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“Those who died are justified

For wearing the badge, they’re the chosen whites

You justify those that died

By wearing the badge, they’re the chosen whites

Come on! ”

Rage Against the Machine - Killing in the name, 1991



Resumo

As binárias de buracos negros em raios-X (BH XrBs) são laboratórios astrofísicos essen-

ciais para investigar a interação entre discos de acreção e buracos negros. Esses sistemas,

compostos por um buraco negro e uma estrela companheira, exibem uma variedade de

estados espectrais, oferecendo uma oportunidade única para estudar a dinâmica dos pro-

cessos de acreção em escalas de tempo mais curtas. Neste trabalho, abordamos o desafio de

capturar os processos radiativos que ocorrem no plasma, através da implementação de uma

prescrição de radiação de baixo custo computacional no código acelerado por GPU H-AMR.

Nossa abordagem incorpora uma solução radiativa autoconsistente que leva em conta o

bremsstrahlung, a radiação síncrotron, a radiação sincrotron comptonizada e as colisões de

coulomb. Por meio de diversos testes, validamos a funcionalidade de nossa metodologia.

A nossa implementação fornece uma ferramenta de baixo custo para reproduzir os efeitos

radiativos, possibilitando investigar as propriedades e a dinâmica dos discos de acreção em

BH XrBs, avançando assim nossa compreensão desses sistemas astrofísicos.



Abstract

Black hole X-ray binaries (XRBs) serve as essential astrophysical laboratories for in-

vestigating the physics of the accretion flows and black holes. These systems, composed of

a black hole and a companion star, exhibit a variety of spectral states, offering a unique

opportunity to study the accretion dynamics on shorter timescales when compared to su-

permassive black holes (SMBHs). In this work, we address the challenge of capturing the

radiation processes within XRBs by presenting an implementation of a radiation prescrip-

tion, which offers a lower computational cost compared to traditional radiative transfer

codes, within the GPU-accelerated code H-AMR. Our approach incorporates a radiative so-

lution that accounts for bremsstrahlung, synchrotron radiation, comptonized synchrotron,

and coulomb collisions. Through extensive testing, we validate the functionality of our

methodology. Our implementation provides a low-cost tool for investigating the properties

and dynamics of black hole accretion flows in XRBs.
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Chapter 1

Introduction

Black Holes (BHs) are extremely compact bodies where matter has been compressed

tightly resulting in a gravity field so strong that even light can’t escape. These bodies

arise as one of the most simple mathematical solutions to Einstein’s field equations, in a

space-time outside a static, spherically symmetric, star. The idea of a body with such

immense gravitational pull predates the concept of black holes. In the 1700s, the British

physicist John Michell and the French mathematician and physicist Pierre Laplace were

already considering the idea of a body so compact, that the escape velocity of a particle

exceeds the light speed, resulting in a dark star (Schutz, 2009).

It is possible to characterize the black hole as a supermassive black hole (SMBH) or

a stellar-mass black hole . A supermassive black hole is usually found in the center of

galaxies (Kormendy and Richstone, 1995). Unlike stellar-mass black holes, the processes

of its formation are not so clear and is a subject of investigation. They are usually very

massive reaching over millions or billions of solar masses. Stellar-mass black holes are born

in the latest phases of a massive star’s evolutionary process (Fryer, 1999) and usually have

masses on the order of tens of solar masses. In the past few years, mounting evidence has

also emerged supporting the presence of intermediate-mass black holes (Baumgardt et al.,

2019, and references therein).

Because matter falls toward the black hole with some angular momentum, it will spin

around before being accreted forming a disk of matter rotating around the black hole. For

matter to spiral inwards, such as for the angular momentum to be carried away, a mecha-

nism is required. It is believed that the mechanism responsible is the magnetorotational

instability (MRI)(Balbus and Hawley, 1991), which arises from magnetohydrodynamics

(MHD) physics. The gravitational energy lost as the gas gets closer to the black hole is
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radiated away by the disk, and provides the main channel for detecting them. In these

scenarios, radiative processes play a major role in the dynamic and evolution of the system.

Black holes X-ray binaries (XRBs) are systems composed of a black hole and a compa-

nion star and have been identified to have different spectral states throughout their lifetime.

When compared to supermassive black holes, the stellar mass ones have a much shorter

dynamical timescale, in a way that it’s possible to see them alternate states in periods

of weeks, which makes them the perfect probe to understand the different dynamics that

take place. In order to comprehend the observations of XRBs, there is a need to develop

models that capture the disk’s physics.

Simulating accretion disks around black holes is a highly challenging task due to the

dominant influence of electromagnetic and strong gravitational forces. Capturing the com-

plex physical processes requires the use of a general relativistic magnetohydrodynamic

(GRMHD) framework. Numerical codes play a crucial role in evolving these equations and

enabling detailed simulations. Several widely used codes have been developed for this pur-

pose, including H-AMR (Liska et al., 2022), HARM(Gammie et al., 2003), Cosmos++ (Anninos

et al., 2005), Athena++ (Stone et al., 2020) and BHAC (Porth et al., 2017). Although radi-

ation plays a crucial role in high luminosity scenarios, it is often implemented separately

as a module or completely omitted due to its computational demands. Therefore, there is

a need for the development of low-cost radiation prescriptions that can accurately capture

the essential radiative processes in simulations.

Instead of implementing a full radiative transfer module, we incorporate the self-

consistent solution proposed by Narayan and Yi (1995); Esin et al. (1996) into the GPU-

accelerated code H-AMR. This is achieved by storing a lookup table in the GPU’s texture

memory. By adopting this approach, we can approximately capture the radiative processes,

including bremsstrahlung, synchrotron radiation, comptonized synchrotron, and coulomb

collisions. In this project, we outline our implementation methodology and present the

extensive tests conducted to ensure its proper functionality. Furthermore, we will make

this tool publicly available to facilitate future research endeavors.

The structure of this dissertation is as follows: In Chapter 2 we describe the physical

processes related to accretion disk dynamics. In the next Chapter 3, we introduce the

theoretical background to understand such dynamics. Chapter 4 discusses the implemen-

tation of the radiative cooling prescription in the GRMHD code H-AMR. To guarantee the



Chapter 1. Introduction 14

validity of the modifications, we perform a series of tests, described in a concise manner

in Chapter 5. Finally, we show the results of the highest resolution run in Chapter 6 and

summarize the contents of this work in Chapter 7.



Chapter 2

Accretion disk physics

The accretion disk is formed by matter with angular momentum spiraling, towards

the singularity. Many different physical phenomena are involved in the dynamics of this

motion. In this Section, we will analyze some of these.

2.1 Magnetorotational instability

Firstly, for the matter to be spiraling, we need a mechanism to dissipate the angular

momentum. It is believed that the cause for this transport is the so called magnetorotati-

onal instability (MRI). It is sufficient to analyze the theory under magnetohydrodynamics

(MHD) scope.

For some time, the nature of this instability was an open question in physics. Until

today, it is not 100% clear, but we have clarity that the transport is caused by magnetic

forces in the existing plasma. It was first discussed by Chandrasekhar (1961), but the ap-

pearance of this instability in the context of accretion disks was only shown by Balbus and

Hawley (1991) 30 years later. The effects of this instability can be described by an ad-hoc

prescription of an alpha viscosity parameter, which is useful for hydrodynamic simulations.

The alpha parameter essentially acts like an internal friction within the accretion disk, due

to the differential rotation. This friction heats up the disk as it moves inward, and also

causes the disk to gradually lose its angular momentum.

In a qualitative discussion, we’ll imagine two fluid elements in close orbits. They’re

connected by a “spring” that causes a restorative force in them, once there is a perturbation

in the orbit of one of these fluid elements, the tension on the spring will force the outer one

to accelerate and the inner one to slow down as we can see in the Figure 2.1. The spring is
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an analogy to a restorative force caused by the magnetic field. This way, we allow matter

to transport angular momentum and fall inward.

Figure 2.1: The magnetorotational instability as explained by a spring connecting two fluid
elements. The outer fluid element is accelerated while the inner one is slowed down, this way,
angular momentum is carried out by the accretion disk, from the inner region to the outer
region (Murphy, 2014).

2.2 Radiation efficiency and accretion models

Black holes are usually detected due to the radiation emitted by the plasma gravitati-

onally attracted to them. While the matter falls inwards, part of the gravitational energy

is transformed into heat by some magnetic turbulence existing in the plasma.

The efficiency at which this heat is radiated away will have a huge impact on the

dynamics of the disk. If the gas can radiate away its energy in a timescale shorter than

the accretion time, it will cool rapidly, and with decreasing temperature, the pressure will

drop resulting in a collapse of the disk into a thin disk. If the gas can’t radiate the energy

away in time, the gas will become extremely hot, swelling its geometrical form. We can

define its energy efficiency by

ϵ =
L

Ṁc2
, (2.1)
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Figure 2.2: Visual representation of accretion flows switching between a RIAF and a thin disk regime as
a function of the luminosity (Contopoulos et al., 2015).

where L is the luminosity of the disk, and Ṁc2 is the rate at which the rest mass energy is

being accreted. Different radiative efficiencies lead to distinct accretion dynamics (Figure

2.2), which we can, basically, characterize in:

• Radiatively inefficient accretion flow (RIAF): The gas can’t radiate its energy fast

enough (ϵ << 0.01), making it extremely hot and geometrically thick. Most of the

energy is then advected into the flow itself, leading to a RIAF (Narayan and Yi,

1994). This happens at low (Ṁ ≲ 0.01Ṁedd) and very high (Ṁ ≳ 1Ṁedd) accretion

rates.

• Thin disk: The energy is radiated away, ϵ ≈ 0.06 to 0.4 according to Narayan and

Quataert (2005), cooling down the gas and making it collapse into a geometrically

thin, optically thick disk. This regime is usually found in moderately high accretion

rates (0.01Ṁedd ≲ Ṁ < 1Ṁedd). These states are usually modeled as described by

Shakura and Sunyaev (1973); Novikov and Thorne (1973).
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2.3 Spectral states of black hole x-ray binaries

Historically, the spectral cycle of XRBs consists of five different spectral states (Esin

et al., 1997).

1. Quiescent state: In this state, the system presents a clearly non-thermal spectrum

with a hard X-ray component (Ferreira, J. et al., 2006), with flux levels lower than

the four other states by several orders of magnitude. The accretion rate is very low

due to the low density of the disk (ṁ ∼ 10−9). The source remains mostly in the

quiescent state, but as the compact object pulls matter from the companion star, it

gets slightly brighter, transitioning to the next state.

2. Low/Hard state: The accretion disk density starts to go up, leading to an increase in

luminosity. This spectral state presents a power law spectrum with an exponential

cutoff around ∼ 100keV .

3. Intermediate state: Spectrum starts to shift from the low state to the hard state. It

usually features both thermal and non-thermal components that compete with each

other.

4. High/Soft state: In this state, the spectrum is dominated by a blackbody-like com-

ponent with characteristic temperature ∼ 1keV and total luminosity exceeding the

hard state values.

5. Very high state: For some very high luminosity systems, the non-thermal tail of the

spectrum becomes comparable with the blackbody-like component. In this state,

luminosity seems to be higher than the typical ones seen in the high state and the

spectra are also significantly harder.

