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´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_eZÙYyX6T7\^]`aeYyTÙZ7U`]`_D]�_à_bZÙ´<_lä+ßYyT/]`YxX2a�]WYy°±a�T�TÙYyX}\ î�_DÝ�_D°mß� Z7\^Þ{a�T�ø»U aD´<V�\^]WYy°^°~\�²�þ/úWa�X}_DT
YSUìaOa�Ý`To· vzv xNâÒU»_D°^úWaDZÙ´<_K· vzv k�üáYoÝ�U`XKßY[´<\^Þ{a�Tuøu�-Y[ä�\^TÙa�ÝKY ­ ZÙY[´�ÝF· vzv xNâÒUìaD´7V�\~]WYy°^°^\G· vzv]w ü�²
Þ[Ujçga�T¼´7YyT7U`°^Z7_D]Wa�T¼X2a�T7ZÙ´<_DX�í�UWYD²CÜ�_b´<_�T7YyX}\ î�_DX2Ü�°~\±Z7U`]WYyTS]WYà°^\±V`´<_råÞ ®_bao]Waéæ_DÝWÚ�U�°±a}´7YyT7T7a�Ý`_DÝ ZÙY
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ßaD´7V�\±Z7_DTÛ´7YyT7TÙa�Ý`_DÝOZÙYyTQY[äDa�°^UWYyXÇÞ[_baDZ7\^Þ[_DX2YyÝOZÙYSYyX©ZÙ´�_ çgY[Z`ßaD´<\~_DT�í�UWY�Þ{´�U��y_DX _óßaD´7V�\^Z7_/]WY Ø Y[Z7U`ÝWa
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X}YyÝ Z7_DX2a�T�ÝWauÞ[_bÜÛß� Z7U�°±aì·b²9_oí�UWYyTÙZ ®_bau]`_oYyTÙZ7_bV�\^°~\^]`_D]WYe]`_o´7YyT7T7a�Ý�æ_DÝ`Þ[\^_÷µ�ôbýÖßY)]WY�Ü�_b´7Z7\^Þ[U`°~_b´
\~X2ÜãaD´7Z æ_DÝ`Þ[\^_�²lçWß_2í�UWY�YyTÙZ`ß_2ä�\^Ý`Þ[U�°^_D]`_Sa_)Y ` Þ[\zæYyÝ`Þ[\^_2]WYyTÙZ7_)´<YyT7TÙa�Ý�æ_DÝ`Þ[\~_àÜC_b´<_)ZÙ´<_DÝ`TÙðñY[´<\±´Gâ�T/³�T
ÜC_b´<_áa ­ \~TÙZÙYyX}_ ­ a�°^_b´G\^Ý ZÙY[´�\±aD´�Y�ÚDY[´<_b´SÞ{a�X2Y[Z7_DT¼]WY:Þ[U`´7ZÙa)ÜrY[´ ß� a�]`aoø�ö]c ë T�ü�ê Ø YyTÙZÙYeÞ[_bÜÛß� Z7U`°^aW²
_bÜ�´7YyTÙYyÝOZ7_DX2a�T�U`X YyT7Z7U`]Wao]`Y[Z7_D°^ú`_D]Wa÷TÙaDV`´7Y�_o]`\~Ý�æ_DX}\^Þ[_}]�_}´7YyT7T7a�Ý�æ_DÝ`Þ[\^_÷µ�ôbý�²rä�\^T7_DÝ�]WaoÝ ®_ba
T�ßao\^]WYyÝOZ7\ ` Þ[_b´x_DT¼´7Y[Ú�\ ®aDYyTx]WYàYyTÙZ7_bV�\^°~\^]`_D]WY ôjÞ[_ba�T:ÝWa}YyTÙÜC_råÞ{a÷]WYàðñ_DT7YD²CX}_DTxZ7_DXáVGßYyX�a�T:X2YyÞ[_jî
Ý�\^T7X2a�Tu´7YyT7Üra�Ý�T`ß_bäDYy\^TuÜãYy°±aÖÞ[_ba�T[ê O XèÜ�_b´7Z7\^Þ[U�°^_b´y²x_DÝ�_D°^\^T7_DX2a�T aÖY[ð�Yy\±ZÙaÀ]`_ÍÜãY[´7Z7UW´7V�_råÞ ®_ba
]�\±´7Y[Z7_2]WYe¯�°^UWZ ®_ba�TÙaDV�´7Ye_2ÜãaDÜ�U`°^_råÞ ®_ba}]`YeaDV�çÙY[ZÙa�T/´7YyT7T7a�Ý`_DÝ ZÙYyT)øz¯�°~UWZ7\^ÝWa�T�ü�²Wí�UWYáÝWa�T/YyTÙZ7U`]Wa�T
Ü�´�ßY[ä�\±a�TGðñaD´<_2TÙYyX}Ü`´7Y�]WYyT7Þ{a�Ý`T7\~]WY[´<_D]`_�ê O TÙZÙY�Z7\±Üãa)]`Y�_DÝ¼ß_D°^\^TÙYìßYe°±aDÚDa)YyTÙZÙYyÝ`]`\~]Wa2_àa�U`ZÙ´<_DTS´7YyTgî
T7a�Ý�æ_DÝ`Þ[\^_DT�ZÙ´<_DÝ`Tgî Ø Y[Z7U`Ý`\~_DÝ`_DT�]WY:Ü`´<\~X2Yy\±´<_�aD´<]`YyXõ² YyX¬Ü�_b´7Z7\~Þ[U`°^_b´�_÷·lôbµeY�ý�ô~PWêècM\^Ý`_D°~X2YyÝ ZÙYD²
ðz_L�[YyX2a�T:U`X}_}_DÝ¼ß_D°^\^TÙYeÚ�°^aDV�_D°Û]`_�]`\^Ý�æ_DX}\~Þ[_2]`_DT/´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_DTx]WYáX2a ä�\~X2YyÝ ZÙa�T:XÆßYy]`\±a�T:X}_D\^T
ðñ´<_DÞ[_DT[²�Z7_DÝ ZÙa÷_DT¼]WYe_D°±Z7_}aD´<]WYyX�Þ{a�X Ø Y[Z7U`Ý`a�Þ{a�X2a�_Dí�UWYy°^_DT¼YyÝ äDa�°±äDYyÝ�]Wa�T7\^X�U`°±Z7_DÝ`Yy_DX2YyÝ ZÙY
a�ÜrY[´ ß� a�]`aàaD´7VC\±Z7_D°9]WY Ø Y[Z7U`ÝWa}YFßx´<_DÝWaWê
³�TS]WY[Z7_D°^úWYyTS]�_)ÜrYyT<íOU`\~T7_áYyÝ�Þ{a�Ý ZÙ´<_DX2î�TÙYáÝWa�T/_b´<Z7\±ÚDa�TSYyX _DÝWY{ï�aW²�Þ[UjçÙa�TSÜ`´<\~Ý`Þ[\±Ü�_D\^T�´7YyT7U`°±î

Z7_D]`a�TeT ®_ba _bÜ`´7YyT7YyÝ Z7_D]Wa�Tá_õTÙY[Ú�U`\±´yê ßO \^X2ÜãaD´7Z7_DÝOZÙY2]WYyTÙZ7_DÞ[_b´�íOUWY2ÝWaÇßU`°^Z7\^X2au_DÝWaõa Ý�ßU`X2Y[´<a
]`Yoâ�T/³�T�Þ{a�X ßaD´7V�\±Z7_DTàVãYyX>Þ{a�Ý`ú`YyÞ[\^]`_DTàZÙYyX T7Y÷\^Ý�Þ{´7YyX2YyÝOZ7_D]WaóT<\±Ú�Ý`\ ` Þ[_bZ7\^äj_DX2YyÝOZÙYDêì¯QaD´Ùî
Z7_DÝOZÙaW²Û_D°±Ú�U�X}_DTxÞ{a�Ý�T7\^]WY[´<_råÞ ®aDYyT�ðñYy\±Z7_DT�ÝWa�T�_b´7Z7\±ÚDa�T�]`Y[äDY[´<\^_DX�TÙY[´�´7Y[ä�\^T7\±Z7_D]`_DT:Þ{a�X�V�_DTÙY)Ý`_DT
aDVCTÙY[´7äb_råÞ ®aDYyT�_bZ7U`_D°^\��y_D]`_DT[²GX}_DT}_D\^Ý`]�_ó_DT<T7\^Xõ²�_DToÝWaläb_DT2aDV�T7Y[´7äj_råÞ ®aDYyT�ZÙYyÝ`]WYyX�_ Þ{a�Ý ` ´<X}_b´
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ë a�X2Y�åÞ[_DX2a�T�_DÝ`_D°^\~T7_DÝ`]Wa:_xYyT7ZÙ´<UWZ7UW´<_x´7YyT7T7a�Ý`_DÝ ZÙYSÝ`_x´7Y[Ú�\ ®_ba�ZÙ´<_DÝ�Tgî Ø Y[Z7U�Ý`\^_DÝ`_�²Dä�\^T7_DÝ`]`ax\^]WYyÝWî
Z7\ ` Þ[_b´ó_DTé]`\^ð�Y[´7YyÝOZÙYyT»´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_DT»]`YÆX2a ä�\~X2YyÝ ZÙa�TéXÆßYy]`\^a�T»YÆaIÜ�_bÜãYy°á]`_DTóX2YyT7X}_DTéÝ`_
]�\^Ý�æ_DX}\^Þ[_:_e°±a�Ý`ÚDa�Ü`´<_L�[ae]Wa�T�â�T/³�Tyê � ÝOZÙY[ÚD´<_DÝ`]WaeÝ�U`X2Y[´<\~Þ[_DX2YyÝ ZÙY¼µzyb¶D¶áÜ�_b´7Zyß� Þ[U�°^_DT�]WYGZÙYyTÙZÙYD²
\~Ý`\^Þ[\^_D°^X}YyÝ ZÙYõ]`\^T7ZÙ´<\±V�U-ß� ]`_DTá]WYìð�aD´<X�_ËU`Ý`\±ðñaD´<X2YõÝWaÄ\^ÝOZÙY[´7äb_D°±aKýzyNÞ°y�j)Ü_j)xb¶{Þ ¶´ßxÿà²�Þ{a�X
N�æ ¶{Þ^·b²Ûi³æ ¶�²Q]WY[ZÙY[´<X}\~Ý`_DX2a�T�aìXùß_jïW\^X2auY{ï�ÜãaOYyÝOZÙY�Þ[_b´<_DÞ{ZÙY[´lß� TÙZ7\^Þ{aì]WY�����_bÜ�U`ÝWa äÍøu� ë O ü
T7aDV`´7Ye·[¶D¶áX�\^°^ú ®aDYyT+]`Y/_DÝWa�T+Ü�_b´�_eÞ[_D]`_áU�X}_�]WYy°^_DT[ê�³ X}a�]WYy°^ae\^Ý`Þ[°^U`\�ÜãY[´7Z7UW´<V�_råÞ ®aDYyT+]Wa�T�íOU`_jî
ZÙ´<a2Ü�°^_DÝWY[Z7_DT/ö�alä�\^_DÝWa�T[²WYe_2\^ÝOZÙY[ÚD´<_råÞ ®_bao´7YyTÙa�°±äDYeT7\~XàU`°^Z7_DÝWYy_DX2YyÝOZÙY�_DT/YyíOU`_råÞ ®aDYyT¼äj_b´�\^_DÞ[\±a�Ý`_D\^T
]`a2Ü`´7aDV�°±YyX�_àÜC_b´<_2a}Þ9ß_D°^Þ[U`°^a}]Wae� ë O ê
³�T�´7YyT7U�°±Z7_D]Wa�T+X2a�T7ZÙ´<_DX í�UWYSaF� ë O YyX ðñU`Ý�åÞ ®_baá]WaeTÙYyX}\±îmYy\ ï�ae_bÜ�´7YyTÙYyÝOZ7_áU`X}_�YyT7ZÙ´<UWZ7UW´<_

Þ{a�X}Ü�°±Y{ïW_à]WY:Ü�\^Þ{a�T�Y�ðñ_D°~ú`_DT[²�_DT7TÙa�Þ[\^_D]Wa�T�a_áZÙYy\~_�]`Yx´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_DT�]WY�X2alä�\^X2YyÝOZÙa�TSXÆßYy]`\±a�TG]WY
]`a�\^T9Y+ZÙ´yæYyTQÞ{aD´7Üãa�T[ê Ø _S´<Y[Ú�\ ®_baEÜSÝ4P ý�ß:ÿà² í�U`_DTÙY+ZÙa�]`_DTÛ_DT�Ü�_b´7Zyß� Þ[U`°^_DTãYyT7Þ[_bÜ�_DX YyX©X}YyÝWa�TÛ]WY
·[¶D¶àX}\^°^ú ®aDYyT+]WY¼_DÝWa�Tyê+¯�aD´�ßYyX ²�T7aDV`´7Y[ä�\±äDYyX _Dí�UWYy°^_DT�íOUWY¼YyTÙZ ®_ba�Þ[_bÜ�Z7UW´<_D]`_DT�YyX ´7YyT7T7a�Ý�æ_DÝ`Þ[\^_DT
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Þ{a�X Ø Y[Z7U`ÝWaËø�µ�ôbý�² w ô�·D·b²�x�ôLy�²�y�ô�·yý�²�ý�ôLx�ü�²WçWß_÷íOU`YàÞ{a�Ý`TÙY[Ú�U`YyX�Y[ä�\±Z7_b´�YyÝ`Þ{a�ÝOZÙ´7a�T�Ü`´Cßabï�\^X}a�T
Þ{a�X
YyTÙZÙY÷Ü�°^_DÝ`Y[Z7_ ]WY[ä�\^]Waì_baéX2YyÞ[_DÝ`\^T<X2a»]WY�Ü`´7aDZÙY�åÞ ®_baË]WY}ðz_DTÙYyT�ð�aD´�ÝWYyÞ[\^]Wa ÜãYy°^_DTeÜ`´�ßaD´7Ü�\~_DT
´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_DT[ê Ø _o´7Y[Ú�\ ®_ba�P�¶gÝíÜnÝiP µSßxÿà²9_oÞ[_baDZ7\^Þ[\~]`_D]WY2]`_DTéßaD´7V�\±Z7_DTìßY�Ü�_b´7Z7\^Þ[U`°~_b´<X2YyÝOZÙY
T7\±Ú�Ý`\ ` Þ[_bZ7\±äj_�²�ðñ_bZÙaéí�UWY�YyTÙZ`ß_»_DT7TÙa�Þ[\^_D]Wa7a_ìT7U`ÜrY[´<Üra�T<\gåÞ ®_ba ]WY�äGß_b´<\^_DTá´7YyT7TÙa�ÝQæ_DÝ`Þ[\^_DT�TÙYyÞ[U`°^_b´7YyTy²
YyTÙÜãYyÞ[\^_D°^X2YyÝOZÙY�Ü*Ýj²�Ü C�Þ Y�Ü C Ý}øzâeÝWY á�[Y[ä�\�ßÞáY[Z¼_D°mê/· vzv ·lü�êØ _ó´7Y[Ú�\ ®_baVÜ8äåP ýVßxÿ�Ý ®_baËTÙYuaDV�TÙY[´7äb_DX YyT7Þ[_bÜãYyTxçWß_éí�UWYD²�X2YyT<X2aË_DT)Ü�_b´7Zyß� Þ[U`°~_DTàÝ ®_ba
´7YyT7TÙa�Ý`_DÝOZÙYyT[²�Üra�T<T7UWYyX4]`\^T7Z æ_DÝ`Þ[\^_DT�ÜãY[´<\^ú�ßYy°^\~Þ[_DTxZ7_D\~TeíOU`Y}Ý ®_baìÞ<ú`Y[Ú�_DX
_ Þ{´<U¡�y_b´á_ ßaD´7V�\±Z7_õ]`YØ Y[Z7U`Ý`aKøz°±YyXàV`´7YyX2a�TàíOUWYßNLb6¶{Þ^·lü�êQR:Yo_DÞ{aD´<]`a»Þ{a�X _DTáT7\^X�U`°^_råÞ ®aDYyTà]WYeR�U`Ý`Þ[_DÝ-²��-Y[ä�\^TÙa�Ý
YÑTGU`]`] øg· vzv x�ü�²9YyT7Z7_�´7Y[Ú�\ ®_baùßYáYyT7Z`ß_bäDYy°Q_bau°±a�ÝWÚDa÷]`_}\^]�_D]WYá]Wa ­ \^TÙZÙYyX}_ ­ a�°^_b´yêSÿGZ7U`_D°^X}YyÝ ZÙYD²
íOU`_DT7YFkb¶�ì ]Wa�T/âFTS³�T/Þ{a�Ý`úWYyÞ[\^]`a�TSYyÝ`Þ{a�ÝOZÙ´<_DX)î�TÙY�ÝWYyTÙZ7_2´7Y[Ú�\ ®_baWê
ÿ ´<Y[Ú�\ ®_ba ý w j Ü�j ý v ß:ÿá²+ÜC_b´<_¦Nàj�¶{Þ ¶]x�²GZ7_DXáVGßYyX ßY YyTÙZ`ß_bäDYy°¼_baK°±a�ÝWÚDaÄ]`_Ë\^]�_D]WY

