3. A RESSONANCIA 2/3 coM NETUNO E O

CINTURAO DE KUIPER

3.1. Introducgao

A ressonancia 2/3 com Netuno é, sem divida, a mais interessante das ressonincias
trans-Netunianas. Além de possuir uma populagdo relevante de KBOs (atualmente,
38 objetos com observagoes multi-oposicionais), também possui o maior objeto trans-
Netuniano de que se tem conhecimento: o planeta Plutdo!. A estabilidade global desta
ressonancia tem sido estudada através de modelos semi-analiticos (Morbidelli, Thomas
e Moons 1995; Malhotra 1996) e numéricos (Levison e Stern 1995; Morbidelli 1997),
cujos resultados mostram que, para semi-amplitudes de libragao do dngulo ressonante
03/3 = 2AN —3A+ @ menores que ~ 60°, as Orbitas séo estdveis por intervalos de tempo
da ordem da idade do Sistema Solar. Ja para semi-amplitudes maiores que ~ 120° as
orbitas ressonantes evoluem caoticamente em trajetérias que cruzam a érbita de Netuno
em intervalos de tempo de algumas centenas de milhoes de anos ou menos. Finalmente,
para semi-amplitudes intermediarias, a evolucdo cadtica é mais lenta e se traduz numa
excitacdo da prépria amplitude de libracao.

Porém, estes resultados, ainda que corretos, nao fornecem um panorama suficien-

temente detalhado sobre a estabilidade do espago de fase ressonante. Como ji co-

'Recentemente, 20000 Varuna foi identificado como o segundo maior objeto trans-Netuniano. Ele é

maior que Ceres
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mentamos no capitulo 1, a questdo da estabilidade da ressondncia 2/3 é de particular
importancia, ja que estd vinculada a eficiéncia desta ressondncia para transferir KBOs
para o Sistema Solar interior e gerar cometas de curto periodo (JFCs). Neste capitulo,
apresentamos um estudo detalhado sobre a dindmica da ressonincia 2/3, visando nio
s6 identificar as regides de estabilidade/caos no espaco de fase, mas também os meca-
nismos responsaveis pelo caos. Em particular, analisamos o efeito da perturbacao
direta de Plutao sobre a populagido de objetos ressonantes (Plutinos), que nos estudos
prévios fora sempre desconsiderada. Este tipo de andlise é logo estendido a outras res-
sondncias trans-Netunianas de primeira ordem, em particular a 1/2 e 3/4. Finalmente,
fazemos uma analise global da dindmica das ressonincias de movimentos médios mais
fracas, tanto as de alta ordem com Netuno como aquelas envolvendo simultaneamente
o periodo orbital de Netuno e Urano.

Os detalhes da pesquisa encontram-se nos artigos em anexo, cujos principais resul-
tados sao apresentados a seguir. E importante destacar que no ultimo ano o nimero
de KBOs com 6rbitas bem conhecidas tem se incrementado significativamente. Por-
tanto, algumas consideracgoes feitas nos artigos deveriam ser revisitadas com base nas
observacoes atualizadas, mas ainda assim, as novas observacoes tendem a confirmar

nossos resultados.

3.2. A estrutura ressonante do cinturao de Kuiper

Comegamos analisando a estrutura ressonante na regiao trans-Netuniana, visando iden-
tificar as diferentes ressondncias de movimentos médios e o papel das mesmas na
dindmica a longo prazo dos KBOs. Integrando numericamente 2800 particulas de teste,
inicialmente distribuidas de forma uniforme no intervalo 38.8 < a < 50.0 UA, com
e = 0.1, I = 0, determinamos o miximo expoente caracteristico de Lyapunov (LCE)
sobre 100 milhGes de anos para cada uma delas. O modelo inclui perturbacgoes dos qua-
tro planetas Jovianos, e a integragao resolve simultaneamente as equagoes variacionais
do problema, para o cdlculo do LCE.

Os resultados mostram que o LCE em func¢do do semi-eixo apresenta uma estrutura
complexa de picos e falhas, associados & teia de ressondncias de movimentos médios de
dois e trés corpos. Na regiao a < 43 UA, quase todas as particulas escapam em menos de

100 milhoes de anos. Porém, sobrevivem aquelas que estao capturadas em ressonincias
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com Netuno (2/3, 7/11, 5/8, 8/13, 3/5), j4 que conseguem evitar encontros préximos
com este planeta devido ao mecanismo de protecao de fases fornecido pelas prorpias
ressonancias. Na regido 40 < a < 42 UA, a caoticidade das drbitas é particularmente
significativa, fato que estd associado & superposicao de vérias ressonancias seculares,
especialmente vg, 117 € v1g (Knezevié et al. 1991).

Na regiao a > 43 UA nfo se observam escapes ja que, mesmo as particulas nao
ressonantes, possuem distdncias perihélicas tais que nao chegam a cruzar a érbita de
Netuno (lembremos que e ~ 0.1). De acordo com as simula¢oes de Duncan, Levison
e Budd (1995), esta regido é estdvel ao longo da idade do Sistema Solar. Atualmente,
quase 60% dos KBOs conhecidos encontram-se nesta regiao.

A regiao 37 < a < 39 UA, para e < 0.05, também é estavel ao longo da idade
do Sistema Solar, segundo Duncan, Levison e Budd (1995). Porém, existem apenas
6 objetos com observagoes multi-oposicionais nesta regiao. Simulando a evolucao de
101 particulas de teste por 4 bilhdes de anos, concluimos que a deplecao na regido esta
principalmente vinculada & difusdo caética nas ressonincias de alta ordem com Netuno,
como 8/11, 5/7, 7/10, 9/13 e 11/16. Existem faixas cadticas nestas ressondncias que
fazem com que os objetos inicialmente com e ~ 0, possam ter a excentricidade excitada
até valores maiores que 0.05 em intervalos de tempo de alguns bilhées de anos. Assim,
estes objetos comecam a cruzar a érbita de Netuno, e acabam abandonando o cinturao
de Kuiper. Este mecanismo ¢ similar ao achado por estudos recentes no cinturao

principal de asterdides (Morbidelli e Nesvorny 1999; Murray e Holman 1997).

3.3. As ressonancias de primeira ordem

Uma vez analisada a estrutura ressonante global da regiao trans-Netuniana, procedemos
a estudar com mais detalhe a dindmica das ressonancias 2/3, 1/2 e 3/4 com Netuno.
Visando a mapear a estrutura interna de cada ressonancia, integramos numericamente
por 100 milhdes de anos as grades com um grande ndmero de condigdes iniciais (da
ordem de 1000), determinando em cada caso os expoentes de Lyapunov e as taxas
de difusdo, tanto das freqiiéncias préprias (fs, fw, fo) quanto dos elementos préprios
(amplitude de libragao, excentricidade e inclina¢ao). Desta forma, é possivel identificar
as regioes de estabilidade e caos em cada ressondncia, assim como as ressondncias

internas e mecanismos responsaveis pelo caos. Através de integragoes numéricas de
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poucas condigoes iniciais por 4 bilhoes de anos, analisamos a dindmica a longo prazo
das regioes que se revelaram como sendo mais estiveis dentro de cada ressonancia.
Em todos os casos, achamos que a regido central de cada ressonincia, correspon-
dente a semi-amplitudes de libracao pequenas (menores que 30°), é estdvel ao longo da
idade do Sistema Solar. No caso da ressonincia 2/3, em particular, observamos que
a estabilidade estende-se também para semi-amplitudes intermedidrias (~ 60°). Por
outro lado, para semi-amplitudes maiores que ~ 120° a evolucdo é dominada pelo forte
caos originado pela superposicao das ressonincias seculares vg e vig, em acordo com
os resultados de outros autores. Também é possivel definir os limites da regido onde
as Orbitas sao marginalmente instdveis, correspondente a semi-amplitudes de libracgao
da ordem de ~ 100°. Objetos nesta regiao evoluem aumentando a sua amplitude de
libragao em escalas de tempo da ordem de 1 bilhao de anos e, eventualmente, acabam
sendo levados a cruzar a érbita de Netuno. Desta forma, podem ser transferidos para o
Sistema Solar interior, contribuindo para o fluxo de JFCs. A difusdo cadtica na regiao
de instabilidade marginal estd vinculada principalmente & comensurabilidade 4/1 entre
09/3 € a desigualdade 2ANy — Ay entre Netuno e Urano. Utilizando nossas estimativas das
taxas de difusao da amplitude de libracdo, motamos um modelo de caminhada aleatéria
uni-dimensional, com o qual é possivel simular estatisticamente a evolucdo dinamica
das trajetérias ressonantes marginalmente instiveis. Com este modelo, determinamos
a razdo entre o numero de objetos que escapam da ressondncia 2/3 no dltimo bilhio
de anos e o nimero de objetos que sobrevivem na ressondncia apés 4.5 bilhdes de anos.
Esta razao é calibrada com o ntimero de objetos necessarios para manter a populacio
visivel de cometas de curto periodo (com magnitude absoluta H < 9) em estado esta-
cionario, o que permite estabelecer um limite superior para a quantidade de objetos
de tipo cometédrio que existem atualmente na ressondncia 2/3: aproximadamente 600
milhoes de cometas. O modelo de caminhada aleatoria permite também analisar o
possivel efeito do “scattering” gravitacional midtuo entre os objetos na ressonancia.
No caso da ressonincia 1/2 as regides de maior estabilidade ocupam um volume
pequeno no espaco de fases, principalmente devido & presenca de libragoes assiméticras
do &ngulo ressonante g1/ = AN — 2A + @. S0 a regido central das ilhas de libracao
assimétrica é estivel ao longo da idade do Sistema Solar. A regido onde o evolui em

orbitas do tipo ferradura é fortemente cadtica. FExistem 4 objetos com observagoes
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multi-oposicionais nesta ressonancia, mas apenas 2 deles localizam-se nas ilhas de li-
bracao assimétrica.

Por sua vez, a ressonincia 3/4 também possui una regido central de estabilidade,
mas esta é bem menor que no caso da ressonincia 2/3, devido a que a largura total
da ressonancia também é menor. Esta regiao estivel estd circundada por uma regiao
de instabilidade marginal, dominada pela comensurabilidade 3/1 entre oy /4 = 3AN —
4\ + w e a desigualdade 2Ax — Ay. SO ha 3 objetos com Orbitas bem conhecidas nesta

ressonancia, todos eles localizados na regido mais estavel.

3.4. Interagao entre Plutao e os Plutinos

De acordo com nossos resultados, a distribui¢ao no espaco de fases dos objetos obser-
vados nas ressonancias 2/3, 1/2 e 3/4 coincide muito bem com as regides de maior
estabilidade. No entanto, no caso dos Plutinos na ressonéncia 2/3, as semi-amplitudes
de libragdo tipicas sdo particularmente grandes (~ 80°). Em outras palavras, ndo
existem Plutinos conhecidos com amplitudes de libracao pequenas.

Este fato pode ser explicado considerando que o efeito gravitacional de Plutao pode
contribuir para destabilizar as érbitas dos Plutinos através dos encontros préximos. Isto
é verificado a partir de simulacoées da evolugcao de particulas de teste na ressonincia
2/3, adicionando ao modelo, além das perturbagoes dos planetas Jovianos, a pertubagao
de Plutdo com massa m = 0.74 x 108 M. Nossos resultados indicam que os Pluti-
nos com amplitude de libragao inicialmente pequena podem ter esta grandeza excitada
até valores préximos da regiao marginalmente instavel. O efeito dos sucessivos encon-
tros proximos com Plutdo é mais importante nas 6rbitas com inclinagées moderadas e
grandes (I > 9°), onde quase 50% da populagédo inicial de objetos é removida em até 4
bilhGes de anos. A populacdo remanescente acaba com as amplitudes de libragdo exci-
tadas até valores de ~ 80°. Para inclinacGes menores, o efeito dos encontros com Plutao
é menos importante, devido & alta velocidade relativa durante os encontros (lembremos
que Plutdo tem I ~ 15°). As marcas deste mecanismo de deplecdo sdo evidentes na
distribuicao observada dos Plutinos.