It is important to mention that despite the success in Esin et al. (1997) model, our

knowledge has increased in recent years. Contopoulos et al. (2015) argues that the very

high state described in Esin’s work is now identified with the intermediate state transition

from high to soft and is a state reached before the soft state is entered. Also, the same

work discusses the Super-Eddington thick-disk state, which is a RIAF being accreted at

very high accretion rates. Due to higher disk density and thickness, the disk becomes

optically thick. The time it takes for the photons to escape becomes longer than it takes
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for the gas to be accreted, resulting in a small fraction of photons escaping. We are not

going to consider this regime in this work.

The low-mass XRBs spend most of their life in the quiescent state, but at times, they

produce an outburst that shows the distinct spectral states described above. These systems

are perfect to study the different scenarios of accretion physics because they switch between

them in a timescale of a few months to a year (Marcel et al., 2018). The difference in the

spectra for each state can be seen in the model-generated spectra done by Esin et al. (1997)

in Figure 2.3.

One approach to model these different spectral states is modeling the accretion flow

as a RIAF truncated at a certain rtr at which it transitions to a thin disk. The RIAF

produces non-thermal radiation whereas the thin disk emits thermal radiation locally. We

can picture the whole cycle in a BH XrB system as follows: The system is in the quiescent

state and, thus, not easily detectable. In this scenario, the truncation radius is very far

away (rtr ∼ 103−104Rg, where Rg = GM/c2) (Narayan et al., 1996; Hameury et al., 1997),

for the thermal component to be important. The first detection is a sudden increase in

luminosity and this happens because the rate of mass transfer from the companion star is

higher than the accretion rate, so the disk gets denser, increasing the accretion rate. This

is the low state at which rtr = 40− 100Rg according to the jet emitting disk (JED) model

by Ferreira, J. et al. (2006). The disk’s temperature increases, and with it, the viscosity

has a substantial increase as well, allowing much more transfer of angular momentum

outwards and inwards transfer of mass. The thin disk starts getting closer to the black

hole, making the thermal component more important. This is the transient state, where

both thin disk and RIAF regimes overlap. When the thermal component of the spectrum

starts to dominate, we’ve reached the soft state where the truncation radius is pretty close

to the innermost stable circular orbit radius, e.g. Rtr ∼ RISCO. The accretion rate is higher

than the mass transfer from the star, resulting in a gradual decrease in the accretion disk’s

density. The cooling time starts to increase until it becomes bigger than the viscous time,

resulting in the increase of the plasma’s temperature, acquiring the toroidal shape again,

in a geometrically thick and optically thin environment. The accretion rate decreases as

the truncation radius increase, dropping the luminosity, and reaching the hard state again.

A more detailed explanation of the spectral state transitions can be found in the work of

Fender and Belloni (2012).
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Figure 2.3: Spectra models for different XRB states (Esin et al., 1997). From top to bottom, left to right:
Quiescent state, low state, intermediate state, high state, and very high state. The model reproduces
observations of the soft X-ray transient Nova Muscae during its 1991 outburst.
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Radiation plays a crucial role in regulating the dynamics of these accretion disks, ma-

king it essential to incorporate a realistic cooling prescription to reproduce these dynamics.

However, accounting for the full radiative effects comes at a significant computational cost,

making the theoretical reproduction of different states a challenging task.

Multiple previous simulations have made significant contributions to the study of XRB

spectral states. Wu et al. (2016) conducted 2D hydrodynamical simulations with a radia-

tive cooling prescription and consistently observed that the truncated radius moves inward

as the accretion rate increases. Dexter et al. (2021) performed 3D radiation GRMHD simu-

lations of the hard state and identified a critical accretion rate of ṁ = 10−3, indicating the

minimum accretion rate at which the disk collapses. Takahashi et al. (2016) conducted 3D

GRRMHD simulations and confirmed the inward motion of the truncated disk at R ≈ 30Rg

for ṁ ≈ 0.1. Liska et al. (2022) employed radiation-transport, two-temperature GRMHD

simulations and discovered the formation of a magnetically truncated disk at R ≈ 20Rg

at ṁ ≈ 0.35, where the inner disk is dominated by magnetic pressure. Dihingia et al.

(2022) conducted 2D GRMHD simulations with a radiative cooling prescription to investi-

gate temperature properties on different magnetic topologies such as magnetically arrested

disk (MAD) and standard and normal evolution (SANE). However, their focus was on low

accretion rates, which resulted in relatively weak radiative cooling processes. As a conse-

quence, they did not observe a collapse of the optically thin disk. Furthermore, Nemmen

et al. (2023) performed 3D hydrodynamical simulations with radiative cooling prescrip-

tion and identified a polynomial power-law relationship between the accretion rate and the

truncation radius.

As of 2022, H-AMR has a radiative transfer module based on McKinney et al. (2014)

where they implemented radiative transfer equations in a full GRMHD context using an

M1 closure scheme Levermore (1984). The M1 closure scheme uses a truncated moment

formalism to solve the radiative transfer equations for all-optical depth limits. Although

more realistic, this method is more expensive, requiring greater computational power. To

account for the radiation effects, we implement the cooling prescription(Narayan and Yi,

1995; Esin et al., 1996) of Bremsstrahlung, synchrotron, and comptonized synchrotron

in the 3D GRMHD code H-AMR (Liska et al., 2022) by means of a lookup table using

GPU’s texture memory. We discuss the implementation in Chapter 4. We plan to leave

this useful tool in H-AMR for future use as a computationally faster alternative to the
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radiative module.

In the next chapter, we’ll discuss the theoretical GRMHD equations as well as some

fundamental properties of the code used.



Chapter 3

Theoretical background

This chapter is divided into two parts. In the first, we describe the basics of GRMHD:

general relativistic magnetohydrodynamics. In the second part, we describe the radiative

cooling prescription used in this work.

3.1 General relativistic magnetohydrodynamics

The accretion disk is a plasma, e.g. a very hot gas with enough charged particles

so that its dynamical behavior is dominated by collective effects involving electromagnetic

forces. Alongside accounting for electromagnetic effects, the space-time curvature is strong

enough to influence the dynamics with general relativistic effects. GRMHD provides a set

of equations that accounts for electromagnetic effects in magnetized fluids interacting in

curved spacetime.

In this section, we will analyze the equations of GRMHD. We’ll use the conventional

notation where c = G = 1 throughout this description.

3.1.1 Mass density conservation

The first equation describes the conservation of the number of particles, which we can

write as

(nuµ);µ = 0, (3.1)

where n is the particle number density, uµ are the components of the 4-velocity vector and

the ”; ” notation characterizes a covariant derivative. We can rewrite this equation on a

coordinate basis as
1√
−g

∂µ(
√
−gρuµ) = 0, (3.2)
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where ρ = mn is the mass density, m is the mass of the particle and g is the determinant

of the metric tensor g ≡ Det(gµν)
1.

3.1.2 Conservation of energy and momentum

In general relativity, energy, and momentum are usually condensed into a single mathe-

matical term called stress-energy tensor, which is a rank 2 tensor and is usually written as

T µν . This quantity describes the density and flux of momentum and energy in space. We

can write the conservation equation as

T µ
ν;µ = 0. (3.3)

Rewriting the equation on a coordinate basis

∂t(
√
−gT t

ν) = −∂i(
√
−gT i

ν) +
√
−gT κ

λΓ
λ
νκ, (3.4)

where we have separated the time component and the spatial components represented with

the index i. The term Γλ
νκ is the well-known Christoffel symbol.

We still need to define what is the stress-energy tensor that describes our situation.

We can usually categorize these tensor components as the following:

T 00 = energy density; (3.5)

T 0i = energy flux across the surface xi; (3.6)

T i0 = the ith momentum density; (3.7)

T ij = flux of ith momentum across the surface xj. (3.8)

This tensor is defined in such a way as to enforce the above physical meaning of each

component.

We’re dealing with a highly magnetized fluid, leading us to divide the tensor as a sum

of two parts, a fluid one and an electromagnetic term

T µν = T µν
fluid + T µν

EM. (3.9)

We’ll consider the fluid term describing a perfect fluid. We can write the stress-energy

tensor as (Schutz, 2009, section 4.6)

T µν
fluid = (ρ+ ue + p)uµuν + pgµν , (3.10)

1 This passage from equation (3.1) to (3.2) can be found in Schutz (2009), p.153, eq. 6.42.
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where ue is the internal energy and p is the pressure. In general relativity, a perfect fluid is

defined as a fluid with no viscosity and no heat conduction in the momentarily co-moving

reference frame (MCRF).

We can describe the electromagnetic field as

T µν
EM =



1

2
(E2 +B2) Sx Sy Sz

Sx −σxx −σxy −σxz

Sy −σyx −σyy −σyz

Sz −σzx −σzy −σzz

 . (3.11)

Here
1

2
(E2+B2) is the energy density in the electromagnetic field as described by Maxwell’s

theory, Si is the poynting vector in the ith direction and σij is the Maxwell stress tensor,

calculated as

σij = EiEj +BiBj −
1

2
(E2 +B2)δij, (3.12)

where δij is the Kronecker delta. Rewriting this tensor in terms of the electromagnetic

tensor (or Faraday tensor)

F µν =
√
4π


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 , (3.13)

where we have absorbed the factor
√
4π into the definition of the tensor, we arrive at

T µν
EM = F µαF ν

α − 1

4
gµνFαβF

αβ. (3.14)

Now, we adopt the ideal MHD regime, which describes the situation where the electric

field vanishes in the fluid frame of the plasma due to the high conductivity, leading us

into ignoring the Lorentz force, hence adding the following restriction to the equations

E⃗ + v⃗ × B⃗ = 0. We can rewrite this as

uνF
µν = 0. (3.15)

We can define the magnetic field 4-vector as:

bµ ≡ 1

2
ϵµναβuνFβα (3.16)
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where ϵ is the Levi-Cevitta symbol defined as ϵµναβ = − 1√
−g

[µναβ], so that [µναβ] is the

anti-symmetric symbol. With the aid of this definition, we’ll simplify T µν
EM as

T µν
EM = b2uµuν +

1

2
b2gµν − bµbν . (3.17)

To sum up, the full stress-energy tensor in MHD can be described as:

T µν
MHD = (ρ+ u+ p+ b2)uµuν + (p+

1

2
b2)gµν − bµbnu. (3.18)

3.1.3 The equations of the magnetic field evolution

The evolution of the magnetic field will be given by the source-free part of Maxwell’s

equations

∇ ·B = 0; (3.19)

∇× E = −∂B

∂t
. (3.20)

Using tensors, these equations can be written as2

Fµν,λ + Fλµ,ν + Fνλ,µ = 0. (3.21)

The other two Maxwell’s equations3

∇ · E = ρ; (3.22)

∇×B = J+
∂E

∂t
, (3.23)

will determine the current and charge density. In tensorial notation, this can be written

as4

F µν
;ν = Jµ. (3.24)

By employing the dual tensor, the equation (3.21) can be represented as a conservation

equation, meaning that the derivative of a specific quantity is identically zero

Gµν
;ν = 0. (3.25)

2 See for example exercise 12.53 in Griffiths (1999).
3 We are setting ϵ0 = µ0 = 1, just for convenience.
4 Equation 12.126 in Griffiths (1999).
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The dual tensor is generally defined as

Gµν =


0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0

 , (3.26)

where we have Gtν = Bν , so we can rewrite the magnetic field four-vector as

bt = Biuµgiµ , (3.27)

bi =
(Bi + btui)

ut
. (3.28)

We can write the induction equation

∂t(
√
−gBi) = −∂j[

√
−g(bjui − biuj)]; (3.29)

1√
−g

∂i(
√
−gBi) = 0, (3.30)

which is used to evolve the magnetic field in time.