]Wa ­ \^TÙZÙYyX}_ ­ a�°^_b´y²�TÙY[Ú�U�Ý`]WaVR:U�Ý`Þ[_DÝ9²&�-Y[ä�\^TÙa�ÝÆYQTGU`]`] øg· vzv x�ü�êK¯QaD´�ßYyXõ²�Y{ï�\^T7ZÙYyX _bÜãYyÝ`_DT
kõaDV�çÙY[ZÙa�T2Þ{a�X aDV�TÙY[´7äb_råÞ ®aDYyT2XàU�°±Z7\ îmaDÜãa�T7\^Þ[\±a�Ý�_D\^T�ÝWYyTÙZ7_»´7Y[Ú�\ ®_baWê ­ \^X�U`°^_DÝ`]`a _ìY[äDa�°^U�åÞ ®_baé]`Y
·[¶W·xÜC_b´7Zyß� Þ[U`°^_DT�]WY�ZÙYyTÙZÙY�ÜãaD´
P�VC\^°^ú ®aDYyT�]WY�_DÝWa�T[²WÞ{a�Ý`Þ[°^U-ß� X2a�T�í�UWY�_�]WY[Ü�°±Y�åÞ ®_ba2Ý`_�´7Y[Ú�\ ®_ba)YyTÙZ`ß_
Ü`´<\^Ý`Þ[\^Ü�_D°^X2YyÝOZÙY+ä�\^Ý`Þ[U`°^_D]�_àa_�]`\±ðzU`T ®_ba�Þ[_�ßaDZ7\^Þ[_eÝ�_DTM´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_DT�]WYS_D°±Z7_:aD´<]WYyX?Þ{a�X Ø Y[Z7U`ÝWaW²
Þ{a�X2a³y�ô�·D·b²Åx�ô w ² w ô�·[¶�² v ô�·yýuY ·D·lô�·,k�ê O ïW\^TÙZÙYyX�ðz_D\ ï�_DT�Þ[_�ßaDZ7\~Þ[_DTáÝWYyTÙZ7_DTe´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_DT�íOU`Y
ðñ_L�[YyX Þ{a�X í�UWY/a�T+aDVWçgY[ZÙa�T�\^Ý`\^Þ[\~_D°^X2YyÝOZÙYGÞ{a�XáNmâ ¶�² Üãa�T7T7_DX?ZÙY[´�_�Y{ïWÞ{YyÝ ZÙ´<\~Þ[\^]`_D]WY/Y{ïWÞ[\±Z7_D]`_
_bZOßYáäj_D°±aD´<YyT�X�_D\±aD´7YyTSí�UWY�¶�ê ¶]x�YyX \^Ý ZÙY[´<äj_D°±a�TS]`Y:ZÙYyX}Üra2]WY�_D°±Ú�U`Ý�T�VC\^°^ú ®aDYyT�]WY�_DÝWa�T[ê�ÿ:T7T7\~Xõ²
YyTÙZÙYyT�aDV�çgY[ZÙa�TGÞ{a�X2Y�åÞ[_DX _àÞ{´<U¡�y_b´�_ÆßaD´7V�\±Z7_�]WY Ø Y[Z7U`Ý`aW²�Y�_DÞ[_bV�_DX _bV�_DÝ�]Wa�Ý`_DÝ`]Waàa�Þ[\~Ý Z7UW´ ®_ba
]WYÄâeU`\±ÜãY[´yê O T7ZÙY X2YyÞ[_DÝ`\^T<X2a ßYKT7\^X�\^°^_b´u_baÀ_DÞ<ú�_D]WaùÜãaD´õYyTÙZ7U`]Wa�Tì´7YyÞ{YyÝOZÙYyTìÝWaFÞ[\~Ý Z7UW´ ®_ba
Ü`´<\^Ý`Þ[\^Ü�_D°C]`Ye_DTÙZÙY[´�ßa�\^]WYyTàø»U aD´7VC\^]WYy°^°^\rY Ø YyTÙäDaD´<Ýxß�Ä· vzvzv âsUìU`´7´<_,�÷Yáûxa�°^X}_DÝË· vzv]w ü�ê
XÅþYXÅþ�%('z�	)+'*'e�/�Kã� � � . � 'ä
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ßxX}_/äDY_��_DÝ`_D°~\^T7_D]`_S_¼YyTÙZÙ´<UWZ7UW´�_G´7YyT7TÙa�Ý`_DÝOZÙY�Ú�°^aDV�_D° ]`_/´7Y[Ú�\ ®_ba¼ZÙ´�_DÝ`Tgî Ø Y[Z7U`Ý`\^_DÝ`_�²jÜ`´7a�Þ{Yy]WYyX2a�T
_oYyT7Z7U`]`_b´eÞ{a�X X}_D\~T:]`Y[Z7_D°^úWY2_õ]`\^Ý�æ_DX�\^Þ[_o]�_DT�´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_DTeµ�ôbý�²�·lôbµ÷Y�ý�ô~P Þ{a�X Ø Y[Z7U`ÝWaWê
j:\^T<_DÝ`]Wa)_�X�_bÜrYy_b´/_�YyTÙZÙ´�UWZ7UW´<_)\^ÝOZÙY[´<Ý`_�]WY�Þ[_D]`_)´7YyT7T7a�Ý�æ_DÝ`Þ[\^_�²W\^ÝOZÙY[ÚD´<_DX2a�TSÝ�U`X2Y[´<\~Þ[_DX2YyÝ ZÙY
ÜraD´÷·[¶D¶ËX}\^°^ú ®aDYyTá]WYu_DÝWa�T)_DT�ÚD´<_D]WYyT)Þ{a�X�U`X>ÚD´<_DÝ`]WY÷Ý:ßU`X2Y[´7aé]WY÷Þ{a�Ý`]`\gåÞ ®aDYyT)\^Ý`\~Þ[\^_D\^T�øz]`_
aD´<]WYyX�]`YK·[¶D¶D¶ ü�²�]WY[ZÙY[´<X}\^Ý�_DÝ`]WaËYyX$Þ[_D]`_ÆÞ[_DTÙaKa�ToY{ï�Üra�YyÝOZÙYyT÷]`Yr����_bÜCU`ÝWaläÖYó_DT÷Z7_jï�_DT
]WY}]`\±ðzU`T ®_baW²-Z7_DÝOZÙaì]`_DTáð�´<Yyí��U9æYyÝ`Þ[\~_DT�Ü`´�ßaDÜ`´�\^_DT}øsç*èGfhçeéPfhç*êÛü�í�U`_DÝOZÙaì]Wa�T�Yy°±YyX}YyÝ ZÙa�TáÜ`´�ßaDÜ`´<\^a�T
øz_DX2Ü�°^\±Z7U�]WYS]WY¼°^\±V�´<_råÞ ®_baW²�Y{ïWÞ{YyÝ ZÙ´<\~Þ[\^]`_D]WY/Y:\^Ý`Þ[°^\~Ý`_råÞ ®_baOü�ê�R:YyTÙZ7_àðñaD´<X}_�²�ßYxÜra�T<Tyß� äDYy°`\^]`YyÝ Z7\ ` Þ[_b´
_DTu´7Y[Ú�\ ®aDYyTì]`YóYyT7Z7_bV�\^°^\^]�_D]WY»YÄÞ[_ba�TìYyX&Þ[_D]`_Í´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_�²�_DT7T<\^X$Þ{a�X2aF_DTõ´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_DT
\^Ý ZÙY[´�Ý`_DT)YìX2YyÞ[_DÝ`\~T7X2a�T2´7YyT7Üra�Ý�T`ß_bäDYy\^T)ÜãYy°±aËÞ[_ba�T[êÀÿGZÙ´�_yä+ßYyTu]WY \~Ý ZÙY[ÚD´<_råÞ ®aDYyToÝOU�XKßY[´<\^Þ[_DT�]`Y

µ�·



·sÓ Ô YÕ ¹ ¼ [$ZmQz×5� X ºB���(Z*¸
�Ó ¸�Ú�� Ó �¶�*Q�ÚtZ"!×Ö
º*¹ ¼ ¸NZ�º
Z�Ú��Í¸{¹ ¼ X ÛÓ Z ½ º�Ø ¼ � Ô º X

Üãa�U`Þ[_DT�Þ{a�Ý�]`\gåÞ ®aDYyTe\^Ý�\^Þ[\^_D\^TxÜãaD´�PõV�\^°^ú ®aDYyT�]WY2_DÝWa�Ty²Û_DÝ`_D°^\^T<_DX2a�T�_õ]`\^Ý�æ_DX�\^Þ[_u_õ°±a�ÝWÚDaõÜ`´<_L�[a
]�_DTS´7Y[Ú�\ ®aDYyTxíOUWYeT7Y�´7Y[äDYy°^_b´<_DX�Þ{a�X2a�TÙYyÝ`]`a�X}_D\^TGYyTÙZ`ß_bäDYy\~Tx]WYyÝOZÙ´7a}]WYeÞ[_D]�_2´7YyT7TÙa�ÝQæ_DÝ`Þ[\^_�ê

O X4ZÙa�]Wa�Tea�TàÞ[_DTÙa�T[²�_DÞ<ú�_DX2a�Tàí�UWY}_ì´7Y[Ú�\ ®_baìÞ{YyÝOZÙ´<_D°�]`Y�Þ[_D]`_õ´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_�²QÞ{aD´7´7YyTÙÜãa�Ý�î
]`YyÝ ZÙY�_àT7YyX}\ î�_DX2Ü�°~\±Z7U`]WYyT+]`Yx°^\±V�´<_råÞ ®_baáÜãYyí�UWYyÝ`_DTxøzX}YyÝWaD´7YyTGíOU`Y�ýb¶	Myü�²�ßYxYyT7Z`ß_bäDYy°9_ba�°±a�Ý`ÚDa�]`_
\~]`_D]WY�]Wa ­ \^TÙZÙYyX�_ ­ a�°^_b´yê Ø a»Þ[_DT7aó]`_ì´7YyT7TÙa�ÝQæ_DÝ`Þ[\^_»µ�ôbý�²�YyX>Ü�_b´7Z7\~Þ[U`°^_b´y²�aDV�TÙY[´7äb_DX2a�T�íOUWY
_»YyTÙZ7_bV�\~°^\^]`_D]WYoYyTÙZÙYyÝ`]WY{î�T7Y÷Z7_DXàVGßYyX Ü�_b´<_óTÙYyX}\±î�_DX2Ü�°^\±Z7U�]WYyTá\^ÝOZÙY[´<X2Yy]�\yß_b´<\^_DT÷ønb kb¶	Myü�êÄ¯QaD´
a�U`ZÙ´7aà°^_D]`aW²OÜ�_b´�_áTÙYyX}\±î�_DX2Ü�°^\±Z7U�]WYyT�X}_D\±aD´7YyT�í�UWYPb ·yµb¶ M _eY[äDa�°~UMåÞ ®_ba ßY�]Wa�X}\~Ý`_D]`_�ÜãYy°±aeðñaD´7ZÙY
Þ[_ba�T�aD´<\^Ú�\^Ý`_D]WaõÜãYy°^_ T<UWÜãY[´7Üãa�T7\gåÞ ®_ba ]`_DTá´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_DTáTÙYyÞ[U�°^_b´7YyTrÜ*Ý}YßÜ C Ýb²QYyX>_DÞ{aD´<]`a»Þ{a�X
a�Tá´7YyT7U`°^Z7_D]Wa�T�]WY}a�UWZÙ´<a�Tá_DUWZÙaD´7YyTyêoþQ_DXáVGßYyXÉßY�Üãa�T7Tyß� äDYy°�]`Y ` Ý`\±´�a�Tá°~\^X}\±ZÙYyT�]`_õ´<Y[Ú�\ ®_ba a�Ý`]WY
_DTËßaD´<V�\±Z7_DT:T ®_ba X}_b´7Ú�\^Ý�_D°^X2YyÝOZÙY�\^Ý�TÙZ`ß_bäDYy\^T[²ãÞ{aD´7´7YyTÙÜãa�Ý`]`YyÝ ZÙY2_uTÙYyX}\ î�_DX}Ü�°^\±Z7U`]`YyT/]WY2°^\±V`´�_råÞ ®_ba
]�_õaD´<]WYyX ]`Yßb ·[¶D¶ M êu³�V�çgY[ZÙa�TàÝWYyTÙZ7_õ´<Y[Ú�\ ®_ba Y[äDa�°^UWYyX>_DU`X2YyÝOZ7_DÝ`]Waó_ T7U`_õ_DX2ÜC°^\±Z7U`]WY2]WY
°~\±V`´<_råÞ ®_ba2YyX YyT7Þ[_D°^_DT¼]`YeZÙYyX2Üãa�]`_)aD´<]`YyX ]WY�·eV�\^°^ú ®_ba2]WYà_DÝWa�T/YD²`Y[äDYyÝOZ7U`_D°^X}YyÝ ZÙYD²ã_DÞ[_bV�_DX
T7YyÝ`]Waá°±Y[äb_D]Wa�T�_áÞ{´<U¡�y_b´�_ ßaD´<V�\±Z7_á]`Y Ø Y[Z7U�ÝWaWê&R:YyTÙZ7_áðñaD´<X}_�²�Üãa�]`YyX TÙY[´�ZÙ´<_DÝ`TÙðñY[´<\^]Wa�T+Ü�_b´<_ea­ \^TÙZÙYyX}_ ­ a�°^_b´/\~Ý ZÙY[´<\^aD´y²WÞ{a�Ý ZÙ´<\^V�U`\^Ý`]`aàÜ�_b´�_àa5^CU�ï�a}]`Y�ö�c ë T[ê�ÿ ]`\^ðñU`T ®_ba�Þ[_�ßaDZ7\^Þ[_oÝ`_�´7Y[Ú�\ ®_ba
]`Y¼\^Ý`TÙZ7_bVC\^°^\^]`_D]`Y�X}_b´<Ú�\^Ý`_D°WYyTÙZ`ß_àä�\^Ý`Þ[U`°^_D]�_�Ü`´<\^Ý`Þ[\^Ü�_D°^X2YyÝOZÙYFa_áÞ{a�X2YyÝ`T<UW´<_bV�\^°~\^]`_D]WYÒPOô�·¼YyÝOZÙ´7Y
? @BA8­ YG_:]WYyT7\±Ú�U`_D°~]`_D]WY�µ	E+®�H�EGëuYyÝOZÙ´7Y Ø Y[Z7U`Ý`a:Y
ßx´<_DÝWaWêÅß¼Z7\^°~\$�y_DÝ`]Wa:ÝWa�T7T7_DT�YyTÙZ7\^X}_bZ7\^äj_DTM]`_DT
Z7_jïW_DT�]WYS]`\±ðzU`T ®_ba:]`_�_DX2Ü�°^\^Z7U`]WY�]WYS°^\^V`´<_råÞ ®_baW²�X2aDZ7_DX2a�T�U�XÇX}a�]WYy°^a:]WYGÞ[_DX}\^Ý�ú`_D]`_:_D°±Yy_bZ`ßaD´<\^_
U�Ý`\ î�]`\^X}YyÝ`T7\±a�Ý`_D°m²-Þ{a�X>aéí�U`_D°2ßYuÜãa�T7Tyß� äDYy°�T7\^X�U`°^_b´eYyT7Z7_bZ7\^TÙZ7\^Þ[_DX2YyÝOZÙY _»Y[äDa�°^UMåÞ ®_baé]`\^Ý�æ_DX}\~Þ[_
]�_DT¼ZÙ´<_ çÙY[Z`ßaD´<\^_DT:´7YyT<TÙa�Ý`_DÝOZÙYyT:X�_b´7Ú�\^Ý`_D°^X}YyÝ ZÙY�\^Ý`TÙZ`ß_bäDYy\^Tyê ë a�X�YyTÙZÙY�X}a�]WYy°^aW²r]WY[ZÙY[´�X}\^Ý`_DX2a�T
_ ´<_L� ®_ba YyÝOZÙ´7Y�a Ý�ßU�X2Y[´7a ]WY2aDV�çÙY[ZÙa�T�íOUWY2YyT<Þ[_bÜ�_DX
]`_u´<YyT7TÙa�Ý�æ_DÝ`Þ[\~_ìµ�ôbýõÝWa ßU`°^Z7\^X2aõV�\^°~ú ®_ba
]`Yx_DÝWa�T�Yxa)Ý�ßU`X}Y[´7aá]WYxaDV�çgY[ZÙa�TGí�UWYxT7aDV`´7Y[ä�\±äDYyX Ý�_e´7YyT7T7a�Ý�æ_DÝ`Þ[\^_à_bÜ¼ßa�TÒPWê°xeV�\~°^ú ®aDYyT+]WY:_DÝWa�T[ê
O TÙZ7_}´�_L� ®_baFßY�Þ[_D°^\±V`´<_D]�_}Þ{a�X a÷Ý�ßU`X2Y[´<a�]WYáaDVWçgY[ZÙa�T�ÝWYyÞ{YyT7T�ß_b´<\±a�T/ÜC_b´<_�X}_DÝOZÙY[´�_}ÜãaDÜ�U`°^_råÞ ®_ba
ä�\^Tyß� äDYy°-]WYáÞ{a�X2Y[Z7_DT�]WY�Þ[UW´7ZÙaoÜrY[´ ß� a�]`aõøzÞ{a�X�X}_bÚ�Ý�\±Z7U`]WYá_bVCTÙa�°^UWZ7_íì Ý v üGYyX�YyTÙZ7_D]Wa÷YyTÙZ7_jî
Þ[\^a�Ý/ß_b´<\±aW²Ma»í�UWY÷ÜãY[´<X}\±ZÙY}YyT7Z7_bVrYy°^YyÞ{Y[´)U�X
°^\^X�\±ZÙY�T7UWÜãY[´<\^aD´eÜ�_b´<_»_»í�U`_DÝOZ7\^]`_D]WY÷]WY�aDV�çÙY[ZÙa�T
]`Y�Z7\^ÜrauÞ{a�X2Y[Z`ß_b´<\^a íOUWY)Y{ïW\^TÙZÙYyX4_bZ7U`_D°~X2YyÝ ZÙY}Ý�_o´<YyT7TÙa�Ý�æ_DÝ`Þ[\~_uµ�ôbý�òe_bÜ�´7ayïW\^X}_D]`_DX}YyÝ ZÙYekb¶D¶
X�\^°^ú ®aDYyT}]`Y»Þ{a�X2Y[Z7_DT[ê ³4X2a�]WYy°±a ]`Y»Þ[_DX}\^Ý�ú`_D]`_Ä_D°±Yy_bZ`ßaD´�\^_ÄÜãY[´<X}\^ZÙY Z7_DXáVGßYyX$_DÝ`_D°~\^T7_b´�a
Üãa�T7Tlß� äDYy°ãY[ð�Yy\^ZÙa�]WañfÙT7Þ[_bZÙZÙY[´<\~ÝWÚ]h}ÚD´<_lä�\^Z7_DÞ[\±a�Ý`_D°-X ßU`Z7UWa2YyÝ ZÙ´<Yea�T/aDV�çÙY[ZÙa�T¼Ý�_)´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_�êØ aËÞ[_DTÙaÄ]`_»´7YyT7T7a�Ý�æ_DÝ`Þ[\^_Í·lôbµó_DT)´7Y[Ú�\ ®aDYyT2]WYõX}_D\^aD´�YyT7Z7_bV�\^°^\^]�_D]WY}a�Þ[UWÜ�_DX U`X äDa�°^U`X2Y
ÜãYyí�UWYyÝWaáÝ`aáYyTÙÜ�_råÞ{a)]WYxðñ_DTÙYyTy²OÜ`´�\^Ý`Þ[\±Ü�_D°~X2YyÝ ZÙYS]WY[ä�\^]Wa�a_áÜ`´<YyTÙYyÝMåÞ[_á]`Y¼°^\±V`´�_råÞ ®aDYyT�_DT7T7\~XKßY[Z7\^Þ{´<_DT
]`aÍæ_DÝWÚ�U`°^a ´7YyT7TÙa�Ý�_DÝ ZÙY1? C�A8@ æîEG®>Hùµ	EL¯�J»ê ­ ßaó_ ´7Y[Ú�\ ®_baóÞ{YyÝOZÙ´<_D°�]`_DTà\~°^ú`_DTe]WY÷°^\±V`´�_råÞ ®_ba
_DT<T7\^XÆßY[ZÙ´<\^Þ[_ÀßY}YyT7Z`ß_bäDYy°�_ba °±a�ÝWÚDa ]�_÷\~]`_D]WY2]Wa ­ \^TÙZÙYyX�_ ­ a�°^_b´yê)ÿ ´7Y[Ú�\ ®_baõa�Ý`]WY�?ÍY[äDa�°^U`\MYyX
ßaD´<V�\±Z7_DT�]`aÄZ7\±ÜãaÄðñY[´7´<_D]`UW´�_©ßYóðñaD´7ZÙYyX2YyÝOZÙYóÞ[_�ßaDZ7\^Þ[_�ê O ïW\^TÙZÙYyX PKaDV�çgY[ZÙa�TuÞ{a�XÒaDV�TÙY[´7äb_råÞ ®aDYyT
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XàU`°^Z7\ îmaDÜãa�T7\^Þ[\±a�Ý`_D\~T:Ý`YyTÙZ7_ ´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_�²QX}_DTá_bÜãYyÝ`_DT�µ ]WYy°^YyTe°±a�Þ[_D°^\$�y_DX)î�TÙYoÝ`_DTá\^°~ú`_DTe]WY�°~\ î
V`´<_råÞ ®_ba�_DT7T<\^XKßY[ZÙ´<\^Þ[_�ê
¯QaD´áT7U`_uäDY_�D²Q_õ´7YyT7TÙa�ÝQæ_DÝ`Þ[\^_õý�ô~PìZ7_DXàV�ßYyX Üãa�T7T7U�\QU�Ý`_u´7Y[Ú�\ ®_ba Þ{YyÝOZÙ´<_D°+]WY2YyT7Z7_bV�\^°^\^]�_D]WYD²

