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and provided me with the necessary support so that I could pursue my paths, whether

in graduate school or in personal life. To my siblings Leandro and Camila, for being my

companions and cheering for my achievements. You are my safe haven.

To my advisor Jorge Horvath, for welcoming me since 2015 when I was still an under-

graduate student and guiding me on this professional journey. Without your guidance and

the necessary scoldings, I would not be able to write and present this Thesis.
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Resumo

Após quase 60 anos desde a descoberta do primeiro pulsar, a f́ısica das Estrelas de

Nêutrons (ENs) ainda apresenta questões não respondidas que podem dar ińıcio a uma

nova era na Ciência. Sendo as estrelas mais densas e pequenas observadas no Universo,

com densidades médias acima da densidade de saturação nuclear (ρsat = 2.8×1014 g/cm3),

a reprodução de sua matéria em laboratórios terrestres se torna extremamente dif́ıcil.

A amostra de ENs com massas medidas vem crescendo graças aos avanços tecnológicos

e observacionais. A medição de propriedades macroscópicas destes objetos permite traçar

suas origens e entender como são formados. As massas observadas nos Ãºltimos anos

colocaram à prova a existência de um valor canônico impresso no nascimento. O intervalo

de massas, bem maior do que antes era considerado posśıvel, evidencia a existência de

diferentes caminhos evolutivos. Além disso, a observação de ENs extremamente massivas,

como o PSR J0952-0607 com m = 2.35 ± 0.17 M⊙ entre outros que iremos comentar

ao longo desta Tese, também tem testado o problema da massa máxima prevista pela

Relatividade Geral (RG) combinada com a teoria da matéria supranuclear.

Esta Tese tem como objetivo principal aplicar métodos computacionais de análise

bayesiana à distribuição de massa das ENs para realizar inferências sobre a sua forma

e o comportamento na região de altas massas. Em concordância com trabalhos ante-

riores, encontramos que a distribuição apresenta um caráter bimodal que se reflete na

existência de ao menos duas populações de ENs distintas. No entanto, contrário a resulta-

dos prévios, mostramos que estes objetos podem atingir massas tão altas quanto 2.6 M⊙,

dando suporte para classificar a componente menos massiva do evento GW190814, com

massa m = 2.59+0.08
−0.09 M⊙, como uma EN.

Dado o cenário promissor das deteções de ondas gravitacionais (OGs), que pode auxi-



liar na resolução de diversos problemas relacionados à f́ısica das ENs, parte desta Tese foi

dedicada à criação de um catálogo online de sistemas duplos de estrelas de nêutrons (even-

tuais fontes de OGs quando coalescerem), com o intuito de estudar como estes sistemas

são formados, o que distingue os sistemas que vão coalescer daqueles que não irão, pelo

menos no tempo de Hubble, e quais as “marcas” desta coalescencia podem ser traduzidas

em grandezas observáveis.

Por último, visando contribuir para o problema da natureza da matéria encontrada no

interior destas estrelas, esta Tese também apresenta um modelo de equação de estado (EE)

baseado na “hipótese da matéria estranha” para descrever a composição interna de ENs

através de um gás de quarks no estado conhecido como color-flavor-locking (CFL). Os re-

sultados obtidos dão suporte à existência de ENs extremamente massivas, em concordância

com os resultados estat́ısticos sobre a amostra inferidos a partir da amostra observada.



Abstract

After almost 60 years since the discovery of the first pulsar, the physics of Neutron Stars

(NSs) still present unanswered questions that could lead to a new era in Science. Being

the densest and smallest stars observed in the Universe, with average densities above the

nuclear saturation density (ρsat = 2.8×1014 g/cm3), reproducing their matter in terrestrial

laboratories is an extremely difficult challenge.

The sample of NSs with measured masses is growing thanks to technological and obser-

vational advances. The measurement of macroscopic properties of these objects allows us

to trace their origins and understand how they are formed. The observed masses reverted

the idea of the existence of a canonical value imprinted at birth. The range of masses,

much larger than what was previously considered possible, indicates the existence of dif-

ferent evolutionary paths and histories leading to the formation of NSs. In addition, the

observation of extremely massive NSs, such as PSR J0952-0607 (m = 2.35± 0.17 M⊙) and

many other we will comment through this Thesis, has also raised the problem of the maxi-

mum mass predicted by General Relativity (GR) combined with a theory of supranuclear

matter.

The main objective of this Thesis is to study the mass distribution of NSs applying

computational methods of Bayesian analysis to make inferences about its shape and the

behavior at the high-mass region. In agreement with previous work, we find that the

distribution has a bimodal character, that reflects the existence of at least two different

populations of NSs. However, contrary to previous results, we show that these objects

can reach masses as high as 2.6 M⊙, supporting, for instance, the classification of the less

massive component of the GW190814 event, with a mass m = 2.59+0.08
−0.09 M⊙, as a NS.

Given the promising scenario of gravitational wave (GW) detection, that can help



solving several problems related to the physics of NSs, part of this Thesis was dedicated

to create an online catalog of neutron star binary systems (potential sources of GWs when

they coalesce), with the aim of studying how these systems are formed, what distinguish

those systems that will coalesce from those that will not, at least on a Hubble time, and

which are the “fingerprints” from these coalescence that can be translated into observable

quantities.

Finally, in order to contribute to the problem of the nature of matter found in the inte-

rior of these stars, this Thesis also presents an equation of state (EOS) model based on the

“strange matter hypothesis” to describe the internal composition of NSs through a gas of

quarks in the state known as color-flavor-locking (CFL). The results obtained support the

existence of extremely massive NSs, in agreement with statistical results directly inferred

from the observed sample.
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Chapter 1

Introduction

The physics of Neutron Stars (NSs) is one of the most challenging topics of high energy

physics under debate in the current century. The extreme conditions found inside these

objects are, until now, impossible to be achieved in laboratories and explains why, after

almost a century of the first studies about the subject and more then 60 years after the first

observation, the picture stills incomplete. Improvements in the understanding of matter

at ultrahigh densities can change the way we understand the Universe and provide a new

era in Science.

Interdisciplinary efforts are necessary to understand how and in which conditions these

Compact Stars are formed, how is the formation imprinted in their observational proper-

ties, how they continue to evolve and all related phenomena, like the physics of supernovae

(SNe), chemical enrichment of interstellar medium, gamma-ray bursts, gravitational wave

emissions and many others. Observations of such phenomenons helps to set reliable cons-

traints in theoretical physics describing these extreme objects, as well as in their main

properties, like masses and radii.

For a long time, mass measurements of NSs seemed to corroborate with the paradigm of

an unique formation scenario through the core collapse supernova (CCSN) of an iron (56Fe)

core, marking the end of life of a progenitor star with mass above ∼ 8 M⊙. Technological

and observational improvements allowed us to break with this idea and expand the window

of possibilities for NS formation, a reflect of the broader range of masses detected nowadays,

between 1.17−2.74 M⊙. Despite of an electron capture supernova (ECSN) of a degenerate

OMgNe core, they can also be formed from an Accretion Induced Collapse (AIC) of a

white dwarf (WD) approaching its maximum mass, or the double degenerate AIC from

the merger of two WDs.
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General relativity (GR) predicts the existence of an upper threshold for NS masses, but

the exact value still cause discussions between astrophysicists. Although a theoretical limit

of 3.2 M⊙ was found by Rhoades Jr and Ruffini (1974), astronomers defended over many

years that the true maximum could not be beyond 2 M⊙, for evolutionary reasons. The

discovery of the true limit is important to distinguish between NSs and black holes (BHs),

since every object exceding it will collapse into a BH. Furthermore, it also plays a key role

in setting reliable constraints to the validity of equation of state (EoS) models. More then

10 years past since the first measurements contradicting a maximum mass below two solar

masses appeared (Demorest et al., 2010) . The latest measurement reveals a NS in a black-

widow system with m = 2.35 ± 0.17 M⊙ (Romani et al., 2022), the largest well-measured

mass to date. A few other systems are also indicated to have even larger masses, as we

will discuss later, but they are subject to larger uncertainties.

Furthermore, the recent detection of gravitational waves (GW) with the LIGO/Virgo

interferometers opened up a new era in Astronomy. It raised the possibility of combining

and comparing electromagnetic observations with a new source of information, the GWs,

to constrain the EoS of matter at densities above twice the nuclear saturation density. This

new advance placed the Double Neutron Star (DNS) systems in a privileged stage, and

triggered the interest to understand how the systems with two NSs that will merge within

the Hubble time are formed. The event GW190814 was identified as originated from the

merger of a BH with m1 = 23 M⊙ and a companion, yet unidentified, with m2 = 2.60 M⊙

(Abbott et al., 2020). An analysis implemented by the LIGO team placed this event as

an outlier of the merging binary black hole (BBH) population (Abbott et al., 2021). If

confirmed to be a NS, this discovery can help to determine the maximum mass they can

achieve.

The threshold for NS masses is intimately related with the equation of state governing

the matter inside the star, and is predicted by the equation of hydrostatic equilibrium under

GR theory. A vast number of models are proposed to describe the EoS inside NSs, subject

to the scrutiny of observational data like masses, radii and tidal deformabilities. A deeply

discussed model is based on the strange matter hypothesis, under which a matter made

of up, down and strange quarks is believed to be more stable than nuclear matter. This

model is shown to allow the existence of heavier stars in comparison with nuclear matter,

easily accommodating masses compatible with the one observed from gravitational waves.
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This Thesis has the purpose of discussing the problems we mentioned before associated

with NS physics, and is structured in the following way. In Chapter 1 we start with a

historical overview of the development of Science which corroborated with the discovery

and characterization of NSs, and introduce some of the main topics necessary to understand

their nature. In Chapter 2 we focus on the statistical analysis of the mass distribution

of observed NSs, comparing our results with previous works and arguing in favor of the

existence of ultra-massive NSs. In Chapter 3 we introduce the standard scenario for DNS

formation and the catalogue created to help boost the study about these systems. Chapter

4 presents the exact solutions we found for the Einstein Field Equations (EFE) describing

a strange matter in the CFL phase. Finally, in Chapter 5 we present a summary and main

conclusions of our work.
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Chapter 2

Neutron star physics and some of its problems

2.1 From celestial spheres to compact stars

The mysteries of the Universe have fascinated humanity since prehistoric times. Although

it is difficult to determine the exact date of the earliest astronomical records of humanity,

it is possible that the cave paintings of Lascaux, dating back over 17.000 years and de-

picting various animals and abstract forms, are actually connected to star constellations

visible in the Paleolithic sky. This suggests that these paintings not only depict animals

and abstract shapes but also serve as visual markers for the passage of time and even

significant celestial events such as comet passages (Sweatman, 2017). At that time, stars

allowed civilizations to orient themselves on their journeys, mark the passage of time, and

make predictions about the best time for planting and harvesting.

Babylonians, Egyptians, Greeks, and Mayans imbued stars with divine attributes, as-

sociating them with gods, heroes and cosmic forces. These mythologies provided cultural

narratives, guiding celestial observations and shaping early cosmological frameworks. It

was only in anciente Greece that our modern scientific view of the cosmos started, when

Greek philosophers started looking for a fundamental relationship between numbers and

nature, instead of attributing natural phenomena to deities. (Carroll and Ostlie, 2017).

At that time, many models emerged to describe the cosmos, and one of the first was that

of Anaximander (610 - 546 BCE), who was also the first philosopher known to wonder

about the nature of stars. The Earth was believed to be the center of the Universe and,

according to Anaximander’s model, the cosmos was enclosed in a celestial sphere, and the

stars were nothing more than holes in this dome through which it was possible to see a

“universal flame” (Paulucci et al., 2022).
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Eudoxus of Cnidus (408 - 355 BCE) constructed a planetary model, under request of

Plato, in which the distance to the celestial sphere was believed to be comparable with

the distance to the Sun, considered a planet at that time. Aristotle (384 - 322 BCE) later

proposed that stars are composed of a quintessence and therefore would not be subject to

physical laws. Aristarchus of Samos (310 - 230 BCE) was the first philosopher forward-

thinking. He believed that was the Earth that revolved around the Sun, not the contrary,

and found a good estimate for the distance to the Sun and its radii. The absence of annual

parallaxes in heliocentric models required the distance to the celestial sphere to be orders of

magnitude higher than was believed to be possible. His ideas did not find support. With

the calculus of Earth’s circumference made by Eratosthenes (276 - 194 BCE), Ptolemy

(100 - 170 CE) defined the distance until the celestial sphere to be around 2000 times the

distance to the Sun, a scale that was maintained until the Renascence.

The Greek astronomer and mathematician Hipparchus (190 - 120 BCE) made ground-

breaking advancements in the study of stars. He developed a catalog of stars, known as

the “Hipparchus Catalog”, which listed the positions and brightness of around 850 stars.

Hipparchus also devised a magnitude system to classify stars based on their brightness and

distance, with first-magnitude stars being the brightest and closest.

The Islamic Golden Age, spanning from the 8th to the 14th centuries, saw significant

progress in astronomy and the understanding of stars. Muslim astronomers built upon

the knowledge of earlier civilizations, including the Greeks and Babylonians. Astrono-

mers such as Al-Battani (858 - 929 CE) and Al-Farghani (800 - 870 CE) made important

contributions, accurately measuring the positions of stars and describing their motions.

During the Renaissance in Europe, between the 14th and 17th centuries, the study of

stars became more refined and detailed. Nicolaus Copernicus (1473 - 1543) proposed the

heliocentric model of the solar system, which placed the Sun at the center and explained

the apparent motion of stars. His work laid the foundation for further advancements in

astronomy. Names as Tycho Brahe (1546 - 1601) , who observed a supernova in 1572, and

Johannes Kepler (1571 - 1630) also contributed to the field. The invention of the telescope

in the early 17th century revolutionized the study of stars. Galileo Galilei (1564-1642) used

the the instrument to observe celestial bodies, including stars, planets, and the Moon. His

observations challenged the prevailing understanding of the heavens and provided evidence

to support the heliocentric model.
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In 1814, Fraunhofer (1787 - 1826) invented a modern spectroscope that allowed him

to discover dark lines in the solar spectrum, now recognized as absorption lines. At that

time distance determinations were one of the biggest problems in astronomy. The concept

of parallax, the apparent shift in the position of a star due to the Earth’s orbit around

the Sun, was proposed as a method to calculate stellar distances. Friedrich Bessel (1784

- 1846) successfully measured the parallax of the star 61 Cygni in 1838, marking the first

direct measurement of a star’s distance. The result was a factor hundreds of times greater

than predicted by the Ptolemaic model, revealing an immense universe to be explored.

In the 19th and 20th centuries, advancements in technology and the development of as-

trophysics propelled our understanding of stars to new heights. Scientists, such as William

Herschel (1738-1822), discovered new stars and began classifying them based on their spec-

tral characteristics. Henrietta Swan Leavitt (1868 - 1921) made important contributions

by discovering the relationship between the brightness and period of pulsating stars, which

later allowed astronomers to measure astronomical distances. Cecilia Payne-Gaposchkin

(1900 - 1979) and Hans Bethe (1906 - 2005 ) played pivotal roles in determining that

stars, including the Sun, are primarily composed of hydrogen and helium. Spectroscopy,

the study of electromagnetic radiation emitted or absorbed by matter, provided detailed

information about the chemical elements present in stars. Scientists could then discover

that stars have a wide range of compositions, with varying amounts of elements beyond

hydrogen and helium, such as carbon, nitrogen, oxygen, and iron.

E. Hertzsprung (1873 - 1967) and H. N. Russell created independently (1877 - 1957),

in 1911 and 1913, what is now called the Hertzsprung-Russell diagram, which relates the

luminosity and temperature of stars (Figure 2.1 ). They observed that stars were not all

the same and proposed that they undergo different evolutionary stages, which were later

clarified. This diagram allowed for a better classification and understanding of the physical

characteristics of stars, providing insights into their internal structure.

In 1911, in parallel with astronomical developments, Rutherford discovered the exis-

tence of the atomic nucleus, which he named proton. Around 1925, physicists had already

postulated the existence of spin, and this discovery led Wolfgang Pauli, in the same year,

to enunciate his exclusion principle which states that no two fermions can occupy the

same quantum state simultaneously. At the same time, Einstein was generalizing the Bose

distribution for the case of a fixed number of particles. Pauli’s theory triggered, in 1926,
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Figure 2.1: The Hertzsprung-Russel diagram shows the relation between luminosity and temperature of

stars. Its construction helped to better classify stars and comprehend their evolution.

the development of a quantum statistics that could be applied to a set of identical particles

obeying the mentioned principle (Bonolis, 2017). This theory was independently developed

by Enrico Fermi and Paul Dirac, and for this reason it is named as Fermi-Dirac statis-

tics, which Pauli demonstrated to be the correct treatment to describe a gas of degenerate

electrons.

Previously, in 1844, Bessel had already concluded that the star Sirius should have a

“dark companion”, observed for the first time in 1862 by Alvan Graham Clark (Welther,

1987). The theoretical development and technological advancements led to classify the

companion of Sirius as a white dwarf (WD), a hot and extremely dense object compared

to other known stars. It took a long time until Fowler (1926) was able to explain the physics

of WD’s, applying the problem to the formulation of quantum statistical mechanics. As

Eddington wrote: “The white dwarfs appeared to be a happy hunting ground for the

most revolutionary developments of theoretical physics”(Eddington, 1927). It was only

the beginning of the development of studies about compact stars.



Section 2.2. Electron degeneracy pressure 33

2.2 Electron degeneracy pressure

The life of a “normal” star, like our Sun, is based on thermonuclear reactions which

provides thermal pressure to balance the stellar structure against a gravitational collapse.

The reactions starts with proton-proton reactions where hydrogen is burned into helium.

This process increases the temperature and density at the center of the star, which is

around 160 times larger than the surface density, as illustrated in Figure 2.2. The central

density is initially of 103 g cm−3, and increases as long as the fuel is burned. The Schönberg-

Chandrasekhar establishes a limit for the mass of an isothermic helium core to maintain

the hydrostatic equilibrium. When this limit is achieved, the core contracts increasing even

more the central density. As a consequence, electrons enters in a quantum regime since

the inter-nucleus distance reduces to the order of electronic orbitals. The Pauli exclusion

principle take action ensuring that each quantum state is occupied by only one electron.

In a simplistic way, the treatment employed by Fowler is as follows. Lets consider a

sphere with N electron confined in a volume V. The “available” space for each particle is

∆x ∼
(
V
N

)1/3
. If we assume the electrons enters in a quantum regime, they need to obey

the Uncertainty Principle, with ∆x∆p ≥ ℏ. Consequently:

∆p ≳ ℏN1/3

V 1/3
. (2.1)

In a non-relativistic domain, the average kinetic energy is:

⟨Ek⟩ =
∆p2

2m
∼ ℏ2N2/3

V 2/3m
(2.2)

The internal energy of the sphere is U = N ⟨Ek⟩. Under thermodynamics, the pressure

inside the system, for a constant entropy, can be obtained by:

Pe = −∂U

∂V
|S=cte ∼ k

ℏ2N5/3

V 5/3m
∼ kn5/3. (2.3)

In terms of density, ρ = nm, the Equation 2.3 gives us the equation of state (EoS) for

a non-relativistic degenerate gas of electrons, P = Kρ5/3. An equation of state describes

the state of matter under specific conditions. In the relativistic domain, ⟨Ek⟩ = pc, and

the EoS Pe = Kρ4/3. The most important is to note that now, the temperature of the star

has no influence on the pressure. It is only the electron degeneracy pressure which opposes

the gravity. Furthermore, the proportionality to ℏ2 unveil that the existence of compact

stars is completely dependent on Quantum Mechanics.
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Figure 2.2: Theoretical model of density profile and temperature inside the Sun. Central density is around

160 times larger the surface density. (Extracted from Chaisson et al. (2005))
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Figure 2.3: Mass-radius relation for a Fermi gas. The blue curve is the solution for non-relativistic

electrons, while the green curve is the solution for a relativistic gas. The dotted red line marks the

Chandrasekhar mass limit, above which the structure collapses.

Figure 2.3 shows the mass-radius relation constructed from solutions of hydrostatic

equilibrium for a gas of degenerate electrons. The blue curve is the solution for a non-

relativistic gas, and can describe the structure until ∼ 0.5 M⊙. Above this value the

density is high enough for electrons to become relativistic (green curve). The dotted red

line represents the Chandrasekhar limit, above which the structure collapses, and represents

the mass limit for White Dwarfs, about ∼ 1.4 M⊙.