A interacao entre Plutao e os Plutinos acontece no dmbito de um regime de res-
sonincia 1/1, onde o dngulo A — Ap pode alternativamente circular, ou evoluir em

orbitas ferradura ou girino (em torno dos pontos Lagrangeanos L4 e Ls de Plutao), de-
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pendendo da inclinagao. O regime de érbitas ferradura é o mais afetado pelos encontros
préximos, e acontece nos intervalos 9° < I < 12° e 15° < I < 20°. Particularmente
neste ultimo intervalo, a deplegio atinge quase 100% da populagdo primordial. J4 o
regime de Orbitas girino acontece no intervalo 12° < I < 15° e protege os objetos dos
encontros préximos. De fato, existe pelo menos um Plutino conhecido neste regime
que poderia estar vinculado ao fendmeno colisional que, presumivelmente, deu origem

a bindria Plutao-Caronte.

3.5. Conclusoes

As ressonancias de movimentos médios cumprem um papel fundamental na dindmica
da regiao trans-Netuniana. Nas ressonancias de primeira ordem, as trajetdrias com
pequenas amplitudes de libragao do dngulo ressonante sao estdveis ao longo da idade
do Sistema Solar. Mas para amplitudes maiores, as trajetorias ocupam as regibes
de instabilidade marginal, que podem ejetar material cometario para o Sistema Solar
interior em intervalos de tempo da ordem de alguns bilhoes de anos. Nas ressonancias
mais fracas, o mecanismo de ejecao é fornecido pela lenta excitacao das excentricidades,
até atingir a regido de cruzamento com a érbita de Netuno. Finalmente, o efeito
gravitacional de Plutdo introduz uma instabilidade adicional significativa nas érbitas

dos objetos na ressonancia 2/3.
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Anexo:

Mean motion resonances in the trans-Neptunian region.
Part I: The 2:3 resonance with Neptune
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The stability of the 2:3 mean motion resonance with Neptune
is systematically explored and compared to the observed resonant
population. It is shown that orbits with small and moderate am-
plitudes of the resonant angle are stable over the age of the Solar
System. The observed resonant population is distributed within the
stability limits. There exists an interval of large resonant ampli-
tudes, where orbits are marginally unstable. Resonant objects start-
ing in this interval may leave the resonance by slow increase of
their resonant amplitudes on a time scale of several billion years.
These objects eventually attain Neptune—crossing trajectories and
contribute to the flux of Jupiter—family comets. The number of ob-
jects leaking from the 2:3 resonance per time interval is calibrated
by the number of objects needed to keep the Jupiter—family comets
population in steady state. This allows us to compute the upper limit
of the number of resonant objects with cometary size. The effects of
collisions and mutual gravitational scattering are discussed in this
context.  © 2000 Academic Press

Key Words: Kuiper Belt objects; celestial mechanics.

1. INTRODUCTION

Edgeworth (1949) and Kuiper (1951) suggested that the Solar
System extends beyond Neptune in the form of a belt of small
bodies. Later, when Fernandez (1980) proposed that such a belt
(hereafter we refer to the belt as the Kuiper Belt—KB) can be a
reservoir of Jupiter—family comets, the interest in providing the
direct observational evidence of the belt increased. The discov-
ery 0of 1992 QB1 by Jewitt and Luu (1993) was soon succeeded
by other observations and now the number of known Kuiper Belt
objects (KBOs) is nearly 200.

The stability of the trans—Neptunian region has been numer-
ically studied by Levison and Duncan (1993) and Holman and
Wisdom (1993). Their results were extended by Duncan et al.
(1995) who computed a detailed map of stable/unstable regions

1 Present address: Observatoire da la Cote d’Azur, BP. 4229, Bd. de la Obser-
vatoire, 06304 Nice Cedex 4, France.
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inthe KB by integrating a large number of orbits in the 32-50 AU
semi-major axis interval over 4 x 10° years. The orbits starting
at perihelion distances q less than 35 AU were found unstable
unless they were associated with some mean motion resonance
(MMR) with Neptune. The orbits with g > 35 AU were found
stable unless they were related with perihelion or node secular
resonances (mainly vg, v17, and vig located at 40 <a <42 AU
according to KneZevi¢ et al. 1991).

There was no similar work published until now on the stability
of the asteroid belt over the age of the Solar System due to the
relatively short orbital periods of asteroids and the necessity to
use a short time step in their simulations. If the effect of inner
planets (Venus to Mars) also has to be taken into account, the time
step of asteroid simulation is a factor of 25 smaller than what is
used for the KB; i.e., the computational need for a 4 x 10°-year
simulation in the KB is roughly equal to the computational need
of a 222 = 90 Myr simulation in the asteroid belt (the factor
4/7 accounts for seven planets used in the asteroid belt against
four planets used in the KB).

Nevertheless, considerable progress has been made on the
long—term stability of asteroidal orbits using a different ap-
proach. In this approach, the chaotic evolution of asteroid orbital
elements (and secular frequencies) is numerically computed on
the time interval covered by simulation (usually not exceeding
108 years) and then the expected chaotic evolution of orbits on a
longer time interval is estimated. Orbits are judged to be stable
if the chaotic change of orbital elements (or frequencies) extrap-
olated to 4 x 10° years is small. There is no practical need for
studying the stability of minor bodies with the current configu-
ration of planets on longer time spans as the planetary orbits and
physical conditions have been substantially different during the
Solar System formation.

In particular, the simulated time interval is usually divided
in several sub-intervals and the motion is approximated by a
quasi—periodic evolution (which would be an exact solution of
the integrable system) on each of them. This quasi—periodic
approximation can be either explicitly computed (Laskar 1999)
or one can rely only on the evaluation of motion integrals.
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The integrals of motion are either proper orbital elements or
proper frequencies depending on their physical meaning. The
change in the proper elements and frequencies between con-
secutive sub-intervals is due to the chaoticity of motion and is
frequently referred to as the chaotic diffusion. The local rate of
chaotic diffusion is then closely related to the orbital stability
and simple models have been devised in specific cases (Murray
and Holman 1997).

We use in the following the approach of Laskar (1994) and
Morbidelli (1996) who define the motion integrals as either the
extrema or average of orbital elements computed on the sub-
intervals. This method allows for the detection of slow chaotic
evolution of orbits and additionally has a clear astronomical in-
terpretation. The relative change in frequencies (Laskar 1988,
1999) is also a widely used indicator of the rate of chaotic diffu-
sion. The computation of frequencies usually permits the iden-
tification of resonances responsible for chaos.

Another useful tool for the determination of the orbital
stability/instability is the maximum Lyapunov Characteristic
Exponent (LCE) which measures the rate of divergence of nearby
trajectories. It is defined as lim;_, o In A(t)/t, where A(t) is the
norm of the variational vector at time t (Oseledec 1968, Benettin
et al. 1976). Although the relationship of the LCE to the chaotic
diffusion and the orbital stability is a complicated problem
(Morbidelli and Froeschlé 1995), evaluation of the LCE fre-
quently helps in identifying the most evident irregular and pos-
sibly unstable orbits. It is also clear that orbits with a very small
LCE are likely to be stable over long time intervals.

This paper deals with the 2:3 MMR with Neptune. This res-
onance is of special interest as from 191 KBOs currently regis-
tered in the Asteroid Orbital Elements Database of the Lowell
Observatory (September 1999—ftp://ftp.lowell.edu/pub/elgb/
astorb.html), 68 objects fall within a small semi-major axis in-
terval around 39.45 AU, where this resonance is centered. This
resembles the situation in the outer asteroid belt (3.27 <a <
4.5 AU), where from 258 numbered asteroids some 120 ob-
jects known as the Hilda group are situated in the 3:2 MMR
with Jupiter. In both cases the resonant space is populated more
densely than the neighboring non-resonant space; this is usually
believed to be a consequence of the Solar System early evolution
(Malhotra 1995, Liou and Malhotra 1997, Hahn and Malhotra
1999).

The long-term stability of Pluto’s 2:3 resonant orbit has been
confirmed in numeric simulations of Kinoshita and Nakai (1984)
and Sussman and Wisdom (1988). It turned out that despite a
positive LCE (~10~" year—1) Pluto’s orbit is stable over the age
of the Solar System.

Concerning the global stability of the 2:3 Neptune MMR, the
works based on averaged circular (Morbidelli et al. 1995) and
non-averaged circular (Malhotra 1996) models indicated that
the central resonant space is stable, but both were missing an
important ingredient—complete perturbations of the outer gi-
ant planets other than Neptune—in order to provide sufficiently
reliable stability boundaries.
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Denoting the resonant angle of the 2:3 Neptune MMR by
o =2in— 3\ +w, €]

where A and w are the mean and perihelion longitudes and Ay
is the mean longitude of Neptune, the resonant motion is char-
acterized by oscillation of o around 180°. This oscillation is
alternatively called the libration as opposed to the non-resonant
situation where o circulates. In the case of Pluto the amplitude
of o libration (A,) is about 82°. Additionally, Pluto is known
to reside in the Kozai secular resonance, where the argument of
perihelion w librates about 90° with an amplitude (A,,) of 22°.

The stability boundaries in the 2:3 Neptune MMR as a func-
tion of the resonant amplitudes A, and A, were computed by
Levison and Stern (1995). They found that for inclinations simi-
lar to Pluto’s inclination (~17°) the orbits starting with A, < 50°
were stable and the orbits with A, > 120° were unstable over
4 x 10° years. For intermediate A,, usually a small A, was
needed for orbital stability. Similarly, Duncan et al. (1995) have
shown that the motion at e = 0.2 is stable over the age of the
Solar System provided that A, < 70°. The stability of the 2:3
MMR was further investigated by Morbidelli (1997) with an
additional concern in the number of escaping objects and their
relation to Jupiter—family comets. This later work confirmed the
finding of Duncan et al. (1995) that the chaotic evolution on the
margin of stable region mostly affects A, .

We investigate the 2:3 resonant dynamics aiming our study
at a detailed and global understanding of chaotic and regular
motions inside this resonance. Our approach closely follows
the work of Nesvorny and Ferraz-Mello (1997b). In Section 2,
we describe the setup of numerical experiments. The dynam-
ics of the 2:3 Neptune MMR at low inclinations is discussed in
Section 3. We identify several interior resonances responsible
for chaos and estimate the time scales on which they destabi-
lize orbits. Based on this analysis we determine the extent of
the region from which bodies are currently leaking to Neptune—
crossing orbits (Section 4). Then we scale the escape rate to
get the correct number of Jupiter—family comets and constrain
the current resonant population (Section 5). The effect of colli-
sions and dynamic scattering within the resonance is studied by
a simple model in Section 6. In Section 7, we extend the present
study by exploring the orbital dynamics at large inclinations. Fi-
nally, we discuss the orbits of observed KBOs in the 2:3 Neptune
MMR (Pluto and Plutinos) in Section 8.

This paper is the first part of the work that collects our results
on the mean motion resonances in the Kuiper Belt. The second
paper (Nesvorny and Roig 2000) is devoted to the 1:2 and 3:4
Neptune MMRs and the global structure of MMRs in the 35- to
50-AU semi-major axis interval.

2. THE SET-UP OF NUMERICAL EXPERIMENTS

The resonant value of the semi-major axis is aes = 39.45 AU.
The resonant dynamics are characterized by coupled oscillations
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FIG.1. Theresonantamplitude A, (in degrees) of the 2:3 Neptune MMR.
The gray area roughly corresponds to the strongly unstable motion at A, > 120°
(Morbidelli 1997).

of the semi-major axis about a,s and of o (Eq. 1) about 180°
with a typical period of 20,000 years. We also recall that other
important characteristics of the 2:3 MMR is the presence of the
Kozai resonance (at e = 0.25 for small A,—Morbidelli et al.
1995). This secular resonance concerns libration of « around
90° or 270° and forces coupled variations of the eand i with a
typical period of several million years.