X}_DTeYyTÙZ7_ ßY�VãYyX
X}YyÝWaD´àí�UWY�ÝWa»Þ[_DTÙaó]�_õ´7YyT7TÙa�ÝQæ_DÝ`Þ[\^_ìµ�ôbý�²+]WY[ä�\^]Wa _»íOU`Y�_ì°^_b´<Ú�UW´<_õZÙaDZ7_D°
]`_�´<YyT7TÙa�Ý�æ_DÝ`Þ[\~_oZ7_DXàVGßYyX�ßY}X2YyÝ`aD´yê O TÙZ7_÷´7Y[Ú�\ ®_baõYyTÙZ`ß_bäDYy°�YyT7Z`ß_õÞ[\±´<Þ[U`Ý`]�_D]`_}ÜãaD´�U`X}_÷´7Y[Ú�\ ®_ba
]WY}\^Ý`TÙZ7_bVC\^°^\^]`_D]`YáX}_b´7Ú�\^Ý�_D°�²Û]Wa�X}\~Ý`_D]`_÷ÜãYy°^_uÞ{a�X2YyÝ`T7UW´�_bV�\^°^\^]�_D]WY)ý�ô�·}YyÝ ZÙ´7YL? ­BA î æ¬ý	EG®¦H
P]Eï¯>J�Ye_2]WYyT7\^Ú�U`_D°^]`_D]WY�µ	E+®ðH¦EGë�ê ­ ßa2ú/ß_}ýàaDV�çgY[ZÙa�TxÞ{a�X&ßaD´7V�\^Z7_DTGVrYyX6Þ{a�Ý`ú`YyÞ[\^]`_DTSÝWYyTÙZ7_
´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_�²WZÙa�]`a�TSYy°±YyT¼°^a�Þ[_D°^\��y_D]Wa�TSÝ`_)´7Y[Ú�\ ®_baoX}_D\^TSYyTÙZ`ß_bäDYy°mê
XÅþ|{&þ�������)G� � ����� ��)+���*�x)>ñ 9 ��� �� �7)å�/'�ñ 9 ���	.0�
�/'

RxY)_DÞ{aD´<]WauÞ{a�X�ÝWa�T7TÙa�Tx´7YyT7U�°±Z7_D]Wa�T[²r_o]`\~TÙZÙ´<\±V�U�\gåÞ ®_ba2ÝWa�YyTÙÜC_råÞ{au]`Yáðz_DTÙYyTx]`a�TxaDVWçgY[ZÙa�T:aDV�TÙY[´7î
äj_D]Wa�T�Ý`_DT2´7YyT7T7a�Ý�æ_DÝ`Þ[\^_DT�µ�ôbý�²�·lôbµéYóý�ô~PKÞ{a�\^Ý`Þ[\~]WYõXàU`\^ZÙaËVrYyX�Þ{a�XÒ_DT}´7Y[Ú�\ ®aDYyT}]WY X}_D\±aD´
YyTÙZ7_bV�\^°^\~]`_D]WYDê Ø a2YyÝOZ7_DÝ ZÙaW²rÝWa}Þ[_DTÙa}]Wa�T¼¯�°^UWZ7\~ÝWa�T�Ý�_)´7YyT7TÙa�Ý�æ_DÝ�Þ[\^_2µ�ôbý�²�_DT/TÙYyX}\±î�_DX2Ü�°^\±Z7U�]WYyT
]WYó°~\±V`´<_råÞ ®_baÆZyß� Ü�\^Þ[_DTuT ®_baÍÜ�_b´<Z7\^Þ[U`°^_b´<X}YyÝ ZÙYóÚD´<_DÝ`]WYyTÄønb yb¶ M ü�ê O X a�UWZÙ´<_DTuÜ�_D°^_läO´�_DT[²xÝ ®_ba
Y{ï�\^T7ZÙYyX�¯�°^U`Z7\^ÝWa�TGÞ{a�Ý`úWYyÞ[\^]`a�T/Þ{a�X _DX2ÜC°^\±Z7U`]WYyTG]WYà°^\±V`´<_råÞ ®_ba)ÜãYyí�UWYyÝ`_DT[ê

O TÙZÙY¼ðñ_bZÙaàÜra�]WYSTÙY[´�Y{ï�Ü�°~\^Þ[_D]WaeÞ{a�Ý`T7\~]WY[´<_DÝ`]Waeí�UWY/aáY[ð�Yy\±ZÙaáÚD´<_yä�\±Z7_DÞ[\±a�Ý`_D°C]WY¼¯�°^UWZ ®_baeÜãa�]WY
Þ{a�Ý ZÙ´<\^V�U`\±´9Ü�_b´�_¼]WYyTÙZ7_bVC\^°^\$�y_b´Û_DT�ßaD´7V�\^Z7_DTÛ]Wa�TQ¯�°^U`Z7\^ÝWa�T-_bZÙ´<_lä+ßYyT�]Wa�T�YyÝ`Þ{a�ÝOZÙ´7a�TQÜ`´�ßabïW\^X2a�T[ê � TÙZÙa
ßY÷äDY[´<\ ` Þ[_D]Wa»_»Ü�_b´7Z7\±´�]WYoT<\^XàU�°^_råÞ ®aDYyTà]�_ Y[äDa�°^UMåÞ ®_baË]WYoÜ�_b´7Zyß� Þ[U�°^_DTá]WYoZÙYyTÙZÙYõÝ`_ ´<YyT7TÙa�Ý�æ_DÝ`Þ[\~_
µ�ôbý�²�_D]`\^Þ[\±a�Ý`_DÝ�]Wa/_ba:X}a�]WYy°^aW²b_D°qßYyXÇ]`_DT�ÜãY[´7Z7UW´7V�_råÞ ®aDYyTQ]Wa�TÛÜ�°^_DÝWY[Z7_DTMöDa ä�\^_DÝ`a�T[²D_¼ÜãY[´7Z7UWVC_råÞ[_ba
]WY2¯�°^UWZ ®_baõÞ{a�X X�_DT7T7_1òëæ ¶{Þ w PðoK·[¶Wó Ý Uäô�ê Ø a�T7TÙa�Te´7YyT7U`°±Z7_D]`a�T�\^Ý`]`\^Þ[_DX í�UWY2a�T�¯�°^U`Z7\ î
ÝWa�T�Þ{a�X6_DX2ÜC°^\±Z7U`]WY/]`Y:°^\^V`´<_råÞ ®_baà\~Ý`\^Þ[\^_D°^X}YyÝ ZÙYSÜãYyí�UWYyÝ`_eÜãa�]WYyX ZÙY[´GYyTÙZ7_�ÚD´<_DÝ�]WY_�y_áY{ïWÞ[\±Z7_D]`_
_bZOßY�äb_D°±aD´7YyT/Ü�´�ßabï�\~X2a�T/]`_2´<Y[Ú�\ ®_baoX}_b´<Ú�\^Ý`_D°^X2YyÝOZÙYá\^Ý�TÙZ`ß_bäDYy°�êG³?Y[ð�Yy\^ZÙao]Wa�TxT7U`Þ{YyT7T7\^äDa�T/YyÝ`Þ{a�Ý�î
ZÙ´7a�TSÜ`´�ßabïW\^X2a�TSÞ{a�X�¯�°^U`Z ®_baÆßYáX}_D\^T/\~X2ÜãaD´7Z7_DÝ ZÙYeÝ�_DT ßaD´7V�\±Z7_DT¼Þ{a�X�\^Ý`Þ[°^\~Ý`_råÞ ®aDYyTSX2a�]WY[´<_D]`_DTSY
ÚD´<_DÝ`]WYyT�øÌiSä v Myü�²Wa�Ý`]WY�íOU`_DT7Y�xb¶�ì¬]�_àÜãaDÜ�U�°^_råÞ ®_ba�\~Ý`\^Þ[\^_D°C]WYxaDVWçgY[ZÙa�T÷ßY�´7YyX2a ä�\~]`_�YyX _bZOßY�P
V�\^°^ú ®aDYyT�]WYe_DÝWa�Tyê�ÿ©ÜãaDÜ�U�°^_råÞ ®_ba)´7YyX}_DÝWYyT7Þ{YyÝOZÙYá_DÞ[_bV�_�Þ{a�X�_DT/_DX2Ü�°~\±Z7U`]WYyTG]WY�°^\±V�´<_råÞ ®_ba)Y{ï�Þ[\ î
Z7_D]`_DT�_bZOßY/äj_D°^aD´7YyTM]WY�bíyb¶	Mjê�¯Q_b´�_:\~Ý`Þ[°^\^Ý`_råÞ ®aDYyTMX2YyÝ`aD´7YyT[²Da�Y[ð�Yy\^ZÙa�]`a�TMYyÝ`Þ{a�Ý ZÙ´<a�T+Þ{a�X?¯�°^U`Z ®_ba
ßY:X2YyÝWa�T�\^X2ÜãaD´7Z7_DÝOZÙYD² ]WY[ä�\^]Wapa_á_D°^Z7_�äDYy°±a�Þ[\^]`_D]WY/´<Yy°^_bZ7\±äb_�]`UW´<_DÝOZÙY/a�T+YyÝ�Þ{a�Ý ZÙ´7a�T�øz°±YyXàV`´7YyX2a�T
íOUWYo¯�°^UWZ ®_baìZÙYyXõiäâ4·,x M ü�ê÷ÿ:TáX�_b´<Þ[_DTà]`YyTÙZÙYoX2YyÞ[_DÝ�\^T7X2aì]`Y�]WY[Ü�°±Y�åÞ ®_ba»T ®_baìY[ä�\^]WYyÝOZÙYyTàÝ�_
]`\^TÙZÙ´<\^V�U`\gåÞ ®_baàaDV�TÙY[´7äb_D]`_}]Wa�T¼¯�°^UWZ7\~ÝWa�T[ê
ÿ \^ÝOZÙY[´<_råÞ ®_ba»YyÝOZÙ´7Yu¯�°^U`Z ®_baìY÷a�Tà¯�°^UWZ7\^ÝWa�Tá_DÞ{a�Ý ZÙYyÞ{Y ÝWaÖæ_DXáVC\±ZÙa»]WY÷U`X>´7Y[Ú�\^X2Y÷]WY�´7YyTÙî