The degenerate electrons become fully relativistic at ∼ 107 g cm−3. For densities of

this order of magnitude the inverse β-decay :

e− + p → n + νe, (2.4)

starts to take place. From this moment on, the abundance of neutrons in matter will begin

to increase, but their contribution to the pressure is still very low.

2.3 Neutron Stars

2.3.1 Neutron degeneracy pressure

As the density increases, above ∼ 107 g cm−3, the neutron density also increases. From

this point to the neutron drip, ρdrip = 4.3 × 1011 g cm−3, matter can be described by the
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Baym-Pethick-Sutherland (BPS) equation of state, which we will not discuss in detail here.

At the neutron drip density, it is favorable for neutrons to leak out from the nuclei, marking

the beginning of the presence of a free neutron gas, such that they starts to contribute

to the equation of state. The pressure of free neutrons become significant at ρ > 1012 g

cm−3, and dominates for ρ > 1013 g cm−3. The Baym-Bethe-Pethick (BBP) equation of

state describes matter at these densities, based on the liquid drop model described below.

Starting with a semi-empirical mass function for the nuclei, based on a liquid drop

model of the type:

Mc2 ≡ E = −ϵ0A + ϵSA
2/3 + ϵCZ

2A−1/3, (2.5)

where Z is the atomic number, A the mass number. The nucleus is treated as a “little

drop” of matter and its energy is assumed to be composed of a volume term (first term), a

surface term (second term) and a Coulomb correction. The task is to adjust the expression

to reproduce masses of known nuclei and then obtain the coefficients ϵ0, ϵS, ϵC . The EoS is

obtained by minimizing with respect to A and Z, and imposing chemical and mechanical

equilibrium between the gas of neutrons and the nuclei. Consequently, it is possible to

write the total energy density (ϵ) as a function of the baryon density, nB, only, from where

the total pressure results:

P = n2
B

∂

∂nB

(
ϵ

nB

)
= Pn + Pe + PL, (2.6)

where Pn is the pressure component for neutrons, Pe for electrons and PL for the lattice.

The above EoS is valid until the nuclear saturation density is reached, ρsat = 2.8×1014

g cm−3. At this point, the nuclei begin to dissolve and merge together, and matter is now

composed in a first approximation of fluids of neutrons, protons and electrons. Below this

state no stable configuration is found to describe a compact object. Is about the saturation

point that neutrons will begin to become degenerate and provide balance to a star. The

treatment to derive the neutron degeneracy pressure follows exactly in the same way as

we described for electrons at Sec. 2.2, with the difference that now is only the mass and

fraction of neutrons that matters.

From the Virial theorem, a mass M of a classical gas in equilibrium, with a radius R,

has an average temperature of:

⟨T ⟩ ∝ M

R
, (2.7)
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so the temperature increases as R decreases. The average density of this Maxwell-Boltzmann

gas is ⟨ρ⟩ ∝ M/R3, so it increases even more rapidly than T .

The typical momentum difference between electrons in this gas is:

∆pe ∼ (6mek ⟨T ⟩)1/2 ∝
(
M

R

)1/2

. (2.8)

The typical separation between electrons is:

∆xe ∼ (ne)
−1/3 ∝

(
R3

M

)1/3

. (2.9)

Finally, the volume occupied by an electron in phase space is:

(∆pe∆xe)
3 ∼ 180h3

(
M

M⊙

)1/2(
R

R⊙

)3/2

. (2.10)

If a star of 1 M⊙ contracts until R ∼ 3×10−2 R⊙, the phase space volume will be ∼ h3.

These mass and radii are characteristic of WDs. For NSs, with densities above ρsat and

masses in the range of 1 − 3 M⊙, the degeneracy pressure of neutrons will be responsible

for establishing the equilibrium when the radii contracts to 10 − 12 km.

2.3.1.1 Nucleon-nucleon interactions

The assumption of a free gas of neutrons lead to maximum masses at the order of

∼ 0.7 M⊙. Above ∼ 3ρsat nucleon-nucleon interactions become important, but makes

it difficult to determine the EoS. The potential has to be attractive for a small number

of nucleons, and repulsive for a large number. One of the approaches was constructed

by Bethe and Johnson (BJ), and provides a softer equation os state, with a repulsive

potential for ∼ 1015 g cm−3. This effect has a great impact in the stellar structure and

provide support to higher masses.

The BJ approach generalizes the Yukawa potential in the form:

VBJ =
∑
j

Cj
e−jµr

µr
+ VT , (2.11)

where µ is related to the reciprocal of the mass of the particle exchanged between nucleons,

r is the distance and VT is a tensor interaction.

They considered the exchange of vector meson ω to be largely responsible for the

repulsive core and contribute with a term Vω = g2ωe
−µωr/r. Their EoS follows from:

ϵ

n
≡ W (k, 0) + mc2, W (k, 0) = 236naMeV/particle,

P = 364na+1MeV/fm3,

(2.12)
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with a = 1.54 and 1 ≤ n ≤ 3 fm−3. This EoS supports NSs with masses up to 1.9 M⊙.

As we will discuss specially in Chapter 5, there are equations of state which supports even

higher masses.

2.3.2 A remarkable discovery

In 1054, Chinese astronomers registered a supernova (SN) explosion, the death of a

star that could be as twice as massive as the Sun. Records says that it was so bright that

it could be seen during day light for almost a month. The “guest star”, as it was called at

that time, remained visible in night sky for more than a year. Since then, only two other

cataclysmic events of such magnitude where observed, one in 1572 by Tycho and another

in 1604 by Kepler (Weber, 1999). It took hundreds of years to recognize the nature of such

phenomena.

The neutrons were discovered by J. Chadwick in 1932, a few months after Lev. D.

Landau hypothesized the existence of an ultra dense star behaving like a giant nucleus,

although his work was just published after the discovery became public (Landau, 1932).

In 1934, the existence of NSs was theorised by Baade and Zwicky (1934a,b,c), where they

proposed that supernova explosions should be related with the transition of the core of a

massive star to an extremely dense star, releasing an enormous amount of energy. Four

years later, Landau proposed that even though the neutronic state of matter is usually

endothermic and much less energetically favoured than the electronic state, a massive star

can still generate conditions to from neutrons in stable reactions. Hence, it was proposed

that the end product of a SN should be a cold, dense and compact NS mostly made of

neutrons (Landau, 1938).

Given the extreme conditions presented in NSs and the impossibility to reproduce them

in laboratory, as well as the lack of technologies able to detect such objects, the subject

remained purely speculative until the discovery of the first pulsar, in 1967, by Jocelyn Bell

(Hewish et al., 1968). At that time it was named as CP1919, but is now recognized as

PSR B1919+21. The discovery intrigued the scientific community due to the small and

extremely regular period of pulses. Several theories emerged, but Pacini (1967) and Gold

(1968) were responsible to show that pulsars are nothing more then rapidly rotating and

highly magnetized NSs. Efforts to identify more pulsars were intensified since then, and

continues until today.
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The pioneer work of Baade and Zwicky and the association of pulsars with supernova

remnants, as the Crab pulsar, strengthen the association of NS births with explosions of

massive stars. However, as we already mentioned, contributions from different channels

also play a role in their birth mechanisms, as depicted in the mass distribution we will

discuss through this Thesis.

2.3.3 The birth of Neutron Stars

Although a standard formation scenario emerged and strong evidence pointed to the

birth of NSs from the supernova explosion of massive stars, as the association of pulsars

with several supernova remnants (Tian and Leahy, 2004), alternative scenarios are also

proposed and accumulate evidences in their favor (van den Heuvel, 2004). The old picture

of 8 − 20 M⊙ for progenitor stars collapsing to NSs is put in a jeopardy. For example, the

CXOU J164710.2-455216 is a magnetar1 found in the cluster Westerlund 1. This cluster has

Main Sequence (MS) stars with masses of 40 M⊙, a hint for NS formation from extremely

high mass progenitors.

Binary interactions are proven to be of fundamental importance and responsible for

changing the range of progenitor star masses forming NSs (Podsiadlowski et al., 2004; Ia-

coni et al., 2016), despite of the possibility of long accretion periods after the NS birth

(Benvenuto et al., 2012). As a consequence, binary pulsars can experience different proper-

ties of those born isolated. Furthermore, accreting WDs in binary systems reaching their

Chandrasekhar limit, as well as the merger of two WDs, can possibly form NSs (Dessart

et al., 2006; Ruiter et al., 2019). In the following sections we discuss these alternative

scenarios and comment on the current evidences.

2.3.3.1 Isolated stars

Isolated stars spend approximately 90% of their lifetime at the Main Sequence (MS)

stage, transforming Hydrogen in Helium through the proton-proton chain reaction. A

stable equilibrium between gravitational force pulling inwards and radiation and thermal

pressure pushing outwards is what keeps them “alive”. Although several ingredients can

exert an influence on final configurations, initial masses at the Zero-Age MS (ZAMS) and

1 Magnetars are a class of NSs with extremely high magnetic fields, 10 − 103 times higher than for

regular NSs.



40 Chapter 2. Neutron star physics and some of its problems

the metallicity (Z) play a fundamental role to determine when will the cycle of thermo-

nuclear reactions end, and how much will the stars survive. Massive stars, for example,

will exert higher pressures on their cores, increasing the temperature and the rate of fusion

reactions. Subsequently, they will spend less time at the MS stage.

Figure 2.4 depicts the broad-brush picture of single star evolution. Atop the axis, the

numbers indicate the masses of the stars at the ZAMS which produce the features indicated

below the axis. For solar metallicity, assumed to be Z = 0.01, stars above ∼ 7.5M⊙ are the

ones believed to be heavy enough to ignite carbon at their center. This threshold is referred

as Mup (or alternatively MCO) in the literature. The minimum mass for the production

of a neutron star after an explosive event is though to be slightly higher, at Mn ∼ 8M⊙

but with a higher uncertainty denoted with a question mark (MEC is an alternative name

for this quantity, stemming from “electron capture”). Finally, above Mmass ≥ 9M⊙ or

so, depending on metallicity and input physics, all possible nuclear reactions up to the

iron are ignited 2 and we enter the regime of “true” massive stars, developing an iron

core (note the alternative names Mcrit and Mccsn also found in the literature for the same

quantity [Doherty et al., 2017]). When the silicon is exhausted the star loses the nuclear

resources and the core starts to contract, becoming denser and hotter. The photons achieve

sufficiently high energy and the photodesintegration process, γ+56Fe → 134He+4n, takes

place consuming energy of the star. The contraction is accelerated until electron captures

become energetically favourable, and a neutronization process starts through the inverse

beta decay reaction, p+e− → n+νe. The electron degeneracy pressure inside the core can

no longer sustain the star against the gravitational force, giving start to a core-collapse

supernova (CCSN) at the same time as the neutron abundance increases and the proto-

NS is balanced by the neutron degeneracy pressure. There are two main reasons that

prevent us to precisely determine these thresholds: the uncertainties in the mass loss rate

in advanced stages of the stellar evolution, and the true nature of convection inside the

progenitors. As mentioned, the metallicity is important for the location of the boundaries,

and as a general trend we know that the figures are lower for lower metallicities, and even

so a substantial spread in the calculations still exist (Doherty et al., 2017), as we can see

in Figures 2.5 and 2.6.

2 The fusion of 56Fe is an endothermic process and requires an enormous amount of energy. Thermo-

nuclear reactions in the interior of stars cease at the iron peak.
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Figure 2.4: The boundaries of mass (ZAMS) separating the different regimes for solar metallicity. The

numbers above the axis denote the approximate locations of the separation between regimes, with their

names and alternatives indicated below. Extracted from Horvath et al. (2023).

While the actual problems above Mmass are mainly related to the collapse-implosion and

launch of the supernova explosion, the fate of massive stars below Mmass presents a series

of difficulties even before their final fate. The latest stage of these objects, characterized by

the off-center ignition of degenerate carbon before the thermal pulses (TPs), is known as

the “super-AGB” phase. Stars just below the Mn limit are thought to leave ONeMg WDs,

and those slightly less massive a CONe WD, without any explosion. However, super-AGB

stars have never been identified observationally with confidence, and indeed they do not

stand out clearly from neighbours at nearby positions in the HR diagram. Consequently,

we must rely on the accurateness of theoretical calculations for the determination of Mup

and related quantities.

A second important mass scale starts at a value Mn, above which the cores may undergo

electron captures and explode as a class of supernovae, forming NSs (Nomoto, 1984). The

ignition of carbon leaves a strongly degenerate ONeMg core. The penetration of the surface

convection zone into helium layer occurs during the carbon burning phase, dredging up

the He layer and in a core growth through hydrogen-helium double-shell burning. As

the mass inside the helium-burning shell increases, an electron capture onto Mg and Ne

start and induce a rapid contraction of the core. The degeneracy pressure of electrons

reduces, as the electron fraction per baryon Ye is reduced, and the core explodes with a

quite fixed value mass, 1.375M⊙, in what is called an electron-capture supernova (ECSN).

The explosion receives a massive contribution from the energy released by oxygen burning

in nuclear statistical equilibrium, and therefore the event is actually close to a Type Ia

thermonuclear event (a recent claim of the identification of an ECSN showing all the
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Figure 2.5: Sample calculations of the quantities Mup as a function of the metallicity Z. The three curves

correspond to the calculations of Siess (2007) (diamonds, upper), Doherty et al. (2015) (stars, middle) and

Suwa et al. (2018) (triangles, lower). Extracted from Horvath et al. (2023).
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Figure 2.6: Sample calculations of the quantities Mmass as a function of the metallicity Z.The curves are

due to Siess (2007) (squares, upper), Doherty et al. (2015) (dots, middle) and Eldridge and Tout (2004)

(triangles, lower). Extracted from Horvath et al. (2023).
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expected features has been presented [Hiramatsu et al.]). Because of these features, it

is believed that an almost-fixed mass NS emerges, with m ∼ 1.25M⊙ resulting from the

emission of the binding energy of the fixed core. Since mass range in which this scenario

occurs is the most abundant among the exploding progenitors, it is expected that they

compose a large fraction of the full supernova rate, as it is easily seen from the form of

the IMF function. A “light” group of NSs is expected to exist. The work in Schwab et al.

(2010) found evidence to the presence of this group by analyzing the mass distribution

of 14 well measured NSs (uncertainties below 0.025 M⊙). All analysis considering the

whole sample of NS masses found no evidence for the distinction between NSs formed

from ECSNe and those formed from light iron cores. A large sample of NSs in this range

is necessary to set firm conclusions (Rocha et al., 2019).

The discussion above implicitly requires that if even lighter (< 1.25M⊙) NSs exist, they

must be formed in the explosion of small iron cores, not the ones undergoing the ECSNe.

In other words, it is important to determine both the smallest neutron star mass and the

lightest iron core resulting from the evolution of a M ∼ Mmass star. The lightest precisely

measured NS mass up today is of PSR J1453+1559 companion, with 1.174 ± 0.004M⊙.

Other sources, such as 4U1538-522 and Her X-1 may also be considered, but their error bars

are larger and measurement methods must be refined, as we will comment further. With

this figure for the gravitational mass MG, the iron core progenitor of this low-mass neutron

star should have been no heavier than ∼ 1.28M⊙. Generally speaking, it is easier to find

the baryonic masses of the remnants MB than the gravitational mass MG in the literature.

The difference of both quantities, related to the binding energy, has to be calculated for

each underlying theory of gravitation. However, a simple approximate expression for the

latter quantity has been found by Lattimer and Prakash (2001) in terms of the quantity

β = GMG/c
2R0, where G is Newton’s constant, c the speed of light and R0 a fiducial

radius (safely set to 12km) to relate both quantities quite accurately:

MB −MG

MG

= 0.6
β

1 − 0.5β
(2.13)

and can be used quite safely if an extreme accuracy is not required.

The simulations of explosions of single stars have found confronting results for the

minimum iron core forming the lightest neutron stars. For instance, Timmes et al. (1996)

found a small number of progenitors that can produce a MG ≤ 1.2M⊙. A more recent work
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by Sukhbold et al. (2016), calibrated for two progenitors, does not produce any neutron

star below MG = 1.2M⊙. A dedicated study of the iron core at the onset of collapse

(Suwa et al., 2018), formed by low-mass CO cores has obtained “light” neutron stars in

the mass range of the observed sources, and even close to ∼ 1M⊙. This is consistent

with the results of Ugliano et al. (2012), in which a minimum baryonic mass of ∼ 1.2M⊙

would render suitable gravitational mass after applying Eq. 2.13 (although for a quite

narrow mass range of the progenitors). It is difficult to compare these and other works

on the same subject, since they make use of different prescriptions for the stellar physics,

different pre-supernova models and different numerical codes. In any case, it is entirely

possible that a single star explosion does not constitute a valid evaluation for this lower

limit, since the systems we mentioned are found in binaries and binary stellar evolution is

likely important.

As we will see in Chapter 3, theoretical model explosions are not at odds with the

observed mass distribution of NSs. All the simulations we cited are able to produce stellar

remnants with masses around 1.8M⊙. However, they fall short of explaining the higher

masses detected in actual systems (> 2 M⊙), as seen in Figure 2.7. Naively, one could

have expected that the jump in the size of iron cores above ∼ 19M⊙ could be the reason

behind production of heavy neutron stars, and even if this is true, the final values of

the neutron stars MG does not go above 1.9M⊙. The reason for these large iron cores,

often overlooked in general works, is that there is a finite entropy inside them, making

the “effective” Chandrasekhar mass MCh,eff to grow from its cold value MCh,0 according to

Timmes et al. (1996):

MCh,eff ≃ MCh,0

(
1 +

(
se
πYe

)2
)

(2.14)

where, inserting a rough average for the electronic entropy per baryon ⟨se⟩ = 1 and given

that Ye ≥ 0.4 in general, produces collapsing cores of ∼ 1.8M⊙. However, in spite of

this growth, the iron cores never reach values well above 2M⊙, necessary to reproduce the

highest observed neutron star masses. A contrasting view has been recently presented by

Burrows and Vartanyan (2021), which in a summary of their present and former simulations

were able to obtain not only explosions, but also gravitational masses up to ∼ 2M⊙ for

remnant neutron stars. There is some important factor(s) not yet understood in the

systematics of collapse simulations obtained by different groups to firmly assert whether
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high masses above ∼ 2M⊙ can be produced by this formation channel at birth, or and/or

subsequent accretion is needed to reach this mass range. This statement is also important

for massive pulsars with ≥ 2M⊙, which have been suggested to be born “as is” (Deng

et al., 2020), without suffering substantial accretion: if this happens to be true, current

models of the explosions should obtain them.
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Figure 2.7: The compact remnants of single star explosions (baryonic mass) obtained by as a function of

the ZAMS progenitor mass (Ugliano et al., 2012).

As a general trend we see that the simulations do well to reproduce a population of

NSs with masses clustered around 1.35−1.4M⊙, and can populate a “second peak” around

1.8 M⊙ as well. It is the high-mass tail definitely present in the distribution that does not

match with simulations. In addition, the presence of a “low-mass” peak is quite interesting

and worth mentioning. We have stated that, since light-mass ZAMS progenitors are very

abundant, it is expected that the presence of a clustering at ∼ 1.25M⊙ can be easily

seen. There are definitely a group of neutron stars in the histogram that were identified

as such (Schwab et al., 2010), but they are often “merged” with the main “first peak”

using statistical discriminators. In other words, even though their presence is possible, it

has a low probability from this point of view (Horvath and Valentim, 2017). Moreover, it
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is intriguing that, even ignoring the electron-capture events, a peak at that position has

been obtained by Sukhbold et al. (2016). Therefore, we find somewhat counter-intuitive

that the statistical significance of this group is not higher than the presently obtained one.

Finally, we would like to point out that a substantial advance in the knowledge of the

connection between SN events and NS masses has a long road ahead. It is clear that the

attack to this problem produced a lot of advances, and revealed an extreme complexity

that is still being deciphered. One of the major issues, in our view, will be to establish

whether the formation of NS and BH is monotonic (Burrows and Vartanyan, 2021) or

“intermittent” (Sukhbold et al., 2016), and which are the conditions for that behavior.