In summary, the full set of GRMHD equations consists of the particle number conser-

vation Equation 3.1, the four energy-momentum Equations 3.4, the MHD stress-energy

tensor 3.18 and the induction Equation 3.29 with the constraint 3.30.

3.2 Radiative cooling

We follow the approach done in Esin et al. (1996) and Narayan and Yi (1995), based

on the works of Svensson (1982) and Stepney and Guilbert (1983). Using this prescription

we will describe the radiative cooling in an optically thin disk and an optically thick disk

separately and link these two scenarios through a smooth function that depends on the

total opacity of the medium (τ). All the cooling-related quantities depend on at most four

parameters: scale height (H), magnetic field (B), electronic density (ne), and electronic

temperature (Te). We start by describing the optically thin cooling processes.

The total cooling rate for an optically thin disk will be described as a sum of the

Bremsstrahlung (Q−
brem) and synchrotron (Q−

syn) process. We also consider the effect of

inverse Compton effects hardening the synchrotron radiation photons η(νc).

Q−
thin(H,B, ne, Te) = Q−

brem + η(νc)Q
−
syn, (3.31)
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We don’t consider the comptonization of bremsstrahlung radiation because (1) it would

require solving a more complex problem since it is not as easy as what it is done in

the comptonized synchrotron approach and (2) it has been shown by previous works that

bremsstrahlung comptonization is not as important because synchrotron overcomes brems-

strahlung at temperatures in which Compton effect is important (Yoon et al., 2020; Fragile

and Meier, 2009).

3.2.1 Bremsstrahlung Radiation

When electrons interact with the electric field of, for example, a heavy nucleus, they

tend to decrease their kinetic energy and change the direction of the trajectory. The

energy difference is emitted as electromagnetic radiation called Bremsstrahlung radiation.

We assume two distinct cases: electron-electron interaction and electron-ion interaction

Q−
brem = Q−

ei +Q−
ee. (3.32)

For low temperatures (104K ≲ Te ≲ 109K), bremsstrahlung dominates the emission.

3.2.1.1 Electron-proton bremsstrahlung

Considering a Maxwellian energy distribution, and using a cross-section calculated in

Heitler (1984) in Born approximation, we can get the spectral emissivity

dEep

dV dtdω
= Npc

∫ ∞

1+ω

ω
dσ

dω
βne(γ)dγ, (3.33)

where ω = hν/mec
2 is the dimensionless photon energy, θe = kBTe/mec

2 is the dimension-

less temperature, ne(γ) = neγ
2β exp(−γ/θe)/θeK2(1/θe) is the Maxwellian electron energy

distribution, K2 is the modified Bessel function of the second kind and ne and Np is the

electron and proton number densities, respectively. Integrating (3.33) we get the value of

the total emission. Svensson (1982) give us the following fit

Q−
ei =

dEep

dV dt
= neNpσT cαfmec

2


4

(
2θe
π3

)1/2

[1 + 1.781 · θ1.34e ]; if θe < 1

9θe
2π

[ln(2θe exp(−γE) + 0.42) + 1.5]; if 1 < θe
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where αf is the fine structure constant and γE is Euler’s constant ≈ 0.5772. If we put the

known constants in CGS we get

Q−
ei = 1.48× 10−22neNp


4

(
2θe
π3

)1/2

[1 + 1.781θ1.34e ]; if θe < 1

9θe
2π

[ln(1.123θe + 0.48) + 1.5]; if 1 < θe

giving us the final expression for electron-proton bremsstrahlung.

3.2.1.2 Electron-electron bremsstrahlung

The cross-section of this process is way more complex than the previous case. Haug

(1975) gives an expression that can be integrated numerically. So the spectrum is given by

dNee

dV dtdω
= n2

eσT cαfexp(−x)G(x, θe)/x (3.34)

where x = ω/θe. This function G(x, θe) is fitted for 13 different temperatures and inter-

polated so that, the total emission can be obtained by integrating the fit to the equation

(3.34), or by integrating equation (3.20) in Haug (1975). The result is

Q−
ee =

2.56× 10−22n2
eθ

3/2
e (1 + 1.1θe + θ2e − 1.25θ5/2e ); if θe < 1

3.42× 10−22n2
eθe(ln1.123θe + 1.28). if 1 < θe

Both Q−
ee and Q−

ei are given in ergs/cm3 · s.

3.2.2 Synchrotron Radiation

Synchrotron radiation is emitted when a relativistic electron under the influence of

a magnetic field, accelerates, spinning around a magnetic field line. The magnetic field

around the black hole comes from the accretion disk charged particles moving around.

This process will be crucial to describe the energy loss for most regions of inner hot

accretion flows. Due to high temperature, electrons are relativistic, making synchrotron

dominate over bremsstrahlung.

The equation of the power emitted by synchrotron radiation is found in Bekefi (1966),

p.180,

ηω(ω, ν, θ) =
e2ω2

2πc

[
∞∑

m=1

(
cosθ − β∥

sinθ

)2

J2
m(x) + β2

⊥J
′ 2
m (x)

]
δ(y). (3.35)
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Here, β = v/c, ω = mω0/(1 − β∥cosθ), ω0 = −eB0/(γm0) is the synchrotron frequency,

Jm(x) is a second kind Bessel function, J ′
m(x) is the derivative of the second kind Bessel

function and δ(y) is Dirac’s delta function. The coordinates x and y are defined as

x =
ω

ω0

β⊥sin(θ); (3.36)

y = mω0 − ω(1− β∥cosθ), (3.37)

β⊥ and β∥ are the velocities perpendicular and parallel to the magnetic field line, normalized

by the speed of light. A representation of the process can be seen in Figure 3.1.

Figure 3.1: An electron spiraling around a uniform magnetic field line, emitting synchrotron
radiation. Image taken from p.178 of Bekefi (1966).

If we want to assume a thermal distribution of electrons, we need to integrate the emissi-

vity over a Maxwellian distribution of electrons N(E) = N0E
2exp(−E/kBTe). Pacholczyk
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(1970) has calculated this result to be

ϵsdν = 4.43× 10−30 4πνne

K2(1/θe)
I

(
xM

sinϕ

)
dν ergs cm−3 s−1 (3.38)

where

xM =
2ν

3ν0θ2e
, (3.39)

ν0 =
eB

2πmec
. (3.40)

ϕ is the angle between the velocity vector of the electrons and the direction of the magnetic

field locally. I(x) is a tabulated function. If we assume an isotropic velocity distribution,

we can average over ϕ, resulting in this new function fitted by Mahadevan et al. (1996)

I ′(xM) =
4.0505

x
1/6
M

(
1 +

0.4

x
1/4
M

+
0.5316

x
1/2
M

)
exp(−1.8899x

1/3
M ). (3.41)

We substitute this function for I(xM/sinϕ) in equation (3.38). These equations are valid

only for optically thin emission, but, below a critical frequency νc, the emission becomes

self-absorbed. This can be estimated as the frequency at which the synchrotron emission is

equal to the blackbody emission in the Rayleigh-Jeans limit. If we consider a thin annulus

of height 2H, radius R, and thickness ∆R and make the blackbody condition happen in

the upper and lower surface of the annulus, we’ll get to the equation

2H(2πR∆R) × ϵsdν = 2 × (2πR∆R) × 2πν2
ckBTe

c2
dν (3.42)

• Volume of the annulus;

• Upper and Lower annulus contribution;

• Surface area of the annulus;

• Rayleigh-Jeans blackbody emission,

Finally, we can divide the synchrotron emission into two regimes. Below the critical fre-

quency, the emission is self-absorbed completely, approximating the volume emissivity by

a blackbody emission of the disk, divided by the disk volume. Above νc, the emission is

optically thin and we can use the results from (3.38) averaged over ϕ

Q−
syn =

2πR2

2HπR2

∫ νc

0

2π
ν2

c2
kBTedν +

∫ ∞

νc

ϵs(ν)dν. (3.43)
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Integrating over the emissivity, we get

Q−
syn =

2πkBTeν
3
c

3Hc2
+ (6.76× 10−28)

ne

K2(1/θe)a
1/6
1

×

[
1

a
11/2
4

Γ

(
11

2
, a4ν

1/3
c

)
+

a2

a
19/4
4

Γ

(
19

4
, a4ν

1/3
c

)
+

a3
a44

(a34νc + 3a24ν
2/3
c + 6a4ν

1/3
c + 6)e−a4ν

1/3
c

]
,

(3.44)

where we define the parameters a1, a2, a3 and a4 as

a1 =
2

3ν0θ2e
, a2 =

0.4

a
1/4
1

, a3 =
0.5316

a
1/2
1

, a4 = 1.8899a
1/3
1 , (3.45)

and

Γ(a, x) =

∫ ∞

x

ta−1e−tdt, (3.46)

is the lower incomplete gamma function.

We encounter a problem when calculating the synchrotron emission rate for low tempe-

ratures (Te ≲ 106 K) because the modified Bessel function of the second kind approaches

zero K2(1/θe). This is not a problem for Esin et al. (1996) because her regime considers

Te ∼ 109 − 1010.7K. Following Fragile and Meier (2009), K2(1/θe) is replaced by 2θ2e for

low temperatures. It is important to mention that for θe < 1, the synchrotron radiation

turns into cyclotron radiation.

3.2.3 Comptonization of synchrotron radiation

Compton scattering occurs when a photon interacts with a charged particle, usually an

electron. If the photon’s energy is higher than the electron’s, the photon will transfer energy

to the electrons and this is called the Compton effect. If the photon’s energy is lower, the

electron will transfer energy to the photon and this is called the inverse Compton effect.

Usually, what happens in the accretion disk, is relativistic electrons in the surrounding

corona transfer energy to photons emitted by the disk, cooling the electron.

We treat the Compton cooling rate using a Comptonized energy enhancement factor η

as done by Dermer et al. (1991). We define this factor as the average of the energy change

of a photon since the injection of the photon in the medium until it escapes, divided by

the initial energy

η =
⟨∆E⟩
Einit

. (3.47)
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We begin a probabilistic approach where η is given by

η =
∞∑
j=0

PjAj. (3.48)

where Pj is the probability of an electron be scattered j times and then escape, while Aj

is the average energy amplification of an electron scattered j times. Clearly, A0 = 1.

We’ll consider we’re inside the Thompson scattering regime, where the photon’s energy

is way smaller than the electron’s rest mass energy, e.g., ν ≪ mec
2/h, so that we do not

saturate to the Wien regime. This way, we can approximate Aj = Aj, where A ≃ 1+4θe+

16θ2e as described by Svensson (1984). If we consider the average number of scattering for

a photon to saturate to the Wien regime as jmax, where it can be approximately given by

the relation 3θe = EinitA
jmax so that jmax = ln(3θe/Einit)/ lnA, then

η =

jmax∑
j=0

PjA
j + Ajmax

∞∑
j=jmax

Pj. (3.49)

We’re considering that electrons that have entered Wien’s regime gain no further energy

on average, regardless of the number of subsequent scatterings.