According to numerical simulations (Duncan et al. 1995,
Morbidelli 1997) the orbits in the 2:3 MMR with the libration
amplitude A, larger than about 120° are unstable in relatively
short time intervals. In Fig. 1 we show the dependence of A, on
a and e. The amplitudes have been computed numerically for
small i and initial o = 180° in a model with four outer planets.
The maximum excursion of o from 180° in 10° years was taken
as A,.

The grey region in Fig. 1 schematically delimits strongly un-
stable orbits for A, > 120°. As we show later, the actual size of
the stable resonant region is somewhat smaller than the central
white area in Fig. 1 due to the presence of secular resonances and
the possibility of close approaches to Uranus at large e. More-

NESVORNY AND ROIG

over, also the range of a corresponding to motions stable over
4 x 10° years covers a somewhat smaller interval than that indi-
cated in Fig. 1. There exists an interval of marginal instability at
about 100°-120° (we define the marginally unstable region and
specify its range more precisely in Section 4), where the chaotic
evolution, although slow, is sufficient to enlarge A, beyond
120° (i.e., to the strongly unstable amplitudes) in less than 4 x
10° years.

Following the approach used in studies of the first—order jo-
vian resonances in the main asteroid belt (Ferraz-Mello 1994,
Nesvorny and Ferraz-Mello 1997b), we calculate the maximum
LCE and estimate the rate of chaotic diffusion for orbits on a
regular grid of initial actions a, e, i.

We have run simulations for two sets of initial actions:

(1) 1010 test particles with 38.8 <a <39.8 AU (Aa=
0.01 AU), e = 0.01, 0.05, 0.1, 0.15, 0.2, 0.23, 0.25, 0.27, 0.3,
0.35 (101 test particles at each €), and i = 5°;

(2) 405testparticleswitha = 39.41AU,0 <e<0.4(Ae=
0.005), and 5° <i < 25° (Ai =5°, 81 test particles at each
value of i).

In the first set we explore the resonant orbits with small i and in
the second set we study the dynamics at large i.

The initial angles of test particles were chosen so that o =
180°, w = 90°, and 2 — Qp = 0, where  and Qp are the node
longitudes of a test particle and Pluto, respectively. In this way,
the plane of initial conditions intersects the libration centers of
both the 2:3 and Kozai resonances.

In both runs the test particles were numerically integrated with
four outer planets (Jupiter to Neptune) for 108 years by the sym-
metric multi-step integrator (Quinlan and Tremaine 1990). The
initial conditions of the planets were chosen at their positions
at JD 2449700.5 with respect to the ecliptic plane and equinox
at epoch J2000. The time steps of 40 days for the planets and
200 days for the test particles were used. In the course of inte-
gration, a run—time digital filter (Quinn et al. 1991) was applied
to aexpo, eexpieo, and i exp i (1 = +/—1), and the initial
sampling of 5 years was augmented to 2500 years without intro-
ducing fake frequencies in the Fourier spectrum (the problem of
frequency aliasing is described in Press et al. 1992).

FIG. 2. The estimate of the maximum LCE (a) and the minimum distance to Neptune (b) in the 108 year numerical simulation of orbits in the 2:3 Neptune
MMR. The initial inclinations were 5°. See text for the description of other initial elements of the test particles. The separatrices (bold border lines), libration
centers (bold vertical line at 39.45 AU), and the main inner resonances (Kozai and vg are denoted by full thin lines; v1g, 4:1, and 5:1 three-body resonances are
dashed; the secondary 5:1 resonance at e < 0.05 is denoted by sig5) were computed by a semi—numerical method. The test particles escaping from the 2:3 resonance
before the end of the integration (in yellow) have simultaneously large LCE estimates and small minimum distances from Neptune. The most regular orbits, with
LCE <1055 year—1, are located in the interval of about 0.3 AU centered at the libration centers and have eccentricities between 0.05 and 0.3 (blue/dark red in
(a)). There are no regular orbits above e = 0.35 due to the overlap of vg and v1g. The best angular protection against approaches to Neptune happens at the libration
centers for 0.2 < e < 0.35 where the minimum distance is larger than 15 AU. The orbital elements of known Plutinos (large dots) and Pluto (¢) were taken from
Nesvorny et al. (2000).

FIG.8. (a) The estimate of the maximum LCE in the 2:3 Neptune MMR. (b) The minimum distance to Neptune. The initial a was chosen at 39.41 AU, which
corresponds to A, ~ 60°. See text for the definition of other initial elements. The separatrices (full lines) and libration centers (dashed line) of the Kozai resonance
were computed for A, = 0. The orbital elements of known Plutinos (large dots) and Pluto (&) are shown.
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The actual procedure consisted of a consecutive application
of time—domain FIR filters (Press et al. 1992). First, one filter
(filter A) was used two times increasing the sampling by a fac-
tor of 100 and then a second filter (filter B) was additionally
applied, increasing the sampling by a factor of 5. See Nesvorny
and Ferraz-Mello (1997a) for the specifications of both filters.
With this procedure, all periods smaller than 5000 years were
suppressed and all periods larger than 10* years were retained.
In addition to the equations of motion, the variational equations
also were numerically integrated using the symmetric multi-step
method. The variational vector was periodically renormalized in
order to avoid the computer overflow (Benettin et al. 1976). This
allowed us to estimate the maximum LCE for all test particles.

3. THE LOW-INCLINATION RUN

3.1. The Maximum LCE

The estimate of the maximum LCE for each test particle was
computed as In A(t)/t with t = 102 years, and was plotted as
a function of a and initial e in Fig. 2a for the first set of initial
conditions. We have compensated in this figure for short—period
variations by a shift of 0.145 AU in a so that the test particles
with smallest A, are near the true libration center at 39.45 AU.
This shift mainly accounts for the difference between the in-
stantaneous initial a and its average over the orbital period of
Jupiter. This difference is about the same for all test particles
(except at very small e where the location of the true libration
center strongly depends on a). Such correction was not intro-
duced for e (and i) which was less affected by the short—period
variations and which had initial values within 0.01 (and 2°) of
their averages over 107 years. In Fig. 2b, the minimum distances
of test particles to Neptune in 108 years are shown.

The color coding in Fig. 2a was chosen so that yellow corre-
sponds to the initial conditions of test particles that escaped to
Neptune—crossing orbits in the integration time span; red cor-
responds to the initial conditions for which the estimate of the
LCE on 108 years clearly converges to its limit value and the cor-
responding orbits have non-zero LCEs. Blue corresponds to the
initial conditions of the most regular orbits. For these, there was
no (evident) convergence to a non-zero value and log(In A(t)/t)
linearly decreased with logt, even if in many cases there ap-
peared characteristic cusps indicating local hyperbolic structures
in the phase space (Morbidelli and Nesvorny 1999).

In Fig. 2, we plot the separatrices and libration centers of the
2:3 MMR and several secular resonances, which were found
inside the 2:3 MMR: vg (the 1:1 commensurability of the mean
perihelion frequencies of a minor body and Neptune—full line
near separatrices marked nu8), vig (the 1:1 commensurability
of the mean nodal frequencies of a minor body and Neptune—
dashed line marked nul8), and the Kozai resonance (the 1:1
commensurability of the mean perihelion and node frequencies
of a minor body—full line intersecting the libration centerate =
0.25, marked Kozai). Also the secondary resonance is shown
where the frequency of o is afactor of 5 larger than the frequency
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of the perihelion longitude (full line at e < 0.05 marked sig5).
Other secondary resonances, where the ratios of the resonant
and perihelion frequencies are smaller, are located at very small
e. The location of all these inner resonances in the 2:3 MMR
and their effects on long-term dynamics of resonant bodies has
been known since Morbidelli (1997).

Apart from the above inner resonances, we have calculated the
commensurabilities between the resonant frequency and the fre-
quency of Uranus—Neptune quasi-resonance, i.e., the frequency
of the angle Ay — 2\ that circulates with a negative derivative
and the period of 4230 years. This type of resonance involving
two perturbing bodies and a minor body was recently shown
important in clearing the 2:1 MMR with Jupiter and opening
the Hecuba gap at a = 3.27 AU in the asteroid belt (Ferraz-
Mello et al. 1998). We plot the commensurabilities 4:1 and 5:1
between the resonant frequency and 1/4230 year~! in Fig. 2a
(dashed lines marked 4:1 and 5:1).

At these “three-body” resonances, the LCE is moderately
larger than in the background. While the 4:1 resonance has the
LCE about 10~56 year—%, more than a factor of 10 larger than
in the background, the 5:1 resonance is weaker, with the LCE
rising from the background by a factor of 10%°. Although the
contrast of paper—printed version of Fig. 2a is not as good as
on the computer screen, one can note that the anomalous LCE
value follows the lines of the 4:1 and 5:1 resonances proving
them to be important for orbital dynamics on long time scales.

The inner resonance locations in the 2:3 Neptune MMR were
computed by the semi—numerical method of Henrard (1990) in a
frame of the averaged, spatial (i # iy = 0) and circular (ey = 0)
models. As the full exposition of this method goes beyond the
scope of this paper, we refer the reader to Moons et al. (1998),
where the description of its application to MMRs can be found.

The extent of regular and weakly chaotic trajectories is clearly
delimited in Fig. 2a and corresponds to the orbital elements
plotted in blue and dark red. The corresponding resonant orbits
stay phase—protected from close encounters with Neptune in the
whole integrated time interval (Fig. 2b). The central resonant
area is enclosed by the vg and vig secular resonances which
overlap and generate strong chaos at, otherwise stable, large
A,. The upper eccentricity limit of the blue/dark red region at
about 0.35 coincides with the lower limit of chaos generated by
this overlap, and moreover, for e > 0.35 the secular oscillations
of e drive orbits to approach Uranus at distances less than 5 AU
(ay = 19.22 AU).

The orbits starting at A, > 130° are usually fast driven (in at
most several 107 years) to the borders of the 2:3 MMR. There,
while o alternates between libration and circulation, the test
particles’ eccentricities chaatically evolve toward the Neptune—
grazing limit (e ~ 0.2) or, if €’s are already initially large, the
particles suffer close encounters with Neptune and are extracted
from the resonance. This is the typical fate of the test particles;
their initial orbital elements are shown in yellow in Fig. 2.

Conversely, for orbits starting with A, < 100°and 0.05 <e <
0.25 (note that this limit is eccentricity dependent for larger e
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A, < 60° fore = 0.3,and reducesto zero for e = 0.35), the LCE
decreases with time nearly to 10~ year—* showing in many cases
no strong tendencies to converge. This however depends on exact
values of initial a and e. For 0.1 <e < 0.2, the 5:1 three-body
resonance influences orbits with A, ~ 60° and makes their LCE
converge to about 10~%7 year—1. For most other initial A, and
e< 0.2, logIn A(t)/t linearly decreases with log t with frequent
“cusps” typical for the situation, where the trajectory passes
close to hyperbolic resonant points. Although we do not identify
the true nature of weak resonances responsible for this behavior
(adetailed identification would be literally a watchmaker’s work
in view of the number of frequencies present in the problem),
it may be expected that the convergence of In A(t)/t toward a
positive value happens in an extended simulation. Our guess
is that the measure of trajectories in the 2:3 Neptune MMR
with e < 0.2 having the LCE smaller than 10~8 year—? is very
small.

