(
−d log ρ

d log r
− d log T

d log r

)

⇒M ∝ RT .

(1.11)

If we consider the baryon fraction f to be constant in galaxy clusters, and define the gas

mass as being simply the integral of the mass density ρ over the volume (i.e. Mgas ∝ ρ R3),

we find

f =
Mgas

M
= cost.

⇒ R ∝ T 1/2 ρ−1/2 ,

(1.12)

where we assumed the same radius for both masses.

Using the proportionalities found in 1.11 and 1.12, it is possible to define the scaling

relation:

⇒T ∝M2/3 ρ1/3 . (1.13)

To make the M − LX relation explicit, one must consider that the X-ray luminosity is

given by the integral of the bremsstrahlung emissivity (ϵ ∝ ρ2 T−1/2 exp(E/kT )) over the

energy and volume, which will be discussed in detail in section 1.4. From this integration,

we find that

LX ∝ ρ2 R3 T 1/2 . (1.14)
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Using equation 1.13 to replace T , we find

LX ∝ ρM T 1/2

LX ∝M4/3 ρ7/6 .
(1.15)

The density ρ, in turn, is directly related to the critical density defined in equation 1.6

ρ = ∆ ρc , ρc ∝ H2(z) (1.16)

where ∆ is a constant that represents the characteristic density contrast.

From the Friedmann equation 1.7 we can also define the parameter E(z) = H(z)/H0

which dictates the dynamics of the Universe. For our flat ΛCDM model, we have E(z) =√
ΩM(1 + z)3 + ΩΛ. With these definitions, we can state that

ρ ∝ ∆ E2(z) . (1.17)

Hence, equation 1.15 can be written as

LX ∝M
4/3
∆ E(z)7/3 , (1.18)

where we define M∆ as the mass within a radius R∆ in which the density is ∆ times the

critical density.

The introduction of E(z) however, is a natural consequence of the expansion of the

Universe - since ρc is expected to increase with redshift (equation 1.16), for a constant

cluster density, the R∆ will decrease and so will the definition of the cluster’s mass M∆

(Kravtsov and Borgani, 2012). Hence, this term is not responsible for describing the

temporal evolution of a scale relation, even though it depends on the redshift.

Finally, equation 1.18 defines the scale correlation between M∆ − LX predicted by the

self-similar model, which follows the power law as expected. Such correlation is more

commonly worked in logarithmic space as a linear relation, with the slope and intersec-

tion parameters β and α, respectively, and the parameter γ for the temporal evolution

parameterized by redshift :
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log[LXE(z)−1] = α + β log[M∆E(z)] + γ log(1 + z) (1.19)

Considering equation 1.18, self-similarity predicts β = 4/3 and does not account for

temporal evolution, i.e. γ = 0.

1.3.1 Deviations from self-similarity

Nonetheless, the purely gravitational model developed by Kaiser applies to situations in

which the temperature and density profiles as a function of dimensionless radii are entirely

independent of mass, which is not rigorously observed (Navarro et al., 1997; Nagai, 2006;

Ascasibar et al., 2006). The self-similar scaling for LX − T , for example, has been called

into question by numerous works, that found a generally steeper slope (∼ 3) than the one

predicted by the model (Markevitch, 1998; Pratt et al., 2009; Maughan et al., 2012).

Indeed, studies of cooling flow in cool-core clusters have given a strong indication of

the presence of feedback mechanisms in galaxy clusters, where their impact on the gas

dynamics of the ICM may invalidate HE assumptions and thus cause deviations in self-

similar predictions (see section 1.4.2 for more details).

Furthermore, X-ray observations also indicate a possible increase in the gas mass frac-

tion with total mass, such that the lower mass systems would present a smaller amount of

gas and, consequently, a lower X-ray emission (Pratt et al., 2009; Planelles et al., 2015).

This observational trend could result in the steepening of the M − LX slope, especially

when the analysis includes the galaxy group regime.

Various works have calibrated the M − LX relation using hydrostatic mass estimates

(i.e. through X-ray or Sunyaev–Zel’dovich observations) and the consensus seems to be

a steeper value for the slope when compared with the self-similar prediction. Chen et al.

(2007a) analyzed 106 local groups and clusters from ROSAT and ASCA observations, and

Eckmiller et al. (2011) complemented this work by adding 26 other galaxy groups with

Chandra observations. Both papers found larger slope values than expected by the model

(βself = 1.3). Similar works that focused on the high mass regime also agree with this

steepening, such as the ones from Bulbul et al. (2019) and Lovisari et al. (2020). The two

works use cluster samples from XMM-Newton observations and mass estimates through
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SZ signal, and adopt a more robust statistical analysis (e.g. Eddington bias correction).

They also investigated the redshift evolution of the scaling relation and found it consistent

with the self-similar prediction.

In contrast, works utilizing weak gravitational lensing masses to calibrate the M −LX

relation are not as common. Even so, they tend to agree with the other studies (e.g

Leauthaud et al., 2010; Hoekstra et al., 2015), with perhaps the exception of the work

done in Kettula et al. (2015). The latter analyzed the galaxy groups of Leauthaud et al.

(2010) and clusters from Hoekstra et al. (2015), adding 12 new clusters with CFHTLS

observations. They found a slope value of β = 1.27+0.16
−0.15 which is consistent with the self-

similar prediction. We note that, although these studies do not detail any selection function

or adopt a statistical analysis to account for the different samples used, we compare our

results with theirs in section 4. This is especially relevant as we also utilize weak lensing

masses in our analysis.

Contrary to the self-similar theory, when accounting for non-gravitational contributions

to the gas, deviations from equilibrium and spherical symmetry are expected to be mass-

dependent. Consequently, so are the cluster’s thermodynamic profiles (e.g. T, P, ne).

Braspenning et al. (2023) used hydrodynamic FLAMINGO simulations of galaxy clusters

to analyze X-ray properties, revealing strong mass dependence of these profiles. While not

the primary focus of the paper, they also examined the mass-luminosity relation for their

simulation, depicted in figure 1.3. Notably, a mild difference in slope is observed between

low and high-mass regions, with a steeper slope in the galaxy group regime. Additionally,

they reported no significant redshift evolution in the M − LX relation.
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Figure 1.3: X-ray luminosity and halo mass scaling relation. The solid, dashed, dot-dashed, and dotted

lines show the results for different box sizes and resolutions, and the colormap represents the redshift. HSE

bias indicates the systematic shift applied to the observational data with hydrostatic equilibrium inferred

masses to correct for the hydrostatic mass bias. Modified figure from Braspenning et al. (2023).

With that being said, efforts to obtain a consistent analysis of the M−LX scaling rela-

tion are still ongoing. Applying efficient cluster detection methods through combinations

of different techniques, and robust procedures for estimating the cluster mass, as well as

corrections for the appropriate statistical bias, is a promising goal.

In the following sections, we present a brief review of the main properties of galaxy

clusters, highlighting essential features for this work, such as the physics behind the strong

X-ray emission of the ICM, and the gravitational weak lensing method used to estimate

the halo masses.

1.4 X-ray emission

The first detections of X-ray emission in galaxy clusters occurred in the 1970s, initially

by balloon detectors, whose main targets were the Virgo, Perseus, and Coma clusters.

The observations indicated a spatially extensive and non-varying X-ray source, such that

it could not be associated with a particular AGN and therefore it must have occurred in



Section 1.4. X-ray emission 31

the thermal gas of the ICM. Shortly afterward, there was a boost in the studies of X-ray

emission in galaxy clusters with the launch of the satellite Uhuru, which allowed extensive

observations and complete surveys in X-rays (Sarazin, 1988).

In the 1980s, it was already possible to image clusters of galaxies in X-rays, and a decade

later, spatially resolved spectroscopy was also performed. These and other advances in the

area of X-ray emission from galaxy clusters became feasible with the launch of satellites

such as Einstein (1978 - 1981), ROSAT (1990 - 1999), Chandra (1999 - ), XMM-Newton

(1999 - ), among others (Sarazin, 1988; Lima Neto, 2020).

In the next section, we present an overview of the physics behind the X-ray emission

detected in the ICM. The mathematical approach was mainly developed as in (Rybicki G.,

1985).

1.4.1 Thermal bremsstrahlung

The X-ray emission observed in galaxy clusters is caused by a process known as thermal

Bremsstrahlung or free-free emission, that occurs due to the acceleration of a charge in an

electron-ion collision. Since both particles have essentially the same charge, and we know

that the relative acceleration is inversely proportional to the mass, we can consider the

electrons as primary radiators moving through the ion’s electromagnetic field (Rybicki G.,

1985). Generally speaking, when an electron passes through the ion, it slows down, chan-

ging its trajectory and losing energy. The energy variation caused by this encounter is

then emitted as an X-ray photon.
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Figure 1.4: Esquematization of an electron of charge e− passing through an ion of charge Ze+, with

impact parameter b.

If we consider a small angle scattering regime, we can analyze the emission by consi-

dering a single electron with charge e− and velocity v, passing an ion of charge Ze+ with

impact parameter b, as illustrated in figure 1.4.

1.4.1.1 Dipole aproximation

If we assume that the electron-ion collision is taking place at a ’length’ L and within a

time scale τ such that τ >> ∆t = L/c, i.e the particles are not relativistic, we can use the

dipole approximation to calculate the Bremsstrahlung emission. In this case, the dipole

moment and its second derivative is given by

d = −er

d̈ = −ev̇ ,
(1.20)

and the Fourier transform of d̈ in terms of the frequency ω, is given by

ˆ̈d(ω) =
1

2π

∫ ∞

−∞
d̈(t)eiωtdt = − e

2π

∫ ∞

−∞
v̇eiωtdt. (1.21)

Knowing that

ˆ̈d(ω) = −ω2d̂(ω) , (1.22)
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we see that the transform of the dipole moment is

d̂(ω) =
e

2πω2

∫ ∞

−∞
v̇eiωtdt. (1.23)

The integral above is meaningful only during the collision time τ , which is in order of

τ ∼ b/v, and we can evaluate the integral in two limits: When ωτ >> 1 the exponent

oscillates rapidly, hence the integral’s contribution can be negligible. On the other hand,

when ωτ << 1 the exponent is approximately zero, and the exponential term is ∼ 1. With

that being said, we can write

d̂(ω) =


e

2πω2∆v, ωτ << 1

0, ωτ >> 1

(1.24)

where ∆v is the change in velocity during the collision.

We can also write the part of the electromagnetic field that describes the radiation in

terms of the dipole (Rybicki G., 1985):

Erad(t) =
n× (n× d̈)

c2R
=

d̈(t)

c2R
sin θ , (1.25)

where n is a unit vector in the direction of motion, and R is the radial distance from the

particle’s trajectory. If we take the Fourier transform of d̈(t) and use 1.22, we can express

the equation above in terms of the frequency

Êrad(ω) = −
ω2d̂(ω)

c2R
sin θ . (1.26)

Knowing that the radiation spectrum (e.i. energy per frequency per unit area) is given by

dW

dωdA
= c|Êrad(ω)|2 , (1.27)

we can use equation 1.26 to write

dW

dωdA
=

ω4

c3R2
|d̂(ω)|2 sin2 θ . (1.28)
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We must now introduce the solid angle dΩ = dA/R2 and integrate the expression above:

dW

dω
=

ω4

c3
|d̂(ω)|2

∫
sin2 θdΩ

⇒ dW

dω
=

8πω4

3c3
|d̂(ω)|2 .

(1.29)

Using the expression for the dipole found in equation 1.24, we can then obtain the total

energy per frequency range emitted by this electron:

dW

dω
=


2e2

3πc3
|∆v|2, ωτ << 1

0, ωτ >> 1

(1.30)

The change in velocity ∆v can be determined by integrating the acceleration normal to

the electron’s trajectory a⊥, since the tangential counterpart of the velocity is constant

(see figure 1.4 for an illustration of the system):

∆v =

∫
a⊥dt ;

a⊥ =
F

m
=

Ze2

r2
1

me

b

r
; r2 = (b2 + v2t2)

⇒ ∆v =
Ze2

me

∫
b dt

(b2 + v2t2)3/2
=

2Ze2

mbv

(1.31)

At last, combining these equations, we find that the emission of a single electron in collision

with one ion can be expressed as:

dW (b)

dω
=


8Z2e2

3πc3m2
ev

2b2
, b << v/ω

0, b >> v/ω >> 1 .

(1.32)

1.4.1.2 Emission in the ICM

As mentioned before, the ICM is a hot, rarefied, ionized plasma, and therefore, it pre-

sents an abundant amount of ions and free electrons; an ideal environment for Bremsstrah-
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lung radiation. Hence, to gain a general comprehension of the X-ray luminosity observed

in these systems, we need to find the expression for the Bremsstrahlung emission from a

gas of ne electrons and ni ions per cm
3.

In this case, the flux of electrons passing through a single ion in an element of area

dA = 2πb db, and the consequent power emitted, are:

dN

dtdb
db = vnedA = vne2πb db ,

dW

dωdtdb
=

dN

dtdb

dW

dω
= ne

16Z2e6

3m2
ec

3bv
,

(1.33)

where we used the expression for the electromagnetic emission found in 1.32.

In order to calculate the emission for all electrons and ions in the gas, we must now

integrate the expression above over the impact parameters and multiply it by the ion

number density ni (Rybicki G., 1985):

dW

dωdtdV
=

16πe6

3
√
3m2

ec
3v

neniZ
2g(v, ω) . (1.34)

In the above equation, the term g(v, ω) is called the Gaunt factor, which accounts for the

integral over the impact parameters normalized to ∼ 1 and considers quantum effects.

Due to the ICM temperature (T ∼ 107−108K) it can be assumed that the electrons are

non-relativistic and exhibit a Maxwell velocity distribution. With these considerations, and

using dω = 2πdν, we have that the Bremsstrahlung emissivity (i.e. power per frequency,

per volume) that this population of electrons radiates is given by (Rybicki G., 1985):

ϵν =
dW

dνdV dt
= 6, 842 · 10−38 Z2neniT

−1/2e−hν/kTg(E, T ) erg s−1cm−3Hz−1 , (1.35)

where T is the temperature of the gas, and the Gaunt factor g(E, T ) is responsible for the

quantum corrections of Bremsstrahlung scattering.

Integrating over all frequencies, we obtain an emissivity of the entire X-ray range:

ϵ =
dW

dV dt
= 1, 426 · 10−27 Z2neniT

1/2g(E, T ) erg s−1cm−3 . (1.36)
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Taking typical values for the ICM (i.e. Z2 = 1, 4 (∼ 24% of He), ne ∼ ni = 10−2 cm−3,

T ∼ 107K, and g(E, T ) ∼ 1, 2 ) and assuming a cluster size of ∼ 1Mpc, which corresponds

to a volume of ∼ 1072 cm3, one can estimate the X-ray luminosity to be around

Lx =
dW

dV dt
dV ∼ 1044 erg s−1 . (1.37)

Indeed, galaxy clusters are extremely luminous X-ray sources, with luminosities ranging

from Lx ∼ 1043 − 1045 erg s−1. In fact, these clusters are the most abundant and brightest

X-ray sources besides AGN - of the extragalactic X-ray sources, around 85% are AGNs

and the remaining 15% are galaxy clusters (Schneider, 2015).

X-ray emission from galaxy clusters is observed in the [0.2 - 10.0] keV band; for energies

below this range, the emission is strongly absorbed by neutral hydrogen present in the

Milky Way. The upper limit is determined by the exponential term in the expression

for the Bremsstrahlung emissivity, equation 1.35, where for energies greater than kT the

emissivity decays exponentially.

As we can see from equation 1.36, the emissivity strongly depends on the particle density

(since we usually assume ne ∼ ni = n, then ϵ ∝ n2) so that when we have a superficial X-

ray brightness profile (integral of the emissivity along the line-of-sight), we can also obtain

information of the cluster’s gas density map (Mo et al., 2020). This means that the complex

and often dynamic structure of the intracluster medium can be approached through X-

ray measurements, making it possible to infer the occurrence of mergers, relaxation, and

feedback processes during the cluster’s evolution. As an example, figure 1.5 shows an X-ray

image of the much-studied Coma cluster, taken with ROSAT; even though Coma is usually

considered a regular cluster, we can observe a small secondary structure in the lower right

region, which indicates that the system is still dynamically evolving (Briel et al., 2001).
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Figure 1.5: X-ray image of the Coma cluster, taken with the ROSAT-Position Sensitive Proportional

Counter (PSPC) instrument. Figure taken from Schneider (2015).