Given the probability of a photon that travels a distance r without scattering being

exp(−r/λ), where λ = 1/neσT is the Thomson scattering mean free path and conside-

ring the scatterings as independent5, from Lightman and Band (1981), we make a rough

approximation for the escape probability of an electron that has scattered j times, such

that

Pj = (1− e−τ )je−τ = (1− P )P j (3.50)

where τ = neσTH, ne is the electronic density, σT is Thomson’s cross-section and H is

a characteristic scale height of the scattering region. We define P j as the probability of

the photon scattering j times6 and the term (1−P ) represents the probability of escaping

before scattering again. If we substitute Equation (3.50) in (3.49), using the geometric

series

(1− u)−1 =
∞∑
j=0

uj,
um

1− u
=

∞∑
j=m

= uj (3.51)

5 We can consider them independent if the successive scattering events are not strongly dependent on

the location of the previous scattering event, which happens for optically thin disks.
6 Note that Pj is the probability of scattering j times and then escaping, while P j is the probability of

scattering j times.
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and the value of jmax, we finally get to the equation

η = 1 +
P (A− 1)

1− PA

[
1−

(
Einit

3θ

)1−lnP/lnA
]
; (3.52)

P = 1− e−τ ; (3.53)

A = 1 + 4θe + 16θ2e , (3.54)

where Einit can be calculated using

Einit =
hν

mec2
. (3.55)

So the comptonization factor depends on the frequency of the initial radiation. Because

synchrotron peaks around the critical frequency, we consider the comptonization at this

frequency, such that

η(ν) = η(νc). (3.56)

3.2.4 Optically thick cooling

As this work aims to understand and implement the effect of cooling in the intermediate

state where both thin and thick disks coexist, it is important to take the consequences of

the denser (optically thick) and colder regions into consideration. Thin disks radiate as a

modified multi-color blackbody.

Following Narayan and Yi (1995), we can assume the effective surface flux of a thin

disk as

Q−
Total =

4σTT
4
e

H

1

3τ/2 +
√
3 + 1/τabs

(3.57)

where τ = τabs + τsca is the total optical depth, τabs is the absorption optical depth and

τsca is the scattered optical depth. We can approximate τabs as described in Narayan and

Yi (1995)

τabs =
H

4σTT 4
e

(Q−
thin). (3.58)

Notice that (3.57) is valid for both regimes. When τ ≫ 1, e.g, an optically thick regime,

the expression can be approximated to a blackbody radiation limit

QTotal = Qthick =
8σTT

4
e

3Hτ
, (3.59)

while when τ ≪ 1, e.g, an optically thin regime, (3.57) turns to (3.31).
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The total cooling ends up depending on the four parameters described at the beginning

of the section. The only parameter that is not local is the scale height of the disk, which

is a global quantity and will depend on the radial coordinate. We will deal with this in an

upcoming section, but for now, we manage to describe non-local processes such as inverse

Compton effects into a local approximation.

3.3 Coulomb collisions

In the denser regions, electrons and ions collide transferring kinetic energy between one

another. It becomes a very important mechanism to describe adequately the thermody-

namics of denser environments, such as the optically thick disk, where these collisions will

happen more often. To account for this, we follow the approach in Sądowski et al. (2016)

Qcc =
3

2

me

mi

ρ

mp

ne log(Λ)
ckbσT (Ti − Te)

K2(1/θi)K2(1/θe)
×
[
2(θe + θi)

2 + 1

θe + θi
K1(1/θm) + 2K0(1θm)

]
,

(3.60)

where the coulomb logarithm is considered to be Λ ≈ 20, K2, K1 and K0 are different kinds

of modified Bessel functions, θm = (1/θe + 1/θi)
−1. As you may notice, coulomb collisions

will take into account one more parameter, which is the ion temperature (Ti), and will be

implemented differently than the other cooling processes but we deal with that in the next

chapter.

As a consequence of this effect Liska et al. (2022) found that in the optically thick disk,

Coulomb collisions were sufficiently strong to thermalize the ion and electron temperatures

(Ti = Te), whereas in the optically thin flow, a two-temperature plasma is observable.

All the processes described in this section are treated locally.

3.4 The GPU-accelerated GRMHD code H-AMR

H-AMR is a GRMHD code derived from the HARMPI code (Tchekhovskoy, 2019), which,

in turn, is derived from the HARM2D code (Gammie et al., 2003). H-AMR is a code written in

C that has three levels of parallelization: (i) CUDA or OpenCL handles computation on

GPUs or CPUs, (ii) OpenMP handles communication and gridding and (iii) Non-blocking

MPI takes care of the transfer of boundary cells across nodes. Regarding the transfer of

information across GPUs, NVLINK is used for intra-node transfers and GPU-DIRECT

https://github.com/atchekho/harmpi
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for MPI transfer across different nodes. H-AMR is currently not an open-source code. It

utilizes a finite volume method (FVM), treating the partial differential equations as inte-

gral conservation laws, ensuring conservation properties within each control volume. The

finite volume method focuses on the conservation of quantities within the control volume

and accurately captures the flow dynamics by considering the fluxes of these quantities

across the control volume interfaces. To handle fluids with shock waves, H-AMR employs a

shock-capturing technique known as the Godunov-based HLLE scheme. This scheme com-

putes shock waves or discontinuities as part of the solution, without requiring additional

techniques to treat these characteristics.

Godunov’s scheme is a conservative numerical scheme for solving partial differential

equations solving Riemann problems at each cell boundary. Riemann problems are spe-

cific initial value problems that arise when solving conservation equations together with

constant initial data that has a discontinuity in the domain. These problems appear na-

turally in FVM due to the discreteness of the grid.

When the energy of a flow is predominantly kinetic, the use of a Godunov-type con-

servative numerical scheme with linearization of the Riemann problem can lead to the

prediction of non-physical states, such as negative density or internal energy. For instance,

in cases where the dominant energy of the flow is kinetic, the linearization of the Riemann

problem may indicate a negative internal energy. To address this issue, a new method

called the Harten-Lax-van Leer-Einfeldt (HLLE) scheme was proposed (Einfeldt, 1988).

This scheme ensures positive conservation of internal energy and density, effectively avoi-

ding the occurrence of negative values. The HLLE scheme incorporates specific stability

bounds that depend on the absolute values of the maximal and minimal wave speeds.

H-AMR expresses the equations of motion in a conservative form

∂U(p)

∂t
= −∂F1(p)

∂x1
− ∂F2(p)

∂x2
− ∂F3(p)

∂x3
+ S(p) (3.61)

where U is the conservative quantities vector, such as particle number density, energy den-

sity, momentum density, Fi is the vector of fluxes in the i-th direction of the corresponding

conserved quantity, p is the vector of primitive quantities such as particle density, fluid

internal energy, velocity. Finally, S(p) accounts for the warping of the space-time grid

and may include physical processes, such as nuclear heating, gas-radiation interactions,

etc. The transformation of conserved variables to primitive ones is performed using the
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well-known Newton-Raphson root-finding method or the Aitken acceleration scheme.

H-AMR uses an adaptive mesh refinement (AMR) mechanism which allows focusing

the resolution on regions of interest. Although this is not very advantageous for RIAF,

which spans most of the computational domain, it is very useful for simulating small-scale

features, such as thin accretion disks, which are expected in this work.

Regarding the coordinate system used, spherical grids are the most natural and efficient

ones. Among other reasons, they support a logarithmic spacing in the radial coordinate

which provides higher resolution for regions close to the black hole and lowers the resolu-

tion progressively farther away. This is good because closer regions tend to have shorter

timescales.

A major problem is dealing with polar coordinate singularity. They have implemented

transmissive boundary conditions across the singularity to minimize dissipation. Also,

spherical grids tend to squeeze the cells near the pole which causes the Courant condition

(Courant et al., 1928) to limit the global timestep more than for a Cartesian grid. The

Courant condition states that the distance that any information travels during the time

step length within the mesh must be lower than the distance between mesh elements. If

this condition is not achieved, instabilities are amplified and may cause divergence of the

simulation, where the solution or behavior of the system becomes increasingly different or

deviates significantly from the expected result. There are two main approaches to deal

with this problem. One is the use of Cartesian grids and the other is to use static mesh

refinement (SMR) to derefine the grid near the pole. The code combines the best of

both approaches to deal with the squeezing of cells in the ϕ-direction, for a more detailed

discussion see Liska et al. (2022).

H-AMR has yielded notable results so far, including the discovery that warped accretion

disks drive both vertical and radial structural oscillations (Kaaz et al., 2022), contributions

to the study of truncated disks (Liska et al., 2022), the understanding of black hole spin-

down through magnetically arrested disks (Lowell et al., 2023), and the achievement of the

highest resolution 3D GRMHD simulations for short-duration gamma-ray burst (sGRB)

jets (Gottlieb et al., 2022).



Chapter 4

Radiative cooling implementation

In this section, I describe how the equations shown in Chapter 3 were implemented

into the code and the difficulties involved in the process. As described by McKinney et al.

(2014), we can write the evolution of the energy-momentum equation as

∇µT
µ
ν = Gν , (4.1)

where Gν is the external 4-force density. When Gν = 0, the energy and momentum are

conserved. It makes sense to implement the cooling inside this 4-force density vector. One

can describe a radiation stress-energy tensor as

Rµ
ν =

 Ê F̂ i

F̂ j P̂ ij

 , (4.2)

where Ê is the radiation energy density, F̂ is the radiation flux vector and P̂ is the radiation

pressure tensor. The radiation stress-energy tensor allows obtaining Gµ, which in the

orthonormal fluid frame becomes

Gµ =

τabsÊ − λ

τtotF̂
i

 , (4.3)

as described by Mihalas and Mihalas (1984). τ is the optical depth and λ is the gas-

fluid frame energy density emission rate of the gas. Boosting from the lab frame to fluid

orthonormal frame, the covariant 4-force can be written

Gµ = −(τabsR
µ
αu

α + λuµ)− τes(R
µ
αu

α +Rα
βuαu

βuµ), (4.4)

where uα is the 4-velocity vector.

We will not consider the addition of pressure and flux of the radiation in the surrounding

matter, we’ll only account for the energy emission of the plasma. So in our approach, we
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only consider the energy depletion in each cell block of the grid. Because of this, we can

consider that the 4-force density can be written as

Gµ = −λuµ, (4.5)

where λ = Q−
total is the energy emission rate due to radiation.

The cooling function, called cooling_function, is a device function in the code, which

means it runs on the GPU and is used to retrieve the cooling value from texture memory.

This function is called within the source_texture_cooling function, which calculates the

Equation 4.1. The source_texture_cooling function is invoked within the code’s source

function, which resides in the GPU_program1.cu file.

4.1 Calculating cooling in H-AMR

The most forward approach to deal with this problem would be to implement the

equations described directly into the code and calculate it at every cell center at each

timestep. This method by itself would be cheaper than the full radiative transfer with

M1 closure implemented in H-AMR. Past results from our group Nemmen et al. (2023) have

shown that the usage of lookup tables is also an alternative, faster method to implement

cooling in simulations. A lookup table is a data structure used to store and retrieve

pre-computed values. This way, we would calculate all the cooling before running the

simulation for a range of each of the four parameters and retrieve the closest value from

this table while running the simulation. This is an even faster way than computing the

equations at each timestep.

