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ABSTRACT
It is shown that in addition to four outer planets (Jupiter to Neptune) Pluto should be also taken into

account in studies of the orbital dynamics in the trans-Neptunian region. PlutoÏs e†ect is particularly
large on the orbits in the 2 :3 Neptune mean motion resonance. The trajectories found stable over the
age of the solar system when only the gravitational e†ect of four outer planets is considered are often
destabilized there in the e†ect of close Pluto approaches. We estimate that many dynamically primordial
bodies moving initially with low to moderate amplitudes in the 2 :3 Neptune resonance (semimajor axis
39.45 AU) have been removed from their respective, otherwise stable, locations, when their resonant
amplitudes increased in the course of close encounters with Pluto. At large libration amplitude, the
orbits became exposed to chaotic changes, and objects were ejected from the 2 :3 resonance to Neptune-
crossing trajectories. The process of the resonant amplitude excitation was especially efficient for orbits
with moderate and large inclinations (i[ 8¡), where more than 50% of the population has been removed
in 4 ] 109 yr. We estimate that the remaining part of the primordial resonant population at these incli-
nations should have had its resonant amplitude excited to about 80¡. The e†ect of Pluto on low-
inclination orbits is smaller. We have examined the distribution of 33 objects observed on the 2 :3 reso-
nant orbits (Plutinos) and found that there could actually exist indications of the above mechanism.
The resonant amplitudes of Plutinos are unusually high for 0.15\e\0.3 when compared with randomly
generated distribution, and, also, there is only one object (1997 QJ4) on an orbit similar to that of Pluto.
In fact, a certain gap may be noticed in the distribution of Plutinos at PlutoÏs inclination and eccentric-
ity, which, if conÐrmed by future observations, may be the consequence of PlutoÏs sweeping e†ect.
Key words : celestial mechanics, stellar dynamics È Kuiper belt, Oort cloud

1. INTRODUCTION

The existence of a belt of small bodies beyond Neptune
has been independently suggested by Edgeworth (1949) and
Kuiper (1951)Èhereafter we refer to the belt as the
Edgeworth-Kuiper belt (EKB). (1980) proposedFerna� ndez
that such a belt could be a reservoir of short-period comets
whose low inclinations, as was later shown by Duncan,
Quinn, & Tremaine (1988), cannot be explained assuming
their origin in the isotropic Oort cloud. The Ðrst direct
observational evidence of the EKB was the discovery of
1992 QB1 by Jewitt & Luu (1993).

The Ðrst results on the stability of the trans-Neptunian
region were obtained by Levison & Duncan (1993) and
Holman & Wisdom (1993) by means of numeric simula-
tions. In later work, Duncan, Levison, & Budd (1995)
numerically computed the evolution of four outer planets
(Jupiter to Neptune) and 1300 test particles (with initial
inclination equal to 1¡) over 4 ] 109 yr and mapped the
stability of orbits in the 32È50 AU semimajor axis interval
with the following Ðndings : (1) the stable orbits with peri-
helion distances q less than 35 AU were found to be associ-
ated with the Ðrst-order mean motion resonances with
Neptune, where the phase-protection mechanism (as in the
case of Pluto in the 2 :3 resonance ; Cohen & Hubbard 1965)
and the absence of overlapping inner secular resonances
(Morbidelli, Thomas, & Moons 1995) both contribute to
orbit preservation ; and (2) the unstable orbits with q [ 35
AU were found to be related to the perihelion and node

secular resonances (mainly and located atl8, l17, l1840 \ a \ 42 AU, according to et al. 1991).Knez— evic�
There are currently registered about 120 EKB objects in

the Minor Planet Center catalog.1 Their orbital distribu-
tion is well correlated with the results of Duncan et al.
(1995) in the sense that most of them have orbits character-
ized by long-term stability. Thirty-three of the known EKB
objects and Pluto happen to fall in the region of the 2 :3
mean motion resonance with Neptune at the semimajor
axis a \ 39.45 AU.

Pluto has a peculiar orbit. It is highly eccentric (e\ 0.25)
with large inclination (i \ 17¡). Its resonant argument p \

where is the mean Neptune longitude and2jN [ 3j] -, jNj and - are the mean and perihelion longitudes of Pluto,
librates around 180¡ with D80¡ amplitude and(Ap)
D20,000 yr period. In addition to the 2 :3 commensur-
ability, PlutoÏs argument of perihelion (u) librates about 90¡
(Williams & Benson 1971). Its amplitude is approx-Auimately 23¡, and its period is about 3.8] 106 yr. The libra-
tion of u is a consequence of Pluto being located in KozaiÏs
secular resonance (Kozai 1962). In addition to the 2 :3 and
Kozai resonances, there is a commensurability of 1 :1
between libration of u and the circulation of the angle

(Milani, Nobili, & Carpino 1989), where ) and)[)N )Nare the nodal longitudes of Pluto and Neptune, respectively.

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 At : http ://cfa-www.harvard.edu/cfa/ps/lists/TNOs.html.
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The long-term stability of PlutoÏs orbit has been con-
Ðrmed by Kinoshita & Nakai (1984) and Sussman &
Wisdom (1988). It turned out that in spite of the positive
maximum Lyapunov exponent (D10~7 yr~1) its orbit is
stable over the age of the solar system.

The 33 Plutinos sharing the 2 :3 resonance with Pluto
have eccentricities in the range from 0.08 to 0.35 and incli-
nations smaller than 20¡ (only one known resonant
objectÈ1996 KY1Èhas the inclination of about 30¡). The
orbits of most Plutinos are expected to be stable on long
time intervals. The orbital elements of Plutinos are,
however, usually not determined with sufficient precision to
make the long-term simulations of their orbits meaningful.

Concerning the global stability of the 2 :3 Neptune reso-
nance, the works based on averaged circular (Morbidelli et
al. 1995) and circular (Malhotra 1996) models indicated that
the central resonant space is stable over the age of the solar
system, but both were missing an important ingredientÈ
the complete perturbations of outer planets other than
NeptuneÈin order to provide sufficiently reliable stability
boundaries. The stability boundaries were as a function of
the resonant amplitudes and computed for the orbitsAp Auwith Pluto-like inclinations by Levison & Stern (1995).
They have found that the orbits starting with areAp\ 50¡
stable and the orbits with are unstable overAp [ 120¡
4 ] 109 yr. For intermediate resonant amplitudes Ap,usually a small amplitude of u-libration is needed for stabil-
ization of the orbit. The stability of the 2 :3 resonance was
further investigated by Morbidelli (1997) with the emphasis
on a number of escaping objects and their relation to the
short-period comets.

We analyze the orbital distribution of Plutinos in ° 2 and
show that there can actually exist some uncommon features
that could have resulted only with difficulty from the
secular evolution under the perturbations of four outer
planets. Although this observational evidence is based on a
small number of known 2 :3 resonant objects and their fre-
quently inaccurate orbital elements, we believe that it is
worth of examining the possible causes.

Although a number of primordial and collision mecha-
nisms that complicate the matter could had been involved,
some of the features of Plutino orbital distribution may be a
result of the interaction with Pluto in the past 4 ] 109 yr.
We conjecture that the small Pluto mass (the total mass of
the Pluto-Charon binary is estimated to be 1/1.35 ] 108 of
the SunÏs mass) can be compensated both by the length of
the time interval in question and by the similarity of the
orbital parameters of Pluto and Plutinos (° 3). In order to
test this hypothesis we have performed several numeric
simulations considering Pluto as the Ðfth massive body in
addition to the four outer planets. The setup and results of
our main experiment, in which we place the test particles in
the 2 :3 and Kozai resonances, are explained in ° 3. A simple
classiÐcation of orbits based on their interaction with Pluto
is given in ° 4.

We analyze the e†ect of Pluto on 2 :3 resonant orbits and
show that it results in an important excitation of the reso-
nant amplitude PlutoÏs e†ect is especially important onAp.the inclined orbits, and we show that a large number of
objects have been removed from the 2 :3 resonance in conse-
quence of the excitation of beyond the stability limits.ApThe surviving part of the 2 :3 resonant population should
have had the mean of about 80¡ (° 5). The dependence ofApthese results on the eccentricity is studied in ° 6.

As this paper was being revised, we learned about the
work of Yu & Tremaine (1999). The authors develop a sim-
pliÐed model of Plutino dynamics under the joint e†ect of
Neptune and Pluto. As this work is closely related to the
subject of our paper, we will comment on the results of Yu
& Tremaine whenever we Ðnd it appropriate.

2. PLUTO AND THE ORBITAL DISTRIBUTION OF

PLUTINOs
There are Pluto and 33 trans-Neptunian objects

(Plutinos) located in the 2 :3 mean motion resonance with
Neptune that are registered in the Minor Planet Center
Catalog at the time of writing of this paper (1999 March).
Thirteen (39%) of the Plutinos are objects observed in more
than one opposition with the orbital elements determined
with good precision. The other 20 Plutinos (61%) are single-
opposition objects for which it was assumed in order to
allow for the computation of the orbital elements that they
were observed at perihelion (i.e., assumed mean anomaly
M \ 0). The mean anomaly computed for the multi-
opposition Plutinos is generally nonzero (but usually within
^40¡Èwith the exception of 1996 RR20, which is far from
perihelion with This means, as the distributionM \ 112¡.3).
of Plutinos in the mean anomaly should be the same for
single- and multiopposition objects, that the orbital ele-
ments of single-opposition Plutinos are generally imprecise,
and for some of them the determination of the orbital ele-
ments may be wrong as the assumption on their present M
can turn out to be invalid. The sizes of known Plutinos
range between 50 and 300 km in diameter and are fairly
uncertain owing to unknown albedos.

Jewitt, Luu, & Trujillo (1998) estimate on the basis of the
current discovery rate that there are between 7000 and
14,000 objects larger than 100 km in diameter in the 2 :3
Neptune mean motion resonance. The observations are
providing new EKB objects with an increasing discovery
rate, and it is clear that there will be soon available an
extensive database of PlutinosÏ orbital and physical charac-
teristics. The question is, however, whether there is some-
thing that can be inferred on the orbital distribution of
Plutinos at present, from the orbital properties of the 33
observed bodies. We will show in the following that the
population of 2 :3 resonant objects really di†ers in several
aspects from what would be expected to be an initially
random distribution shaped by the long-term gravitation
e†ect of four outer planets.

We have started our analysis by advancing Pluto and
33 Plutinos to the same date : 1999 January 22 (MJD
2,451,200.5). First, the four outer planets (Jupiter to
Neptune) were propagated to the catalog date of each
object, and then, each object was individually integrated as
a massless particle with four outer planets up to the destina-
tion time. Even if the integration time was at most only
1960 days, this procedure cannot be substituted by a shift of
M according to the mean motion because the short periodic
perturbations of Jupiter cause variations of semimajor axis
of some Plutinos as large as 0.08 AU with a periodicity of
11.8 yr.

In order to suppress the short periodic variations of
Plutino trajectories and retain the resonant and secular
variations, we have applied the digital Ðlter of Quinn, Tre-
maine, & Duncan (1991) in the following experiment. In this
experiment, Pluto and Plutinos were integrated with four
outer planets for 107 yr using the symmetric multistep inte-
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grator of Quinlan & Tremaine (1990). The time step for the
integration was less than 0.1% of the orbital period so that
no spurious instabilities should have been created by low-
order resonances between the time step and the dynamical
frequencies. Tests have also been done changing the time
step. The Ðltering procedure was sequentially applied 3
times on the integration output increasing the sampling
interval at each step from the initial 2 to the Ðnal 200 yr. All
periods shorter than 1200 yr were suppressed by a factor of
105 in amplitude, and the periods larger than 2000 yr were
retained in the Ðltered signal. The Ðltered elements were
a exp •p, e exp •-, and i exp •) (i is the orbital inclination
and •\ J[1).

The purpose of this integration was in numeric determi-
nation of the orbital elements that would characterize the
properties of the resonant and secular motions of Plutinos.
The instantaneous (osculating) orbital elements a, e, and i
on 1999 January 22 were not suitable for this purpose
because of the following reason. Assume a Plutino to have
the same amplitudes and the same ““mean ÏÏ inclina-Ap, Aution as Pluto, but a phase di†erence in p and u from PlutoÏs
resonant angle and perihelion argument on 1999 January
22. PlutinoÏs instantaneous orbital elements a, e, and i on
1999 January 22 were then considerably di†erent from the
orbital elements of Pluto on this date, in spite of both orbits
having the same resonant and secular evolutions.

There are a number of di†erent approaches to this
problem. In the case of a motion in the mean motion reso-
nance, the proper orbital elements can be deÐned as the
values of instantaneous a, e, and i at intersections of a tra-
jectory with some phase space manifold &(Nesvorny�
Ferraz-Mello 1997), as the maximum or minimum values of
instantaneous a, e, and i over a long time interval
(Morbidelli 1997) or as amplitudes of resonant angles com-
puted as the maximum excursion of the resonant angles
from the libration centers (Levison & Stern 1995).

Following the approach of & Ferraz-MelloNesvorny�
(1997) the natural choice of the manifold is p \ 180¡ and
u\ 90¡ as these values correspond to the libration centers
of the 2 :3 and Kozai resonances. The behavior of trajec-
tories in the 2 :3 and Kozai resonances (Morbidelli et al.
1995) is such that the instantaneous orbital elements a and e

oscillate with p while the e and i change is correlated with u.
When p \ 180¡ both a and e are at the extrema of their
resonant oscillations, a having the value corresponding to
the maximum excursion from the center of the 2 :3 reso-
nance. When u\ 90¡, i is also at the maximum excursion
from the center of the Kozai resonance.

In Figure 1 we show the semimajor axis, eccentricity, and
inclination of Pluto and Plutinos at the Ðrst intersection of
their trajectories with p \ 180¡ and u\ 90¡ (or u\ 270¡È
the value corresponding to the second libration center of
the Kozai resonance ; see Morbidelli et al. 1995Èif there is
no intersection with u\ 90¡ within 107 yr). The open
circles in Figure 1 are the multiopposition Plutinos, the dots
are the single-opposition objects, and the circled plus sign
marks the position of Pluto. As we consider the Ðrst inter-
section, there is one symbol per object in Figure 1. Owing to
the symmetry of the 2 :3 resonance with respect to the libra-
tion centers, the next intersection of an orbit with p \ 180¡
would be symmetrically placed in the opposite half-plane of
the 2 :3 resonance in Figure 1a. A similar symmetry holds
for the orbits with the libration of u for which the next
intersection of u\ 90¡ would occur in the opposite half-
plane of the Kozai resonance in Figure 1b.

The bold lines in Figure 1a are the separatrices and libra-
tion centers of the 2 :3 resonance. Other lines in the Ðgure
show the positions of the secular resonances and(l8, l18,Kozai resonance denoted by u) and the secondary reso-
nance 5 :1, where the resonant frequency is a factor of 5
larger than the frequency of the perihelion longitude. Other
secondary resonances, where the integer ratios of the reso-
nant and perihelion frequencies are smaller, are located at
lower eccentricities under the dotted line of the 5 :1 second-
ary resonance. The bold lines in Figure 1b are separatrices
of the Kozai resonance, and the dotted line shows the libra-
tion centers of u. Locations of the resonances and their
separatrices have been computed by Thomas (1998) follow-
ing the seminumeric method of Henrard (1990).

Most of the Plutinos are located at 39.25 \ a \ 39.7 AU
and 0.08 \ e\ 0.35 in Figure 1a. In this central area of the
2 :3 resonance, the orbits are stable over the age of the solar
system (Morbidelli 1997). This is in agreement with the pre-
sumption that the observed Plutinos are long-lived 2 :3

FIG. 1.ÈOrbital elements of Pluto (circled plus sign), multiopposition (open circles) and single-opposition Plutinos (dots) at the time when their p \ 180¡
and u\ 90¡ . The separatrices and libration centers of the 2 :3 Neptune resonance are shown by bold lines in (a). The other lines denote the locations of the
secular (u-libration in Kozai resonance, and and secondary resonances (5 :1). The bold lines in (b) show the location of the separatrices of the Kozail8 l18)resonance ; the dashed line denoted by u is its libration center. In (a), note the lack of objects near the libration centers of the 2 :3 resonance (a \ 39.45 AU) for
0.15\ e\ 0.3. In (b), there are few objects with orbital characteristics similar to PlutoÏs orbit, and among them only 1997 QJ4 has a well-determined and
stable orbit.
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resonant objects. The resonant orbits are unstable outside
the above semimajor axis limits owing to the simultaneous
presence of the and Kozai secular resonances atl18, l8,large libration amplitudes According toAp [ 130¡.

& Roig (2000) there exists another instabilityNesvorny�
under the line of the 5 :1 secondary resonance owing to the
overlap of the 2 :1, 3 :1, and 4 :1 secondary resonances. No
resonant objects are known with e\ 0.08 (Fig. 1a). The
orbits with eccentricities larger than 0.35 are also unstable.
There are the overlapping and secular resonancesl8 l18that destabilize motion there, and moreover, the orbital
perihelion is already close to the orbit of Uranus (aU \
19.22 AU) for these eccentricities. No resonant objects with
e[ 0.35 have been discovered until now.

What is surprising concerning the Plutino distribution in
Figure 1a is that in the interval 0.15 \ e\ 0.3 there are no
objects close to the libration centers (bold vertical line at
a \ 39.5 AU). The orbits of such objects would be charac-
terized by small resonant amplitudes and the sta-Ap \ 50¡
bility over the age of the solar system according to the
results of Morbidelli (1997).

The inclinations of most Plutinos are lower than 10¡, and
there is only one object, 1996 RR20 (observed in one
opposition), with an inclination larger than 20¡ (Fig. 1b).
According to & Roig (2000) the resonant orbitsNesvorny�
with large inclinations 20¡ \ i\ 30¡ are stable over the age
of the solar system. There is, however, a large observational
incompleteness at these inclinations, which means that how
fast the real density of Plutinos decreases with inclination
can only be shown by future observational searches speciÐ-
cally directed to this subject.

The resonant object, the symbol for which overlaps the
symbol of Pluto in both panels of Figure 1, is the multi-
opposition Plutino 1997 QJ4. Its orbital evolution is appar-
ently very similar to that of Pluto. The absolute magnitude
of this body is 7.5, which means a diameter between 85 km
(for 0.25 albedo) and 200 km (for 0.05 albedo). The other
object that appears close to PlutoÏs position in Figure 1b is
1998 WW24 (the point at e\ 0.2 and i\ 17¡). This is a
single-opposition object with large resonant amplitude

and is actually not in the Kozai resonance (theAp \ 115¡
separatrices of the Kozai resonance in Fig. 1b were com-
puted for Another object, the single-oppositionAp \ 0).
1997 TX8 with iD 10¡ close to the libration center of the
Kozai resonance (dotted line in Fig. 1b), was found unstable
in our integration owing to its initially large The factAp.that this objects escapes from the 2 :3 resonance in less than
107 yr suggests that the orbital elements of this body were
not correctly determined from the observation (otherwise
the Ñux of escaping bodies from the 2 :3 resonance would be
unacceptably large).

Consequently, among 33 known Plutinos, only 1997 QJ4
has an orbit with characteristics similar to PlutoÏs orbit. In
fact, a gap may be noted around Pluto in the distribution of
Plutinos in Figure 1b. This gap roughly coincides with the
area of Kozai resonance for i[ 5¡ and is probably some-
what larger for the inclinations comparable with PlutoÏs
inclination (i\ 17¡). Levison & Stern (1995) computed that
with four outer planets, the orbits at low resonant ampli-
tudes and are stable, so that, if real, this gap could beAp Auattributed to PlutoÏs own gravitational e†ect rather than to
the e†ect of four outer planets.

We show in Table 1 the amplitudes and of fourAp AuPlutinos (and Pluto) found with stable u-libration in 107 yr.