1.4.2 Cooling flow and AGN feedback

With galaxy clusters being such strong X-ray emitters, it is only natural that one

assumes the ICM gas will start to lose internal energy and cool down, so we can no longer

expect the hydrostatic equilibrium (HE) to hold indefinitely (Cowie and Binney, 1977;

Fabian and Nulsen, 1977). With that being said, the time it takes for the gas to cool can

be estimated as shown in equation 1.38.

tcool =
E

dE/dt
∼ 8.5× 1010yr

( ne

10−3cm−3

)−1
(

Tg

108K

)1/2

, (1.38)

where E = (3/2)nkTg is the internal energy for an ideal gas, and dE/dt = ϵ is the loss of

energy due to the thermal Bremsstrahlung emission.

The cooling time is usually long for most regions in the cluster, where the HE can be

used as a good approximation. However, in the most central regions, the density (ne) can

be high enough to result in a cooling time shorter than the cluster age 1(tcool < H−1
0 ),

which would imply a rapid cooling of the gas in this region and a mass inflow to re-

establish pressure equilibrium. Hence, we would expect to observe a considerable amount

of gas with temperature kT ≤ 1keV in the center of clusters, a major increase in star

1 The galaxy cluster age can be approximated by the age of the Universe (i.e the Hubble time H−1
0 )

where the comparison is in order of magnitudes rather than precise values.
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formation as the gas cools down, and a strong increase in X-ray emission (since ϵ ∝ n2
e).

Nevertheless, such high cooling rates predicted by the models are not observed. In fact,

the observations indicate that the temperature of the central gas is maintained at around

1/3 of the equilibrium temperature (Peterson et al., 2003), which suggests the existence of

a mechanism that injects energy back into the gas, reheating it. These are called feedback

processes and the main candidates are the powerful energetic jets in AGNs (Lima Neto,

2020; Schneider, 2015).

1.4.2.1 Cool-core and non-cool-core clusters

Even though the dynamic between cooling flow and feedback is not yet fully understood,

it is in general agreement that the so-called cool-core (CC) clusters were the ones that

reached a sufficiently relaxed state to allow a cool and compact central region to develop,

and so, they are more suitable for HE approximations in the outer regions. As for the

non-cool-core (NCC) clusters, the absence of a cooling flow suggests that the gas is far

from the equilibrium state, most likely caused by turbulent motions and/or shock fronts

from recent mergers (Gianfagna et al., 2021; Ansarifard et al., 2020).

The main observational difference between CC and NCC is whether or not there is a

central peak in the cluster’s surface X-ray brightness profile. Moreover, CC clusters are

usually the most mature and massive clusters, and studies suggested a strong evolution in

the occurrence of cooling flow - the CC fraction decreases with redshift - most likely due

to the higher merger rate in younger clusters (Vikhlinin et al., 2006; Chen et al., 2007b).

Although the presence of a CC is usually associated with more massive clusters, this trend

could lead to diversions from the self-similar scaling relations.

1.4.2.2 AGN feedback in the ICM

According to the unified model for Active Galactic Nuclei (AGN), these structures are

essentially composed of a central supermassive black hole, an accretion disc, a surrounding

dust torus, and powerful radio-emitting jets, as illustrated in figure 1.6. Although AGNs

can present many facets and complexities, these objects are generally divided into two

main categories; the radiative-mode AGN (or radio-quiet AGN) and the jet-mode AGN

(or radio-loud AGN), which are characterized mainly by whether or not the mass accretion

to the black hole is efficient and by the intensity of the jets’ radio emission. While most
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radiative-mode AGNs are associated with young, star-forming galaxies, the jet-mode AGN

hosts are thought to be the most massive, red galaxies, usually located at the center of

galaxy clusters (i.e. BCGs) (Fabian et al., 2006; Best et al., 2014). The so-called AGN

feedback process is the complex interaction of the energy generated by the accretion onto

the black hole and the system’s surrounding gas (Fabian, 2012).

Although there is much direct evidence that radio-quiet AGNs drive wind outflows -

detected by blue-shifted absorption lines in the optical, ultraviolet, and X-ray spectra, that

trace the ionized gas with outflow velocities - there are still uncertainties as to its feedback

effects (Veilleux et al., 2005; Fabian, 2012). The strong absorption lines measured are

almost always saturated and the outflows’ sizes have been largely unconstrained (Heckman

and Best, 2014). We can estimate, however, that the heating source of the intercluster gas

is most probably the powerful jet outflows from radio-AGNs since the presence of such

activity has been detected in more than 70% of clusters, reaching nearly 100% in those

with evidence of cooling flow (Burns, 1990; Heckman and Best, 2014).

Without delving into specifics, the general scenario for AGN feedback in galaxy clusters

is a radio-AGN fueled by the surrounding gas that cooled out (e.g. during the cooling flow

process), and the accretion energy being harnessed to generate powerful radio jets. These

jets produce expanding radio lobes of relativistic plasma that inflate bubbles (i.e. cavities)

in the ionized intracluster gas, as illustrated in figure 1.6. Because radio jets are highly

anisotropic and the gas cooling must be balanced in all directions, it follows that it must

be these bubbles, rather than direct jet interaction, that facilitate the energy transfer to

the ICM gas without much disturbance. In this configuration, injecting energy in the ICM

causes the gas to expend, reducing its density much more significantly than raising its

temperature, and thus reducing the observed X-ray luminosity (Fabian, 2012).

In powerful radio galaxies, lobe energy estimates (via radio and X-ray observations)

range from ∼ 1060 to 1062 erg; given that the thermal content of gas in a galaxy group of

mass ∼ 5 · 1013M⊙ is roughly ∼ 1061 erg, one can conclude that AGN feedback must play

a vital role in the evolution of these groups (Erlund et al., 2006; Fabian, 2012). Indeed,

estimation of the energy stored at the ICM gas cavities suggests that the time-averaged

heating-to-cooling ratio decreases by about one order of magnitude when going from small

groups to massive clusters. Hence, the AGN heating rate must balance the cooling flow

in the massive CC clusters, while in smaller systems more energy is being injected than
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(a) (b)

Figure 1.6: (a) Esquematization of the main components of AGN according to the Unified Model. Modified

figure from Padovani (1999). (b) Jet-mode AGN feedback in the Perseus cluster. The color-scaling shows

the X-ray emission and the contours indicate the radio emission. One can observe the presence of cavities

in the X-ray gas, where the radio emission lies. Figure from Heckman and Best (2014) and data from

Fabian et al. (2006).

required (Heckman and Best, 2014).

As for the number density of AGNs in different epochs, it is usually probed by the

history of the cumulative growth mass in massive black holes. In this sense, the abun-

dance of the most luminous AGNs, associated with the most massive black holes, peaked

at redshifts z ∼ 2 − 3, known as the quasar era. Best et al. (2014) also showed that the

radiative-mode AGN population increases with redshift, as the availability of cold gas in-

creases, while the jet-mode AGN population decreases with redshift - since this population

is associated with halos of hot gas that are cooling, an evolution similar to that of massive

galaxies. This is consistent with what is observed locally; where jet-mode AGNs dominate,

except for high luminosities. However, the evolution of the relation between AGN feed-

back and cooling flow in galaxy clusters is still very limited, especially because detecting

AGN-driven cavities and identifying the cooling properties of clusters are done by X-ray

observations, and therefore suffer from the strong redshift dimming of the surface profile,

making measurements at high redshift extremely challenging (Ruppin et al., 2023).

These considerations indicate that the energetic feedback from AGNs is expected to

bias the M −LX relation from the predicted by self-similarity. Furthermore, we have seen

that these processes tend to play a more important role in lower mass systems, suggesting

that deviations from the model would be more prominent for these groups (Nagai et al.,
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2007; McCarthy et al., 2010; Planelles et al., 2015).

1.5 Weak gravitational lensing

The bending of light by gravity was first conjectured by Isaac Newton in 1704, but

it was only later that the astronomer Johann Georg Von Soldner developed a quantified

approach to the subject. In 1804, Soldner calculated the deflection of light due to its

passing through the Sun, based on Newton’s law of gravity, and obtained a value close

to 0.9′′ (Narayan and Bartelmann, 1996). It was more than a century later that Einstein

used the recently developed field equations of General Relativity (GR) to estimate the

deflection angle of a photon grazing the Sun’s surface, and found it to be twice the value

previously predicted. According to GR, the deflection angle was 1′′.7, and the increase by

a factor of two was due to the curvature of the metric, i.e. the Sun actually bends the

four-dimensional space-time (Narayan and Bartelmann, 1996; Meneghetti, 2022).

The value predicted by Einstein was confirmed in an expedition led by Eddington,

Dyson, and Davidson (1919) that measured the apparent angular shift of stars during

an eclipse at Sobral, Brazil, and at the island of Principe, in the Gulf of Guinea. This

observation marks the history of science, as it is considered the first compelling evidence

in support of Einstein’s GR theory (Narayan and Bartelmann, 1996; Meneghetti, 2022).

It was Zwicky (1937) that first mentioned the applications of gravitational lensing,

by predicting that this phenomenon could magnify faint distant galaxies which would

otherwise be impossible to detect. This means that lenses could act as ’cosmic telescopes’,

making it possible to determine source properties below the resolution and sensitivity

limits of current observations. For many years, however, no meaningful applications of

gravitational lensing were made, until the discovery of the lensed quasar QSO 0957+561A,B

by Walsh, Carswell, & Weymann (1979). From there on, the field of gravitational lens only

grew, and soon reached the first observations of strong lensed sources by galaxy clusters

(Lynds and Petrosian, 1989), i.e. strongly distorted and elongated background galaxies

perceived as luminous arcs in the foreground cluster. Later on, it was also discovered

weak coherently distorted images of faint background galaxies in cluster regions, and the

usage of these observations to reconstruct superficial mass profiles of the galaxy clusters

(Narayan and Bartelmann, 1996). Nowadays, gravitational lensing has developed into an
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essential tool for studies in astronomy.

In the following sections, we present an overview of the gravitational lensing formalism,

focusing on the weak regime, which will be the case for this project. We follow the approach

presented mainly by Meneghetti (2022); Narayan and Bartelmann (1996) and Wambsganss

(1998).

1.5.1 Refractive index of a gravitational field

The name gravitational lensing highlights the similarities present in this phenomenon

with the well-known physics area of optical lensing. In fact, considering a massive object

located between the source and the observer, the gravitational field will deflect the light

beams emitted by the source, as illustrated in figure 1.7. This deflection occurs so that

the image perceived by the observer will be displaced, distorted and magnified, a result

similar to that observed when a beam of light passes through a lens. It is possible to take

this analogy further and consider the deflection of light in a curved space-time as the effect

of refraction in a flat space-time, by adopting a model of a lens with a refraction index

n = c/c′, where c′ is the light speed in the medium.

Figure 1.7: Esquematization of a light beam from a source S that suffers a deflection due to the presence

of an object of mass M . The observer perceives the image I dislocated. Figure taken from Narayan and

Bartelmann (1996), modified.

If we assume a spherically symmetric and static gravitational lensing system, the

Schwarzschild metric can be used (Meneghetti, 2022), such that the line element in sphe-

rical coordinates is given by
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ds2 =

(
1− 2GM

c2R

)
c2dt2 −

(
1− 2GM

c2R

)−1

dR2 −R2(dθ2 + sin2 θdϕ2). (1.39)

Introducing a new radial coordinate r in a flat space, that relates to the metric’s radial

coordinate R through

⇒ R = r

(
1 +

GM

2rc2

)2

, (1.40)

and the cartesian coordinates:

x = rsinθcosθ

y = rsinθsinϕ

z = rcosθ

dl2 = (dx2 + dy2 + dz2)

(1.41)

it is possible to rewrite the Schwarzschild metric (equation 1.39) as

ds2 =

(
1− GM

2c2r

1 + GM
2c2r

)
c2dt2 −

(
1 +

GM

2c2r

)4

(dx2 + dy2 + dz2). (1.42)

In the weak field limit, the gravitational potential Φ = −GM/r is much smaller than

c2, so we have −GM/rc2 << 1. This is the case for most astrophysical systems, such

as galaxy clusters, for which the Newtonian gravitational potential is 104 times smaller

than c2 (Narayan and Bartelmann, 1996). In this scenario, and using a fist order binomial

approximation2, we get

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2ϕ

c2

)
dl2. (1.43)

We also know that a beam of light will always travel along a null geodesic, i.e. the metric

must satisfy ds2 = 0. In the case of a locally flat space, the path described by the beam is

simply a straight line, whereas if the spacetime is deformed by a gravitational field, such as

in the presence of a cluster of galaxies, the trajectory corresponding to light-like geodesics

2 (1 + ϵ)n = 1 + nϵ, ϵ << 1
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would be curved. Therefore, according to the equation 1.43, the line element on which

light propagates satisfy

(
1 +

2Φ

c2

)
c2dt2 =

(
1− 2ϕ

c2

)
dl2. (1.44)

The light speed in this medium is then given by

c′ =
|dl|
dt

= c

√
1 + 2Φ

c2

1− 2Φ
c2

∼ c

(
1 +

2Φ

c2

)
. (1.45)

With the above equation, we can now infer the refractive index of the lens in a weak

gravitational field:

n =
c

c′
=

(
1 +

2Φ

c2

)−1

∼ 1− 2Φ

c2
. (1.46)

Knowing the refractive index, we can find an expression for the deflection angle α of the

light by applying Fermat’s principle, which says that the path of light between two points

is the one that takes the least time. This is equivalent to minimizing the expression for

the light travel time, and it is done by taking its derivative and setting it equal to zero:

t =

∫
n(x⃗(l))dl ;

⇒ δ

∫
n(x⃗(l))dl = 0 .

(1.47)

After some mathematical manipulation, one can find the expression for the deflection angle:

α̂ =
2

c2

∫
∇⊥Φdz. (1.48)

Consider for example a point mass lens, as illustrated by figure 1.7, where the smallest

distance between the beam of light and the lens is denoted by b, and the light curve

parameter is z. The lens’s gravitational potential is then

Φ(b, z) = − GM

(b2 + z2)1/2
, (1.49)
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and the derivative perpendicular to the light path is

∇⊥Φ(b, z) =
GM

(b2 + z2)3/2
b⃗ , (1.50)

where b⃗ is the vector orthogonal to z⃗ and points inwards to the lens.

Therefore, equation 1.48 gives the deflection angle

α̂ =
2

c2

∫ +∞

−∞
∇⊥Φdz =

4GM

c2b
. (1.51)

Knowing the Sun’s mass to be M⊙ = 1.98×1030 kg and taking the impact parameter to be

the Sun’s radius b = R⊙ = 6.96× 105 km, we can retrieve the result obtained by Einstein

for the deflection suffered by a photon grazing the surface of our star:

α̂ =
4GM⊙

c2R⊙
= 0.84× 10−5 radians = 1.7 arcsec . (1.52)

1.5.2 The thin screen approximation and the lens equation

With the expression for the deflection angle in hand, we can now analyze the case for

an extended mass distribution. It is known that most of the light deflection occurs in

the region z ∼ ±b, such that the lens can be considered very thin compared to the entire

optical path, so we can consider the distribution of mass to be projected onto a plane,

called the lens plane, as illustrated in figure 1.8.
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Figure 1.8: Esquematization of a gravitational lens configuration. The light ray propagates from the

source S, located at a distance η from the optic axis, passing the lens at transverse distance ξ, and being

deflected by an angle α. The lens plane is also illustrated. The angular separation of the source and the

image as seen by the observer is denoted as β and θ, respectively. Figure taken from Bartelmann and

Schneider (2001), modified.

In this configuration, the surface mass density of the lens, as a function of the two-

dimensional vector ξ⃗ is given by

Σ(ξ⃗) =

∫
ρ(ξ⃗, z)dz . (1.53)

In this approximation, the deflection angle at a radius ξ⃗ is that caused by the sum of mass

elemets Σ(ξ⃗)d2ξ, so that equation 1.49 give us

α̂ =
4G

c2

∫ +∞

−∞

(ξ⃗ − ξ⃗′)Σ(ξ⃗)

|ξ⃗ − ξ⃗′|2
d2ξ . (1.54)

The typical geometry of a gravitational lens system is illustrated in figure 1.8, where we

can analyze the relation between the intrinsic and apparent positions of the source. In

this scenario, the light ray is emitted by a source in a certain position β⃗ in the sky and

is deflected by the lens so that the observer perceives it from a different direction θ⃗. As

we can see from figure 1.8, the relation between α⃗, β⃗ and θ⃗ is dependent on the angular
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diameter distances of the lens DL, the source DS and between the lens and the source

DLS. We then see that the relation θ⃗DS = β⃗DS+ α⃗DLS holds, and since in the majority of

gravitational lens events the angles are relatively small (e.i. θ, β, α << 1) we can simplify

the relation to

β⃗ = θ⃗ − α⃗(θ⃗) , (1.55)

where we introduced the reduce deflection angle α⃗ = (DLS/DS) ˆ⃗α. The expression 1.55 is

known as the lens equation.