Typically, the cooling values and parameters are passed to the code as an array, so

at every timestep, the code analyzes the values of scale height (H), magnetic field |B|,

electronic density (ne) and electronic temperature (Te) inside each cell and retrieves the

cooling value that matches these parameters. Since we are using a GPU-accelerated code

that is coded in CUDA/C, we decided to pass the cooling table as an array but allocate it

inside the texture memory of the GPU. Previous works have done this kind of implementa-

tion in CUDA and found that the usage of texture memory is a significant way to improve

the performance of the code. Schneider and Robertson (2017) allocated a lookup table

using texture memory in the code CHOLLA (Schneider and Robertson, 2015) for simulating

cooling in galactic winds.
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To calculate the cooling table, we have independently developed a code that combi-

nes OpenMP and MPI, separate from H-AMR, that divides the calculation of the cooling

equations into multiple threads and processes, which you can see the efficiency in Figure

4.1. In some simulations, we used tables with 100 million values, so establishing an ef-

ficient way to calculate the tables was extremely necessary. The very large tables were

calculated using OLCF’s supercomputer SUMMIT. The output files were stored in binary

format to optimize the writing and reading processes, resulting in faster performance and

reduced storage requirements. We also developed a code apart that stores the table in

the texture memory of the GPU and allows the user to test texture memory interpolated

values without necessarily running H-AMR. All the documentation and code are available at

our Github. In the "H-AMR" git repository maintained by USP’s black hole group, you

can find a dedicated branch called "Cooling_pedro", which houses my modified version

of the code. This branch incorporates detailed documentation of the newly implemented

functions and variables.

Since H-AMR is not publicly available yet, these documents are also not publicly available

yet. We also note that binary files must be handled carefully. Reading and writing binary

data across different operating systems is not advised because of potential differences in

endianness (ordering of bytes within a multi-byte data type) and data representation, which

can lead to compatibility issues. This way, it is advised to generate the tables within the

operating system that H-AMR will be run.

4.1.1 Quality Factor

Many physical processes take place inside the accretion disk and one must be able

to resolve them in order to ensure the reliability of the results. Take local stress as an

illustrative example. This quantity depends on many different processes that take place

inside the accretion disk, such as the amplification of small magnetic fluctuations due

to MRI, couplings between different wave modes, and the dissipation of the turbulence

at small scales. To account for all these effects, the simulation must resolve the fastest-

growing linear modes of MRI, the shortest length scale of the coupled wave modes, and the

turbulence dissipation’s small scales. If these processes are not resolved, the MRI is not

able to transfer angular momentum outwards which stops the gas from spiraling inwards

and induces the formation of blobs.

https://github.com/pedronaethe/Radiative-Cooling-Table
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Figure 4.1: Time elapsed on my OpenMP+MPI table generation code per number of MPI ranks. This is
the generation of the bremsstrahlung values in a 324 values table using OLCF’s supercomputer SUMMIT.
Each compute node on Summit contains two IBM POWER9 processors summing up to 168 OpenMP
threads per node.

Usually when simulating geometrically thick disks (RIAFs), these problems are more

difficult to arise due to the higher quantity of cells inside the disk, but when dealing

with geometrically thin disks, the scales become smaller and one must have a quantitative

parameter to ensure that the results are trustworthy. Hawley et al. (2011) analyzes different

stratified shearing boxes and global simulations to characterize "quality factors"which are

defined as the number of cells available for resolving the fastest-growing MRI mode

Qi =
2πvA
Ωrotdxi

, (4.6)

where vA =
√

bµbµ/(ρ+B2+γϵ) is the typical Alfvén speed, Ωrot =
√
uµuνgµνδ

µ
ν /u

0 is the

rotational frequency and dxi is the coordinate interval in each direction.

According to Hawley et al. (2011), the established value to solve for these modes is

in the range 10 − 20. We aim to stay inside this range for the whole simulation time.

To tackle this, we set a target scale height (H/R)target following Noble et al. (2009). The

temperature required to achieve a desired aspect ratio H/R in Newtonian gravity is

Tdesired =
π

2

[(
H

R

)
target

ΩR

]2
(4.7)

where Ω = 1/(r3/2 + aspin) is the relativistic orbital frequency in code units (G = c =

M = 1). This way, we set a floor for each cell, if the temperature of the gas is below the
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Figure 4.2: Density scale height plotted for a simulation with (H/R)target = 0.05, with 1 level of SMR
targeting the blocks near the midplane. Our base grid resolution is (794 × 384 × 640) reaching (1588 ×
768× 1240) in the refined region.

desired temperature, the cooling goes to zero in that cell. By using this, we can control the

temperature floor and avoid the runaway cooling effect (Liska et al., 2022) also controlling

the necessary resolution to solve the MRI within the geometrically thin disk as it is possible

to see in Figure 4.2.

4.1.2 Necessary resolution to resolve MRI processes

Once we control the scale height of the disk, we can calculate the necessary resolution

to resolve the MRI process. We do this by considering that very low values of H/R can be

approximated as an angle. Ideally, you should have 16 − 32 cells per θ = H/R, however,

10 cells seem to be enough to resolve the MRI. Since θ ranges from 0 to π, it is easy

to calculate the amount of H/R that fits inside this range, therefore calculate the total

number of cells in the θ dimension. In H-AMR, it’s very important to keep the aspect ratio of

each cell as close to a cube as possible, so that ∆R = ∆θ = ∆ϕ, allowing the calculation of

the necessary resolution for the whole grid. We target a cube cell mainly due to numerical

stability, finite volume methods are designed to work most stably and accurately on grids

with similar spacing in all three spatial dimensions. We created a google sheets document

where you can check if all the conditions are satisfied, as well as the necessary resolution

for a certain scale height.

https://docs.google.com/spreadsheets/d/1Lklvhq3Sbu0upUvGl4FZU3uYRQWC6SHcqOoy20MTsww/edit#gid=0
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4.1.3 Implicit values for Cooling

The radiative 4-force Gµ can become stiff when its magnitude is significantly larger than

the conserved quantities. To deal with this, we level the upper limit of the cooling function

by the internal energy of the gas. If the cooling meets the criterion utdtQtot > 0.3|ug|, we

adapt it as

Qtot ≡
0.3ugQtot

dt|utQtot|
. (4.8)

We choose the value of 30% of the internal energy to regulate the value of the cooling.

A realistic way to deal with this would be to utilize an implicit solver. H-AMR benefits

from an implicit solver in the M1 closure radiative transfer mode, which uses an implicit-

explicit (IMEX) Runge–Kutta scheme (Pareschi and Russo, 2005; McKinney et al., 2014).

An implicit solver is a numerical method used to solve time-dependent equations in

computational simulations. It is particularly useful when dealing with stiff systems of

equations, where the time scales of different processes vary significantly. In contrast to

explicit solvers, which update the solution at a new time step using only information

from the previous time step, implicit solvers consider both current and future time steps

simultaneously.

In an implicit solver, the equations are formulated in such a way that they involve

the unknowns at the current time step and the next time step. This creates a system of

equations that needs to be solved simultaneously. The advantage of this approach is that

implicit solvers are more stable and can use larger time steps, making them more efficient

for stiff systems, which tend to be computationally challenging for explicit methods.

We also adapted the implicit solver from the code to work with my prescription. One

can switch easily between the two approaches and can decide which one fits their problem

best. Using our cooling prescription within the M1 closure scheme seems to be faster than

calculating individual opacities for different radiative processes, but it slows down the code

considerably compared to the internal energy approach.

4.1.4 Parameters

As described before, radiative cooling depends on four parameters and this subsection

indicates how we calculate them in H-AMR.

RIAFs are characterized by a two-temperature plasma approach. This happens because
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electrons cool down way more efficiently than ions due to the large mass difference between

these particles. Following Liska et al. (2022), a two-temperature thermodynamics system

was implemented, where they evolve the ion and electron tracers separately.

κ = pe,i/ρ
γ−1, (4.9)

which allows us to write

Te =
pemH

kB
; (4.10)

Ti =
pimH

kB
, (4.11)

where we considered the mean molecular weight as µ = 1.

The electron number density is calculated considering an ionized hydrogen torus, so

that

ρ = neme + nHmH , (4.12)

considering ne = nH and me ≪ mH ,

ne ∼
ρ

mH

. (4.13)

The magnetic field value calculated at every cell is given by

B =
√

BµBµ. (4.14)

The remaining parameter necessary for calculating the cooling value is the scale height,

which is a global quantity. We could approximate this quantity to a local temperature

scaleheight defined as HT = T 4
e /∇(T 4

e ), which was done for previous works (Yoon et al.,

2020; Fragile and Meier, 2009). We tried to use this, but the result was very noisy and

did not represent physical scale height values. We took advantage of our floor temperature

and approximated the value of the scale height as (H/R)target ×Rcyl, where (H/R)target is

the targeted scale height of our prescription and Rcyl is the radial cylindrical coordinate.

It is possible to check how H behaves in Figure 4.3. By doing so, we approximated the

scale height to a realistic value.

4.1.5 Texture memory

One important aspect of computational performance is the efficient utilization of a

computer’s memory. To optimize memory access and accelerate computations, modern
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Figure 4.3: Scale height parameter calculated as (H/R)target ×Rcyl in code units.

graphics processing units (GPUs) provide a specialized type of memory called texture

memory.

Texture memory is a high-speed memory space located on the GPU that is specifically

designed to store and access 2D or 3D data, commonly known as textures. Traditionally,

texture memory has been primarily used in computer graphics for rendering realistic images

and textures on screen. However, its capabilities have been extended to other domains,

including scientific computing, such as astrophysical simulations.

The key advantage of texture memory lies in its optimized memory access patterns.

It is designed to exploit spatial locality, which refers to the tendency of data elements to

be accessed in close proximity to each other. In the context of astrophysical simulations,

texture memory allows efficient access to large arrays or grids of data representing physical

properties such as radiative cooling.

Texture memory also offers additional features that can enhance computation. These

include built-in interpolation capabilities, which allow for smooth and accurate sampling

of data between discrete grid points. This will be useful for computing in-between values

in our radiative cooling table.

Texture memory can be conceptualized as a grid-like structure where each cell stores

a value at its center, as illustrated in Figure 4.4 for a 2D texture. When accessing the
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Figure 4.4: This is an example of a 2D texture grid, where the value of the table is stored at the yellow
dots in the center of each cell. The coordinates indicate the position in the grid where you want to fetch
the data (Moshovos, 2009).

value in a cell, you must specify the desired coordinates. Each coordinate is related to a

parameter, in our case, the cooling value is determined by four parameters (H,B, ne, Te).

To accommodate these four parameters, a 4D texture is needed. Since this feature was

implemented for graphical rendering, 4D textures are not available. We employed 3D

textures, where two of the parameters are flattened into a single dimension. We choose to

flatten the dimensions of ne and T1e into a single texture coordinate.

Handling the boundaries of the table is a crucial aspect, and CUDA offers various

methods to address this challenge. In this case, the clamp mode was employed, which

selects the closest cell to the specified value. For example, if the values fall below the

minimum thresholds, such as H < Hmin, B < Bmin, Te < Tmin
e , and ne < nmin

e , the

code will retrieve the closest cell containing the value Qtotal(Hmin, Bmin, T
min
e , nmin

e ). The

CUDA architecture also provides alternative methods like the wrap mode. The distinction

between these methods is depicted in Figure 4.5.