Concerning e > 0.2 and small to moderate A, one can discern
a reddish color at the corresponding initial conditions in Fig. 2a.
This is a consequence of the fact that In A(t)/t converges to
its asymptotic value which is larger than 1058 year—1. Apart
from the 5:1 three-body resonance, it is the Kozai resonance
that causes the chaos there, because the initial conditions were
chosen so that its center at 90° and the corresponding libration
space could be sampled. The Kozai resonance is narrow for small
inclinations (Ae ~ 0.05fori = 5°) and as we have noticed inthe
simulation the test particles with i = 5° almost never remain for
a long time with stable w librations. Their w typically alternates
between circulation and libration on the time scale of several
million years. This behavior results in the positive LCE, of about
1056 year—1, calculated in our simulation for the test particles
starting near e = 0.25.

The resonant space available for regular motion (we use the
word “regular” as a synonym for “weakly chaotic” rather than
to refer to true regularity in the sense of zero LCE) shrinks for
e> 0.25 and disappears for e = 0.35. As shown in Fig. 2a, the
most regular behavior happens at e = 0.3, above the Kozai and
below the 5:1 resonances, and a very small A,.

On the boundary between the escaping (yellow) and regu-
lar (blue) orbits, a number of initial conditions in an interval
of some 0.1 AU in a have an intermediate value of the LCE
(10-5-10~°year—1, light red in Fig. 2a). We have noticed that
these orbits chaotically evolve in 108 years, which suggests that
they might be destabilized in longer time intervals (for this, it
is sufficient to rise their A, above 120°-130°). The simulations
of Morbidelli (1997) showed the existence of such process. We
refer to this interval as the “marginally unstable region.”

At this point we would like to draw the reader’s attention
to the inner structure of the marginally unstable region. The
4:1 three-body resonance plays an important role here. For e =
0.15, this resonance furnishes a “smooth” passage between the
weakly chaotic (A, < 110°) and escaping (A, > 130°) orbits.
For e = 0.2 the situation slightly changes as the 4:1 resonance
(now approximately at 105° < A, < 120°) is separated from the
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escaping initial conditions with A, > 130° by a narrow interval
of weakly chaotic motion (at 120° < A, < 130°). This latter re-
gion, however, does not act as a true barrier in the phase space
(Section 4). Although slightly retarding the evolution from the
4:1resonanceto A, > 130°, orbits can efficiently “leak” through
this region to larger A,. The 4:1 three-body resonance joins the
escaping region at e = 0.3. All orbits with A, > 110° are un-
stable within 108 years, and already for A, = 70° the orbital
elements are visibly irregular suggesting the enlargement of the
marginally unstable area at e = 0.3.

The minimum distance from Neptune (Fig. 2b) ranges be-
tween 7 and 25 AU for those test particles surviving 108 years in
the resonance. While for e ~ 0.05-0.1, the minimum distances
are as low as 10 AU, for e = 0.3 and small A, the resonant—
protection mechanism assures a 20 AU separation from Neptune.
This is a consequence of resonant bodies having conjunctions
with Neptune at aphelion of their orbits and the fact that more
elongated orbits have larger aphelion distances (Nesvorny and
Roig 2000). For example, aes(1 + €) — ay = 17.3 AU for e =
0.2, which is in good agreement with the numeric result for
A, = 0inFig. 2b.

In both panels of Fig. 2 we show the semi-major axis and ec-
centricity of Pluto () and Plutinos (large dots) at the intersec-
tion of their trajectories with o = 180° and w = 90°. These data
were taken from Nesvorny et al. (2000) and reflect the knowl-
edge of Plutinos’ orbital distribution in March 1999 (Minor
Planet Center Orbital Database, http://cfa-www.harvard.edu/
cfa/ps/lists/ TNOs.html). In brief, Nesvorny et al. (2000) per-
formed a numeric simulation of 33 Plutinos (and Pluto) and de-
termined their smoothed orbital elements at the moment when
o = 180° and w = 90° simultaneously. Advancing the orbital
elements to this manifold is well suited for the present com-
parison as the initial conditions in Fig. 2 also have o = 180°
and o = 90°. There is one symbol per body in Fig. 2 corre-
sponding to the first intersection with the manifold. Due to the
symmetry of the 2:3 MMR with respect to the libration cen-
ters, the next intersection of a trajectory with o = 180° would
be symmetrically placed on the opposite side of the libration
centers.

The distribution of Plutinos in the (a, €)-plane samples the
region 39.25 <a < 39.7 AU and 0.08 < e < 0.34 which corre-
sponds reasonably well with the extension of the central regular
region of the 2:3 MMR. There are two regions in Fig. 2 that
look relatively unpopulated. The first one is in the center of the
2:3MMR at 39.35 <a < 39.6 AU and 0.15 < e < 0.3. Here, ac-
cording to Nesvorny et al. (2000), the libration amplitudes of
Plutinos could have been excited by Pluto’s gravitational sweep-
ing effect.

The second unpopulated region is located at 0.05 < e < 0.08.
At these eccentricities, orbits are unaffected by the chaos under
the 5:1 secondary resonance, where the 2:1, 3:1, and 4:1 sec-
ondary resonances and vig are simultaneously present. In fact,
no resonant objects are known with e < 0.08. We return to this
issue in Section 8.
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3.2. The Chactic Evolution of Actions and Frequencies

To measure the chaotic evolution of orbital elements we have
computed, for each integrated test particle, the maxima of filtered
o, € andi ontwo consecutive intervals of 45 Myr each (i.e., the
total length of 90 Myr). These quantities do not change with time
in the case of quasi—periodic motion. We used a larger window
interval (45 Myr) than Morbidelli (1997; 10 Myr) expecting to
improve the accuracy.

The following quantities were computed,

§A; = |Ur$12a)x - gr%la)x
Y o

si =i

—i®
max max |

where the indexes 1 and 2 refer to maxima obtained in the first
and second intervals, respectively. In addition, we smoothed the
above quantities over initial conditions with the same e by a 5—
point (0.048 AU) running window in a. The resulting smoothed
values of § A, (Fig. 3a), e (Fig. 3b), and di (Fig. 3c) show how
much the orbital elements change, on average, due to the chaotic
evolution of trajectories on the time interval of 45 Myr.

To measure the chaotic evolution of frequencies we used fre-
quency analysis (Laskar 1999). The frequencies f,, f, and fq
were determined from the Fourier spectra of aexp (o, eexptw
and iexp($2, respectively, on two consecutive intervals of
45 Myr using the algorithm of Frequency Modified Fourier
Transform (FMFT,; Sidlichovsky and Nesvorny 1997). While
for f and fq this meant the determination of the leading peak
frequency in the spectra of eexptco and i exp 2, respectively,
the technical procedure for f, was somewhat more involved
due to the large number of terms with similar amplitude in the
Fourier spectrum of aexpo.

The resonant, perihelion, and node frequencies determined in
this way do not change with time in the case of quasi—periodic
motion and change only due to chaotic evolution of orbits. This
is why we used

8f, = (1@ — 1) /1O,
8fp = (f@ — tO) /D, and ®)

St = (19— 19)/10

as measures of chaotic diffusion in frequencies.

We have additionally attempted to reduce the effect of peri-
odic oscillations of frequencies known as the problem of near
harmonics (a consequence of a finite time window used for
the Fourier transform—Nesvorny and Ferraz-Mello 1997a). We
compute

1 j=k+n 1 j=k+n
5f(a = §f(aj)|— §f(a
(8 (a))2n+1 2n+1,;k;n| @)l =557 j;_n @j)|.

NESVORNY AND ROIG

where f(a;) is a generic (resonant, perihelion, or nodal) fre-
quency determined for the initial semi-major axis a; = 38.8 +
0.01j,0 < j < 101. Assuming ninitial conditions close to each
other in the phase space, the problem of near harmonics makes
the frequencies determined at these points oscillate with almost
identical period and phase, so that if no chaotic evolution were
present (), determined over these initial conditions (Eq. 4)
vanishes. In the presence of chaotic diffusion, (5f), gives the
net chaotic change. We plot (5f,)s, (8f,)s, and (8fq)s for vari-
ous eccentricities in Figs. 3d-3f. In the following text we refer
to them simply as §f,, §f., and §fg, avoiding the use of (-)s.

The color coding in Fig. 3 is similar to that in Fig. 2a: escaping
and fast diffusing orbits with large changes of proper elements
and frequencies are shown in yellow, light red represents the
orbits with moderate chaotic diffusion, and blue represents the
most stable orbits with negligible chaotic evolution.

In general terms, we note in Figs. 3a—3c that the chaotic evo-
lution of A, (note the distinct color coding used in Fig. 3a) is
more important than the chaotic evolutions of eand i (Duncan
et al. 1995, Morbidelli 1997). For e = 0.2, the change of A,
varies between 0.5° per 45 Myr in the center and 1° per 45 Myr
in the immediate vicinity of unstable orbits on 102 years, while
seand di range between 0.0003° and 0.003° and 0.1° and 0.5°
per 45 Myr, respectively.

For the sake of a quantitative estimate of the diffusion effect
over4.5 x 10° years we may assume a random walk of orbital el-
ements with a mean square displacement roughly proportional to
time. Hence, 8 A, 8e, and 8i over 4.5 x 10° years are expected to
be some 10 times larger than the estimates over 4.5 x 107 years
given in Figs. 3a—3c. This means that, for e = 0.2 and the tra-
jectories within an interval of about 0.1 AU close to the strongly
unstable region at large A, the expected changes of § A, e,
and 8i over 4.5 x 10° years are roughly 10°, 0.03°, and 5°, re-
spectively. While the changes in eand i are small to expect the
trajectory to be destabilized in this way, the 10° change in A,
is sufficient to insert many orbits initially at 115° < A, < 125°
(for e = 0.2) into the strongly unstable region within the age
of the Solar System. In Section 4, we give our definition of the
marginally unstable region with respect to the number of bodies
dynamically leaking from the resonance at 4 x 10° years after
the initial instant.

Fore> 0.2, 8 A, is generally larger or on the order of 1° per
45 Myr. The 4:1 and 5:1 three-body resonances are stronger for
e> 0.2and make A, change as much as a few degrees in 45 Myr
at their locations. The 4:1 three-body resonance is located close
to the unstable (yellow) region for 0.15 < e < 0.3. This reso-
nance enhances the chaotic diffusion making the marginally un-
stable region somewhat larger than it would be otherwise. The
5:1 three-body resonance is located at small amplitudes and the
chaotic evolution of A, for 0.15 < e < 0.3 at this resonance is
confined by more regular behavior at both slightly larger and
smaller A, than the resonant one (~60° for e = 0.2). This more
“regular” motion is not truly regular in the sense of a dense
presence of KAM tori and an exponentially slow diffusion, but
rather corresponds to trajectories with moderate chaotic changes
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FIG. 3. Diffusion speed estimates in the 2:3 Neptune MMR. Variations of resonant amplitude (a), eccentricity (b), and inclination (¢)—é/ is given in radians—
between two consecutive intervals of 45 Myr are shown (in logarithmic scale—note the distinct color coding of (a)). Smoothed relative changes of resonant (d),
perihelion (e), and node frequencies (f) were computed for the same time interval. See text for the definition of these quantities.
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FIG.9. Chaotic changes of the resonant amplitude (a), eccentricity (b), and inclination (c) on 45 Myr at A, ~ 60°. Smoothed relative changes of the resonant

(d), perihelion (e), and node frequencies (f) were computed on the same time interval. Note the enhanced values of 8f at ¢ = 0.12-0.14 due to the presence of the
g — & + gg — sg secular resonance (dotted—dashed line in panel ().
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FIG.4. (a) The number of particles survivingatt = 1,2, 3,and 4 Byrvs A,

for initial e = 0.2. (b) Stars and crosses denote the numbers of escapes for t <
3.5 Byr and t < 4.5 Byr, respectively. Triangles denote their difference, i.e.,
escapes in 3.5<t<4.5 Byr. The marginally unstable region is at 100°
A, <123°.

of orbital elements. Nevertheless, these trajectories form an ef-
fective barrier for the chaotic evolution of A,. Consequently, it
is practically impossible that an orbit starting at the 5:1 three-
body resonanceand 0.15 < e < 0.3 escapes from the 2:3 Neptune
MMR within 4 x 10° years.