2.3.3.2 Binary systems

Neutron stars are known to be present in a variety of systems. Some of them required

quite sophisticated models for the evolution of a binary system featuring several phases

along its life. Therefore, the question of a binary neutron star origin, in contrast with the

isolated single-star evolution discussed above, arises.

The full evolution of stars in binary systems is not yet calculated until the CO core

is formed. This means that the pre-supernova structure is not really known, but rather

assumed using reasonable prescriptions. It is generally assumed that the whole consequence

of binary interaction is to promptly remove the entire hydrogen envelope of the star at

helium ignition (Ertl et al., 2020). The exact amount of accurateness of this simplification

is not known, although it is a very reasonable first attempt and does not seem to imply

any obvious misbehavior. An attempt to improve the situation can be seen in the work by

Patton and Sukhbold (2020).

Works using some version of this simple “stripping” hypothesis have been presented,

with exploding “helium star” masses ranging from ≥ 1 to 40M⊙ since the removal of the

envelope is a common feature of almost all close binary system evolution, the relation of

the final iron core mass with the initial MZAMS is uncertain, because it depends on the

mass loss rate, and even the specific code results need to be validated. Nevertheless, the

neutron star distribution presents some features which are not present in the single-star

explosions. For example, Woosley et al. (2020) obtain some objects that, because of larger

fallback, lie above the 2M⊙ mark for all the mass-loss prescriptions. Ertl et al. (2020) also

obtain a small fraction of heavy objects. In both cases, the synthesis of a bimodal (or
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even trimodal) population presented, as we will discuss in the next chapter, remains to be

demonstrated in detail. The production of stars with MG ≤ 1.2M⊙ does not appear to be

favored in these simulations. However, the work of Fortin et al. (2016) claims to produce

neutron stars as light as ∼ 1M⊙, although their framework is difficult to compare with the

former.

Given that there are many systems in which the interaction of both components inevi-

tably leads to consider the issue of the explosion(s) themselves, it is likely that substantial

advances can be made in the near future, once the pre-collapse structure can be determined

(Patton and Sukhbold, 2020). One prime example is the well-known path towards binary

neutron stars (see, for example, Tauris et al., 2017; van den Heuvel, 2018) in which a detai-

led evolution implying “ultra-stripped” supernovae is needed. To connect with the issue of

the NS distribution, we should state that even if the binary neutron stars that originated

the “1.4M⊙ paradigm” have not accreted substantially after formation, no real reason to

expect a “fixed mass” exists. In fact, recent observations of asymmetric binary neutron

star systems (Ferdman et al., 2020) that can merge on less than a Hubble time may call

for a reanalysis of the masses at birth, in line with the simulation work just described. On

the other hand, BH production with a supernova explosion has been also found possible,

and in fact a recent report Maxted et al. (2020) claims one of these identifications.

2.3.3.3 Accretion-Induced Collapse

White dwarfs are subject to the Chandrasekhar limit. For binary systems with a

massive WD, a high accretion rate (Ṁ) from a MS or red giant companion can make

the electron captures more efficient than the thermonuclear ignition of carbon or even

oxygen, triggering the collapse of the star since the degenerate electron pressure is reduced

(Nomoto and Kondo, 1991). This scenario, proposed more than 40 years agor, is known as

the Accretion-Induced Collapse (AIC) and can be quite frequent in the universe, originating

NSs in many binary systems.

The detection of a large number of low-mass binary pulsars in globular clusters was

one of the features in which AIC was suggested to operate (Grindlay and Bailyn, 1988).

AIC has been also invoked in the magnetar formation problem (Margalit et al., 2019),

expecting a flux-conservation amplification of an initial magnetic field of the WD, and

many other systems like intermediate-mass and millisecond pulsars. A “double degenerate”
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AIC, resulting from the merger of two white dwarfs with a short orbital period, was later

discussed as a complementary possibility to the “single degenerate” channel, analogously

to the problem of Type Ia supernova progenitors to which they have a kinship.

Such events have never been positively identified, a fact that is not at all surprising

since their luminosity are expected to remain low. The first detailed calculation of the

AIC (Fryer et al., 1999) obtained an important output of exotic isotopes in the ∼ 0.1M⊙

ejecta, and proceed to deduce an upper limit to the occurrence in the galaxy based on

the measured abundance of them. This exotic isotope production has been challenged by

(Qian and Wasserburg, 2007), and makes the issue of the upper limit uncertain.

On the other hand, population synthesis have yielded the expectation of ∼ 107 pulsars

formed by AIC in the single-degenerate channel and a few times this figure coming from

the double-degenerate channel (Wang and Liu, 2020). This are high numbers and may be

in tension with the estimated rate of ≤ 0.1% of the total neutron star population estimated

by Fryer et al. (1999). If the overproduction of exotic isotopes can be avoided, high rates

could be eventually accepted. The alternative way out of this quandary is that the number

of suitable progenitor systems is overestimated, and that AIC NSs will not be produced

in many of the current candidates mergings, but which of these solutions is viable remains

unsolved for the present.

The production of neutron stars in the single-degenerate channel would be in a narrow

range around 1.25M⊙ naively, but models envisage the accretion to resume after their

formation. Therefore, the actual range of the neutron star masses may extend all the

way up to the highest measured masses if the accretion conditions allows it. For the

double-degenerate channel, the expected range is different, and is believed to span the

range 1.4 − 2.8M⊙, with a slight variation according to the chemical composition of the

WDs (Wang and Liu, 2020). We note that this may be an efficient way to form extremely

heavy neutron stars “at birth”, a feature that may be required if more heavy objects

are detected. The contribution of GW observations to this task is very important, as

suggested by the detection of a 2.6M⊙ object in the merge GW190814 (Abbott et al.,

2020), although the true nature of this component remains to be confirmed. The recent

detection of the gamma-ray burst GRB 211211A, suggested to arise from a compact star

merger (Gao et al., 2022; Gompertz et al., 2023), was observed to have a longer duration

than the sGRB 170817A originated from the merger of two NSs. It is possible that this
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new event resulted from the merger of a NS with a WD, living a magnetar behind (Zhong

et al., 2023). If confirmed to be true, this will add a new window of possibilities to the

formation of NSs.

2.3.4 Observational properties

X-ray satellites and radio telescopes have provided different approaches to measure

fundamental parameters of neutron stars, in addition to the masses obtained from binary

systems. The properties of these objects depend directly on the adopted microscopic model,

which describes the equation of state.

• Mass: The gravitational mass can be inferred directly from observations of X-ray

binaries, pulsar binaries and gravitational waves. Determining the mass of a neutron

star provides a unique test for predictions that combine nuclear matter theory and

general relativity. In addition, observed masses reveal information about the final

stages of stellar evolution, and determining the masses of X-ray sources allows ob-

taining information about the cores of stars that have gone through the final stage

of stellar evolution.

• Dispersion index and pulsar distance: The “pulsating” nature of emissions and the

dispersive nature of the interstellar medium provide the dispersion index, which

allows estimating the distances of individual pulsars.

• Rotational periods: Pulsars with periods of 1.6 ms have already been observed, so

the equation of state that describes nuclear matter must account for this result, as

well as for the masses. The detection power of millisecond pulsars, with periods

below 4ms, is still very small, so statistics obtained to date may be distorted from

reality, such that the non-detection of objects with periods below 1ms does not mean

that they do not exist. In addition, pulsars are losing angular momentum due to the

radiation they emit, consequently the rotation period of these objects increases.

• Radius: Measuring radii of 10km at distances of at least 1015 km is currently im-

possible. There are no methods to directly determine the radius of a neutron star.

However, the combination of observational data with theoretical assumptions allows

predicting these values. The discovery of a nearby neutron star, RXJ 185635-3754,
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allowed, through X-ray flux and temperature (which is obtained assuming that the

star is a blackbody), to estimate an effective radius of ∼ 7km. If the existence of

objects of this size is confirmed, once again it will be necessary to find equations of

state that are consistent.

• Magnetic fields: The theory of pulsars is based on the idea that neutron stars are

highly magnetized objects. It is estimated that the magnetic field inside these objects

is of ∼ 1012−1013 G. This estimate is obtained from the lines of the X-ray spectrum.

There are still other properties of compact objects that can be obtained from observa-

tional data. Weber (1999) presents a more detailed approach to this topic.

2.4 Relativistic stars

Under Newton’s theory, a mass density ρ must generates a gravitational field that obeys

to the Poission equation:

∇2ϕ = 4πGρ. (2.15)

Starting from this assumption, Einstein developed his theory of relativistic gravitation for

a curved manifold, where a source of a gravitational field should had a concept analogous

to the mass density and be invariant. He defined this source as the energy-momentum

tensor (T). The relativistic equation should then be a generalization of Poisson’s equation

without any preferred coordinate system and satisfying the Equivalence Principle (local

conservation of energy and momentum; Schutz, 2009). Einstein came then with what is

roughly recognized as the Einstein Field Equations (EFE):

Gαβ = 8πTαβ, (2.16)

where G is the metric tensor. This is a system of ten coupled nonlinear differential equati-

ons, from which six are independent. That said, it is not easy to solve the EFE analytically,

and most solutions are studied numerically. Einstein introduced the cosmological constant

(Λ) later, to obtain static solutions for the large-scale behaviour of our universe, but we

do not include it in Eq. 2.16 since it is not important for describing relativistic stars.

It is worth mentioning that the EFE are not the only equations that satisfies all the

necessary conditions for a gravitational field in a curved manifold. Alternative theories
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exists, but until now Einstein equations have passed all tests, both in weak and strong

field, and does not show conflicts with experiments, despite of being the most simplistic

description until now.

For an uncharged, static and spherically symmetric fluid, the line element (metric) of

Minkowski space is given by:

ds2 = −c2e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdϕ2). (2.17)

With these simplifications and assuming that pressure is isotropic, the application of Eq.

2.16 leads to expressions for the surviving components, which are:

8πG

c2
ρ(r) =

λ′e−λ

r
+

1 − e−λ

r2
,

8πG

c4
p(r) =

ν ′e−λ

r
− 1 − e−λ

r2
,

8πG

c4
p(r) = e−λ

[
ν ′′

2
+

ν ′2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

]
,

(2.18)

where the lines represents derivatives with respect to r. Now we have four unknown

quantities as a function of the radial coordinate (λ, ν, ρ, p), and only three equations. To

break this degeneracy is necessary to provide an independent equation corresponding to

some additional hypothesis (de Avellar and Horvath, 2010):

• If one of the four mentioned quantities is given (by an ansatz, for example), an exact

or numerical solution can be found by integration. This, however, does not guarantee

any control over the equation of state (EoS), which gives a relation between pressure

and density p(ρ);

• If the EoS is given, the integration can be (at least numerically) performed and the

properties of the stellar model follow;

• If an EoS and one of the functions are given, a match of the overdetermined system

can be achieved, but this is in general possible for only certain values of the model

parameters.

If more degrees of freedom are provided, like a pressure anisotropy, the third route can be

employed without an overdetermined system.

Karl Schwarszchild was the first, in 1916, to found an exact solution for these equations.

His solution was build for the outside region of an static and spherically symmetric body,
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and revealed a singularity for rs = 2M3, called Schwarzschild radius, that represents the

minimum radius an relativistic object can have withouth gravitationally collapsing.

2.4.1 Criteria for physical acceptability

To describe a relativistic object, the exact solutions of EFE must satisfy a few conditions

in order to be physically acceptable and, assuming G = c = 1, these are:

i. Regularity of the gravitational potential at the origin:

e2λ(0) = 1 and (e2λ(r))
′
r=0 = 0,

e2ν(0) = cte and (e2ν(r))
′
r=0 = 0.

Otherwise the curvature of spacetime at the center of the star would diverge or

become infinite.

ii. Radial pressure and energy density profiles must be positive definite at the origin.

To ensure that the star has a finite mass, exerts an outward force to counter gravity,

and maintains a well-behaved and regular solution.

iii. Radial pressure must vanish at some finite radius:

Pressure function must be continuous everywhere, otherwise an infinite pressure gra-

dient would emerge. Since the pressure is null in the vacuum outside the star, so it

has to vanish at the surface of the star.

iv. Energy density and radial pressure profiles must decrease monotonically from the

centre to the boundary.

Or the pressure gradient would become too steep, resulting in an imbalance and a

tendency for the star to collapse under gravity.

v. The sound speed must be subluminal everywhere (v2s = dPr/dρ < 1):

To maintain the causality, the sound speed inside the star must be lower than the

speed of light.

vi. At the surface of the star, the metric needs to correspond to the Schwarzschild

solution:

e2ν(r) =

(
1 − 2M

R

)
and e2λ(r) =

(
1 − 2M

R

)−1

.

3 This expression is derived assuming G = c = 1
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These conditions guarantee the usefulness of the solution for a realistic description of stellar

models.

2.4.2 Hydrostatic equilibrium

The stellar structure is sustained by the hydrostatic equilibrium. In case of regular

stars, this equilibrium is obtained from a combination of Newton’s 2nd law and classical

gravity law, resulting in:
dP

dr
= −G

Mρ

r2
. (2.19)

From this result we see that the gradient of pressure is the responsible for sustaining the

star, and that the pressure must decrease from the centre to the surface. For compact

stars, however, the equilibrium must be described from the EFE.

Tolman (1939) and Oppenheimer and Volkoff (1939) derived, independently, the equa-

tion of hydrostatic equilibrium for compact stars with spherical symmetry, recognized as

the Tolman-Oppenheimer-Volkoff (TOV) equation. This equation, taken together with

the mass continuity completely determine the structure of spherically simetric and static

relativistic stars:

dp

dr
= −Gm(r)ρ(r)

r2

(
1 +

p(r)

c2ρ(r)

)(
1 +

4πr3p(r)

c2m(r)

)(
1 − 2Gm(r)

c2r

)−1

, (2.20)

m(r) = 4π

∫ R

0

r2ρ(r)dr. (2.21)

The Eq 2.20, is the relativistic correction to the Eq. 2.19, and gives the balance between

pressure acting radially outward, and the gravitational force acting radially inward. Com-

pared with the Newtonian case, this correction increases the magnitude of the pressure

gradient, establishing a limit value for both mass and radius. This feature is a purely ge-

neral relativistic effect arising from the denominator (1− 2Gm/c2r). The Eq. 2.21 defines

the gravitational mass of the star as a function of the radius and of the density, where

m(r = R) is the mass within a sphere of radius R.

Oppenheimer and Volkoff were the first to apply an equation of state to describe the

macroscopic properties of a NS. They assumed that the star was made of a degenerate

Fermi gas of neutrons. The maximum mass resulted to be 0.7 M⊙, highly contradicting

the observed masses observed for these objects, as we will show latter.
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2.4.3 Mass-radius relation

The equation of state is a key ingredient since it relates the microphysics of the star

with the relativistic macroscopic properties. Given an EoS and initial conditions, the TOV

can be solved iteratively. At the center of the star (r = 0) the mass and pressure derivative

must be null. From a given central density ρc, the central pressure follows from the EoS.

A mass at r + dr is found by integrating Eq. 2.21, and followed by an integration of

TOV equation at the same radial coordinate. The energy density follows again from the

equation of state, so the process can be repeated increasing the r coordinate, until the

pressure vanishes whithin a radius that define the stellar radius r = R, and consequently

the mass of the star M(R).

For each EoS there is a unique relation between stellar mass and central density. Solving

the TOV for a given equation of state covering the valid range of densities for the matter

into question provide us with a mass-radius relation. Figure 2.8 shows examples of several

sequences of stars, each of them built from different EoSs. Mass measurements obtained

from different methodologies are capable of constraining the valid equations, since they

need to accomodate the observed value at least as a maximum. The GW190814 is the

result of a merger between a black hole of 23 M⊙ and a companion star with a nature yet

undetermined with a mass of 2.59 M⊙ (Abbott et al., 2020). If confirmed as a NS, this

discovery will be a breakthrough for the astronomical field.

2.4.4 Rhoades-Ruffini limit

Establishing the maximum mass of NSs is vital not only to understand the true nature

of matter inside it but also to set the limit from where the formation of a black hole is

unavoidable. The exact nature of matter at supranuclear densities is a long-posed problem

for which a solution is still nowadays elusive, this is why the availability of an “absolute”

value for the limit mass is so important.

In fact, as Rhoades Jr and Ruffini argued in 1974, it is not really necessary to know the

exact equation of state to obtain a valid theoretical limit. This theoretical threshold on

the mass comes from well-established physical principles that all the matter should obey,

which are:

1. The compact star must obey the General Relativistic equation for hydrostatic equi-
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librium;

2. Matter must obey the Le Chatelier Principle, stating that a disturbance in a system

in equilibrium will be opposed to restoring the equilibrium;

3. Matter must obey the Principle of Causality, which implies that the sound speed

must remain lower than the speed of light in the medium.

To comply with these three requirements, Rhoades Jr and Ruffini assumed that the EoS

is well-known until a fiducial density of ρ⋆ = 4.6 × 1014 g/cm3. Above it, they assumed

that the equation of state is the stiffest possible, with a sound speed equal to the speed of

light. Thus, they found a maximum possible mass for a neutron star of about 3.2 M⊙.

The Rhoades-Ruffini mass limit can be expressed as (see Chamel et al., 2013):

mRR ≃ 3.0
(5 × 1014

ρ⋆

)1/2
[M⊙]. (2.22)

As a conclusion, all compact objects whose mass are measured to be higher than 3.2 M⊙

must be a black hole provided it is non-rotating, isotropic and GR holds.

As a further development, allowing the violation of the causality, using an incompres-

sible fluid, the mass limit can be expressed as (see Chamel et al., 2013):

mRR,non−causal ≃ 5.09
(5 × 1014

ρ⋆

)1/2
[M⊙]. (2.23)

In Eq. 2.22 and Eq. 2.23, ρ⋆ is the value assumed to be the fiducial one.

It is worth stressing that the Rhoades-Ruffini limit does not take into account other

effects such as rotation and anosotropies in the fluid’s pressure that, as we will discuss

later in this thesis, allows matter inside the NS to support masses higher than 3.2 M⊙.
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Figure 2.8: Mass-radius relation for several equations of state, named in the Figure, illustrating the

“families” of equations of state. The hadronic EsoS are the AP 1, ENG, MS 1, MPA 1, SLY and WWF1;

the hybrid ones are the ALF 1, GNH 3 and H4; the ones with strange quark matter are the SQM 1 and

SQM 3. The black dots represent an EoS inferred from spectroscopic observations. The data for this

M − R diagram and the observational dots were taken from http://xtreme.as.arizona.edu/ (Earlier

compilations and naming conventions are from Lattimer and Prakash, 2001 and Read et al., 2009. The

full list included above is from Özel and Freire, 2016) In this Figure, we also plot: PSR J1614-2230

(m = 1.928± 0.016 M⊙), PSR J0740+6620 (m = 2.14+0.10
−0.09 M⊙), and the compact object in GW190814.

Note that the mass values of PSR J1614-2230 and PSR J0740+6620 are updated in Table A.1 . The

sequences were calculated from the TOV, i.e., they do not include rotation. Extracted from Horvath et al.

(2023).

http://xtreme.as.arizona.edu/
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The mass distribution of neutron stars

Although pioneer works pointed out the possibility of a wide range of NS masses, for

more than 30 years after the discovery of pulsars the most accepted idea for astronomers

and astrophysicists was that a so-called canonical mass value of ∼ 1.4M⊙ should be im-

printed on NS at birth. This was based on the state of the iron core prior to the beginning

of collapse, supported by the electron degeneracy pressure. Nowadays, as discussed in Sec.

2.3.3, it is widely known that depending on the initial mass of the progenitor star and

its metallicity, considerably smaller Fe cores can colapse leaving NSs with masses as low

as 1.17 M⊙ (Suwa et al., 2018), at the same time that heavier cores can explode forming

remnant NSs with masses up to ∼ 2 M⊙ (Burrows and Vartanyan, 2021). In the case of

the most massive NSs observed so far (≥ 2 M⊙), it is not clear yet if they are born massive,

and/or substantial accretion is necessary to achieve these high masses.

Discussions about the mass range a NS can attain were presented in many works, as for

example those referenced in Joss and Rappaport (1976); Thorsett and Chakrabarty (1999);

Baumgarte et al. (1999) and many others. Observational works at that time seemed to

provide support to the idea of a single-mass scale. Finn (1994) employed a statistical

analysis of a sample of four double neutron star (DNS) systems with the constrained

masses of eight NS, and found that masses should fall predominantly in the range 1.3 <

m/M⊙ < 1.6. Thorsett and Chakrabarty (1999) obtained a mean value of 1.35 ± 0.04M⊙

for a sample of 19 NS masses, and no evidence for a significant dispersion around the single

scale.