To retrieve the appropriate data for the cooling calculations, it is necessary to navigate

the texture grid. Let’s consider the texture coordinates in this context. We define NH ,

NB, Nne, and NTe as the number of scale height, magnetic field, electronic density, and

electronic temperature data points utilized, each equally spaced on a logarithmic scale.

Additionally, we can denote CH , CB, and Cne+Te as the respective coordinates within the
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Figure 4.5: This picture portrays the main difference between the clamp mode and the wrap mode. Left:
Wrap mode fetches the corresponding coordinate, repeating the grid in the out-of-bounds space. Right:
The clamp mode will take the nearest value to the chosen coordinates, this is the mode used in this work
(Moshovos, 2009).

grid. With that in mind, the mapping of each parameter into non-normalized coordinates

follows

CH =

(
log10(H/Hmin)(NH − 1)

log10(Hmax/Hmin)

)
+ 0.5; (4.15)

CB =

(
log10(B/Bmin)(NB − 1)

log10(Bmax/Bmin)

)
+ 0.5; (4.16)

We make use of the floor which returns the largest integer less than or equal to a given

number. For more details, refer to CUDA’s documentation and programming guide.

In the ne +Te dimension, we perform manual interpolation using a linear interpolation

formula, similar to how it is done in texture memory. The interpolation in texture me-

mory occurs when the index is not an integer. Let’s consider a generic example with two

neighboring indices, i and i + 1, representing the electron number density (ne) values in

our table.

When we choose a specific ne value from the table, say ne = x, the corresponding

texture coordinate index will be an integer if x matches one of the ne values in the table

(i.e., x is equal to either ne at index i or ne at index i+ 1). However, if we choose a value

of x that lies between ne at index i and ne at index i + 1, then the index will not be an

integer, and it will have a fractional part.

This fractional part indicates how close the chosen ne value (x) is to index i or index

i + 1, and the interpolation process will then calculate the intermediate value based on

this proximity. In other words, the interpolation takes into account the fractional part to

estimate the value between ne at index i and ne at index i+1, allowing us to approximate

the table value for the specific ne in our calculations.

We opt for manual interpolation to have precise control over the interpolation process,
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considering the fractional parts of both ne and Te individually. This approach enables us to

achieve a highly accurate interpolation. By carefully handling the fractional components,

we can ensure that the interpolated values align closely with the original data points,

resulting in more reliable and precise calculations.

In our interpolation process, we also account for the specific point where we apply the

approximation K2(1/θe) → 2θ2e for the synchrotron process. This approximation represents

a transition between two regimes with different variation rates. Failing to consider this

transition properly during interpolation could potentially lead to inaccurate results.

To address this, we introduce conditional checks in the interpolation code to identify

whether the current values of ne and Te lie within the region where the approximation

is applied. If they do, we apply the appropriate approximation accordingly. However,

for values outside this specific region, we ensure that the regular interpolation method is

employed to maintain accuracy. The complete interpolation calculation can be found in

our GitHub repository.

We compare the usage of global memory and texture memory to store table values

and access data for different numbers of parameters. In the case of global memory, we

employ a binary search algorithm. Binary search has a time complexity of O(log n), where

n represents the number of elements in the sorted list. This logarithmic time complexity

significantly improves search speed compared to linear search, which has a time complexity

of O(n) in the worst case. While we do not employ interpolation for the global array, we

do utilize it for texture memory usage.

Once we retrieve the appropriate value from the table in both cases, we store it in a

pointer. We select the parameters to be searched (H,B, ne, and Te) randomly, taking into

account the total number of combinations: 1304, 1504, 1804, 2004, and 2304.

The comparison between global memory and texture memory usage is illustrated in

Figure 4.6. We observe that for a small number of calculations, linear memory exhibits

faster performance. However, as the quantity of requests increases, the time demand for

texture memory decreases. Around 1504 calculations, they both converge to a similar

value. We anticipate that using a larger number of blocks and threads will further amplify

the differences between the two memory types. In the comparison, we focus solely on

the calculation time and do not consider the time required for creating the texture object

or reading the table values from the binary file. This allows us to specifically assess the
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performance differences based on the calculations themselves.

In our study, we conducted a comparison between the time it takes to retrieve table

values from texture memory and the time required to calculate the cooling equations

directly. This analysis allowed us to determine how much faster it is to compute values

from a pre-calculated cooling table rather than letting the code perform calculations in real

time. For this specific test, we conducted the cooling calculations for different numbers of

iterations, specifically for 54, 104, 154, 204, and 504 iterations.

The findings of this comparison are presented in Figure 4.7. Notably, we observed that

as the number of calculations increases, the time difference between using texture memory

and direct calculations remains relatively stable, consistently showing that texture memory

usage is approximately 1000 times faster. However, as the number of calculations becomes

even larger, this time difference seems to further widen, with the texture memory approach

becoming nearly 10000 times faster compared to direct calculations.

These results demonstrate the significant advantage of utilizing pre-computed cooling

tables in terms of computational efficiency. By employing texture memory to store and re-

trieve pre-calculated values, we can dramatically accelerate the cooling process and achieve

substantial time savings, especially for scenarios involving a large number of calculations.

Such optimization can significantly enhance the overall performance of the code.
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Figure 4.6: Comparison between texture memory and global memory in accessing table values. For this
test, we make use of a single GPU GTX 1660S using 1 block and 1 thread of the GPU.

Figure 4.7: Comparison between texture memory and analytical equations calculation. For this test, we
make use of a single GPU GTX 1660S using 1 block and 1 thread of the GPU.



Chapter 5

Validation of the cooling implementation

We performed a range of tests in order to test the validity of our cooling equations. In

order to achieve that we performed low-resolution 2D simulations of an initial torus (Fish-

bone and Moncrief, 1976) with rin = 12Rg and rmax = 25Rg in a grid with rout = 103Rg.

We let the simulation run without cooling until 4000Rg/c, reaching a stable accretion rate.

We then turn on the cooling prescription.

To achieve the comparison between the different types of cooling, we implemented dis-

tinct texture objects referent to bremsstrahlung, black body approximation, comptonized

synchrotron, Compton enhancement factor, and absorption opacity values alongside the

existent coulomb collision and total cooling values.

We considered an accretion rate of ≈ 0.02 Ṁedd to test the results in optically thick

and optically thin regimes separately since at this accretion rate, it allows us to have both

regions. The resolution of these runs was (264× 128) which is sufficient for the tests since

we only tried to observe the type of emission from each optical limit.

In Figure 5.1 is possible to see the general properties of the gas. It is clear that the

gas shows the formation of a "blob". This is an outcome due to not resolving the MRI in

these regions. As a consequence, the gas doesn’t spiral inwards as expected which leads to

an accumulation of the gas in that region. This blob does not appear in higher-resolution

simulations. Since we are only interested in addressing the different cooling processes, this

is not a concern for the test run.

In Figure 5.2, we can see the different cooling processes in code units. To convert from

code units to CGS, one needs to simply:

Qcgs = Qcode
ρscalec

2

GM/c3
, (5.1)

where ρscale = 1 × 10−5 for this simulation, M = 10M⊙, c is the speed of light and G is
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Figure 5.1: Top: (Left) accretion rate per time, (Right) density. Bottom:(Left) MRI quality factor,
(Middle) electronic temperature, and (Right) ion temperature.

Figure 5.2: Top: (Left) Total cooling rate, (Middle) bremsstrahlung cooling rate, (Right) synchrotron
cooling rate. Bottom:(Left) Absorption opacity, (Middle) Compton enhancement factor and (Right) comp-
tonized synchrotron.
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the gravitational constant.

5.1 Optically thick and optically thin regime tests

We expect the optically thick disk to radiate as a black body and the corona to radiate

as Qbrems + η(νc)Qsynch. The comptonization must happen primarily in the corona, where

the hot electrons will scatter upcoming photons coming from the disk and enhance their

energy. We can see from Equation 5.2 that the Compton enhancement factor is higher in the

optically thick disk, instead of the corona. This is an expected outcome as higher density

will allow more up-scattering of the photons and compensates for the lower temperature.

However, this is misleading since our total cooling function for the optically thick limit

(eq. (3.57)) does not consider optically thin emission where τ ≫ 1. In the high-density

areas closer to the mid-plane, we have a higher Compton enhancement factor. We expect

that in a resolved disk, we will be able to see an increase in the Compton enhancement

area due to the formation of a corona.

Because equation (3.57) is an adaptation to meet both optically thick and optically thin

regimes, we want to make sure that it is valid in our simulations. We compute the following

quantities in order to analyze how the total cooling is correlated to the two optical limits

δthick =
|Qbbody −Qtot|

Qtot

; (5.2)

δthin =
|(Qbrems + η(νc)Qsyn)−Qtot|

Qtot

. (5.3)

We expect δthin to be zero above and below the thick disk and tend to higher values as

we approach the mid-plane, since in this region, the blackbody cooling is stronger than

Qthin. As for δthick, we expect it to be close to zero in the mid-plane and much greater

than one in the rest, since our blackbody cooling approximation is generally stronger than

the optically thin emission. Both parameters can be seen in Figures 5.3 and 5.4. We also

compared the zeroth and first-order expansion taken from equation (3.57) to both optical

limits. It is clear that in both cases, the first-order approximation better describes the

regions where τ ≳ 1, as expected. We have done this test again for a higher resolution

run and have encountered the same results, with the absence of the blob. We tackle this

in Chapter ??.
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Figure 5.3: The images are split into two halves: the left side shows the distribution of the total optical
depth (τtot), while the right side displays the (δthick) parameter. We compared the zeroth-order (left) and
first-order (right) approximations of Equation (3.57) for the case where τ is much greater than 1. It is
possible to see that first-order approximation better describes the region where τ ≳ 1.

Figure 5.4: The images are split into two halves: the left side shows the distribution of the total optical
depth (τtot), while the right side displays the (δthin) parameter. We compared the zeroth-order (left) and
first-order (right) approximations of Equation (3.57) for the case where τ is much greater than 1. It is
possible to see that first-order approximation better describes the region where τ ≳ 1.
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5.2 Analytical comparison to cooling table values

In order to validate the accuracy of our simulation results, we compared the calcula-

ted cooling values obtained from our lookup table with the analytical cooling solutions

presented in Section 3.2.

Firstly, we captured a snapshot of the simulation at a particular time. From this

snapshot, we extracted the four essential parameters required to calculate the cooling

within the analytical equations. These parameters included the scale height, magnetic

field value, electronic density, and electronic temperature associated with each cell in the

simulation grid. Next, using the extracted parameters, we applied the analytical equations

to calculate the cooling value corresponding to each individual cell in the grid. This allowed

us to determine the expected analytical cooling value for every cell in our simulation.

Subsequently, we compared the calculated cooling values from our simulation’s look-up

table with the corresponding analytical values. Upon analyzing the results, we found that

there was a maximum error of 45.72% between these two sets of values. We calculate the

average and median of the error to be around ∼ 2.07% and ∼ 0.2%, respectively. We at-

tribute this maximum error to the interpolation function employed in the texture memory.