TABLE 1

PLUTO AND FOUR PLUTINOS WITH STABLE LIBRATIONS

OF THE ARGUMENT OF PERIHELION IN 107 YR

SiT Ap Au
Object (deg) (deg) (deg)

(1) (2) (3) (4)

Pluto . . . . . . . . . . . . . . . . . . . 15.9 84.9 22.9
1997 QJ4 . . . . . . . . . . . . . . 15.8 98.5 27.6
1998 UU43 . . . . . . . . . . . . 11.6 80.6 47.9
1994 TB . . . . . . . . . . . . . . . 16.7 55.2 73.1
1996 SZ4 . . . . . . . . . . . . . . 6.4 90.6 79.2

NOTE.ÈCol. (2) : Mean inclination. Col. (3) : Ampli-
tude of p Col. (4) : Amplitude of u.(Ap).All but 1998 UU43 have the center of u-libration at
90¡. 1998 UU43 oscillates about 270¡.

The perihelion argument of Pluto and 1997 QJ4 oscillates
around 90¡ with low amplitude, while u of 1998 UU43
oscillates about 270¡. 1994 TB and 1996 SZ4 are very close
to separatrices (their u starts to alternate between libration
and circulation soon after 107 yr). All these Plutinos were
observed in more than one opposition.

The maximum eccentricity versus the latter beingAp,computed as the maximum excursion of p from 180¡ on a
107 yr interval, is shown in Figure 2a. Triangles are the
Plutinos with inclination smaller than 10¡, and plus signs
are the Plutinos with i [ 10¡. Two single-opposition objects
(1996 KY1 and 1997 TX8) escaped from the 2 :3 resonance
on this interval, probably owing to the imprecise determi-
nation of their initial orbital elements from few obser-
vations. Two multiopposition objects (1993 RO and 1996
RR20) have larger than 120¡ (128¡ and 124¡,Aprespectively) and are probably unstable in the long run.

For 0.15\ e\ 0.3 in Figure 2a there is only one Plutino
with (no such object for 0.2\ e\ 0.3), which is, asAp \ 70¡
already noted in Figure 1a, a rather surprising under-
population of stable orbits. To assure that the lacklow-Apof resonant objects at low is signiÐcant, we have per-Apformed the following test.

The initial orbital elements of 150 test particles have been
randomly chosen with 39\ a \ 39.8 AU, 0.1\ e\ 0.35,
and i \ 20¡, and was determined for them by the sameApprocedure as for the real resonant objects (i.e., as the
maximum excursion from 180¡ in 107 yr). In Figure 2b, we
compare the cumulative number of real (0.15\ e\ 0.3) and
randomly generated bodies versus The number of testAp.particles was rescaled to 20 objects with which isAp\ 130¡,
the cumulative number of real Plutinos at this limit.

The cumulative number of test particles linearly increases
with the libration amplitude with a characteristic slope. We
have veriÐed that this slope is a robust feature of random
distributions of orbits in the 2 :3 resonance. The real dis-
tribution considerably di†ers from the random one. While
for the cumulative number of real PlutinosAp \ 70¡
increases less steeply with increasing for theAp, Ap [ 70¡,
slope is steeper than the random one owing e to a relative
surplus of real Plutinos with these libration amplitudes. In
contrast to the distribution of real Plutinos, the random
distribution indicates that about 25% of objects (Ðve of 20
objects) with should haveAp \ 130¡ Ap \ 70¡.

Even if the Ðnal conclusion is due to a fairly uncertain
small sample of known resonant objects, we believe that
there actually exist indications in the observed orbital
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FIG. 2.È(a) Maximum eccentricity vs. the amplitude of the resonant angle both being computed on 107 yr interval. Plutinos with i\ 10¡ are denotedAp,by triangles and those with i[ 10¡ by plus signs. PlutoÏs orbit is marked by a circled plus sign. There is an apparent lack of objects with forAp \ 70¡
0.15\ e\ 0.3. In (b) we compare the cumulative number of known Plutionos having the resonant amplitude smaller than (solid line) with a randomlyApgenerated distribution (dotted line). For there are 5 times fewer Plutinos than the randomly generated bodies. This di†erence is interesting as itAp \ 70¡
cannot be explained by the dynamical clearing of region under the e†ect of four outer planets.low-Ap

distribution of Plutinos that suggest that their resonant
amplitudes were excited to values larger than 70¡ in the
past. This fact, together with the lack of the 2 :3 resonant
objects with orbits similar to Pluto in the Kozai resonance,
are the two observational results we would like to address
in the following.

3. PLUTOÏS INTERACTION WITH THE 2 :3 RESONANT

OBJECTS

We assume that PlutoÏs orbit is ancient. Although how its
elongated and inclined orbit were formed is a debatable
question (Malhotra 1993 ; Levison, Stern, & Duncan 1999 ;
Petit, Morbidelli, & Valsecchi 1999), it is agreed that this
happened at least some 4 ] 109 yr ago. We also assume that
the gravitational pull of this planet was in the past 4 ] 109
yr proportional to the mass of 1/1.35 ] 108 fraction of the
SunÏs mass, which is about the best estimate of the total
mass of Pluto-Charon binary based on Hubble Space
Telescope (HST ) observations (see Stern & Yelle 1999). The
question is then what are the possible consequences of
PlutoÏs sweeping through the 2 :3 resonant region.

A question related to this subject was addressed by
Levison & Stern (1995). They studied the early dynamical
evolution of the Pluto-Charon binary under the e†ect of
other 2 :3 resonant bodies and suggested the possible origin
of PlutoÏs uncommon heliocentric orbit. Here, however, we
are more interested in the opposite case of PlutoÏs interaction
with the resonant objects as a possible e†ect of PlutoÏs
gravitational scattering on the 2 :3 resonant population.

According to Morbidelli (1997), the low-amplitude 2 :3
resonant orbits are stable for 0.1 \ e\ 0.3 in the model
with four outer planets (Jupiter to Neptune) in the sense
that they do not leave the resonance in 4 ] 109 yr. Even if
the range of stable resonant orbits spans a slightly larger
interval in eccentricities, for 0.1\ e\ 0.3 and theAp \ 50,
orbits are not only stable against ejection by four outer
planets, but moreover, as their proper elements are almost
constant on 4 ] 109 yr (Morbidelli 1997), the orbits do not
chaotically evolve with time. This moderate eccentricity and

resonant region is an ideal testing place forlow-ApPlutoÏs hypothetical e†ect. The secular changes of proper

orbital elements in the model with the gravitational pertur-
bations of four outer planets and Pluto must be attributed
to PlutoÏs own e†ect there.

Moreover, according to the previous section there exists
a strong motivation for a study of PlutoÏs e†ect on the
resonant orbits, which is the lack of objectslow-Apobserved on such orbits. There should exist a mechanism
other than the gravitational e†ect of the outer planets that
removed the resonant objects from there, presumably by an
excitation of their resonant amplitudes. Assuming that the
lack of Plutinos is not dynamically primordial, welow-Apsuspect two possible mechanisms of long-term excitation of

either the excitation in mutual encounters and colli-Ap :
sions between the 2 :3 resonant objects or the e†ect of close
encounters between the resonant objects and Pluto. As the
excitation happens mainly in 0.15\ e\ 0.3, we rather
think the second mechanism to be at work. Indeed, Pluto
has a mean eccentricity of 0.253, which places it close to the
center of the above interval.

In order to estimate the possible long-term e†ect of Pluto
on other 2 :3 resonant objects, we have performed several
simulations of di†erent sets of initial conditions for time
intervals ranging from 109 to 4 ] 109 yr. Pluto has been
included in these simulations as the Ðfth perturber (in addi-
tion to four outer planets) with a mass of k \ 1/1.35 ] 108
solar masses. This mass is so low that the only expected
e†ect on other resonant bodies presumably happens only
when an object approaches Pluto at a small distance. The
important quantity is then the radius of the Hill sphere of
Pluto, which is given by

RH \ aP
Ak
3
B1@3\ 0.054 AU , (1)

where is the semimajor axis of Pluto. This radius is equalaPto the distance from Pluto to the collinear stationary point
in the circular model of the SunÈPlutoÈtest particle system.
The sphere with Hill radius roughly delimits the space
where PlutoÏs e†ect on the third body is important. In our
case, the corresponding diameter of the zone of PlutoÏs
inÑuence is roughly the size of the central 2 :3 resonant
region, where Ap\ 50¡.
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The result of an encounter with Pluto depends on the
mutual velocity V between the object and Pluto. According
to (1976), a trajectory passing close to Pluto bendsO� pik
with an angle c (deÑection angle) between the asymptotes of
the incoming and outgoing trajectories given by

tan
c
2

\ (2n)2 k
bV 2 , (2)

where k \ 1/1.35 ] 108 and b is the minimum distance
between the unperturbed path of the particle and Pluto, i.e.,
the path that would be followed if the planet had no mass
(V is given in AU yr~1 and b in AU). The deÑection angle
scales as 1/V 2. If V is small, then the deÑection angle is
large, and so is the expected change of the orbital elements.
Owing to the large inclination of Pluto (17¡), there exists a
relatively large lower threshold of the mutual encounter
velocity with the low-inclination orbits dictated by the
mutual inclination of the intersecting trajectories. The
changes of orbital elements and in particular of areApexpected to be small in this case. Indeed, our preliminary
numerical simulation2 of PlutoÏs e†ect on the low-
inclination resonant orbits showed that the excitation of Apfor the initially orbits is relatively small andlow-Apaccounts for at most 20¡ change of of individual testApparticles on 5] 108 yr.

We have also noticed a weak dependence of Ap(t \
109 yr) on the initial eccentricity in this experiment. The
resonant amplitude excitation for the orbits initially with
e\ 0.15 was a factor 1.5 larger than the change of forApe[ 0.2. Yu & Tremaine (1999) suggested that PlutoÏs e†ect
should be small for low-eccentricity orbits owing to larger
mutual velocity between the test particles and Pluto.
Indeed, the mutual velocity of two bodies at the encounter
can be inferred from simple geometric considerations.
Suppose PlutoÏs orbit is Ðxed with AU,aP\ 39.45 eP\
0.25, and An object on a planar orbit ofiP \ 17¡, uP \ 90¡.
the same semimajor axis encounters Pluto at either the
descending or ascending node of PlutoÏs orbit. Choosing the
line between the Sun and PlutoÏs ascending node to be the
reference axis, we have as a necessary condition for the
intersection of both trajectories that objectÏs perihelion lon-
gitude - is

-\ ^ 1
e

e2[ eP2
1 [ eP2

, (3)

with the sign plus for the intersection in PlutoÏs ascending
node and the sign minus for the intersection in PlutoÏs
descending node. No intersection exist when e\ eP2\
0.0625 because in this case the perihelion distance of the
object is larger than the heliocentric distances of PlutoÏs
nodes. The mutual encounter velocity V is a function of the
eccentricity e. For e\ 0.1 the velocity is V \ 0.35 AU yr~1,
and for e\ 0.25 it is V \ 0.3 AU yr~1. The minimum
encounter velocity of 0.3 AU yr~1 when both orbits have
the same eccentricity is due to their mutual inclination.

Apart from the velocity the other important factor is the
frequency of mutual encounters between test particles and
Pluto. We have registered 5900 encounters within toRHPluto in 109 yr in our experiment. The number of encoun-

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
2 The setup of this preliminary simulation was the same as for the

experiment described in detail in the next section. Initially, i\ 2¡ for all
test particles.

ters per particle varies with eccentricity. While at e\ 0.1 it
is about 40, at e\ 0.25 it is only 20. This is probably the
reason that the excitation of the libration amplitude is mod-
erately larger at e\ 0.1 than at e\ 0.25 in our experiment,
contrary to what would be expected from the encounter
velocities. The cumulative deÑection angle expected at
e\ 0.1 should be, according to the above results, a factor
40 ] 0.32/20 ] 0.352\ 1.5 larger than the cumulative
deÑection angle at e\ 0.25. The larger cumulative deÑec-
tion angle translates to a larger excitation of at e\ 0.1Apobserved in our experiment.

It may be inferred from the above considerations that the
orbits with nonzero inclinations should su†er larger
changes at encounters with PlutoÏs than the orbits with zero
inclination. On the other hand, however, even an orbit with

can have a large encounter velocity at the intersectioni \ iPif the nodes of both orbits are not aligned. There is an
additional factor to be noted at this point.

Assuming the orbit of the Plutino with a \ 39.45 AU and
then this orbit is resonant both in the 2 :3 meaneD eP,motion resonance with Neptune and in the Kozai secular

resonance. Assuming additionally that both libration
amplitudes and of the Plutino orbit are zero andAp Auin an idealized case in which PlutoÏs orbit also has ApP\

then and where theAuP \ 0, p \ pP \ 180¡ u\uP\ 90¡,
index P denotes the quantities of Pluto. These conditions
result in the following relation between the mean longitudes
and nodes :

j [ jP \ 13()[ )P) . (4)

This means, as the arguments of perihelion are Ðxed at 90¡,
that the orbits intersect each other only if At such)\)P.an instant, the close encounters become possible also as

We therefore conclude that the only necessary (andj \ jP.sufficient) condition to be satisÐed in order to have close
and low-velocity encounters between Pluto and the reso-
nant objects in the Kozai resonance is the alignment of
nodes. The encounters at nodes are characterized by a
velocity V proportional to Equation (4) willo*i o\ o i[ iP o .
hold true on average even if the libration amplitudes are
nonzero.

The motion of the nodal line of PlutoÏs orbit is retrograde
and has a period of 3.8] 106 yr. A Plutino on an orbit
similar to that of Pluto naturally has a similar nodal period.
Consequently, the di†erential rotation of nodes between
Pluto and Plutino orbits will be very slow. The numeric
integration shows that if there is no interaction between
Pluto and Plutino, then has a period larger than) [ )P108 yr if o*i o is of order of a few degrees. The rotation of

is prograde when *i [ 0 and retrograde when)[ )P*i \ 0. Consequently, the period of many close encounters
between Pluto and Plutino when will be fol-) [ )P\ 0
lowed by a long period of time in which the Plutino orbit is
protected from close encounters as j [ jP D 0.

4. ESCAPES FROM INITIALLY ANDLOW-A
p

ORBITSLOW-A
u

We have simulated the evolution of 101 test particles that
were initially placed on the u-librating orbits in the 2 :3
mean motion resonance with Neptune. The initial elements
were chosen so that both the libration amplitudes of u and
of p of the particles were initially close to zero. The semi-
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major axis and eccentricity were set to 39.2 AU and 0.25,
and inclination was varied between 5¡ and 25¡ with a 0¡.2
step. The initial angles were chosen so that p \ 180¡,
u\ 90¡, and where is the node longitude)[ )N \ 0, )Nof Neptune.

As determined prior to the simulation, the initial oscu-
lating semimajor axis of 39.2 AU corresponds to the initial
mean semimajor axis of 39.45 AU (the value of the 2 :3
libration centersÈFig. 1a) for the conÐguration of planets
on 1998 January 1 (MJD 2,450,814.5). The di†erence
between the initial orbital and mean values of semimajor
axes is a consequence of the short period variations of test
particles orbits. Hence, the test particles were chosen within
a small interval around the stable libration center of the 2 :3
Neptune resonance with a corresponding libration ampli-
tude of the resonant angle smaller thanp \ 2jN [ 3j ] -
20¡.

The initial conditions of four major planets and Pluto
were taken on 1998 January 1 (MJD 2,450,814.5) with
respect to the invariant plane and equinox at epoch JD
2000. The orbits of Ðve planets (massive bodies) and test
particles (massless bodies) were followed forward in time
using the swift–rmvs3 integrator of Levison & Duncan
(1994) and a 1 yr time step. The total integration time span
was 4] 109 yr. The orbital elements were computed each
105 yr. For each test particle in the run we calculated the
resonant amplitude at time t as the maximum excursionApof p from 180¡ in the interval (t, t ] 107) yr and the ampli-
tude as the maximum excursion of u from 90¡ on theAusame interval. We also calculated the proper eccentricities
and inclinations at time t as the averages of orbital elements
in the interval (t, t ] 107) yr (Morbidelli & 1999,Nesvorny�
their eq. [1]).

During the simulation we have monitored and if thisAp,happened to exceed 175¡, we classiÐed the corresponding
case as the escape from the 2 :3 resonance. The test particle
may then, however, survive a relatively long interval (\108
yr) chaotically di†using on the resonant border before the
Ðrst important encounter with Neptune. The subsequent
evolution under the e†ect of close encounters with giant
planets was faster, and in an interval typically of order of
107 yr, the test particle was deactivated from the run. The
test particle was deactivated when its orbit satisÐed one of
our stopping criteria : either too close an encounter to some
giant planet or to the Sun, or ejection to a heliocentric
distance larger than 100 AU. The behavior of bodies escap-
ing from EKB and becoming giant-planet crossers was
studied in detail by Levison & Duncan (1997).

Many test particles had escaped from the 2 :3 Neptune
resonance in the run (Fig. 3). The cumulative number of
escapes is roughly a linear function of time with about 13
escapes per 109 yr. This resulted in total of 51 escaping
particles in 4] 109 yr.

While both the proper eccentricity and the proper incli-
nation remained basically the same in the initial stages of
evolution, the resonant amplitude of test particlesApincreased. The Ðnal resonant amplitude yr) isAp(4 ] 109
shown in Figure 4a (shadow bars) versus the initial proper
inclination (both computed on 107 yr interval). For the test
particles escaping from the resonance before 4 ] 109 yr, the
quantity shown is 180¡. The solid line denotes the initial
resonant amplitude The horizontal line atAp(0). Ap \ 130¡
is given for reference, since for the orbits areAp [ 130¡,
chaotic and di†use quickly toward the borders of the 2 :3

FIG. 3.ÈCumulative number of escaping test particles from the 2 :3
resonance. More than 50% of initially and (e\ 0.25) testlow-Ap low-Auparticles left the resonance before t \ 4 ] 109 yr when their resonant
amplitude increased beyond the instability limit.

resonance under the e†ect of four outer planets (Morbidelli
1997).

There is no strong dependence of yr) on theAp(4 ] 109
initial proper inclination observed in Figure 4a. Note,
however, that the excitation of was moderately smallerAp

FIG. 4.È(a) Initial (solid line) and Ðnal (shadow bars) resonant ampli-
tude observed in the simulation of test particles placed in the KozaiApresonance with e\ 0.25. The horizontal line at shows anAp \ 130¡
approximate limit where orbits are unstable owing to the e†ect of four
outer planets. (b) Total deÑection angle resulting from the encounters of
test particles with Pluto in 4] 109 yr. two-body approximation ofO� pik
encounters was used for its computation. See text for discussion.
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at low inclinations. There were no escapes for pre-i\ 7¡.5,
sumably because the mutual velocities of PlutoÈtest particle
encounters were enhanced there by larger mutual inclina-
tion of their respective orbits, which rendered the encoun-
ters ine†ective. Note on the other hand that only 12 (25%)
of the test particles survived with forAp\ 130¡
16¡ \ i\ 25¡.

The excitation of observed in our simulation shouldApbe attributed to the gravitational e†ect of Pluto at
close encounters. We have at least three reasons to believe
this :

1. We have checked by a 109 yr integration that no exci-
tation happened when only four outer planets (without
Pluto) are considered in the integration. Initial and Ðnal Apwere practically the same in this experiment for all test
particles. Consequently, there is no enlargement withoutApPluto.