At the turn of the 21st century, mass measurements started to show a significant spread,

indicating a possible evidence of different NS types that would be reflected in a bimodality

or multimodality in the NS mass distribution, instead of an unimodal single-scale shape.
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As seen in van den Heuvel (2004), a theoretical speculation of the possible existence of

three neutron star classes already existed. In addition to the observational advance, the

technological advance has provided us with faster and higher-capacity computers, allowing

the implementation of increasingly robust statistical analysis. This fact permitted the

Bayesian approach to spread among scientific community through Markov Chain Monte

Carlo simulations. Several groups employed these techniques to extract information from

the mass distribution of NSs (Schwab et al., 2010; Valentim et al., 2011; Zhang et al., 2011;

Kiziltan et al., 2013; Özel and Freire, 2016) and its maximum mass (Antoniadis et al., 2016;

Alsing et al., 2018; Shao et al., 2020), each of them with their own model particularities.

Schwab et al. (2010) was the first to discuss the evidence of a bimodal distribution based

on a sample of 14 well constrained masses (with uncertainties ≲ 0.025 M⊙). The first peak

was found to cluster around ∼ 1.25M⊙, which they associated with NS formation from

an ECSN expected to occur in degenerate cores of OMgNe (Nomoto, 1984; Podsiadlowski

et al., 2004), as we discussed in Sec. 2.3.3. The second peak was found around ∼ 1.35M⊙,

and was associated with the “standard” Fe CCSN.

A previous work from our group (Valentim et al., 2011), based on a Bayesian inference

of 54 measured NS masses, gave evidence for a bimodal distribution distinguishing a group

centered at 1.37 M⊙ from a heavier group with a mean at 1.73M⊙. The NSs in the

first group were associated with the “standard scenario”, while those in the second group

are likely a combination of NSs that may have passed by an accretion phase leading to

substantially higher masses (Bhattacharya and van den Heuvel, 1991; Tauris and Van

Den Heuvel, 2006), in addition to those that are born naturally more massive. No evidence

was found for a clustering of masses around 1.25M⊙, expected from evolutionary grounds.

This class formed from ECSN seems to be “maskared” by the standard scenario when we

analyze the whole sample of NS masses, what could be a selection effect. All subsequent

analysis showed consistent results with those found in Valentim et al. (2011).

Different distribution families can be invoked in order to describe the mass distribution

of NSs, with the selection methods responsible for indicating which one is the most favo-

rable. However, the preference for analysis employing multimodal models is an attempt

to accommodate the different formation pathways expected for these objects. All analysis

conducted with the data available to date converge towards a consensus on bimodality.

Furthermore, works like that of Shao et al. (2020) have considered mixture models invol-
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ving different families of distributions, but, as of now, there is also no evidence suggesting

more complex models than a Gaussian mixture.

The first analysis concerned with the upper mass limit of NSs was introduced by An-

toniadis et al. (2016), and later implemented by Alsing et al. (2018). Analyzing a sample

of 74 NSs, this last result showed evidence for a bimodal distribution compatible with all

previous works, with the addition of a sharp cut-off at 2.12+0.09
−0.12 M⊙. A following analysis

included a few new massive NSs, as the PSR J0740+6620 (Cromartie et al., 2020), PSR

J1600-3053 (Arzoumanian et al., 2018), PSR J1959+2048 and PSR J2215+5135 (Kandel

and Romani, 2020), as well as the component masses of GW170817 (Abbott et al., 2019)

and GW190425 (Abbott et al., 2020) and the isolated star PSR J0030+0451 (Riley et al.,

2019). Despite of the bimodal behaviour clustered around the same values as previous

works, they found a slightly higher maximum mass, 2.26+0.12
−0.05 (68% credible interval; Shao

et al., 2020).

While the current lowest mass observed for a NS is 1.174 M⊙ (Martinez et al., 2015),

the most massive ones are above 2 M⊙. Although PSR J0740+6622 (Cromartie et al.,

2020; Fonseca et al., 2021) was, until the publication of Shao et al. (2020), recognized as

the heaviest well-constrained pulsar, with m = 2.08 ± 0.07 M⊙, there are at least other

10 systems in the sample with masses that can be significantly higher. However, mass

measurement methods of these objects are subject to larger uncertainties since their orbital

inclination angles are not well constrained, and the pulsar mass is proportional to 1/ sin3 i.

The recent discovery of PSR J0952-0607 (Romani et al., 2022) revealed a robust mass of

2.35±0.17 M⊙, obtained from spectrophotometry and imaging of the companion star, and

placed a lower limit in the maximum mass of Mmax > 2.19 M⊙, yet to be confirmed.

While the currently most accepted maximum mass still hovers around values not much

higher than 2 M⊙, the number of evidences that support the existence of extremely massive

neutron stars has been increasing in recent times. GW detections have created a tension

in the expected value for the maximum mass since analyses of the GW170817 event seems

to require mmax < 2.3M⊙, while the GW190814 event requires mmax > 2.5M⊙ if the less

massive component is confirmed to be a NS (Nathanail et al., 2021). An analysis by the

LIGO/Virgo collaboration itself suggests that the GW190814 is likely an outlier from the

class of GW signals emitted by BH-BH mergers (Abbott et al., 2021), i.e., it is likely

that the component with 2.59+0.08
−0.09 is a NS. An analysis of four LIGO-Virgo NSBH events,
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assuming the existence of rapidly spinning NSs, found a maximum mass of 2.7+0.5
−0.4 M⊙

(90% credibility; (Ye and Fishbach, 2022), 2022). However, if only non-spinning NSs are

considered, the maximum mass must be > 2.53 M⊙ (90% credibility). In the same work

they argued that a sample pof > 150 NSBH merger events is necessary to constrain the

maximum mass of non-spinning NSs with an accuracy of ±0.02 M⊙.

In this Chapter we present an analysis of the mass distribution of binary neutron star

systems, with the most up-to-date sample of 112 NSs (Fig. 3.1). We did not included

masses from isolated NSs (such as PSR J0030+0451) neither from GW components in our

analysis, since it is not clear yet if we can treat them as part of the same distribution,

as they might present significantly different features. It is important to note, however,

that although the shape of distribution can be different between galactic and extragalactic

populations, for example, astrophysical information from all kind of sources are key to

set reliable constraints on the upper limit of NS masses. The current sample of galactic

pulsars still does not show any evidence for three or more distinct classes of NSs, but

we shall see that our analysis favors the existence of ultra-massive NSs, with a result of

mmax = 2.60 M⊙. We comment on the reasons leading to a different result compared to

those found by Alsing et al. (2018) and Shao et al. (2020). We also stress that we use the

notation mmax for a statistical threshold, which is not necessarily equivalent to the physical

limit derived from the TOV equation (Mmax). As the sample grows asymptotically, the

value of mmax can approach (if stellar evolution allows it) the true maximum mass Mmax

predicted by GR, constraining the valid EoS.

3.1 Neutron star mass measurements

The vast majority of NSs are observed as pulsars, rapidly-rotating and high-magnetized

neutron stars emitting beams of radiation along its magnetic axis that are seen on Earth

as a pulse due to the lighthouse effect (Rezzolla et al., 2018). The extreme regularity

of pulses, responsible for recognizing pulsars as the most stable clocks in the observable

universe, makes pulsar timing the most accurate method to determine masses of NSs, as

well as test fundamental physics. The procedure consists in monitoring the times-of-arrival

(ToAs) of pulses over several years to determine the pulsar’s rotation period. Thanks to

the regularity, small deviations of ToAs are detectable with precision. The greater the



Section 3.1. Neutron star mass measurements 61

1.0 1.5 2.0 2.5 3.0
Masses

2S 0921-630
4U 1538-522

4U 1608-52
4U 1700-377
4U 1702-429
4U 1724-307

4U 1820-30
4U 1822-371

B1957+20
Cen X-3
Cyg X-2

EXO 0748-676
EXO 1722-363
EXO 1745-248

Her X-1
J01326.7+303228

J0212.1+5320
J0427.9-6704
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J1301+0833
J1311-3430

J1417.7-4407
J1555-2908
J1653-0158
J1723-2837
J1810+1744

J2039.6-5618
J2129-0429
J2215+5135
J2339-0533

KS 1731-260
LMC X-4

OAO 1657-415
SAX J1748.9-2021
SAX J1802.7-2017

SMC X-1
Vela X-1

XTE J1855-026
XTE J2123-058

B1534+12
B1534+12Cp

B1913+16
B1913+16Cp

B2127-11C
B2127-11CCp

J0453+1559
J0453+1559Cp

J0509+3801
J0509+3801Cp

J0514-4002A
J0514-4002ACp

J0737-3039A
J0737-3039B

J1756-2251
J1757-1854

J1757-1854Cp
J1807-2500B

J1807-2500BCp
J1829+2456

J1829+2456Cp
J1906+0746

J1906+0746Cp
J1913+1102
B1516+02B

B1802-07
B1855+09
B2303+46

J0024-7204H
J0337+1715
J0348+0432
J0437-4715
J0621+1002
J0740+6620
J0751+1807
J0955-6150
J1012+5307
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J1125-6014
J1141-6545
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J1614-2230
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J1802-2124
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J1909-3744
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J2045+3633
J2053+4650
J2222-0137
J2234+0611
J0045-7319
J1023+0038
J1903+0327

X-ray/Optical
DNS
WD-NS
MS-NS

Figure 3.1: The revised and updated sample of 112 systems containing NS, separated by colors in four

groups due to system type and showing their corresponding error bars. We considered only systems with

pulsar individual mass measured. Masses and references are specified in Table A.1
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number of collected ToAs, greater will be the precision achieved.

Nowadays, more than 3300 radio pulsars were observed (see a catalogue in Hobbs et al.,

2004), but only a few aspects of them can be directly inferred from observations, and only

a tiny fraction of the total sample allows mass measurements. The ToAs reveals the orbital

properties of the system expressed in terms of Keplerian parameters: orbital period (PB),

eccentricity (e), semimajor axis projection onto the line of sight (x = a sin i), time (T0) and

longitude (ω) of periastron. From Kepler’s third law, a mass function for each component

(pulsar, mp, and companion, mc) of the system emerges:

fp =
(mc sin i)3

(mp + mc)2
=

4π2

T⊙

x3

P 2
B

. (3.1)

where T⊙ ≡ GM⊙/c
3 = 4.925490947 µs (G is the gravitational constant, c is the speed of

light and M⊙ is the solar mass). If both functions can be measured as well as the mass

ratio (q = mp/mc), the individual masses of the system can be determined provided the

inclination angle i, responsible for the major uncertainty in these measurements, is known.

In the special case of compact binaries, where the companion is a WD or a NS, re-

lativistic effects, described by post-Keplerian (PK) parameters as functions of Keplerian

parameters (Stairs, 2003), influences the orbit and can be measured. These effects are:

1. Orbital period decay, Ṗb:

Ṗb = −192π

5

(
Pb

2πT⊙

)− 5
3
(

1 +
73

24
e2 +

37

96
e4
)(

1 − e2
)− 7

2
mpmc

m1/3
; (3.2)

2. Range of Shapiro delay, r:

r = T⊙mc; (3.3)

3. Shape of Shapiro delay, s:

s = sin i = xp

(
Pb

2π

)−2/3
m2/3

T
1/3
⊙ mc

; (3.4)

4. “Einstein delay”, γ:

γ = e

(
Pb

2π

)1/3

T
2/3
⊙

mc (mp + 2mc)

m4/3
; (3.5)

5. Advance of periastron, ω̇:

ω̇ = 3

(
Pb

2π

)−5/3 (
1 − e2

)−1
(m T⊙)2/3 . (3.6)
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If two PK parameters are measured, the component masses are individually determined.

If more PK parameters are measured, is also possible to test GR within a very high

precision, as shown in Kramer et al. (2021). Accretion torques in binary systems can

circularize the orbits, and consequently many NS binaries have extremely low eccentricities,

hampering the measurement of ω̇ and γ. On the other hand, the Shapiro delay of the pulses

due to the gravitational field of the companion is dependent on the orbital inclination,

being typically relevant for systems with high inclinations. Lastly, detection of orbital

decay due to gravitational wave radiation, (Ṗb) is only possible for very short orbits. All

these conditions makes pulsar mass measurements a challenging task. If relativistic effects

are too small, they can go undetected even after years of pulsar timing.

The Neutron star Interior Composition ExploreR (NICER) is a telescope placed on

board of the International Space Station in 2017, to enable timing and rotation-resolved

spectroscopy of thermal and non-thermal X-ray emissions of NSs. Recently, it allowed

to precisely measure radii and masses of two pulsars, namely PSR J0740+6620 and PSR

J0030+0451 (Riley et al., 2019, 2021). Despite being a promising avenue, the dominant

method to infer NS masses continues to be the study of the orbital motion in binary

systems determined through pulsar timing of radio sources (Horvath and Valentim, 2017).

3.1.1 Optical spectroscopy

If the pulsar has an optically bright low-mass companion, like main sequence and

post-main sequence stars or WDs, a phase-resolved spectroscopy of the companion yields

the orbital radial velocity amplitude (Kc), which combined with x and Pb, provides the

binary mass ratio q = (mp/mc) = (Kc/Kp). For WD companions, their radii can be

estimated given the distance (d) to Earth is known, and the optical flux (FO) and effective

temperature (Teff ) are measured:

RWD =

(
FO

σ

)1/2
(

d

T 2
eff

)
, (3.7)

where σ is the Stefan-Boltzmann constant. Their masses can thus be estimated combining

the effective temperature with the surface gravity fitted from a synthetic atmosphere. As

we can see, this method is model-dependent and can lead to large systematic errors.

Spider systems are of particular interest since most of the largest NS masses have

been inferred from them, through spectrophotometry methods (Linares, 2020; Horvath
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et al., 2020). These are compact binary millisecond pulsar systems with semi-degenerate

companions, classified under two groups. The Black-Widows (BW) have companions with

masses mc ≤ 0.05 M⊙, while for Redbacks 0.1 ≤ mc ≤ 0.5 M⊙. The companion’s outer

envelope is believed to be ablated by the intense pulsar wind1, filling the system with intra-

binary material that causes the radio pulsation to be scattered and absorbed (Kansabanik

et al., 2021). As a consequence, their optical light curves are sensitive not only to the

orbital inclination, but also to heating models of companion surface’s, difficult to predict.

Large systematic error on the inclination angle estimate can result in large bias on the

mass estimate for this class of pulsars.

3.1.2 Gamma-ray eclipses

Millisecond pulsars also emit gamma-ray pulsations (Atwood et al., 2009). Contrary

to other wavelenghts, it seems unlikely that γ-rays are absorbed in the diffuse intra-binary

material. Consequently, eclipses observed in gamma-ray are potentially associated only

with the occultation of the pulsar by the companion, what provides a robust determination

of the inclination angle. The work in Clark et al. (2023) searched for gamma-rays eclipses

in 49 confirmed and candidate spider systems, finding it to be present with a confident

level in 5 systems, from where masses were determined (Table 3.1). In only one out of 5

systems the inclination angle was found to be inconsistent with optical modelling. For PSR

B1957+20, photometric observations provided 63o ≲ i ≲ 67o, which results in a best fit

with a high mass, m = 2.4±0.1 M⊙ (Van Kerkwijk et al., 2011). The recent observations in

γ-rays requires i > 84.1o, corresponding to a significantly lower mass, m = 1.81±0.07 M⊙.

The difference they found for mass estimates can have a huge impact on the maximum mass

of NSs and, consequently, on the state of matter at ultra-high densities. The treatment

in (Clark et al., 2023) relies in simplistic assumptions for companion winds, and further

studies are necessary to confirm its robustness.

1 This is the reason why these systems are called spiders, in an analogy with the black widow and

redback spiders which are known to kill and devour their male partners.
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Pulsar mp (M⊙)

B1957+20 1.81 ± 0.07

J1048+2339 1.58 ± 0.07

J1555−2908 1.65 ± 0.04

J1816+4510 1.90 ± 0.13

J2129−0429 1.70 ± 0.11

Table 3.1 - Mass estimates for spider systems with detected eclipses in gamma-rays, derived by Clark

et al. (2023).

3.2 Statistical analysis

Statistics is a branch of mathematics dedicated to develop and make use of methods

to collect, organize, interpret, present and analyze data. By applying mathematical and

computational tools, it has the purpose of infer or predict aspects of a phenomenon from

which data is related, helping to make decision based on evidences (data). Statistics is used

in a wide variety of fields, including astronomy and astrophysics, and is generally cons-

tructed under applications of probability theory, which in turn has the aim of quantifying

the associated uncertainty.

Different epistemological definitions are used to construct probabilistic models, as the

frequentist, logical, subjectivist and Bayesian. The choice for a specific approach depends

on the nature of data, research questions, and the goals of the analysis. The most widely

used is the frequentist (or classical) approach, based on the idea that parameters being

studied possess a true value. The frequentist method focuses on point estimations (i.e.

means, medians, etc), with the goal of finding the true value that represents the unk-

nown parameter. In this approach probabilities are defined as the relative frequency of

an event occurring in a infinite number of repetitions of the same experiment, and trea-

ted as measures of uncertainties associated with data. One of the fundamental aspects of

frequentist approach is the hypothesis testing, where the evidence against a “null hypothe-

sis” is quantified respect to alternative hypothesis, based on sampled data. The frequentist

treatment is based on criteria and principles including impartiality, efficiency, consistency,

conditionality, likelihood and etc.

On the other hand, for Bayesian statistics probability is identified as a credible degree

that can be measured. This approach does not account only for data, as in the frequentist

case, but also for the previous knowledge/beliefs one have about the subject being studied,
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described in terms of a probability distribution. It is important to note, however, that this

a priori knowledge can change when new evidence comes up, as well as different individu-

als can have distinct beliefs for the same problem in light of the same evidences. For these

reasons some statisticians consider the Bayesian approach controversial and highly subjec-

tive. However, analysis made under the Bayesian treatment are shown to be consistent,

and provides good predictions.

The main difference between both approaches is that frequentist statistics tries to eli-

minate/reduce uncertainties of a model providing estimates for the data, searching for

the “true value” of each parameter, while Bayesian statistics tries to preserve and refine

uncertainties updating beliefs with new evidences provided by the observed data. Further-

more, Bayesian analysis can be specially advantageous when dealing with small samples,

in comparison to classical statistics, and offers a natural framework for decision making

under uncertainty.

3.2.1 Bayesian Inference

The construction of Bayesian statistics is based on the Bayes theorem (Bayes, 1763),

derived from axioms of conditional probabilities, and defined as:

P (A|B) =
P (A ∩B)

P (B)
, (3.8)

which asserts that, the probability of event A to occur given that event B occurred, is

equivalent to the ratio between the probability of occurrence of both A and B and the

probability of B only.

The same is valid for the conditional probability of B given A, so knowing that P (A ∩
B) = P (B ∩ A), we are led to the relation:

P (B)P (A|B) = P (A)P (B|A), (3.9)

which results in the Bayes theorem:

P (A|B) =
P (A)P (B|A)

P (B)
. (3.10)

In the case we are interested in the posterior probability distribution of a parameter θ,

or a set of parameters θ, given the observed data (D), we may write:

P (θ|D) =
P (θ)P (D|θ)

P (D)
, (3.11)
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where:

• P (θ|D) is the posterior distribution, translated as degree of credibility on θ given

that an evidence (D) has been taken into account;

• P (θ) is the a priori distribution, which express a confidence degree on θ without

taking the evidence D into account - it is our previous belief about each parameter

in the model;

• P (D|θ) is the likelihood function, that provides the probability of detecting a data D

from a model with the fixed parameter θ;

• P (D) is the predictive probability, which is a normalization constant.

3.2.2 Marginalization

Suppose that we have a distribution P (θ, ϕ|D,M), where M is an additional informa-

tion regarding a hypothesis on D, and that we are only interested in inferences about the

parameters θ. In this case, ϕ is what we call a nuisance parameter. In the Bayesian appro-

ach, is possible to marginalize the posterior probability by integrating out the irrelevant

degrees of freedom:

P (θ|D,M) =

∫
P (θ, ϕ|D,M)dϕ. (3.12)

where P (θ|D,M) is called the marginal posterior distribution for θ (Bernardo and Smith,

2009).