The interpolation function utilizes a linear interpolation scheme for each dimension, and it

introduces an interpolation error that is of the same order as the cooling values themselves.

As a result, this interpolation-induced error can contribute significantly to the overall dis-

crepancy observed between the simulation’s lookup table values and the analytical cooling

solutions. The overall color map showing the error can be seen in Figure 5.5.

5.3 Comparison with other methods

We also compared the values of Qthin (3.31) and Qtot (3.57) to previous results obtai-

ned by Marcel et al. (2019) who used code BELM (Belmont et al., 2008; Belmont, 2009)

to take into account radiative processes in their two-temperature plasma code. BELM sol-

ves the time-dependent kinetic equations for isotropic and homogeneous distributions of

electrons, positrons and photons, considering the effects of synchrotron self-absorbed ra-

diation, Compton scattering, pair production/annihilation, Coulomb collisions, electron-

proton bremsstrahlung radiation and some prescriptions for additional particle heating and

acceleration. The comparison can be seen in Figure 5.6. The values are very similar in
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Figure 5.5: Comparison between the analytical cooling values and the lookup table values in logarithm
scale. For this comparison, we used a 1004 cooling table.

general but disagree mostly at τ > 1 and Te < 108. In this region, we expect to be in an

optically thick regime and be dominated by blackbody cooling. To compare our values with

theirs, we compute that Ptot = nekBTe and get an averaged value for H, being H/R ∼ 0.1

and R ∼ 30rg. We use their definition of the magnetization parameter (µ = 0.1) to cal-

culate B as a function of the electron temperature (Te) and the Thompson optical depth

(τT )

B =
√
4πµnekBTe. (5.4)

The comparison can be seen in Figure 5.6 where we compare the table values for Qtot and

Qthin to the cooling values taken from BELM done by Marcel et al. (2019). It is evident

that Qtot provides a closer match to the values observed in the optically thick regime,

characterized by τ > 1 and T ≲ 108. This can be attributed to the fact that our solutions

for Qthin are applicable only in the optically thin regime. To incorporate the optically thick

behavior, we include a blackbody-like cooling limit within the expression for Qtot.
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Figure 5.6: Comparison of the table cooling values Qtot (3.57) (left) and Qthin (3.31) (middle) to the
interpolated values taken from BELM (right) (Marcel et al., 2019). They consider a magnetization parameter
µ = B2/µ0/Ptot = 0.1, 20 values of optical depth τT in the range [10−6, 5× 102], and 20 values of electron
temperature Te within [5× 104, 2× 1011]K. We can clearly see that our Qtot plot is more assertive in the
values for low temperature and high τ . This is because Qtot includes the blackbody treatment given to
optically thick regimes.

5.4 Cooling of the wind

In our cooling prescription, we primarily utilize local quantities, such as magnetic field

strength (B), electron number density (ne), and electron temperature (Te), which are all

variables stored within each cell of the simulation. However, there is one exception - the

scale height of the disk (H). To handle this, we adopt an approximation method: we

determine an approximated value for the scale height by taking the targeted ratio of scale

height to radius (H/R)targeted from the floor we impose and then multiply it by the

cylindrical radius (Rcyl) of the respective cell. This approximation works well within the

disk region, where the (H/R)targeted is part of the disk’s structure. However, it may not

accurately represent the scale height in other regions, such as the winds, where the physical

conditions differ significantly from the disk.

To ensure numerical stability and avoid floor instabilities, we choose to set our cooling

rate to zero in the jet region, defined as B/ρ > 1. However, we continue to apply cooling

to the wind region. The areas that are being cooled are depicted in Figure 5.7 We want

to assess whether the scale height approximation poses any issues for the wind’s physics.

To do so, we look at some conserved quantities in the winds.

In MHD theory, we have some conserved quantities along the field lines of the magnetic

field. The Bernoulli integral can be written in MHD plasma as (Ferreira, J., 2002)

E =
u2

2
+ h+ Φg − Ω∗

rBϕ

η
−
∫

Q(s′)

ρ(s′)up(s′)
ds′. (5.5)

where each term is, respectively, kinetic energy, enthalpy, gravitational potential, magnetic
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Figure 5.7: Image depicting black hole accretion flow regions that are being cooled. The image also shows
a hybred disk.
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Figure 5.8: Bernoulli invariant and its component from MHD simulations done by Jacquemin-Ide (2021).
The square-dotted orange line corresponds to the kinetic energy, the dashed-dotted blue line represents the
magnetic torque, the dotted red line indicates the gravitational potential, the dashed purple line depicts
the enthalpy, and finally, the solid black line represents the total quantity. The shaded grey area represents
the turbulent atmosphere, while the vertical lines denote the various critical surfaces. The vertical dashed
line indicates the location of the fast magneto-sonic surface, and the vertical dotted line represents the
Alfvénic surface. The x-axis shows the theta angle between the polar axis and the magnetic field line. The
y-axis represents the value of each quantity normalized.

torque, and cooling integral along the streamline. We then compare the value of enthalpy

to the value of the cooling integral along the field line to determine whether the cooling

is impacting the conserved quantities and if the scale height approximation imposes a

problem on the wind. We choose the enthalpy because it is the smallest component of the

Bernoulli integral near the disk. The impact of each term can be seen in Figure 5.8.

For this test, we performed a 3D simulation with resolution (600×336×320) setting our

cooling floor to H/Rtarget = 0.1. We start the simulation with the standard Fishbone and

Moncrief (1976) solution, using rin = 20rg, rmax = 41rg and normalize the magnetization

parameter β = 100. We use the following vector potential

Aϕ =
ρ

ρmax

(
r sin θ

20.

)3

e
−r
400 − 0.2, (5.6)

in order to achieve a MAD saturation regime. We check the magnetic flux in Figure 5.9.

We let the simulation run up to 29600rg/c before initializing the cooling which acts until
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Figure 5.9: Magnetic flux normalized by Mass accretion rate. We expect a MAD with magnetic saturation
around ∼ 50 (Tchekhovskoy and McKinney, 2012) for a non-cooled disk. With cooling, we expect a MAD
saturation around ∼ 30.

we finish the simulation at 72327rg/c. Our analysis of the winds consists of analyzing the

time-averaged quantities over the range of 67327− 72327rg/c.

Firstly, we extract the field lines directly from Aϕ and plot over the color map of

enthalpy in Figure 5.10. We can see that the field lines follow the contours of the enthalpy,

which is already a good indication that the conditions in the wind are being preserved far

from the disk. We also plot the streamlines over the density color map in Figure 5.11. We

observe that the contour that represents twice the pressure scale height matches better

with the frontier between the wind and the disk, while the density scale height defines the

denser areas of the optically thick disk.

To perform the analysis, we select some of the field lines that do not cross the event

horizon and are not entangled within the disk structure. We then extract these lines’

coordinates and plot the enthalpy along the field line, Figure 5.12. It is possible to see

that the cooling affects the parts of the wind that are very close to the disk, but overall it

reaches an almost constant value away from the disk.

Finally, we compute the importance of the cooling term along the field lines when

compared to the enthalpy in Figure 5.13. So our cooling is affecting the parts of the
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Figure 5.10: Representation of the field lines over the color map of enthalpy in code units averaged over
the last 5000rg/c.

Figure 5.11: Representation of the streamlines over the color map of density in code units averaged over
the last 5000rg/c.
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Figure 5.12: (Left) Representation of some selected field lines, each color represents a different line, and
the blue line represent twice the pressure scale height. The enthalpy is plotted in the back as a color map.
(Right) We plot the enthalpy along each field line. Each color represents a different field line with different
starting positions (R0). The vertical lines indicate the height at which each field line reaches twice the
pressure scale height.

wind that are relatively close to the disk up to twice its initial radius R0, e.g since our

field lines start at around ∼ 10 − 20rg, our cooling is having an impact on them up to

∼ 20− 40rg. Despite this occurrence, it is evident from Figure 5.8 that enthalpy exhibits

the smallest magnitude near the disk. Consequently, one or more of the remaining terms

in the Bernoulli invariant might be stronger than the cooling effect.

5.5 Validation of the coulomb collisions implementation

We also performed tests to guarantee the validity of the Coulomb prescription presented

in Equation (3.60). The coulomb collisions account for the transfer of energy between

ions and electrons, which is important in a two-temperature simulation to adequately

represent the thermodynamics of the system. For this, we ran low resolution (264×112), 2D

simulations of a torus (Fishbone and Moncrief, 1976) with rin = 12Rg and rmax = 25Rg in

a grid extended to rout = 103Rg. There is no presence of magnetic fields in this simulation,

which is done to avoid the evolution of the disk.

We start the simulation with active coulomb collisions but without cooling effects. We

set the ion temperature to be Ti = (Γ − 1)ug/ρ
Γ and Te = 0.01TI , where Γ = 5/3 is the

adiabatic index, ug is the internal energy of the gas and ρ is the mass density. We set an
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Figure 5.13: Ratio of enthalpy and line integral of the cooling function for each selected field line, with
proper dimensions.
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upper energy transfer limit of 30% of the internal energy of the gas in the cell. We see

that after t ≈ 5000tg, the two temperatures seem to be very close (Figure 5.14). Since

the coulomb prescription depends on the difference in temperature, the thermalization

becomes slower as the temperatures approach each other.

We solve the equation analytically in order to compare the simulation results. The

variation of the temperature over time due to the coulomb process is described in equations

(60) and (61) of Sądowski et al. (2016). Without any cooling process, the equations can

be written as:

dTi

dt
= −mp(Γ− 1)

kBρ
Qc; (5.7)

dTe

dt
= +

mp(Γ− 1)

kBρ
Qc, (5.8)

where mp is the proton mass, kB is the Boltzmann constant and Qc is the value of the

energy transfer rate via coulomb interaction. Since the gas is static, ρ can be treated as a

constant in time, allowing us to integrate this equation via an iteration method that can

be described as

T n+1
i = T n

i − mp(Γ− 1)

kBρ
Qn

c dt; (5.9)

T n+1
e = T n

e +
mp(Γ− 1)

kBρ
Qn

c dt, (5.10)

where n is our iteration index and dt is the size of the timestep.

We analyze the evolution of the temperature for a single cell in the midplane of the

gas near r = 50rg. This cell in particular has an averaged electronic density of ne =

1.39 × 1017 g/cm3. We also average the size of the timestep to a value of 1.06 × 10−6 s,

assuming it doesn’t change much throughout the simulation. With these values, we get to

the comparison depicted below (Figure 5.15).

The slight difference in values between the simulation and the analytical prediction is

expected due to the approximations made. Although we treated the electronic density as a

constant, it varies approximately 0.1% around the averaged value during the simulations.

The coulomb prescription in the code is subjected to the upper limit value of 30% of the

energy of the cell. The timestep varies within 10% of the average value. This simulation

was configured to dump data files at every 5tg between t = 0tg and t = 400tg and at every

25tg later on.
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A larger difference arises when the temperatures get too close together. This is a

limitation of dealing with a lookup table prescription. As Ti/Te → 1, Qc → 0. The

interpolation made by texture memory seems to decay faster than the analytical equation,

which slows down the thermalization for the simulation. We believe that a larger, i.e. more

detailed table can decrease this error.

The coupling of the electronic temperature and ionic temperature is not expected to

happen within the optically thin regime and the error begins to be visible when Ti/Te ≈ 1.1,

so we don’t think this error will have a high impact on the physics of the disk.