Several other conclusions can be inferred from Figs. 3a—3c:

(1) The most regular space of the 2:3 Neptune MMR at low
inclinationsisat 0.1 < e < 0.2 and small to moderate A, , where
8 A, <0.5° per 45 Myr. There is an area in the middle of the
above interval (e = 0.15) where §i = 0.8° per 45 Myr. We show
later that this happens due to the presence of a secular resonance
involving the argument of perihelion (Fig. 9e).

(2) seand éi are enhanced at the Kozai resonance (0.22 < e <
0.27). Typically, 0.0006 < §e <0.006 per 45 Myr and 0.1 <
3i < 0.6° per 45 Myr. While the eccentricity evolution is con-
fined within the interval 0.22 < e <0.27 and no macroscopic
changes of e are to be expected (if the inclination stays low),
the inclination can chaotically evolve by several degrees in 4 x
10° years along the separatrices of the Kozai resonance
(Section 5). This evolution, however, never leads to escapes pro-
viding the initial inclination is small (i <10°).

(3) The test particles starting near the separatrices of the 2:3
MMR and with e < 0.1 usually spend a time period exceeding
108 years with o alternating between libration and circulation.
At these eccentricities, orbits are well separated from Neptune
and the chaotic region at the borders of the 2:3 MMR is confined
from both sides in a, which does not permit a definitive escape

291

from the resonance through an increase of A, . Onthe other hand,
the chaotic evolution of e (and i) is fast near separatrices, where
se> 0.05 (8i > 5°) per 45 Myr; so that in several 10® years, the
test particles are transferred to e ~ 0.2, where they encounter
Neptune and leave the resonance.

(4) On both sides of the 2:3 MMR (a = 39.05 and 39.8 AU),
there are places of stable motion at e < 0.1. Note that § A, and
5f, are fake here because the motion is non resonant, but other
indicators are correct. Both places are unpopulated.

The relative changes in frequencies (Figs. 3d and 3e) are com-
plementary to action changes. §f,, 6f., and §fg should be re-
garded as more precise measures of chaotic diffusion than § A,
de, and i, because of the nature of frequency analysis. On the
other hand, frequency changes are harder to interpret because
they do not measure the diffusion rate in the “direction” of or-
bital elements, so that modifications of orbits are represented
indirectly by them.

5 f, measures the local chaotic evolution in the plane transver-
sal to the lines of f, = const. The lines of the 4:1 and 5:1 three-
body resonances correspond to f, = 5.91 x 10~°year—! and
f, = 4.73 x 10~ year~, so that roughly § f, = 0.22 is needed
to transit between them. This is apparently beyond the possibil-
ities of chaotic orbital evolution because §f, = 10~4-10~2 per
45Myr, i.e., 8f, = 1073-10~2 per 4.5 Byr, in the region between
these three-body resonances (Fig. 3d). Hence, this verifies the
stability of the central region of the 2:3 Neptune MMR.

4. THE MARGINALLY UNSTABLE REGION

The chaotic diffusion in the 2:3 Neptune MMR is dominated
by the evolution in A, . This simplifies the situation and allows us
to model chaotic diffusion as a one—-dimensional random walk.

We started 1000 test particles at the same initial value A°.
For each particle, a random walk was simulated according to
the size of § A, (Fig. 3a). In short, for a given instantaneous
Al obtained at the step n of the algorithm, we determined the
value of § A, (A?) (interpolating from the archive of § A, vs A,
previously computed for all 101 test particles at given value
of e—Section 3.2) and then randomly added or subtracted this
quantity from A7, so that AM1 = A + §A,(A?). The same
procedure was repeated in the next step with AR,

We ran this simulation for 4.5 x 10° years. The particles that
had A} > 170° for some n were judged to escape from the res-
onance and were deleted from the simulation. The final result
was the ratio of the number of the deactivated test particles to
that of survived particles. We sampled the resonant amplitudes
repeating the above procedure with initial A° uniformly spaced
between 0 and 170°. Hence, for given e, we ended up with the
number of escapes/survivalsattimet (0 <t < 4.5Byr) asafunc-
tion of A2.

Figure 4a shows the number of surviving particles at 1, 2, 3,
and 4 Byr for e = 0.2. All particles with AY < 95° survive while
those with A2 > 125° escape. For intermediate amplitudes the
number of survivals smoothly decreases with A2. The profile
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is less steep for t = 4 Byr than for t = 1 Byr corresponding to
the fact that test particles with initially smaller A, escape on
longer time intervals. The profile at t = 4 Byr should roughly
correspond to the current density of the 2:3 resonant objects at
intermediate amplitudes. However, it is too early to draw con-
clusions about whether this profile represents well the real 2:3
MMR population, because too few Plutinos are presently known.

Figure 4b shows the number of test particles escaping for
t < 4.5 Byr (crosses) and t < 3.5 Byr (stars) for e = 0.2. It also
shows their difference, which is the number of particles escaping
in 3.5 <t < 4.5 Byr (triangles). This last quantity approximates
the current escape rate from the 2:3 MMR. The test particles
giving a contribution larger than 1% start at 101° < A, < 124°.

We define a place in the phase space to be marginally unstable
if the escape rate to Neptune crossing orbitsatt = 4 Byr is more
than 1% of the initial population per 1 Byr.? The places for which
the escape rate at t = 4 Byr is less than 1% are: (i) strongly un-
stable, where most of the original population escapesatt < 4 Byr
so att = 4 Byr there are too few surviving bodies, and (ii) prac-
tically stable, where the mean lifetime of bodies is much longer
than the age of the Solar System and the escape rate att = 4 Byr
is also negligible. For practical reasons, we assume the escape
rate at t = 4 Byr to be equal to the relative number of escapes
between 3.5 and 4.5 Byr and identify the marginally unstable re-
gion as the interval of A, in which more than 1% of the original
population leaks from the resonance in 3.5 <t < 4.5 Byr.

Figure 5 shows how the width of the marginally unstable
region depends on e. For 0.05<e<0.35 we show the
number of escapes at 3.5 <t <4.5 Byr (triangles) and trace
the left and right borders of the marginally unstable region,
where the number of escapes was larger than 10 (from initial
1000 test particles—i.e., larger than 1%), by spline smoothing
(dotted lines).

The size of the marginally unstable region does not change
much for 0.1 < e < 0.27 and accounts for 20°-30° centered at
A, ~ 110°. This roughly corresponds to the area affected by the
4:1 three-body resonance (Figs. 2 and 3). Duncan et al. (1995)
found that the resonant bodies are unstable on billion year time
scales if initially 70° < A, < 130°. From Fig. 5, we would rather
say that the lower limit of this range is 90°-100° for a wide
range in e, and resonant KBOs with 70° < A, < 90° are perfectly
stable.

For e = 0.3, the marginally unstable region extends from
about 55° to 105° and occupies more than half of the resonant
space. According to Fig. 3a, the diffusion in A, is faster at e =
0.3than at smaller e, allowing for larger mobility of test particles.

For e = 0.35, the marginally unstable amplitudes are those be-
tween 0° and 40°. Here however, the model of one—dimensional
randomwalk in A, might not be realistic because a small change
in e (instead of A,) can destabilize orbits. Note that the number
of late escapes at this e is large (~20%) suggesting a large con-

2 If P(t) is the percentage of test particles escaping from the initial population
in the time interval [0, t], then by the escape rate at time t we mean the derivative
of this function.
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FIG.5. The position and width of the marginally unstable region in depen-
dence on e. We compute the marginally unstable region as the place where more
than 1% of the initial population escapes in 3.5 <t < 4.5 Byr. This percentage
corresponds in our experiment to more than 10 escapes (from 1000)—dashed
horizontal lines. The dotted lines show the boundaries of the marginally unstable
region.

tribution to the currently escaping objects from the 2:3 MMR.
However, primordial orbits at e = 0.35 would have been rare.

The one—dimensional random walk model is incomplete also
fore ~ 0.05. There the test particles must first chaotically evolve
to larger e before they can leave the resonance by close en-
counters with Neptune. This evolution can be slow and 108—10°
years may pass before a particle definitely leaves the resonance.
For this reason, the limits of the marginally unstable region at
e = 0.05 shown in Fig. 5 are only approximate. On the other
hand, no Plutinos are observed at these eccentricities so that the
contribution of objects initially at e ~ 0.05 to the total present
flux of the escaping bodies from the 2:3 MMR is small.

5. AN ESTIMATE OF THE RESONANT POPULATION

We proceed with the calculation of ratios between the num-
bers of primordial, current, and escaping (in the last 1 Byr)
bodies. Let us suppose that the angles of 2:3 resonant bodies
and their semi-major axes were initially uniform. We show later
that this assumption is not in contradiction to the scenario in
which the 2:3 MMR objects were captured by resonance sweep-
ing (Malhotra 1995). Moreover, we suppose that the inclinations
were not excessively large, so that the diffusion speed measured
ati = 5° is representative (observed Plutinos have on average
i =9.3°).
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The number of primordial objects with orbits within 1° around
given A, is proportional to the volume in the phase space occu-
pied by such orbits: AV (A,). In the averaged, planar, circular
model of the 2:3 MMR, with Neptune as the only perturbing
body, this volume can be easily determined. The above model
is integrable and the trajectories in a, o are computed on mani-
folds of the motion integral N = /a(—2/3 + +/1 — €2). The
area V (A, ) enclosed by a trajectory is computed as

T,
V(A) = /O (@a(t) — aws)o dt. (5)

where o is the time derivative of o and the integral is evaluated
over one period of o. The derivative of V(A,) with respect to
A, times 1° is the needed volume AV (A, ). This volume grows
with A, which means that the orbits with initially large A, were
more common. For instance, the volume occupied by orbits at
A, = 85° is a factor of 10 larger than the volume occupied by
orbits at A, = 10°. This implies that the primordial orbits at
A, ~ 110°, i.e., in the marginally unstable region, were by a
factor of 10 more numerous than the primordial stable orbits
with small A,.

In Fig. 6a, the dashed line shows the initial distribution in A,
resulting from a uniform initial distribution in orbital angles and
a. Comparing this distribution with the one that would have re-
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FIG. 6. The number of test particles surviving at t = 4 Byr (a), and the
number of escapes in 3.5 <t < 4.5 Byr (b), as a function of A, . The dashed line
in (a) shows the density (per 1°) of the original population of 1000 test particles.
The bold line denoted +0° shows how the population is eroded at t = 4 Byr
under the effect of slow chaotic diffusion driven by four outer planets (5 Aiff),
The erosion is larger for § Ak — 1° 2° and 3°, the latter being denoted by +3°.
Note in (b) how the active region, where objects escape in 3.5 <t < 4.5 Byr,
enlarges with increasing contribution of the collision/scattering kicks.
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sulted from the capture by resonance sweeping (Malhotra 1997,
her Fig. 4), we find no difference for 0° < A, < 90°, where the
captured population is exactly proportional to the volume. Con-
sequently, the non-uniformity of Malhotra’s captured population
in this range of A, is not a result of some special process in-
volved in the resonant capture, but rather reflects the uniform
distribution in a and orbital angles. The captured population
is peaked at moderate amplitudes due to the dynamic insta-
bility at large A,. The position of this peak in A, depends
on the eccentricities of the pre—capture objects and the rate at
which the resonances sweep through the primordial KB. It can
be expected that small pre—capture e and even a slow sweep-
ing rate would result in a resonant distribution peaked at small
A, while larger e and faster sweeping would lead to a post-
capture population that covers the stable resonant space more
uniformly (i.e., following the dashed line in Fig. 6a). In the
example given by Malhotra (1997), the resonant population is
peaked at 90° and it is in fact very close to the uniform cover-
age of the 2:3 Neptune MMR eroded at large A, over several
107 years, which was the time used in the capture simulation.
For this reason, our assumption of initially uniform semi-major
axes and angles approximately holds for the resonance sweeping
scenario.