To further study the properties of gravitational lensing, it is convenient to use the

Newtonian potential in three dimensions in the lens plane. The so-called lensing potential

for an extended matter distribution is given by

Ψ̂(θ⃗) =
DLS

DSDL

2

c2

∫
Φ(DL, θ, z) dz , (1.56)

and can be related to the deflection angle by its gradient

∇⃗θΨ̂(θ⃗) = α⃗(θ⃗) . (1.57)

We also introduce the convergence κ, that relates to the lensing potential by

∇⃗2
θΨ̂(θ⃗) = 2κ(θ⃗) . (1.58)

As we will see throughout this section, the convergence will represent the isotropic trans-

formations in the source image and is defined as the dimensionless surface mass density

κ(θ⃗) =
Σ(θ⃗)

Σcrit

, (1.59)

where Σcrit is the critical surface density :

Σcrit =
c2

4πG

DS

DLDLS

. (1.60)

In principle, to determine the image’s distortions caused by the gravitational lens, it would
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be enough to solve the lens equation for each point within the extended source. Especially

when the source length is much smaller than the scale in which the deflection angle varies

(e.g. weak gravitational regime) the distortions in each point can be linearized.

Let us then consider two points in the lens plane with positions θ⃗ and θ⃗′ = θ⃗ + dθ⃗,

where the deflection angles are α⃗ and α⃗′ ≃ α⃗ + dα⃗/dθ⃗ dθ⃗, respectively. Following the

lens equation 1.55 we can map these two points onto the source plane as β⃗ = θ⃗ − α⃗ and

β⃗′ = β⃗ + dβ⃗ = θ⃗′ − α⃗′. Figure 1.9 illustrates this situation.

Figure 1.9: Linear mapping of the image’s distortions, from the lens plane and the source plane, assuming

a slow variation of the deflection angle.

Through these considerations, the vector (β⃗′ − β⃗) can be writen as

(β⃗′ − β⃗) =

(
I − dα⃗

dθ⃗

)
(θ⃗′ − θ⃗) . (1.61)

Generalizing to all points in the extended source, we can describe the distortion of the

image by the Jacobian matrix

A =
∂β⃗

∂θ⃗
=

(
δij −

∂αi(θ⃗)

∂θj

)
=
(
δij − Ψ̂ij

)
, (1.62)

where we used the relation between the deflection angle and the lens potential (equation

1.57) and introduced the notation

∂2Ψ̂i(θ⃗)

∂θi∂θj
= Ψ̂ij . (1.63)

When analyzing only the isotropic part of the Jacobian (the traceless part), we have
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(
A− 1

2
trA · I

)
ij

=

−1
2
(Ψ̂11 − Ψ̂22) −Ψ̂12

−Ψ̂12
1
2
(Ψ̂11 − Ψ̂22)

 = −

γ1 γ2

γ2 −γ1

 = −Γ, (1.64)

where

γ1 =
1

2
(Ψ̂11 − Ψ̂22)

γ2 = Ψ̂12 ,

(1.65)

and Γ is called the shear tensor.

Knowing that the shear tensor is invariant under rotations of ϕ = 2π (spin-2), and that

its engevalues are ±
√

γ2
1 + γ2

2 = ±γ (Meneghetti, 2022) we have that

Γ = γ

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

 . (1.66)

We can see from the expressions in 1.65 that the shear quantifies the gradient of the

gravitational force (tidal field), and its physical manifestation is an asymmetric distortion

in the background sources.

In a similar calculation, one finds that the other part of the Jacobian is given by

(1− κ)δij. So that the full Jacobian matrix is

A = (1− κ) · I − γ

cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

 . (1.67)

A quick analysis of equation 1.67 leads us to infer that the convergence is responsible for

the symmetric distortions, where images are merely rescaled by a factor of 1/(1− κ). On

the other hand, the shear acts by stretching the direction in which ϕ was defined by a

factor of +γ, and in the orthogonal direction by −γ. Figure 1.10 illustrates the effects of

these distortions on a circular source.
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Figure 1.10: Distortion effects on a circular source. Image from Meneghetti (2022).

At this moment it is useful to define the reduced shear according to the semi-major and

semi-minor axes:

g =
a− b

a+ b
=

γ

1− κ
. (1.68)

When the convergence effect is very small, which is the case for the weak lensing regime,

κ << 1 and we find that g ≃ γ.

However, the representation in figure 1.10 is not exactly fiducial, since galaxies can not

be considered intrinsically circular. Indeed, the ellipticity measured is a combination of

the intrinsic source ellipticity (ϵs) and the distortion caused by the reduced shear:

ϵ = ϵs + g . (1.69)

This introduces a complication in the estimation of the reduced shear since we have no

means to evaluate the intrinsic shape of each background galaxy. Nevertheless, it is reaso-

nable to assume that in the absence of a lens, the galaxies would be randomly orientated,

such that the average ellipticity should be null ⟨ϵs⟩ = 0. In this way, we are able to

overlook the intrinsic shape by simply measuring the average ellipticity of an ensemble of

background galaxies:

⟨ϵ⟩ = ⟨ϵs⟩ + g

⟨ϵ⟩ ≃ g ≃ γ .
(1.70)

1.5.3 Weak lensing mass

So far, in our ellipticity analysis, we haven’t considered the position of the galaxy

relative to the lens center of mass. To do so, it is useful to introduce a new set of coordinates
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to analyze the shear, where we define the tangential and cross shear, (γt, γ×) respectively:

γt = −γ1 cos(2ϕ)− γ2 sin(2ϕ)

γ× = γ1 sin(2ϕ)− γ2 cos(2ϕ) .
(1.71)

We note that the tangential shear is strongly correlated with the mass distribution, such

that the mean tangential shear in a certain radius from the lens is a proxy for the mean

surface mass density contrast:

⟨γt⟩(r) =
Σ̄(< r)− Σ̄(r)

Σcrit

=
∆Σ

Σcrit

, (1.72)

where Σ̄(< r) is the mean surface mass density within the radius r.

The weak lens mass is usually estimated by fitting the radial profile of the mean tan-

gential shear ⟨γt⟩(r) measured, assuming a parametric model for the surface mass density

Σ.

The mass estimation for one of the CODEX subsamples used in the work will be dis-

cussed in the following chapter, where we present an overview of the shape measurements,

the surface density model, and the correlations and systematic errors considered.
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Chapter 2

Samples

For a meaningful study of the M−LX scaling relation, one should seek to analyze high-

quality data, with more unbiased methods to estimate the observable quantities, hence

providing more accurate values for the X-ray luminosity and the cluster mass. On the

other hand, to improve precision in the scaling relation analysis, it is usually preferable to

work with larger samples, with parameters spanning a more extensive value range (Dawson,

2019; Witte and Witte, 2017). Unfortunately, these two aspects are difficult to conciliate

in most astronomical studies.

In an effort to access these requirements, we started out by working with a cluster

sample from the currently published CODEX catalog, for which the mass estimates were

obtained through weak gravitational lensing from the Canada Hawaii France Telescope

(CFHT) data, described in Kiiveri et al. (2021). We were granted access to their pipeline

and therefore we were able to retrieve the weak lensing mass PDFs for each cluster. From

this sample, we select 28 clusters (hereafter main-subsample) to use in this work, which

will be further discussed throughout this section. Furthermore, because we have detailed

knowledge of the CODEX catalog’s construction, we can precisely model and account for

the selection effects of the sample.

With the recent release of the extended CODEX catalog, although still not publicly

available, we were able to identify and incorporate two additional samples of galaxy clus-

ters from previously published studies, where the mass values were estimated via weak

gravitational lensing (detailed in section 2.3). With the inclusion of these extra samples,

we were able to analyze the M −LX relation for 101 galaxy clusters and, since all are part

of the extended CODEX catalog, we can consistently apply the same statistical model and

bias correction to each subsample.
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In the next sections, we describe the CODEX catalog, which is further detailed in

Finoguenov et al. (2020), and outline the main-subsample and its weak lensing analysis

done by Kiiveri et al. (2021). Finally, we also present the general information and selection

criteria for the extra samples used in the final analyses.

2.1 The CODEX catalog

The COnstrain Dark Energy X-ray (CODEX) catalog1 is the first one to perform

X-ray selection of galaxy clusters in the Northern hemisphere with flux limit reaching

10−13 ergs s−1 cm−2. The clusters were thoroughly selected in both X-ray and optical, in

the overlapping area of the large-area surveys ROSAT All Sky Survey (RASS, Voges et al.

(1999)) and Sloan Digital Sky Survey (SDSS, York et al. (2000)). While ROSAT is still

widely used for building catalogs of galaxy clusters, its use for identifying these structures

has focused mainly on the brightest subsample. The CODEX survey extends this sample

to the lower flux limits accessible with RASS, and reaches high redshifts up to 0.65.

For the catalog’s construction, the excesses of 4σ photons within a wavelet aperture

in the RASS third Data Release (RASS DR3) photon images were considered (Vikhlinin

et al., 1998), which means that background fluctuations of up to 4σ were rejected in order

to avoid false detections (Cibirka, 2017). We also note that the flux measurements for the

catalog were based on a few counts, down to 4 photon counts.

Initially, the redMaPPer algorithm (Rykoff et al., 2014) was used for every source can-

didate of the 8th Sloan Digital Sky Survey Data Release (SDSS DR8). This algorithm looks

for the presence of early type galaxies of similar colors around each source, as clusters typi-

cally exhibit a consistent and well-defined population of such galaxies. The identification

process involves recognizing a red sequence in the color-magnitude space of the possible

cluster. This optical counterpart for cluster detection enables us to differentiate and re-

move point-like sources (e.g. AGNs), allowing a more robust identification when compared

with a purely X-ray selection (Cibirka, 2017; Leauthaud et al., 2010). The recently ex-

tended CODEX catalog, which we adopt in this work, uses this same approach with the

9th and 10th Sloan Digital Sky Survey Legacy Data Release (SDSS Legacy DR9, DR10),

1 The extended CODEX catalog used in this work is not yet publicly available, but its current version can

be accessed at ftp://ftp.mpe.mpg.de/people/alexis/CODEX_aanda_full_flag.fits. The cluster’s

spectroscopic properties are released as a part of SDSS-IV DR16 under SPIDERS catalog.

ftp://ftp.mpe.mpg.de/people/alexis/CODEX_aanda_full_flag.fits
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which provides deeper images.

The redMaPPer algorithm also yields an estimate for the photometric redshift from

the colors of the member galaxies, for the optical center, within 400 kpc from the X-ray

center, and for the cluster richness, accounting for the sum of the probabilities of each

galaxy belonging to the cluster. This probability of being a cluster member is estimated

using a filter function and a background density profile, with the former defined by three

main components: a multicolor red sequence model, a projected NFW radial profile, and

a Schechter luminosity function (Rykoff et al., 2014).

The cluster’s redshift estimation spans from 0.05 to 0.65, but because the redMaPPer

calibration was only performed for redshifts over 0.1, we limit our discussion to this range

(Finoguenov et al., 2020). With the redshift information, it was then possible to obtain

rest-frame properties of the sources, such as X-ray luminosity in the 0.1 − 2.4 keV band,

within a radius R500.

Figure 2.1: Composed optical image of bands g, r and i from CFHT observations for the CODEX cluster

24981. The X-ray data are from XMM-Newton observations in the 0.5− 2 keV band, and it is represented

in shades of purple (left) and contours (right).

As a way to clean the CODEX catalog, avoiding the low completeness regions, we apply

a selection depending on the cluster’s richness and redshift, which is further discussed in

section 3.2.1. Essentially, this function is responsible for a redshift cut of z > 0.1 and

ensures a richness uncertainty of less than 10%.

The main distinction of utilizing the CODEX catalog is the availability of the survey’s

detailed selection function. The CODEX selection accounts for the probability of detecting

a source given the observed source counts and the shape parameters of a surface brightness

distribution. The function also considers that the cluster shape is covariant to the scatter
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in the M − LX relation and that there is a correlation between the X-ray luminosity and

the cluster richness. More on the formalisms of these selection functions can be found in

section 3.2.1.

2.2 The main weak lensing subsample

For the study of a mass-observable relation, the use of reliable mass proxies is impe-

rative. The vast majority of M − LX calibrations were performed using X-ray luminosity

or Sunyaev–Zel’dovich signal as mass proxies, which can be affected by hydrostatic mass

biases. In this scenario, the weak gravitational lensing method comes as a fine prospect for

cluster mass estimates, as it is sensible to the entire mass of the structure and does not rely

on assumptions about the cluster’s dynamical state, making it a less biased approach. This

method, however, requires deep and high-resolution images for the background galaxies’

shape measurements and good photometric redshifts for the determination of the lensing

critical density (1.60).

With that in mind, according to Cibirka (2017) and Kiiveri et al. (2021), there was

a selection comprising the richest and high redshifted clusters in the CODEX catalog

(λSDSS ≥ 60 and 0.35 < zSDSS < 0.65) for follow-up observation with CFHT Legacy Sur-

vey, conducted between 2012 and 2015 with the Wide Field Optical Imaging MegaCam.

We note that additional CODEX clusters identified in the CFHTLS-observed fields, which

may not strictly meet the initial richness and redshift criteria, were also examined. Among

all these clusters, 35 of them present redshift and richness information from the new ex-

tended CODEX catalog, as well as weak lensing mass estimations computed by the same

approach adopted in Kiiveri et al. (2021). In their paper, however, they considered only

the 25 clusters that presented additional CFHT richness information.

As previously mentioned, we focus our analysis on the redshift range z > 0.1. This

redshift cut is also supported by Damsted et al. (2023), which finds a significant increase

of the scatter in the X-ray luminosity for redshifts below this threshold. We also apply

selections to clean the catalog and avoid contaminations, all of which will be detailed in

section 3.2.1. Finally, we end up with a CODEX-CFHT weak lensing subsample of 28

clusters which we refer to as the main-subsample. Basic data of these galaxy clusters,

including the ones that did not pass the selections, are available in table A.1.
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Because we have access to the details regarding the computation of the mass estimates

for this subsample, we can use the complete modeling of their mass probability distribution

function (PDF). Throughout the rest of this section, we describe their weak lensing analysis

done by Kiiveri et al. (2021) for the main-subsample and the considerations made to obtain

its mass PDFs.

2.2.1 Shape measurements and redshift estimation

As seen in section 1.5.3, the observable property for estimating the cluster’s weak

lensing mass is the mean tangential shear gt ≃ γt, which relates to the density profile ∆Σ

by equation 1.72.

For the galaxy shape measurements, the lensfit algorithm (Miller et al., 2013) was

used over the i -band images, where the FWHM of point-like images are usually smaller

(since the atmospheric interference is smaller) when compared with the other bluer bands

available (Kiiveri et al., 2021). The algorithm returns the measured ellipticities γ1 and γ2,

as well as the intrinsic variance σ2
intr and the variance due to observational uncertainties

σ2
obs. With these values, we find that the mean tangential shear and ∆Σ for a certain

cluster are given by

gt(r) =
∑
i

wiγt,i ; ∆Σ(r) =
∑
i

Wiγt,i/⟨Σ−1
crit⟩ , (2.1)

where the sum runs over all sources around the cluster, and the wights wi and Wi are

normalized to unit and satisfy

wi ∝
βi

σ2
intr + σ2

obs

; Wi ∝
β2
i

σ2
intr + σ2

obs

. (2.2)

In the above equation, the term β was defined as the ratio between lens-source distance

DLS, and the source distance DS:

β =
DLS

DS

, (2.3)

such that the critical surface density in equation 1.60 can be writen as

Σcrit =
c2

4πGDS

β−1 . (2.4)
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To accurately estimate β, it is important to have precise information about the cluster’s

redshift. We note that spectroscopic redshift information was initially unavailable for 20

clusters from the main-subsample, for which red-sequence galaxies were then targeted by

several Nordic Optical Telescope (NOT) programs and observed in multi-object spectros-

copy mode (Kiiveri et al., 2021).