In summary, we conducted several tests to evaluate the accuracy and reliability of

our cooling and Coulomb collision functions. We compared the interpolated values with

analytical solutions and examined the behavior of our approximated scale height in the

wind region. Additionally, we benchmarked our cooling prescription against previous

works(Marcel et al., 2019) to ensure consistent and comparable results.

The outcomes of all these tests indicate that our cooling prescription functions effecti-

vely within the code. The interpolated values closely match the analytical ones, and the

approximated scale height shows minimal impact on the wind dynamics. Furthermore, the

comparison with previous works demonstrates that our cooling processes yield results in

good agreement.

Overall, the successful outcome of these tests confirms that our cooling prescription

is robust and reliable, making it an efficient and practical method for handling cooling

dynamics within our simulations.
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Figure 5.14: Electron (right) and ion (left) temperatures for different simulation times, t = 0tg and
t = 5276tg

Figure 5.15: Comparison between analytical and simulation results of the ratio of ionic and electronic
temperature per time. The orange line is the result of iterations of Equation (5.10), and the blue line is
the result of the simulation.
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Results

Many different simulations were carried out during the testing analysis. Here, we de-

monstrate how the cooling affected the following physical quantities: Density, ion tempera-

ture and electron temperature. We also compare the importance of each cooling component

for total cooling and check how the cooling behaves in a 3D simulation.

For this purpose, we set up a high-resolution 3D model. We assumed an initial torus

following Fishbone and Moncrief (1976), with rin = 12Rg and rmax = 25Rg in a grid that

extends to rout = 2000Rg. We initiate the cooling process from the very beginning, in

order to achieve a MAD regime, following Liska et al. (2019, 2022), which sets

Aϕ =

(
ρ

ρmax

− 0.05

)2

r2. (6.1)

In this scenario, they chose (H/R)target = 0.03, for which we decided to choose (H/R)target =

0.05, to decrease the computational cost of the simulation. We used a base resolution

(794 × 384 × 640) reaching (1588 × 768 × 1240) with one level of static mesh refinement

(SMR) refining the closest upper and lower midplane blocks from r = 3Rg to r ≈ 100Rg.

We ran the simulation for 11000Rg/c, using 96 GPUs. The main parameters are dis-

played in Figure 6.1.

Due to coulomb collisions, we can see that the collapsed parts, e.g, the denser regions are

able to reach a thermal equilibrium where Ti = Te, while the less dense gas presents a two-

temperature medium. The mass accretion rate of this run had an average of ⟨Ṁ⟩ = 0.35

and a magnetic flux saturation around Φ ∼ 20.

After 11000Rg/c, we lower the (H/R)target to 0.01 and let it run for ∼ 900Rg/c.

Although the resolution is not high enough to resolve the MRI in the denser regions,

we can compare and discuss some of the results. From Figure 6.2, it is possible to see that



Chapter 6. Results 68

Figure 6.1: Top: (Left) Density color map in code units, (Middle) Electronic temperature in kelvin, (Right)
Ionic temperature in kelvin. Bottom: (Left) Mass accretion rate, (Middle) Magnetic flux normalized,
(Right) Density scale height over the radius. The block division in the density color map demonstrates the
grid’s SMR near the mid-plane. The color maps and the scale height were calculated at t = 11000Rg/c.

allowing a lower floor drops the temperature of the disk significantly. The MRI quality fac-

tor clearly shows that this resolution fails to resolve the denser regions of the geometrically

thin disk as expected.

Figure 6.3 shows values for each component of the cooling function. In this scenario,

we can clearly see the Compton enhancement factor happening primarily in the corona

very close to the black hole, as expected.

In Figure 6.4, we do the same comparison as the one in Section 5.1. We get the same

results for high resolution, where we get a cooling function with optically thin cooling in

the corona and optically thick cooling near the midplane.

Finally, for comparison, we generate cooling color maps using two different cooling

tables: one with 334 values and another with 1004 values. The higher-resolution table

offers significantly finer detail in the resulting image as seen by Figure 6.5, especially in

the area where cooling varies more. However, due to its binary storage format, the file

size reaches a maximum of approximately ∼ 700MB. It’s worth noting that each GPU

has a limited amount of memory available for texture operations. While we attempted to

implement all seven tables with 1004 values, the V 100 GPUs on the SUMMIT system were

unable to handle the computational load.
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Figure 6.2: Snapshot at 11900Rg/c. For this snapshot, we lowed the floor to (H/R)target = 0.01. Top:
(Left) Density color map, (Middle) electronic temperature, (Right) ionic temperature. Bottom: (Left)
Mass accretion rate and (Right) MRI quality factor.
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Figure 6.3: Cooling function components snapshot at 11900Rg/c. For this snapshot, we lowed the floor
to (H/R)target = 0.01. Top: (Left) Bremsstrahlung radiation, (Middle) blackbody radiation, (Right) total
cooling values. Bottom: (Left) Synchrotron radiation, (Middle) Compton enhancement parameter and
(Right) Comptonized synchrotron radiation.

During the phase with (H/R)targeted = 0.1, we did not observe the formation of a hybrid

disk. Previous studies on thin disks suggest that the ratio (H/R) typically falls within the

range of 10−3 to 0.01 (Piran et al., 2015; Frank et al., 2002). Additionally, our simulation

duration was relatively shorter, running for approximately 103tg compared to the typical

104tg used in previous simulations of truncated accretion disks with the H-AMR code. In the

future, we plan to run a simulation with a lower floor to explore the potential truncation

of the disk.
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Figure 6.4: Snapshot at 11900Rg/c. For this snapshot, we lowed the floor to (H/R)target = 0.01. Para-
meter δthick and δthin defined in equations (5.2) and (5.3).

Figure 6.5: (Left) Cooling values color map using 1004 table. (Right) Cooling values color map using 334

table.
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Conclusion

In conclusion, we successfully implemented a realistic cooling prescription into H-AMR,

a state-of-the-art 3D GRMHD code, utilizing texture memory. The implementation of this

cooling prescription opens up new possibilities for future simulations that need radiative

cooling effects without the need of expensive computational resources.

Although this work has made progress in addressing the cooling aspect, further ad-

vancements are still necessary. One important area to focus on is the implementation of

radiation pressure. This is particularly crucial for simulating scenarios with high accretion

rates, where radiation pressure dominates over magnetic and thermal pressure. Building

on the work by Esin et al. (1996), we can calculate radiation pressure as follows:

Prad =
QtotH

2c

(
τ +

2√
3

)
. (7.1)

while in the radiation-transport code, it is represented as a tensor within radiation stress-

energy tensor calculated as P ij =

∫
ÎνdνdΩN

iN j. This quantity can be treated as a local

value, assuming the approximations made for the scale height. Consequently, it wouldn’t

require any additional calculations, and its impact on performance should be negligible.

Nonetheless, special attention must be paid to accurately implement and handle pressure-

related effects to ensure the reliability of the simulations.

Another area we would like to explore is the implementation of Comptonized brems-

strahlung. While previous studies (Yoon et al., 2020; Fragile and Meier, 2009) have sug-

gested that Comptonized bremsstrahlung may not be significant, it’s possible that this

conclusion was influenced by their specific simulation setup and regime. Therefore, it is

worth investigating this phenomenon further in our research.

Our future objective is to replicate the simulation conducted in Liska et al. (2022),

which utilized a highly realistic but computationally expensive approach by incorporating
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radiative transport with M1 closure (McKinney et al., 2014). By attempting to achieve

comparable results using a more cost-effective method, we aim to demonstrate the efficacy

and efficiency of our approach.

7.1 Future perspectives

While the main focus of the dissertation was to examine the radiative cooling pres-

cription in the context of simulating black hole x-ray binaries, the implementation and

testing of our modifications to the H-AMR framework proved to be more time-consuming

than initially anticipated. However, the testing phase was crucial to ensure the robustness

and reliability of our tool. To share the methodologies developed in this study, we plan to

release a computational methods paper.

Additionally, we encountered delays due to the resolution issue specific to general rela-

tivistic magnetohydrodynamics (GRMHD) codes. GRMHD simulations require adequate

resolution to accurately capture the behavior of the magnetorotational instability (MRI),

a challenge that our research group had not encountered in previous α-prescription hy-

drodynamical simulations (Nemmen et al., 2023). To deal with this, we needed access to

supercomputers such as LNCC’s (Laboratório Nacional de Computação Científica) San-

tos Dumont and OLCF’s SUMMIT. Using the tool developed in this work, we intend to

simulate different spectral states of black hole X-ray binaries in the near future.
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Appendix A

Computational Infrastructure

A.1 Codes

Throughout this work, we used the code H-AMR which is not publicly available yet.

Besides using H-AMR, we developed an OpenMP+MPI code to handle the creation of the

cooling table and to do some tests to ensure the results we were getting were correct.

This code was written in C. The table creation and tests are publicly available in Github

repository, which has a README file describing how to generate the table and run the tests.

The implementation of our texture memory follows a straightforward process. At the

start of the code, the cooling tables are read from a binary file and loaded into a 3D texture

object. During this phase, status messages “Reading cooling table from the binary file”

and “Loading cooling into texture object” are displayed to indicate progress.

When the code starts the calculations, a function called source_texture_cooling is

invoked for each cell. Within this function, equation 4.5 is computed:

Gµ = −Qtotalu
µ, (A.1)

where Qtotal is calculated by calling the cooling_function.

The activation of cooling involves setting six switches in the config.h file. These

switches control various aspects:

1. Activating the cooling process.

2. Activating the usage of cooling components.

3. Setting the usage of the floor by setting a targeted scale height ratio (H/R)targeted

4. Specifying the floor’s targeted ratio of scale height to radius (H/R)targeted.

https://github.com/pedronaethe/Radiative-Cooling-Table
https://github.com/pedronaethe/Radiative-Cooling-Table
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5. Using a local thermal scale height, as done in Fragile and Meier (2009).

6. Setting the maximum percentage of internal energy that cooling can extract from

each cell.

This configuration allows us to efficiently manage the cooling process and use it accor-

ding to specific requirements.

A.2 Clusters

A.2.1 SUMMIT

Summit is an IBM system1 located at the Oak Ridge Leadership Computing Facility.

Each of the approximately 4600 compute nodes on Summit contains two IBM POWER9

processors and six NVIDIA Tesla V100 accelerators and provides a theoretical double-

precision capability of approximately 40 TF. Each POWER9 processor is connected via

dual NVLINK bricks, each capable of a 25GB/s transfer rate in each direction. For more

information, refer to SUMMIT’s user guide.

A.2.2 Sdumont

We made use of the sequana_gpu_shared nodes, which consist of 94 computational

nodes called Bull Sequana X1120 (GPU). Each node contains two Intel Xeon Skylake 6252

processors, providing a total of 48 cores (24 cores per CPU). These nodes are equipped with

384GB of RAM to handle memory-intensive tasks. Additionally, each node is enhanced

with 4 NVIDIA Volta V100 GPUs, which help speed up specialized tasks that require

intense parallel processing.

1 IBM stands for International Business Machines Corporation. It is a multinational technology com-

pany that is well-known for manufacturing and selling computer hardware, software, and various other

technology-related products and services.

https://docs.olcf.ornl.gov/systems/summit_user_guide.html
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