We assume a primordial population of Nyim bodies uniformly
distributed in a, A, w, and  (not in A,), initially located at
the same e in the stable and marginally unstable regions with
A, < AX (A is the outer border of the marginally unstable
region—for e = 0.2, A% = 127°). Then, we compute for each
As,

AV (A,, €)

Via@) ~ Ao ©)

Nesc(As, €) = Nprim X

where foc(As, €) is the percentage of objects with initial e es-
caping from initial A, in the last 1 Byr (Fig. 5). Nesc(As, €) IS
the number of objects with initial e having the initial resonant
amplitude within 1° of A, and escaping in the last 1 Byr. The in-
tegral of the above expression over the amplitudes 0 < A, < A*
gives Nesc(€), which is the total number of escaping objects with
initial e in the last 1 Byr. For e = 0.2, the total area enclosed
by the trajectory with A% is V(A% (e)) = 116.6 AU x deg, and
Nesc(€)/ Norim = 0.0165, i.e., some 1.7% of the objects initially
present at e = 0.2 in the 2:3 MMR escape in the last 1 Byr.
We have calculated the same ratio also fore = 0.1 and e = 0.3
(Table I).

Integrating Nesc(€)/ Nprim Over e allows us to determine the
total fraction of objects escaping per 1 Byr from the 2:3
Neptune MMR at t = 4 Byr. From Table |, and assuming an
initially uniform distribution of e in the interval 0.1 <e <0.3,
this fraction results in 1.2% bodies per 1 Byr. Moreover, using
the results of Section 4 (e.g., Fig. 4a) together with a relation
similar to that of Eq. (6), it is also possible to determine the frac-
tion Nsurv(€)/ Nprim Of Objects that survive att = 4 Byr (Table I).
Integrating this fraction over e we obtain that 70% of objects
survive in the 2:3 MMR at t = 4 Byr. Below, we calibrate these
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TABLE |
The Statistics of Surviving and Escaping Populations
in the2:3 NeptuneMMR

e A} (deg) V(A})(AUxdeg) Nesc/Nprim  Nsurv/Nprim  Nesc/Nsurv
0.1 135 107.4 0.00937 0.827 0.0113
(92.1%) (52.3%) (94%) (51.3%)
0.2 127 116.6 0.0165 0.810 0.0203
(100%) (100%) (100%) (100%)
0.3 112 89.3 0.0121 0.563 0.0215
(76.6%) (56.0%)  (533%)  (8L.1%)

Note. The individual columns are eccentricity (€), amplitude limiting the sta-
ble and marginally unstable regions (A ), area enclosed by the curve with am-
plitude A} (V(AY)), and ratios Nesc/Nprim, Nsurv/Nprim, and Nesc / Nsury, where
Nsurv is the number of bodies surviving at t = 4 Byr (determined from Eq. (6),
with fgyv(As) for e = 0.2 shown in Fig. 4a). The percentages in brackets are
the relative contributions of e = 0.1 and e = 0.3 with respect to e = 0.2.

numbers by the number of bodies needed to keep the observed
population of the Jupiter—family comets (JFC) in steady state.

According to Levison and Duncan (1997), the total number
of visible (g = a(1 — €) < 2.5 AU) active and extinct JFCs with
Hr < 9 (Hy is the total magnitude of an active comet®) is about
500. The main uncertainty in this estimate comes from the ne-
cessity to compute the ratio between the numbers of extinct
and active JFCs: Levison and Duncan (1997) adopted a phys-
ical lifetime of an active comet to be 12,000 years, and deter-
mined the above ratio to be 3.5. Moreover, Levison et al. (2000)
estimated the ratio between the JFCs and the ecliptic comets
(ECs) (i.e., comets having their Tisserand parameters larger
than 2 unless they are on stable orbits in the trans-Neptunian
region). Then, they computed the current number of the ECs to
be Ngc = 1.3 x 107 and also determined their mean dynamic
lifetime: tec = 1.9 x 108 yr.

The EC may be resupplied from the classical KB (35 <a <
50 AU, moderate €) or may be a remnant of the massive Scattered
Disk (SD; Duncan and Levison 1997). Denote by 2.3/ the ratio
of the number of comets escaping from the 2:3 MMR to the
total contribution of the classical KB and SD. If, for instance,
most comets come from the classical KB (including the 2:3
Neptune MMR) and the contribution of the SD is negligible, then
it would be reasonable to assume that fp.3/a1 ~ 0.1-0.2. Indeed,
the current population of the 2:3 Neptune MMR is estimated to
be between 10 and 20% of the classical KB population (Jewitt
et al. 1998).

The current number of objects in the 2:3 Neptune MMR
(Nsurv) corresponding to Hr < 9 can be computed from

Nec
tec

: U]

Nsunf2:3 = f2:3/a

31t is unclear how to relate the absolute magnitude of an active comet to
the diameter of its nucleus. According to Levison et al. (2000) and references
therein, the absolute magnitudes Hy < 9 should roughly correspond to diameters
D > 1-3 km.
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where r,.3 = Nesc/Nsurv 1S the relative fraction of the present
resonant population that escapes from the 2:3 MMR per time
interval. From previously determined Nesc/Nprim and Nsyr/
Nprim, F2:3 = 1.7 x 10~ year—1. This number is smaller than
rkg = 3—4 x 107! year—! determined by Duncan et al. (1995)
for the whole classical KB (including the 2:3 Neptune MMR).
Substituting r,:3, Nec, and tec inEq. (7), Ngyry = 4 X 10° f2:37al.
Assuming f,.3/a1 = 0.15 we conclude that there are currently
6 x 108 objects with Hy < 9 in the 2:3 Neptune MMR.

This number is about the same as the 4.5 x 108 comets esti-
mated by Morbidelli (1997). There are several differences be-
tween this and Morbidelli’s work: (1) Morbidelli estimated that
the volume of the region where bodies are either on invariant tori
or having orbits with diffusion speed too slow to escape from
the 2:3 MMR over the age of the Solar System is about 40% of
the volume of the moderately slow diffusion region. In this work
we estimate the volume of the stable region to be about 80% of
the volume of the marginally unstable region. (2) Morbidelli as-
sumed that fp.3/a1 = 0.25, while f3/51 = 0.15 in our estimate.
(3) The initial conditions with small A, were almost absent in
Morbidelli’s work. This can be presumably due to the choice
of a = 39.5 AU in his experiment, which is not necessarily the
semi-major axis corresponding to A, ~ 0 because of the short—
periodic variations induced by Jupiter. (4) While Nesc/Nsyry =
0.11 in Morbidelli (1997), in this paper Nesc/Nsyrv = 0.017.
(5) Morbidelli’s calibration used estimates of Duncan et al.
(1995) who found that the needed flux to sustain the JFC is 0.21
comets/year, while this work uses Ngc/tec = 0.068 comets/yr
from Levison et al. (2000). In view of the above differences,
the agreement between our Ng, = 6 x 108 and Morbidelli’s
Nnow = 4.5 x 108 is rather surprising.

6. A SIMPLE MODEL OF COLLISIONS/SCATTERING

Until now, we did not address other possible mechanisms by
which the 2:3 resonant objects could be destabilized: (i) colli-
sional fragmentation, (ii) collisional non—disruptive kicks, (iii)
mutual dynamical scattering at close encounters, or (iv) the dy-
namical scattering by Pluto. Detailed analysis of the effect of
these processes goes beyond the scope of this paper, but we
have attempted to simulate them by a simple scheme, adding to
8 AJ (i.e., the change in A, due to the dynamic chaotic diffu-
sion, Eq. 2) an arbitrary quantity 8 A assumed to come from
the random kicks generated by the above processes. Not know-
ing the dependence of § A on e, i, and A, (and time), we have
assumed 8 AK€ to be constant.

Farinella et al. (2000) estimated that the population of KBOs
larger than about 100 km in diameter has not been significantly
altered by collisions over the age of the Solar System. This
means that collisional fragmentation is not relevant for large
bodies. Conversely, this mechanism may be dominant for small
bodies since about 10 fragments, 1 to 10 km in size, are cur-
rently produced per year in the KB at 40 AU (Farinella et al.
2000). With ejection speeds of 10—-100 m/s, these fragments have
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semi-major axes about 0.1-1 AU different from those of their
parent bodies.

Levison and Stern (1995) investigated the effect of collisional
and scattering kicks on Pluto and found that the gravitational
scattering by 1-330 km objects is much more important than
physical collisions. From their Fig. 8 we can infer that § AX
is on the order of 10° per 5 x 107 years, but this assumes a
dense primordial population of 2.7 x 107 comets per AU? near
40 AU, which is more than a factor of 100 larger than the cur-
rent population of the KBOs at 40 AU. If §AX scales lin-
early with the number of objects, then this indicates that the
current § AS of Pluto should be on the order of 0.1° per 5 x
107 years. Recall that smaller bodies must be scattered more than
Pluto.

Nesvorny et al. (2000) calculated the random walk of Plutinos
driven by the gravitational scattering by Pluto. While fori < 5°,
8 APU s on the order of 1° per 45 Myr, for i > 10° § AP0 —
2°—6° per 45 Myr, depending on the eccentricity.

Figure 6 shows the results of random walks characterized by
S AJT 1§ AKick where we choose different values of § A%k, The
scale on the y-axis corresponds to 1000 test particlesate = 0.2,
initially distributed between 0 and A’ according to the area
occupied by the orbits with given A, (dashed line in Fig. 6a).
This scale gives the number of particles per 1°. In Fig. 6a, we
show the number of surviving test particles att = 4 Byr and in
Fig. 6b we show the number of particlesescapingin3.5 <t < 4.5
Byr. Bold lines (denoted by +0) are the results of purely dynamic
random walk with no contribution of kicks. Thin lines show the
results for § AKick = 1° 2° and 3° per 45 Myr, respectively (the
last one being denoted by +3). Table 11 summarizes the statistics
of surviving and escaping particles in each case.

The current density of objects in the 2:3 MMR should roughly
correspond to one of the curvesin Fig. 6a. The erosion at large A,
increases with the increasing role of random kicks. The density
peak shifts from A, = 105°, when the evolution is dominated by
pure dynamic chaotic diffusion, to A, = 85°, when § AKick = 3¢,
Moreover, for § Ak — 3° the density curve is much flatter
than that for § Ak = 0°. The values of Neyry/Nprim in Table 11
show that the primordial population of the 2:3 MMR is reduced
to 56% for § A = 3° and only to 81% for § Ak = 0. We
believe that with increasing knowledge of the orbital distribu-
tion of Plutinos, one should be able to estimate the contribution

TABLE I
The Statistics of the Primordial, Surviving, and Escaping Popu-
lationsat e=0.2for Different Contributionsof Random KicksGen-
erated by Collisions, Mutual Scattering, and Scattering by Pluto

. . Nesc/Nprim Nsurv/Nprim Nesc / Nsury
AT+ s Ak (%) (%) (%)
SA, 1.65 81.1 2.03
8A; +1° 1.99 71.4 2.78
SA; +2° 245 63.3 3.87
SA; +3° 3.06 56.3 5.44
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FIG. 7. The number of escapes per 1 Byr is shown as a function of time for
BAﬁ'Ck = 0°, 1°, 2°,and 3°. The original population accounted for 1000 test par-
ticles at e = 0.2, distributed between 0 < A, < A% following the dashed line in
Fig. 6a.

of collisions/scattering to the general random walk in the 2:3
Neptune MMR on the basis of the comparison with Fig. 6a.