2. The swift–rmvs3 integrator was simulating the e†ect of
the Pluto encounters correctly since the 5] 108 yr integra-
tion with the Bulirsh-Stoer integrator gave roughly the
same result. We have simulated the orbital evolution of 11
test particles at 9¡\ i\ 11¡ and of 11 particles at
16¡ \ i\ 18¡. The mean excitation of on this time inter-Apval computed by Bulirsh-Stoer was 20% smaller than the
one computed by Swift for 9¡ \ i\ 11¡ and was equal to
the one computed by Swift for 16¡\ i\ 18¡. The particle
starting at that escaped from the 2 :3 resonance ati\ 9¡.2
t \ 3.5] 108 yr in the simulation with swift–rmvs3,
escaped also in the integration with Bulirsh-Stoer at
t \ 3.2] 108 yr. Considering the irreproducibility of a
chaotic trajectory, such a coincidence is even surprising.
The Bulirsh-Stoer routine treated close encounters with
excellent precision, and we believe that the excitation of Apwas correctly evaluated by this integration method. Conse-
quently, the result of Swift was exact for 16¡\ i\ 18¡ and
the precision of this integration routine slightly degraded
(within acceptable limits) for inclinations D10¡. We have
further checked that the precision of Swift worsened for
initially zero inclinations. While the Bulirsh-Stoer inte-
grator indicated a small (D10¡) excitation of mean inAp109 yr, the swift–rmvs3 method computed about double of
this value. This presumably happened because of an inap-
propriate step size management of swift–rmvs3 at encoun-
ters and the consequent failure in energy conservation. Our
tentative explanation of why Swift commits such a large
error for low inclinations while being precise for the inclina-
tions comparable to PlutoÏs is as follows. The physical e†ect
of Pluto is, according to equation (2), proportional to 1/V 2
and is large for large inclinations (low Pluto-particle mutual
inclination). For low inclinations (large Pluto-particle
mutual inclination), in a high-velocity regime of encounters,
the physical e†ect of Pluto steeply decreases. From the
above experience, we have reason to believe that
swift–rmvs3 numerical errors at close encounters have
di†erent, less steep dependence on the mutual velo-
city than 1/V 2 and are important only for high-velocity
encounters.

3. For each encounter of a test particle with Pluto regis-
tered by the integrator, we compute the deÑection angle and
the change of orbital elements following equation (2) and a
simple procedure described below, and these estimates are
in qualitative agreement with the real simulation (we give
an example of that later in Figs. 7 and 9 for the trajectory
starting with i\ 11¡.8).

The change of orbital elements due to the encounter may
by computed in a two-body approximation. When aO� pik
test particle is about the distance from Pluto, we evalu-RHate from the mutual velocity and position of the test particle
and Pluto the energy and angular momentum of the Pluto-
centric particleÏs orbit, neglecting the e†ect all other massive
bodies. The particleÏs hyperbolic orbit is then uniquely
deÐned as is the velocity of the outgoing trajectory at the
intersection with the Hill sphere. The di†erence in helio-
centric orbital elements computed at the points at which the
incoming and outgoing trajectories intersect the Hill sphere
is a measure of the orbital change at the close encounter. It
is well known that the result of this computation strongly
depends on the size of the sphere around a planet chosen for
the computation, and as is not the only choice, the realRHorbital change cannot be precisely computed. We use the
two-body approximation for the interpretation of the
results obtained by exact numeric simulations.

Figure 4b shows the cumulative deÑection angle of the
test particles that has been obtained by summing the deÑec-
tion angles computed in the two-body approximations (eq.
[2]) of all encounters of a test particle to Pluto during its
lifetime (equal to 4] 109 yr or the time when being
deactivated). There is a rough correspondence between
Figures 4a and 4b. First of all, the test particles starting at
low inclinations have a small cumulative deÑection of order
of 1¡. The e†ect of close encounters was apparently not
sufficient for large excitation of their Then there is theAp.interval 9¡ \ i \ 13¡, where the cumulative deÑection angle
is as large as few degrees. The excitation of the resonant
amplitude is larger for these inclinations, and many test
particles initially falling into this interval of inclination
escaped.

For the initial inclinations of about 15¡, the situation is
unclear as the cumulative deÑection was less than 1¡ (with
two exceptions). There were, however, several escapes at
this interval in the exact simulation. The four surviving test
particles in the range had been protected13¡.5 \ i \ 16¡.5
from close encounters with Pluto for most of the time of
simulation. Their orbital dynamics resembled the motion
near the leading and trailing Lagrangian points of the SunÈ
PlutoÈtest particle system (tadpole orbitsÈsee Brown &
Shook 1966). The test particles starting at larger inclination
were with few exceptions ejected from the resonance. Their
small relative orbital inclination with respect to the orbit of
Pluto apparently enhanced the impact of close encounters.

5. TYPES OF ORBITAL BEHAVIOR

The graph of the cumulative deÑection angle (Fig. 4b)
may be interpreted in terms of the frequency and mutual
velocity of encounters. In Figure 5a we show the number of
encounters of test particles within to Pluto in the ÐrstRH3 ] 108 yr of our simulation. Figure 5b shows the mean
mutual velocity between the test particles and Pluto com-
puted over the same time interval. There are on average 10
encounters within one Hill radius to Pluto in 3] 108 yr.

Without much stress on precision we divide the inte-
grated range of inclination into Ðve intervals (Fig. 5), each of
them being characterized by di†erent dynamics and the
interaction with Pluto.

5.1. 5¡ \ i \ 9¡
For 5¡ \ i \ 9¡, there were typically only Ðve encounters

per particle within one Hill radius to Pluto in 3] 108 yr,
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FIG. 5.È(a) For each test particle the number of its encounters within
to Pluto in the Ðrst 3 ] 108 yr of simulation is shown. The simulatedRHrange of initial proper inclinations (x-axis) is roughly divided into Ðve

intervals with di†erent evolutions of orbits. (b) The mean encounter veloc-
ity obtained by averaging over all approaches of a particle to Pluto in
3 ] 108 yr. There were about 15 encounters for 15¡ \ i\ 20¡ where the
mean encounter velocities were small. This is the region in which PlutoÏs
e†ect is largest.

and the mean encounter velocity was about 0.4 AU yr~1.
This resulted in a small total deÑection angle (Fig. 4b) and
only a moderate excitation of (Fig. 4a). Typical evolutionApof orbits in this interval of inclinations is shown in Figure 6.
The orbit of the test particle starting with the inclination of
7¡ initially exhibited motion typical for the Kozai resonance
Èoscillations of u around 90¡Èfor t \ 2.3] 108 yr, where
u shortly moved retrogradely and then switched to the
libration center at 270¡. This alternation between the oscil-
lation at 90¡ or 270¡ and the retrograde circulation of the
perihelion argument is typical for the test particles at low
inclinations where the size of the Kozai resonance is small.
Amplitude of p stayed small in Figure 6, and the particle
survived the whole run in the 2 :3 resonance. *j\ j [ jPshowed circulation with a negative derivative and a large
period in intervals of u-libration.

5.2. 9¡ \ i\ 12¡
There were on average 15 encounters per 3] 108 yr with

the mean mutual velocity of 0.3 AU yr~1 for the particles
starting with 9¡ \ i\ 12¡ (Fig. 5). This resulted in a rela-
tively large total deÑection angle that generally exceeded 2¡
in this interval. The dynamics of test particles was very
interesting there and frequently resembled the pattern seen
in Figure 7, where the orbital elements of the particle start-
ing with are shown. *j initially evolved retro-i\ 11¡.8
gradely, and when *jD 0, it reversed and advanced with a
positive derivative up to 360¡ when it reversed once again
and repeated the cycle. At the points of reversal, the inclina-
tion either increased or decreased. Such behavior calls to
mind the horseshoe orbits of the 1 :1 mean motion reso-

nance. Here, however, probably owing to the high inclina-
tion of both the perturbed body and the perturber, the
orbital element coupled with was the inclination andj [ jPnot the eccentricity or the semimajor axis. Note that the
orbit in Figure 7 had its mean inclination somewhat smaller
than the mean inclination of Pluto, which is also unlike the
usual horseshoe pattern.

In Figure 8 we show the inclination and *j of the same
test particle in polar coordinates. Additional(i \ 11¡.8)
averaging of *j and i over 5] 108 yr has been performed in
Figure 8. The horseshoe dynamics of the trajectory are now
evident. It took about 7.5 ] 108 yr for the test particle to
complete one cycle.

The design of a perturbative treatment that would repro-
duce the orbit in Figure 8 is not a simple problem as there
are two perturbers (Neptune and Pluto) and three reso-
nances (2 :3 with Neptune, Kozai, and 1 :1 with Pluto)
involved. The planar model of Yu & Tremaine (1999) does
not apply here as the inclinations must be taken into
account. In the next few paragraphs, we discuss a qualit-
ative model based on the two-body approximation of
encounters with Pluto.

We assume that if the distance of the test particle from
Pluto (r) is larger than a small quantity R (of order of the
radius of PlutoÏs Hill sphere : AU) that theRH \ 0.054
motion is determined by four outer planets (Jupiter to
Neptune) and is characterized by constant proper actions, p
and u libration, and a secular advance of the node longi-
tude. Whenever r \ R, we approximate the motion by the
two-body (PlutoÈtest particle) dynamics and compute the
resulting change of the heliocentric orbital elements accord-
ing to the discussion earlier in this section.

The trajectory computed in this way (Fig. 9) for the same
test particle as in Figure 7 approximates well the(i \ 11¡.8)
exact numeric simulation. While the eccentricity remained
almost constant, both the semimajor axis and inclination
were changing. The inclination pattern in Figure 9 is almost
identical with the mean inclination in Figure 7. Concerning
the angles, while remained on average constant, bothj [ jPu and p evolved, under the e†ect of close encounters with
Pluto, several tens of degrees ahead.

The behavior of the orbit in Figure 7 may be also under-
stood on the basis of simple geometric arguments. Initially

so that according to what was noted in the last para-i \ iPgraph of ° 3, advances with a negative derivative,) [ )Pand so does according to equation (4). This is whatj [ jPhappened for t \ 2 ] 108 yr in Figure 7. The e†ect of Pluto
was unimportant in this interval because the planet was
angularly distant from the test particle. At t \ 2.3] 108 yr,
the di†erence in mean longitudes was small and onj [ jPaverage positive. As was also small and posi-*)\ )[ )Ptive at this moment and if we suppose that a \ aP, e\ eP,and close encounters between the test parti-u\uP\ 90¡,
cle and Pluto occurred at each revolution of their orbits in
both the descending and ascending nodes. DeÐne a Ðxed
reference frame in the tangential plane of PlutoÏs node
(perpendicular to PlutoÏs heliocentric position vector when
Pluto is at node) so that the x-axis is parallel to PlutoÏs
velocity vector and another reference frame in the same
plane whose origin moves with PlutoÏs velocity at node

v\ na
S1 ] e2

1 [ e2
(5)



FIG. 6.ÈOrbit evolution of the test particle starting with a \ 39.2 AU, e\ 0.25, and i\ 7¡. and The evolution wasp \ 2jN [ 3j] - *j\ j [ jP.characterized by alternations between libration and circulation of u, only a small excitation of and prograde circulation ofAp j [ jP.

FIG. 7.ÈSame as Fig. 6 but for the test particle with The orbital evolution of this test particle was characterized by a horseshoe orbit in the 1 :1i\ 11¡.8.
mean motion resonance with Pluto. The excitation of happened when reversed its sense of rotation. The perihelion argument librated with a smallAp j [ jPamplitude up to t \ 1.8] 109 yr where increased to 120¡. The particle escaped from the 2 :3 resonance at t \ 2.25] 109 yr.Ap
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FIG. 8.ÈHorseshoe orbit of the same particle as in Fig. 7. Inclination
and are shown in polar coordinates. Unlike an ordinary*j\ j [ jPhorseshoe orbit, the action coupled to *j was the inclination and not the
semimajor axis or eccentricity. Note also that the mean inclination of this
orbit was smaller than the inclination of Pluto.

(n being PlutoÏs mean motion) along the x-axis of the former
and is identical with the former when Pluto is at node.
Denote its axes f and g. Then, the components of the test
particle velocity characterizing encounter in this reference
system are andvf\ v[cos (i[ iP) [ 1] vg \ v sin (i[ iP).Moreover, the test particle trajectory intersects the f-axis at
*)/3. From this geometry of the encounter in the Pluto-
centric reference frame and under the assumption that the
deÑection angle is small, it is clear that will tend too i[ iP o
zero if *)[ 0. This is what happened with inclination of
the test particle in Figure 7 at t \ 2 ] 108 yr (see also Fig. 9,
where the net e†ect of PlutoÏs encounters is shown).

If the di†erential rotation of nodes were fast so that the
epoch of close encounters when were short, the)[ )P D 0
inclination change would be small, and would soon)[ )Pbecome negative (as for the test particle in Fig. 6Èa similar
argument holds for the test particle in Fig. 12, where *)

FIG. 9.ÈTwo-body approximation of the dynamics at close encounters
with Pluto. See text for details. Compare with Fig. 7 where the orbit
evolution of the same test particle was computed by the exact numeric
integration.

rotates with positive derivative). However, this was not the
case of the test particle in Figure 7, where the inclination
due to close encounters with Pluto rapidly grew, and before

would become negative, i was already close to It)[ )P iP.was then important that Pluto (with have a nega-Ap\ 84¡)
tive nodal frequency with its absolute value larger than
objects with the same orbital parameters but smaller Ap.This means that when for the test particle in Figure 7,i \ iPboth and (according to eq. [1]) must have)[ )P j [ jPhad a positive time derivative. This is what we see in Figure
7 in the interval 2.5 \ t \ 5 ] 108 yr, where PlutoÏs e†ect is
once again negligible.

The geometry of encounters with *)\ 0 at
t \ 5.5] 108 yr is di†erent, and, as an analysis of the
encounter in the tangential plane shows, o*i o must increase
in this case. Consequently, when i sufficiently decreases in
several encounters with Pluto reverses its sense of) [ )Pthe rotation.

A quantitative computation of the orbital changes in the
approximation of encounters is, however, stronglyO� pik

dependent on the distance R, where one chooses to approx-
imate the motion by the two-body model. For larger values
of R the computed change of orbital elements is large, while
for small values of R, the computed orbital change is small.
The development of a quantitative perturbative model of
Neptune-Pluto-Plutino interaction is an interesting area for
future research. The circular planar model of Yu & Tre-
maine (1999) is not realistic enough to account for the real
evolution of Plutino orbits.

5.3. 12¡ \ i \ 15¡
Several trajectories in the interval 12¡ \ i\ 15¡ (Fig.

5aÈinterval 3) were close to the leading or trailing
Lagrangian points of the SunÈPlutoÈtest particle system
(tadpole orbits). PlutoÏs orbit is noncircular, and the tri-
angular Lagrangian points are not necessarily placed at 60¡
from Pluto. The orbit in Figure 10 (initially is ani\ 14¡.4)
example of motion near the trailing stationary point. Most
of the time the orbit was protected from close encounters
with Pluto, and only a few high-velocity approaches did not
enlarge above the instability limit. The test particle inApFigure 10 survived the whole run. The orbits near the
Lagrangian points were, however, susceptible to small
orbital changes, and they frequently switched to horseshoe
orbits in our simulation, where the interaction with Pluto
led to the important excitation.Ap

5.4. 15¡ \ i \ 20¡
The initial inclinations in the range 15¡ \ i\ 20¡ (Fig.

5a) led to a variety of di†erent orbital behaviors. The rela-
tive inclinations to PlutoÏs orbit were small when the nodes
became aligned in the simulation and there were more than
15 encounters in 3] 108 yr with the mutual velocity as low
as 0.2 AU yr~1 in this interval of initial inclinations (Fig. 5).
Large deÑection angles (Fig. 4b) of the low-velocity encoun-
ters caused signiÐcant alterations of orbits, excitation of Ap,and escapes to NeptuneÈcrossing trajectories. The evolu-
tion of the test particle in Figure 11 (initial showedi \ 16¡.8)
an alternation between all three orbital modes of the 1 :1
mean motion resonance with Pluto : the horseshoe orbit
and the tadpole orbits near the trailing and leading
Lagrangian points. A large excitation of alreadyApoccurred for this test trajectory at the beginning of the inte-
gration, and the particle escaped from the resonance at



FIG. 10.ÈSame as Fig. 6 but for the test particle with This trajectory is near the trailing Lagrangian point of the SunÈPlutoÈtest particle system.i\ 14¡.4.
Its resonant amplitude was moderately excited at t \ 1.4] 109 yr, where was close to zero. of the orbit stayed almost constant, and the testj [ jP Auparticle survived the whole run in the Kozai resonance.

FIG. 11.ÈSame as Fig. 6 but for the test particle with The trajectory is near the trailing Lagrangian point with respect to PlutoÏs orbit up toi\ 16¡.8.
t \ 6 ] 108, where it migrates to the leading point and later performs one cycle of the horseshoe orbit (1.75\ t \ 2.2] 109 yr). It escapes from the resonance
at 2.2] 109 yr.
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2.2] 109 yr and was deactivated at 2.25] 109 yr owing to
a very close encounter with Neptune.

5.5. i[ 20¡
The test particles with i[ 20¡ had a prograde circulation

of and most of them escaped from the 2 :3 resonancej [ jP,after their was signiÐcantly excited by close encountersApwith Pluto. An example of motion is shown in Figure 12 for
the test particle with an initial inclination of 23¡. Note the
large time interval of about 2 ] 108 yr that the test particles
had passed at the separatrix of the 2 :3 resonance (Ap D
180¡). This shows the possible existence of long-lived objects
with large Ap.

6. ORBITAL DISTRIBUTION OF THE SURVIVING

POPULATION

Concerning the test particles surviving 4 ] 109 yr in the
2 :3 resonance in our experiment, we show in Figure 13a
their smoothed resonant amplitude (averaged over 1¡ inter-
val of the initial inclination). yr) is denoted by aAp(4] 109
solid line, and is shown for reference by a dotted line.Ap(0)
The excitation of the resonant amplitude is important : the
average yr) over all test particles is about 80¡.Ap(4] 109
The Ðnal resonant amplitude depends on the initial inclina-
tion. While for the test particles initially at i\ 10¡ Ap(4] 109 yr) is usually smaller than 70¡, for a larger initial
inclination the excitation is larger. The small depression on
the curve of yr) at about 15¡ is a consequence ofAp(4] 109

the fact that several test particles with this initial inclination
passed long time intervals near the Lagrangian points,
being phase-protected from close encounters to Pluto.

Another important result of the simulation is that a few
test particles were found to be on u-librating orbits in the
Kozai resonance at t \ 4 ] 109 yr. The test particles were
chosen so that initially with an average of 10¡,Au(0)\ 25¡
and at the end of the run, there were only 14 test particles
with Seven of the particles surviving in the KozaiAu \ 70¡.
resonance started with inclinations in the interval 12¡.5 \

and spanned long time intervals on tadpole orbitsi \ 16¡.5
of the 1 :1 mean motion resonance with Pluto. Five other
test particles with yr) \ 70¡ had an initial incli-Au(4 ] 109
nation larger than 22¡. The fact that only 14% of the test
particles are found in the Kozai resonance at the end of
simulation can be related to the lack of observed Plutinos
on orbits similar to PlutoÏs orbit. We conjecture that the
gap observed in the distribution of known Plutinos at the
Kozai resonance in Figure 1b may be a consequence of
PlutoÏs sweeping e†ect.

In Figure 13b we show the initial (dashed line) and Ðnal
distribution of test particles versus the resonant amplitude

At t \ 4 ] 109 yr, the number of particles per 10¡ ofAp. Apvaries between three and eight for and is zero forAp[ 25¡
Eleven test particles that have not been deactivat-Ap \ 25¡.

ed during the run had yr) \ 170¡ in spite130¡ \ Ap(4 ] 109
of the motion at these resonant amplitudes being chaotic
and unstable on at most several 108 yr. Consequently, there
might be presently many Plutinos on such transitional

FIG. 12.ÈSame as Fig. 6 but for the test particle with i\ 24¡. evolved with a positive derivative, and each time when the resonantj [ jP j [ jP \ 0
amplitude somewhat increased. The particle was removed from the resonance at 8.7] 108 yr and was deactivated at 1.07] 109 yr as its heliocentricApdistance exceeded 100 AU.
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FIG. 13.È(a) Mean (average over a 10¡ window in inclination) for t \ 0 (dotted line) and t \ 4 ] 109 yr (solid line) for the test particles surviving theApwhole run. (b) Distribution of the test particles with respect to their The number of test particles within a 10¡ interval of is shown for t \ 0 (dashed line)Ap. Apand t \ 4 ] 109 yr (solid line). (c) Evolution of calculated as average over all surviving particles at time t. The Ðnal excitation is about 80¡. The dottedAp(t)line in (c) is a least-squares Ðt. See text for details.

orbits with , and the long-term orbital stability isAp [ 130¡
not a necessary condition of correct orbital elements com-
putation from observations.