TÙa�Ý�æ_DÝ`Þ[\^_I·lô�·b²¼a�Ý�]WY»a©æ_DÝWÚ�U�°±a=E¦HöEI÷ Üãa�]WY»_D°±ZÙY[´�Ý`_bZ7\±äb_DX2YyÝ ZÙYËÞ[\±´�Þ[U`°^_b´y²Sa�U Y[äDa�°^U�\±´oYyX
ßaD´7V�\±Z7_DT�ð�Y[´<´<_D]`UW´<_áa�U�Ú�\^´<\^ÝWauøñYyX ZÙaD´�ÝWa�]`a�T�Üãa�ÝOZÙa�T
�Û_bÚD´<_DÝWÚDYy_DÝ`a�T�� î Yl� ï ]WY�¯�°^U`Z ®_baOü�²�]`Y{î

µDý



·sÓ Ô YÕ ¹ ¼ [$ZmQz×5� X ºB���(Z*¸
�Ó ¸�Ú�� Ó �¶�*Q�ÚtZ"!×Ö
º*¹ ¼ ¸NZ�º
Z�Ú��Í¸{¹ ¼ X ÛÓ Z ½ º�Ø ¼ � Ô º X

ÜãYyÝ`]`YyÝ`]Wax]�_:\~Ý`Þ[°^\^Ý`_råÞ ®_baWê+³À´7Y[Ú�\^X}YG]`YußaD´<V�\±Z7_DTMðñY[´7´<_D]`UW´�_õßYSaeX}_D\^TM_bðñY[Z7_D]WaeÜãYy°±a�TQYyÝ`Þ{a�ÝOZÙ´7a�T
Ü�´�ßabï�\~X2a�T[²ÛYo_DÞ{a�Ý ZÙYyÞ{YõÝWa�Tà\^Ý ZÙY[´<äj_D°±a�T v M ÝOi�Ý ·yµ M Y»·,x M ÝOi´Ý µb¶ M êu¯M_b´7Z7\^Þ[U`°^_b´�X2YyÝ ZÙY
Ý`YyTÙZÙY ßU`°±Z7\~X2aì\^ÝOZÙY[´7äb_D°±aW²Q_»]WY[Ü�°±Y�åÞ ®_baó_bZ7\^ÝWÚDY÷íOU`_DT7Y»·[¶D¶�ì
]`_ ÜãaDÜ�U`°~_råÞ ®_ba Ü`´<\^X}aD´<]`\^_D°�ê÷ö+ß_ a
´<Y[Ú�\^X2Y)]WYKßaD´7VC\±Z7_DT:Ú�\±´<\^ÝWao_DÞ{a�Ý ZÙYyÞ{Y�Ý`a÷\^ÝOZÙY[´7äb_D°±a»·yµ�MàÝ×igÝ ·,x�MáYàÜ`´<aDZÙY[ÚDY�a�T:aDV�çÙY[ZÙa�T�]Wa�T
YyÝ�Þ{a�Ý ZÙ´7a�T}Ü`´�ßabïW\^X2a�T[ê�R:Yõðz_bZÙaW²�Y{ïW\^TÙZÙYõÜãYy°±aéX2YyÝWa�T2U`X ¯�°^UWZ7\^ÝWaéÞ{a�Ý`úWYyÞ[\~]WaËÝWYyTÙZÙYu´7Y[Ú�\^X2Y
í�UWYàÜra�]WY[´<\~_)YyTÙZ7_b´xä�\^Ý`Þ[U�°^_D]Wa}_ba÷ð�YyÝ�æa�X}YyÝWaoÞ{a�°^\~T7\±a�Ý`_D°-í�UWYD²CÜ`´7YyT7U`X�\±äDYy°^X2YyÝOZÙYD²C]WYyUìaD´<\±ÚDYyX
a_}V�\^Ý/ß_b´<\~_à¯�°^UWZ ®_babî ë _b´7a�ÝOZÙYDê
X�þY�Åþ��L�/� �I9 �
' ��3)�'

ÿ:T�´7YyT7T7a�Ý�æ_DÝ`Þ[\^_DT�]WY2X2a ä�\^X}YyÝ ZÙa�T�XÆßYy]`\^a�TeÞ[U`X2Ü`´<YyX�U`X Ü�_bÜãYy°QðzU`Ý`]`_DX2YyÝOZ7_D°MÝ`_÷]`\^Ý�æ_DX}\~Þ[_
]�_é´7Y[Ú�\ ®_baËZÙ´<_DÝ`TÙî Ø Y[Z7U`Ý�\^_DÝ`_�ê Ø _DT}´7YyT7T7a�Ý�æ_DÝ`Þ[\^_DT2]WYõÜ�´<\^X2Yy\±´�_ìaD´<]`YyXõ²�_DT�ZÙ´<_ çgY[Z`ßaD´�\^_DT}Þ{a�X
ÜãYyí�UWYyÝ`_DT�_DX2Ü�°~\±Z7U`]WYyT:]WY2°^\±V`´�_råÞ ®_ba÷]Wa æ_DÝWÚ�U�°±au´7YyT7TÙa�Ý`_DÝOZÙY}T ®_baõYyTÙZ`ß_bäDYy\~Te_ba °±a�ÝWÚDaõ]`_u\^]`_D]`Y
]`a ­ \^TÙZÙYyX}_ ­ a�°~_b´yêåU»_DTõÜ�_b´�_Æ_DX}Ü�°^\±Z7U`]`YyT÷X�_D\±aD´7YyT[²�_DTõZÙ´<_ çÙY[Z`ßaD´<\^_DTõa�Þ[UWÜ�_DX�_DTõ´7Y[Ú�\ ®aDYyT
]`Y�\^Ý�TÙZ7_bV�\^°^\~]`_D]WYáX}_b´<Ú�\^Ý`_D°�²ãíOU`Y�Üãa�]WYyX�Y�çgY[Z7_b´áX�_bZÙY[´<\^_D°�Þ{a�X2Y[Z`ß_b´<\^a÷ÜC_b´<_÷a ­ \^TÙZÙYyX}_ ­ a�°^_b´
\~Ý ZÙY[´<\^aD´SYyX \^ÝOZÙY[´7äb_D°±a�T/]WY�ZÙYyX2Üãa�]�_)aD´<]WYyX ]`Ye_D°±Ú�U`Ý`TSVC\^°^ú ®aDYyTG]WYá_DÝ`a�T[ê Ø _DT/´7YyT7T7a�Ý�æ_DÝ`Þ[\^_DT
X�_D\^TQð�´<_DÞ[_DTy²�aeX2YyÞ[_DÝ`\^T<X2a�]WYGY�çgY�åÞ ®_baéßYSðñaD´<ÝWYyÞ[\^]`a:ÜãYy°^_:°±YyÝOZ7_�Y{ï�Þ[\^Z7_råÞ ®_baá]`_DTMY{ïWÞ{YyÝ ZÙ´<\~Þ[\^]`_D]WYyT[²
_bZ�ßYÆ_bZ7\^ÝWÚ�\±´ _Í´7Y[Ú�\ ®_baF]WYÄÞ{´<U��y_DX}YyÝ ZÙaFÞ{a�X%_ ßaD´7V�\±Z7_Í]WY Ø Y[Z7U`ÝWaWê cM\^Ý�_D°^X2YyÝOZÙYD²:aÖY[ðñYy\±ZÙa
ÚD´�_yä�\±Z7_DÞ[\±a�Ý`_D°�]WY�¯�°~UWZ ®_baì\^ÝOZÙ´7a�]`U��2U`X}_ \~Ý`TÙZ7_bV�\^°~\^]`_D]WY�_D]`\^Þ[\±a�Ý`_D°�T<\±Ú�Ý`\ ` Þ[_bZ7\^äj_õÝ`_DTKßaD´7V�\±Z7_DT
]`a�TSaDV�çÙY[ZÙa�T¼Ý`_)´7YyT<TÙa�Ý�æ_DÝ`Þ[\^_}µ�ôbý�ê

µ<P



� ,)(��à1��

ø (+./,ù¢
1&�ã5<1x,è*9(
�C1:,)./,c��(��?5<,����)(ú�r*9./,c�G§]û (
�r���2,25<./,$*9(+8x5<1x,z�
� .S*��¨�3�k���)(ýüP�8þ4*9(
�C1:,)./,c��(úÿÇ5����ùû (
�r�:�2,)(

µzx



·sÓ Ô YÕ ¹ ¼ [$ZmQz×5� X ºB���(Z*¸
�Ó ¸�Ú�� Ó �¶�*Q�ÚtZ"!×Ö
º*¹ ¼ ¸NZ�º
Z�Ú��Í¸{¹ ¼ X ÛÓ Z ½ º�Ø ¼ � Ô º X

µzk



Icarus 148, 282–300 (2000)

doi:10.1006/icar.2000.6480, available online at http://www.idealibrary.com on

Mean Motion Resonances in the Trans-neptunian Region

I. The 2:3 Resonance with Neptune
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The stability of the 2:3 mean motion resonance with Neptune
is systematically explored and compared to the observed resonant
population. It is shown that orbits with small and moderate am-
plitudes of the resonant angle are stable over the age of the Solar
System. The observed resonant population is distributed within the
stability limits. There exists an interval of large resonant ampli-
tudes, where orbits are marginally unstable. Resonant objects start-
ing in this interval may leave the resonance by slow increase of
their resonant amplitudes on a time scale of several billion years.
These objects eventually attain Neptune–crossing trajectories and
contribute to the flux of Jupiter–family comets. The number of ob-
jects leaking from the 2:3 resonance per time interval is calibrated
by the number of objects needed to keep the Jupiter–family comets
population in steady state. This allows us to compute the upper limit
of the number of resonant objects with cometary size. The effects of
collisions and mutual gravitational scattering are discussed in this
context. c© 2000 Academic Press

Key Words: Kuiper Belt objects; celestial mechanics.

1. INTRODUCTION

Edgeworth (1949) and Kuiper (1951) suggested that the Solar
System extends beyond Neptune in the form of a belt of small
bodies. Later, when Fernández (1980) proposed that such a belt
(hereafter we refer to the belt as the Kuiper Belt—KB) can be a
reservoir of Jupiter–family comets, the interest in providing the
direct observational evidence of the belt increased. The discov-
ery of 1992 QB1 by Jewitt and Luu (1993) was soon succeeded
by other observations and now the number of known Kuiper Belt
objects (KBOs) is nearly 200.

The stability of the trans–Neptunian region has been numer-
ically studied by Levison and Duncan (1993) and Holman and
Wisdom (1993). Their results were extended by Duncan et al.
(1995) who computed a detailed map of stable/unstable regions

1 Present address: Observatoire da la Côte d’Azur, BP. 4229, Bd. de la Obser-
vatoire, 06304 Nice Cedex 4, France.

in the KB by integrating a large number of orbits in the 32–50 AU
semi-major axis interval over 4 × 109 years. The orbits starting
at perihelion distances q less than 35 AU were found unstable
unless they were associated with some mean motion resonance
(MMR) with Neptune. The orbits with q > 35 AU were found
stable unless they were related with perihelion or node secular
resonances (mainly ν8, ν17, and ν18 located at 40 < a < 42 AU
according to Knežević et al. 1991).

There was no similar work published until now on the stability
of the asteroid belt over the age of the Solar System due to the
relatively short orbital periods of asteroids and the necessity to
use a short time step in their simulations. If the effect of inner
planets (Venus to Mars) also has to be taken into account, the time
step of asteroid simulation is a factor of 25 smaller than what is
used for the KB; i.e., the computational need for a 4 × 109-year
simulation in the KB is roughly equal to the computational need
of a 4

7
4 Byr

25 = 90 Myr simulation in the asteroid belt (the factor
4/7 accounts for seven planets used in the asteroid belt against
four planets used in the KB).

Nevertheless, considerable progress has been made on the
long–term stability of asteroidal orbits using a different ap-
proach. In this approach, the chaotic evolution of asteroid orbital
elements (and secular frequencies) is numerically computed on
the time interval covered by simulation (usually not exceeding
108 years) and then the expected chaotic evolution of orbits on a
longer time interval is estimated. Orbits are judged to be stable
if the chaotic change of orbital elements (or frequencies) extrap-
olated to 4 × 109 years is small. There is no practical need for
studying the stability of minor bodies with the current configu-
ration of planets on longer time spans as the planetary orbits and
physical conditions have been substantially different during the
Solar System formation.

In particular, the simulated time interval is usually divided
in several sub-intervals and the motion is approximated by a
quasi–periodic evolution (which would be an exact solution of
the integrable system) on each of them. This quasi–periodic
approximation can be either explicitly computed (Laskar 1999)
or one can rely only on the evaluation of motion integrals.
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The integrals of motion are either proper orbital elements or
proper frequencies depending on their physical meaning. The
change in the proper elements and frequencies between con-
secutive sub-intervals is due to the chaoticity of motion and is
frequently referred to as the chaotic diffusion. The local rate of
chaotic diffusion is then closely related to the orbital stability
and simple models have been devised in specific cases (Murray
and Holman 1997).

We use in the following the approach of Laskar (1994) and
Morbidelli (1996) who define the motion integrals as either the
extrema or average of orbital elements computed on the sub-
intervals. This method allows for the detection of slow chaotic
evolution of orbits and additionally has a clear astronomical in-
terpretation. The relative change in frequencies (Laskar 1988,
1999) is also a widely used indicator of the rate of chaotic diffu-
sion. The computation of frequencies usually permits the iden-
tification of resonances responsible for chaos.

Another useful tool for the determination of the orbital
stability/instability is the maximum Lyapunov Characteristic
Exponent (LCE) which measures the rate of divergence of nearby
trajectories. It is defined as limt→∞ ln 1(t)/t , where 1(t) is the
norm of the variational vector at time t (Oseledec 1968, Benettin
et al. 1976). Although the relationship of the LCE to the chaotic
diffusion and the orbital stability is a complicated problem
(Morbidelli and Froeschlé 1995), evaluation of the LCE fre-
quently helps in identifying the most evident irregular and pos-
sibly unstable orbits. It is also clear that orbits with a very small
LCE are likely to be stable over long time intervals.

This paper deals with the 2:3 MMR with Neptune. This res-
onance is of special interest as from 191 KBOs currently regis-
tered in the Asteroid Orbital Elements Database of the Lowell
Observatory (September 1999—ftp://ftp.lowell.edu/pub/elgb/
astorb.html), 68 objects fall within a small semi-major axis in-
terval around 39.45 AU, where this resonance is centered. This
resembles the situation in the outer asteroid belt (3.27 < a <

4.5 AU), where from 258 numbered asteroids some 120 ob-
jects known as the Hilda group are situated in the 3:2 MMR
with Jupiter. In both cases the resonant space is populated more
densely than the neighboring non-resonant space; this is usually
believed to be a consequence of the Solar System early evolution
(Malhotra 1995, Liou and Malhotra 1997, Hahn and Malhotra
1999).

The long-term stability of Pluto’s 2:3 resonant orbit has been
confirmed in numeric simulations of Kinoshita and Nakai (1984)
and Sussman and Wisdom (1988). It turned out that despite a
positive LCE (∼10−7 year−1) Pluto’s orbit is stable over the age
of the Solar System.

Concerning the global stability of the 2:3 Neptune MMR, the
works based on averaged circular (Morbidelli et al. 1995) and
non-averaged circular (Malhotra 1996) models indicated that
the central resonant space is stable, but both were missing an
important ingredient—complete perturbations of the outer gi-
ant planets other than Neptune—in order to provide sufficiently
reliable stability boundaries.

Denoting the resonant angle of the 2:3 Neptune MMR by

σ = 2λN − 3λ +$, (1)

where λ and $ are the mean and perihelion longitudes and λN

is the mean longitude of Neptune, the resonant motion is char-
acterized by oscillation of σ around 180◦. This oscillation is
alternatively called the libration as opposed to the non-resonant
situation where σ circulates. In the case of Pluto the amplitude
of σ libration (Aσ ) is about 82◦. Additionally, Pluto is known
to reside in the Kozai secular resonance, where the argument of
perihelion ω librates about 90◦ with an amplitude (Aω) of 22◦.

The stability boundaries in the 2:3 Neptune MMR as a func-
tion of the resonant amplitudes Aσ and Aω were computed by
Levison and Stern (1995). They found that for inclinations simi-
lar to Pluto’s inclination (∼17◦) the orbits starting with Aσ < 50◦

were stable and the orbits with Aσ > 120◦ were unstable over
4 × 109 years. For intermediate Aσ , usually a small Aω was
needed for orbital stability. Similarly, Duncan et al. (1995) have
shown that the motion at e = 0.2 is stable over the age of the
Solar System provided that Aσ < 70◦. The stability of the 2:3
MMR was further investigated by Morbidelli (1997) with an
additional concern in the number of escaping objects and their
relation to Jupiter–family comets. This later work confirmed the
finding of Duncan et al. (1995) that the chaotic evolution on the
margin of stable region mostly affects Aσ .