The definition in equation 2.4 emphasizes the importance of knowing the source redshift

to convert observables into physical mass proxies. For the main-subsample case, because

the lensing signal of each cluster is measured as the mean tangential shear over a large

number of galaxies, it is sufficient to estimate the general redshift distribution of the

sources (Kiiveri et al., 2021). This is done by assigning each galaxy to a subregion in the

CFHT color-magnitude space and comparing it with a reference sample of a high-quality

photometric redshift catalog, also distributed in these same subregions. The use of Gruen

and Brimioulle (2017) reference catalog with 9-band photometry (CFHTD2), obtained

from pointings of CFHTLS, was preferable since it was created in the same way as the

CODEX photometric catalog. From these considerations, the value of β of a source was

defined as the mean ⟨β⟩ of all galaxies in the same color-magnitude subregion.

The COSMOS2015 sample by Laigle et al. (2016) was used as an additional reference

catalog to cross-match to CFHTLS objects and validate the ⟨β⟩ estimates. The galaxies in

subregions where the estimated ⟨β⟩ from COSMOS2015 redshifts was below 0.2 were remo-

ved, as well as the ones where the estimated ⟨β⟩ from both COSMOS2015 and CFHTD2

redshifts deviates more than 10% from the median ratio over all subregions. These cuts

are exemplified for the cluster 50514 in figure 2.2. Further details in estimating the photo-

metric redshift distribution of galaxy sources can be found in Kiiveri et al. (2021); Cibirka

et al. (2017) and Gruen and Brimioulle (2017).

2.2.2 Surface density profile

Once we have the measured mean tangential shear and β values to estimate Σcrit,

we now must assume a parametric model for the surface mass density Σ. For the main-

subsample (as well as for all the other samples used in this work) it was assumed a Navarro,

Frank & White (NFW, Navarro et al. (1996, 1997)) mass profile:
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Figure 2.2: Mean value of β in subregions in 5-band color-magnitude spaces estimated from COSMOS2015

photo-z (βC2015), matched galaxies with CFHT Deep + WIRDS photometry (βD2, black/grey points),

and CFHT Deep + WIRDS galaxies in all four Deep pointings (blue error bars). The dotted red line

indicates the mean ratio ⟨βD2/βC2015⟩. Dashed red lines indicate exclusion criteria of βC2015 < 0.2 or 10%

deviation from this median ratio. Results are shown for a lens redshift of zl = 0.4631 (CODEX50514).

Figure taken from Cibirka et al. (2017).

ρ(r) =
δcρc(z)

(r/rs)(1 + r/rs)2
, (2.5)

where ρc is given by equation 1.6, and rs is the scale radius where the logarithmic profile

slope changes from -1 to -3. The characteristic over-density of the halo, δc, is related to

the concentration c∆ = r∆/rs through

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
, (2.6)

where we chose ∆ = 200 for this work (Kiiveri et al., 2021).

From the above equations, we see that ρ(r) depends on both the mass M and the

concentration c, so in order to reduce one parameter, the M-c relation from Dutton and

Macciò (2014) was used:

log10 c = a+ b log10(M/[1012h−1M⊙]) , (2.7)

where

b = −0.101 + 0.026z ;

a = 0.520+(0.905− 0.520) exp(−0.617z1.21) .
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The estimation of the mean ∆Σ was done in 12 logarithmically binned annuli, i.e. calcu-

lated within the region between concentric circles around the cluster, with a radial range

of [500 - 2500 h−1 kpc]. The lower radial limit was best chosen to minimize the mass bias

caused by off-centering since this effect is predominant in the smaller scales. Similarly,

the upper limit was determined to maximize the statistical power while also excluding the

regions where higher-order effects (e.g. 2-halo term) are important.

2.2.3 Covariance matrix

Several physical effects cause the measured ∆Σobs profile of a cluster to differ from the

true ∆Σ(M). The definition of a covariance matrix element Cij that accounts for these

effects is detailed in Kiiveri et al. (2021) and we present a brief overview in this section.

The shape noise - Cshape
ii - takes into account the intrinsic ellipticity of source galaxies

and the observational uncertainties when measuring their shape, using the lensfit values

for σ2
intr and σ2

obs, as discussed in section 2.2.1.

The uncorrelated large scale structure - CLSS
ij - was also considered in the covariance

matrix, and it is due to the presence of randomly distributed structures in the line of sight.

Since on smaller scales the Universe can be considered inhomogeneous, there are density

fluctuations that cause an additional bending of the light rays, hence adding noise in the

weak lensing mass estimate. Although the additional shear signal is zero on average, the

overall variance due to this effect can be calculated by integrating over the convergence

power spectrum defined by Limber (1954) and depends on the source sample, redshift

weighting, and angular size of the anulli (Kiiveri et al., 2021).

The last component of the covariance matrix accounts for the intrinsic variations of

cluster profiles - Cintr
ij - i.e. the noises that would be present even in ideal observational

conditions. This covariance element contemplates several physical effects, such as (i) Cconc
ij

for the misleading assumption that the halo density is homogeneous, where in fact the halo

concentration may vary, (ii) Cell
ij for assuming a spherically symmetric halo, when in truth

there is an intrinsic ellipticity and orientation, (iii) Ccorr
ij for the presence of correlated

secondary halos, due to recent mergers and galaxy accretion, and (iv) Coff
ij for variations

due to off-centering. All these components were described using the semi-analytical model
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from Gruen et al. (2015)2.

Altogether, we define the ∆Σ(M) covariance matrix as

Cij = Cshape
ij + CLSS

ij + Cintr
ij . (2.8)

2.2.4 Mass likelihood

The weak lensing mass likelihood is proportional to the probability of measuring a

∆Σ for a cluster of true mass M = M200c. According to Kiiveri et al. (2021), assuming

multivariate Gaussian errors, we can write the mass probability density function (PDF) as

P (∆Σ|M) ∝ 1√
detC

exp

(
−1

2
E(M)TC−1E(M)

)
, (2.9)

where

E(M) = ∆Σobs −∆Σmodel , (2.10)

and C is the covariance matrix described in the previous section.

Throughout this work, we use equation 2.9 in the logarithmic space for the main-

subsample. We define µ = log10M200c, and adopt the notation P (µ̃|µ), where the µ̃ denotes

the observed variable. Figure 2.3 exemplifies the mass PDF for cluster 16566 from the

main-subsample.

In Kiiveri et al. (2021) they also introduce a parameter for the systematic uncertainties

lsys, that is used to compute how different the noiseless lensing masses are from the true

masses due to miscalibration of lensing shapes, redshifts, and the cluster density profiles.

The systematic uncertainty is used as a multiplication factor for the density profile, and

the lsys parameter is responsible for changing the amplitude of such factor to assimilate

the errors better. As it will be further discussed in section 4, we found that this parameter

does not correlate with any of the others.

2.2.5 Cosmology correction

So far, we presented a brief review of the work done by Kiiveri et al. (2021) and Gruen

et al. (2015) to obtain the weak lensing mass PDF. The cosmology adopted by them

for calculating the covariance matrices, described in 2.2.3, used a mass density value of

2 The code used in Gruen et al. (2015) is available at https://github.com/danielgruen/ccv.

https://github.com/danielgruen/ccv
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Figure 2.3: Mass PDF in logarithmic space for cluster 16566 from the WL sample.

Ωm = 0.27. Since in this work, we adopt a Ωm = 0.3, this discrepancy in cosmology can

affect the weak lensing mass estimates and therefore we must perform a correction.

This correction for the weak lensing masses seems quite straightforward when consi-

dering only the general weak lensing formalism, where the Ωm dependence relies on the

estimated critical surface density Σcrit. We saw from equation 2.4 that Σcrit is inversely

proportional to the diameter angular distance, which in turn is ∝ Ωm, such that in the

end, we have ∆Σ ∝ Σcrit ∝ Ω−1
m . This means that a change in the value of Ωm will result

in a difference in the mass estimate of Ωold
m /Ωnew

m .

However, this correction might turn out to be much more complicated if we account

for the covariance matrix within the mass likelihood (equation 2.9). Fortunately, although

the CODEX covariance matrix includes many terms, in the end, the error is dominated

by the number of source galaxies used (Finoguenov et al., 2020). Therefore, after some

consideration, we have decided that it would be enough to rescale the systematic errors by

the difference in ∆Σ (Ωold
m /Ωnew

m = 0.27/0.3 = 0.9), which results in an increase of 10%.
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2.3 Other samples

The addition of other galaxy cluster samples is interesting for increasing the precision

and the mass and X-ray luminosity range of our analysis. With that in mind, we searched

for previously published catalogs that computed weak lensing mass estimates for galaxy

clusters, and that are also part of the extended CODEX catalog. We favored those that

shared some (but not necessarily all) similar features regarding the weak lensing analysis,

such as the M − c relation used, the density profile, and the cosmology adopted.

Herbonnet et al. (2020) computed the weak lensing mass of 100 X-ray selected clus-

ters from the Multi Epoch Nearby Cluster Survey (MENeaCS) and the Canadian Cluster

Comparison Project (Hoekstra et al., 2015, CCCP) using CFHT images. From those, 83

clusters are present in the extended CODEX catalog. The cosmological parameters used in

their work are the same as ours, and they also adopt the M − c relation from Dutton and

Macciò (2014). However, the redshift information available in Herbonnet et al. (2020) was

obtained by searching the NASA Extragalactic Database (NED) where not all clusters had

spectroscopic redshift estimates. We then decided to adopt the zspec values available in the

extended CODEX catalog from which only 7 clusters were missing information (clusters

55927, 60040, 64520, 64521, 66237, 68049, and 70574). Fortunately, after searching the

literature for each cluster, either by the cluster name or by sky coordinates - adopting a 2

arcmin match and a maximum redshift difference of ∆z = 0.05 between the available zphot

- we were able to retrieve the spectroscopic information for all these galaxy clusters.

After we applied the same cuts used in cleaning the catalog and additional selections

in richness, both detailed in section 3.2.1, a total of 46 galaxy clusters were considered.

This subsample (hereafter Herbonnet20 ) comprises massive clusters, with masses ranging

from ∼ 3.2 · 1014M⊙ to ∼ 2.8 · 1015M⊙, and reaching a redshift value of z ∼ 0.55. This

subsample, including the clusters that did not pass the selection, is displayed in table A.2.

The hundreds of shear-selected clusters from Oguri et al. (2021) are also a great addition

to our work, for which they used the Hyper Suprime-Cam Subaru Strategic Program

(S19A) to compute the clusters’ mass via weak gravitational lensing. Their work also

adopts the same cosmological parameters used in this study, although, unlike this work,

they do not use a M − c relation and opted to fit the NFW profile with both parameters.

From the Oguri et al. (2021) catalog, a subsample of 84 clusters is also part of the CODEX
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catalog.

The redshift information available is also photometric, obtained by matching the shear-

selected clusters with the optically-selected clusters from several other catalogs. We then

adopt the same approach used with the Herbonnet et al. (2020) subsample for obtaining

spectroscopic redshift information. Of the 84 CODEX clusters, further literature research

was needed for 8 of them (clusters 57134, 57165, 57175, 57260, 57524, 57528, 58031, and

58158). Only the galaxy cluster 57134, also identified as RXC J0213.9-0253, did not have

any spectroscopic information, for which we decided to adopt the photometric redshift

value. We do not expect that this single exception will have a meaningful impact on

the overall study. After analyzing the relation zspec − zphot for the other cluster samples,

as shown in figure 2.4, we can also suppose that the zphot value provides an accurate

representation of the cluster’s true redshift.

From the sample presented above, 27 galaxy clusters pass the selections (hereafter

Oguri21 ). These clusters present a mass range of ∼ [2.1 · 1014M⊙ − 1.5 · 1015M⊙] and a

redshift range of [0.13− 0.58]. The Oguri21 subsample and also the clusters that did not

pass the selection are displayed in table A.3.

Figure 2.4:

The matches between these two samples and the extended CODEX catalog were made

considering a 3-arcminute distance from the clusters’ center and a redshift interval of

∆z = 0.05. To ensure that there were no repeated galaxy clusters among all subsamples

(i.e. main-subsample, Herbonnet20, and Oguri21 ) we applied this same matching and
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found no duplicates. In conclusion, our final sample consists of 101 CODEX galaxy clusters

with weak lensing mass estimates, which we will further refer to as the WL sample. Figure

2.5 displays our final sample and the cleaned CODEX catalog.

Figure 2.5: Aitoff projection of our final WL sample - dots in blue, orange and pink represents the

Herbonnet20, Oguri21, and main-subsample, respectively. The grey dots are the cleaned CODEX catalog.

We also show in figure 2.6 the clusters from the WL sample distributed in the mass -

X-ray luminosity logarithmic space, and the redshift distribution of each subsample. From

the former, we can confirm that all subsamples agree with a general trend of increasing

luminosity with mass. As for the letter plot, we observe that the main-subsample in-

troduced by this work also increases considerably the number of high-redshifted galaxy

clusters, which is particularly interesting for our goal to analyze the temporal evolution of

the M − LX scaling relation.
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Figure 2.6: (Right) Galaxy clusters from the WL sample in the mass - X-ray luminosity logarithmic space.

(Left) Redshift distribution of the WL sample.



Chapter 3

Statistical analysis

Throughout the centuries, there has been a large debate about the meaning and goals

of statistics. If centuries ago it was seen as merely the compilation of data, nowadays

statistics is broadly referred to as techniques derived from mathematics based on inductive

reasoning, and useful in the presence of uncertainty (Feigelson and Babu, 2012). Because in

any scientific endeavor, the available information is incomplete, our knowledge is necessarily

probabilistic, and astronomers seek reasonable statistical approaches to obtain quantitative

interpretations of the data (Feigelson and Babu, 2012; Gregory, 2005).

Scientists have long agreed on the important role of deductive reasoning in the scien-

tific method, particularly when it comes to testing theoretical models. In this scenario,

two different approaches stand out; the frequentist interpretation of probability, and the

Bayesian probability theory. While the first is usually thought of as the ’conventional’

statistics, currently there has been a shift in the general community’s view to acknowledge

the Bayesian statistical approach. In the next section, we discuss briefly the main features

of these definitions, with emphasis on the Bayesian statistics, which will be adopted in this

work.

3.1 Bayesian statistics

The term Bayesian statistics was first introduced in 1763, with a posthumous publica-

tion of a manuscript written by the mathematician Reverend Thomas Bayes. However, the

formalism and popularization of the Bayesian methodology were developed only around

a decade later, by Pierre-Simon Laplace in 1774, and even then, classical frequentist sta-

tistics remained the preferable approach (Ivezić et al., 2020; Gregory, 2005). Scientists
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disregarded the use of Bayes’ principle until the second half of the 20th century, mainly

because computers had only then reached enough speed to allow a meaningful Bayesian

analysis, and because of the works adopting this approach done by renowned statisticians

such as Finetti de (1937), Cox (1961) and Jaynes (1957).

The probability as seen through a frequentist view is the relative frequency of an event

to occur throughout many repeated experiments and therefore relies on random variables.

As for a Bayesian Inference’s definition, the probability P (A|B) is the measured value of

the plausibility of A given that the proposition B is true. This definition allows us to

directly compute the probability of a theory or model parameter based on our current

state of knowledge (Gregory, 2005).

The sum and product rules, following the Bayesian formalism, can be written as

Sum: P (A|B) + P (Ā|B) = 1

Product: P (A,B|C) = P (A|C)P (B|A,C) = P (B|C)P (A|B,C) ,
(3.1)

where two symbols separated by a comma means that both propositions are true, i.e. the

joint probability, and where any proposition on the right side of the bar | is assumed to be

true.

If we define Hi as a proposition for our hypothesis, K as the proposition of our prior

knowledge, and D as the proposition representing our data, it follows from the product

rule that

P (Hi|D,K) =
P (Hi|K)P (D|Hi, K)

P (D|K)
. (3.2)

The above equation is called the Bayes Theorem, where

• P (Hi|D,K) −→ is the posterior probability of Hi given D and K.

• P (Hi|K) −→ is the prior probability of Hi given K.

• P (D|Hi, K) −→ is the probability of obtaining the data given that Hi and K are true;

also known as the likelihood function.