Figure 13c shows the evolution of the mean libration
amplitude of the surviving population with time. The solid
line is the average of over the test particles that hadAp(t)survived the integration up to the time t (not considering
the test particles that had already escaped from the
resonance). The power time dependence atb, Ðtted by the
least-squares method to average is deÐned by a \ 4.83Ap(t),and b \ 0.344 (dotted line in Fig. 13c). The initially low
resonant amplitude increases to about 80¡ at t \ 4 ] 109 yr.

7. EXPLORING PLUTOÏS EFFECT FOReD 0.25

The experiment in the previous section has been per-
formed with both initial and small choosing theAp Auresonant semimajor axis and e\ 0.25 for the initial orbital
elements. Here we explore PlutoÏs e†ect in the 2 :3 Neptune
resonance also for di†erent initial eccentricities.

One-hundred one test particles have been placed at
a \ 39.2 AU, i\ 17¡, and with eccentricity between 0.15
and 0.35 (0.002 step). The initial angles, integration param-
eters, and integration procedure were exactly the same as in
the run in the previous section. The total integration time
span was 2 ] 109 yr.

Also for these initial conditions, many test particles
escaped from the 2 :3 resonance. By t \ 2 ] 109 yr, 34 test
particles had already left the resonance. A linear extrapo-
lation of a cumulative number of escapes to 4] 109 yr
suggests removal of about 60% of test particles. Recall that
also in this case, the escape of test particles must be attrib-
uted to the e†ect of Pluto, as other planets do not cause any
secular trends of the resonant orbits with Ap \ 50¡.

Figure 14a shows (solid line) and yr)Ap(0) Ap(2 ] 109
(shadow bars). Most of the escaping test particles were ini-
tially in the interval 0.2\ e\ 0.32, which is the approx-
imate width of Kozai resonance at i\ 17¡ (Morbidelli et al.
1995). For low (e\ 0.2) and high (e[ 0.32) eccentricities,
the excitation of was smaller, and fewer test particlesApleaked from the 2 :3 resonance at these eccentricities. The
total deÑection angle shown in Figure 14b is well correlated
with the number of escapes. It is larger than 1¡ for most of
the escaping trajectories in the 0.2\ e\ 0.32 interval.

The number of encounters within to Pluto in 3 ] 108RHyr shows an interesting proÐle (Fig. 15a). There were usually
fewer than Ðve encounters for e\ 0.2 with the mean veloc-
ity of 0.4 AU yr~1. At e[ 0.2, the number of encounters
increases with increasing eccentricity up to the peak of
about 20 encounters (on average) at e\ 0.25. This eccen-
tricity coincides with the libration center of the Kozai reso-
nance. The mean encounter velocity is only 0.2 AU yr~1 for
e\ 0.25. The relatively large number of encounters com-
bined with low encounter velocity led to large orbital
changes of the test particles starting with 0.2\ e\ 0.32 and
the excitation of their resonant amplitudes (Fig. 14a).ApThis showed that most orbits in the Kozai resonance (and

FIG. 14.ÈSame as Fig. 4 but for the run of 101 test particles initially
with i\ 17¡. Most of the escapes happened for 0.2\ e\ 0.32, where also
the cumulative deÑection angle calculated from encounters with Pluto was
large. This region roughly corresponds to the orbits in the Kozai reso-
nance.
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FIG. 15.ÈSame as Fig. 5 but for the run of 101 test particles initially
with i\ 17¡. The number of encounters within to Pluto is the largest atRHe\ 0.25, where about 20 encounters happen in 3] 108 yr. The encounter
velocity is about 0.2 AU yr~1 for this eccentricity.

not only those at its libration centers) were efficiently modi-
Ðed by PlutoÏs inÑuence. The gap in the orbital distribution
of Plutinos should be roughly of the size of the Kozai reso-
nance.

The surviving 67 test particles at 2] 109 yr had the mean
as large as 66¡ (Fig. 16a). Initially (dotted line in Fig. 15a)Apthe mean was 14¡. The number of test particles in 10¡ ofApversus is both initially (dashed line) and at 2] 109 yrAp Ap(solid line) shown in Figure 16b. There were initially 80 test

particles with 10¡ \ i\ 20¡. The proÐle at 2 ] 109 yr is
characterized by a peak density of test particles at the
amplitude of about 45¡ (mainly formed by the test particles
starting with e\ 0.25 and e[ 0.3) and a number of orbits

with largely excited. There are about Ðve particles perAp10¡ of forAp 70¡ \Ap \ 110¡.
The mean resonant amplitude increased considerably

with time (Fig. 16c). The solid line in this Ðgure is the
average over the surviving particles. The dotted line is the
least-squares Ðt that results in the same power dependence
on time as the power Ðt in Figure 13c The[Ap(t)D t1@3].
extrapolation to 4 ] 109 yr shows that the resonant ampli-
tude of the surviving test population at 4 ] 109 yr should be
about 80¡. It could be, however, a little smaller if the decel-
eration trend observed shortly before 2 ] 109 yr would con-
tinue also for t [ 2 ] 109 yr. In any case a large excitation
of can be expected also for the orbits withAp eD 0.25

8. CONCLUSIONS

PlutoÏs orbit is locked in the Kozai resonance in contrast
with almost all observed Plutinos. According to the analysis
in this work, this observation result can be explained by
PlutoÏs e†ect on Plutinos. The orbits starting with the low
amplitude of u oscillations are, for a wide range of initial
inclinations, ejected from the Kozai resonance on the 109 yr
timescale. As the opposite process (i.e., evolution into the
Kozai resonance) is less e†ective, a gap must have been
formed around PlutoÏs orbit in eccentricity and inclination.
This gap is actually observed in the distribution of known
Plutinos.3

The only objects surviving long time intervals in the
Kozai resonance are usually protected from close encoun-

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
3 It is certainly a possibility that the lack of Plutinos in the Kozai

resonance is related to a slow primordial migration of NeptuneÏs orbit
suggested by Malhotra (1996). If the evolution of a captured 2 :3 resonant
object toward larger eccentricities is envisaged as a consequence of slow
outward migration of the 2 :3 Neptune resonance, this object encounters
the lower separatrix of the Kozai resonance at an eccentricity that depends
both on and inclination (Fig. 1). The theory of adiabatic capture may beApapplied in this case, and the probability of capture in the Kozai resonance
can be computed (a simple numeric experiment can also yield an answer). If
the capture probability is near 1, the gap is not primordial. If the probabil-
ity is near 0, the primordial gap could have been formed, since most bodies
should have avoided the Kozai resonance during their migration. We
nevertheless believe that collisions (such as the one in which the Pluto-
Charon binary has been presumably formed) must have resupplied new
objects in the region of the Kozai resonance since then.

FIG. 16.È(a) Mean (average over a 0.01 window in eccentricity) for t \ 0 (dotted line) and t \ 2 ] 109 yr (solid line) for the test particles surviving theApwhole run. The experiment with i\ 17¡. (b) Distribution of the test particles with respect to their The number of test particles within a 10¡ interval of isAp. Apshown for t \ 0 (dashed line) and t \ 2 ] 109 yr (solid line). In fact all test particles had the initial (c) Evolution of mean calculated as averageAp \ 30¡. Ap(t)over all surviving particles at time t. The excitation at 4] 109 yr suggested by the extrapolation (dotted line) is about 80¡ . The dotted line in (c) is a
least-squares Ðt.
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ters with Pluto being trapped on tadpole orbits in the 1 :1
resonance with the planet. There should be a number of
PlutoÏs Trojans with mean inclinations of about 15¡. As we
have conÐrmed by a numeric simulation, 1997 QJ4 is the
Ðrst observed example of this dynamical class. ofj [ jP1997 QJ4 has been locked at 80¡ for at least the last 109 yr.
Such an orbit makes of this object a good candidate for a
body dynamically related to the Pluto-Charon binary for-
mation event (Stern, Canupt, & Durda 1999), and the deter-
mination of physical properties of its surface by spectral
observations would be interesting. Of course, it is equally
probable that 1997 QJ4 is just a sample of a dynamically
primordial population formed in the Kozai resonance or a
collisionally injected body.

Another interesting class of orbital evolution in the 1 :1
resonance with Pluto found in our simulations is a horse-
shoe orbit in which is coupled with inclination (Fig.j [ jP7). Such orbits are, however, very susceptible to PlutoÏs
perturbation and usually do not survive on the age of the
solar system because of the enlargement their resonant
amplitude The horseshoe orbits present the highest fre-Ap.quency and lowest mutual velocity of encounters with
Pluto. Most of the trajectories closely encountering Pluto
have the horseshoe dynamics.

An important e†ect of Pluto is its large excitation of the
libration amplitudes in the 2 :3 resonance. The surviving
population of Plutinos with the primordial inclination
larger than 8¡ should have had its mean increased toApabout 80¡ on the solar system age. The excitation of low-
eccentricity orbits is smaller and accounts for an estimated
10¡ increase of mean per 109 yr. The change of for aAp ApPlutino on the low-inclination orbit can be, however, sub-
stantially larger in speciÐc case. The traces of excitationApdriven by Pluto can actually be observed in the 2 :3 reso-
nance as there exists a lack of observed Plutinoslow-Ap(Fig. 2).

The excitation of by close encounters with Pluto leadsApto the escape from the 2 :3 Neptune resonance when Apincreases beyond the instability limit (D120¡). We estimate
that about 50% of dynamically primordial objects in the
Kozai resonance had been removed from the 2 :3 resonance
by this mechanism. For i[ 8¡, even more than 70% should
have had their increased above the instability limit afterAp4 ] 109 yr. Consequently, the population of Plutinos must
have su†ered a signiÐcant mass loss in the past.

Pluto-induced excitation of the resonant amplitude and
evolution of Plutinos onto Neptune-crossing orbits contrib-
utes to the Ñux of short-period comets from the trans-
Neptunian region. We estimate that the Ñux rate from
i[ 8¡ orbits at about 1% of such 2 :3 resonant population
per 108 yr, which is about of the same value as the Ñux
expected from the marginally unstable region without Pluto
(Morbidelli 1997). For i\ 8¡, the expected Pluto-induced
Ñux should be a factor of 2È5 smaller. Consequently, the
marginally unstable region is continuously resupplied from

region, and a large part of the 2 :3 resonance is anlow-Apactive source of short period comets.
These were the main conclusions. In the following, we

brieÑy discuss two issues that are related to the work pre-
sented here and are of possible interest for future research.

According to Stern & Yelle (1999), HST observations
had shown that CharonÏs eccentricity is nonzero, with a
best estimated value of 0.0076. The fact that the orbit is not
precisely circular indicates some disequilibrium forces have

disturbed it from the exact value of zero expected from tidal
evolution. It is most likely that the disturbance causing this
is generated by occasional close encounters between the
Pluto-Charon system and one of the 100 km or larger diam-
eter bodies now known to orbit with Pluto in the
Edgeworth-Kuiper belt.

The number of encounters within a distance R to Pluto
on time interval t is proportional to where N is theP

i
NR2t,

number of bodies (D10,000 with diameter larger than 100
km according to Jewitt et al. 1998). The intrinsic probability

(Davis & Farinella 1997) may be computed from ourP
iexperiment. As there are on average 10 encounters within

to Pluto in 3] 108 yr, the estimated intrinsic probabil-RHity is

P
i
\ 5 ] 10~22 km~2 yr~1 . (6)

Setting R\ 40,000 km, which is about double the semi-
major axis of CharonÏs orbit, there is about 1.3 such
encounters per 108 yr. The possible excitation of CharonÏs
eccentricity by a near Ñy-by of a 100 km body and the
subsequent tidal relaxation of the orbit are surely inter-
esting areas for future studies.

The second interesting issue that emerged with the results
presented in this paper is whether the excitation of Apworks in one direction (i.e., Pluto enlarged of Plutinos)Apor whether also the opposite e†ect (i.e., Plutinos enlarged

of Pluto) might be signiÐcant.ApAssuming the 7000È14,000 objects with diameters larger
than 100 km in the 2 :3 Neptune resonance (Jewitt et al.
1998), their total mass (0.01È0.02 of EarthÏs mass) exceeds
PlutoÏs mass (which is about 0.002 of EarthÏs mass) by a
factor of 5È10. Now, if Pluto has a considerable e†ect on
these bodies in 4 ] 109 yr as shown in this paper, the reso-
nant bodies must have at least an equally large e†ect on
Pluto. We conjecture that PlutoÏs large resonant amplitude
(D80¡Èequal to the Ðnal average excitation observed in
our simulations of test particles on initially inclined orbits)
resultedÈat least partiallyÈfrom the mutual interaction
with resonant bodies.

This subject is closely related to the work of Levison &
Stern (1995), but the reasoning is somewhat di†erent.
Instead of trying to stabilize PlutoÏs orbit in the dense pri-
mordial Kuiper belt by scattering it to a stable orbit inside
the resonance (in time intervals of order of 5 ] 107 yr),
assume the present Kuiper belt density (which is about 1%
of the primordial), and compute the e†ect of gravitational
scattering on Pluto in last 4 ] 109 yr. Owing to lower
density, the frequency of encounters will be a factor of 100
smaller than in the primordial belt, but the interval is 100
times longer than that in Levison & Stern (1995). Conse-
quently, the net e†ect in such an interaction can be about
the same, and the amplitudes of PlutoÏs resonant angle and
perihelion argument may be expected to change by several
to several tens of degrees (as in Fig. 8 of Levison & Stern
1995). PlutoÏs orbit could well have been di†erent in the
past.

Most of the numeric simulations have been performed
using the computer resources of the Paulo UniversitySa8 o
computer center LCCA in the frame of the project
““ Asteroid Resonant Dynamics and Chaos.ÏÏ This research
was sponsored by the Paulo State Science FoundationSa8 o
FAPESP.
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The stability of orbits in the transneptunian region is numeri-
cally computed. It is found that, in analogy to the asteroid belt, there
exist many chaotic layers associated with thin mean-motion reso-
nances. These are either moderate- and high-order resonances with
Neptune or three-body resonances with Neptune and Uranus. The
orbital eccentricity chaotically increases at the thin resonances, al-
lowing some Kuiper Belt objects to be slowly transferred to Neptune-
crossing orbits. The stability of two large mean-motion resonances
with Neptune, the 1 : 2 and 3 : 4, is systematically explored. It is
shown that orbits in both resonances, with small resonant ampli-
tudes are stable over the age of the Solar System. The possible role
of collisions and dynamical scattering in clearing the resonances is
discussed. It is inferred from orbital angles of 1997 SZ10 and 1996
TR66 that these bodies are most probably on stable tadpole orbits
in the 1 : 2 Neptune resonance. c© 2001 Academic Press

Key Words: Kuiper Belt; Oort Cloud, celestial mechanics; stellar
dynamics.

1. INTRODUCTION

This paper extends our previous work, in which the regular and
chaotic dynamics of the 2 : 3 mean-motion resonance (MMR)
with Neptune was studied (Nesvorný and Roig 2000; hereafter
N&R00). In N&R00, we calculated the maximum Lyapunov
characteristic exponent (LCE) and measures of chaotic evolu-
tion of orbital elements (Laskar 1994, Morbidelli 1996) and
frequencies (Laskar 1999) for initial conditions on a grid in
a, e, i . The first set of initial conditions (1010 orbits) sam-
pled the 2 : 3 resonant orbits at low inclinations and the sec-
ond set (405 orbits) included large-inclination orbits. We have
classified the resonant orbits into three groups: (i) those for
which the escape rate to Neptune-crossing orbits at t = 4 Byr

1 Present address: Observatoire de la Côte d’Azur, BP 4229, 06304 Nice
Cedex 4, France.

was more than 1% of the initial population per 1 Byr.2 We
called these orbits the marginally unstable orbits. Other or-
bits, i.e., those for which the escape rate at t = 4 Byr was
less than 1%, were either (ii) strongly unstable orbits, where
most of the original population escaped at t < 4 Byr,
so that at t = 4 Byr there were too few surviving bodies to assure
the required flux, or (iii) practically stable orbits, with the dy-
namical lifetimes largely exceeding the age of the Solar System
and an equally negligible escape rate at t = 4 Byr.

The practically stable orbits were characterized by a small
LCE and very slow chaotic evolution, and were usually located
in the core of the 2 : 3 Neptune MMR. The marginally unstable
orbits had larger LCEs (10−5–10−6 yr−1) and were initially lo-
cated at larger resonant amplitudes (Aσ ∼ 100◦–120◦), where
the slow chaotic evolution of Aσ transferred them, after a long
time interval, to the strongly unstable region at the resonant bor-
ders. The strongly unstable orbits had initially Aσ > 120◦–130◦

and their Aσ quickly increased, driving them outside the reso-
nance, where bodies lose phase protection against the encounters
with Neptune.

This resonant structure has been already known (Duncan
et al. 1995, Morbidelli 1997, Gallardo and Ferraz-Mello 1998)
N&R00 provided an understanding of the 2 : 3 MMR dynamics
that is both detailed and global. We identified several secular
and other mechanisms present inside the resonance that have
a nonnegligible effects on the orbital chaos and instability of
resonant objects.

In N&R00, we also discussed the observed population of the
2 : 3 Neptune MMR (Pluto and 15 Plutinos with well-determined
orbits) and its relation to the Jupiter-family comets. Assuming
that the 2 : 3 MMR supplies 15% of new comets needed to keep
the population of the Jupiter-family comets in a steady state,
we computed that at most 6 × 108 comets currently exist in the
resonance.

2 If P(t) is the percentage of test particles escaping from the initial population
in the interval [0, t], then by the escape rate at time t we mean the derivative
of this function. For practical reasons, we refer here and in the following to the
escape rate in units of per billion years.
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In modeling the chaotic dynamics in N&R00 we used spe-
cial numerical methods. The chaotic evolution (diffusion) was
measured by the change of frequencies (frequency analysis) and
of actions (determined as extrema of filtered orbital elements
on a time-shifting window) over 45 Myr. The algorithms were
described in N&R00 and we refer the reader to Section 3.2 of
that paper.

One of the recent accomplishments achieved by the applica-
tion of the above methods was in understanding the fine struc-
ture of the asteroid belt. It turned out that, besides the main
mean-motion and secular resonances, there exist a large number
of thin (<10−2 AU) chaotic layers associated with moderate-
and high-order MMRs with Jupiter (Holman and Murray 1996),
three-body resonances with Jupiter and Saturn (Nesvorný and
Morbidelli 1998, 1999), or exterior MMRs with Mars
(Morbidelli and Nesvorný 1999). About 40% of asteroids are
strongly chaotic and have the Lyapunov time (inverse of the
LCE) less than 105 yr (Šidlichovský and Nesvorný 1999) be-
cause they are located in some thin MMR. Although the chaotic
changes of eccentricity that drive resonant asteroids to planet-
crossing trajectories happen on much longer time intervals, the
stability over the age of the Solar System is not assured for many
of them (Murray and Holman 1997, Migliorini et al. 1998). As
we describe in Section 2, the situation in the Kuiper Belt (KB)
is similar.

A detailed account of an extensive literature about the KB
dynamics was given in N&R00. In brief, Duncan et al. (1995)
computed a detailed map of stable/unstable regions in the KB by
integrating a large number of orbits in the 32–50 AU semi-major
axis interval. The orbits starting at perihelion distances less than
35 AU were found unstable in 4 Byr unless they were associated
to some Neptune MMR (Morbidelli et al. 1995, Malhotra 1995,
Morbidelli 1997). The orbits with the perihelion distances larger
than 35 AU were found stable unless they were related to the
perihelion or node secular resonances (Knežević et al. 1991).
These findings determined the stable locations in the KB where
real Kuiper Belt objects (KBOs) Could remain today. Indeed,
most of the 300 comets detected at present in the KB are located
in the stable regions found by Duncan et al. (1995). It also turned
out that some of the stable regions found by Duncan et al. are not
populated. This is the main argument that something besides the
dynamical sculpting of the planets is responsible for the structure
we see. The reader can refer to the review of Morbidelli (1998)
for further reading on the Kuiper Belt primordial evolution and
its present dynamics.