3.2.3 Model Selection

In the Bayesian approach, model selection is important in order to select the most

appropriate model among a set of candidates, based on the observed data, by assessing their

relative strengths. It allows to choose a model that strikes a balance between simplicity

and flexibility, avoiding an overfitting of the data, and that provides the best predictions

for future observations. There are a variety of model selection methods, each of them

based on different assumptions and evaluating criteria. Statisticians recommends to apply

multiple methods to enhance the rigor and reliability of the model selection, helping to

mitigate the limitations of individual methods. If multiple methods consistently point to

the same model, it increases the confidence in the selection.
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In the following we describe one of the selection methods, based on the Bayes factor

(BF). Suppose that Mi denotes the proposition asserting that a model i describes the data,

and I denotes the proposition asserting that one of the candidate models do describes the

data. Bayes theorem might be used to calculate the probability of Mi, given that one of

the models actually describes the observations:

P (Mi|D, I) =
P (Mi|I)P (D|Mi, I)

P (D|I)
, (3.13)

with P (Mi|I) corresponding to the a priori distribution, Mi resembling the parameter and

I the model.

The ratio between the probability for model Mi and for model Mj is called the odds in

favor of Mi over Mj, denoted by Oij:

Oij =
P (Mi|D, I)

P (Mj|D, I)
(3.14)

=
P (Mi|I)

P (Mj|I)

P (D|Mi, I)

P (D|Mj, I)
(3.15)

=
P (Mi|I)

P (Mj|I)
Bij, (3.16)

where Bij is the Bayes factor. This factor is nothing more than the ratio between mo-

del’s likelihoods, and quantifies the support of one model over the another. Table (3.2)

summarizes the interpretation of Bij recommended by Kass and Raftery (1995).

Bayesian model comparison is based on averaged likelihoods, so it tends to favor simpler

models even when simple and complicated models have equal a priori probabilities, a

property known as Ockham’s razor. For frequentist statistics, model selection is usually

performed under likelihood ratio tests based on maximum value of likelihoods. In these

tests model complexity are not taken into account.

Table 3.2 - Bayes factor interpretation

ln(Bij) Bij Strength of evidence for Mi over Mj

0 to 1 1 to 3 Not worth more than a bare mention

1 to 3 3 to 20 Positive

3 to 5 20 to 150 Strong

>5 >150 Very strong

The integrals needed to calculate the average likelihoods in the Bayesian framework are

often challenging, so it is common to use an approximation known as Bayesian Information
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Criteria (BIC), with a Gaussian approximation to calculate it. The log of Bayes factor

can thus be approximated as:

ln Bij = ln

(Lj(θ, ϕ)

Li(θ)

)
− 1

2
mϕlnN, (3.17)

where model j is the most complex, with additional parameters ϕ. The mϕ is the dimension

of ϕ, L is the model likelihood and N is the sample size. The BIC has the aim of balancing

model fit and complexity, usually favoring simpler models, satistying the Ockham’s razor.

Another alternative method is the second-order Akaike Information Criteria (AIK2;

Akaike, 1974):

AIKci = −2lnLi + 2k
N

N − k − 1
, (3.18)

where k is the number of free parameters in the model, so it also balance model fit and

complexity. The relative likelihood between two competing models can be calculated as:

δLAIK = exp

[
AIKmin − AIKmax

2

]
, (3.19)

and lower AIK values indicate better-fitting models. This method seeks to minimize the

information loss, it does not assume any a priori distribution, and is asymptotically efficient

being suitable for both small and large sample sizes.

The choice between both methods depends on the analysis. While AIC may be preferred

for larger samples, as it places less stringent penalties on model complexity, the BIC is

particularly useful for smaller samples. However, it is beneficial to compute both criteria

and examine their results together with other methods and/or relevant information.

3.2.4 Bayesian sampling

The normalization constant of Bayes theorem, also called predictive probability:

P (D) =

∫
P (θ)P (D|θ)dθ (3.20)

is often hard to compute, specially for a high-dimensional parameter space. Consequently,

for these complex models it is often impossible to find analytical solutions for the posterior

distributions. Computational Bayesian statistics is based on developing algorithms to draw

samples from the true posterior distribution, even when only the non-normalized version

2 The usual acronym for Akaike Information Criteria is AIC. Here we use AIK to distinguish from the

acronym for Accretion Induced Collapse.
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of it is available. One of the most widespread and implemented method is the Markov

Chain Monte Carlo (MCMC).

The MCMC method is a class of algorithms that use Markov Chains to generate a

sequence of samples from a target probability distribution of interest. These algorithms

can also handle models with many parameters, where traditional methods like grid-based

approaches and numerical integration are impractical.

3.2.4.1 Markov Chain

Markov Chain is a stochastic process3 for a sequence of random variables X1, X2, ..., Xn,

where Xn is the state belonging to a space state at time n, with the special property of

being memoryless. This means that the conditional probability of the process at a time n,

given the previous states, depends only in the single previous state, at a time n− 1:

P (Xn = xn|Xn−1 = xn−1, ..., X
0 = x0) = P (Xn = xn|Xn−1 = xn−1). (3.21)

3.2.4.2 Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) is the most general algorithm of MCMC sampling method

(Metropolis et al., 1953; HASTINGS, 1970), which generates candidate samples from a

proposal distribution and accepts or rejects them based on a probability ratio that depends

on the target distribution.

Its operation can be described as follows: suppose we are interested in sampling a

distribution f(x) on a state space Ω, with x ∈ Ω. To construct the transition kernel

K(x, y) from a state x to a state y, the MH algorithm uses a two step process:

• Specify a proposal distribution q(y|x);

• Accept draws from q(y|x) with acceptance ratio a(x, y) = min
[
1, f(y)q(x|y)

f(x)q(y|x)

]
.

The transition kernel is than given by K(x, y) = q(y|x)a(x, y).

There are multiple ways of constructing a proposal distribution q(y|x) and each of them

leads to a different version of MH algorithm (Sharma, 2017). By running the algorithm for

a sufficiently large number of iterations, the chain explores the phase space and produces

a sequence that approximates the desired distribution.

3 Process that evolves through time according to some probabilistic law.



Section 3.3. Inferences on the mass distribution of neutron stars 71

Algorithm 1: Metropolis-Hastings Algorithm

Data: Starting point x1, function f(x), proposal distribution q(y|x)

Result: Array of N points, x1, x2, ..., xN

for t = 1 to N − 1 do

Obtain a new sample y from q(y|xt)

Sample a uniform random variable U

if U < f(y)q(x|y)
f(x)q(y|x) then

xt+1 = y

else
xt+1 = x

end

end

3.3 Inferences on the mass distribution of neutron stars

3.3.1 Classical analysis

Although Bayesian statistics have gained strength over the years, frequentist non-

parametric hypothesis tests are roughly employed by astronomers to help exploring tenta-

tive conclusions about different phenomena and to better understand the data. Kolmogorov-

Smirnov (KS) and Anderson-Darling (AD) are two well-known suitable examples of hy-

pothesis tests, and we apply them to gather conclusions about the mass distribution of

NSs.

3.3.1.1 Kolmogorov-Smirnov test

A non-parametric test that can be used as a goodness of fit test to determine whether

a sample follows a specified distribution, or to verify if two samples are drawn from the

same distribution. It measures the maximum absolute distance (Dn) between empirical

distribution function (EDF) of the sample and the cumulative distribution function (CDF)

of a specified distribution:

Dn = sup
x

|F̂ (x) − F (x)|, (3.22)

where F̂ (x) asserts for the EDF and F (x) for the CDF. The null hypothesis is that the

sample come from the specified distribution. From KS test it is possible to extract a p-
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value, and if it is small4 suggests that it is unlikely that data came from F (x), and the

null hypothesis is rejected in favor of an alternative one.

The advantages of KS test include its generality and ability to handle continuous,

discrete and mixed distributions. However, it is more sensitive to differences in the the

shape of the distribution in the central region rather than the tails, despite of being more

suitable for larger sample sizes.

3.3.1.2 Anderson-Darling test

Similarly to KS, the AD test is also nonparametric, and based on the distance between

the EDF and CDF. It is an alternative to the KS test, with the advantage of giving more

weight to the tails of the distribution, presenting a more robust result (Babu and Feigelson,

2006). The distance is given by:

A2 = n

∫ ∞

−∞

(F̂ (x) − F (x))2

F (x)(1 − F (x))
dF (x), (3.23)

where n is the number of observations. The test to assess if data come from the CDF,

which is the null hypothesis, is:

A2 = −n− S, (3.24)

with

S =
n∑

i=1

2i− 1

n
[lnF (xi) + ln(1 − F (xn+1−i))] . (3.25)

A p-value with a given significance level will also determine whether the null hypothesis is

rejected or not.

3.3.1.3 Frequentist analysis of NS masses

Following the motivations elucidated in the introduction of this chapter, lets assume the

mass distribution of NS masses to be modeled by a Gaussian mixture with n components:

P (mp|θ) =
n∑
j

rj
1√

2πσj

e
− 1

2

(
m−µj

σj

)2

≡
n∑
j

rj N (mp|µj, σj), (3.26)

where µj and σj are the mean and standard deviation of the j-th normal component N
with a relative weight rj, satisfying

∑n
j rj = 1 to ensure normalization. The goal is to test

which model (1, 2 and 3 normal components) is preferred for the sample of binary NS’s at

4 Small compared with a significance level, usually set as α = 0.05. So if p < α the model is rejected.
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Table A.1. The maximum likelihood method is used to derive the values of each parameter.

The resulting distributions are:

Unimodal

P (mp|θ) = N (1.48, 0.35)

Bimodal:

P (mp|θ) = 0.6 N (1.38, 0.15) + 0.4 N (1.84, 0.35)

Tri-modal:

P (mp|θ) = 0.1 N (1.25, 0.09) + 0.5 N (1.40, 0.14) + 0.4 N (1.89, 0.30)

For each Gaussian mixture we applied both KS and AD tests against the empirical

distribution of data. Resultant p-values are shown in Table 3.3. The simplest (unimodal)

model is ruled out for both tests, while 2 and 3-component models are not rejected and

presents similar p-values, so it is not possible to decide between both models only with

KS and AD tests. Figure 3.2 shows in the left panel the EDF of NS sample in black,

together with the CDF of three mentioned models used for tests calculations. As we can

see, the unimodal distribution (blue) fits well the position of mean but is bad in adjusting

the tails, while the bimodal (red) and trimodal (green) curves provide better fits along the

whole distribution. Right panel shows the PDF of all models together with the sample

histogram. Although the trimodal model has a p-value similar with the bimodal case, it

does not show the expected behaviour, with three distinct modes. This graphical argument

is also relevant to decide for a model against other, so in this case the bimodal distribution

stands as more convenient.

As stated above, hypothesis tests help to gather an intuitive comprehension of the

problem, but are sensitive to the parameter values and are inconclusive, specially for small

samples. A Bayesian analysis can provide stronger conclusions for this problem.

Table 3.3 - P-value of two hypothesis test for three different models

Model K-S A-D Conclusion

Unimodal 0.025 0.032 Reject

Bimodal 0.971 0.990 Do not reject

Trimodal 0.974 0.953 Do not reject
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Figure 3.2: LEFT: The black curve represents the EDF of sample, while the blue curve is the CDF of

an unimodal distribution, the red curve is the CDF of a bimodal distribution and in green is the CDF of

a trimodal distribution. As can be noted the blue curve provides a good fit to the mean position, but is

quite bad in adjusting the tails. RIGHT: The histogram of observed masses is shown, together with PDF

of the 3 mixture models. Although the p-value of 2 and 3-component models are similar, the three peaks

of the last one are not clearly identified, even if the binning is reduced.

3.3.2 Bayesian analysis

To proceed with the Bayesian analysis a hierarchical model is used, where the posterior

distribution of a set of parameters (θ), marginalized over individual masses (d = {di}), is

given by:

P (θ|d) ∝ P (θ)
N∏
i=1

∫
P (di|mi

p)P (mi
p|θ) dmi

p. (3.27)

The P (θ) is the a priori distribution for each model parameter, while P (di|mi
p) is the

distribution of individual masses. We assumed the individual masses of observed pulsars

to follow Gaussian distributions, with the mean and standard deviations provided in Table

A.1. For example, the PSR 2S 0921-630 was reported to have a mass of 1.44 ± 0.10 M⊙

(Steeghs and Jonker, 2007), so we assume it to follow a normal distribution N (1.44, 0.10),

and so on.

The model likelihood, P (mi
p|θ), is assumed to be a truncated n-component Gaussian

mixture model:

P (mi
p|θ) =

n∑
j=1

rj
N (mi

p|µj, σj)∫ mmax

mmin
N (x|µ, σ)dx

, (3.28)

again with
∑n

j rj = 1 to ensure normalization. The set of model parameters used is

θ = {µj, σj, rj,mmax}, with j = {1, n}.

As a first step we implemented the Gaussian Mixture Model package (Pedregosa et al.,

2011), in order to compare models with 1 to 4 Gaussian components. Since there is no

astrophysical reason to believe that more than 3 classes of NS might exist, we did not
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considered more complex models. Relevance has been assessed through the usage of BIC

(Schwarz, 1978) and AIK (Akaike, 1974), as shown in Fig. 3.3. As we already mentioned,

lower values of BIC and AIK indicate the most likely hypothesis. BIC results clearly

favors n = 2, whilst AIK does not allow a firm conclusion between models with two

and three components. It is common to find many works that base their results in only

one model selection method, but as we mentioned is indeed recommended to use several

different methods, whether internal or external. For this reason, we also used an external

validation method based on the shape of marginalized distribution of pulsar masses. In

agreement with the frequentist approach we discussed in the previous section, in the case

n = 3 we can not clearly distinguish three modes, and the marginalized distribution of

pulsar’s masses resembles a bimodal behaviour. For now on, we assume n = 2 as a fiducial

robust distribution.

11 22 33 4
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Figure 3.3: BIC and Akaike scores for a Gaussian mixture with different number of components. Lower

values of both quantities indicate a better fit in the modeling. It is important to emphasize that the

number of components in a model is normally accompanied by a theoretical reason, which in this case

points to a maximum of three components until the moment. BIC favors a model with two Gaussians

while Akaike does not provide a firm conclusion.
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3.3.2.1 Marginalized posterior distributions

In the sequence we implemented MCMC algorithm using pystan, a python interface

to STAN5 (Team et al., 2020, STAN, 2020). In the appendix B we detail the assumptions

made to run the models, as the number of chains and iterations, prior’s distributions and

etc.

The summary of marginalized posterior distributions sampled for each model parame-

ter in the truncated scenario (described by Eq. 3.27 and 3.28) is given in Table 3.4. First

column provide us the mean value of the parameter, followed in the second column by its

respective standard deviation. Third columns gives the highest posterior density interval

with 94% probability, this quantity constrains the shortest interval of masses with a given

probability. The corner plot in Fig. 3.4 shows all the one and two dimensional projections

of the posterior probability distributions of our parameters. The diagonal shows the mar-

ginalized posterior distribution of each parameter individually, while below the diagonal

we can see the covariance between pairs of parameters in the form of marginalized two

dimensional distributions.

Table 3.4 - Summary of marginal posterior distribution of each parameter from a bimodal right-truncated

model, with the mean value in the second column, followed by respective standard deviation and the highest

posterior density in fourth and fifth columns defining the lowest interval that comprises 94% of probability.

mean sd 94% HPDI

r1 0.533 0.090 0.358-0.695

r2 0.467 0.090 0.305-0.642

µ1 1.347 0.023 1.304-1.389

µ2 1.796 0.077 1.652-1.937

σ1 0.085 0.020 0.049-0.122

σ2 0.258 0.056 0.147-0.362

mmax 2.600 0.386 1.890-3.291

In agreement with previous analysis available in literature, our sampling results in a

bimodal distribution with a class of NS’s clustered around ∼ 1.35 M⊙, and a second group

at ∼ 1.8 M⊙, with a preponderance of objects in the first class. Contrary to results found

in Alsing et al. (2018) and Shao et al. (2020), our maximum mass has a mean value of

5 Stan is a state-of-the-art platform for statistical modeling and high-performance statistical computa-

tion, which provides full Bayesian statistical inference with MCMC sampling.



Section 3.3. Inferences on the mass distribution of neutron stars 77

0.05

0.10

0.15

0.20

1

0.2

0.4

0.6

0.8

r 1

1.6

1.8

2.0

2

0.1

0.2

0.3

0.4

0.5

2

1.3 1.4 1.5

1

0.2

0.4

0.6

0.8

r 2

0.1 0.2

1
0.2 0.4 0.6 0.8

r1
1.6 1.8 2.0

2
0.2 0.4

2
0.2 0.4 0.6 0.8

r2

Figure 3.4: The diagonal shows the marginalized distribution for all parameters (θ) in the truncated

bimodal gaussian distribution.
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mmax ≃ 2.6 ± 0.4 M⊙ and, as shown in Fig. 3.5, its marginal posterior distribution has a

much broader shape compared with the works we mentioned.

This broad behaviour is somewhat expected. The posterior distribution is a balance

between the information stored in likelihoods and a prioris. Given a strong likelihood,

the a priori will have a small impact over the posterior distribution, such that a change

of a priori will barely change the result. On the same way, if the degree of information

about a specific parameter in the likelihood is low, the a priori will play a key role on the

marginalized distribution of this parameter. Have we set narrower (stronger) priors, this

would be imprinted in the marginal posterior distribution. In Section 3.3.2.4 we discuss

why our result differs significantly, and why it cannot be treated as a flaw.

To check the robustness of results we investigated how an individual measurement with

high mass can influence the marginalized distribution of mmax. The dashed line in Fig. 3.5

is the marginal distribution when we exclude PSR J1748-2021B from the sample, which has

m = 2.74±0.21 M⊙. On the other hand, we check the impact of adding to the total sample a

new data consistent with the lightest component of GW190814, with m = 2.59± 0.08 M⊙,

shown by the dotted line. As we can see in both cases, the marginalized distribution

barely changes. Finally, we verified the impact of changing the masses of PSR B1957+20,

J1048+2339, J1555-2908, J2129-0429 by the values obtained from γ-ray observations, listed

in Table 3.1. Since the only value that changes considerably is for B1957+20, we did not

expected a significant change, as confirmed by the grey dot-dashed line in Figure 3.5

3.3.2.2 Right-tail behaviour

In both works of Alsing et al. (2018) and Shao et al. (2020) an evidence for a sharp

cut-off on the maximum mass was found (see Fig. 2 of both works). This implies that

the right-tail of the distribution (where m ≥ 2 M⊙) has a non-negligible probability for

mass values right before mmax, and suddenly vanishes above it. The broad shape of mmax

in our result has a consequence in the posterior sample of pulsar’s mass. No sharp cut-off

is observed. Instead, we have a smooth decrease of probabilities in the right-tail, until it

achieves the limit value, mmax.

Figure 3.6 shows in light grey lines draws of 1000 posterior samples of pulsar mass

distribution. The maximum posterior probability (MAP), in black, is the estimate that

equals the mode of the posterior distribution. In blue we have the average mass distri-
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Figure 3.5: Marginal posterior distribution of mmax and a test of the algorithm sensitivity to the most

massive source. Solid line is the result for complete sample (112 NS’s), while dashed line is the result when

removing PSR J1748-2021B and dotted line is the result for complete sample plus a pulsar consistent with

the 2.59± 0.08 M⊙ component of GW190814. The grey dot-dashed curve is the result of substituting the

masses listed at Table 3.1

bution. This plot allows us to have a visual intuition of uncertainties in each parameter,

summarized in Table 3.4. Although some grey lines do show a sharp cut-off, the MAP and

average distributions do not (blue and black curves).

Due to the differences found in comparison to previous works a question arises: should

we expect a sharp cut-off for relatively higher thresholds? We look for any relation between

the mmax value and the right-tail behaviour. Figure 3.7 shows in grey solid lines two

empirical cumulative distribution function, which assigns a probability for each datum,

one for original sample (step-shaped curve) and the other for a synthetic sample with

11200 points to take into account the uncertainties of mass. The black dashed curve is a

truncated Gaussian mixture that resembles our mean result presented in Sec. 3.3.2.1, with

mmax = 2.59. Dotted curves are reconstructions of the posterior mean distribution from

Alsing et al. (2018) with different values of truncation, starting with the original one in

2.12 M⊙, followed by 2.22 M⊙, 2.32 M⊙ and 2.42 M⊙, from left to right. The right panel

of Figure 3.7 gives a zoom in the region of accumulated probabilities between 90% and

100%.