• P (D|K) −→ is the normalization factor; also known as the evidence.
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Because many parameter estimation problems seek only to maximize the posterior

distribution, for which we would obtain the best parameters, it is common to express

Bayes theorem omitting the evidence:

P (Hi|D,K) ∝ P (Hi|K) P (D|Hi, K) . (3.3)

It is worth noting that a Bayesian probability distribution function (PDF) relates to our

state of information. For example, if we only have vague prior information about our

problem, P (Hi|K) must be a ’broad’ function, spanning a wide range of parameter values

(Gregory, 2005).

Furthermore, a model is termed hierarchical if the Bayesian formulation is written in

multiple levels of observational quantities. A key feature of such models is acknowledging

that the data might have intrinsic dependencies, such that we are not limited to perceiving

parameters as fixed values, but rather explore the notion that they might present their

own distribution. To illustrate this concept, consider a scenario involving a basic linear fit,

represented as y = mx, where we do not have access to the true variable x, but whether a

measured value with error x̃ = x+ ϵ. In conventional Bayesian notation, we would have

P (y|x) ∝ P (x|y) P (y) . (3.4)

However, we do not have information of P (x|y), and hence we must write it in a hierarchical

manner:

P (y|x̃) ∝
∫

dx P (x̃|x) P (x|y) P (y) , (3.5)

where P (x̃|x) is a function that describes the measured error in x (e.g. normal distribution

with deviation ϵ).

Essentially, the hierarchical method is when you describe the entire model as a series of

submodels. It is an ideal approach for describing a complete model of the data, accounting

for systematic and measured errors, as well as selection effects.
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3.1.1 Marginalization

In addition to bringing information into the model, the Bayesian theory of probability

also allows us to ’eliminate’ parameters that we are not interested in (Ivezić et al., 2020;

Gregory, 2005). Let us assume a parameter estimation problem, where we have some data

D and our model is defined by two distinct parameters H = {a, b}, such that our joint

probability is given by P (a, b|D,K). If we want to compute the implications of our data

only for a, it is possible to eliminate the parameter b through what is calledmarginalization:

P (a|D,K) =

∫
dbP (a, b|D,K) . (3.6)

If we introduce Bayes’ theorem (equation 3.2) to this situation,

P (a, b|D,K) =
P (a, b|K)P (D|a, b,K)

P (D|K)
, (3.7)

and assume that the priors for a and b are independent, we find that

P (a|D,K) ∝ P (a|K)

∫
dbP (b|K)P (D|a, b,K) . (3.8)

The expression above gives us the marginal posterior as a function of the average of the

likelihood function P (D|a, b,K).

Having presented the basics of Bayesian inference, we must now create our own hierar-

chical model, which will be described in the following section.

3.2 Hierarchical model

From the discussion presented in the previous section, one can state that the main

reason for adopting the Bayesian view, over the frequentist tradition, is to include prior

information about the model in addition to what the data can tell us. Furthermore, it

also provides the means to eliminate unwanted parameters and account for the selection

functions of the data sample, which is why we adopt this approach.

At first, we considered using two established Bayesian linear regression tools, the Lin-

mix1 in Python, and the LInear Regression in Astronomy (LIRA) in R language (Sereno,

1 Information available at https://github.com/jmeyers314/linmix.

https://github.com/jmeyers314/linmix
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2016). With both approaches, we were able to account for measurement errors in the de-

pendent and independent variables, while also considering the presence of intrinsic scatter.

The main difference was in the handling of the evolution parameter γ, which was not pos-

sible with Linmix. Hence for this method, the redshift dependence had to be addressed

separately.

Moreover, because in both approaches the errors had to be symmetric, we couldn’t

fully incorporate the information of our entire mass PDF (e.g. equation 2.9), and we were

compelled to simplify it by fitting a Gaussian function and using its mean and deviation

as mass values and errors, respectively.

In an attempt to remediate this issue, we tried fitting the mass PDFs using a mix-

ture of Gaussian functions, as proposed in Sereno (2016), but found that it wasn’t worth

introducing a correlation between our data points. Furthermore, precise modeling of the

selection functions was impractical in both approaches. After careful consideration, we

have decided to create our own Bayesian hierarchical model, using Kiiveri et al. (2021) as

a reference.

This work seeks to adjust the scale relation in logarithmic space, given by equation

1.19. In this scenario, where we have a relation between our observable lX = logLX and

the true mass µ = logM , given a model with parameters θ = {α, β, γ, σintr}, the joint

probability distribution that there is a cluster of total mass µ, at a specific redshift z, can

be described as (Kelly, 2007):

P (lX , µ|θ, z) = P (lX |µ,θ)P (µ|z)P (z). (3.9)

In the above equation, the term P (µ|z) refers to the halo mass function (HMF), providing

the number density of dark matter halos (e.g. of galaxy clusters) as a function of mass.

We adopt the HMF defined by Tinker et al. (2008), which used 22 simulations to calibrate

the function parameters:

dn

dM
= f(σ)

ρ̄

M

d lnσ−1

d lnM
, (3.10)

where σ is the rms variance, ρ̄ is the mean matter density, and f(σ) is called halo mul-

tiplicity function. Their work fitted the local (z = 0) halo number with a 5% statistical
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precision, considering a ΛCDM Universe (Tinker et al., 2008; Allen et al., 2011). Figure

3.1 illustrates the HMF general behavior in the logarithmic space, where we observe the

prevalence of smaller structures compared to the rarer, more massive structures.

Figure 3.1: Logarithmic measured mass functions for the WMAP1 simulations and three best fit curves

considering ∆ = 200, 800, and 3200 (from top to bottom). Modified figure from Tinker et al. (2008).

The term P (z) in equation 3.9 is the differential comoving volume, defined as

dV (z)

dz
=

(
c

H0

)3
D3(z)

E(z)
; where D(z) =

∫ z

0

dz

E(z)
is the growth function. (3.11)

Both terms combined account for the conditional probability of the existence of a galaxy

cluster with a given mass and redshift.

As for the term P (lX |µ,θ), it provides the probability of having a scattered X-ray

luminosity lX given an underlying true luminosity - obtained by a true mass value and

true model parameters, ⟨lX |µ, z,θ⟩. This function is illustrated in figure 3.2. Because it is

reasonable to assume that the data is normally scattered around its theoretical expected

value (Sereno, 2016; Allen et al., 2011), our function is modeled as a normal distribution
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centered in lX and with deviation given by the intrinsic scatter σintr:

P (lX |µ, z,θ) =
1√

2πσintr

exp

[
−1

2

(⟨lX |µ, z,θ⟩ − lX)
2

σ2
intr

]
;

where ⟨lX |µ, z,θ⟩ = α + βµ+ γ log(1 + z).

(3.12)

Figure 3.2: A lognormal probability distribution to account for the presence of intrinsic scatter in the

X-ray luminosity, given a true mass µ, a redshift, and our model parameters θ.

When effectively incorporating the terms in equation 3.9, we are also addressing signi-

ficant selection biases (i.e. Malmquist and Eddington bias).

Because our sample of clusters is X-ray selected, one must consider that this observable

might suffer deviations from its intrinsic value due to effects unrelated to observational

techniques (e.g. extra sources within the line-of-sight, triaxiality, and mis-centering of the

radial scale). Although these effects typically manifest at levels below 10%, it is important

to note that the bias is dependent on the detection method and the masses of the clusters,

and thus, should be considered in the statistical analysis (Allen et al., 2011).

Figure 3.3 illustrates the situation of a cluster population selected by an X-ray flux

threshold, also known as the Malmquist bias, and that presents an intrinsic scatter around
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the theoretical scaling law, also known as the Eddington bias. The right-hand figure also

adds the effect of the underlying mass function (i.e. HMF illustrated in figure 3.1) in

the observed data, where the number density of low-mass clusters is much greater. One

can observe that, for a given mass, the high X-ray luminosity clusters are more likely

to be detected, and the overall effect of these biases is the resulting sample not being

representative of the full cluster population, especially for the low mass and low luminosity

systems. Other sample selections will be further discussed in section 3.2.1.

Figure 3.3: Illustration of the Malmiquist and Eddington selection biases. The blue deshed line represents

the X-ray flux threshold and the red solid line represents the theoretical scaling relation. The black crosses

and green dots represent the detected and undetected sources, respectively. The right figure represents the

more realistic case of halo mass distribution. One can observe that, because of the selection effects, the

detected sample is not representative of the entire population and does not reflect the underlying scaling

relation. Figure from (Allen et al., 2011).

We also want to consider the effects caused by measurement errors, since we cannot

directly access the observable quantity. Therefore, using Kiiveri et al. (2021) notation,

we must model the probability distribution of measured observables (denoted by l̃X , µ̃, z̃)

given true scattered observables (lX , µ, z). For our case, it is reasonable to consider the

spectroscopic redshift equal to the true redshift, so that P (z̃|z) is modeled as a Dirac delta

function, and therefore will not be explicit in the following equations (Kelly, 2007).

The probability of measuring a cluster mass µ̃ through gravitational lensing is given by

the mass PDF P (µ̃|µ). For the main-subsample, it is simply the equation 2.9, discussed in

section 2.2.4. For the other two subsamples, Herbonnet20 and Oguri21, we use the infor-

mation available in the respective catalogs and model the mass PDFs as Gaussian functions
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in the linear space, P (M̃c|Mc). These normal distributions are centered at the weak len-

sing mass estimate value with deviation given by the measurement errors. Specifically for

Oguri21 subsample, because the errors are not symmetric, we create a combination of two

Gaussians, both centered in the estimated mass value, with deviations given by the errors

δ−M and δ+M . Figure 3.4 illustrates the normal functions described above for clusters of the

Herbonnet20 and Oguri21 subsamples, as well as the respectively mass PDFs P (µ̃|µ) in

log space.

Figure 3.4: The mass probability distribution function for a cluster from the Herbonnet20 subsample

(upper panels) and from the Oguri21 subsample (lower panels). The left hand panels are in the linear

space, while the right hand panels are in the logarithmic space.

As for the measured observable l̃X , we have P (l̃X |lX) also modeled as a normal distribu-

tion in the linear space, that accounts for the observational uncertainties δLX
, as illustrated

by figure 3.5. We compute a Gaussian distribution in the linear space (with LX), as shown

in equation 3.13, and interpolate it with the luminosity in the logarithmic space (lX).

P (L̃X |LX) =
1√

2πδLX

exp

[
−1

2

(LX − L̃X)
2

δ2LX

]
; (3.13)
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Figure 3.5: Illustration of the probability distribution of measuring a value of X-ray luminosity ˜lX given

that we have a scattered value of lX . In the linear space (left) it is simply a Gaussian distribution.

With these considerations, we can modify equation 3.9 and, since we have access only

to the measured quantities, we can marginalize it over all the true quantities, such that

P (l̃X , µ̃, z̃|θ) =
∫

dlX dµP (l̃X |lX)P (µ̃|µ)︸ ︷︷ ︸
Meas.-Scatt.

values

P (lX |µ,θ)︸ ︷︷ ︸
Scatt.-True

values

P (µ|z̃)︸ ︷︷ ︸
HMF

P (z̃)︸︷︷︸
dV
dz

.
(3.14)

Apart from the considerations above, we must also contemplate the effects of the selections

made during the construction of our subsamples. In a general context, we can introduce

the variable I as a condition to whether or not the cluster passed the selection, such that

the probability of having the measured observables õ = {l̃X , µ̃, z̃} given that the cluster

passed the selection is

P (õ|I,θ) = P (I|õ,θ)P (õ|θ)
P (I|θ)

. (3.15)

Since our primary objective is to obtain the probability distribution of parameters given the

observables P (θ|õ), according to Bayes theorem, equation 3.15 is actually the likelihood

function P (õ|I,θ) = L(õ|I,θ) we need to model:

P (θ|õ) ∝ π(θ) L(õ|I,θ), (3.16)

where π(θ) are the priors for the parameters, which are assumed to be independent.
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We can see that the term P (õ|θ) in equation 3.15 represents the probability of obtaining

the observables õ given our model, and it is actually the expression we already defined in

3.14. Also, the general probability of all clusters passing the selection - denoted by P (I|θ)

- can be described by simply marginalizing the numerator over all observables:

P (I|θ) =
∫

dõ P (I|õ,θ)P (õ|θ). (3.17)

Finally, we can write our full likelihood function as:

L(l̃X , µ̃, z̃|I,θ) ∝
∫

dlX dµ P (I|õ,θ)

· P (l̃X |lX)P (µ̃|µ)

· P (lX |µ,θ)P (µ|z̃)P (z̃).

(3.18)

3.2.1 Selection functions

The likelihood function described previously (equation 3.18) depends on the sample’s

selections represented by the term P (I|õ,θ). In this section, we give an overview of the

selection functions used in the construction of the WL sample, using the work done in

Kiiveri et al. (2021) and Finoguenov et al. (2020) as reference.

Two optical selections were applied to the CODEX catalog sample. Finoguenov et al.

(2020) simulated the completeness limits for the CODEX catalog using RASS and SDSS

data in each 0.1 width bin of redshift, as illustrated in figure 3.6. It was found that

the 10% completeness curve for RASS matches the Klein et al. (2019) definition of low

contamination sample - a 5% contamination when identifying RASS sources using the Dark

Energy Survey (DES).

As a means to account for the 10% completeness, one must then remove the sources for

which the richness λ is below the curve, by applying the following selection (Finoguenov

et al., 2020):

λ > 22
( z

0.15

)0.8
. (3.19)

We consider this selection in our work as the function:
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Figure 3.6: Richness completeness limits of the CODEX survey. Black curves show the 90% (dashed) and

50% (dotted) completeness limits of redMaPPer using SDSS data. Grey curves are the 10% (solid), 50%

(long-dashed), and 90% (short-dashed) completeness limits of RASS data. Figure taken from Finoguenov

et al. (2020).

P (IRASS|λ̃, z) =

1, if λ̃ > 22
(

z
0.15

)0.8
0, otherwise

. (3.20)

In addition, it was found that for z < 0.2 and z > 0.5, it was important to account for

the optical completeness of the SDSS data. To model this selection function we follow the

analytical form adopted by Finoguenov et al. (2020), obtained based on the tabulation of

Rykoff et al. (2014). However, we suppress the redshift dependence of their function since

we are now using deeper optical images (i.e. DR9 and DR10 instead of DR8). Therefore,

the probability of detecting a cluster in the SDSS data, considering a 50% completeness,

is

P (Iopt| ln λ) = 1− 1

2
erfc

(
lnλ− lnλ50%√

2σ

)
, (3.21)

where lnλ50% = ln(17.2) and we adopt σ = 0.2 for the CODEX catalog (Finoguenov et al.,

2020).

For further refining of the CODEX catalog, we also implement a redshift cut of z > 0.1,
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Figure 3.7: Projection of CODEX samples’ coordinates onto a Cartesian plane, along with delineation of

the five specified areas.

to avoid the redshift range where the redMaPPer algorithm is inefficient, and a richness

cut of
δλ
λ

< 0.1 , (3.22)

where δλ is the measurement error in the richness. This cut ensures that the richness error

is less than 10%.

In addition, for our sample to be considered representative of the cluster population,

the ideal scenario would be for the ratio between the number of clusters in the WL sample

and the total number of clusters in the cleaned CODEX catalog to be ∼ 1. However, as

one can observe from figure 2.5, this is far from reality. A way to mitigate this issue is to

define a more restricted survey area to work with, focusing on the sky regions where our

subsamples lie. Figure 3.7 shows the cartesian projection of the samples’ coordinates and

the five areas defined for this purpose; the final survey area used in this work is essentially

the combination of each of them.

With that being said, we can now implement a subsample selection function, in which

all clusters with richness below 60 were excluded as a way to ensure a more pure and

representative sample. However, because not all clusters with λ̃ ≥ 60 are actually observed,

this selection differs from a step function, and was constructed following the approach

adopted in Kiiveri et al. (2021). We consider the initial sample from the CODEX cleaned
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Figure 3.8: Richness distribution of the CODEX sample in equally width bins. The subsample selection

function is represented by the dashed black line.

catalog (inside the defined survey area) and our final weak lensing sample of 101 clusters.

We bin the samples by richness into equal logarithmic bin widths and compute the ratio of

the height of the bins. After, we fit a linear piecewise function between the mean of each

bin, obtaining:

P (Isamp|λ̃) =



0, λ̃ < 60

4
1000

λ̃− 202
1000

, 60 ≤ λ̃ < 143.5

0.4
1000

λ̃+ 316
1000

, 143.5 ≤ λ̃ < 258.6

429
1000

, 258.6 ≤ λ̃ < 342

(3.23)

Figure 3.8 illustrates this selection.