We investigate the 2:3 resonant dynamics aiming our study
at a detailed and global understanding of chaotic and regular
motions inside this resonance. Our approach closely follows
the work of Nesvorný and Ferraz-Mello (1997b). In Section 2,
we describe the setup of numerical experiments. The dynam-
ics of the 2:3 Neptune MMR at low inclinations is discussed in
Section 3. We identify several interior resonances responsible
for chaos and estimate the time scales on which they destabi-
lize orbits. Based on this analysis we determine the extent of
the region from which bodies are currently leaking to Neptune–
crossing orbits (Section 4). Then we scale the escape rate to
get the correct number of Jupiter–family comets and constrain
the current resonant population (Section 5). The effect of colli-
sions and dynamic scattering within the resonance is studied by
a simple model in Section 6. In Section 7, we extend the present
study by exploring the orbital dynamics at large inclinations. Fi-
nally, we discuss the orbits of observed KBOs in the 2:3 Neptune
MMR (Pluto and Plutinos) in Section 8.

This paper is the first part of the work that collects our results
on the mean motion resonances in the Kuiper Belt. The second
paper (Nesvorný and Roig 2000) is devoted to the 1:2 and 3:4
Neptune MMRs and the global structure of MMRs in the 35- to
50-AU semi-major axis interval.

2. THE SET-UP OF NUMERICAL EXPERIMENTS

The resonant value of the semi-major axis is ares = 39.45 AU.
The resonant dynamics are characterized by coupled oscillations
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FIG. 1. The resonant amplitude Aσ (in degrees) of the 2:3 Neptune MMR.
The gray area roughly corresponds to the strongly unstable motion at Aσ > 120◦

(Morbidelli 1997).

of the semi-major axis about ares and of σ (Eq. 1) about 180◦

with a typical period of 20,000 years. We also recall that other
important characteristics of the 2:3 MMR is the presence of the
Kozai resonance (at e = 0.25 for small Aσ —Morbidelli et al.
1995). This secular resonance concerns libration of ω around
90◦ or 270◦ and forces coupled variations of the e and i with a
typical period of several million years.

According to numerical simulations (Duncan et al. 1995,
Morbidelli 1997) the orbits in the 2:3 MMR with the libration
amplitude Aσ larger than about 120◦ are unstable in relatively
short time intervals. In Fig. 1 we show the dependence of Aσ on
a and e. The amplitudes have been computed numerically for
small i and initial σ = 180◦ in a model with four outer planets.
The maximum excursion of σ from 180◦ in 106 years was taken
as Aσ .

The grey region in Fig. 1 schematically delimits strongly un-
stable orbits for Aσ > 120◦. As we show later, the actual size of
the stable resonant region is somewhat smaller than the central
white area in Fig. 1 due to the presence of secular resonances and
the possibility of close approaches to Uranus at large e. More-

FIG. 2. The estimate of the maximum LCE (a) and the minimum distance to Neptune (b) in the 108 year numerical simulation of orbits in the 2:3 Neptune
MMR. The initial inclinations were 5◦. See text for the description of other initial elements of the test particles. The separatrices (bold border lines), libration
centers (bold vertical line at 39.45 AU), and the main inner resonances (Kozai and ν8 are denoted by full thin lines; ν18, 4:1, and 5:1 three-body resonances are
dashed; the secondary 5:1 resonance at e < 0.05 is denoted by sig5) were computed by a semi–numerical method. The test particles escaping from the 2:3 resonance
before the end of the integration (in yellow) have simultaneously large LCE estimates and small minimum distances from Neptune. The most regular orbits, with
LCE ≤10−6.5 year−1, are located in the interval of about 0.3 AU centered at the libration centers and have eccentricities between 0.05 and 0.3 (blue/dark red in
(a)). There are no regular orbits above e = 0.35 due to the overlap of ν8 and ν18. The best angular protection against approaches to Neptune happens at the libration
centers for 0.2 < e < 0.35 where the minimum distance is larger than 15 AU. The orbital elements of known Plutinos (large dots) and Pluto (⊕) were taken from
Nesvorný et al. (2000).

FIG. 8. (a) The estimate of the maximum LCE in the 2:3 Neptune MMR. (b) The minimum distance to Neptune. The initial a was chosen at 39.41 AU, which
corresponds to Aσ ∼ 60◦. See text for the definition of other initial elements. The separatrices (full lines) and libration centers (dashed line) of the Kozai resonance
were computed for Aσ = 0. The orbital elements of known Plutinos (large dots) and Pluto (⊕) are shown.

over, also the range of a corresponding to motions stable over
4 × 109 years covers a somewhat smaller interval than that indi-
cated in Fig. 1. There exists an interval of marginal instability at
about 100◦–120◦ (we define the marginally unstable region and
specify its range more precisely in Section 4), where the chaotic
evolution, although slow, is sufficient to enlarge Aσ beyond
120◦ (i.e., to the strongly unstable amplitudes) in less than 4 ×
109 years.

Following the approach used in studies of the first–order jo-
vian resonances in the main asteroid belt (Ferraz-Mello 1994,
Nesvorný and Ferraz-Mello 1997b), we calculate the maximum
LCE and estimate the rate of chaotic diffusion for orbits on a
regular grid of initial actions a, e, i .

We have run simulations for two sets of initial actions:

(1) 1010 test particles with 38.8 ≤ a ≤ 39.8 AU (1a =
0.01 AU), e = 0.01, 0.05, 0.1, 0.15, 0.2, 0.23, 0.25, 0.27, 0.3,
0.35 (101 test particles at each e), and i = 5◦;

(2) 405 test particles with a = 39.41 AU, 0 ≤ e ≤ 0.4 (1e =
0.005), and 5◦ ≤ i ≤ 25◦ (1i = 5◦, 81 test particles at each
value of i).

In the first set we explore the resonant orbits with small i and in
the second set we study the dynamics at large i .

The initial angles of test particles were chosen so that σ =
180◦, ω = 90◦, and Ä − ÄP = 0, where Ä and ÄP are the node
longitudes of a test particle and Pluto, respectively. In this way,
the plane of initial conditions intersects the libration centers of
both the 2:3 and Kozai resonances.

In both runs the test particles were numerically integrated with
four outer planets (Jupiter to Neptune) for 108 years by the sym-
metric multi-step integrator (Quinlan and Tremaine 1990). The
initial conditions of the planets were chosen at their positions
at JD 2449700.5 with respect to the ecliptic plane and equinox
at epoch J2000. The time steps of 40 days for the planets and
200 days for the test particles were used. In the course of inte-
gration, a run–time digital filter (Quinn et al. 1991) was applied
to a exp ισ , e exp ι$, and i exp ιÄ (ι =

√
−1), and the initial

sampling of 5 years was augmented to 2500 years without intro-
ducing fake frequencies in the Fourier spectrum (the problem of
frequency aliasing is described in Press et al. 1992).



286 NESVORNÝ AND ROIG

The actual procedure consisted of a consecutive application
of time–domain FIR filters (Press et al. 1992). First, one filter
(filter A) was used two times increasing the sampling by a fac-
tor of 100 and then a second filter (filter B) was additionally
applied, increasing the sampling by a factor of 5. See Nesvorný
and Ferraz-Mello (1997a) for the specifications of both filters.
With this procedure, all periods smaller than 5000 years were
suppressed and all periods larger than 104 years were retained.
In addition to the equations of motion, the variational equations
also were numerically integrated using the symmetric multi-step
method. The variational vector was periodically renormalized in
order to avoid the computer overflow (Benettin et al. 1976). This
allowed us to estimate the maximum LCE for all test particles.

3. THE LOW–INCLINATION RUN

3.1. The Maximum LCE

The estimate of the maximum LCE for each test particle was
computed as ln 1(t)/t with t = 108 years, and was plotted as
a function of a and initial e in Fig. 2a for the first set of initial
conditions. We have compensated in this figure for short–period
variations by a shift of 0.145 AU in a so that the test particles
with smallest Aσ are near the true libration center at 39.45 AU.
This shift mainly accounts for the difference between the in-
stantaneous initial a and its average over the orbital period of
Jupiter. This difference is about the same for all test particles
(except at very small e where the location of the true libration
center strongly depends on a). Such correction was not intro-
duced for e (and i) which was less affected by the short–period
variations and which had initial values within 0.01 (and 2◦) of
their averages over 107 years. In Fig. 2b, the minimum distances
of test particles to Neptune in 108 years are shown.

The color coding in Fig. 2a was chosen so that yellow corre-
sponds to the initial conditions of test particles that escaped to
Neptune–crossing orbits in the integration time span; red cor-
responds to the initial conditions for which the estimate of the
LCE on 108 years clearly converges to its limit value and the cor-
responding orbits have non-zero LCEs. Blue corresponds to the
initial conditions of the most regular orbits. For these, there was
no (evident) convergence to a non-zero value and log(ln 1(t)/t)
linearly decreased with log t , even if in many cases there ap-
peared characteristic cusps indicating local hyperbolic structures
in the phase space (Morbidelli and Nesvorný 1999).

In Fig. 2, we plot the separatrices and libration centers of the
2:3 MMR and several secular resonances, which were found
inside the 2:3 MMR: ν8 (the 1:1 commensurability of the mean
perihelion frequencies of a minor body and Neptune—full line
near separatrices marked nu8), ν18 (the 1:1 commensurability
of the mean nodal frequencies of a minor body and Neptune—
dashed line marked nu18), and the Kozai resonance (the 1:1
commensurability of the mean perihelion and node frequencies
of a minor body—full line intersecting the libration center at e =

0.25, marked Kozai). Also the secondary resonance is shown
where the frequency of σ is a factor of 5 larger than the frequency

of the perihelion longitude (full line at e < 0.05 marked sig5).
Other secondary resonances, where the ratios of the resonant
and perihelion frequencies are smaller, are located at very small
e. The location of all these inner resonances in the 2:3 MMR
and their effects on long-term dynamics of resonant bodies has
been known since Morbidelli (1997).

Apart from the above inner resonances, we have calculated the
commensurabilities between the resonant frequency and the fre-
quency of Uranus–Neptune quasi–resonance, i.e., the frequency
of the angle λU − 2λN that circulates with a negative derivative
and the period of 4230 years. This type of resonance involving
two perturbing bodies and a minor body was recently shown
important in clearing the 2:1 MMR with Jupiter and opening
the Hecuba gap at a = 3.27 AU in the asteroid belt (Ferraz-
Mello et al. 1998). We plot the commensurabilities 4:1 and 5:1
between the resonant frequency and 1/4230 year−1 in Fig. 2a
(dashed lines marked 4:1 and 5:1).

At these “three–body” resonances, the LCE is moderately
larger than in the background. While the 4:1 resonance has the
LCE about 10−5.6 year−1, more than a factor of 10 larger than
in the background, the 5:1 resonance is weaker, with the LCE
rising from the background by a factor of 100.5. Although the
contrast of paper–printed version of Fig. 2a is not as good as
on the computer screen, one can note that the anomalous LCE
value follows the lines of the 4:1 and 5:1 resonances proving
them to be important for orbital dynamics on long time scales.

The inner resonance locations in the 2:3 Neptune MMR were
computed by the semi–numerical method of Henrard (1990) in a
frame of the averaged, spatial (i 6= iN = 0) and circular (eN = 0)
models. As the full exposition of this method goes beyond the
scope of this paper, we refer the reader to Moons et al. (1998),
where the description of its application to MMRs can be found.

The extent of regular and weakly chaotic trajectories is clearly
delimited in Fig. 2a and corresponds to the orbital elements
plotted in blue and dark red. The corresponding resonant orbits
stay phase–protected from close encounters with Neptune in the
whole integrated time interval (Fig. 2b). The central resonant
area is enclosed by the ν8 and ν18 secular resonances which
overlap and generate strong chaos at, otherwise stable, large
Aσ . The upper eccentricity limit of the blue/dark red region at
about 0.35 coincides with the lower limit of chaos generated by
this overlap, and moreover, for e > 0.35 the secular oscillations
of e drive orbits to approach Uranus at distances less than 5 AU
(aU = 19.22 AU).

The orbits starting at Aσ > 130◦ are usually fast driven (in at
most several 107 years) to the borders of the 2:3 MMR. There,
while σ alternates between libration and circulation, the test
particles’ eccentricities chaotically evolve toward the Neptune–
grazing limit (e ∼ 0.2) or, if e’s are already initially large, the
particles suffer close encounters with Neptune and are extracted
from the resonance. This is the typical fate of the test particles;
their initial orbital elements are shown in yellow in Fig. 2.

Conversely, for orbits starting with Aσ < 100◦ and 0.05 < e <

0.25 (note that this limit is eccentricity dependent for larger e:
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Aσ < 60◦ for e = 0.3, and reduces to zero for e = 0.35), the LCE
decreases with time nearly to 10−7 year−1 showing in many cases
no strong tendencies to converge. This however depends on exact
values of initial a and e. For 0.1 < e < 0.2, the 5:1 three-body
resonance influences orbits with Aσ ∼ 60◦ and makes their LCE
converge to about 10−6.7 year−1. For most other initial Aσ and
e < 0.2, log ln 1(t)/t linearly decreases with log t with frequent
“cusps” typical for the situation, where the trajectory passes
close to hyperbolic resonant points. Although we do not identify
the true nature of weak resonances responsible for this behavior
(a detailed identification would be literally a watchmaker’s work
in view of the number of frequencies present in the problem),
it may be expected that the convergence of ln 1(t)/t toward a
positive value happens in an extended simulation. Our guess
is that the measure of trajectories in the 2:3 Neptune MMR
with e < 0.2 having the LCE smaller than 10−8 year−1 is very
small.

Concerning e > 0.2 and small to moderate Aσ , one can discern
a reddish color at the corresponding initial conditions in Fig. 2a.
This is a consequence of the fact that ln 1(t)/t converges to
its asymptotic value which is larger than 10−6.8 year−1. Apart
from the 5:1 three-body resonance, it is the Kozai resonance
that causes the chaos there, because the initial conditions were
chosen so that its center at 90◦ and the corresponding libration
space could be sampled. The Kozai resonance is narrow for small
inclinations (1e ∼ 0.05 for i = 5◦) and as we have noticed in the
simulation the test particles with i = 5◦ almost never remain for
a long time with stable ω librations. Their ω typically alternates
between circulation and libration on the time scale of several
million years. This behavior results in the positive LCE, of about
10−6.6 year−1, calculated in our simulation for the test particles
starting near e = 0.25.

The resonant space available for regular motion (we use the
word “regular” as a synonym for “weakly chaotic” rather than
to refer to true regularity in the sense of zero LCE) shrinks for
e > 0.25 and disappears for e = 0.35. As shown in Fig. 2a, the
most regular behavior happens at e = 0.3, above the Kozai and
below the 5:1 resonances, and a very small Aσ .

On the boundary between the escaping (yellow) and regu-
lar (blue) orbits, a number of initial conditions in an interval
of some 0.1 AU in a have an intermediate value of the LCE
(10−6–10−5 year−1, light red in Fig. 2a). We have noticed that
these orbits chaotically evolve in 108 years, which suggests that
they might be destabilized in longer time intervals (for this, it
is sufficient to rise their Aσ above 120◦–130◦). The simulations
of Morbidelli (1997) showed the existence of such process. We
refer to this interval as the “marginally unstable region.”

At this point we would like to draw the reader’s attention
to the inner structure of the marginally unstable region. The
4:1 three-body resonance plays an important role here. For e =

0.15, this resonance furnishes a “smooth” passage between the
weakly chaotic (Aσ < 110◦) and escaping (Aσ > 130◦) orbits.
For e = 0.2 the situation slightly changes as the 4:1 resonance
(now approximately at 105◦ < Aσ < 120◦) is separated from the

escaping initial conditions with Aσ > 130◦ by a narrow interval
of weakly chaotic motion (at 120◦ < Aσ < 130◦). This latter re-
gion, however, does not act as a true barrier in the phase space
(Section 4). Although slightly retarding the evolution from the
4:1 resonance to Aσ > 130◦, orbits can efficiently “leak” through
this region to larger Aσ . The 4:1 three-body resonance joins the
escaping region at e = 0.3. All orbits with Aσ > 110◦ are un-
stable within 108 years, and already for Aσ = 70◦ the orbital
elements are visibly irregular suggesting the enlargement of the
marginally unstable area at e = 0.3.