As we can see in the zoom, there is an apparent trend on the right-tail behaviour depen-
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Figure 3.6: Grey lines represent 1000 posterior samples drawn from truncated model summarized in Table

3.4. The blue curve is the posterior mean of these synthetic samples and the black line is the maximum a

posteriori distribution.

ding on the mass threshold. For lower thresholds, namelly 2.12 and 2.22, the cumulative

distribution presents a kind of “knee” when it achieves the value of 1. This is translated

in a sharp cut-off in the probability distribution function (PDF). As the threshold value

increases, smoother is the way in which the cumulative distribution approaches 1.

If a sharp cut-off was expected for large values of mmax, the probability to observe

masses close to it would increase, compared with a case where the sharp cut-off is absent.

This result might indicate that, if these “ultra-massive” NSs really exist in Nature, they

are very rare. This is in agreement if the fact that, according to the initial mass function

(IMF), the number of progenitor stars reduces as we increase masses. Consequently, the

number of very heavy NSs must be low.

3.3.2.3 Posterior Predictive Check

An important step in Bayesian analysis is to check if predictive simulated data look

similar to observed data, i.e., if we detect new observations drawn from the posterior

distribution, we want to know if they will be compatible with current observed sample. A

discrepancy might reveal a misfit. This analysis is called posterior predictive check (PPC)

and, one of the ways to proceed with it is to graphically compare summaries of real data

with summaries of simulated data. But in addition, it can be useful to quantify the level
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Figure 3.7: Cumulative distribution function to investigate the behaviour of right end tail depending on

truncation parameter. Solid gray curves are the empirical cumulative distribution function which assign

a probability for each datum, where the step-shaped curve is the EDF for original sample with 112 points

and the other is the EDF for a synthetic sample with 11200 points that take uncertainties into account.

Dashed line is a Gaussian mixture built from our posterior mean distribution summarized at Table I of

main text. Dotted curves, on the other hand, are reconstructions of posterior mean distribution obtained

in Alsing’s work, but with different values of mmax. From left to right, truncation points are set as 2.12 M⊙
(original value), 2.22 M⊙, 2.32 M⊙ and 2.42 M⊙. There is a trend of an increasingly smooth fall as the

maximum mass increases. Moreover, Alsing’s result no longer matches the updated sample.

of discrepancy by defining a “test quantity” (T ), which can be, for example, the mean. A

Bayesian p-value is then computed as the probability that the test quantity of simulated

data, T sim, exceed the T value for real data:

p = P (T (msim) > T (m)|m). (3.29)

After the detection of GW170817 several works were published where the maximum

mass allowed for NS’s is derived (Ai et al., 2020; Rezzolla et al., 2018; Margalit and Metzger,

2017; Ruiz et al., 2018; Shibata et al., 2019). All these analysis resulted in maximum

masses significantly lower than the mmax we found from the sample of galactic binaries

with NSs. To quantify if the values derived from GW data are compatible with the posterior

distribution of pulsar masses sampled from the galactic binaries, we apply a PPC.

As our goal is to investigate the maximum of the distribution, we performed a new

MCMC sampling from a non-truncated Gaussian mixture, to avoid any influence on

the maximum. The only difference with the previous model is that now P (mi
p|θ) =∑n

j rj N (mi
p|µj, σj). In Table 3.5 we summarize the mean and standard deviation of

each model parameter.

We used results shown in Table 3.5 to generate, through MATHEMATICAWolfram (2020),

100.000 posterior predictive distributions following a Gaussian mixture with n = 2. Further-
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Table 3.5 - Summary of marginal posterior distribution of each parameter in the non-truncated bimodal

model. These results were used to generate 10.000 synthetic bimodal Gaussian distributions.

r1 r2 µ1 µ2 σ1 σ2

0.454 ± 0.094 0.546 ± 0.094 1.345 ± 0.029 1.785 ± 0.071 0.097 ± 0.027 0.308 ± 0.039

more, we defined the test quantity, T , as the amount of elements in the observed sample

with masses higher than a specific value, named mmax to illustrate our goal to examine

the maximum mass. The p-value results from the number of times that T sim > T . The

left panel at the top of Figure 3.8 give us an analogue to the probability of, in future

observations, detect objects with m > 2.09 M⊙.
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Figure 3.8: Posterior predictive check on two-Gaussian model without truncation. The purpose is to

investigate the upper tail of distributions. High p-values indicates that values higher than the one specified

in the label are very common, thus they cannot be pointed as valid thresholds. The adopted mmax from

NS-NS mergers are, from left to right and top to bottom: Ai et al. (2020) with 2.09+0.11
−0.09 M⊙; Shao et al.

(2020) with 2.13+0.08
−0.07 M⊙; Rezzolla et al. (2018) with 2.16+0.17

−0.15 M⊙; Margalit and Metzger (2017) with

2.17 M⊙; Ruiz et al. (2018) with 2.16− 2.28 M⊙; Shibata et al. (2019) with 2.3 M⊙; Ai et al. (2020) with

2.43+0.10
−0.08 M⊙. Last panel represents our result summarized at Table 3.4. We used the mean value of each

referenced work, since they cover the whole range of high masses reasonably well.
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3.3.2.4 A comparison with Alsing’s treatment

As we discussed in Sec. 3.1, the best determined masses of pulsars are those where

relativistic effects takes place and two or more post-keplerian parameters are observed.

In these cases both works of Alsing et al. (2018); Shao et al. (2020) consider individual

masses to be normally distributed, as we made. Otherwise, only lower/upper limits can

be set from observations to the pulsar masses. If, despite of the mass function, only the

ω̇ is constrained, the system total’s mass can be determined. In this case, the individual

likelihood is given by:

P (d|mp) ∝
∫ ∫

P (dt|mp,mt, i)dq dmt

=

∫
exp

(
−(mt − µt)

2

2σ2
t

)
m

4/3
t

3(mt −mp)2f 1/3

√
1 − f2/3m

4/3
t

(mt−mp)2

dmt.
(3.30)

Finally, if only the mass-ratio can be determined from phase-resolved optical spectroscopy,

the pulsar mass likelihood assumes the form:

P (d|mp) ∝
∫ ∫

P (dq|mp, q, i)di dq

=

∫
exp

(
−(q − µq)

2

2σ2
q

)
(1 + q)4/3

3f 1/3m
2/3
p q2

√
1 −

(
f
mp

)2/3
(1+q)4/3

q2

dq.
(3.31)

The main assumption to derive equations 3.30 and 3.31 is that cos i is isotropically

distributed, i.e., is subject to a uniform a priori so that i can assume any value between

0◦ − 90◦. The main source of uncertainty in mass measurements from Kepler’s law is the

orbital inclination angle, i, where:

mp ∝
1

sin3 i
. (3.32)

Although it is difficult to determine this parameter precisely, constraints can be set from

the orbital geometry of the binary system, such as through the presence or not of eclipses.

In this section we investigate the impact of this treatment in the marginal posterior

distribution of mmax. In order to do that, we first reproduce their analysis using Eq.

3.30 and 3.31 when individual masses are not well determined. In Table 3.6 we compare

the individual mass inferred from MCMC sampling (second and third columns) for a few

systems, with the best-fit mass determined by observations.

In the sequence, we change the treatment for systems listed in Table 3.6, since they

are potentially the most massive ones (≥ 2.0 M⊙) among those systems with individual
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Table 3.6 - Individual pulsar mass of systems listed in this table are sampled from equations 3.30 and

3.31, as functions of the total mass (second column) or mass ratio (third column). They are particularly

interesting since their masses derived from observations (fourth column) are ≥ 2.0 M⊙.

Pulsar mmt mq mobservations

B1957+20 - 1.06 - 2.02 2.40 ± 0.12

J1311-3430 - 1.17 - 2.07 2.22 ± 0.10

B1516+02B 1.26 - 2.23 - 2.08 ± 0.19

J1748-2021B 1.22 - 2.25 - 2.74 ± 0.21

likelihoods in the form of equations 3.30 and 3.31, and treat them in terms of normal

likelihoods to check for the impact it has on the inference of mmax.

By reproducing the approach from Alsing et al. (2018) and Shao et al. (2020), we

obtain the marginalized posterior distribution shown in the left panel of Figure 3.9, with

a mode at ∼ 2.2 M⊙. If we keep their modelling with 3 types of likelihoods, but only for

systems B1957+20, J1311-3430, B1516+02B and J1748-2021B we assume the likelihood

to be gaussian, with mean and standard deviation given at the fourth column of Table 3.6,

the shape of marginalized posterior distribution of mmax changes considerably, as seen on

the right panel.

Figure 3.9: Marginalized posterior distributions of maximum mass parameter. Left panel a) shows the

result assuming q and mt based likelihoods for all pulsars mentioned in Table 3.6. Right panel b) shows

the result when assuming the likelihood of these systems to follow gaussian distributions with values listed

in the fourth column of Table 3.6.

As we showed, the prior assumption on orbital inclination angle has a large impact on

the determination of the mass threshold, and needs to be treated carefully. The ideal case
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would be to construct the likelihood including the parameter i for each particular system,

where values are given by observations. Furthermore, as this treatment underestimate the

individual sampled masses, it has as a consequence a narrower marginal distribution for

the maximum mass parameter, which in turn leads to the presence of a sharp cut-off on

the posterior mass distribution.

3.4 Conclusions

For decades after the first pulsar mass measurement it was believed unlikely that they

could deviate substantially from 1.4M⊙, a value inferred from a few Double Neutron Star

systems (Finn, 1994) and somewhat expected from evolutionary grounds. The continuous

search and pulsar surveys exposed a larger spread in masses, but the maximum mass was

not expected to reach values close to 2 M⊙. This paradigm was initially broken by the

discovery of PSR J1614-2230 with m = 1.97 ± 0.04 M⊙ (Demorest et al., 2010; recently

updated to m = 1.94 ± 0.03 [Shamohammadi et al., 2022]). Later, the mass measurement

of PSR J0740+6620 (m = 2.08 ± 0.07 M⊙) confirmed that the true limit for NS masses is

above two solar masses. However, there is still a tension about whether the threshold is

below or above 2.2 − 2.3 M⊙, and a handful of candidates suggesting even higher values.

The detection of gravitational wave signals from the merger of compact objects strengthe-

ned the tension. Predictions for the confirmed double NS merger, GW170817 (Abbott

et al., 2017b), firstly resulted in mass thresholds in the interval between 2.1 and 2.3 M⊙

(Ai et al., 2020; Shao et al., 2020; Rezzolla et al., 2018; Margalit and Metzger, 2017;

Ruiz et al., 2018; Shibata et al., 2019), although the values obtained would be different

if differential rotation, instead of rigid, was assumed for the merged unstable object. For

GW190814, a second component with ∼ 2.6 M⊙ may have been a NS if the static mass

threshold (applied to a slow or non-rotating NS) happens to be ≥ 2.5 M⊙. An analysis

made by the LIGO team (Abbott et al., 2021) of the BBH population found the GW190814

to be an outlier, i.e., it is likely from a NS-BH merger. In addition, from analysis of the

available LIGO-Virgo NS-BH events, the maximum mass of non-spinning NS was found

to be 2.7+0.5
−0.4 M⊙ (Ye and Fishbach, 2022), a completely independent piece of evidence to

mount the puzzle of the maximum mass value.

In this chapter we proceed with a mass distribution analysis of galactic binary systems
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with at least one NS. As we showed both in frequentist and Bayesian approaches, the

sample is still consistent with the existence of two different classes of NSs. The first one is

centered around ∼ 1.35 M⊙ which groups those formed from electron capture supernovae

of OMgNe cores and those formed from the core collapse of lighter Fe cores. The second

class is clustered around 1.8 M⊙, with greater dispersion and smaller amplitude. Nowadays

we know that NSs belonging to this class can be born more massive naturally, althought

accretion can also be present, as is the case of spider systems (Horvath et al., 2020). A

larger sample of mass measurements is still necessary to reveal whether there is indeed

a clustering of objects around two or more preferred values, with substantial differences

between groups, or whether the population behaves more like, for example, a power law.

By modeling a truncated mixture of two Gaussians, we were able to infer a threshold

parameter, namely the maximum mass mmax. The marginal posterior distribution, shown

at Figure 3.5, exhibits a broad behaviour, with a mean at ∼ 2.6 M⊙, a relatively higher

value than expected from previous analysis of the galactic population (Alsing et al., 2018;

Shao et al., 2020). As we discussed in Section 3.3.2.2, the absence of a sharp cut-off at

the posterior distribution of pulsar masses (Figure 3.6) is a reflex of the broader shape of

mmax. Furthermore, as a higher value is expected for the mass threshold, a sharp cutoff is

less likely to be present (Fig. 3.7).

In the sequence we generated predictive distributions of NS’s masses, to simulate future

observations, and quantified how probable it is to find within these distributions NS’s with

masses above a threshold value. For these values we used the maximum masses inferred

from different works based on the GW170817 (Ai et al., 2020; Rezzolla et al., 2018; Margalit

and Metzger, 2017; Ruiz et al., 2018), together with the mmax we inferred. This analysis

allow us the verify if the maximum mass inferred from this particular extragalactic event

is consistent with the galactic binary population. The result also shown to be consistent

with a higher maximum mass, supporting the existence of NS’s with extreme masses, like

the less massive component at GW190814.

Lastly, our model assumes all individual pulsar masses likelihoods to be Gaussian.

The mean and standard deviations used are those reported in Table A.1, derived from

observations by placing geometric constraints to the system orbit. The treatment of Alsing

et al. (2018) and Shao et al. (2020) distinguish from ours in this matter. For systems where

individual masses are not well determined, they consider the likelihoods to be given by Eqs.
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3.30 and 3.31, assuming a uniform a priori to cos i. As we showed in Sec. 3.3.2.4, differences

between treatments are indeed responsible for the significant differences we found for mmax,

so that their results underestimate values, and disfavor the existence of extremely massive

NSs.

It is important to highlight that this is the maximum inferred from the NS binary

population of galactic systems. As we mentioned, the picture can be different for isolated

NS’s, since the range of progenitor leading to ECSN, for example, is different (Podsia-

dlowski et al., 2004) and accretion phases are not present. Furthermore, metallicity also

plays a role, and progenitor systems of GW events at higher redshifts can be somewhat

distinct from our local population. Efforts to increase the number of mass measurements

from NS’s are deeply desirable.
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Chapter 4

Double Neutron Star Systems

The detection of gravitational waves from the merger of two NSs opened a new era

in the multimessenger and multiwavelength astronomy, and placed the Double Neutron

Star systems (DNSs) in a privileged role. DNS mergers in distant galaxies, caused by the

slow but ever increasing loss of orbital energy due to gravitational wave (GW) emission,

were, for many decades, thought to be at the origin of short gamma rays bursts (GRBs),

an idea confirmed when the gravitational wave signal from such merger was detected by

LIGO at the same time as a faint nearby GRB (Abbott et al., 2017b). These DNS mergers

are thought to create large percentages of the heaviest chemical elements in our Universe

(Safarzadeh et al., 2019), and can also help to resolve the state of ultra-dense matter

and the Hubble tension (Abbott et al., 2017a). Furthermore, DNSs touch many different

areas of astrophysics and fundamental physics. Radio timing can yield some of the most

precise tests of gravity theories (e.g., Kramer et al., 2021), especially tests of its radiative

properties, which are impossible in our Solar System. The many quantities measured from

timing - the position and proper motion, the spin characteristics, the orbital characteristics

and the masses - provide important clues for their formation (Tauris et al., 2017), which

in turn provide important constraints on the physics of supernovae.

All these lines of research imply that is is vitally important to understand not only the

formation of DNSs, but also their properties at merger. In this Chapter we summarize the

current understanding of the formation and merger of DNSs, check for consistency between

theory and the most up-to-date sample, and introduce an online living catalogue 1 built to

facilitate the access to information about DNSs. The catalogue might help the scientific

community to establish relations between the galactic and extragalactic sample, with the

1 https://donutss.onrender.com/

https://donutss.onrender.com/
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aim to improve searches of GW signals to help solve the most intriguing problems related

with neutron star physics. All the discussion will be present in a paper Rocha et al. that

is in preparation.

4.1 Formation of DNS systems

A standard scenario for the formation of DNS systems in the galactic disk emerged

from a series of theoretical works, with an endorsement from population synthesis studies,

and we describe it in the following paragraphs 2. The complete scenario is illustrated in

Fig. 4.1.

The system starts with two OB-stars at the zero age main sequence (ZAMS), massive

enough to terminate their lives in a core-collapse SN. For primary3 stars, the initial mass

must be in the range ∼ 8 − 12 M⊙, while for the secondary the range is ∼ 5 − 7 M⊙

since they accrete matter from the companion. These intervals, however, depends on the

metallicity and can be as high as 15 M⊙ for primaries with solar metallicity. To enable

formation of a tight DNS, the components must be in a system initially close enough to

ensure interactions via stable or unstable mass transfer.

The primary star evolves until it fills its Roche Lobe (RL) and starts transferring matter

to the secondary. If the transfer is unstable, it will undergo a common envelope (CE) phase

from where they can end up merging into a single star, or the envelope can be ejected before

the stars coalesce. This last path will leave a stripped primary orbiting a MS star, with

an orbit that can be significantly tight. Otherwise, a stable transfer will have a similar

destiny. It will end with a He star and a massive companion that accreted a large fraction

of matter loosed from the primary star. The accretion leads to a spin-up of the companion

and a net widening of the orbit. The He star continues evolving until it explodes into a SN.

If the binary system remains bound, it will eventually become observable as a high-mass

X-ray binary (HMXB), i.e., a NS orbiting a luminous and massive companion star. Before

this stage, the binary can also be seen as a radio pulsar orbiting a OB-star.

2 DNS systems in Globular Clusters (GC) might be formed by secondary exchange encounters, and

consequently all information about the past evolution is lost. These systems are not taken into account

on the study of the recycling process and impact of the second SN.
3 The primary star is usually defined as the most massive at the begin of evolution, since it will fill its

Roche Lobe before and consequently form the first remanescent object.
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The secondary expands and initiate its Roche Lobe overflow (RLO) during the HMXB

stage. The large mass-ratio between the OB-donor star and the accreting NS will cause the

orbit to shrink and lead to a dynamical unstable transfer. For wide systems, the timescale

on which they become dynamically unstable can be as short as a few 100 yr, leading to

the formation of a CE phase. Drag forces from the motion of the NS inside the giant

star’s envelope causes dynamical friction, and can led to an extreme loss of orbital angular

momentum and even the ejection of the hydrogen-rich envelope, resulting in a much closer

orbit.

Systems surviving the CE phase will consist of a NS orbiting a He star and, depending

on orbital separation, a Case BB RLO can occur. This additional phase of mass transfer

can be relatively long and is responsible for recycling the NS reducing significantly its

spin period, and allowing an extreme stripping of the He star prior to its explosion. If

the system survive to this second SN, again depending on the orbital separation and kick

magnitude, it will form a DNS. This second SN is usually associated with an ultra-stripped

SN (USSN), since the exploding star was stripped before the collapse and the amount

of ejected matter is much smaller, as well as the energy of the explosion. If the post-SN

orbital period is short enough, the system will eventually merge due to GW radiation, with

a final remnant that can be a BH or even a NS, depending on their maximum mass.

A few aspects of the DNS formation are yet uncertain, including specially the CE

evolution followed by the spiral-in of the NS, as well as the momentum kick imparted onto

newborn NSs. In first place, it is difficult to predict the final post-CE separation after the

ejection of the companion envelope given that it is difficult to distinguish the separation

between ejected envelope and the remaining core. In second place, the magnitude and

direction of kick imparted onto a NS during a SN needs more investigations, and we will

provide a brief discussion in this topic later in this Chapter.

Although this is the standard scenario to form DNS systems, it is not necessarily the

only one. In analogy with the whole sample of NSs, a standard scenario was also believed

to be unique, but nowadays we know that many possibilities exists, as we already discussed.

There are DNS, for example, where the radio source is the non-recycled component, and

assume only one formation without further evidences can be misleading.
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Figure 4.1: Standard formation scenario proposed to the formation of a DNS system that will merge

within a Hubble time. Look at Sec. 4.1 for a description of each stage. Extracted from Tauris et al.