Finally, there is also the CODEX selection function for RASS’s X-ray images, for which

we give a brief overview. Further details are described in Finoguenov et al. (2020).

The CODEX selection function returns the effective survey area for the catalog and

is used for correcting the probability of detecting a galaxy cluster in a comoving volume,

given certain observables. This selection considers the probability of detecting a source
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given the observed source counts - ηob - and the shape parameters of a β-profile2 surface

brightness distribution - β(µ) and rc = ln Rc - denoted by P (I|ηob, β(µ), rc).

The function also takes into account that the cluster shape is covariant to the scatter

in the M − LX relation, although this effect is expected to be reduced for redshifts over

0.3 for which the RASS clusters are point-like. In addition, the function considers the

presence of a correlation between the X-ray luminosity and the cluster’s richness. This

joint probability is denoted as P (rc, lX |µ, ν, z), where the deviation from mean richness ν

is defined as

ν =
ln λ − ⟨ln λ|µ⟩

σlnλ

, (3.24)

with ⟨ln λ|µ⟩ being the expected richness given a true mass.

The probability of observing source counts given the expected number count - P (ηob|ηtrue)

- is considered as well, and is modeled as a Poisson distribution:

P (ηob|ηtrue) = (ηtrue)η
ob
e−ηtrue

ηob!
,

where

ηtrue =
LX · S

4πD2
LK(⟨T |LX⟩, z)

.

(3.25)

In the expression above, S denotes the sensitivity (counts per flux), DL is the luminosity

distance, and K(⟨T |LX⟩, z) is the K correction.

In effect, this CODEX selection function is available as a grid, resulting from simulations

that accounted for the probabilities described above, and returns the effective survey area

and the values for ν, µ, lx, σintr and z, used to calculate it. In the end, interpolating this

simulated grid can give us a function for the probability of detecting a galaxy cluster with

luminosity lX , redshift z, and intrinsic scatter σintr in the CODEX catalog, denoted by

P (IX |z̃, lX , σintr). Figure 3.9 illustrates the behavior of this selection as a function of each

of the three parameters.

At last, we are able to write the full selection functions as follows:

2 A β-profile surface brightness distribution with radius r is given by SB =

[
1 +

(
r
Rc

)2]−3β+0.5
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Figure 3.9: Behavior of the CODEX selection function for fixed values of intrinsic scatter, redshift, and

X-ray luminosity, respectively.

P (I|λ̃, z̃, σintr) =

∫
dµ dlX

· P (IRASS|λ̃, z̃)
10% completness of RASS←−−−−−−−−−−−−−−

· P (Iopt| ln λ̃)
50% completness of SDSS←−−−−−−−−−−−−−−

· P (Isamp|λ̃)
subsample selection←−−−−−−−−−−−

· P (IX |z̃, lX , σintr).
CODEX simulated matrix←−−−−−−−−−−−−−−

(3.26)

3.2.2 Priors

As we already discussed in section 3.1, one of the distinctions in adopting the Bayesian

Inference view, is the possibility of introducing extra prior information about our problem.

We can combine the information from the data with our prior knowledge, to obtain the

posterior probability distribution (Gregory, 2005). Depending on our choice for the functi-

onal form of the distribution, we might have a posterior that is almost entirely dominated

by the prior, or determined essentially by the data information (i.e. the likelihood), as

illustrated in figure 3.10.

Because we are interested in what our data reveals about the scaling relation, we might

use the so-called uninformative priors, which incorporates weak but objective information

about a parameter. It is worth noting that despite the name, these priors still affect

the parameter estimates, and the results are usually different than the ones obtained by

the frequentist and maximum likelihood approaches (Ivezić et al., 2020). The prior for

a location parameter, for example, should not change with translations of the coordinate
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Figure 3.10: Illustration of two extreme combinations of prior and likelihood distributions (upper panels);

When the posterior distribution is entirely dominated by the likelihood function (lower left) and when the

posterior is essentially the prior distribution (lower right). Modified figure from Gregory (2005).

system, while priors for the intrinsic scatter are limited to positive values.

To our analysis, we adopt flat uninformative priors for the intercept, and the mass and

redshift slopes:

π(θ = {α, β, γ}) =

const. , θimin
< θi < θimax

0 , Otherwise.

(3.27)

The minimum and maximum values for the α parameter were set to be [10; 45], for β

were [0; 2.5], and for the γ parameter we chose [−5; 5].

The intrinsic scatter parameter σintr is what one calls the scale parameter, i.e. it

should not depend on the choice of units, such that if we rescale our measurement units

by a positive factor a, we get a constraint

π(σ)dσ = π(aσ)d(aσ) . (3.28)

The solution to the above is simply

π(σ) ∝ σ−1 , (3.29)
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which is called a scale invariant prior or the Jeffreys prior (Ivezić et al., 2020; Gregory,

2005). In general literature, there is no overall agreement about the choices from weakly

informative priors for the scale parameter. The Jeffreys prior described above is one

of the most common approaches, although the inverse χ2, gamma, and inverse-gamma

distributions are sometimes suggested. However, one common aspect that seems to arise

from all these different discussions is that the use of a uniform prior for the scale parameter

is not recommended, as it results in a miscalibration towards higher values of σ (Walter G.,

2010; Gelman, 2006).

It is clear from equation 3.29 that the distribution diverges at σ = 0, so if we intend to

extend our lower limit to zero, we must consider using the modified Jeffreys prior (Gregory,

2005):

π(σ) =
1

(σ + a) ln[(σmax + a)/a]
, (3.30)

where a is a constant that eliminates the singularity.

Although we can expect our values of the intrinsic scatter to be around 0.33 - that

corresponds to a scatter in the mass of ∼ 0.25 (Leauthaud et al., 2010) in our M − LX

relation - we decide to adopt a modified Jeffreys prior with a = 0.03, for which the

function’s mean value is at σintr = 0.33. We also tested using the gamma and inverse

gamma distributions but found no significant differences.

Finally, for the lensing systematic uncertainty parameter lsys, we followed the definition

used by (Kiiveri et al., 2021), which adopts a Gaussian distribution centered in zero with

dispersion 1.

In conclusion, we model three likelihood functions (Li) for each subsample we analyze

(i.e. main-subsample, Herbonnet20 and Oguri21 ). These are given by the general equation

3.18 with the discussed selections in equation 3.26, such that the posterior distribution we

need to maximize in order to estimate our best parameters is, in log space,

logP (θ|õ) ∝ log π(θ) + logLmain + logLHerbonnet20 + logLOguri21. (3.31)
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Results and discussion

4.1 Main results

In order to sample our posterior distribution for the parameters, we used the Python

package emcee (Goodman and Weare, 2010; Foreman-Mackey et al., 2013), which consists

of a Monte Carlo Markov Chain algorithm. We found that it is enough to execute 24 chains

with 2,000 steps each and burn the first 350 steps that it takes for the chains to converge.

In this configuration, we identified the optimal iteration time by parallelizing the code

across fourteen CPUs. As a result, the entire program can be executed in approximately

four days. Our best values and their errors were computed as the median and standard

deviation of the distributions for each parameter, respectively.

First, we applied our general Bayesian analysis of the 101 clusters in the WL sample

with the uninformative priors discussed in section 3.2.2. Our results are displayed in table

4.1 and figure 4.1 shows the best parameters and their correlation in a triangle plot.

Table 4.1 - Parameters, their initial values, priors, and posteriors from the MCMC fitting

with all samples.

Parameter Initial Prior Posterior

Intercept α 21 flat(10, 45) 40.1± 0.8

Slope β 1.56 flat(0, 3) 0.30± 0.05

Evolution γ 0 flat(-5, 5) 1.54± 0.55

Scatter σintr 0.33 Jeff. prior 0.21± 0.01

Systematic error lsys 0 N(0,1) 4.25± 0.37
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We found a significant shallower slope than expected by self-similarity, with a value of

β = 0.30± 0.05. This small value might be due to our focus on analyzing only high-mass

systems, which is discussed throughout the next sections.

The intrinsic scatter value was also smaller than the ones reported by most previous

works - over 0.25 (e.g. Kettula et al., 2015; Leauthaud et al., 2010; Eckmiller et al., 2011).

However, it is expected a smaller scatter when analyzing a high redshift sample (section 2.2,

Damsted et al., 2023). Indeed, Eckmiller et al. (2011) reported a change in scatter from

0.287 for a local group sample (z < 0.1) to 0.153 for a cluster sample with 0.1 < z < 0.3.

As for the temporal evolution parameter, we found a value of γ = 1.54 ± 0.55, which

is in disagreement with the self-similar prediction of zero in a 2.8σ level. We also used the

MCMC chains to estimate the probability of γ being positive, done by calculating the ratio

between the number of iterations with positive values and the total length of the chains,

which resulted in a probability of P (γ > 0) = 99.62%.

In essence, despite the modest slope value that might suggest the influence of unknown

systematic factors, our findings render it statistically significant to propose a positive

evolution in the M − LX relation. At the end of the section, we delve deeper into the

interpretation and implications of this evolution parameter value, along with all the other

γ results presented throughout this work.
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Figure 4.1: Best parameters’ values from the MCMC fitting with the one and two-dimensional projections

of the posterior distributions. The contours represent the 1σ (68%) and 2σ (95%) confidence regions.

We also show our best fit for the WL sample, which will be hereafter referred to as the

main-fit, projected on the logarithmic mass - X-ray luminosity plane in figure 4.2. We also

show a simple linear fit using the Python function lmfit.minimize1 with slope fixed in 1.3,

which illustrates the self-similar prediction for comparison. The lower panels highlight the

fact that we are using probability distribution functions in our analysis, by representing

the mass PDFs (lower-left) and both the mass and X-ray luminosity PDFs (lower-right)

for each cluster. The PDF representation might provide a clearer visualization of the

relationship between the best fit and the data.

1 Documentation available at https://lmfit.github.io/lmfit-py/fitting.html.

https://lmfit.github.io/lmfit-py/fitting.html
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Figure 4.2: The M − LX relation in log space. The black line represents the projected best fit obtained

from the MCMC. The results from a few iterations are depicted by the faded gray lines, illustrating the

error associated with the best fit. In the lower-left panel, only the mass probability distribution functions

for each cluster are displayed. In the lower-right panel, both the mass and X-ray luminosity PDFs are

presented.

4.1.1 Features of elements in the statistical model

We also wanted to test the impact of our general Bayesian statistical approach and,

more specifically, the impact of the selection functions on the calibration of the scaling

relation. In order to achieve this, we applied three other fits to our WL sample:

(i) A simple linear fit using the Python function lmfit.minimize, where we disregard
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the redshift term in equation 1.19 and the evolution evaluation is done separately;

(ii) Applying our Bayesian statistical approach but neglecting all the selection functions

and the Halo Mass Function (HMF) described in section 3.2;

(iii) Applying our Bayesian statistical analysis without the selection functions but con-

sidering the HMF.

For the first case, using the lmfit.minimize function, which disregards measurement

errors and intrinsic scatter, we found a slope value of 0.50 ± 0.09, which is steeper when

compared with our previous results, but still in disagreement with self-similarity.

Furthermore, the temporal evolution of M−LX was also analyzed by obtaining a linear

fit of the residuals and the redshift. This was compared with a second fit that fixed the

slope value at zero, as depicted in figure 4.3. The latter fit has only one free parameter

(instead of two) and corresponds to the model where there is no evidence of evolution.

To compare the two fits, the values of the Bayesian Information Criterion (BIC) for

each of them were used to calculate ∆BIC = BICmodel −BICbest, which is the difference

between a model BICmodel and the best model BICbest (i.e. the one with the lowest BIC

value). We opted to use the BIC parameter as it seeks to maximize the posterior of the

fit while introducing penalty terms for the number of parameters in the model, effectively

mitigating the risk of overfitting. The value of ∆BIC can be considered a test of the

evidence against the new model (Arevalo et al., 2017; Fabozzi, 2014), such that:

• For ∆BIC < 2, it is considered worth mentioning the evidence against the new

model.

• For 2 < ∆BIC < 6, it is considered that the evidence against the new model is

positive.

• For 6 < ∆BIC < 10, it is considered that the evidence against the new model is

strong.

• For ∆BIC > 10, it is considered that the evidence against the new model is very

strong.
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From this analysis, the value of BICbest = −279.8 was obtained for the first fit — with

two free parameters and corresponding to a model with some evolution — and BICmodel =

−278.9 for the second fit — with only one parameter and corresponding to the model

where there is no evidence of evolution. Thus, ∆BIC = 0.879, and therefore, it is only

worth mentioning evidence of evolution.

Figure 4.3: Residuals of the linear fit as a function of redshift. The two dashed lines represent the best

fit for a single-parameter model (i.e. fixed slope to zero) of no temporal evolution and a two-parameter

model of redshift evolution.

As for the second case, where we apply our Bayesian statistical approach neglecting all

the selection functions and the HMF in the likelihood, we sampled our posterior distribu-

tion for the parameters using emcee with the same specifications as the main-fit analysis.

We also used the uninformative priors discussed in section 3.2.2. The best parameter va-

lues are consistent with the full likelihood analysis at a 3σ level, with a small steepening

of the slope when compared with the main-fit and with an even smaller value for γ.

For the last approach, still neglecting the selection functions but now including the

HMF in the likelihood, we again find similar results as the ones from the main-fit, within

a 3σ interval. The slope is steeper - although shallower when compared with fits (i) and

(ii) - and again there is a moderately significant temporal evolution.

All the different fits - i.e. the main-fit using the full likelihood, (i) the oversimplified

fit using the lmfit.minimize function, (ii) the fit ignoring the selection functions and the



Section 4.1. Main results 91

HMF in the likelihood, and (iii) the fit ignoring only the selection functions - are shown in

figure 4.4. The best parameter values are displayed in table 4.2.

Figure 4.4: The WL sample, the main-fit, and the three fits discussed in this section to investigate the

terms in the statistical model. The red line illustrates the slope predicted by self-similarity for comparison.

From this analysis, we can conclude that, with respect to the slope value, the inclusion

of the selection functions and the HMF in our analysis have a small effect in flattening the

M − LX scaling relation, with the latter being the most significant. This can be observed

when comparing the slope values, which change from 0.43 to 0.32 when including the HMF,

and then to 0.30 when including also the selection functions (full likelihood).

However, the statistical analysis developed throughout this work does not seem to

be the main cause of the strong deviation from the self-similar model. This is evident

in the results of the simple linear fit (i), which still deviates from the expected value of

βself = 1.3 by approximately 8.8σ. Such features suggest that our result is most affected

by the sample choice, where we focus only on the most massive galaxy clusters, which will

be further discussed in section 4.2.

As for the evolution parameter γ, although all fits were in agreement concerning the

positive value for redshift evolution, we can observe that the inclusion of the HMF and

the selection functions contribute to constraining the parameter. A comparison between

(ii) and (iii) reveals that in the former (excluding the HMF and selections), the error is

almost twice the measured value, whereas in the latter (considering only the HMF), the
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error is constrained to be below the measured value. We can also compare the results from

(iii) with the main-fit, which demonstrates that incorporating the selection functions in

our analysis reduces the error by almost ten percentage points – from 44% to 34%.

4.1.2 Contribution of each subsample

We also aimed to verify the contribution of each subsample in the calibration of the

M − LX relation. We would expect a significant impact of the new main-subsample in

constraining the temporal evolution parameter γ since its redshift range is complementary

to the other subsamples. On the other hand, the larger measurement errors in the mass

estimates of Oguri21 subsample could affect the constraints in the slope and intersection

of the scaling relation.

To examine these questions - and perhaps unveil other unknown features - we applied

our Bayesian statistical model with uninformative priors to 3 different sets of cluster sam-

ples: All WL sample but the main-subsample; all but the Herbonnet20 subsample; and all

but the Oguri21 subsample;

The results for each of the three sets are listed in table 4.2 and figure 4.5 presents all

the best fits in the M −LX log space, including the main-fit adopting the full WL sample.