In this paper we also investigate the regular and chaotic dy-
namics of two large MMRs. In Section 3 we study the stability
of the 1 : 2 MMR with Neptune at 47.8 AU. It is interesting
to know whether this resonance is unstable over the age of the
Solar System or whether the lack of observed resonant bodies
(we discuss the orbits of two possible candidates for 1 : 2 MMR
KBOs—1996 TR66 and 1997 SZ10—in Section 3.1) is related
to some primordial mechanism. Even if Duncan et al. 1995)
already showed that there exist some stable 1 : 2 resonant or-

bits, We believe that a detailed anlysis is needed to answer this
question with more confidence.

The 1 : 2 and 2 : 3 Neptune MMRs should have been initially
populated by an approximately equal number of objects in the
scenario of smooth expansion of the planetary orbits with adia-
batic capture of objects into resonances (Malhotra 1995). Hahn
and Malhotra (1999) have shown that the above is not neces-
sarily true if the planets interacted with a massive primordial
disk (∼50 M⊕). In this case, the semi-major axis of Neptune
was subject to random kicks that made the captures in the 1 : 2
MMR inefficient. Moreover, the scenario of excitation and mass
loss in the primordial KB driven by Neptune-scattered planetes-
imals (Petit et al. 1999) does not favor the resonant popula-
tions with respect to the nonresonant ones. In Section 3.3, we
show what ratio of the 1 : 2 and 2 : 3 MMR populations should
be expected from the respective sizes of the stable resonant
cores.

In Section 4 we extend the present analysis to the 3 : 4 MMR
with Neptune at 36.5 AU, where one KBO—1995 DA2—with
well-determined orbit is found. This resonance was proved to be
stable over the age of the Solar System by Duncan et al. (1995),
who also showed that the chaotic evolution on the limit of the
stable core of the 3 : 4 MMR mostly affects Aσ .

2. THE FINE RESONANT STRUCTURE OF THE
TRANSNEPTUNIAN REGION

The initial conditions of 2800 test particles were chosen equi-
distantly spaced in semi-major axis (1a = 0.004 AU) between
38.8 and 50 AU, fixing e = 0.1 and i = λ = $ = Ä = 0, where
λ, $ , and Ä are the mean, perihelion and node longitudes, re-
spectively. The initial conditions of four outer planets (Jupiter
to Neptune) with respect to the mean ecliptic and equinox J2000
were taken from the JPL DE403 ephemeris for the date 2/21/1997
(JD 2450500.5). The orbital evolution of massive bodies (plan-
ets) and massless test particles were computed by the symmetric
multistep integrator (Quinlan and Tremaine 1990) for 108 yr us-
ing a 40-day step for the planets and a 200-day step for the
test particles. Additionally, the variational equations were nu-
merically integrated for the purpose of the LCE evaluation of
each simulated orbit. This was done by the symmetric multistep
method using the same step sizes. The variational vector was
periodically renormalized following the algorithm of Benettin
et al. (1976) in order to avoid computer overflow. The LCE esti-
mate for each surviving test particle was computed as ln 1(t)/t ,
with t = 108 yr (1(t) is the norm of the variational vector at
time t), and is plotted as a function of the initial semi-major axis
in Fig. 1c. For the test particles escaping to Neptune-crossing
orbits, ln 1(t)/t was plotted at the time of the first Neptune
crossing. The minimum value of the LCE that we can detect
with the integration time span is about 10−7 yr−1. Examples of
regular, moderately, and strongly chaotic trajectories as well as
the interpretation of the LCE dependence on the semi-major axis
were discussed in Morbidelli and Nesvorný (1999).
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FIG. 1. A survey of LCEs in the transneptunian region: (a) a vertical line
was placed at the initial a if the corresponding test particle escaped at t < 108 yr;
(b) minimum distances of test particles to Neptune; and (c) LCE estimates at
t = 108 yr (in logarithmic scale). The initial e and i of the 2800 integrated test
particles were 0.1 and 0◦, respectively. The test particles at MMRs with Neptune
have their minimum distance (b) larger than the test particles in the immediate
vicinity due to the resonant phase-protection mechanism. Apart from the main
resonances, which may be easily identified in (c) as wide “holes” and “peaks,”
there are many thin peaks for a > 44 AU with the LCE ranging from 10−6 to
10−7 yr−1. These peaks are related to thin MMRs with Neptune and Uranus.
Note the rough background profile of the LCE at about 10−7 yr−1 for a > 44 AU,
suggesting the stochasticity of all the integrated trajectories.

2.1. The Phase-Protection Mechanism in MMRs

The minimum-approach distance of each test particle to Nep-
tune in 108 yr is plotted in Fig. 1b. The vertical line in Fig. 1a
denotes the initial a of test particles that attained the Neptune-
crossing orbits in the integrated time span; these orbits were
usually ejected to heliocentric distances larger than 100 AU.

More than 50% of test particles with initial a < 43 AU es-
caped to Neptune-crossing orbits. Those that survived in this
semi-major axis interval were the test particles that avoided
encounters with Neptune, being locked in MMRs (labeled in
Fig. 1b). This is easily seen (Fig. 1b) for the 2 : 3, 7 : 11, 5 : 8,
8 : 13, and 3 : 5 MMRs, in which the minimum distance to
Neptune is kept larger than in the background.

The phase-protection mechanism is a consequence of resonant
dynamics. The resonant angle σ of the p + q : p MMR with
Neptune is defined by

qσp+q:p = −(p + q)λN + pλ + q$, (1)

where p, q are integers and λN is the mean longitude of Neptune.
q ≥ 1 is called the order of the resonance, and the width of the
resonance in a is generally proportional to the power q/2 of
the eccentricity. For the resonances interior to the planet’s orbit,
p ≥ 1, and for the outer resonances, p ≤ −2. With exception of
the MMRs with p + q = −1 and p ≤ −2 (i.e., the outer reso-
nances of the type 1 : r , r ≥ 2), which permit asymmetric libra-
tions (Beaugé 1994), the angle qσp+q:p oscillates either about
0◦ (inner resonances with q odd) or 180◦ (inner resonances with
q even, and outer resonances with p + q 6= −1).

Assuming a body to be locked in some outer resonance (p ≤
−2) with the libration center at 180◦ and a circular orbit for
the planet, Eq. (1) shows that in the limit of zero-Aσ librations
the conjunctions of this body with the planet (λ = λN) happen
when q(−λ + $ ) = π . This means that during conjunctions,
the mean anomaly M = (2k + 1)π/q, with k being an integer.
For first-order resonances (q = 1), the true anomaly v is 180◦

and the object is in the aphelion of its orbit. Consequently, no
encounters with the planet occur even on large-e planet-crossing
orbits providing they have sufficiently small Aσ .

The minimum distance between Neptune and the low-
amplitude 2 : 3 resonant orbits in Fig. 1b is about 12.2 AU.
The distance at aphelic conjunctions is a(1 + e) − aN, where
a = 39.45 AU. This gives a distance of 13.3 AU for e = 0.1,
in good agreement with the minimum distance computed in the
simulation, the small difference being related to the fact that the
angles initially chosen for the simulation did not permit orbits
with Aσ < 60◦ in the 2 : 3 resonance.

In general, at outer resonances of order q > 1 the resonant
angle σ can librate about one of q distinct centers placed at
(2k + 1)π/q, k being an integer. If q is odd, then one of the
centers is at 180◦ and the resonant phase-protection mechanism
for zero-Aσ librations about this center works in the same way
as for first-order resonances (q = 1) assuring conjunctions in
aphelia. The other q − 1 centers are located at σ 6= 180◦ and the
zero-Aσ librations about these centers do not have conjunctions
at aphelia. If q is even, all centers are at σ 6= 180◦, and again,
the conjunctions do not happen at aphelia. The conjunctions
condition isv + $ = λN, and the equation for M at conjunctions
can be approximated from v = M + 2e cos M +O(e2), giving

M + 2
p + q

q
e cos M = −(σ0 + 2kπ ), (2)

where k is an integer and σ0 is the resonant center under consid-
eration. This equation can be solved for M by iteration, but when
the eccentricity is not large, even omission of the first-order term
in e gives an acceptable approximation.

In the case of the 3 : 5 MMR at a = 42.3 AU, the minimum dis-
tance to Neptune in 108 yr registered for zero-amplitude librators
was 12.6 AU (Fig. 1b). This resonance has two libration cen-
ters at σ = 90◦ and 270◦ and for both of them the conjunctions
with Neptune occur at about 90◦ from perihelia. The distance is
a(1 − e2) − aN, which for e = 0.1 gives 11.7 AU. Equation (2)
gives somewhat larger value and still better agreement with the
simulation.
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In the outer resonances of the type 1 : r , r ≥ 2, which present
asymmetric librations (i.e., qσ0 6= 180◦), the phase-protection
mechanism is less efficient in separating the orbits from Neptune.
For example, in the 1 : 2 Neptune MMR (a = 47.8 AU) with
e > 0.3 the two centers are placed at about ±68◦ (they vary from
±71◦ for e = 0.3 to ±66◦ for e = 0.4) so that the conjunctions
with the planet can happen relatively close to the perihelion. For
e > 0.37, where the 1 : 2 resonant orbits are Neptune-crossing,
the potentially stable orbits must necessarily have the maximum
excursions of σ less than 65◦.

For e = 0.1, the two centers of the 1 : 2 MMR are at σ0 =
±102◦. Assuming that minimum distance happens at conjunc-
tion of the two bodies, we compute it by crude approxima-
tion of Eq. (2) as a(1 − e2)/[1 + e cos v] − aN with v = M =
102◦. This gives a minimum distance of 18.2 AU, which is
only somewhat larger than the 16 AU determined numerically
(Fig. 1b).

2.2. Taxonomy of MMRs

None of the test particles starting with a > 44 AU escaped
to the Neptune-crossing space (Fig. 1a). Having initially larger
a and e = 0.1 produced sufficiently large perihelion distances
(initially >39.6 AU) that even the nonresonant orbits are well
separated from Neptune. Test particles initially placed close to
the borders of the 1 : 2 MMR (a = 47.8 and 48.3 AU) had their
minimum distances decreased by as much as 5 AU with re-
spect to the background level; this happened because their e
increased by more than 0.1 on 108 yr. The chaos near borders of
the 5 : 9 and 1 : 2 MMRs destabilized the orbits that, for e = 0.1
and a > 44 AU, were found unstable on 4 × 109 yr by Duncan
et al. (1995). As mentioned earlier, the strength of MMRs is pro-
portional to the eccentricity so that at e = 0.15, where Duncan
et al. (1995) identified additional instabilities between the 4 : 7
and 1 : 2 resonances, other MMRs are important (namely 7 : 13,
8 : 15, and 9 : 17).

The LCE estimates (Fig. 1c) show the complex chaotic struc-
ture of the transneptunian region. For a > 44 AU the plot
presents many peaks rising from the background level. We have
checked that the main peaks correspond to chaotic regions where
the computation of the LCE has converged to a nonzero limit
value (see Morbidelli and Nesvorný 1999). The background
value of about 10−7 yr−1 is dictated by the limited integration
time span; when the latter is increased, the background level
generally decreases. The roughness of the background level in
Fig. 1c suggests the general nonintegrability of the motion as dis-
cussed for the asteroid belt by Morbidelli and Nesvorný (1999).
For a < 43 AU, the only orbits with LCE ∼ 10−7 yr−1 are those
at centers of the 2 : 3 and 3 : 5 MMRs.

The maximum LCE is nonzero in the 7 : 11 (10−5.6 yr−1),
5 : 8 (10−5.8 yr−1), and 8 : 13 (10−5.8 yr−1) MMRs with Neptune,
which appear as holes in the more chaotic background in Fig. 1c.
Indeed, most orbits placed with the semi-major axes close to
these resonances were found unstable over the age of the Solar
System by Duncan et al. (1995).

FIG. 2. Enlarged plot of Fig. 1c with the main MMRs being labeled. See text
for the notation. Note that the density of resonances increases with decreasing a.
Most of the MMRs for a > 46.5 AU are the three-body resonances with Neptune
and Uranus. The semi-major axis range on the x axis overlaps in the second and
third panels.

In analogy to the asteroid belt, most features in the LCE de-
pendence on a observed in Fig. 2 (enlarged from Fig. 1c) are
related to MMRs; the secular resonances have lower LCEs due
to their longer libration periods. The only exception is the inter-
val 40–42 AU where the three secular resonances (ν8, ν17, and
ν18 overlap (Knežević et al. 1991), causing escapes in 108 yr.

Some of the MMRs are labeled in Fig. 2. These associations3

were found by short integrations of the test particles having large
LCE estimates and by the computation of angles with all reso-
nant combinations that come into question for the given range of
semi-major axes. The libration of one resonant angle was usu-
ally easily found and the corresponding resonance labeled. The

3 There is a small shift between the a of the large LCE peaks in Fig. 2 and the
mean a of the associated resonances, which is a consequence of short-periodic
oscillations in a induced by Jupiter having a 11.8-yr period and a 0.6–0.8 AU
amplitude. Consequently, the initial a of a given resonance in our experiment is
about 0.25 AU larger than the mean resonant a.
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notation in Fig. 2 has the following rules: Nr : s is the Neptune
resonance with the resonant angle rλN − sλ + (s − r )$ , where
s > r ≥ 1 are integers; Ur : s is the Uranus resonance with the
resonant angle rλU − sλ + (s − r )$ , where λU is the mean lon-
gitude of Uranus; and the resonances labeled as nNNnUUn, with
nN, nU, and n being integers, are the three-body resonances
with the resonant angle nNλN + nUλU + nλ − (nN + nU + n)$
(Nesvorný and Morbidelli 1998).

While for a < 46.5 AU the largest peaks are associated with
the MMRs with Neptune, for a > 46.5 AU most peaks corre-
spond to the three-body resonances with Neptune and Uranus.
We remark that the latter are placed on both sides of the 1 : 2
Neptune MMR according to a peculiar structure, which is a con-
sequence of Uranus and Neptune being close to the mutual 1 : 2
mean-motion resonance: the angle λU − 2λN circulates with a
negative derivative and a period of about 4230 yr. The sum of a
multiple of this angle, j(λU − 2λN), j being an integer, with a
multiple of the resonant angle of the 1 : 2 Neptune MMR, k(λN −
2λ), k being an integer, gives (k − 2 j)λN + jλU − 2kλ. This last
expression, with appropriate values of k and j , gives the resonant
combinations of all 12 labeled MMRs with a > 46.5 AU (in-
cluding the 1 : 4 resonance with Uranus at a = 48.7 AU for k = 2
and j = 1). As the three-body MMRs appear in the perturba-
tion approach at the second order in planetary masses (Nesvorný
and Morbidelli 1999), the above observation gives a hint on what
combinations of the perturbation harmonics give rise to the iden-
tified three-body resonances.

FIG. 3. The chaotic evolution of orbits initially at 37–39 AU with low e and i . The dark points denote the trajectory of a test particle before it first comes to a
distance of 2 AU from Neptune’s orbit. The large gray symbols show the trajectory after this moment. Sixteen percent of integrated test particles were transferred
to Neptune-crossing orbits in 4 × 109 yr. The low-e orbits were modified by slow chaotic diffusion in e driven by labeled MMRs with Neptune (and Uranus). The
line of proper q = 35 AU is shown for reference. Note that the proper a of all test particles stays almost constant under this line (excluding that at a > 39 AU,
which started close to the left border of the 2 : 3 MMR). The changes of proper a in the part of the trajectory denoted by gray symbols is due to the effect of close
encounters with Neptune.

Figure 2 shows that chaotic regions become denser with de-
creasing a. In fact, the location of MMRs of a given order become
denser approaching Neptune, and the sizes of the coefficients of
the resonant harmonics increase with decreasing distance from
the main perturbing body. This reflects in the number of visible
peaks. The height and width of each peak is roughly propor-
tional to the square root of the size of the coefficient of the
corresponding resonant harmonic (Murray and Holman 1997,
Nesvorný and Morbidelli 1999).

2.3. The Resonant-Driven Evolution of Eccentricity

What are the possible dynamical consequences of the com-
plex resonant structure of the transneptunian region revealed by
Fig. 2? In analogy to the asteroid belt, each thin MMR represents
a track at a given semi-major axis where the eccentricity and in-
clination chaotically change on long time periods (Murray and
Holman 1997). We give an example of this chaotic evolution in
Fig. 3.

The numerical simulation was performed with four outer plan-
ets (Jupiter to Neptune) and 101 test particles. The initial po-
sitions of planets were taken from JPL DE403 ephemeris for
the date 1/1/1998 (JD 2450814.5) with respect to the invariable
plane of LONGSTOP 1B simulation (Nobili et al. 1989). The
initial conditions of test particles were chosen as equidistantly
spaced in the interval 37 ≤ a ≤ 39 AU (1a = 0.02 AU), with
e = 0.01 and i = 2◦. The initial angles of test particles were
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chosen randomly from a uniform distribution between 0 and 2π .
The orbits of planets and test particles were propagated in time
using theswift rmvs3 integrator (Levison and Duncan 1994)
with a 1-yr time step. The total integration time was 4 × 109 yr.

The orbital elements of test particles were averaged over a
shifting window of 10 Myr using the same procedure as
Morbidelli and Nesvorný (1999, their Eq. (1)). The 10-Myr in-
terval is long enough to cancel out all important quasi-periodic
oscillations of orbital elements. Therefore, in the case of local
integrability of the equations of motion, the orbital elements de-
fined by the above averaging do not change with time. They are
integrals of the motion and are usually called proper elements.
Conversely, the change of proper elements with time reveals non-
quasi-periodic evolution, i.e., chaotic diffusion. For purposes of
Fig. 3, the proper elements were computed every 105 yr.

The dark points in Fig. 3 denote the trajectory before it first
became Neptune-grazing (if ever), i.e., before the test particle’s
osculating perihelion first happened to be close to Neptune’s
orbit. We choose a threshold distance of 2 AU. Larger gray
symbols show the evolution of the trajectory after this instant.
The proper perihelion line q = 35 AU is shown for reference
as an approximate limit above which Neptune dominates the
motion. Note however that this is only a rough criterion due to
the secular oscillations of osculating eccentricities.

The simulation resulted in 16 escapes to Neptune-crossing
orbits. The escapes of two test particles at the extreme left of the
integrated a interval happened at the chaotic border of the 3 : 4
Neptune MMR (centered at 36.48 AU). The particle escaping at
the extreme right of the integrated interval was initially placed
near the chaotic border of the 2 : 3 MMR (centered at 39.45 AU).
The remaining 13 particles that became Neptune-crossers dur-
ing the integration time span evolved from their respective initial
locations (initial proper e < 0.02) due to a gradual enlargement
of the proper e. Such enlargement happened at the positions of
second- and higher-order MMRs with Neptune and at locations
of three-body resonances with Neptune and Uranus. While the
proper a of these particles stayed almost constant at this stage of
orbital evolution (dark points), the resonant-driven chaotic dif-
fusion enhanced the objects’ proper e; above the line of proper
q = 35 AU, Neptune close encounters became important. Under
the effect of Neptune encounters, these bodies started to random-
walk in a, roughly following the curves of invariant Tisserand
parameter with respect to Neptune (Valsecchi and Manara 1997).
This second stage of orbital evolution was much shorter and the
test particles normally reached heliocentric distances larger than
100 AU in a time interval typically not exceeding 108 years, at
which point they were removed from the simulation. The inte-
gration of all 16 particles escaping to Neptune-crossing orbits
were stopped before t = 4 × 109 yr.