(2017).
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4.2 DNS population and main characteristics

Compared with the total sample, DNS systems seem to present a smaller spread over

masses, as we can see at Fig. 3.1. However, it is important to note that a significant fraction

can have an asymmetric mass-ratio (Ferdman et al., 2020), like PSR J0453+1559 and PSR

J1913+1102. The recycling process is expected to increase the mass of the first-born

pulsar, and as a consequence, they present masses slightly larger than the non-recycled

companions. In Fig. 4.2, we plotted a histogram and a diagram of DNS masses where

purple dots represents recycled components, while green dots are for the non-recycled and

the blue dots for the companion stars whose nature is not confirmed, i.e., they can also be

heavy WDs.

The amount of mass accreted by the first-born NS was calculated in (Tauris et al.,

2017), for each possible stage during the binary evolution - wind accretion in the HMXB

stage; CE and spiral-in evolution; wind accretion from the helium/Wolf-Rayet star; case

BB RLO; shell impact from the second SN - and was found to be ∆MNS < 0.02 M⊙. This

provide us an indicative that the observed mass of NS components in DNS systems reflects

their masses at birth, with no substantial accretion. It is possible to see (histograms at the

top panel of Fig. 4.2) that there is a difference of ∼ 0.1 M⊙ between first and second-born

NSs that, therefore, is associate with different conditions at the onset of SN explosions.

Despite of masses, all observed and derived quantities of DNS systems are important

to understand how they are formed, including spin periods (P ), their time derivatives (Ṗ ),

surface magnetic fields (B), eccentricities (e), orbital periods (Pb), as well as kinematic

properties. Any correlation between orbital parameters and the spin period, for example,

carries information about the recycling process. In Table 4.1 we summarize the observed

ranges of the key properties of DNSs. The complete list of DNS properties in all 27

confirmed and candidate systems can be found in Table 4.1. Some selection effects can

have an influence on the observed ranges, as is the case of the orbital period, for example.

For tight systems, the fast-changing Doppler shift can cause the spin period observed on

Earth to change significantly within a single observation and, as a consequence, there is

generally a bias against the detection of pulsars in systems with orbital periods of ∼ 0.1

days or less.
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Figure 4.2: Mass diagram of galactic DNS systems where individual masses are well constrained. Recycled

(or first-born) pulsars are represented by purple dots, while non-recycled (or second-born) NS’s are in green.

There are four systems where the companion’s nature is not confirmed, so they can potentialy be a massive

WD. This are represented with light blue dots. In the top panel we display the mass diagram that confirm

the expectation that recycled pulsars are more massive than their companions.

4.3 Spin evolution

Fig. 4.3 shows the (P, Ṗ ) diagram of observed galactic DNSs including estimates for

their magnetic field (B), as well as characteristic ages (τ = P/2Ṗ ). As noted in the

diagram, observable pulsars in DNS systems are generally the old and recycled components,

since the accretion process allows them to leave the death zone and radiates with lower

spin-down rates. Furthermore, these recycled pulsars shows weaker surface magnetic fields

(∼ 108-1010 G) when compared with normal pulsars (∼ 1011-1013 G). Albeit the reason

for the field decay is usually associated with the accretion (Bhattacharya and van den

Heuvel, 1991; Tauris and Van Den Heuvel, 2006), alternative hypothesis exist, such as an

ambipolar diffusion previous to the accretion phase (Cruces et al., 2019).

The spin period of the recycled NS right after the DNS system is born depends on the

rate and duration of the recycling process, as well as on the initial orbital separation of
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Table 4.1 - Observed intervals of main properties of DNS systems

Properties of recycled (first-born) NSs

Spin period (P ) 3.9 - 185 ms

Period derivative (Ṗ ) (0.027 - 20) × 10−18 s s−1

Surface B-field (B) (0.29 - 18) × 109 G

Mass 1.25 - 1.62 M⊙

Properties of young (second-born) NSs

Spin period (P ) 144 - 2773 ms

Period derivative (Ṗ ) (0.89 - 20) × 10−15 s s−1

Surface B-field (B) (2.7 - 5.3) × 1011 G

Mass 1.17 - 1.46 M⊙

Orbital properties

Orbital period (Porb) 0.08 - 45 days

Eccentricity (e) 0.064 - 0.97

Merger time (τGW ) 46 Myr → ∞
Systemic velocity (vsys) 25 - 240 km s−1
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Figure 4.3: (P, Ṗ )-diagram of all radio pulsars in DNS systems. Solid blue lines represent constant surface

dipole B-fields. Dotted black lines represent constant characteristic ages. The Ṗ values are not corrected

for the Shklovskii effect. For systems in GCs, the Ṗ must also be corrected for the NS acceleration in the

cluster potential.

the system. From the theoretical point of view, a close DNS progenitor system will end

with a shorter spin period compared with an initially wider progenitor system. Since the

companion star will be less evolved at the onset of mass transfer through its RL, the mass
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transfer (recycling) phase will last longer for closer systems. Hence, a positive correlation

is expected to emerge between spin and orbital periods. Such correlation is indeed present

for observed DNSs as shown from a linear regression in the (logPb, log P)-plane, Figure

4.4:

P = 46 ms (Pb/days)0.28. (4.1)

The DNS systems PSR J1811-1736 and PSR J1930-1852 are two good examples of wide

orbits with less efficient recycling. In both cases, the spin period is higher than P > 100 ms

and their orbital periods are of 18 and 45 days, respectively. On the other side PSR

J1946+2052 has a spin period of 17 milliseconds with an orbital period lower than 2 hours,

confirming the tendency.

0.1 1 10 100
Porb (days)

10

100

P 
(m

s)

P = 46 ms (Porb/days)0.28

Figure 4.4: Spin period vs. orbital period of all first-born NSs. Observational data are plotted with red

stars and a linear fit is given by the grey line, revealing a positive correlation between these quantities, as

theoretically expected.

After the birth of a DNS binary, and depending on orbital separation and eccentricity,

the system continues evolving while both stars spiral-in due to gravitational radiation

reaction. For the closest systems, both components will merge within the Hubble time.

Consequently, configurations of Galactic DNSs currently observed does not necessarily

reflect their birth conditions, which is difficult to determine because of aspects such as the

CE evolution and the imparted kicks. Following the same reasoning, their configurations

will also change at the time they merge.

Secular orbital evolution of these systems are described under a quadrupole formalism

of GR (Peters, 1964). To the lowest-order, it can be calculated from changes in the elements
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of the relative orbit of two point masses resulting from GW damping, where the rates of

change are: 〈
da

dt

〉
= −64

5

G3M2
tot µ

c5a3(1 − e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
, (4.2)〈

de

dt

〉
= −304

15

G3M2
tot µ e

c5a4(1 − e2)5/2

(
1 +

121

304
e2
)
, (4.3)

where µ is the reduced mass, Mtot the binary total mass and a the orbital separation. From

the above equations it is possible to derive an expression for the merger time (τGW ) as a

function of the initial values:

τGW (a0, e0) =
12

19

C4
0

β

∫ e0

0

e29/19
(
1 + 121

304
e2
)1181/2299

(1 − e2)3/2
de, (4.4)

with constants given by:

C0 =
a0(1 − e20)

e
12/19
0

(
1 +

121

304
e20

)−870/2299

,

and

β =
64G3

5c5
M2

totµ.

Furthermore, since their birth, NSs are also believed to spin-down due to plasma cur-

rents in the magnetosphere and pulsar winds, usually described under the magnetic dipole

model. In this sense, detections of spin of merging DNSs allows to shed light on the mag-

netic evolution of NSs. The spin evolution can be found from the deceleration equation

for the spin angular frequency:

Ω̇ = −KΩn, (4.5)

where n = 3 is the braking index for a dipole model, and K is the torque parameter with

a numerical approximation of (Spitkovsky, 2006):

K =
B2 R6

c3I
(1 + sin2 α), (4.6)

where B is the surface magnetic field, R is the NS radius, I is the moment of inertia and

α is the misalignment angle between the spin axis and the magnetic dipole moment. Here

we followed the work from (Zhu et al., 2018), fixing the value α = 30o and assuming a

fiducial EoS AP4 (Lattimer and Prakash, 2001). The moment of inertia can be adjusted

from a sample of analytical solutions of field equations to (Lattimer and Schutz, 2005):

I ≃ 0.237MR2

[
1 + 4.2

(
M

M⊙

)(
km

R

)
+ 90

(
M

M⊙

)4(
km

R

)4
]
. (4.7)
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From the mass-radius relation of AP4 EoS, and considering the mass range of recycled

pulsars, we found R = 11.5 km to be a good approximation. By integrating Eq. 4.5, the

spin period of a pulsar at merger time is found (Ω = 2π/P ):

PGW = P0

[
1 + 2

Ṗ0

P0

τGW

]1/2
. (4.8)

This quantity will be important to calculate the effective spin parameter to be discussed

in Sec. 4.5.2. The generic expression of Eq. 4.8 at any time t can provide a maximum age

for the pulsar, at the point where P = 0 ms.

4.4 Supernova explosion and kick velocity distributions

Despite of rapidly spinning, NSs are also recognized as fast-moving objects. The first

measurements of magnitude and direction of proper motions revealed that pulsars have

average velocities at least an order of magnitude higher than their progenitor stars, which

are generally of a few tens of km s−1, and are moving outwards the galactic plane (Lyne

et al., 1982). Nowadays, it is known that pulsar proper motion ranges between a few to 1500

km s−1, and understand the origin of such spread and high velocities is of key importance

to understand their properties and formation mechanisms (Coleman and Burrows, 2022).

The disruption of binary progenitors is not sufficient to explain the high observed velocities

of some isolated pulsars, making it necessary to investigate for an additional mechanism

that speed them up.

The great effort in the development of supercomputing power has made possible to per-

form 2D and 3D numerical simulations of stellar core collapse and explosion with increasin-

gly details, allowing to probe that asymmetries in mass-ejection caused by hidrodynamic

instabilities are capable of transferring momentum to NSs compatible with the observed

velocities of isolated pulsars (Janka, 2017), imparting a kick on the newborn NS. As stated

in Coleman and Burrows (2022) there are currently 5 theoretical categories for modelling

the kicks, roughly associated with the explosion asymmetries. One of the pioneers models

invokes an off-centre spinning magnetic dipole and asymmetrical radiation of the nascent

relativistic radio pulsar wind, but seems to be no longer supported (Harrison and Tade-

maru, 1975). Models relying in neutrino radiation on the context of rapid rotation are

simplistic, but predict a natural spin-kick correlation (Spruit and Phinney, 1998). Models
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on asymmetrical late-time fallback are shown feasible and produces a spin-kick alignment,

but such phenomenon may be rare or occur only for a small subset of progenitors (Janka

et al., 2022). Models relying on asymmetrical supernova matter ejecta and associated

proto-NS recoil are widely employed (Nakamura et al., 2019), and contrasts with the mo-

dels where kicks arise only from neutrino emission dipole asymmetries (Nagakura et al.,

2019). Finally, there are models that consider both asymmetrical neutrino radiation and

matter ejection (Burrows et al., 2020).

While the isolated pulsars can show velocities of thousands of kilometers in some cases,

with an average in ∼ 400− 500 km s−1, evidences points that pulsars in GCs and in DNSs

should have received significantly lower kicks. Globular clusters possess scape velocities

around 50 km s−1, and consequently no NS would be expected to remain bound to it if

imparted kicks were higher. In DNS binaries, the probability to keep the system bound

decreases with increasing kick velocities, but it is also true that it depends on the orbital

separation before the second SN. Tauris et al. (2017) found that the probability of the

system survive to the second SN remains within 50% for large kicks up to 400 km s−1,

if the pre-SN system has an orbital period of 0.1 − 1 days. Furthermore, the magnitude

of imparted kick is expected to be proportional to the explosion energy and amount of

ejected matter, although to calculate it accurately it is necessary to calculate stellar density

structures at the end of Case BB RLO.

Janka (2017) used what is called the gravitational tug-boat mechanism to summarize

the understanding of NS kicks, deriving a proportionality between the kick velocity ω,

the energy of the explosion Eexp and a momentum-asymmetry parameter αej such as the

larger the asymmetry, larger the kick. While for the CCSN of a heavy Fe core Eexp ∼
3×1050−2.5×1051 erg, and αej can be as high as 0.33, in ultra-stripped supernovae these

quantities are shown to be significantly lower, Eexp ∼ 1050 and αej < 0.03. Additionally,

small misalignment angles are also an evidence of small kicks since they are a result of

geodetic precession, caused by spin-spin and spin-orbit couplings after the pulsar has its

spin tilt respect to the orbital angular momentum vector, with large kicks expected to

result in large misalignment’s.

Ultra-stripped SNe responsible to form DNSs can come in two flavors, the electron-

capture supernova (ECSN) from the collapse of an ONeMg core (Nomoto, 1987), and the

Fe core-collapse supernova (Fe CCSN) of light cores. In the first case, the kick is expected
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to be smaller than in the second, since the explosion energy is significantly smaller and the

involved timescales where it takes place are not long enough to produce strong anisotropies.

Notwithstanding, ECSNe are unlike to occur in close binary systems, because the mass

window for producing them is restricted to a width of ∼ 0.2 M⊙ (Tauris et al., 2015).

Despite of all these hints supporting lower kicks, most recent results shows that even

relatively high kicks, of a few hundreds of km s−1, can happen in DNS systems, exposing

a possible bimodality as we will show latter.

4.4.1 Systemic velocities

The sudden mass loss in a SN explosion causes the system to receive a recoil velocity

relative to the centre-of-mass rest frame of the pre-SN system. In case of an asymmetric

explosion, the kick velocity will be added, and considering momentum conservation the

systemic velocity after the second SN can be written as (Tauris and Bailes, 1996):

vsys =
√

(∆px)2 + (∆py)2 + (∆pz)2/(MNS,1 + MNS,2), (4.9)

where the change in momentum is given by:

∆px = MNS,2ω cos θ − ∆MejecMNS,1

√
G/(Mai),

∆py = MNS,2ω sin θ cosϕ,

∆pz = MNS,2ω sin θ sinϕ,

where ∆Mejec is the amount of ejected matter, θ is the kick angle between the kick velocity

vector and the pre-SN orbital velocity vector of the exploding star, ϕ is projection of the

kick velocity onto a plane perpendicular to the pre-SN velocity vector of the exploding

star, ai is the initial orbital separation and ω is the kick velocity magnitude.

For DNS systems, however, it is not possible to measure the radial velocity component,

whereas the transverse component can be estimated by combining the pulsar proper motion

with its distance measure. To try reconstruct the kick probability a DNS system receives

after the second SN, it is necessary to simulate the systemic velocities, and is only possible

when measurements of proper motion are available, which is not always the case. This

calculations are still ongoing and will be published in Rocha et al. in preparation, but so

far they have confirmed high velocities for a few systems.
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4.4.2 Relativistic spin precession

General relativity predicts that in pulsar binary systems the spin axis precesses around

the rotation axis due to a gravitational spin-orbit coupling, in cases where it is misaligned

with the orbital angular momentum vector. The inclination of the pulsed radiation respect

to our line-of-sight changes and, as a consequence, the observed pulse profile also changes.

This feature can be identified from observation of radiation properties if the system is tight

enough. The angular rate of precession is (Bailes, 1988):

Ωgeod =

(
2π

Pb

)5/3

T
2/3
⊙ mc

4mp + 3mc

2(mp + mc)4/3
1

1 − e2
. (4.10)

Due to this effect, for example, the Hulse-Taylor pulsar (PSR B1913+16), will probably

move out of our line-of-sight around the year 2025.

Depending on its magnitude, the kicks imparted on newly-born NSs can tilt the orbit,

changing the orientation of the pulsar spin vector respect to the total angular momentum

vector. The misalignment angle between these two vector is then given by (Kramer, 1998):

δ = tan−1

(
ω sin θ sinϕ√

(vrel + ω cos θ)2 + (ω sin θ cosϕ)2

)
. (4.11)

During the recycling process the accretion torque is believed to align the spin axis of

the first-born NS with the orbital angular momentum vector. Based on this assumption,

it is possible to use the observed misalignment angle to constraint kick properties of the

second SN.

4.4.3 Second-born NS masses and kick magnitudes

When we observe the kick velocity magnitude as a function of the second-born NS

mass, a positive correlation seems to be present (see Figure 4.5 extracted from Tauris

et al., 2017). This relation seems completely plausible when considering the arguments

that the explosion energy and the asymmetry of the explosion ejecta are systematically

smaller for explosions of lighter cores, leading to small NS masses. The results shows that,

although most ultra-stripped SNe are expected to generate small kicks, larger NS kicks

can also happen for more ordinary iron cores. A larger sample of systems with measured

proper motion is necessary to confirm the apparent correlation.
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Figure 4.5: Kick velocity as a function of second-born NS mass. For each DNS two distance models were

applied. This Figure was extracted from Tauris et al., 2017.

4.4.4 Second-born NS masses and eccentricities

A possible correlation for second-born NS masses and eccentricities emerges from the

hypothesis of (MNS,2, ω) correlation, since systems that experience larger kicks are more

likely to obtain larger eccentricities. The assumption that kicks are isotropically distributed

(have no preferred orientation), however, results in a large spread in post-SN eccentricities

and can mask such correlation. As seen in Fig 4.6, an average trend still persists on the

(MNS,2, e)-plane despite of the spread effect.

We have employed both KS and AD hypothesis tests to check whether the group of

companion NSs in systems with eccentricity lower than 0.4 (and lower kicks) are drawn from

the same distribution of the systems with eccentricities > 0.4, and the resulting p-value is

of 5× 10−4 for the KS test and 2× 10−5 for the AD test. This result can provide evidences

for different supernova mechanisms behind their formation, although further studies are

still necessary to investigate if they arise from different ultra-stripped SN flavors, or from

an ultra-stripped Fe CCSN group vs. a “normal” Fe CCSN. Furthermore, the sample is

still very limited and is also possible that as the sample grows, we observe a larger spread

through the plane, weakening the correlation.
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Figure 4.6: Eccentricity as a function of second-born NS mass. An apparent average trend is seen, but is

also possible that a large scattering emerges in this diagram as more DNS sources are added, an effect of

the isotropic orientation of kick directions.

4.5 Gravitational waves

Gravitational wave (GW) emissions are ripples in the spacetime manifold caused by the

movement of massive objects, and were predicted by Einstein’s theory of General Relativity

(GR). The most intense sources of GW emissions are the merger of compact objects like

neutron stars and black holes, releasing a great amount of energy. These components lose

energy while orbiting each other, and as a consequence they spiral-in reducing the orbital

period further and further. The discovery of PSR B1913+16 (Hulse and Taylor, 1975)

provided the first evidence for the existence of this effect, by the observation of orbital

decay during time, through the timing of the Pb parameter (Taylor and Weisberg, 1982).

This discovery triggered a great interest in the scientific community and placed DNSs as

the main target for groundbased interferometric detectors.

Since the produced signals are very weak, detection of GW emissions was a challenging

task for decades. The Laser Interferometer Gravitational-Wave Observatory (LIGO) was

founded in 1992 by Kip Thorne and Ronald Drever from Caltech and Rainer Weiss from the

MIT (Abbott et al., 2009). LIGO consists of two identical interferometers separeted by 3002

kilometers, located in fairly isolated areas of Washington (LIGO Hanford) and Lousiana

(LIGO Livingston). The reason behind this large distance is found in their sensitivities.

Since these instruments are very sensitive, they can detect the tiniest vibrations on Earth,
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from sources that are nearby until those which are thousands of kilometers away, and this

can mask the GW signal in each detector. Locating the interferometers far away, it is

possible to distinguish between GW signal and local noise. The original instrument was

operational from 2002 to 2010 but no detection was made at that time. During these

years the team made huge progress in detector engineering and both interferometers were

redesigned from 2010 to 2014.

LIGO’s interferometers are, in a sense, similiar to Michelson interferometers, invented

in the 1880’s and used to (un)probe the existence of ether through detection of interference

patterns, with an ideal configuration to precisely measure phase changes of a wave traveling

along two perpendicular arms with an “L-shape”. The GW’s cause the manifold to stretch

in one direction and compress in a perpendicular direction, and is the reason why the

layout shown in Figure 4.7 is choosen. In summary, a powerful laser beam is equally

splitted and directed towards both arms, bouncing off mirrors at the end of each arm.