The minimum distance from Neptune (Fig. 2b) ranges be-
tween 7 and 25 AU for those test particles surviving 108 years in
the resonance. While for e ∼ 0.05–0.1, the minimum distances
are as low as 10 AU, for e = 0.3 and small Aσ the resonant–
protection mechanism assures a 20 AU separation from Neptune.
This is a consequence of resonant bodies having conjunctions
with Neptune at aphelion of their orbits and the fact that more
elongated orbits have larger aphelion distances (Nesvorný and
Roig 2000). For example, ares(1 + e) − aN = 17.3 AU for e =

0.2, which is in good agreement with the numeric result for
Aσ = 0 in Fig. 2b.

In both panels of Fig. 2 we show the semi-major axis and ec-
centricity of Pluto (⊕) and Plutinos (large dots) at the intersec-
tion of their trajectories with σ = 180◦ and ω = 90◦. These data
were taken from Nesvorný et al. (2000) and reflect the knowl-
edge of Plutinos’ orbital distribution in March 1999 (Minor
Planet Center Orbital Database, http://cfa-www.harvard.edu/
cfa/ps/lists/TNOs.html). In brief, Nesvorný et al. (2000) per-
formed a numeric simulation of 33 Plutinos (and Pluto) and de-
termined their smoothed orbital elements at the moment when
σ = 180◦ and ω = 90◦ simultaneously. Advancing the orbital
elements to this manifold is well suited for the present com-
parison as the initial conditions in Fig. 2 also have σ = 180◦

and ω = 90◦. There is one symbol per body in Fig. 2 corre-
sponding to the first intersection with the manifold. Due to the
symmetry of the 2:3 MMR with respect to the libration cen-
ters, the next intersection of a trajectory with σ = 180◦ would
be symmetrically placed on the opposite side of the libration
centers.

The distribution of Plutinos in the (a, e)–plane samples the
region 39.25 < a < 39.7 AU and 0.08 < e < 0.34 which corre-
sponds reasonably well with the extension of the central regular
region of the 2:3 MMR. There are two regions in Fig. 2 that
look relatively unpopulated. The first one is in the center of the
2:3 MMR at 39.35 < a < 39.6 AU and 0.15 < e < 0.3. Here, ac-
cording to Nesvorný et al. (2000), the libration amplitudes of
Plutinos could have been excited by Pluto’s gravitational sweep-
ing effect.

The second unpopulated region is located at 0.05 < e < 0.08.
At these eccentricities, orbits are unaffected by the chaos under
the 5:1 secondary resonance, where the 2:1, 3:1, and 4:1 sec-
ondary resonances and ν18 are simultaneously present. In fact,
no resonant objects are known with e < 0.08. We return to this
issue in Section 8.
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3.2. The Chaotic Evolution of Actions and Frequencies

To measure the chaotic evolution of orbital elements we have
computed, for each integrated test particle, the maxima of filtered
σ , e, and i on two consecutive intervals of 45 Myr each (i.e., the
total length of 90 Myr). These quantities do not change with time
in the case of quasi–periodic motion. We used a larger window
interval (45 Myr) than Morbidelli (1997; 10 Myr) expecting to
improve the accuracy.

The following quantities were computed,

δAσ =
∣

∣σ (2)
max − σ (1)

max

∣

∣

δe =
∣

∣e(2)
max − e(1)

max

∣

∣ (2)

δi =
∣

∣i (2)
max − i (1)

max

∣

∣,

where the indexes 1 and 2 refer to maxima obtained in the first
and second intervals, respectively. In addition, we smoothed the
above quantities over initial conditions with the same e by a 5–
point (0.048 AU) running window in a. The resulting smoothed
values of δAσ (Fig. 3a), δe (Fig. 3b), and δi (Fig. 3c) show how
much the orbital elements change, on average, due to the chaotic
evolution of trajectories on the time interval of 45 Myr.

To measure the chaotic evolution of frequencies we used fre-
quency analysis (Laskar 1999). The frequencies fσ , f$, and fÄ
were determined from the Fourier spectra of a exp ισ , e exp ι$

and i exp ιÄ, respectively, on two consecutive intervals of
45 Myr using the algorithm of Frequency Modified Fourier
Transform (FMFT2; Šidlichovský and Nesvorný 1997). While
for f$ and fÄ this meant the determination of the leading peak
frequency in the spectra of e exp ι$ and i exp ιÄ, respectively,
the technical procedure for fσ was somewhat more involved
due to the large number of terms with similar amplitude in the
Fourier spectrum of a exp ισ .

The resonant, perihelion, and node frequencies determined in
this way do not change with time in the case of quasi–periodic
motion and change only due to chaotic evolution of orbits. This
is why we used

δ fσ =
(

f (2)
σ − f (1)

σ

)/

f (1)
σ ,

δ f$ =
(

f (2)
$

− f (1)
$

)/
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$

, and (3)

δ fÄ =
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Ä − f (1)

Ä

)/

f (1)
Ä

as measures of chaotic diffusion in frequencies.
We have additionally attempted to reduce the effect of peri-

odic oscillations of frequencies known as the problem of near
harmonics (a consequence of a finite time window used for
the Fourier transform—Nesvorný and Ferraz-Mello 1997a). We
compute

〈δ f (ak)〉2n+1 =
1

2n + 1

j=k+n
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∣

∣

∣

∣

,

(4)

where f (a j ) is a generic (resonant, perihelion, or nodal) fre-
quency determined for the initial semi-major axis a j = 38.8 +

0.01 j , 0 ≤ j ≤ 101. Assuming n initial conditions close to each
other in the phase space, the problem of near harmonics makes
the frequencies determined at these points oscillate with almost
identical period and phase, so that if no chaotic evolution were
present 〈δ f 〉n determined over these initial conditions (Eq. 4)
vanishes. In the presence of chaotic diffusion, 〈δ f 〉n gives the
net chaotic change. We plot 〈δ fσ 〉5, 〈δ f$〉5, and 〈δ fÄ〉5 for vari-
ous eccentricities in Figs. 3d–3f. In the following text we refer
to them simply as δ fσ , δ f$, and δ fÄ, avoiding the use of 〈·〉5.

The color coding in Fig. 3 is similar to that in Fig. 2a: escaping
and fast diffusing orbits with large changes of proper elements
and frequencies are shown in yellow, light red represents the
orbits with moderate chaotic diffusion, and blue represents the
most stable orbits with negligible chaotic evolution.

In general terms, we note in Figs. 3a–3c that the chaotic evo-
lution of Aσ (note the distinct color coding used in Fig. 3a) is
more important than the chaotic evolutions of e and i (Duncan
et al. 1995, Morbidelli 1997). For e = 0.2, the change of Aσ

varies between 0.5◦ per 45 Myr in the center and 1◦ per 45 Myr
in the immediate vicinity of unstable orbits on 108 years, while
δe and δi range between 0.0003◦ and 0.003◦ and 0.1◦ and 0.5◦

per 45 Myr, respectively.
For the sake of a quantitative estimate of the diffusion effect

over 4.5 × 109 years we may assume a random walk of orbital el-
ements with a mean square displacement roughly proportional to
time. Hence, δAσ , δe, and δi over 4.5 × 109 years are expected to
be some 10 times larger than the estimates over 4.5 × 107 years
given in Figs. 3a–3c. This means that, for e = 0.2 and the tra-
jectories within an interval of about 0.1 AU close to the strongly
unstable region at large Aσ , the expected changes of δAσ , δe,
and δi over 4.5 × 109 years are roughly 10◦, 0.03◦, and 5◦, re-
spectively. While the changes in e and i are small to expect the
trajectory to be destabilized in this way, the 10◦ change in Aσ

is sufficient to insert many orbits initially at 115◦ < Aσ < 125◦

(for e = 0.2) into the strongly unstable region within the age
of the Solar System. In Section 4, we give our definition of the
marginally unstable region with respect to the number of bodies
dynamically leaking from the resonance at 4 × 109 years after
the initial instant.

For e > 0.2, δAσ is generally larger or on the order of 1◦ per
45 Myr. The 4:1 and 5:1 three-body resonances are stronger for
e > 0.2 and make Aσ change as much as a few degrees in 45 Myr
at their locations. The 4:1 three-body resonance is located close
to the unstable (yellow) region for 0.15 < e < 0.3. This reso-
nance enhances the chaotic diffusion making the marginally un-
stable region somewhat larger than it would be otherwise. The
5:1 three-body resonance is located at small amplitudes and the
chaotic evolution of Aσ for 0.15 < e < 0.3 at this resonance is
confined by more regular behavior at both slightly larger and
smaller Aσ than the resonant one (∼60◦ for e = 0.2). This more
“regular” motion is not truly regular in the sense of a dense
presence of KAM tori and an exponentially slow diffusion, but
rather corresponds to trajectories with moderate chaotic changes
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FIG. 4. (a) The number of particles surviving at t = 1, 2, 3, and 4 Byr vs Aσ

for initial e = 0.2. (b) Stars and crosses denote the numbers of escapes for t <

3.5 Byr and t < 4.5 Byr, respectively. Triangles denote their difference, i.e.,
escapes in 3.5 < t < 4.5 Byr. The marginally unstable region is at 100◦

Aσ < 123◦.

of orbital elements. Nevertheless, these trajectories form an ef-
fective barrier for the chaotic evolution of Aσ . Consequently, it
is practically impossible that an orbit starting at the 5:1 three-
body resonance and 0.15 < e < 0.3 escapes from the 2:3 Neptune
MMR within 4 × 109 years.

Several other conclusions can be inferred from Figs. 3a–3c:

(1) The most regular space of the 2:3 Neptune MMR at low
inclinations is at 0.1 < e < 0.2 and small to moderate Aσ , where
δAσ

<∼ 0.5◦ per 45 Myr. There is an area in the middle of the
above interval (e = 0.15) where δi = 0.8◦ per 45 Myr. We show
later that this happens due to the presence of a secular resonance
involving the argument of perihelion (Fig. 9e).

(2) δe and δi are enhanced at the Kozai resonance (0.22 < e <

0.27). Typically, 0.0006 < δe < 0.006 per 45 Myr and 0.1 <

δi < 0.6◦ per 45 Myr. While the eccentricity evolution is con-
fined within the interval 0.22 < e < 0.27 and no macroscopic
changes of e are to be expected (if the inclination stays low),
the inclination can chaotically evolve by several degrees in 4 ×
109 years along the separatrices of the Kozai resonance
(Section 5). This evolution, however, never leads to escapes pro-
viding the initial inclination is small (i <∼ 10◦).

(3) The test particles starting near the separatrices of the 2:3
MMR and with e < 0.1 usually spend a time period exceeding
108 years with σ alternating between libration and circulation.
At these eccentricities, orbits are well separated from Neptune
and the chaotic region at the borders of the 2:3 MMR is confined
from both sides in a, which does not permit a definitive escape

from the resonance through an increase of Aσ . On the other hand,
the chaotic evolution of e (and i) is fast near separatrices, where
δe > 0.05 (δi > 5◦) per 45 Myr; so that in several 108 years, the
test particles are transferred to e ∼ 0.2, where they encounter
Neptune and leave the resonance.

(4) On both sides of the 2:3 MMR (a = 39.05 and 39.8 AU),
there are places of stable motion at e < 0.1. Note that δAσ and
δ fσ are fake here because the motion is non resonant, but other
indicators are correct. Both places are unpopulated.

The relative changes in frequencies (Figs. 3d and 3e) are com-
plementary to action changes. δ fσ , δ f$, and δ fÄ should be re-
garded as more precise measures of chaotic diffusion than δAσ ,
δe, and δi , because of the nature of frequency analysis. On the
other hand, frequency changes are harder to interpret because
they do not measure the diffusion rate in the “direction” of or-
bital elements, so that modifications of orbits are represented
indirectly by them.

δ fσ measures the local chaotic evolution in the plane transver-
sal to the lines of fσ = const. The lines of the 4:1 and 5:1 three-
body resonances correspond to fσ = 5.91 × 10−5 year−1 and
fσ = 4.73 × 10−5 year−1, so that roughly δ fσ = 0.22 is needed
to transit between them. This is apparently beyond the possibil-
ities of chaotic orbital evolution because δ fσ = 10−4–10−3 per
45 Myr, i.e., δ fσ = 10−3–10−2 per 4.5 Byr, in the region between
these three-body resonances (Fig. 3d). Hence, this verifies the
stability of the central region of the 2:3 Neptune MMR.

4. THE MARGINALLY UNSTABLE REGION

The chaotic diffusion in the 2:3 Neptune MMR is dominated
by the evolution in Aσ . This simplifies the situation and allows us
to model chaotic diffusion as a one–dimensional random walk.

We started 1000 test particles at the same initial value A0
σ .

For each particle, a random walk was simulated according to
the size of δAσ (Fig. 3a). In short, for a given instantaneous
An

σ obtained at the step n of the algorithm, we determined the
value of δAσ (An

σ ) (interpolating from the archive of δAσ vs Aσ

previously computed for all 101 test particles at given value
of e—Section 3.2) and then randomly added or subtracted this
quantity from An

σ , so that An+1
σ = An

σ ± δAσ (An
σ ). The same

procedure was repeated in the next step with An+1
σ .

We ran this simulation for 4.5 × 109 years. The particles that
had An

σ > 170◦ for some n were judged to escape from the res-
onance and were deleted from the simulation. The final result
was the ratio of the number of the deactivated test particles to
that of survived particles. We sampled the resonant amplitudes
repeating the above procedure with initial A0

σ uniformly spaced
between 0 and 170◦. Hence, for given e, we ended up with the
number of escapes/survivals at time t (0 < t < 4.5 Byr) as a func-
tion of A0

σ .
Figure 4a shows the number of surviving particles at 1, 2, 3,

and 4 Byr for e = 0.2. All particles with A0
σ < 95◦ survive while

those with A0
σ > 125◦ escape. For intermediate amplitudes the

number of survivals smoothly decreases with A0
σ . The profile
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is less steep for t = 4 Byr than for t = 1 Byr corresponding to
the fact that test particles with initially smaller Aσ escape on
longer time intervals. The profile at t = 4 Byr should roughly
correspond to the current density of the 2:3 resonant objects at
intermediate amplitudes. However, it is too early to draw con-
clusions about whether this profile represents well the real 2:3
MMR population, because too few Plutinos are presently known.

Figure 4b shows the number of test particles escaping for
t < 4.5 Byr (crosses) and t < 3.5 Byr (stars) for e = 0.2. It also
shows their difference, which is the number of particles escaping
in 3.5 < t < 4.5 Byr (triangles). This last quantity approximates
the current escape rate from the 2:3 MMR. The test particles
giving a contribution larger than 1% start at 101◦ < Aσ < 124◦.

We define a place in the phase space to be marginally unstable
if the escape rate to Neptune crossing orbits at t = 4 Byr is more
than 1% of the initial population per 1 Byr.2 The places for which
the escape rate at t = 4 Byr is less than 1% are: (i) strongly un-
stable, where most of the original population escapes at t < 4 Byr
so at t = 4 Byr there are too few surviving bodies, and (ii) prac-
tically stable, where the mean lifetime of bodies is much longer
than the age of the Solar System and the escape rate at t = 4 Byr
is also negligible. For practical reasons, we assume the escape
rate at t = 4 Byr to be equal to the relative number of escapes
between 3.5 and 4.5 Byr and identify the marginally unstable re-
gion as the interval of Aσ in which more than 1% of the original
population leaks from the resonance in 3.5 < t < 4.5 Byr.

Figure 5 shows how the width of the marginally unstable
region depends on e. For 0.05 < e < 0.35, we show the
number of escapes at 3.5 < t < 4.5 Byr (triangles) and trace
the left and right borders of the marginally unstable region,
where the number of escapes was larger than 10 (from initial
1000 test particles—i.e., larger than 1%), by spline smoothing
(dotted lines).

The size of the marginally unstable region does not change
much for 0.1 < e < 0.27 and accounts for 20◦–30◦ centered at
Aσ ∼ 110◦. This roughly corresponds to the area affected by the
4:1 three-body resonance (Figs. 2 and 3). Duncan et al. (1995)
found that the resonant bodies are unstable on billion year time
scales if initially 70◦ < Aσ < 130◦. From Fig. 5, we would rather
say that the lower limit of this range is 90◦–100◦ for a wide
range in e, and resonant KBOs with 70◦ < Aσ < 90◦ are perfectly
stable.

For e = 0.3, the marginally unstable region extends from
about 55◦ to 105◦ and occupies more than half of the resonant
space. According to Fig. 3a, the diffusion in Aσ is faster at e =
0.3 than at smaller e, allowing for larger mobility of test particles.

For e = 0.35, the marginally unstable amplitudes are those be-
tween 0◦ and 40◦. Here however, the model of one–dimensional
random walk in Aσ might not be realistic because a small change
in e (instead of Aσ ) can destabilize orbits. Note that the number
of late escapes at this e is large (∼20%) suggesting a large con-

2 If P(t) is the percentage of test particles escaping from the initial population
in the time interval [0, t], then by the escape rate at time t we mean the derivative
of this function.