Figure 6b shows how the marginally unstable region enlarges
with the increasing role of collisions/scattering. For § AKik =
3°, Nesc/Nsury = 3.1%—almost double the 1.7% determined
from the dynamic chaotic diffusion alone. If the former percent-
age were true, the present number of objects in the 2:3 MMR
with Hy < 9 would be estimated to be about 3 x 108 (assuming
f2.3/a1 = 0.15). Of course the above model is a very rough ap-
proximation of the real collisional dynamics in the 2:3 MMR
because it does not account for the disruption of bodies and
does not allow for the resulting changes in the size distribution
of objects.

In Fig. 7, we show the number of escapes per 1 Byr (scaled to
the primordial population of 1000 test particles at A, < A% =
127° fore = 0.2) from the 2:3 MMR as a function of time. As ex-
pected, most escaping particles leave the resonance att < 1 Byr.
If the 2:3 MMR is the sole source of bodies crossing outer
planets’ orbits, then the cratering record on planetary satellites
should have a time dependence similar to that of the curves in
Fig. 7. A steeper cratering rate in the last 3 Byr would indicate
a significant role of collisions and/or scattering in the source
region.

7. THE RUN FOR LARGER INCLINATIONS

The estimate of the maximum LCE att = 108 years is plotted
in Fig. 8a as a function of initial eand i, and for the second set of
initial conditions (Section 2). The initial a was 39.41 AU, which
means that the test particles started with A, = 60°, i.e., with A,
only slightly smaller than most observed 2:3 resonant objects.
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The libration centers (dashed line) and separatrices (full lines)
of the Kozai resonance were computed for A, = 0 by a semi-
numerical method. The minimum distances of test particles to
Neptune in 108 years are shown in Fig. 8b. The color coding is
the same as in Fig. 2. The eccentricity and inclination of Pluto
() and known Plutinos (large dots) are shown at the intersection
of their trajectories with o = 180° and w = 90° (from Nesvorny
et al. 2000).

The central, weakly chaotic region of the 2:3 MMR extends to
high inclinations (Fig. 8a). While the convergence of In A(t)/t
to an asymptotic non-zero value (~10~55-107 year—1) is ev-
ident for all trajectories in the Kozai resonance, we have LCE
<10~"yr~late = 0.1. The chaotic region at small e, where LCE
~107°-105% yr~1, slightly enlarges with increasing i (from
e<0.05ati =5°t0e<0.07 ati = 25°). This chaos is almost
certainly due to the overlap of the 2:1, 3:1, and 4:1 secondary
resonances, because the vqg secular resonance is limitedtoi < 10°
and has a large libration period. The region of escapes ate > 0.35
fori = 5° shifts to larger e with increasing i. This is either due
to the changing positions and sizes of the vg and vyg secular res-
onances or because the orbits with large inclinations are better
separated from Uranus. The minimum distance of test particles
to Neptune decreases from ~20 AU in the center of the Kozai
resonance to ~15 AU just outside its left limit and further to
~10 AU at e ~ 0.

Figure 9 shows the chaotic change of orbital elements and
frequencies in 45 Myr. The computational procedure was exactly
the same as that in Section 3.2 (Egs. 2-4).

The dependence of § A, (Fig. 9a) on the initial orbital ele-
ments has characteristics similar to those of the LCE (Fig. 8a).
8 A, is large for e < 0.05 (~20°-30° per 45 Myr) showing the
instability of the corresponding orbits. These orbits evolve to
the separatrices of the 2:3 MMR in several 10 year. Such evo-
lution is accompanied by a random walk in e (and i), which gets
faster near separatrices, where e > 0.05 (8i > 5°) per 45 Myr
(Figs. 3b and 3c).

8 A, is moderately larger in the Kozai resonance (2°—4° per
45 Myr) than in the rest of the resonant space (~1° per 45 Myr
at e = 0.1). This can also be an effect of the 5:1 three-body res-
onance located at A, ~ 60°, where our initial conditions cross
the resonant space.

The eand i evolutions (Figs. 9b and 9c) are moderately en-
hanced at the separatrices of the Kozai resonance (e ~ i >
10~25). The orbits starting with large A,, significantly evolve in
eand i on billion year time scales. Ati > 10°, the right separa-
trix of the Kozai resonance is separated only by 0.03-0.04 in e
from the high—e unstable region. As the expected chaotic evo-
lution of e on 4 x 10° years is of this size, most of the initially
large-A,, orbits with i > 10° are unstable. These findings are
in agreement with the results of Levison and Stern (1995) con-
cerning the stability at Pluto-like inclinations. The two Plutinos
residing just outside the right separatrix of the Kozai resonance
ate = 0.32-0.33andi < 5° occupy aspace where the evolution
in e is moderate.
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The stability of small-A,, orbits in the Kozai resonance is ev-
ident on the evolution of frequencies. For i > 10°, 8§, ~ 1073
on 45 Myr (Fig. 9e), which means only a 1% change in 4.5 Byr.
Fori = 15° and A, = 60°, the stable motion in the Kozai reso-
nance extends at 0.22 < e < 0.29, which roughly corresponds to
A, < 50°. For larger initial A, f, significantly evolves and at
the separatrices of the Kozai resonance §f,, is as large as 10%
over the age of the Solar System.

Although our initial conditions do not cover the region at
i > 25°, it is very likely that the stable motion in the center of
the Kozai resonance extends to higher inclinations. In such a
case, the result of Duncan et al. (1995) that the MMRs with
Neptune have a destabilizing effect for i > 25° is only approx-
imate. Indeed, the initial conditions of high—i simulations of
Duncan et al. sampled orbits with e < 0.1, which according to
Fig. 9 are more easily destabilized by secular effects.

Note in Fig. 9e the slightly anomalous value of §f, at the
dotted—dashed line. We have identified it to be the secular res-
onance with angle o + wn — Q. Figure 10 shows the evolu-
tion of this resonant angle for the test particle started at a =
39.41 AU, e = 0.135, and i = 15°. This secular resonance is
usually denoted by g — s+ gs — ss, whereg = f,,s = fg,and
gs = 0.6727” /year and s = —0.6914" /year are Neptune’s per-
ihelion and nodal mean frequencies. We have plotted its position
in Fig. 9e from f_(e, i) and fu(e, i) calculated by frequency
analysis. Fori < 15°, this resonance does not provide an escap-
ing route from the 2:3 MMR because it is confined from both
sides in e by more regular motion. For larger inclinations, tran-
sitions to separatrices of the Kozai resonance and to the low—e
unstable region are possible. The g — s+ gsg — s secular res-
onance does not appear in the plot of the LCE because of the
large period of its resonant angle.

8. THE DISTRIBUTION OF RESONANT OBJECTS

From 191 KBOs currently registered in the Asteroid Orbital
Elements Database of Lowell Observatory (September 1999),
68 objects fall within a 4 AU semi-major axis interval around
39.45 AU. Twenty-two objects have well determined orbits and
46 objects have the eccentricity assumed. The latter group rep-
resents orbits with small observational arcs and orbital elements
that are very imprecise. Indeed, we have verified that most orbits
of the first group are stable inside the 2:3 MMR and that most
orbits of the second group are unstable on unrealistically short
time intervals.

Next, we have integrated the 22 objects of the first group
and Pluto (as massless test particles) with four giant planets
for 107 years using the symmetric multi-step integrator. Periods
shorter than 1200 years were suppressed by digital filtering.

Table 11l shows the orbital characteristics of Pluto and 15
Plutinos that were found on stable orbits over 107 years inside
the 2:3 MMR. Figure 11 shows the maxima and minima of their
a, e and i on 107 years (the plot of the LCE was adapted from
Figs. 2a and 8a to a grey scale). In Fig. 11a, we plot a pair of
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TABLE 111
Pluto and KBOs Found in the223 MMR
No. Designation Distance A, A, Amin max €min €max imin imax
1 Pluto 16.7 84.8 22.8 39.297 39.622 0.214 0.270 14.40 17.40
2 1993 RO 115 123.0 — 39.195 39.711 0.188 0.210 1.96 6.01
3 1993 SB 20.1 65.2 — 39.311 39.618 0.308 0.324 1.48 4.98
4 1993 SC 145 76.7 — 39.315 39.597 0.172 0.196 3.77 8.01
5 1994 JR1 115 94.5 — 39.279 39.621 0.111 0.138 1.14 5.73
6 1994 TB 17.6 54.5 73.2 39.358 39.555 0.178 0.317 12.10 21.30
7 1995 HM5 16.1 72.4 — 39.317 39.606 0.206 0.268 2.86 9.84
8 1995 QY9 105 132.0 — 39.143 39.789 0.249 0.267 3.61 7.75
9 1995 QZ9 15.0 415 — 39.396 39.501 0.115 0.178 17.20 21.80
10 1995 RR20 104 130.0 — 39.180 39.731 0.171 0.197 2.49 7.68
11 1996 Sz4 15.0 91.5 — 39.274 39.654 0.206 0.262 3.00 9.83
12 1996 TP66 21.7 17.2 — 39.409 39.510 0.314 0.334 5.49 9.21
13 1996 TQ66 13.8 27.6 — 39.413 39.472 0.088 0.130 13.10 16.60
14 1997 QJ4 15.0 102.0 35.1 39.259 39.665 0.207 0.263 14.10 18.50
15 1998 HK151 17.6 47.3 79.2 39.366 39.551 0.218 0.259 0.87 8.72
16 1998 HQ151 19.6 43.6 — 39.370 39.551 0.270 0.314 10.70 14.60

Note. Minimum distances to Neptune are shown in column 3 (Distance). Angles are in degrees; distances and semi-major axes are in
astronomical units. Minimum and maximum filtered orbital elements were computed for 107 years.
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FIG. 10. The evolution of the angle w — Ton + Qn Of a test particle located in the secular resonance g — s+ gs — Ss.
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FIG.11. The orbital distribution of Plutinos. The arrows indicate the maxima and minima of the orbital elements in 107 years (Table 111). Note the two groups

in (b) characterized by small (~5°) and large (~16°) inclinations.

two—headed arrows per object, one at the minimum and one at
the maximum values of a. Each of these arrows connect the
minimum and maximum values of the object’s e (Table I1I).
In Fig. 11b there is only one arrow per object connecting the
two points with coordinates (emin, imax) @nd (Emax, imin), respec-
tively. For Pluto and Plutinos in the Kozai resonance, where the
evolutions of eand i are correlated, the arrows in Fig. 11b ap-
proximately indicate the true variation of e and i. For Plutinos
outside the Kozai resonance, these arrows delimit the extension
of a rectangle where eand i evolve.

Figure 11a shows that Plutinos are well accommodated within
the central stable space of the 2:3 MMR. Only 1995 QY9 and
1995 RR20 have large resonant amplitudes (A, = 132° and
130°, respectively), and if their orbital elements were well deter-
mined from observations, these objects should escape from the
resonance within 102 years. Moreover, 1993 RO is on the border
between the marginally unstable and strongly unstable regions
with A, = 123°, e = 0.2, and small i. The orbital elements of
these Plutinos derived from observations should be slightly in-
correct because, otherwise, the suggested escape rate from the
2:3 MMR would be unrealistically large (more than 5% of the
current population per 108 years).

There are two unpopulated stable regions, one at small eccen-
tricities (0.05 < e<0.1) and the other in the center (39.35 <
a < 39.55 AU and 0.15 < e < 0.3). Note that for e> 0.1 there

are no Plutinos with A, smaller than the amplitude correspond-
ing to the 5:1 three-body resonance.

The void region at small e cannot be a consequence of the
observational selection effect, because many KBOs on orbits
with e < 0.1 have been found at larger heliocentric distances
(42 < a < 45 AU) than the 2:3 MMR. Note that a similarly un-
populated region exists at 37 < a < 39 AU and e < 0.05 (one can
partially see it in Fig. 11a just outside the left separatrix of the
2:3 MMR) and has been discussed by Duncan et al. (1995). It
was suggested by them that the clearing occurred there during
the early stages of the Solar System formation. The two main
scenarios of how this may happened are the planetary migration/
sweeping resonances scenario of Malhotra (1995) and the ex-
citation of e (and i) by large planetesimals suggested by Petit
et al. (1999). It is possible that the void region at small e of the
2:3 MMR has a similar origin.