Most of the escaping test particles (9) did so via the 5 : 7
Neptune MMR (a = 37.68 AU). In fact, these were all particles
that had the initial proper a in the range 37.6–37.75 AU. The size
of this interval is about the size of the 5 : 7 MMR determined in
the circular planar problem for e = 0.02 (=mean initial proper
eccentricity of nine escaping particles), which is approximately

0.12 AU. The crossing time (the time elapsed from t = 0 to
the first crossing of Neptune’s orbit) varied between 322 and
1469 Myr with a mean value of 666 Myr. After becoming Nep-
tune grazers, particles were deactivated when some stopping cri-
teria were satisfied (either the heliocentric distance being larger
than 100 AU or the test particle being closer than 0.01 Hill radius
to any planet), after on average 13 Myr.

Other escapes (one per resonance) occurred at locations of
the 8 : 11 (a = 37.23 AU, crossing time 641 Myr), 7 : 10 (a =
38.19 AU, 620 Myr), and 9 : 13 (a = 38.47 AU, 1419 Myr) res-
onances. The longer crossing time at the 9 : 13 MMR is due to
its higher order (4) and smaller chaotic diffusion rate. (See ref-
erences below). The eccentricity was significantly excited at
the 11 : 16 Neptune MMR (a = 38.654 AU) and also at the
three-body resonances with Neptune and Uranus: 7N − U − 7
(resonant angle, 7λN − λU − 7λ + $ ) and 3N + U − 7 (3λN +
λU − 7λ + 3$ ). These latter resonances are placed at 37.487
and 37.878 AU, respectively.

The escape mechanisms from the low-e region 37–39 AU
shown in Fig. 3 are analogous to those of inner belt asteroids
to Mars-crossing orbits (Migliorini et al. 1998, Morbidelli and
Nesvorný 1999). The analytic estimates of the resonant size,
LCE, and diffusion rate at the MMRs in the asteroid belt (Murray
and Holman 1997, Murray et al. 1998, Nesvorný and Morbidelli
1999) apply also to the KB.

The speed of chaotic evolution at a MMR depends on its
strength (Murray and Holman 1997): for some resonances (e.g.,
on the borders of the 7 : 12 Neptune MMR located at about
43.4 AU) the speed of the chaotic diffusion is enough to enlarge
the initial e to the critical value above which the orbit becomes
Neptune grazing and the body escapes in 108 yr (Fig. 1). There
thus must be many test particles escaping from weaker MMRs
on longer time intervals. Hence we believe that the thin MMRs
are responsible for escapes in many narrow regions in a found by
Duncan et al. (1995) for 45 < a < 47 AU. Moreover, this also
means that if there were not not enough new bodies injected into
the resonances (by collisions or mutual interaction between the
KBOs), escaping bodies must open narrow gaps or at least cause
local density reductions at the resonant semi-major axes.

For a weak MMR and the resonant body with initially small
e, the process of slow chaotic diffusion normally results only in
a moderate change of e (and i) over the age of the Solar System.
Consequently, this could have caused a chaotic “processing” of
KBOs in e (and i) and an alteration of the original characteris-
tics of the KB. By this we mean that the KB is not dynamically
“frozen.” Whatever structures has been formed in it (collisional
families, for example) have dispersed with time and should
have depended with other slowly diffusing (in e and i) resonant
bodies. The first traces of such a process are being recently re-
vealed on the much better known distribution of asteroids in the
main belt (Milani and Nobili 1992, Morbidelli and Nesvorný
1999).

Assuming a uniform distribution of KBOs in the interval
45 < a < 47 AU and e = 0.1, the number of resonant objects
must be proportional to the total phase space volume occupied by
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resonances. In Fig. 2 we can identify about 80 peaks with LCE >

10−6.8 yr−1 in this interval. These peaks have a total width
of about 0.512 AU, which means that about 26% of KBOs
at 45 < a < 47 AU and e = 0.1 must be chaotic with LCE
> 10−6.8 yr−1. Therefore, a significant chaotic evolution in e
(and i) may be expected for this part of the KB.

Outside the MMRs (Fig. 3), the proper elements of test parti-
cles almost do not change. The small variation of proper a and
e for nonresonant orbits validates our calculation of proper ele-
ments as 10-Myr averages; these orbits are expected to be close
to regular. Note that there is no tendency to alter the proper a,
and thus it is practically impossible for the initially nonresonant
particles to reach one of the diffusion tracks at resonances.

This result confirms the conclusion of Duncan et al. (1995)
that under the perturbations of four outer planets most low-e
orbits with initial a between the outer edge of the 3 : 4 Neptune
MMR (37 AU) and the inner edge of the 2 : 3 MMR (39 AU) are
stable over 4 × 109 yr. Because of this orbital stability, one would
expect that there exist KBOs with 37 < a < 39 AU, q > 35 AU,
and i < 10◦. Nevertheless, observations have not provided a sin-
gle object (among 63 known KBOs with good orbits in Septem-
ber 1999) with orbital elements in this interval.4 Duncan et al.
(1995) suggested that some mechanism other than the long-term
gravitational effects of four outer planets must have cleared it.
The effect of Neptune-scattered large planetesimals (Petit et al.
1999), sweeping MMRs (Malhotra 1995), or sweeping secular
resonances (H. F. Levison et al. 1999, preprint) are three differ-
ent possibilities of how this might have been achieved during
the primordial stage of the KB formation.5

4 The recent recovery of 1998 SN165 (Gladman et al. 2000b) suggests that this
object has the orbital elements a = 38.1 AU, e = 0.05, and i = 5◦. This indicates
that the concerned region is not completely void of objects and probably hosts
a considerable number of KBOs. Still, based on the discovery rate, the region is
underpopulated in comparision with other stable places in the KB.

5 We have also checked another possibility and in this context recall the par-
ticular geometry of Pluto’s orbit: the argument of Pluto’s perihelion oscillates
around 90◦ with an amplitude of 22◦. This, together with the equation of ellipse,

r =
a(1 − e2)

1 + e cos v
, (3)

where r and v are the heliocentric distance and true anomaly of Pluto, a =
39.45 AU and e = 0.25, shows that Pluto intersects the ecliptic plane close to
v = ±90◦ at a heliocentric distance of about 37 AU. Consequently, the low-e
and low-i objects with a ∼ 37 AU may encounter Pluto when it passes through
ecliptic whenever the phasing of orbital revolutions is correct. However, the
numerical simulation with five planets (Jupiter to Pluto) showed that Pluto’s
effect over the age of the Solar System is almost negligible in the interval 37–
39 AU, the escape rate being the same as in the simulation with four planets.
This is due to the fact that Pluto’s inclination (17.2◦) and eccentricity (0.25)
determine a relatively high velocity at intersection with the orbit at a = 37 AU
and e = i = 0:

V = 2π

√

2
1 − cos iP

a
= 0.3 AU/yr = 1.5 km/s, (4)

and the deflection of passing trajectories—proportional to V −2—is small. In
fact, Pluto gravitational sweeping has a negligible effect on the distribution of
objects in the KB (Gladman et al. 2000a), with the exception of moderately and
high-inclined Plutinos (Nesvorný et al. 2000).

3. THE 1 : 2 MMR WITH NEPTUNE

The 1 : 2 resonant angle σ1:2 = λN − 2λ + $ oscillates—
unlike in the case of most other MMRs—around a center that
is neither 0◦ nor 180◦. Such a case is usually referred to as an
asymmetric libration, and is found exclusively in the 1 : 1 MMRs
(tadpole orbits) and the MMRs exterior to a planet of the type
1 : 2, 1 : 3, 1 : 4, etc. (Beaugé 1994, Morbidelli et al. 1995). Con-
sequently, the range of Aσ accessible to stable resonant librations
in the 1 : 2 MMR with Neptune is smaller.

In the following experiment, the initial angles of test par-
ticles were chosen so that σ1:2 = σ0(e), $ = $N, and Ä =
ÄN, where σ0(e) is the asymmetric libration center for given e.
Figure 4a shows σ0(e) computed by a semi-numerical method in
the restricted three-body model with Neptune on a circular and
planar orbit. Figure 4b shows an analytically computed maxi-
mum possible Aσ (e) of tadpole orbits. For Aσ exceeding this
value, the motion happens on horseshoe trajectories.

We have run simulations for two sets of initial conditions:

(1) 707 test particles with 47.5 ≤ a ≤ 48.5 AU (1a =
0.01 AU), e = 0.04, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4 (101 test parti-
cles at each e) and i = 5◦;

FIG. 4. (a) The asymmetric center (σ0) of the 1 : 2 MMR as a function of
eccentricity. The other center is placed symmetrically in the interval [−π, 0].
(b) The maximum amplitude of tadpole orbits determined as half-width of the
libration island enclosed by separatrices. The discontinuity at e = 0.5 is due to
the change in the resonant topology introduced by collisions with Neptune. The
dashed line approximates the half-width of the tadpole island for e > 0.5.
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(2) 606 test particles with a = 47.95 AU, 0 ≤ e ≤ 0.4
(1e = 0.004) and 5 ≤ i ≤ 30◦ (1i = 5◦, 101 test particles at
each i).

In the first set we sampled the resonant orbits with small i ; the
dynamics at larger i was explored in the second set.

As in N&R00, test particles were numerically integrated with
four outer planets (Jupiter to Neptune) for 108 yr by the symmet-
ric multistep integrator. The initial conditions of the planets were
taken from JPL DE403 ephemeris for the date JD 2449700.5 with
respect to the mean ecliptic and equinox J2000. The time steps
of 40 days for the planets and 200 days for the test particles were
used. A smoothing filter was applied to a exp ισ , e exp ι$ and
i exp ιÄ (ι =

√
−1). This procedure suppressed periods smaller

than 5000 yr. See N&R00 for a more detailed description of the
experimental setup.

3.1. Regular and Chaotic Dynamics for Small e

Estimate of the maximum LCE and the minimum distance to
Neptune in 108 yr are plotted as the set (1) of initial conditions
in Fig. 5. The color coding in Fig. 5a is the same as that used in
N&R00: test particles escaping within the integration time span
are shown in yellow while test particles with smallest LCE are
shown in blue. In Fig. 5, we have compensated the scale on the x
axis for the short-periodic variations of the semi-major axis with
a shift of 0.18 AU in a, so that the test particles with Aσ ∼ 0 are
near the true resonant center at 47.8 AU.

In Fig. 5a, we plot the libration centers and separatrices of tad-
pole orbits (bold vertical line at 47.8 AU and bold lines joining
each other at e = 0.04 and delimiting the “V”-shaped resonant
region). The exterior bold lines are the limits of horseshoe or-
bits. The Kozai resonance is shown by the thin full line. We
have computed its location from f$ − fÄ = 0, where f$ (a, e)
and fÄ(a, e) were numerically computed in our experiment.
The Kozai resonance intersects the libration center of the 1 : 2
Neptune MMR at e ∼ 0.38, but we were unable to plot its loca-
tion at 0.35 < e ≤ 0.38, because our initial conditions did not
sample this interval.

The dashed line in Fig. 5a shows the 5 : 1 commensurability
between the resonant frequency and the frequency of the angle
λU − 2λN. The 4 : 1 commensurability between the same angles
is at larger eccentricities and its location at e = 0.35 is indicated
by two arrows. The 4 : 1 three-body resonance has the same “U”-
shaped form as the 5 : 1 resonance and intersects the libration
centers of the 1 : 2 Neptune MMR at e ∼ 0.32.

From 191 KBOs currently registered in the Asteroid Orbital
Elements Database of the Lowell Observatory (ftp://ftp.lowell.
edu/pub/elgb/astorb.html), six objects are close to the 1 : 2
Neptune MMR (46.5 < a < 49 AU). Computing the smoothed
orbital elements (i.e., the orbital elements from which the short
periodic variations has been removed—see N&R00) of these
objects, we find that only one object—1997 SZ10—falls within
the interval of a and e shown in Fig. 5. A pair of two-headed ver-
tical arrows has been placed in this figure, indicating the extrema

of filtered a and e of 1997 SZ10 (determined from a numerical
integration of its orbit over 107 yr). This figure indicates that
this object is on a horseshoe orbit with Aσ ∼ 150◦, which is
unstable on 108 yr. However, there is a large uncertainty in the
semi-major axes of this and the other five bodies that were com-
puted from small observational arcs, so that conclusions would
be premature. In contrast, we believe from the following rea-
sons that two of the above six objects are on stable resonant
orbits.

Our argument is based on the orbital angles of 1997 SZ10 and
1996 TR66, which according to E. Bowell (personal commu-
nication) are quite determinate,6 conversely to the semi-major
axes, which have 1-σ uncertainties of ∼0.07 and ∼0.31 AU,
respectively. It is interesting to note that the present value of
σ1:2 of 1997 SZ10 (at JD 2449700.5) is −69◦, which is almost
exactly the value of the second resonant center σ0(e) ∼ −67◦

at e = 0.36 (Fig. 4a). This coincidence is quite surprising be-
cause the orbital angles were not deliberately chosen to put 1997
SZ10 close to the libration center. This shows that it is quite pos-
sible that this object is in fact a stable resonant body with the
semi-major axis erroneously (by some 0.2–0.3 AU) determined
from observations. Moreover, the second object—1996 TR66—
which falls close to the 1 : 2 Neptune MMR has σ1:2 = −62◦,
again very close to the corresponding σ0(e) for e ∼ 0.38.7 This
should not be a mere coincidence because the probability that
σ1:2 of a discovered object is within 5◦ from to one of the li-
bration centers (as it happens for both 1997 SZ10 and 1996
TR66) is 1 in 18. Indeed, for nonresonant objects, σ1:2 circulates
and receives values between 0◦ and 360◦ with equal probability.
Consequently, at the time of observation, the nonresonant bodies
would be uniformly spread in σ1:2 between 0◦ and 360◦.

As we will show in Section 3.3, the stable resonant objects
with e ∼ 0.3 are expected to move within ±30◦ from σ0(e =
0.3). At e ∼ 0.36–0.38, where the limit of the stable tadpole
motion is smaller than at e = 0.3 (Fig. 5), the stable resonant
objects must always stay closer than 10◦–20◦ to σ0, exactly
at a place where 1997 SZ10 and 1996 TR66 are currently lo-
cated. Moreover, if both objects are resonant bodies, they prob-
ably also fall into the Kozai resonance since, at present, ω =
341◦ for 1997 SZ10 and ω = 311◦ for 1996 TR66, and for
e = 0.38 the stable ω libration happens around ω0 = 325◦

(Section 3.4).
On the other hand, we still cannot exclude the possibility that

1997 SZ10 and 1996 TR66 are captured scattered disk objects

6 The assumed orbital elements of 1997 SZ10 and 1996 TR66 on 8/10/
1999 (JD 2451400.5) are a = 48.6752 AU, e = 0.37419, i = 11.768◦, M =
11.393◦, ω = 341.122◦, Ä = 9.422◦, and a = 47.3227 AU, e = 0.38081, i =
12.3906◦, M = 35.732◦, ω = 311.325◦, Ä = 342.993◦, respectively. Note also
that B. Marsden give similar solutions for the orbital angles of 1997 SZ10 and
1996 TR66.

7 The uncertainty domains of the orbital elements are such that the true semi-
major axes of 1997 SZ10 and 1996 TR66 may be as far as 0.4 and 2 AU from
their current nominal orbits, respectively, without significantly alternating their
orbital angles (J. Virtanen and K. Muinonen, personal communication).
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(Duncan and Levison 1997). Such bodies spend about 20% of
their lifetimes within 5◦ from σ0 (H. Levison, personal commu-
nication). So, the probability of seeing captured objects where
1997 SZ10 and 1996 TR66 are currently located is small but not
completely negligible.

In Fig. 5a, the LCE is smaller than ∼10−7 yr−1 in the central
region of the 1 : 2 MMR, which shows orbital regularity com-
parable to that of the central region of the 2 : 3 MMR (N&R00,
their Fig. 2). The central region is the widest for e = 0.3, where
it accounts for almost 0.4 AU in a. This is much less than the
resonant size computed by Malhotra (1996) for the same e in
the circular and planar model with Neptune. Our computation
shows that the central region of the 1 : 2 MMR at e = 0.3 is
similar in size to the stable region of the 2 : 3 MMR.

For smaller and larger e, the region of small LCE of the 1 : 2
MMR shrinks. There is a large gradient of the period of σ with
respect to e so that at e = 0.1, the libration frequency is com-
parable to the perihelion and node frequencies. For e < ∼ 0.1,
the tadpole region is very narrow and the Aσ ∼ 0 tadpole or-
bits are destabilized on short time scales. These orbits later
evolve alternating between circulation and horseshoe regimes,
with short intermittences of tadpole librations. The resonant mo-
tion at e ∼ 0.4 and small Aσ is moderately chaotic (LCE ∼
10−6.5 yr−1). This is not because of the effect of Neptune en-
counters (Fig. 5b) but rather an influence of the Kozai resonance.
In Section 3.4, we show by long-term numerical simulation that
the resonant motion is unstable over 4 × 109 yr when e>∼0.4.

One can also note in Fig. 5a that the chaos is enhanced at the
4 : 1 and 5 : 1 three-body resonances, where LCE ∼10−5.8 and
∼10−6.2 yr−1, respectively. These values are similar to those
found at the same three-body resonances in the 2 : 3 Neptune
MMR (N&R00, their Fig. 2a). Here however, the resonant po-
sitions are quite different (4 : 1 resonance is “inner” to 5 : 1 res-
onance), with a shape following convex lines (5 : 1 is shown by
dashed line in Fig. 5a). This particular configuration is related
to the fact that inside the asymmetric island of the 1 : 2 MMR,
the libration period increases when approaching the separatri-
ces while at the 2 : 3 MMR, the libration period decreases when
approaching to the separatrices.

The horseshoe orbits in the 1 : 2 MMR are generally chaotic
(ln1(t)/t = 10−5–10−6 yr−1 with t = 108 yr). Although we
have not investigated the sources of this chaos in detail, one rea-
son could be the large period of σ for horseshoe orbits (roughly

FIG. 5. The maximum LCE (a) and minimum distance to Neptune (b) computed for i = 5◦ and several a, e in the 1 : 2 MMR with Neptune (set (1) of initial
conditions). The x-axis scale was corrected for the difference between initial osculating and mean resonant semi-major axis due to short-period perturbations. The
resonant center and the limits of tadpole and horseshoe orbits are shown by bold lines. Inner resonances are denoted by thin lines (the location of the 4 : 1 three-body
resonance is indicated only for e = 0.35). The current orbital elements of 1997 SZ10 would indicate a horseshoe orbit unstable on 108 yr (the two-headed vertical
arrows delimit the maximum and minimum values of its a and e on 107 yr, but see the discussion in text). In the central resonant space, LCE < 10−7 yr−1. The
minimum distance to Neptune is larger than 20 AU for Aσ ∼ 0 and e > 0.25.

FIG. 12. The maximum LCE (a) and minimum distance to Neptune (b) computed for i = 5◦ and several a, e in the 3 : 4 MMR with Neptune (set (1) of initial
conditions). The x-axis scale was corrected for the difference between initial osculating and mean-resonant semi-major axis due to short-period perturbations.
The resonant centers and separatrices are shown by bold lines. Inner resonances are denoted by thin lines. The KBO 1995 DA2 has a stable orbit (the two-headed
vertical arrows delimit the maximum and minimum values of its filtered a and e on 107 yr). In the central resonant space, LCE < 10−7 yr−1 and the minimum
distance to Neptune does not exceed 15 AU and is less than 10 AU for e < 0.1.

double of the period for tadpole orbits for the same e). Thomas
and Ferraz-Mello (2000, in preparation) have shown that the
secondary and secular resonances are frequently present in the
horseshoe regime of the 1 : 1 MMR with a planet.

Figure 6 shows the measures of chaotic evolution of the orbital
elements, δAσ (a), δe (b), and δi (c), and of frequencies, δ fσ (d),
δ f$ (e), and δ fÄ (f). These quantities have been determined in
the same way as in N&R00 (their Eqs. (2)–(4)). δAσ , δe, and
δi are the chaotic changes of orbital elements over 45 Myr. δ fσ ,
δ f$ , and δ fÄ are the relative changes of frequencies over the
same time interval.