Figure 4.5: The WL sample, the main-fit, and the three fits discussed in this section to investigate the

impact of each subsample in our analysis. The red line illustrates the slope predicted by self-similarity for

comparison.
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Contrary to what was expected, the inclusion of the main-subsample has no major

impact in constraining the evolution parameter γ - when compared with the main-fit, it

reduces the error by a single percentage point. Additionally, even though excluding the

Oguri21 subsample leads to an increase of the slope parameter as predicted, the difference

to the results from the main-fit is under 1σ.

Upon analysis, it becomes evident that the Herbonnet20 subsample has the most impact

on our results. The slope parameter undergoes an almost 2σ change, and the error in the γ

parameter differs by six percentage points. This is most likely due to the larger number of

clusters in this subsample - 46 clusters, while the main-subsample and the Oguri21 consist

of 28 and 27 clusters, respectively.

4.1.3 Comparison with the literature

It is important to note that our result for the slope parameter is not consistent with

previous works in the literature, as shown in figure 4.6. In the figure, we compare our

values for slope β and the evolution parameter γ with the ones obtained by Leauthaud

et al. (2010) and Kettula et al. (2015), who relied on weak lensing mass estimates, as well

as with the outcomes of Lovisari et al. (2020) and Bulbul et al. (2019), who employed

hydrostatic mass values. For the sake of coherence, our subsequent discussion focuses

primarily on the first two studies.

Figure 4.6: Values for the slope β and evolution parameter γ of the M−LX scaling relation. We compare

the results obtained in this work (with and without a fixed slope value) with some of the ones available in

the literature, i.e. Leauthaud et al. (2010); Kettula et al. (2015); Lovisari et al. (2020) and Bulbul et al.

(2019). The vertical lines represent the self-similar prediction and the star marker differentiates the works

that used hydrostatic mass estimates in their analysis.

In Leauthaud et al. (2010), the analysis is done using 206 galaxy groups (i.e. M200c ≲
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1014M⊙) of the COSMOS catalog, where the gravitational lens mass estimate was perfor-

med through stacking in 9 bins of X-ray luminosity and redshift. The sample employed in

their analysis covers a wide range of mass and X-ray luminosity values, which is imperative

for obtaining reliable slope estimates. Their work found a slope slightly steeper but still

consistent with self-similarity, β = 1.42± 0.18.

Furthermore, Leauthaud et al. (2010) has also analyzed the temporal evolution of the

LX − M relation in this group regime and, making the proper correspondence to our

parameter γ and propagating the errors accordingly, they found a value of γ = 0.20±1.14.

Comparing this result with our work, we can see that, while we also found a positive value

for γ, our study contributed to constraining the evolution parameter, decreasing even more

the error value.

Kettula et al. (2015) also does a similar study of the M−LX relation with weak lensing

measurements, using their newly proposed subsample of 12 intermediate-mass clusters

from the CFHTLenS and XMM-CFHTLS surveys, together with the same data used in

Leauthaud et al. (2010) and with additional 48 high-mass clusters from the Canadian

Cluster Comparison Project (CCCP) (Hoekstra et al., 2015). Their results are the closest

to the predicted by the self-similar model. Although they implement a Bayesian correction

for the Eddington bias (Vikhlinin et al., 2009), they do not detail any other selection

function or adopt a statistical analysis to account for the different samples used.

4.2 The slope parameter

In the previous sections, we have presented puzzling results for the M−LX calibration,

where the slope significantly deviates from the self-similar prediction and early works. We

have noted that, when compared with different studies, our work analyzes high-mass cluster

samples with a larger number of data points. Moreover, it stands out for being the first

one to carefully account for selection effects maintaining statistical consistency between all

subsamples. Even so, it is important to conjecture what environmental processes in galaxy

clusters could justify our results.

As was discussed in sections 1.6 and 1.3.1, one would expect the impact of non-

gravitational effects to be significantly greater in low-mass clusters, such that it would

be reasonable to suggest a different behavior of scaling relations in the galaxy group and
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galaxy cluster regimes (Pratt et al., 2009; Kravtsov and Borgani, 2012; Kettula et al.,

2015). For the M − LX relation, one would expect a steepening when studying low-mass

systems, as was reported by the galaxy group analysis in Leauthaud et al. (2010). When

including both groups and clusters, the slope value tends to align with the self-similar

theory (Kettula et al., 2015), which could suggest that the high-mass end of the cluster

population presents a shallower slope.

In addition, we are attempting to analyze the features of intricate systems like galaxy

clusters through a straightforward relation between only two quantities (i.e. mass and

X-ray luminosity), where we already have indications of hidden parameters. The study

from Fujita and Aung (2019) for example, has shown the importance of the concentration

parameter when calibrating scaling relations, as it correlates with both the mass and X-ray

luminosity. These characteristics are thought to flatten the M − LX relation and increase

the scatter in luminosity, such that, given our limited range in mass, this could present a

significant effect on our results.

4.3 The evolution parameter

Even though our slope estimate disagrees with the self-similar prediction, we wanted

to test whether or not we would find any temporal evolution trend if we constrained

the β value. Indeed, there is a possibility that the γ estimate we found was perhaps

a compensation for a misestimation of the slope. With this in mind, we sampled our

posterior distribution just as before, changing only the slope prior into a more informative

one; a Gaussian distribution centered in the self-similar value of 1.3, with a deviation of

0.15. The best fit is illustrated in figure 4.7 and the values of each parameter are displayed

in table 4.2.

The γ values found in the main-fit and the fit with fixed slope deviate from the self-

similar prediction by 2.8σ and 2.6σ, respectively. Hence, this new result also supports the

statistically significant evidence of a mild temporal evolution in the scaling relation. All

the different analyses done in this work present a positive value for the evolution parameter

and, except for the fitting models (i) and (ii), all diverge from the non-evolution prediction

by over 2σ. This suggests that there are hints of positive temporal evolution of M − LX ,

i.e. for a fixed mass, one can expect a small increase in X-ray luminosity with redshift.
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Figure 4.7: The WL sample, the main-fit, and the fit obtained by applying our full likelihood with a

highly informative self-similar prior to the slope parameter.

From what was discussed in section 1.4.2.2, one possible physical explanation for this

small decrease in X-ray luminosity at lower redshifts, given a fixed mass, would be the

increase in the population of jet-mode AGNs in this regime. Although the feedback from

AGNs is generally thought to balance the cooling flow in galaxy clusters, its effect might

be larger than expected, causing a decrease in the expected X-ray luminosity.

We also acknowledge a potential bias in the γ parameter arising from our modeling of

the X-ray luminosity distribution P (L̃X |LX) as a Gaussian function, as described in Section

3.2. While assuming a normal distribution is reasonable for low redshifts, this assumption

no longer holds for high values of z, where X-ray luminosity is expected to follow a Poisson

distribution. The latter offers a more faithful representation of the high redshift regime

where we have fewer photon counts. However, incorporating this model dependency with

redshift would require complex changes in the construction of our likelihood function and

is beyond the scope of this work.

4.4 Summary

This work analyses eight different sets of linear fitting for the calibration of the M−LX

scaling relation and its evolution, generated through combinations between different fitting

models and different samples. All the setups and results are presented in table 4.2.
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Table 4.2 - Summary of all fits done in this work. The first column specifies the fitting

method, whether it used a simple linear fit function, our full likelihood model, or some

modification of it. More specifically, methods (i), (ii), and (iii) describe the linear fit function,

the likelihood model without the HMF and the selection functions, and the likelihood model

disregarding only the selection functions, respectively, as described in 4.1.1. The second

column shows to which cluster sample the fitting was applied. The other columns present

the best parameters found.

Fitting model Sample α β γ σintr

Full likelihood WL sample 40.1± 0.8 0.30± 0.05 1.54± 0.55 0.21± 0.01

Full likelihood WL but main-subsample 40.2± 0.8 0.29± 0.06 2.11± 0.78 0.23± 0.02

Full likelihood WL but Herbonnet20 42.8± 1.2 0.10± 0.09 2.16± 0.91 0.21± 0.01

Full likelihood WL but Oguri21 39.0± 1.3 0.37± 0.09 1.41± 0.59 0.21± 0.01

(i) WL sample 37.0± 1.3 0.50± 0.09 - -

(ii) WL sample 38.2± 1.2 0.43± 0.08 0.34± 0.62 0.22± 0.02

(iii) WL sample 39.8± 0.9 0.32± 0.06 1.23± 0.54 0.23± 0.02

Fix βself WL sample 25.4± 0.2 1.3 2.86± 1.08 0.38± 0.05

From what was discussed and the results presented above, we can summarize our main

discoveries and conclusions as:

• When using the full likelihood function to fit the WL sample we found a much

shallower slope than the self-similar expectation. Moreover, although the γ parameter

is consistent with the theory within 3σ, it is statistically significant to infer a minor

positive evolution in the M − LX relation. Notably, compared to other previous

works, our analysis contributed to constraining the γ parameter, reducing the error

below the parameter value. The intrinsic scatter aligns with expectations for a high

redshift and high mass sample.

• We also used the WL sample to calibrate the relation adopting different fitting mo-

dels. When comparing the fit using the full likelihood with the fits with or without

the selection functions or the HMF - fits (ii) and (iii) - we observe no strong difference

between them. We can see, however, that the main effect of the selection functions

and the HMF in the final result is a small flattening of the scaling relation, with the

HMF being the most influential term.
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• When using a Python function lmfit.minimize for linear fitting, we still encounter

a slope value smaller than the self-similar prediction. This suggests that the main

cause for the strong deviation from self-similarity found in our results is not the

statistical analysis, but whether the galaxy cluster sample analyzed or the presence

of hidden properties not included in the scaling relation.

• By comparing the fits (ii), (iii), and the main-fit, we found that accounting for the

HMF helps constrain the evolution parameter to an error below the measured value.

We also observe that the inclusion of the selection functions decreases the error by

almost ten percentage points.

• When analyzing the contribution of each subsample to our work, we observed that

Herbonnet20 subsample has the most impact on the results, most likely due to its

larger number of clusters. We found no major contribution of the main-subsample for

constraining γ and found the Oguri21 subsample to have a small impact in reducing

the slope value.

• To check if the γ value found in our main-fit was merely compensation from a misesti-

mation of the slope, we also fitted the WL sample fixing the slope to the self-similar

value. The value encountered differs from the no evolution statement at a 2.6σ

confidence level, maintaining the moderately relevant evidence of a positive redshift

evolution.

• When comparing our results to the two previously published works that used weak

lensing mass estimates (i.e. Leauthaud et al., 2010; Kettula et al., 2015), we observe

significant differences regarding the slope value. We point out that those works

analyzed either only the galaxy group regime or the group plus cluster regime, and

that the literature supports a difference in scaling relation between these two regimes.

These considerations suggest that small slope values could be considered consistent

for a high-mass cluster analysis.

• As for the γ parameter, the consistency of the results presented in this work suggests

that there are hints of a small positive temporal evolution of the M − LX relation.

We raise the conjecture that this feature might be caused by jet-mode AGN feedback

processes, which are considered to be more frequent at low redshifts. We also point
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out a possible evolution bias due to a redshift dependence of the X-ray luminosity

distribution. Additionally, when compared with the studies of Leauthaud et al.

(2010); Lovisari et al. (2020) and Bulbul et al. (2019), our work was the first to

further constrain the parameter to errors below the measured value.

4.5 Perspectives

This work sought to study the M − LX relation and its temporal evolution for high-

mass galaxy clusters in the CODEX catalog. To meet this goal, we constructed a detailed

hierarchical Bayesian model that accounts for measurement errors, intrinsic scatter, and

selection effects. Nonetheless, we have revealed unexpected outcomes regarding the slope

and evolution parameter, which opens room for further investigations and refinements.

As mentioned in previous sections, our current likelihood function assumes a normal

distribution for the X-ray luminosity throughout the entire redshift range, when in truth,

it should have a temporal dependency that better represents the Poissonian behavior of the

observed photon counts. By not considering this feature, we might be introducing a bias

in the evolution parameter. We intend to correct this issue in future works, which would

require deep knowledge of the X-ray luminosity behavior in our cluster sample, as well as

modifications in the selection functions, especially in the simulated CODEX selection for

RASS’s images, detailed in section 3.2.1.

Another adjustment intended for future studies is to consider the correlation between

the cluster’s mass and richness. At present, our statistical analysis adopts the measured

richness as the cluster’s true richness, without accounting for measurement errors or intrin-

sic scatter. (Kiiveri et al., 2021) have already investigated the λ−M relation for clusters

in the CODEX catalog, which could be implemented in our study. Although incorporating

this would introduce a new parameter for the likelihood integration, leading to an increase

in computational time, it is essential for ensuring a statistically robust analysis.

In conclusion, when carefully accounting for uncertainties, biases, and selection effects,

we get closer to revealing the astrophysical properties of our data. As we progress, the

insights gained from this study may pave the way for future research pursuits, particularly

in constraining the calibration and understanding the evolution of the M − LX relation,

contributing to a more profound understanding of galaxy clusters.
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Appendix





Appendix A

CODEX galaxy cluster subsamples

Table A.1 - The CODEX-CFHT weak lensing sample of 35 galaxy clusters. The first 28

clusters pass our selection and comprise the Main-subsample. The last seven clusters do not

pass the selection.

Cluster ID zspec < log10 M200c >

M⊙

med(log10 M200c)

M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

12451 0.5840 14.67 14.8+0.2
−0.3 5.3 ± 1.8 68.6± 3.9

13390 0.623 14.80 15.0+0.3
−0.4 9.9 ± 2.1 120.6± 5.8

16566 0.382 14.53 14.6+0.1
−0.3 2.8 ± 1.1 108± 7

24865 0.486 14.84 14.9+0.1
−0.2 4.6 ± 1.6 138± 23

24872 0.402 14.64 14.7+0.2
−0.3 4.9 ± 1.2 149± 10

24925 0.2920 14.81 14.9+0.2
−0.2 2.6 ± 0.6 64.8± 3.5

24981 0.411 14.56 14.6+0.2
−0.3 7.4 ± 1.8 123± 12

25953 0.478 14.61 14.6+0.2
−0.2 4.6 ± 1.3 131± 19

29283 0.549 14.93 15.0+0.1
−0.3 6.3 ± 2.1 129± 30

29284 0.550 14.19 14.3+0.3
−0.6 4.8 ± 1.9 122± 33

29811 0.488 15.18 15.2+0.1
−0.2 5.5 ± 1.8 143.8± 4.9

35361 0.414 14.70 14.7+0.2
−0.1 5.7 ± 1.2 103± 9

35399 0.516 14.80 14.8+0.2
−0.2 5.0 ± 1.9 153± 31

36818 0.581 14.98 15.0+0.2
−0.2 2.8 ± 1.4 104.5± 5.2

41843 0.434 14.28 14.4+0.2
−0.5 3.7 ± 1.3 119± 13

41911 0.386 14.78 14.8+0.2
−0.2 3.6 ± 1.3 104± 7

43403 0.422 14.89 14.9+0.1
−0.2 4.5 ± 1.6 130± 10

46647 0.261 14.6 14.7+0.2
−0.3 1.4 ± 0.5 66.2± 2.6

46649 0.619 15.08 15.1+0.1
−0.2 9.9 ± 3.2 85± 31

47981 0.543 14.54 14.7+0.3
−0.6 6.8 ± 2.5 136± 33

50492 0.527 15.19 15.2+0.1
−0.1 7.0 ± 2.0 163± 30

50514 0.466 14.23 14.3+0.3
−0.5 3.4 ± 1.3 82± 13

52480 0.565 15.00 15.0+0.2
−0.2 6.8 ± 2.1 106± 54

54795 0.428 14.34 14.4+0.3
−0.4 5.7 ± 1.6 125± 35

55181 0.547 14.51 14.6+0.2
−0.4 5.5 ± 2.2 149± 43

56934 0.459 14.93 15.0+0.2
−0.3 4.4 ± 1.6 79.6± 4.5

Continue in next page. . .
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Table A.1 - Continued

Cluster ID zspec < log10 M200c >

M⊙

med(log10 M200c)

M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

59915 0.475 15.14 15.2+0.1
−0.2 4.0 ± 1.4 143± 25

64232 0.529 14.19 14.3+0.4
−0.7 4.7 ± 1.8 112± 37

24877 0.592 15.23 15.2+0.2
−0.1 3.9 ± 1.6 44.3± 4.4

25424 0.509 14.37 14.4+0.2
−0.3 5.3 ± 2.1 59.7± 2.9

25428 0.209 13.5 - 6.0 ± 2.5 3.6± 1.3

27974 0.475 14.67 14.7+0.1
−0.2 8.1 ± 3.6 37.1± 6.2

54796 0.159 14.14 14.3+0.3
−0.4 2.7 ± 0.4 30.1± 2.3

54799 0.418 14.3 - 1.7 ± 0.9 5.4± 2.9

55184 0.445 14.3 - 4.0 ± 2.6 3.8± 1.4

Table A.2 - The 83 CODEX galaxy clusters in Herbonnet et al. (2020). The first 46 clusters

pass our selection and comprise the Herbonnet20 subsample. The last 37 clusters do not pass

the selection.