FIG. 5. The position and width of the marginally unstable region in depen-
dence on e. We compute the marginally unstable region as the place where more
than 1% of the initial population escapes in 3.5 < t < 4.5 Byr. This percentage
corresponds in our experiment to more than 10 escapes (from 1000)—dashed
horizontal lines. The dotted lines show the boundaries of the marginally unstable
region.

tribution to the currently escaping objects from the 2:3 MMR.
However, primordial orbits at e = 0.35 would have been rare.

The one–dimensional random walk model is incomplete also
for e ∼ 0.05. There the test particles must first chaotically evolve
to larger e before they can leave the resonance by close en-
counters with Neptune. This evolution can be slow and 108–109

years may pass before a particle definitely leaves the resonance.
For this reason, the limits of the marginally unstable region at
e = 0.05 shown in Fig. 5 are only approximate. On the other
hand, no Plutinos are observed at these eccentricities so that the
contribution of objects initially at e ∼ 0.05 to the total present
flux of the escaping bodies from the 2:3 MMR is small.

5. AN ESTIMATE OF THE RESONANT POPULATION

We proceed with the calculation of ratios between the num-
bers of primordial, current, and escaping (in the last 1 Byr)
bodies. Let us suppose that the angles of 2:3 resonant bodies
and their semi-major axes were initially uniform. We show later
that this assumption is not in contradiction to the scenario in
which the 2:3 MMR objects were captured by resonance sweep-
ing (Malhotra 1995). Moreover, we suppose that the inclinations
were not excessively large, so that the diffusion speed measured
at i = 5◦ is representative (observed Plutinos have on average
i = 9.3◦).
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The number of primordial objects with orbits within 1◦ around
given Aσ is proportional to the volume in the phase space occu-
pied by such orbits: 1V (Aσ ). In the averaged, planar, circular
model of the 2:3 MMR, with Neptune as the only perturbing
body, this volume can be easily determined. The above model
is integrable and the trajectories in a, σ are computed on mani-
folds of the motion integral N =

√
a(−2/3 +

√
1 − e2). The

area V (Aσ ) enclosed by a trajectory is computed as

V (Aσ ) =
∫ Tσ

0
(a(t) − ares)σ̇ dt, (5)

where σ̇ is the time derivative of σ and the integral is evaluated
over one period of σ . The derivative of V (Aσ ) with respect to
Aσ times 1◦ is the needed volume 1V (Aσ ). This volume grows
with Aσ , which means that the orbits with initially large Aσ were
more common. For instance, the volume occupied by orbits at
Aσ = 85◦ is a factor of 10 larger than the volume occupied by
orbits at Aσ = 10◦. This implies that the primordial orbits at
Aσ ∼ 110◦, i.e., in the marginally unstable region, were by a
factor of 10 more numerous than the primordial stable orbits
with small Aσ .

In Fig. 6a, the dashed line shows the initial distribution in Aσ

resulting from a uniform initial distribution in orbital angles and
a. Comparing this distribution with the one that would have re-

FIG. 6. The number of test particles surviving at t = 4 Byr (a), and the
number of escapes in 3.5 < t < 4.5 Byr (b), as a function of Aσ . The dashed line
in (a) shows the density (per 1◦) of the original population of 1000 test particles.
The bold line denoted +0◦ shows how the population is eroded at t = 4 Byr
under the effect of slow chaotic diffusion driven by four outer planets (δAdiff

σ ).
The erosion is larger for δAkick

σ = 1◦, 2◦, and 3◦, the latter being denoted by +3◦.
Note in (b) how the active region, where objects escape in 3.5 < t < 4.5 Byr,
enlarges with increasing contribution of the collision/scattering kicks.

sulted from the capture by resonance sweeping (Malhotra 1997,
her Fig. 4), we find no difference for 0◦ < Aσ < 90◦, where the
captured population is exactly proportional to the volume. Con-
sequently, the non-uniformity of Malhotra’s captured population
in this range of Aσ is not a result of some special process in-
volved in the resonant capture, but rather reflects the uniform
distribution in a and orbital angles. The captured population
is peaked at moderate amplitudes due to the dynamic insta-
bility at large Aσ . The position of this peak in Aσ depends
on the eccentricities of the pre–capture objects and the rate at
which the resonances sweep through the primordial KB. It can
be expected that small pre–capture e and even a slow sweep-
ing rate would result in a resonant distribution peaked at small
Aσ , while larger e and faster sweeping would lead to a post-
capture population that covers the stable resonant space more
uniformly (i.e., following the dashed line in Fig. 6a). In the
example given by Malhotra (1997), the resonant population is
peaked at 90◦ and it is in fact very close to the uniform cover-
age of the 2:3 Neptune MMR eroded at large Aσ over several
107 years, which was the time used in the capture simulation.
For this reason, our assumption of initially uniform semi-major
axes and angles approximately holds for the resonance sweeping
scenario.

We assume a primordial population of Nprim bodies uniformly
distributed in a, λ, ω, and Ä (not in Aσ ), initially located at
the same e in the stable and marginally unstable regions with
Aσ < A∗

σ (A∗
σ is the outer border of the marginally unstable

region—for e = 0.2, A∗
σ = 127◦). Then, we compute for each

Aσ ,

Nesc(Aσ , e) = Nprim ×
1V (Aσ , e)

V (A∗
σ (e))

× fesc(Aσ , e), (6)

where fesc(Aσ , e) is the percentage of objects with initial e es-
caping from initial Aσ in the last 1 Byr (Fig. 5). Nesc(Aσ , e) is
the number of objects with initial e having the initial resonant
amplitude within 1◦ of Aσ and escaping in the last 1 Byr. The in-
tegral of the above expression over the amplitudes 0 < Aσ < A∗

σ

gives Nesc(e), which is the total number of escaping objects with
initial e in the last 1 Byr. For e = 0.2, the total area enclosed
by the trajectory with A∗

σ is V (A∗
σ (e)) = 116.6 AU × deg, and

Nesc(e)/Nprim = 0.0165, i.e., some 1.7% of the objects initially
present at e = 0.2 in the 2:3 MMR escape in the last 1 Byr.
We have calculated the same ratio also for e = 0.1 and e = 0.3
(Table I).

Integrating Nesc(e)/Nprim over e allows us to determine the
total fraction of objects escaping per 1 Byr from the 2:3
Neptune MMR at t = 4 Byr. From Table I, and assuming an
initially uniform distribution of e in the interval 0.1 < e < 0.3,
this fraction results in 1.2% bodies per 1 Byr. Moreover, using
the results of Section 4 (e.g., Fig. 4a) together with a relation
similar to that of Eq. (6), it is also possible to determine the frac-
tion Nsurv(e)/Nprim of objects that survive at t = 4 Byr (Table I).
Integrating this fraction over e we obtain that 70% of objects
survive in the 2:3 MMR at t = 4 Byr. Below, we calibrate these
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TABLE I
The Statistics of Surviving and Escaping Populations

in the 2:3 Neptune MMR

e A∗
σ (deg) V (A∗

σ ) (AU × deg) Nesc/Nprim Nsurv/Nprim Nesc/Nsurv

0.1 135 107.4 0.00937 0.827 0.0113
(92.1%) (52.3%) (94%) (51.3%)

0.2 127 116.6 0.0165 0.810 0.0203
(100%) (100%) (100%) (100%)

0.3 112 89.3 0.0121 0.563 0.0215
(76.6%) (56.0%) (53.3%) (81.1%)

Note. The individual columns are eccentricity (e), amplitude limiting the sta-
ble and marginally unstable regions (A∗

σ ), area enclosed by the curve with am-
plitude A∗

σ (V (A∗
σ )), and ratios Nesc/Nprim, Nsurv/Nprim, and Nesc/Nsurv, where

Nsurv is the number of bodies surviving at t = 4 Byr (determined from Eq. (6),
with fsurv(Aσ ) for e = 0.2 shown in Fig. 4a). The percentages in brackets are
the relative contributions of e = 0.1 and e = 0.3 with respect to e = 0.2.

numbers by the number of bodies needed to keep the observed
population of the Jupiter–family comets (JFC) in steady state.

According to Levison and Duncan (1997), the total number
of visible (q = a(1 − e) < 2.5 AU) active and extinct JFCs with
HT < 9 (HT is the total magnitude of an active comet3 ) is about
500. The main uncertainty in this estimate comes from the ne-
cessity to compute the ratio between the numbers of extinct
and active JFCs: Levison and Duncan (1997) adopted a phys-
ical lifetime of an active comet to be 12,000 years, and deter-
mined the above ratio to be 3.5. Moreover, Levison et al. (2000)
estimated the ratio between the JFCs and the ecliptic comets
(ECs) (i.e., comets having their Tisserand parameters larger
than 2 unless they are on stable orbits in the trans-Neptunian
region). Then, they computed the current number of the ECs to
be NEC = 1.3 × 107 and also determined their mean dynamic
lifetime: tEC = 1.9 × 108 yr.

The EC may be resupplied from the classical KB (35 < a <

50 AU, moderate e) or may be a remnant of the massive Scattered
Disk (SD; Duncan and Levison 1997). Denote by f2:3/all the ratio
of the number of comets escaping from the 2:3 MMR to the
total contribution of the classical KB and SD. If, for instance,
most comets come from the classical KB (including the 2:3
Neptune MMR) and the contribution of the SD is negligible, then
it would be reasonable to assume that f2:3/all ∼ 0.1–0.2. Indeed,
the current population of the 2:3 Neptune MMR is estimated to
be between 10 and 20% of the classical KB population (Jewitt
et al. 1998).

The current number of objects in the 2:3 Neptune MMR
(Nsurv) corresponding to HT < 9 can be computed from

Nsurvr2:3 = f2:3/all
NEC

tEC
, (7)

3 It is unclear how to relate the absolute magnitude of an active comet to
the diameter of its nucleus. According to Levison et al. (2000) and references
therein, the absolute magnitudes HT < 9 should roughly correspond to diameters
D > 1–3 km.

where r2:3 = Nesc/Nsurv is the relative fraction of the present
resonant population that escapes from the 2:3 MMR per time
interval. From previously determined Nesc/Nprim and Nsurv/

Nprim, r2:3 = 1.7 × 10−11 year−1. This number is smaller than
rKB = 3–4 × 10−11 year−1 determined by Duncan et al. (1995)
for the whole classical KB (including the 2:3 Neptune MMR).
Substituting r2:3, NEC, and tEC in Eq. (7), Nsurv = 4 × 109 f2:3/all.
Assuming f2:3/all = 0.15 we conclude that there are currently
6 × 108 objects with HT < 9 in the 2:3 Neptune MMR.

This number is about the same as the 4.5 × 108 comets esti-
mated by Morbidelli (1997). There are several differences be-
tween this and Morbidelli’s work: (1) Morbidelli estimated that
the volume of the region where bodies are either on invariant tori
or having orbits with diffusion speed too slow to escape from
the 2:3 MMR over the age of the Solar System is about 40% of
the volume of the moderately slow diffusion region. In this work
we estimate the volume of the stable region to be about 80% of
the volume of the marginally unstable region. (2) Morbidelli as-
sumed that f2:3/all = 0.25, while f2:3/all = 0.15 in our estimate.
(3) The initial conditions with small Aσ were almost absent in
Morbidelli’s work. This can be presumably due to the choice
of a = 39.5 AU in his experiment, which is not necessarily the
semi-major axis corresponding to Aσ ∼ 0 because of the short–
periodic variations induced by Jupiter. (4) While Nesc/Nsurv =
0.11 in Morbidelli (1997), in this paper Nesc/Nsurv = 0.017.
(5) Morbidelli’s calibration used estimates of Duncan et al.
(1995) who found that the needed flux to sustain the JFC is 0.21
comets/year, while this work uses NEC/tEC = 0.068 comets/yr
from Levison et al. (2000). In view of the above differences,
the agreement between our Nsurv = 6 × 108 and Morbidelli’s
Nnow = 4.5 × 108 is rather surprising.

6. A SIMPLE MODEL OF COLLISIONS/SCATTERING

Until now, we did not address other possible mechanisms by
which the 2:3 resonant objects could be destabilized: (i) colli-
sional fragmentation, (ii) collisional non–disruptive kicks, (iii)
mutual dynamical scattering at close encounters, or (iv) the dy-
namical scattering by Pluto. Detailed analysis of the effect of
these processes goes beyond the scope of this paper, but we
have attempted to simulate them by a simple scheme, adding to
δAdiff

σ (i.e., the change in Aσ due to the dynamic chaotic diffu-
sion, Eq. 2) an arbitrary quantity δAkick

σ assumed to come from
the random kicks generated by the above processes. Not know-
ing the dependence of δAkick

σ on e, i , and Aσ (and time), we have
assumed δAkick

σ to be constant.
Farinella et al. (2000) estimated that the population of KBOs

larger than about 100 km in diameter has not been significantly
altered by collisions over the age of the Solar System. This
means that collisional fragmentation is not relevant for large
bodies. Conversely, this mechanism may be dominant for small
bodies since about 10 fragments, 1 to 10 km in size, are cur-
rently produced per year in the KB at 40 AU (Farinella et al.
2000). With ejection speeds of 10–100 m/s, these fragments have
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semi-major axes about 0.1–1 AU different from those of their
parent bodies.

Levison and Stern (1995) investigated the effect of collisional
and scattering kicks on Pluto and found that the gravitational
scattering by 1–330 km objects is much more important than
physical collisions. From their Fig. 8 we can infer that δAscat

σ

is on the order of 10◦ per 5 × 107 years, but this assumes a
dense primordial population of 2.7 × 107 comets per AU2 near
40 AU, which is more than a factor of 100 larger than the cur-
rent population of the KBOs at 40 AU. If δAscat

σ scales lin-
early with the number of objects, then this indicates that the
current δAscat

σ of Pluto should be on the order of 0.1◦ per 5 ×
107 years. Recall that smaller bodies must be scattered more than
Pluto.

Nesvorný et al. (2000) calculated the random walk of Plutinos
driven by the gravitational scattering by Pluto. While for i < 5◦,
δAPluto

σ is on the order of 1◦ per 45 Myr, for i > 10◦ δAPluto
σ =

2◦–6◦ per 45 Myr, depending on the eccentricity.
Figure 6 shows the results of random walks characterized by

δAdiff
σ + δAkick

σ , where we choose different values of δAkick
σ . The

scale on the y-axis corresponds to 1000 test particles at e = 0.2,
initially distributed between 0 and A∗

σ according to the area
occupied by the orbits with given Aσ (dashed line in Fig. 6a).
This scale gives the number of particles per 1◦. In Fig. 6a, we
show the number of surviving test particles at t = 4 Byr and in
Fig. 6b we show the number of particles escaping in 3.5 < t < 4.5
Byr. Bold lines (denoted by +0) are the results of purely dynamic
random walk with no contribution of kicks. Thin lines show the
results for δAkick

σ = 1◦, 2◦, and 3◦ per 45 Myr, respectively (the
last one being denoted by +3). Table II summarizes the statistics
of surviving and escaping particles in each case.

The current density of objects in the 2:3 MMR should roughly
correspond to one of the curves in Fig. 6a. The erosion at large Aσ

increases with the increasing role of random kicks. The density
peak shifts from Aσ = 105◦, when the evolution is dominated by
pure dynamic chaotic diffusion, to Aσ = 85◦, when δAkick

σ = 3◦.
Moreover, for δAkick

σ = 3◦ the density curve is much flatter
than that for δAkick

σ = 0◦. The values of Nsurv/Nprim in Table II
show that the primordial population of the 2:3 MMR is reduced
to 56% for δAkick

σ = 3◦ and only to 81% for δAkick
σ = 0. We

believe that with increasing knowledge of the orbital distribu-
tion of Plutinos, one should be able to estimate the contribution

TABLE II

The Statistics of the Primordial, Surviving, and Escaping Popu-
lations at e = 0.2 for Different Contributions of Random Kicks Gen-
erated by Collisions, Mutual Scattering, and Scattering by Pluto

Nesc/Nprim Nsurv/Nprim Nesc/Nsurv

δAdiff
σ + δAkick

σ (%) (%) (%)

δAσ 1.65 81.1 2.03
δAσ + 1◦ 1.99 71.4 2.78
δAσ + 2◦ 2.45 63.3 3.87
δAσ + 3◦ 3.06 56.3 5.44

FIG. 7. The number of escapes per 1 Byr is shown as a function of time for
δAkick

σ = 0◦, 1◦, 2◦, and 3◦. The original population accounted for 1000 test par-
ticles at e = 0.2, distributed between 0 < Aσ < A∗

σ following the dashed line in
Fig. 6a.

of collisions/scattering to the general random walk in the 2:3
Neptune MMR on the basis of the comparison with Fig. 6a.