Comparing Figs. 5 and 6, one can see the correlation between
the values of the LCE and the measures of chaotic evolution of
orbital elements. For example, the orbits are very stable in the
core of the 1 : 2 MMR where the LCE is small. Figure 6 is never-
theless more rigorous concerning the orbital stability/instability,
specifically:

(1) The most stable place in the 1 : 2 MMR is at e = 0.3,
where δAσ = 0.1◦ per 45 Myr for Aσ < 30◦ (Fig. 6a). There
the expected change of Aσ over 4.5 Byr is 1◦. Even if e = 0.3,
the maximum Aσ available for tadpole orbits is 70◦ (Fig. 4b),
for Aσ > 30◦, such orbits are already unstable and escape from
the resonance.

(2) Stable tadpole motion practically does not exist for e <
0.1 and for e > 0.4, where δAσ > 1◦ per 45 Myr. While in the
former case, the test particles may still survive several billion
years on horseshoe orbits, because their e is small, in the latter
case, the test particles are efficiently removed from the resonance
by encounters with Neptune.

(3) The chaotic structure of the resonant region at interme-
diate eccentricities (0.1 < e < 0.4) is complex. Apart from the
resonances shown in Fig. 5a, there are the 2(g − s8) = 0 sec-
ular resonance at e ∼ 0.2 and the 2g − s − s8 = 0 secular res-
onance at e ∼ 0.3, for Aσ ∼ 0 (g and s are the perihelion and
nodal frequencies of test particle, and g8 = 0.673 arcsec yr−1

and s8 = −0.691 arcsec yr−1 are the perihelion and nodal fre-
quencies of Neptune).

(4) The horseshoe orbits for e>∼0.3 are generally unstable
on 108 yr (yellow in Figs. 5a and 6a–6c). Also for e < 0.3,
the chaotic evolution of horseshoe orbits is large (Figs. 6a–6c)
and many objects are expected to escape from the resonance by
increasing their orbital e.
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FIG. 6. The changes of orbital elements, δAσ (a), δe (b), and δi (c), and of the frequencies, δ fσ (d), δ f$ (e), and δ fÄ (f), measured per 45 Myr, for the set (1)
of initial conditions in the 1 : 2 Neptune MMR. The color coding is the same in all panels but (a). The low-Aσ tadpole orbits are stable over the age of the Solar
System because the chaotic evolution of orbital elements/frequencies is small there. Apart from the resonances shown in these figures, there are the 2(g − s8) and
2g − s − s8 secular resonances located at e ∼ 0.2 and ∼0.3 near Aσ ∼ 0, respectively. The horseshoe orbits are generally unstable with ejection times indirectly
proportional to the initial e.
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3.2. The Dynamics at Aσ ∼ 0 and Larger i

The set (2) of initial conditions was designed to study the or-
bital dynamics near the libration centers. Indeed, the test parti-
cles with a = 47.95 AU had initially Aσ < 20◦ for e > 0.1 (this
lower e limit depends on i). For e < 0.1, where the tadpole orbits
practically do not exist, the studied orbits move in a horseshoe
regime. Figure 7a shows the maximum LCE. Figure 7b shows
the minimum distance from Neptune over 108 years for i = 10◦.

The particles on the left side of the full thick line in Fig. 7a
are chaotic with LCE ∼10−5.5–10−6.5 yr−1. The full thick line
was empirically traced through LCE = 10−6.5 yr−1. On the right
side of this line, log(ln1(t)/t) almost linearly decreases with
log t and the minimum value of the LCE in Fig. 7a (∼10−7 yr−1)
is dictated by the integration time span. There is only one well-
determined structure visible in the plot: for e > 0.36 and i >
15◦, ln1(t)/t converges to ∼10−6.5 yr−1, where the Kozai reso-
nance is located. The minimum distance from Neptune smoothly
decreases with e in the regular region and drops to 15 AU in the
chaotic low-e region (Fig. 7b).

Measures of chaotic diffusion (Fig. 8) reveal two secular reso-
nances in the “regular” region. The 2(g − s8) secular resonance
is at e = 0.185 and the 2g − s − s8 resonance is at e ∼ 0.3.
The full thin lines in Fig. 8 were plotted at 2( f$ − s8) = 0
(denoted by 2(g − s8)) and 2 f$ − fÄ − s8 = 0 (denoted by
2g − s − s8), respectively, where f$ (e, i) and fÄ (e, i) were
determined numerically in our experiment. The dashed lines
were empirically traced at approximate positions of separatri-
ces of the 2g − s − s8 secular resonance. This resonance over-
laps with the Kozai resonance for i >∼20◦. The resonant an-
gles, 2($ −ÄN) of the former and 2$ −Ä−ÄN of the latter,
clearly librate for test particles in these resonances. Figure 9
shows the time evolution of 2$ −Ä−ÄN (9a) and of e (9b) for
the test particle with initial conditions: a = 47.95 AU, e = 0.304
and i = 10◦. The evolutions are correlated as it is expected for
pendulum-like coupled motion of the action and resonant angle.

The total variations of e and i in the “chaotic” region, extrap-
olated to 4.5 Byr, are 0.2◦ and 10◦, respectively. This suggests
a prevailing stability of primordial bodies since the motion in
horseshoe regime gets strongly unstable only for e > 0.3. The
“regular” region at small Aσ is generally stable for e < 0.35 and
i < 25◦. The secular resonances may potentially destabilize only
the orbits with i > 25◦. This instability limit of i is about the
same as found by Duncan et al. (1995) for other resonances.

3.3. A Simple Model of Chaotic Diffusion

A one-dimensional random-walk model of chaotic diffusion
in the 2 : 3 Neptune MMR was described in N&R00 (see their
Section 4 for details). Here, we use the same model for the
1 : 2 MMR.

For a given initial value of Aσ , 1000 test particles were sim-
ulated with e = 0.3 and i = 5◦. Assuming a random walk in
Aσ , we advanced the orbits of these test particles by applying
random kicks of the size of δAσ (taken from Fig. 6a) to their

FIG. 7. The maximum LCE (a) and the minimum distance to Neptune
(b) for the set (2) of initial conditions in the 1 : 2 Neptune MMR (initial a =
47.95 AU). The bold line in (a) schematically separates two regions with
different strengths of chaos. For test particles in the large-e region (denoted
by “regular”), ln1(t)/t does not converge to a limit value on the integra-
tion time span. Conversely, in the low–e region (denoted by “chaotic”), LCE
> 10−6 yr−1.
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FIG. 8. The changes of orbital elements, δAσ (a), δe (b), and δi (c), and of frequencies, δ fσ (d), δ f$ (e), and δ fÄ (f), measured per 45 Myr, for the set (2) of
initial conditions in the 1 : 2 Neptune MMR (initial a = 47.95 AU). The color coding is the same for all panels but (a). The 2(g − s8) secular resonance is shown
by the thin line at e = 0.185. The center (full thin line) and approximate positions of the separatrices (dashed thin lines) of the 2g − s − s8 secular resonance are
shown near e = 0.3. The Kozai resonance is at e ∼ 0.38 and overlaps with 2g − s − s8 for i > 20◦.
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FIG. 9. The evolution of 2$ −Ä−ÄN (a) and e (b) for a test particle
starting with a = 47.95 AU, e = 0.304, and i = 10◦. Note that the libration of
the angle with a period of ∼40 Myr is correlated with oscillations of e. This
particle is in the 2g − s − s8 secular resonance.

Aσ . A test particle was deactivated if Aσ > 85◦. This simula-
tion was repeated for 51 different values of Aσ regularly spaced
between 0 and 50◦. The total volume V (50◦) occupied by these
orbits is 36.1 AU × deg. The number of surviving test particles
was then rescaled to a total number of 1000 particles initially
placed in the interval 0 ≤ Aσ ≤ 50◦, and uniformly distributed
in a, λ,$ , and Ä.

Figure 10 shows the initial density profile of test particles
(dashed line) and the eroded density profile at t = 4 Byr (bold
line denoted by “+0”). Sixty-four percent of the test particles
survived 4 Byr. Most of the escapes happened for Aσ > 30◦, and
for Aσ > 50◦ more than 90% of test particles left the resonance.
According to Fig. 10, and assuming that only the dynamical
diffusion was acting on resonant bodies, the maximum density
of the current resonant population should be at Aσ ∼ 30◦.8

8 We show in Fig. 10 the distribution of surviving particles vs the initial Aσ ,
which is not much different from the distribution of surviving particles vs the
final Aσ . The density is still peaked at Aσ ∼ 30◦ and decreases somewhat more
steeply to larger Aσ than is shown in Fig. 10.

The following qualification is in order. We have assumed in
the model that the resonant population was initially uniform in
the semi-major axis and angles. This implies that the number of
initial objects at Aσ was proportional to the volume in the phase
space occupied by orbits with Aσ (see N&R00, Section 4). The
initial density has an increasing trend with Aσ (dashed line in
Fig. 10), simply because the resonant orbits with larger Aσ oc-
cupy larger volume in the phase space and are more frequently
sampled. It is generally believed that the model of sweeping
resonances and the resonant capture in MMRs in the primordial
KB (Malhotra 1995) should have produced a nonuniform dis-
tribution in Aσ of the initial population of the 1 : 2 MMR. As
discussed in N&R00, this is not a result of the process of reso-
nant capture, but mainly a consequence of the smaller volume of
small-Aσ orbits and the dynamical instability at larger Aσ . This
is the reason why Malhotra’s captured population is peaked at
moderate amplitudes. In general terms, we would expect that if
the capture simulation carried out by Malhotra (1997) for the
2 : 3 MMR were repeated also for the 1 : 2 MMR, the maximum
resonant density of captured KBOs would be at slightly larger
Aσ than that in our Fig. 10 (for e = 0.3) because of the short
time span used in Malhotra’s capture simulations for which or-
bits at large Aσ are still stable. For this reason, our assumption of

FIG. 10. The number of surviving particles at t = 4 Byr in the 1 : 2 MMR
(e = 0.3 and i = 5◦) vs initial Aσ . Dashed line shows the initial density distri-
bution in number of particles per 1◦. The other lines show the eroded density
distributions assuming a random walk at 0 < t < 4 Byr with a local rate given
by δAσ + δAkick

σ (see text). The value of δAσ is shown in Fig. 6a. The bold
line denoted “+0 deg” corresponds to δAkick

σ = 0. The thin lines correspond to
values of δAkick

σ ranging between 1◦ per 45 Myr (denoted “+1 deg”) and 5◦ per
45 Myr (denoted “+5 deg”).
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initially uniform semi-major axes and angles is approximately
valid for the resonance sweeping scenario.

The other curves in Fig. 10 show the results of additional ex-
periments adding to δAσ (which is the chaotic diffusion induced
by gravitational perturbations of four major planets only), the
evolution of Aσ due to random kicks produced by mutual col-
lisions or dynamical scattering: δAkick

σ = 1◦ per 45 Myr (53%
particles survived), 2◦ per 45 Myr (41%), 3◦ per 45 Myr (31%),
and 5◦ per 45 Myr (13%) (see Section 4 in N&R00). The last
value shows that δAkick

σ > 5◦ per 45 Myr is needed in order to
reduce the original population to 1/10.

Of course, this is a very rough model of the real collision
dynamics in the 1 : 2 MMR because it does not account for the
disruption of bodies and for the resulting changes in the size
distribution. In such a case, the loss of resonant KBOs of a
given size may have been partially compensated from disrupted
larger bodies.

Assuming that the dependence of the primordial KBO density
on heliocentric distance r was proportional to ∼r−2 (Tremaine
1990) and that the primordial excitation in the 2 : 3 and 1 : 2
MMRs efficiently randomized orbital eccentricities in the inter-
val 0 < e < 0.35, the ratio between current populations of the
most stable places in the resonances (e = 0.2 in 2 : 3 and e = 0.3
in 1 : 2) is

1

2

V (A∗
2:3)

V (A∗
1:2)

P2:3
surv

P1:2
surv

(

a1:2

a2:3

)2

, (5)

where V (A∗
2:3) = V (127◦) = 116.6 AU × deg (N&R00),

V (A∗
1:2) = V (50◦) = 36.1 AU × deg, P2:3

surv = 0.81, P1:2
surv = 0.64,

a2:3 = 39.5 AU, and a1:2 = 47.8 AU. Psurv = Nsurv/Nprim is the
relative fraction of objects surviving at t = 4 Byr with respect
to the number of primordial objects. The factor 2 in the denom-
inator is a result of two asymmetric libration centers in the 1 : 2
MMR against one center in the 2 : 3 MMR.

Evaluating Eq. (5) indicates that there should currently exist
three times more objects with e = 0.2 in the 2 : 3 MMR than with
e = 0.3 in the 1 : 2 MMR. The same calculation with survival
percentages P2:3

surv and P1:2
surv evaluated in the experiments with

δAkick
σ = 3◦ per 45 Myr results in the ratio of 4.25.
There are ∼15 KBOs and Pluto observed at present on stable

orbits in the 2 : 3 MMR (N&R00) and two likely candidates for
the 1 : 2 MMR resonant bodies (1997 SZ10 and 1996 TR66—
Section 3.1). The apparent observational ratio between the 2 : 3
and 1 : 2 MMR populations is thus 8. As the selection observa-
tional effect probably contributes by a factor of 0.3 (Jewitt et al.
1998), the intrinsic (real) ratio between these two populations
should be about 2.5, in a reasonable agreement with the ratio
predicted by Eq. (5) with δAkick

σ = 0.

3.4. A Long-Term Simulation of the 1 : 2 Resonant Orbits

In order to verify the long-term stability of orbits in the cen-
tral region of the 1 : 2 MMR we simulated 40 test particles with

initially small Aσ over 4 Byr. We used the swift rmvs3 inte-
grator (Levison and Duncan 1994) with a time step of 0.8 yr and
included the perturbations of four major planets. The planetary
initial conditions were taken from the JPL DE403 ephemeris
at JD 2450814.5, with respect to the invariable plane of the
LONGSTOP 1B simulation. The initial conditions of test par-
ticles were a = 47.5 AU, i = 2◦, and e ranging from 0.04 to
0.45 (1e ' 0.01). We set initially $ −$N = 0, Ä−ÄN = 0,
and chose the value of the initial mean anomaly in order to
have σ1:2 = σ0(e), where σ0 stands for the asymmetric center
located between 0◦ and 180◦ for the corresponding e (Fig. 4a).
This choice of initial conditions implies that all particles with
e > 0.13 have Aσ < 30◦.

Most simulated orbits with small Aσ survived over the age of
the Solar System without any significant change of their mean
(Aσ , e, i). The only particles with initially small Aσ that escaped
during the simulation were those initially located at e > 0.41.
At these eccentricities, the overlap of inner resonances (as the
4 : 1 three-body and Kozai resonances) generates a strong chaos,
driving particles to the Neptune-crossing orbits.

For 0.37 < e < 0.40, orbits are affected by the Kozai res-
onance. In contrast with the classical Kozai resonance, the ω
librations do not occur around 90◦ or 270◦, but rather around
∼140◦ or ∼320◦ (Fig. 11). This is a consequence of the asym-
metric libration of σ1:2. For 0.37 < e < 0.40, σ librates around
σ0 ∼ 65◦.

The shift of the equilibrium points of the Kozai resonance in
the 1 : 2 resonance can be explained on the basis of a simple
model. Consider the HamiltonianHres of the averaged restricted
three-body problem, with the massive body on a circular and

FIG. 11. Evolution of a test particle in the 1 : 2 Neptune MMR. The initial
conditions (initial e = 0.3778) were chosen so that the orbit of this particle is
characterized by small-Aσ libration around σ0 = 65◦. This particle evolves in
the Kozai resonance with ω libration around ∼140◦. This libration is correlated
with coupled oscillations of e and i .
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planar orbit. Expanding its Keplerian part around the resonant
semi-major axis a0, and the perturbing function up to the second
degree in inclination, we can write

Hres = −
3

2L2
0

L2 − m1

×
[

R0 +
η2

2
(R1 + R2 cos 2σz + R3 sin 2σz)

]

, (6)

where m1 is the mass of the perturbing body, L0 = √
a0, L ∝ Sz ,

η = sin i/2 ∝
√

Sz , and Sz is the action conjugated to σz = σ +
ω. The coefficients Ri are functions of a, e, σ and we evaluate
them at the MMR’s libration center: Ri = Ri (a0, e0, σ0) (Roig
et al. 1998).

This one degree of freedom Hamiltonian can be written as

Hres = −
(

3

2L2
0

L2 + m1
η2

2
R1

)

+ m1
η2

2
R cos(2σz + 2φ), (7)

with

R = ±
√

R2
2 + R2

3 (8)

tan 2φ = −
R3

R2
. (9)

The choice between the plus and minus signs of R is arbitrary.
The signs of R2 and R3 determine two complementary values
of 2φ. After fixing η, the resonant Hamiltonian has the form of
the harmonic oscillator

H = α J 2 + β cosψ, (10)

with J ∝ Sz , ψ = 2σz + 2φ, and α ' −3L−2
0 /2 < 0.

The location of stable equilibrium points depends on the sign
of β. If β > 0, the stable point is at ψ = 0, while if β < 0, the
stable point is located at ψ = π . This means that

R > 0 ⇒ ω = kπ − φ − σ0
(11)

R < 0 ⇒ ω =
2k + 1

2
π − φ − σ0 ,

where k is integer.
When σ0 = π , as in the case of the 2 : 3 MMR with Neptune,

then R2 > 0 and R3 = 0. In this case, R > 0 implies that φ =
±π/2, which givesω = (2k − 1)π/2. If, on the other hand, R <
0 then φ = 0 and once againω = (2k − 1)π/2. These constitute
the common libration centers of the Kozai resonance at 90◦ and
270◦ (the same result holds for the MMRs with σ0 = 0).

If however σ0 of a MMR is neither 0 nor π , the Kozai res-
onance does not have libration centers at 90◦ and 270◦. As
an example, consider the asymmetric libration center of the
1 : 2 MMR located at a0 = 47.797 AU, e0 = 0.383, and σ0 =
66.4◦. In this case, R2 < 0 and R3 < 0. If R > 0 then φ = 329◦

and ω = 180k − 35.4◦, while if R < 0 then φ = 59◦ and ω =
90(2k + 1) − 125.4◦. The stable centers of the Kozai resonance

are at 144.6◦ and 324.6◦, respectively, in good agreement with
values observed numerically (Fig. 11).

The choice of initial conditions in our simulation did not guar-
antee the occurrence of asymmetric librations for e < 0.13. The
width of the asymmetric island is narrow for small e and all nine
particles in the run were initially librating with large Aσ around
the symmetric saddle point at 180◦ (horseshoe orbits). The am-
plitudes of horseshoe orbits were chaotically changing between
120◦ and 180◦, and only rarely (and for at most several 106 yr)
did temporary captures in the asymmetric islands occur.

We have performed additional simulations with orbits start-
ing at small e. First, we have found by several trials that per-
manent tadpole orbits do not exist in practice for e < 0.07 (for
e > 0.07 it is possible to find tadpole orbits that are stable over
4 Byr). Next, we simulated several test particles with initial
e = 0.01 and 0.05. For each value of e, we have obtained 10 ob-
jects showing a resonant behavior, typically alternating between
horseshoe orbits and circulation. Their e and i irregularly evolve
in the intervals 0–0.2 and 0◦–10◦, respectively. Interestingly, the
irregular motion of some of these test particles was stabilized in
a horseshoe regime at e ∼ 0.15–0.2, i ∼ 5◦–7◦, and Aσ ∼ 100◦.
From the test particles with initial e = 0.01, only one escaped,
while for e = 0.05 three particles escaped. This corresponds to
the general fact that the orbits starting with initially larger e get
destabilized faster by the chaotic eccentricity drift. We estimate
that the median lifetime of orbits at e = 0.05 in the 1 : 2 MMR
is slightly larger than the age of the Solar System. In summary,
we found that the resonant space at low e in the 1 : 2 MMR a
accounts for about 0.3 AU in a. From 47 resonant test particles
simulated with e < 0.12 only 8 escaped in 4 Byr, and in this
sense, the 1 : 2 MMR is stable in small e. This finding confirms
the results of Duncan et al. (1995).