Cluster ID z M200c

1014M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

6588 0.173344 13.3± 4.0 4.485± 0.215 147.794± 5.338

9037 0.288085 16.5± 4.0 3.390± 0.551 107.109± 3.818

9481 0.327063 11.4± 2.6 5.406± 0.688 112.983± 4.442

12734 0.136272 11.2± 2.7 3.589± 0.277 80.169± 3.934

16819 0.140942 14.1± 3.4 3.693± 0.309 68.911± 6.436

17346 0.278227 15.0± 3.1 5.794± 0.700 139.679± 4.325

20505 0.128743 5.9± 2.4 2.225± 0.291 112.159± 7.218

20766 0.407627 18.8± 3.7 4.073± 1.020 138.031± 5.001

22133 0.225804 8.2± 2.1 13.520± 0.733 195.604± 6.526

24614 0.544257 28.8± 8.1 17.200± 2.831 254.152± 8.481

25247 0.204750 10.3± 2.6 5.468± 0.624 77.789± 5.370

25809 0.232092 14.1± 3.8 7.564± 0.651 200.012± 6.177

26063 0.167284 11.3± 2.8 10.100± 0.569 106.759± 4.006

27969 0.103536 4.4± 2.3 2.617± 0.262 67.538± 4.629

29227 0.170439 4.0± 2.3 6.033± 0.550 91.809± 5.673

29249 0.286628 7.2± 2.4 5.797± 0.905 92.144± 4.678

29315 0.281980 11.1± 3.9 11.032± 1.490 136.063± 4.952

29657 0.126764 7.0± 2.6 1.485± 0.194 62.733± 3.693

29715 0.122491 8.5± 3.6 3.453± 0.304 62.367± 3.760

30718 0.228355 7.9± 2.7 4.124± 0.636 124.958± 6.199

31149 0.225728 18.7± 4.3 8.851± 0.627 170.341± 6.440

Continue in next page. . .
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Table A.2 - Continued

Cluster ID z M200c

1014M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

32750 0.191902 5.4± 2.5 5.438± 0.664 129.214± 5.314

35445 0.114230 3.2± 2.2 2.392± 0.208 86.607± 4.290

35646 0.426069 14.8± 3.6 4.398± 0.998 124.500± 5.884

35839 0.159558 6.7± 2.4 3.116± 0.276 70.497± 4.537

39497 0.142196 10.8± 3.1 7.399± 0.500 115.912± 6.153

41892 0.545885 23.4± 7.4 15.367± 3.896 140.075± 5.887

45788 0.230294 16.4± 3.0 13.758± 1.472 156.047± 7.816

45867 0.109716 13.4± 3.3 1.901± 0.190 78.369± 4.047

46421 0.250618 11.0± 2.6 5.460± 1.245 96.034± 3.638

48016 0.167845 10.0± 2.4 4.246± 0.469 177.160± 5.392

49187 0.516370 4.3± 4.3 9.394± 2.461 61.039± 5.674

53349 0.252525 15.8± 4.1 22.090± 1.762 167.809± 8.460

53527 0.225154 10.7± 2.9 1.307± 0.446 80.657± 3.575

55475 0.229432 6.4± 2.5 4.389± 0.631 94.280± 4.337

57879 0.185832 23.9± 4.4 19.791± 1.590 184.055± 5.524

58218 0.120026 4.6± 2.3 2.083± 0.275 66.424± 4.204

59487 0.295476 16.7± 3.5 6.863± 1.091 139.008± 4.165

60202 0.189176 4.6± 2.6 3.767± 0.647 61.161± 4.304

60634 0.540393 16.3± 4.5 16.396± 3.264 158.808± 5.674

64520 0.2080 6.4± 2.7 2.114± 0.365 103.479± 6.664

64521 0.2130 7.0± 2.5 2.050± 0.367 103.311± 3.188

64532 0.208744 8.5± 2.4 6.052± 0.629 169.655± 5.368

65130 0.247569 9.1± 4.0 6.793± 0.912 116.140± 5.219

66237 0.3062 12.0± 3.0 2.766± 0.755 104.760± 9.506

70574 0.110 6.9± 2.6 2.491± 0.264 60.704± 3.970

32567 0.094953 6.1± 2.5 1.616± 0.183 80.474± 4.364

64209 0.0562 8.4± 3.3 8.38± 2.97 71.06± 4.11

55260 0.0370 7.8± 3.2 7.89± 0.49 62.93± 3.54

72640 0.0564 4.1± 2.7 2.43± 0.15 44.38± 3.02

20507 0.1269 3.8± 2.4 3.63± 0.36 44.81± 3.70

65975 0.0652 6.5± 3.0 1.40± 0.06 38.00± 3.57

43549 0.1405 1.6± 0.41 3.43± 0.35 112.21± 12.67

25322 0.1474 5.0± 2.5 6.07± 0.54 41.24± 2.86

57829 0.0956 1.05± 0.29 5.69± 0.39 88.16± 7.37

62335 0.0869 8.3± 3.5 5.88± 0.37 82.33± 8.42

35088 0.0580 0.15± 0.15 1.60± 0.14 37.99± 2.68

35137 0.0645 1.39± 0.33 18.65± 5.86 60.00± 5.64

35342 0.0890 4.4± 2.3 1.46± 0.14 39.27± 4.03

44634 0.0586 3.7± 2.9 1.14± 0.10 49.72± 3.51

53574 0.0783 1.81± 0.38 1.92± 0.64 11.48± 3.31

53571 0.0760 3.2± 2.4 1.42± 0.13 63.37± 4.12

53572 0.0960 2.9± 2.2 2.74± 0.25 40.78± 3.77

17773 0.0865 2.5± 2.4 1.31± 0.14 22.61± 2.69

Continue in next page. . .
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Table A.2 - Continued

Cluster ID z M200c

1014M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

35471 0.0668 1.2± 0.31 2.68± 0.17 110.86± 4.95

35543 0.0912 1.45± 0.34 2.02± 0.64 154.77± 6.07

68066 0.0981 8.4± 3.0 3.92± 0.33 98.63± 4.40

68049 0.1031 6.8± 2.8 4.08± 0.39 44.12± 3.75

50350 0.0925 0.21± 0.21 2.61± 0.22 32.30± 3.46

68241 0.0929 3.9± 2.4 9.00± 0.56 32.80± 4.01

41713 0.1203 3.0± 2.3 2.07± 0.21 42.84± 3.50

68307 0.0743 8.8± 3.2 1.42± 0.15 52.33± 3.75

60040 0.1515 2.6± 2.1 2.23± 0.30 19.62± 2.16

24691 0.1171 2.3± 2.3 2.91± 0.25 34.28± 3.04

64081 0.0886 3.8± 2.7 2.42± 0.20 50.47± 3.08

53063 0.0910 5.1± 3.1 4.18± 0.25 83.02± 7.24

40075 0.2566 1.01± 0.21 2.10± 0.42 53.09± 2.86

26180 0.3865 0.38± 0.25 2.50± 0.58 48.01± 4.29

39357 0.1668 6.90± 2.60 2.60± 0.28 51.12± 2.78

39356 0.1944 6.10± 2.50 2.50± 0.38 151.94± 16.25

53810 0.1409 1.68± 0.33 3.30± 0.47 100.24± 12.79

55927 0.1998 3.10± 0.23 2.30± 0.33 39.47± 5.33

17449 0.4485 8.70± 3.80 3.80± 0.36 45.59± 3.62

Table A.3 - The 84 CODEX galaxy clusters in Oguri et al. (2021). The first 27 clusters

pass our selection and comprise the Oguri21 subsample. The last 57 clusters do not pass the

selection.

Cluster ID z M200c

1014M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

22080 0.5243 8.18+11.61
−4.65 4.42± 1.26 82.92± 4.87

52342 0.3267 6.23+7.33
−5.21 2.97± 1.02 109.38± 5.18

52344 0.2032 5.96+7.20
−4.70 2.41± 0.48 83.68± 4.19

52413 0.2777 5.08+6.07
−4.11 4.84± 0.85 84.82± 6.61

52418 0.3477 6.87+8.08
−5.71 3.08± 0.90 104.67± 4.47

52985 0.1358 6.20+7.09
−5.33 3.56± 0.33 99.13± 4.35

54774 0.2974 3.74+4.66
−2.91 2.88± 1.12 60.38± 4.47

55040 0.3742 5.07+7.81
−2.46 2.98± 0.94 68.06± 2.91

55515 0.1968 3.09+3.84
−2.42 4.58± 0.54 64.35± 2.87

56923 0.1954 2.13+3.09
−1.18 0.61± 0.25 62.14± 4.23

57004 0.3276 4.65+5.64
−3.69 3.59± 0.86 112.65± 6.09

Continue in next page. . .
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Table A.3 - Continued

Cluster ID z M200c

1014M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

57070 0.3643 121.25+139.14
−104.19 2.88± 0.91 122.91± 5.04

57132 0.3736 6.09+7.82
−4.43 2.22± 0.85 68.93± 3.54

57165 0.4563 3.19+4.43
−2.04 1.74± 0.92 65.89± 3.82

57323 0.4799 2.19+4.44
−0.64 2.92± 1.34 72.33± 3.86

57507 0.5822 87.49+106.12
−69.86 13.12± 2.92 109.76± 5.99

57654 0.2282 5.44+6.61
−4.20 0.66± 0.31 75.07± 2.72

57879 0.1843 15.39+16.81
−14.05 19.79± 1.59 184.05± 5.52

58013 0.1323 6.26+7.25
−5.32 1.20± 0.20 86.59± 4.57

58014 0.5540 4.22+6.24
−2.41 6.01± 2.18 72.31± 3.72

58106 0.4053 4.51+6.86
−2.95 3.78± 1.26 66.16± 3.39

58165 0.2953 4.07+5.79
−2.55 2.12± 0.71 63.37± 3.87

59444 0.3884 7.13+8.89
−5.10 4.79± 1.56 80.70± 6.03

59524 0.4882 2.38+2.96
−1.80 5.92± 2.87 77.87± 4.49

59533 0.2817 8.56+9.87
−7.25 5.55± 0.88 124.32± 4.23

59607 0.2771 3.95+5.21
−2.84 2.01± 0.58 88.99± 3.92

60155 0.1885 4.57+5.22
−3.94 2.36± 0.52 85.36± 3.36

21636 0.5003 2.90+4.25
−1.75 10.68± 2.06 55.57± 3.77

21642 0.2261 1.68+2.16
−1.22 1.50± 0.32 29.30± 1.94

21643 0.2940 5.67+7.58
−3.77 1.16± 0.36 42.25± 3.01

21644 0.0946 0.97+1.38
−0.58 1.40± 0.12 27.14± 2.03

21765 0.2721 2.75+3.36
−2.17 1.94± 0.42 32.30± 2.60

21887 0.2543 2.95+3.89
−2.14 0.83± 0.26 45.85± 2.50

21908 0.3834 3.46+4.33
−2.67 1.13± 0.50 51.52± 3.40

21909 0.2294 3.76+4.66
−2.79 1.56± 0.36 31.54± 3.37

21999 0.2540 2.44+4.01
−1.47 0.58± 0.28 34.19± 3.14

22086 0.1357 1.78+2.64
−0.97 0.35± 0.11 9.25± 1.30

22094 0.1355 2.09+2.55
−1.65 1.14± 0.15 29.93± 3.04

22100 0.1313 3.67+4.81
−2.57 0.26± 0.09 18.04± 2.60

52422 0.1964 2.21+2.86
−1.61 1.75± 0.39 62.17± 6.28

52427 0.2792 2.42+4.13
−1.23 1.57± 0.56 57.93± 7.69

52589 0.1633 1.98+2.67
−1.35 0.76± 0.21 44.75± 2.47

55044 0.1938 0.19+0.56
−0.01 6.15± 2.43 11.89± 1.65

56910 0.1603 1.63+2.66
−0.71 1.05± 0.35 13.98± 1.61

56916 0.1097 1.74+2.30
−1.22 0.51± 0.12 22.72± 2.65

56920 0.2829 2.29+2.89
−1.71 2.00± 0.65 41.10± 3.05

56969 0.2827 3.10+3.83
−2.43 1.83± 0.67 52.41± 3.52

57043 0.1536 4.92+5.62
−4.25 9.64± 1.97 53.08± 3.28

57081 0.1398 0.16+0.20
−0.12 5.49± 1.42 19.21± 1.94

57083 0.3407 2.87+3.61
−2.14 2.07± 0.66 31.89± 2.87

57134 0.3749 2.81+3.61
−2.07 2.47± 0.84 17.52± 3.04

57143 0.1109 1.80+2.48
−1.07 0.60± 0.11 10.50± 1.79

57163 0.1006 1.86+2.88
−1.08 0.33± 0.08 41.36± 3.05

57175 0.4114 5.82+7.94
−3.85 2.87± 1.05 46.87± 4.26

Continue in next page. . .



118 Appendix A. CODEX galaxy cluster subsamples

Table A.3 - Continued

Cluster ID z M200c

1014M⊙

LX

[1044 h−2
70 erg s−1]

λSDSS

57260 0.2222 1.80+3.18
−0.99 0.82± 0.33 27.36± 2.00

57399 0.1877 2.56+3.22
−1.95 1.96± 0.40 41.92± 4.37

57511 0.1049 0.60+1.07
−0.11 0.23± 0.09 16.25± 1.69

57524 0.3241 3.68+4.65
−2.70 2.38± 0.71 53.61± 4.57

57528 0.3306 3.64+5.52
−1.89 1.24± 0.54 46.64± 4.58

57585 0.3144 3.56+4.58
−2.50 2.69± 0.73 55.81± 3.24

57600 0.1122 2.43+3.12
−1.74 0.21± 0.09 7.72± 0.94

57608 0.1417 2.40+2.90
−1.93 1.14± 0.21 34.25± 3.05

57684 0.1709 3.97+5.10
−2.80 1.09± 0.26 39.53± 3.10

57686 0.1848 1.07+1.58
−0.49 6.33± 2.42 27.66± 2.43

57732 0.4495 4.52+6.06
−3.00 6.09± 1.63 48.24± 4.52

57764 0.1417 1.46+2.34
−0.69 0.67± 0.35 38.17± 2.51

58008 0.1072 1.22+1.36
−0.85 0.50± 0.11 13.96± 2.07

58022 0.1528 5.94+7.72
−4.21 0.75± 0.19 53.99± 3.75

58031 0.4044 5.98+8.34
−3.90 2.30± 0.97 52.69± 2.95

58083 0.4980 3.98+4.87
−3.15 5.04± 1.97 56.46± 2.94

58098 0.1395 2.30+3.36
−1.26 0.85± 0.19 44.17± 3.02

58158 0.4121 2.35+3.40
−1.19 3.51± 1.31 43.89± 3.25

59364 0.2060 1.69+2.46
−0.94 0.99± 0.44 39.58± 5.04

59400 0.0591 2.23+2.68
−1.76 0.95± 0.13 54.13± 4.65

59454 0.3762 3.18+4.23
−2.11 2.22± 0.98 28.93± 2.65

59461 0.2603 1.81+2.42
−1.23 0.56± 0.37 12.31± 1.86

59469 0.1116 1.33+1.88
−0.85 0.64± 0.17 19.68± 1.98

59517 0.3843 3.41+5.25
−2.07 2.27± 0.97 12.68± 1.79

59526 0.2808 3.45+5.55
−2.06 2.52± 0.70 47.40± 3.14

59604 0.2702 5.81+8.06
−3.77 1.28± 0.47 39.35± 2.44

59610 0.2860 5.71+8.79
−3.52 5.84± 1.16 53.84± 3.42

60061 0.2506 0.60+1.09
−0.07 0.98± 0.39 19.38± 1.99

60076 0.1551 1.94+2.68
−1.23 1.23± 0.24 55.35± 3.41

60091 0.2889 2.11+2.94
−1.33 1.46± 0.52 24.38± 3.19
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