The void central region at small A, < 60° is a real puzzle. It
is true that the resonant bodies with small A, are expected to
be less numerous than the ones with large A, as they occupy
a relatively small volume in the phase space, but, on the other
hand, the observed void at small A, in the 2:3 MMR is more
pronounced than what would be inferred from the above argu-
ment. If confirmed by future observations, this void may be a
consequence of the scattering effect of Pluto (Nesvorny et al
2000).
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One can clearly distinguish two groups with different inclina-
tionsin Fig. 11b. There are 10 low-inclination objects (i max < 10°
and average of 5°) and 6 high—inclination objects (including
Pluto—imin, > 10° and average of 16°). The latter group was
conjectured to be a remnant of the collision in which the Pluto—
Charon binary formed (Stern et al. 1999). Indeed, there is no
dynamic reason for the intermediate inclinations being under-
populated.

Apart from Pluto, only one object—1997 QJ4—was found
with stable libration in the Kozai resonance. It has A, ~ 35°.
Two other potential potential objects in the Kozai resonance—
1994 TB and 1998 HK151—have large A, and evolve within
5 x 107 years to the separatrices of the Kozai resonance. 1997
QJ4 is the only KBO discovered until now that shares the
2:3 and Kozai resonances with Pluto. This makes this body
an interesting object for future spectroscopic observations as
it might be one of few low—velocity ejecta of Pluto—Charon bi-
nary formation event that survived the scattering effect of Pluto
until present times. Indeed, Nesvorny et al. (2000) showed that
Pluto’s gravitational sweeping effect can efficiently remove the
objects from Pluto’s surroundings.

9. CONCLUSIONS

The dynamics of the 2:3 mean motion resonance with Neptune
have been studied in this paper. We have numerically computed
the maximum LCE, frequencies, and measures of chaotic diffu-
sion on a grid of a, e, i. This allowed us to determine the most
important inner resonances. Apart from previously known res-
onances, we have found the 4:1 and 5:1 three-body resonances
(the commensurabilities between the resonant period and the
period of the inequality 2:1 between Uranus and Neptune) and
the secular resonance g — s + gg — Sg. The 4:1 three-body res-
onance is important because it is located on the margin of the
stable region of the 2:3 MMR.

We have defined the marginally unstable region as the place
where the escape rate to Neptune—crossing orbitsatt = 4 Byr is
more than 1% of the initial population per 1 Byr. This definition
was motivated by the need for identification of the area that is an
active source of Jupiter—family comets in present times. We have
shown that the marginally unstable area has a typical width of
several tens of degrees in A, and estimated the present relative
flux of escaping objects from the 2:3 MMR to be 1.7% of the
current resonant population per billion years. This value, cali-
brated by the number of active and extinct Jupiter—family comets
and their lifetimes, led to the estimate of 6 x 108 objects corre-
sponding to Hr <9 (D > 1-3 km) currently in the 2:3 MMR.
This number is only an upper limit if the contribution of the
Scattered Disk to the flux of ecliptic comets is important or if
other processes than purely dynamic ones (driven by four outer
planets) play an important role.

The orbital distribution of observed Plutinos falls within the
limits of orbital stability in A, and e. Low—A,, orbits for 0.15 <
€< 0.3 and low—e orbits (e <0.1) are stable but do not seem
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to be well sampled by known Plutinos. These voids may be
either dynamically primordial or a consequence of collisions and
dynamic scattering in the resonance. Two groups with i ~ 5°
and i ~ 16° were identified. If the latter one is a product of the
Pluto—Charon binary formation event then 1997 QJ4 is a good
candidate for a member of Pluto’s family.

In a second paper (Nesvorny and Roig, 2000), we extend the
present analysis to the 1:2, 3:4 and fine mean motion resonances
in the trans—Neptunian region.

ACKNOWLEDGMENTS

This research was sponsored by the S0 Paulo State Science Foundation
FAPESP. Some of the numerical simulations were performed using the facil-
ities of the S8o Paulo University computer center LCCA in the frame of the
project “Asteroid Resonant Dynamics and Chaos.” We thank Fabrice Thomas
for supplying us with his semi-numerical determination of resonant and secular
frequencies in the 2:3 MMR. We also thank Carl Murray and Edward Thommes
for valuable referees’ reports that helped us improve the manuscript.

REFERENCES

Benettin, G., L. Galgani, and J. M. Strelcyn 1976. Kolmogorov entropy and
numerical experiments. Phys. Rev. A 14, 2338-2345.

Duncan, M. J.,, and H. F. Levison 1997. A disk of scattered icy objects and the
origin of Jupiter-family comets. Science 276, 1670-1672.

Duncan, M., H. F. Levison, and S. M. Budd 1995. The dynamical structure of
the Kuiper Belt. Astron. J. 110, 3073-3081.

Edgeworth, K. E. 1949. The origin and evolution of the Solar System. MNRAS
109, 600-609.

Farinella, P., D. Davis, and S. A. Stern 2000. Formation and collisional evolution
of the Edgeworth—Kuiper Belt. In Protostarsand Planets1V (V. Mannings, A.
Boss, and S. Russell, Eds.), pp. 1255-1282. Univ. of Arizona Press, Tucson,
AZ.

Fernandez, J. A. 1980. On the existence of a comet belt beyond Neptune. MNRAS
192, 481-491.

Ferraz-Mello, S. 1994. Dynamics of the asteroidal 2/1 resonance. Astron. J. 108,
2330-2337.

Ferraz-Mello, S., T. A. Michtchenko, and F. Roig 1998. The determinant role of
Jupiter’s Great Inequality in the depletion of the Hecuba gap. Astron. J. 116,
1491-1500.

Hahn, J. M., and R. Malhotra 1999. Orbital evolution of planets embedded in a
planetesimal disk. Astron. J. 117, 3041-3053.

Henrard, J. 1990. A semi-numerical perturbation method for separable Hamil-
tonian systems. Celest. Mech. Dynam. Astron. 49, 43-67.

Holman, M., and J. Wisdom 1993. Dynamical stability in the outer Solar System
and the delivery of short period comets. Astron. J. 105, 1987-1999.

Jewitt, D., and J. Luu 1993. Discovery of the candidate Kuiper Belt object 1992
QBL1. Nature 362, 730-732.

Jewitt, D., J. Luu, and C. Trujillo 1998. Large Kuiper Belt objects: The Mauna
Kea 8K CCD survey. Astron. J. 115, 2125-2135.

Kinoshita, H., and H. Nakai 1984. Motions of the perihelions of Neptune and
Pluto. Celest. Mech. Dynam. Astron. 34, 203-217.

KneZevi¢, Z., A. Milani, P. Farinella, Ch. Froeschlé, and C. Froeschlé 1991.
Secular resonances from 2 to 50 AU. Icarus 93, 316-330.

Kuiper, G. P. 1951. The origin of the Solar System. In Astrophysics: A Topical
Symposium (J. A. Hynek, Ed.), pp. 357-406. McGraw-Hill, New York.

Laskar, J. 1988. Secular evolution of the Solar System over 10 million years.
Astron. Astrophys. 198, 341-362.



300

Laskar, J. 1994. Large-scale chaos in the Solar System. Astron. Astrophys. 287,
L9-L12.

Laskar, J. 1999. Introduction to frequency map analysis. In Hamiltonian Systems
with Three or More Degrees of Freedom (C. Simé, Ed.), pp. 134-150. Kluwer
Academic, Dordrecht.

Levison, H. F., and M. Duncan 1993. The gravitational sculpting of the Kuiper
belt. Astrophys. J. 406, L35-L38.

Levison, H. F., and M. Duncan 1997. From the Kuiper belt to Jupiter-
family comets: The spatial distribution of ecliptic comets. Icarus 127, 13—
32.

Levison, H. F., Duncan, M. J., Zahnle, K., M. Holman, and L. Dones 2000.
Planetary impact rates from ecliptic comets. Icarus 143, 415-420.

Levison, H. F., and S. A. Stern 1995. Possible origin and early dynamical evo-
lution of the Pluto—Charon binary. Icarus 116, 315-339.

Liou, J. C., and R. Malhotra 1997. Depletion of the outer asteroid belt. Science
275, 375-377.

Malhotra, R. 1995. The origin of Pluto’s orbit: Implications for the Solar System
beyond Neptune. Astron. J. 110, 420-429.

Malhotra, R. 1996. The phase space structure near Neptune resonances in the
Kuiper belt. Astron. J. 111, 504-516.

Malhotra, R. 1997. Implications of the Kuiper Belt structure for the Solar System.
ACM Conference 1996, Versailles, France. Unpublished.

Moons, M., A. Morbidelli, and F. Migliorini 1998. Dynamical structure of the
2/1 commensurability with Jupiter and the origin of the resonant asteroids.
Icarus 135, 458-468.

Morbidelli, A. 1996. The Kirkwood gap at the 2/1 commensurability with
Jupiter: New numerical results. Astron. J. 111, 2453-2461.

Morbidelli, A. 1997. Chaotic diffusion and the origin of comets from the 2/3
resonance in the Kuiper belt. Icarus 127, 1-12.

Morbidelli, A., and C. Froeschlé 1995. On the relationship between Lyapunov
times and macroscopic instability times. Celest. Mech. Dynam. Astron. 63,
227-239.

Morbidelli, A., and D. Nesvorny 1999. Numerous weak resonances drive aster-
oids toward terrestrial planets orbits, Icarus 139, 295-308.

Morbidelli, A., F. Thomas, and M. Moons 1995. The resonant structure of the

NESVORNY AND ROIG

Kuiper Belt and the dynamics of the first five trans-Neptunian objects. Icarus
118, 322-340.

Murray, N., and M. Holman 1997. Diffusive chaos in the outer asteroid belt.
Astron. J. 114, 1246-1259.

Nesvorny, D., and S. Ferraz-Mello 1997a. Chaotic diffusion in the 2/1 asteroidal
resonance: An application of the frequency map analysis. Astron. Astrophys.
320, 672-680.

Nesvorny, D., and S. Ferraz-Mello 1997b. On the asteroidal population of the
first-order jovian resonances. Icarus 130, 247-258.

Nesvorny, D., and F. Roig 2000. Mean motion resonances in the trans-neptunian
region. Il. The 1:2, 3:4 and fine mean motion resonances. Icarus, submitted
for publication.

Nesvorny, D., F. Roig, and S. Ferraz-Mello 2000. Close approaches of trans-
Neptunian objects to Pluto have left observable signatures on their orbital
distribution. Astron. J. 119, 953-969.

Oseledec, V. I. 1968. A multiplicative ergodic theorem: Lyapunov character-
istic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197-
231.

Petit, J. M., A. Morbidelli, and G. Valsecchi 1999. Large scattered planetesimals
and the excitation of the small body belts. Icarus 141, 367-387.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery 1992. Numerical
Recipes: The art of scientific computing. Cambridge Univ. Press, Cambridge,
UK.

Quinlan, G., and S. Tremaine 1990. Symmetric multistep methods for the nu-
merical integration of planetary orbits. Astron. J. 100, 1694-1700.

Quinn, T., S. Tremaine, and M. Duncan 1991. A three million year integration
of the Earth’s orbit. Astron. J. 101, 2287-2305.

éidlichovsky, M., and D. Nesvorny 1997. Frequency modified Fourier trans-
form and its applications to asteroids. Celest. Mech. Dynam. Astron. 65, 137—
148.

Stern, S. A., R. Canup, and D. Durda 1999. Pluto’s family: Debris from the
binary—forming collision in the 2:3 resonance? In 30th Annual Lunar and
Planetary Science Conference, Houston, Texas, abstract 1213.

Sussman, G., and J. Wisdom 1988. Numerical evidence that the motion of Pluto
is chaotic. Science 241, 433-437.