Figure 6b shows how the marginally unstable region enlarges
with the increasing role of collisions/scattering. For δAkick

σ =
3◦, Nesc/Nsurv = 3.1%—almost double the 1.7% determined
from the dynamic chaotic diffusion alone. If the former percent-
age were true, the present number of objects in the 2:3 MMR
with HT < 9 would be estimated to be about 3 × 108 (assuming
f2:3/all = 0.15). Of course the above model is a very rough ap-
proximation of the real collisional dynamics in the 2:3 MMR
because it does not account for the disruption of bodies and
does not allow for the resulting changes in the size distribution
of objects.

In Fig. 7, we show the number of escapes per 1 Byr (scaled to
the primordial population of 1000 test particles at Aσ < A∗

σ =
127◦ for e = 0.2) from the 2:3 MMR as a function of time. As ex-
pected, most escaping particles leave the resonance at t < 1 Byr.
If the 2:3 MMR is the sole source of bodies crossing outer
planets’ orbits, then the cratering record on planetary satellites
should have a time dependence similar to that of the curves in
Fig. 7. A steeper cratering rate in the last 3 Byr would indicate
a significant role of collisions and/or scattering in the source
region.

7. THE RUN FOR LARGER INCLINATIONS

The estimate of the maximum LCE at t = 108 years is plotted
in Fig. 8a as a function of initial e and i , and for the second set of
initial conditions (Section 2). The initial a was 39.41 AU, which
means that the test particles started with Aσ = 60◦, i.e., with Aσ

only slightly smaller than most observed 2:3 resonant objects.
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The libration centers (dashed line) and separatrices (full lines)
of the Kozai resonance were computed for Aσ = 0 by a semi-
numerical method. The minimum distances of test particles to
Neptune in 108 years are shown in Fig. 8b. The color coding is
the same as in Fig. 2. The eccentricity and inclination of Pluto
(⊕) and known Plutinos (large dots) are shown at the intersection
of their trajectories with σ = 180◦ and ω = 90◦ (from Nesvorný
et al. 2000).

The central, weakly chaotic region of the 2:3 MMR extends to
high inclinations (Fig. 8a). While the convergence of ln 1(t)/t
to an asymptotic non-zero value (∼10−6.5–10−7 year−1) is ev-
ident for all trajectories in the Kozai resonance, we have LCE
≤10−7 yr−1 at e = 0.1. The chaotic region at small e, where LCE
∼10−5–10−5.5 yr−1, slightly enlarges with increasing i (from
e < 0.05 at i = 5◦ to e < 0.07 at i = 25◦). This chaos is almost
certainly due to the overlap of the 2:1, 3:1, and 4:1 secondary
resonances, because theν18 secular resonance is limited to i < 10◦

and has a large libration period. The region of escapes at e > 0.35
for i = 5◦ shifts to larger e with increasing i . This is either due
to the changing positions and sizes of the ν8 and ν18 secular res-
onances or because the orbits with large inclinations are better
separated from Uranus. The minimum distance of test particles
to Neptune decreases from ∼20 AU in the center of the Kozai
resonance to ∼15 AU just outside its left limit and further to
∼10 AU at e ∼ 0.

Figure 9 shows the chaotic change of orbital elements and
frequencies in 45 Myr. The computational procedure was exactly
the same as that in Section 3.2 (Eqs. 2–4).

The dependence of δAσ (Fig. 9a) on the initial orbital ele-
ments has characteristics similar to those of the LCE (Fig. 8a).
δAσ is large for e < 0.05 (∼20◦–30◦ per 45 Myr) showing the
instability of the corresponding orbits. These orbits evolve to
the separatrices of the 2:3 MMR in several 108 year. Such evo-
lution is accompanied by a random walk in e (and i), which gets
faster near separatrices, where δe > 0.05 (δi > 5◦) per 45 Myr
(Figs. 3b and 3c).

δAσ is moderately larger in the Kozai resonance (2◦–4◦ per
45 Myr) than in the rest of the resonant space (∼1◦ per 45 Myr
at e = 0.1). This can also be an effect of the 5:1 three-body res-
onance located at Aσ ∼ 60◦, where our initial conditions cross
the resonant space.

The e and i evolutions (Figs. 9b and 9c) are moderately en-
hanced at the separatrices of the Kozai resonance (δe ∼ δi ≥
10−2.5). The orbits starting with large Aω significantly evolve in
e and i on billion year time scales. At i > 10◦, the right separa-
trix of the Kozai resonance is separated only by 0.03–0.04 in e
from the high–e unstable region. As the expected chaotic evo-
lution of e on 4 × 109 years is of this size, most of the initially
large–Aω orbits with i > 10◦ are unstable. These findings are
in agreement with the results of Levison and Stern (1995) con-
cerning the stability at Pluto–like inclinations. The two Plutinos
residing just outside the right separatrix of the Kozai resonance
at e = 0.32–0.33 and i ≤ 5◦ occupy a space where the evolution
in e is moderate.

The stability of small–Aω orbits in the Kozai resonance is ev-
ident on the evolution of frequencies. For i > 10◦, δ f$ ∼ 10−3

on 45 Myr (Fig. 9e), which means only a 1% change in 4.5 Byr.
For i = 15◦ and Aσ = 60◦, the stable motion in the Kozai reso-
nance extends at 0.22 < e < 0.29, which roughly corresponds to
Aω < 50◦. For larger initial A$, f$ significantly evolves and at
the separatrices of the Kozai resonance δ f$ is as large as 10%
over the age of the Solar System.

Although our initial conditions do not cover the region at
i > 25◦, it is very likely that the stable motion in the center of
the Kozai resonance extends to higher inclinations. In such a
case, the result of Duncan et al. (1995) that the MMRs with
Neptune have a destabilizing effect for i ≥ 25◦ is only approx-
imate. Indeed, the initial conditions of high–i simulations of
Duncan et al. sampled orbits with e ≤ 0.1, which according to
Fig. 9 are more easily destabilized by secular effects.

Note in Fig. 9e the slightly anomalous value of δ f$ at the
dotted–dashed line. We have identified it to be the secular res-
onance with angle ω +$N − ÄN. Figure 10 shows the evolu-
tion of this resonant angle for the test particle started at a =
39.41 AU, e = 0.135, and i = 15◦. This secular resonance is
usually denoted by g − s + g8 − s8, where g = f$, s = fÄ, and
g8 = 0.6727′′/year and s8 = −0.6914′′/year are Neptune’s per-
ihelion and nodal mean frequencies. We have plotted its position
in Fig. 9e from f$(e, i) and fÄ(e, i) calculated by frequency
analysis. For i ≤ 15◦, this resonance does not provide an escap-
ing route from the 2:3 MMR because it is confined from both
sides in e by more regular motion. For larger inclinations, tran-
sitions to separatrices of the Kozai resonance and to the low–e
unstable region are possible. The g − s + g8 − s8 secular res-
onance does not appear in the plot of the LCE because of the
large period of its resonant angle.

8. THE DISTRIBUTION OF RESONANT OBJECTS

From 191 KBOs currently registered in the Asteroid Orbital
Elements Database of Lowell Observatory (September 1999),
68 objects fall within a 4 AU semi-major axis interval around
39.45 AU. Twenty-two objects have well determined orbits and
46 objects have the eccentricity assumed. The latter group rep-
resents orbits with small observational arcs and orbital elements
that are very imprecise. Indeed, we have verified that most orbits
of the first group are stable inside the 2:3 MMR and that most
orbits of the second group are unstable on unrealistically short
time intervals.

Next, we have integrated the 22 objects of the first group
and Pluto (as massless test particles) with four giant planets
for 107 years using the symmetric multi-step integrator. Periods
shorter than 1200 years were suppressed by digital filtering.

Table III shows the orbital characteristics of Pluto and 15
Plutinos that were found on stable orbits over 107 years inside
the 2:3 MMR. Figure 11 shows the maxima and minima of their
a, e, and i on 107 years (the plot of the LCE was adapted from
Figs. 2a and 8a to a grey scale). In Fig. 11a, we plot a pair of
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TABLE III
Pluto and KBOs Found in the 2:3 MMR

No. Designation Distance Aσ Aω amin amax emin emax imin imax

1 Pluto 16.7 84.8 22.8 39.297 39.622 0.214 0.270 14.40 17.40
2 1993 RO 11.5 123.0 — 39.195 39.711 0.188 0.210 1.96 6.01
3 1993 SB 20.1 65.2 — 39.311 39.618 0.308 0.324 1.48 4.98
4 1993 SC 14.5 76.7 — 39.315 39.597 0.172 0.196 3.77 8.01
5 1994 JR1 11.5 94.5 — 39.279 39.621 0.111 0.138 1.14 5.73
6 1994 TB 17.6 54.5 73.2 39.358 39.555 0.178 0.317 12.10 21.30
7 1995 HM5 16.1 72.4 — 39.317 39.606 0.206 0.268 2.86 9.84
8 1995 QY9 10.5 132.0 — 39.143 39.789 0.249 0.267 3.61 7.75
9 1995 QZ9 15.0 41.5 — 39.396 39.501 0.115 0.178 17.20 21.80

10 1995 RR20 10.4 130.0 — 39.180 39.731 0.171 0.197 2.49 7.68
11 1996 SZ4 15.0 91.5 — 39.274 39.654 0.206 0.262 3.00 9.83
12 1996 TP66 21.7 17.2 — 39.409 39.510 0.314 0.334 5.49 9.21
13 1996 TQ66 13.8 27.6 — 39.413 39.472 0.088 0.130 13.10 16.60
14 1997 QJ4 15.0 102.0 35.1 39.259 39.665 0.207 0.263 14.10 18.50
15 1998 HK151 17.6 47.3 79.2 39.366 39.551 0.218 0.259 0.87 8.72
16 1998 HQ151 19.6 43.6 — 39.370 39.551 0.270 0.314 10.70 14.60

Note. Minimum distances to Neptune are shown in column 3 (Distance). Angles are in degrees; distances and semi-major axes are in
astronomical units. Minimum and maximum filtered orbital elements were computed for 107 years.

FIG. 10. The evolution of the angle ω −$N + ÄN of a test particle located in the secular resonance g − s + g8 − s8.
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FIG. 11. The orbital distribution of Plutinos. The arrows indicate the maxima and minima of the orbital elements in 107 years (Table III). Note the two groups
in (b) characterized by small (∼5◦) and large (∼16◦) inclinations.

two–headed arrows per object, one at the minimum and one at
the maximum values of a. Each of these arrows connect the
minimum and maximum values of the object’s e (Table III).
In Fig. 11b there is only one arrow per object connecting the
two points with coordinates (emin, imax) and (emax, imin), respec-
tively. For Pluto and Plutinos in the Kozai resonance, where the
evolutions of e and i are correlated, the arrows in Fig. 11b ap-
proximately indicate the true variation of e and i . For Plutinos
outside the Kozai resonance, these arrows delimit the extension
of a rectangle where e and i evolve.

Figure 11a shows that Plutinos are well accommodated within
the central stable space of the 2:3 MMR. Only 1995 QY9 and
1995 RR20 have large resonant amplitudes (Aσ = 132◦ and
130◦, respectively), and if their orbital elements were well deter-
mined from observations, these objects should escape from the
resonance within 108 years. Moreover, 1993 RO is on the border
between the marginally unstable and strongly unstable regions
with Aσ = 123◦, e = 0.2, and small i . The orbital elements of
these Plutinos derived from observations should be slightly in-
correct because, otherwise, the suggested escape rate from the
2:3 MMR would be unrealistically large (more than 5% of the
current population per 108 years).

There are two unpopulated stable regions, one at small eccen-
tricities (0.05 ≤ e < 0.1) and the other in the center (39.35 <

a < 39.55 AU and 0.15 < e < 0.3). Note that for e > 0.1 there

are no Plutinos with Aσ smaller than the amplitude correspond-
ing to the 5:1 three-body resonance.

The void region at small e cannot be a consequence of the
observational selection effect, because many KBOs on orbits
with e < 0.1 have been found at larger heliocentric distances
(42 < a < 45 AU) than the 2:3 MMR. Note that a similarly un-
populated region exists at 37 < a < 39 AU and e < 0.05 (one can
partially see it in Fig. 11a just outside the left separatrix of the
2:3 MMR) and has been discussed by Duncan et al. (1995). It
was suggested by them that the clearing occurred there during
the early stages of the Solar System formation. The two main
scenarios of how this may happened are the planetary migration/
sweeping resonances scenario of Malhotra (1995) and the ex-
citation of e (and i) by large planetesimals suggested by Petit
et al. (1999). It is possible that the void region at small e of the
2:3 MMR has a similar origin.

The void central region at small Aσ < 60◦ is a real puzzle. It
is true that the resonant bodies with small Aσ are expected to
be less numerous than the ones with large Aσ as they occupy
a relatively small volume in the phase space, but, on the other
hand, the observed void at small Aσ in the 2:3 MMR is more
pronounced than what would be inferred from the above argu-
ment. If confirmed by future observations, this void may be a
consequence of the scattering effect of Pluto (Nesvorný et al
2000).
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One can clearly distinguish two groups with different inclina-
tions in Fig. 11b. There are 10 low-inclination objects (imax < 10◦

and average of 5◦) and 6 high–inclination objects (including
Pluto—imin > 10◦ and average of 16◦). The latter group was
conjectured to be a remnant of the collision in which the Pluto–
Charon binary formed (Stern et al. 1999). Indeed, there is no
dynamic reason for the intermediate inclinations being under-
populated.

Apart from Pluto, only one object—1997 QJ4—was found
with stable libration in the Kozai resonance. It has Aω ∼ 35◦.
Two other potential potential objects in the Kozai resonance—
1994 TB and 1998 HK151—have large Aω and evolve within
5 × 107 years to the separatrices of the Kozai resonance. 1997
QJ4 is the only KBO discovered until now that shares the
2:3 and Kozai resonances with Pluto. This makes this body
an interesting object for future spectroscopic observations as
it might be one of few low–velocity ejecta of Pluto–Charon bi-
nary formation event that survived the scattering effect of Pluto
until present times. Indeed, Nesvorný et al. (2000) showed that
Pluto’s gravitational sweeping effect can efficiently remove the
objects from Pluto’s surroundings.

9. CONCLUSIONS

The dynamics of the 2:3 mean motion resonance with Neptune
have been studied in this paper. We have numerically computed
the maximum LCE, frequencies, and measures of chaotic diffu-
sion on a grid of a, e, i . This allowed us to determine the most
important inner resonances. Apart from previously known res-
onances, we have found the 4:1 and 5:1 three-body resonances
(the commensurabilities between the resonant period and the
period of the inequality 2:1 between Uranus and Neptune) and
the secular resonance g − s + g8 − s8. The 4:1 three-body res-
onance is important because it is located on the margin of the
stable region of the 2:3 MMR.

We have defined the marginally unstable region as the place
where the escape rate to Neptune–crossing orbits at t = 4 Byr is
more than 1% of the initial population per 1 Byr. This definition
was motivated by the need for identification of the area that is an
active source of Jupiter–family comets in present times. We have
shown that the marginally unstable area has a typical width of
several tens of degrees in Aσ and estimated the present relative
flux of escaping objects from the 2:3 MMR to be 1.7% of the
current resonant population per billion years. This value, cali-
brated by the number of active and extinct Jupiter–family comets
and their lifetimes, led to the estimate of 6 × 108 objects corre-
sponding to HT < 9 (D > 1–3 km) currently in the 2:3 MMR.
This number is only an upper limit if the contribution of the
Scattered Disk to the flux of ecliptic comets is important or if
other processes than purely dynamic ones (driven by four outer
planets) play an important role.

The orbital distribution of observed Plutinos falls within the
limits of orbital stability in Aσ and e. Low–Aσ orbits for 0.15 <

e < 0.3 and low–e orbits (e < 0.1) are stable but do not seem

to be well sampled by known Plutinos. These voids may be
either dynamically primordial or a consequence of collisions and
dynamic scattering in the resonance. Two groups with i ∼ 5◦

and i ∼ 16◦ were identified. If the latter one is a product of the
Pluto–Charon binary formation event then 1997 QJ4 is a good
candidate for a member of Pluto’s family.

In a second paper (Nesvorný and Roig, 2000), we extend the
present analysis to the 1:2, 3:4 and fine mean motion resonances
in the trans–Neptunian region.
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