4. THE 3 : 4 MMR WITH NEPTUNE

4.1. A Portrait of Regular and Chaotic Dynamics

The only known object in the 3 : 4 MMR with Neptune is
1995 DA2. We have taken this KBO’s orbital elements from the
Asteroid Orbital Elements Database of the Lowell Observatory.9

They are reasonably well determined for our purposes because
of a relatively large observational arc for this KBO. 1995 DA2 is
a counterpart of the asteroid 279 Thule, which is the only stable
asteroid discovered until now in the 4 : 3 MMR with Jupiter in
the outer asteroid belt. The presence of only one large body in
the 4 : 3 Jupiter MMR is puzzling (the diameter of 279 Thule
is 135 km), because if the size distribution were similar to the
main asteroid belt, there would exist also many small bodies in
the resonance (Nesvorný and Ferraz-Mello 1997). On the other
hand, the KB is less well known than the asteroid belt and new
bodies in the 3 : 4 Neptune MMR may be discovered soon.

9 The assumed orbital elements of 1995 DA2 on 8/10/1999 (JD 2451400.5) are
a = 36.3396 AU, e = 0.074684, i = 6.5585◦, M = 31.836◦, ω = 332.008◦,
and Ä = 127.485◦.
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The stability test of the 3 : 4 MMR was performed by the same
means as for the 1 : 2 MMR in Section 3. The initial angles of
test particles were chosen so thatσ3:4 = 3λN − 4λ+$ = 180◦,
ω = 90◦, andÄ = ÄN. Two sets of initial conditions have been
simulated:

(1) 606 test particles with 36 ≤ a ≤ 37 AU (1a = 0.01 AU),
e = 0.001, 0.05, 0.1, 0.15, 0.2, 0.25 (101 test particles for each
e), and i = 5◦; and

(2) 202 test particles with a = 36.57 AU, 0 ≤ e ≤ 0.3 (1e =
0.003), and i = 10◦ and 30◦. The integration over 108 yr was
performed by the symmetric multistep method. The planetary
configuration, parameters of the simulation, and smoothing rou-
tine were the same as for the experiment in the 1 : 2 MMR.

For set (1) of initial conditions, the estimate of the LCE and
the minimum distance to Neptune are plotted in Fig. 12. The
color coding in Fig. 12 is the same as that used in Fig. 5. Again,
we have compensated the scale on the x axes for short-periodic
variations of the semi-major axis by a shift of 0.1 AU in a, so that
the test particles with the smallest Aσ are near the true resonant
center at 36.48 AU.

In Fig. 12, we plot the libration centers and separatrices of the
3 : 4 MMR (bold lines). The Kozai resonance is shown by a thin
line (Fig. 12a). We have computed its location from $̇ − Ä̇ = 0,
where the frequencies $̇ and Ä̇ were determined as functions
of e and a by the semi-numerical method of Henrard (1990).
The dashed lines in Fig. 12 show the the 2 : 1 and 3 : 1 commen-
surabilities between the resonant frequency and the frequency
of λU − 2λN. A pair of two-headed vertical arrows indicates the
extrema of the filtered a and e of 1995 DA2 over 107 yr (its incli-
nation varies between 1.5◦ and 8.4◦). 1995 DA2 has a resonant
orbit with Aσ = 76◦, which is stable on 108 yr.

There is a slight asymmetry in the maximum and minimum
values of a of 1995 DA2 with respect to the resonant center,
which typically happens in the MMRs close to a planet, where
the real dynamics differs somewhat from the averaged circular
approximation. Nevertheless, the resonant amplitude of 1995
DA2 is clearly small and this object is located in the central
regular region of the resonance.

The maximum LCE in the central region of the 3 : 4 MMR is
smaller than ∼10−7 yr−1 in the interval of 0.3 AU for e = 0.05
and of 0.2 AU for e = 0.1. The region of small LCE has the size of
0.1 AU for e = 0.15, and ln1(t)/t visibly converges to a nonzero
value (∼10−6.5 yr−1) at Aσ = 0 for e ≥ 0.2. The size of the central
region we determine here is smaller than that determined by
Malhotra (1996) as an extent of regular resonant orbits in a
model with Neptune on a circular orbit (∼0.8 AU for e = 0.1).

The 3 : 1 three-body resonance is at intermediate Aσ . The
corresponding region is clearly chaotic with LCE ∼10−5.5 yr−1.
Chaos with the similar LCE value was found in the 4 : 1 three-
body resonance inside the 2 : 3 Neptune MMR in N&R00, and
it was shown in that paper that moderate chaos generates a slow
random walk in Aσ , which in turn can lead to late escapes from
the resonance. In this analogy, the orbits in 3 : 1 three-body

resonance inside the 3 : 4 Neptune MMR are also potentially
unstable. The 3 : 1 resonance should approximately delimit the
30◦–40◦ interval in Aσ of marginally unstable region in the 3 : 4
Neptune MMR.

The minimum distance to Neptune is smaller in the 3 : 4 than
in the 1 : 2 (Fig. 5b) and 2 : 3 MMRs (N&R00, their Fig. 2b).
It is typically between 5 and 13 AU for the surviving particles.
Most particles that approached Neptune at less than ∼4 AU
subsequently escaped from the resonance.

The determination of δAσ , δe, and δi shows that the most
stable place in the 3 : 4 MMR is at e = 0.05, where δAσ = 0.6◦

per 45 Myr for Aσ < 120◦. The expected change of Aσ over
4.5 Byr is 6◦. In order to estimate the fraction of objects surviv-
ing at t = 4 Byr vs Aσ at this eccentricity, we have performed
the same experiment as in Section 3.3, modeling the chaotic
diffusion as a random walk.

1000 test particles were simulated for each Aσ , and the simula-
tion was repeated for 136 values of Aσ regularly spaced between
0◦ and 135◦ for e = 0.05 and i = 5◦. The volume V (135◦) oc-
cupied by these orbits is 91.4 AU × deg. Assuming the random
walk in Aσ , we advanced the orbits of test particles by applying
random kicks of the size of δAσ to their resonant amplitudes. A
test particle was removed from the simulation if Aσ > 170◦.

Figure 13 shows the initial density of test particles (dashed
line) and the eroded density profile at t = 4 Byr (bold line
denoted by “+0”). Sixty-eight percent of test particles survived
at t = 4 Byr. Most escapes occurred for Aσ > 90◦, and for
Aσ > 135◦ more than 99% of test particles left the resonance.
According to Fig. 13, the maximum density of the current the
3 : 4 MMR population should be at about Aσ ∼ 90◦.

The other curves in Fig. 13 show the results of additional
experiments adding to δAσ the evolution of Aσ due to ran-
dom kicks produced by mutual collisions and dynamical scatter-
ing: δAkick

σ = 1◦ per 45 Myr (63.5% particles survived), 2◦ per
45 Myr (58%), and 3◦ per 45 Myr (53%). The last value shows
that δAkick

σ > 3◦ per 45 Myr is needed in order to reduce the
original population to one-half.

The same reasoning as in Section 3.3 allows us to estimate the
ratios of the current numbers of KBOs in the 3 : 4 MMR to those
in the 2 : 3 and 1 : 2 MMRs (Eq. (5)). Using a3:4 = 36.48 AU,
V (135◦) = 91.4 AU × deg, and P3:4

surv = 0.68, the present num-
ber of objects in the 3 : 4 MMR (at e = 0.05) should be 77%
of the number of the 2 : 3 resonant objects (at e = 0.2)10 and
2.3 times the number of the 1 : 2 resonant objects (at e = 0.3).
Both of these percentages are in clear contradiction to the ob-
served abundance of the resonant KBOs, implying that the 3 : 4
resonant KBOs must have been efficiently depleted in the early
stages of Solar System evolution.

Figure 14 shows the LCEs for set (2) of initial conditions:
i = 10◦ in (a) and i = 30◦ in (b). The distinctive features are the
chaos at e < 0.05 (LCE>∼10−6 yr−1) and regular-like motion

10 According to Jewitt et al. (1996), the observational selection effect is about
the same for the 2 : 3 and 3 : 4 MMRs.
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FIG. 13. The number of surviving particles at t = 4 Byr in the 3 : 4 MMR
(e = 0.05 and i = 5◦) vs initial Aσ . Dashed line shows the initial density dis-
tribution. The other lines show the eroded density distributions assuming a ran-
dom walk at 0 < t < 4 Byr at a local rate given by δAσ + δAkick

σ . The bold
line denoted “+0 deg” corresponds to δAkick

σ = 0. The thin lines correspond to
values of δAkick

σ ranging between 1◦ per 45 Myr and 3◦ per 45 Myr (denoted
“+3 deg”).

inside the Kozai resonance (0.18 < e < 0.23 for i = 10◦ and
0.15 < e < 0.25 for i = 30◦).

The orbits with small and moderate amplitudes in the Kozai
resonance are stable even at large i over the age of the Solar
System: δAσ = 0.5◦ per 45 Myr, δe = 0.001 per 45 Myr, and
δi <∼1◦ per 45 Myr. Such orbits represent an exception from
the general rule found by Duncan et al. (1995) that the low-order
MMRs in the Kuiper Belt are unstable for i > 25◦.

4.2. The Long-Term Integration of the 3:4 Resonant Orbits

We performed a long-term integration of 27 test particles
initially located in the 3 : 4 MMR. The simulation with
swift rmvs3 and a time step of 0.5 yr spanned 4 Byr. We
have included the perturbations of four major planets with the
same initial conditions as in Section 3.4. The test particles ini-
tially had a = 36.735 AU, i = 2◦, 0 ≤ e ≤ 0.26 (1e = 0.01),
ω = 90◦, Ä−ÄN = 0, and σ3:4 = 180◦.

For the test particles with 0.02 ≤ e ≤ 0.08, the initial Aσ var-
ied between 20◦ and 60◦ (the lower the e, the larger the initial
Aσ ). These particles move in the ν18 secular resonance: the angle
Ä−ÄN librates around 0 with an amplitude <60◦. The ampli-
tude reaches a minimum (30◦) for e ∼ 0.06, which shall corre-
spond to the center of ν18 for i = 2◦ and Aσ ∼ 0. All particles
in the interval 0.02 ≤ e ≤ 0.08 survive 4 Byr.

For e < 0.02, σ3:4 alternates between libration with large Aσ
and circulation. These orbits are usually unstable over 4 Byr,
although they can survive for 2–3 Byr in the resonance before
their eccentricities are driven to Neptune-crossing values.

For e ≥ 0.09 all particles have Aσ < 25◦. These small-Aσ or-
bits are stable over the age of the Solar System, and most test
particles survive the whole simulation without any significant
change in their mean Aσ , e, and i . The only exceptions are four
particles with initial e ≥ 0.23, which are ejected from the reso-
nance at t < 2 Byr due to close encounters with Neptune. The
test particles with 0.19 ≤ e ≤ 0.22 are in the Kozai resonance.
The Kozai resonance is narrow for small i and the test particles
integrated in this region do not show stable ω librations, but
rather alternate between the two centers of the Kozai resonance
(90◦ and 270◦) on <∼100 Myr. Stable librations in the Kozai
resonance happen at larger i .

The results of this simulation are in general agreement with
the resonant portrait presented in the last section. In particular,

FIG. 14. The LCE for i = 10◦ (a) and 30◦ (b) in the 3 : 4 Neptune MMR
for Aσ ∼ 0 (set (2) of initial conditions). The largest region with small LCE
(<10−7 yr−1) is near e = 0.2, inside the Kozai resonance. The Kozai resonance
enlarges with increasing i , and for i = 30◦ the interval 0.15 < e < 0.25 corre-
sponds to practically regular motion.
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they verify the existence and extent of the stable core of the
3 : 4 MMR.

5. CONCLUSIONS

We have shown that most chaotic structures in the Kuiper
Belt are related to the MMRs with Neptune, three-body reso-
nances with Neptune and Uranus, and MMRs with Uranus (in
descending order of importance).

The chaotic evolution of orbits at thin resonances is easy to un-
derstand due to its “one-dimensionality”: numerical experiments
show that orbits evolve in e at almost fixed resonant a, while i
changes moderately. The speed of the random walk in e is de-
termined in a complex way by the structure of overlapping reso-
nant multiplets (Nesvorný and Morbidelli 1999) and developing
a satisfactory theoretical model is an issue for future studies.

The existence of a resonant-driven random walk in e changes
the common view that the minor body belts are “frozen” in
regions sufficiently distant from the main MMRs and secular
resonances, and suggests that the structure of these belts is time-
dependent, with substantial eccentricity evolution. Apart from
widely discussed consequences—as the mechanism of supply of
transient populations of planets-crossers (ecliptic comets from
the KB and Earth-crossers from the inner asteroid belt)—we
believe that thin MMRs are ideal places for testing today’s mod-
els of collisional, scattering, and dissipative evolution in the
belts. Indeed, a large percentage of the current population at thin
MMRs should have been collisionally injected, and the detec-
tion of “mini-gaps” (or failure to detect them) at thin MMRs can
provide constraints on the injection probabilities. Such a study
is more appropriate for asteroids, whose orbital distribution is
better known.

The chaotic evolution in large MMRs is more complex and
is determined by the structure of inner secular, secondary, and
three-body resonances. We have investigated the first-order 1 : 2,
2 : 3 (in N&R00), and 3 : 4 MMRs with Neptune. This study has
confirmed the findings of Duncan et al. (1995) and Morbidelli
(1997) that the chaotic evolution in MMRs dominantly affects
Aσ (or equivalently, the amplitude of a) and that the above reso-
nances have stable “cores” for small Aσ , where all orbits survive
4 × 109 yr. This stable core is substantially smaller in the 1 : 2
than in the other two MMRs. The approximate limits of sta-
ble motion at small i are 0.15 < e < 0.35 and Aσ < 30◦ in the
1 : 2 MMR, 0.05 < e < 0.25 and Aσ < 100◦ (Aσ < 50◦ for e =
0.3) in the 2 : 3 MMR, and 0.03 < e < 0.2 and Aσ < 80◦ in the
3 : 4 MMR. The most regular motion for large inclinations oc-
curs inside the Kozai resonance at e ∼ 0.25 in the 2 : 3 MMR, at
e ∼ 0.2 in the 3 : 4 MMR, and in the interval 0.2 < e < 0.27 in
the 1 : 2 MMR. These orbits are stable over the age of the Solar
System.

The stable resonant cores are enclosed by the marginally un-
stable regions where a percentage of objects escape from reso-
nances over the age of the Solar System (Duncan et al. 1995,
Morbidelli 1997). This region is typically 20◦–40◦ wide in Aσ .
In the case of the 2 : 3 resonance, the marginally unstable region

is at the place of the 4 : 1 three-body resonance. In addition to
thin MMRs outside the 2 : 3 MMR, it is this 4 : 1 three-body reso-
nance that generates a significant number of the present Neptune-
crossers. The marginally unstable region in the 3 : 4 MMR with
Neptune generated by the 3 : 1 three-body resonance.

The evolution of e is important in the strongly unstable re-
gion at large Aσ . The alternation between resonant libration and
circulation produces a fast random walk of e. It takes at most sev-
eral 108 yr to drive an orbit from the small e to Neptune-crossing
orbit by this mechanism.

We have determined the number of currently known KBOs
on resonant orbits stable over 4 Byr. There is 1 such body in the
3 : 4 MMR (1995 DA2), 15 bodies and Pluto in the 2 : 3 MMR,
and probably 2 objects in the 1 : 2 MMR.

The current best-fit orbital elements of 1997 SZ10 and 1996
TR66 do not correspond to the stable resonant motion in the
1 : 2 Neptune MMR. While for 1997 SZ10 they indicate an un-
stable horseshoe orbit, the current orbital elements of 1996 TR66
place this object on a nonresonant orbit. Conversely, the orbital
angles of these KBOs suggest they are resonant bodies. Indeed,
the angles σ1:2 of 1997 SZ10 (−69◦) and 1996 TR66 (−62◦)
are surprisingly close to the center of the asymmetric librations
for e = 0.37: σ0 ∼ 67◦, which is likely not a mere coincidence.
1997 SZ10 and 1996 TR66 are most probably dynamically pri-
mordial objects in the 1 : 2 MMR that currently librate with small
Aσ on stable orbits. We believe that future improvement of their
orbital elements will confirm this conjecture. Neverthless, as we
have discussed in Section 2.1, our probabilistic argument in fa-
vor of this hypothesis cannot completely exclude the possibility
that 1997 SZ10 and 1996 TR66 are temporarily captured objects
from the scattered disk.

We have estimated that, if eccentricities have been efficiently
uniformized by the primordial excitation at resonances, then
the current number of objects at the most stable places the reso-
nances (e = 0.3 for 1 : 2, e = 0.2 for 2 : 3, and e = 0.05 for 3 : 4)
shall be roughly in the ratio N1:2 : N2:3 : N3:4 = 2 : 6 : 5, while the
observed apparent ratio is 2 : 16 : 1. Correcting the apparent ratio
for the observational selection effects (Jewitt et al. 1998), the
estimated current population of the 2 : 3 and 1 : 2 MMRs agrees
roughly with the above theoretical prediction. Conversely, the
3 : 4 MMR with Neptune must have been significantly depleted
in the early phases of the Solar System evolution.
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Note added in revisions. We recently learned about the recovery of 1997
SZ10 (B. Gladman, personal communication), which allowed for better determi-
nation of its orbit (B. Marsden, personal communication). While the eccentricity
and the angular orbital elements stayed basically unchanged with respect to the
previous determination (eccentricity changes by 0.005 and angles by less than
1.5◦), the semi-major axis came down to 48.411 AU. This is exactly what we
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have anticipated in this work. The 0.26-AU change of the semi-major axis places
1997 SZ10 very close to the libration center of the 1 : 2 MMR. We found in an
additional simulation that these new orbital elements of 1997 SZ10 correspond
to an initially resonant orbit starting with Aσ ∼ 30◦ in the tadpole regime. In the
meantime, 1996 TR66 still awaits for a recovery that would improve its orbital
determination.
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Beaugé, C. 1994. Asymmetric librations in exterior resonances. Celest. Mech.
Dynam. Astron. 60, 225–248.

Benettin, G., L. Galgani, and J. M. Strelcyn 1976. Kolmogorov entropy and
numerical experiments. Phys. Rev. A 14, 2338–2345.

Duncan, M. J., and H. F. Levison 1997. A disk of scattered icy objects and the
origin of Jupiter-family comets. Science 276, 1670–1672.

Duncan, M. J., H. F. Levison, and S. M. Budd 1995. The dynamical structure of
the Kuiper belt. Astron. J. 110, 3073–3081.

Gallardo, T., and S. Ferraz-Mello 1998. Dynamics in the exterior 2 : 3 resonance
with Neptune. Planet. Space Sci. 46, 945–965.

Gladman, B., J. J. Kavelaars, J.-M. Petit, A. Morbidelli, M. J. Holman, and T.
Loredo 2000b. The structure of the Kuiper belt: Size distribution and the radial
extent. Astron. J., submitted for publication.

Gladman, B., J.-M. Petit, and M. Duncan 2000a. Does Pluto affect the trans-
neptunian region? In Minor Bodies in the Outer Solar System (R. West, Ed.).
Kluwer Academic, Dordrecht, in press.

Hahn, J. M., and R. Malhotra 1999. Orbital evolution of planets embedded in a
planetesimal disk. Astron. J. 117, 3041–3053.

Henrard, J. 1990. A semi-numerical perturbation method for separable
Hamiltonian systems. Celest. Mech. Dynam. Astron. 49, 43–67.

Holman, M., and N. Murray 1996. Chaos in high-order mean resonances in the
outer asteroid belt. Astron. J. 112, 1278–1293.

Jewitt, D., J. Luu, and J. Chen 1996. The Mauna Kea–Cerro Tololo (MKCT)
Kuiper belt and Centaur survey. Astron. J. 112, 1225–1238.

Jewitt, D., J. Luu, and C. Trujillo 1998. Large Kuiper belt objects: The Mauna
Kea 8K CCD survey. Astron. J. 115, 2125–2135.
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Conference Series 149, San Francisco.
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