An additional mirror is placed in each arm, near the beam splitter and 4 km away from

the end mirror, to create a Fabry Perot cavity. This causes the laser to bounce between

the two mirrors about 300 times before being recombined. When gravitational waves

pass through, an interference pattern is observed when the beams are recombined. The

recombined laser beams are directed towards photodetectors that measure this interference

pattern created by the superposition of the two beams. By analyzing the interference it is

possible to determine the characteristics of the gravitational waves and gain insights into

the astrophysical events that produced them.

The Virgo interferometer with a 3 km arms, built outside of Pisa, joined the observa-

tions of LIGO in 2017 after a period improving its sensitivity (Accadia et al., 2012). Its

operation, combined with both Hanford and Livingston detectors is crucial to localize the

sources of GW signals because they are determined from the time delay between diffe-

rent observatories. More recently, the KAGRA observatory also started operating. It is

constructed in Japan, inside the Kamioka mine where is also located the neutrino detector

Super Kamiokande (Akutsu et al., 2018). The underground location and use of cryogenic

systems took the detector to another level, minimizing seismic and molecular vibrations

that can mask the GW signal.
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Figure 4.7: Simplified schematic of LIGO detectors. The laser beam is splitted and directed towards each

arm, where the beam enters in a Fabry-Pérot cavity and is bounced between the mirrors about 300 times

before being recombined. Extracted from Wikipedia in Aphril 2023.

4.5.1 Chirp mass

Parameters that influences the evolution of waveform phase can be precisely cons-

trained given the large number of cycles in the observable waveform (Cutler and Flanagan,

1994). The same does not hold for parameters which affects only wave polarization or

amplitude. The best constrained quantity from a GW signal is the called chirp mass (M).

To lowest order, it is possible to describe the gravitational radiation from the quadru-

pole Newtonian formalism of two dimensionless particles in an almost circular orbit (assu-

ming that gravitational damping circularizes the orbit). The angular orbital frequency is

then given by:

Ω2
b =

GMtot

a3
. (4.12)

The loss of energy leads to a decrease in a and, consequently, a decrease in the orbital

period since Pb ≡ 2π/Ωb. Combining the inspiral rate of the system and Eq. 4.12, the

signal frequency (ν = 1/P ) is then obtained:

ν−11/3dν

dt
=

96

5
π8/3M5/3. (4.13)

Therefore, from the observed signal frequency and its derivative is possible to accurately

measure the chirp mass, which is a combination of total and reduced (µ) masses of the

system, M = µ3/5M
2/5
tot , and to determine the rate at which the frequency of the GW
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changes over time. These calculations are valid for the source-frame. When detected on

Earth, the signal is Doppler shifted due to relative motion, and the detected value will be

Mdet = (1 + z)M, where z is the redshift of the source.

All binaries with the same M will have the same chirping sweep. Still, post-newtonian

corrections to Eq. 4.13 do introduce a dependence on the indivual masses of the system.

This quantity is inferred by a matched filtering technique, where the wave’s phase evolution

is matched with model templates predicted under GR.

4.5.2 Effective spin parameter

Spinning of coalescing compact objects has effects in both phase and amplitude of

GW’s. From one side, it can increase or decrease the inspiral rate, and from the other, it

can lead to orbital precession due to spin-orbit and spin-spin interactions (Kidder et al.,

1993). To the leading order, gravitational waveform depends on the spin through the

effective spin parameter χeff :

χeff =
m1 χ1 cos(δ1) + m2 χ2 cos(δ2)

m1 + m2

, (4.14)

where δj are the misalignment angles between the spin vectors and orbital angular momen-

tum vector, and χj = cIjωj/Gm2
j are the dimensionless spin magnitudes of the merging

objects, j = [1, 2]. For simplicity, the spin magnitude of young NSs can assumed to be

null since they are much slower than the recycled component. Thus, the only contribution

to the effective spin in DNS mergers comes from the final dimensionless spin parameter of

the first-born NS computed at the time of merger (χf ).

While previously thought that the spin axis of recycled NSs where aligned with the

orbital angular momentum before the merger, based on the measurement found for the

double pulsar PSR J0737-3039A (δ < 3.2◦) (Zhu et al., 2018), measurements found for

the systems PSR B1534+12 (Fonseca et al., 2014), PSR J1756-2251 (Ferdman et al., 2014)

and PSR B1913+16 (Kramer, 1998) revealed the presence of a non-null misalignment angle

and ruled out the hypothesis of δ1 = 0◦ for all systems. As we mentioned in Sec. 4.4, these

misalignment angles are related with kick magnitudes imparted in the second-born NS

responsible for changing the orbital orientation, and which can be significantly high in

some systems.

In Table D we included χeff values for systems where a misalignment angle was found.
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The values reported for GW170817 and GW190425 are subject to low-spin priors (cons-

traints the spin to χ ≤ 0.05, with uniform distribution)4, since this range is likely com-

patible with dimensionless spins of galactic DNSs. Furthermore, χeff shows a degeneracy

with M and specially with q, being strongly dependent on prior choices. Mass-ratio cons-

traints placed on progenitor systems of GW signals by the low-spin prior are also shown to

be in agreement with galactic observations, including even the most asymmetric systems

(Abbott et al., 2019, 2020).

4.5.3 First detections of DNS mergers

The first detection of a gravitational wave was made in 2015 by LIGO detectors, from

a binary black hole merger named GW150914 (Abbott et al., 2016). However, the most

exciting detection came two years latter with the first detection of a compact binary merger,

GW170817 (Abbott et al., 2017b), quickly associated with a short GRB emitted from the

same sky location 1.7 s after the merger (Goldstein et al., 2017). This started the true

era of multimessenger and multiwavelength astronomy. The precise location of the event

allowed a follow-up leading to detections in X-ray, ultraviolet, optical, infrared and radio

bands. The optical counterpart, AT2017gfo (Coulter et al., 2017), placed NGC 4993 as the

host galaxy with a Tully-Fisher distance of ∼ 40 Mpc (Freedman et al., 2001), consistent

with the inferred GW luminosity distance. The association of the gravitational wave with

the sGRB, as well as the observations across the electromagnetic spectrum (Deller et al.,

2017; Corsi et al., 2017; Deller et al., 2017), the total and component masses of the system

and the offset related to the galaxy center provided strong evidences for the DNS nature

of GW170817.

On April 2019, the second gravitational wave signal consistent with the coalescence

of a DNS was detected, GW190425 (Abbott et al., 2020). This event is identified as a

single-detector since at the time it was detected the LIGO-LHO was offline and the signal-

to-noise ratio of Virgo was 2.5, below the threshold of 4.0 for significance estimation. The

localization of a GW signal relies on measuring the time delay between observatories, but

since GW190425 is a single-detector event was not possible to set straight constraints on

the sky map region. As a consequence, a follow-up became challenging and until now there

is now firm detection of an electromagnetic counterpart. Nonetheless, it is important to

4 The high-spin prior assumes uniform distribution for χ ≤ 0.89.
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note that the event itself is highly significant. While it is not possible to rule out the

possibility of one or both components being BH’s, due to the absence of sensitivity to

probe matter effects, this hypothesis is unlikely. However, the total and chirp masses of

this particular system differs significantly from the known Galactic DNS systems as we

show in Figure 4.8. This fact may indeed signal the existence of a different formation

mechanism for GW190425-like binaries.

To quantitatively compare the GW events with the Galactic distribution, we reproduced

the analysis made by LIGO Collaboration (Abbott et al., 2020). In left panel of Fig. 4.8

we have plotted a histogram for the total mass of 10 Galactic systems which are expected

to merge within a Hubble time (since these are the potential GW sources), as well as

a normal distribution fit for Galactic sources, with a resulting mean at 2.69 M⊙ and a

standard deviation of 0.12 M⊙. The total mass of GW170817 falls completely within

the Galactic range, while the GW190425 is five standard deviations away from the mean.

Finally, in the right panel we show the chirp mass distribution for 9 Galactic systems

that will merge within Hubble time and the corresponding fit, with a mean at 1.17 M⊙

and standard deviation of 0.05 M⊙. Here the GW170817 falls again within the Galactic

population range, while the GW190425 lies ≳ 5σ apart of the mean value. If confirmed

to be emitted from the merger of two NSs, this behaviour of GW190425 might reveal

a population with different characteristics of the GW170817-like ones. Efforts in both

galactic DNS and GW searches are of fundamental importance to probe such differences.
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Figure 4.8: Total (left) and chirp (right) mass histograms for all systems that will merge within a Hubble

time is shown in grey. The black dashed curve is a normal distribution fit. In both cases is possible the

see that GW170817 is consistent with the galactic DNSs, while GW190425 fall 5σ appart from total and

chirp masses of galactic systems.
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4.6 Conclusions

Gravitational wave observations from the merger of compact objects opened up a new

window to explore the physics of neutron stars. However, contrary to expectations, until

now only one system is undoubtedly the result of a NS-NS merger, GW170817, while a

second event is very likely from a NS-NS merger as well, GW190425, even with the absence

of electromagnetic counterpart detected. This scenario completely rule out the merger rate,

RNS−NS, initially computed for this sources of GW’s. Furthermore, as we shown in Section

2.3.3, the metallicity influences the range of mass for progenitor stars giving origin to NS’s.

Consequently, it is not known exactly if the same distribution of masses we observe in the

local sample will be consistent with the mass distribution of merging NS’s. Beyound that,

we showed in Figure 4.8 that the event GW190425 has properties quite different from the

GW170817, and is not consistent with the total and chirp masses of galactic DNS’s. Again,

an enlarged sample is of fundamental importance to understand if these GW detections

are essentialy different and belongs to distinct populations, or if GW190425 is an outlier

and represents an isolated case.

To understand GW detections, set reliable constraints in observables and even improve

detector’s sensitivity to search for GW events from the merger of DNSs, it is necessary to

understand how these systems are initially formed, their properties at birth, how the spiral-

in phase occurs and which properties can be detected at merger and even how systems

merging within the Hubble time differs from those that will not. Extensive work has and

continues being made both theoretically and computationally to simulate the evolution of

DNS systems.

The objective of this Chapter is to reunite all available information from galactic DNS’s

systems, check for patterns previously and extensively discussed in Tauris et al. (2017) and

create a catalogue that will be constantly updated with new discoveries. We hope the sci-

entific community can benefit from this initiative, and it helps to construct an trustworthy

scenario for formation and evolution of DNS’s as well as strengthen GW detections.
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Chapter 5

Strange Stars under a color-flavor-locked model

Compact stars are described under the theory of GR. As we already mentioned, Karl

Schwarzschild was the first to obtain an exact solution for the EFE. Since then, the number

of proposed solutions with the most varied applications has been growing. However, the

majority of proposed solutions are toy models and do not describe real objects since they

do not satisfy all conditions for physical acceptability as those described in Sec. 2.4.1

Delgaty and Lake (1998) reviewed the problem and studied exact solutions under the

criteria to describe real compact objects. They constructed a catalog with all analytic

solutions describing an isolated, static and spherically symmetric perfect fluid. From an

initial set of 127 exact solutions, only 16 of them were shown to satisfy the conditions to be

considered physically interesting, and out of these, only 9 presented a monotonic decrease

of sound speed, a highly desirable - if not mandatory - condition.

Despite of the small number of solutions useful to describe NSs, they provide none

information about inner composition of these stars, which is only achieved by modelling

the EoSs. To explore the behaviour of matter at supranuclear densities is one of the most

complex and challenging problems in modern physics. It requires an interdisciplinary effort

between nuclear physics, particle physics and relativistic astrophysics, with a fundamental

support from experiments and observations to validate models.

The extreme conditions under which NS are found, with densities several times above

the nuclear saturation density (n = 0.16 fm−3), are described under the theory of Quan-

tum Chromodynamics (QCD), whose phase diagram is shown in Fig. 5.1. Regions of low

densities and high temperatures are accessible through modern experiments like the Large

Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC). On the other side,

regions with very high densities and high temperatures are described from first-principle
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Figure 5.1: Phase diagram of QCD. Neutron Stars are found in a region difficult to access both from

experiments and first-principle calculations.

calculations on perturbative QCD. Contra-intuitively, the intermediate region where NS’s

are located is the most difficult to access both from experiments and first-principle calcu-

lations, and this is the reason why a large number of EoSs are proposed in an attempt to

describe such objects, and why they have to be submitted to observational constraints to

check for consistency.

We present in this Chapter a new class of exact solutions connected with microphysics,

providing an EoS which describes the internal structure of a compact star made of strange

matter in the color-flavor-locked (CFL) phase, a color superconductivity phase arising

when Cooper pairing breaks the color gauge symmetry, which we will describe later. The

mass-radius relation (an important feature of stellar sequences) for the given equation is

analytically constructed, determining a maximum mass.

5.1 Strange matter hypothesis

Gell-Mann (1964) and Zweig (1964) independently suggested that strong interaction

could be explained by assuming that hadrons (baryons and mesons) are composed of

three fundamental particles, which where named as quarks. Despite of challenging the
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fundamental nature of hadrons, the existence of quarks raised up the unimaginable idea

of fractional charges. One of the quarks should have 2/3 of electrical charge, and the

remaining two -1/3.

The evidence for the existence of these constituents came from a series of deep inelastic

scattering where the phenomenon of scaling was observed. Scaling meant that the scat-

tering cross section (a measure of the probability of a scattering event) did not depend

on the energy of the scattering particles, but only on the momentum transfer. This was

difficult to explain if protons and neutrons were viewed as indivisible particles, but could

be explained if they were actually composed of smaller constituents, such as quarks. Nowa-

days, the existence of six types of quarks, called flavors, are well known: up (u), down

(d), strange (s), charm (c), top (t) and bottom (b). Interactions between these quarks are

given through the exchange of gluons and are described under the theory of QCD.

The MIT bag model, proposed by Chodos et al. (1974), played an important role in

the development of the physics of hadrons and of interactions of nucleons. According to

it, quarks are confined into a region of space called bag, immersed on vacuum which exerts

a pressure on the bag (Pvac = −B), as shown in Figure 5.2. Inside this region the quarks

are assumed to be free.

Figure 5.2: MIT bag model. Inside the bag quarks are free, but the bag itself is confined and immersed

on a vaccum which exerts a pressure on it.

Witten (1984), was one of the first, following the work of Bodmer (1971) and Terazawa

et al. (1978), to boost the proposal that strange quark matter (SQM) could be the true

ground state of dense matter, instead of 56Fe nuclei, having a lower energy per baryon

than ordinary nuclei. This matter is assumed to be composed of roughly equal numbers of

up, down and strange quarks and a small number off electrons to attain charge neutrality.

If this hypothesis is proven to be true, NS would actually be Strange Stars (SS), possibly
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enveloped in thin nuclear crusts.

The emergence of s quarks due to semileptonic decay reduces the Fermi energy of the

system and, as a consequence, strange matter is more stable than a matter made of only

u and d quarks. The energy per nucleon should obey the relation:

E

A
|u,d,s <

E

A
|56Fe <

E

A
|n <

E

A
|u,d, (5.1)

where n stands for nuclear matter. As a conclusion, the atomic nucleis should be only

metastable states.

5.2 Non-interacting quark matter

A thermodynamical potential in the grand canonical ensemble is given by:

Ω = E − µN − TS, (5.2)

where E is the energy, µ the chemical potential, N the number of particles, T the tempe-

rature and S the entropy. The system pressure is P = −Ω/V .

The chemical potential of c, b and t quarks are greater than the chemical potential

inside the stars (∼ 300 − 600 MeV) and for this reason they are not considered in the

discussion. Furthermore, u and d quarks possesses low masses that can be neglected,

so the only remaining contribution comes from strange quark mass (ms). Assuming a

degenerate gas of free quarks, the energy density (ρ), numerical density (nf ) and pressure

(Pf ) of each flavor (f = u, d, s) are given by:

ρf =
3

π2

∫ kF,f

0

k2
√

k2 + m2
f dk ,

nf =
k3
F,f

π2
,

Pf =
3

π2

∫ kF,f

0

k2(µf −
√

k2 + m2
f )dk.

(5.3)

The most relevant processes occurring in the 3-flavor matter are the following:

d → u + e + ν̄e and s → u + e + ν̄e, (5.4)

u + e → d + νe and u + e → s + νe, (5.5)

and

s + u ↔ d + u. (5.6)



Section 5.2. Non-interacting quark matter 115

Since neutrinos have null chemical potentials, the above process take us to the following

conditions:

µd = µe + µu, and µs = µe + µu, (5.7)

from which we conclude that µd = µs. Charge neutrality can be made explicit by:∑
f=u,d,s

qfnf − ne = 0, (5.8)

where qu = 2
3

e qd = qs = −1
3
.

The bag constant, B, is included to guarantee that the confined (hadronic) phase is

preferable within a critical temperature, above which the deconfinement becomes ener-

getically advantageous. In the context of compact objects we consider T = 0 and high

chemical potentials. Pressure and free energy of quark matter are given by:

P + B =
∑
f

Pf , (5.9)

ρ =
∑
f

ρf + B. (5.10)

For simplicity, we initially consider ms = 0, and ignore the presence of electrons. These

conditions take us to the following solutions:

nf =
µ3
f

π2
, ρf =

3µ4
f

4π2
and Pf =

µ4

4π2
, (5.11)

and is easy to see that Pf = ρc
3

.

By combining equations (5.9) and (5.10) we are conducted to the EoS of strange quark

matter without interactions, also recognized as the MIT EoS:

P (ρ) =
1

3
(ρ− 4B). (5.12)

This equation of state does not depend on the number of flavors, and is exact both for the

strange quark matter (ms → 0) and the quark matter made of two flavors (ms → ∞).

From now on, we include the mass effects to the lowest orders1. It is convenient to

introduce an average chemical potential µ = 1
3
(µu + µd + µs), as well as the µe for the

electron:

µu = µ− 2

3
µe,

µd = µs = µ +
1

3
µe.

(5.13)

1 Higher order terms contributes minimally to the equation.
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directly satisfying Eq. (5.7). The Fermi momentum of each quark assumes the value:

kF,u = µu, kF,d = µd and kF,s =
√

µ2
s −m2

s. (5.14)

For the condition of charge neutrality, Eq. (5.8), we find a relation between the chemical

potential of the electron and the mass of quark strange, µe ≈ m2
s

4µ
. In this way, it is possible

to express the Fermi momentum of each flavor as a function of µ and ms only. We then

arrive to the equations: ∑
f

ρf =
3

4π2
(3µ4 − µ2m2

s), (5.15)

∑
f

Pf =
3

4π2
(µ4 − µ2m2

s). (5.16)

The EoS including the mass of strange quark is now:

P =
1

3
(ρ− 4B) − µ2m2

s

2π2
. (5.17)

A detailed approach for these calculations can be found in Schmitt (2010).

5.3 Interacting quark matter

There is a consensus nowadays that the color-flavor-locked (CFL) phase might be the

fundamental state of matter, at least at asymptotic densities. A possible correction to

the quark matter EoS is to consider pairing interactions. The binding energy can be

included subtracting 3∆2µ2/π2 from the thermodynamical potential. The exact nature of

the interaction that generates the gap ∆ is irrelevant.

Under the BCS theory, proposed by John Bardeen, Leon Cooper and John Schrieffer,

for systems at low temperatures and subject to short-range attractive interaction, there

will always be a pairing, taking the system to a low Fermi energy level, justifying the

correction for the thermodynamical potential.

The equations for pressure and energy density assume the form:

P =
3µ4

4π2
− 3µ2m2

s

4π2
+

3

π2
∆2µ2 −B, (5.18)

ρ =
9µ4

4π2
− 3µ2m2

s

4π2
+

3

π2
∆2µ2 + B. (5.19)

Finally, the EoS for the strange quark matter at the CFL state results in:

P =
ρ

3
− 4

3
B +

(
2∆2

π2
− m2

s

2π2

)
µ2, (5.20)
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with:

µ2 = −η +

(
η2 +

4

9
π2(ρ−B)

)1/2

,

η = −m2
s

6
+

2∆2

3
.

(5.21)

The term proportional to ∆2 turns the EoS stiffer if compared with the non-interacting

case, so the pressure will be higher for a given value of central density. On the other hand,

the term proportional to m2
s makes the EoS softer, but has a less significant contribution.

As a consequence, a stiffer equation of state allows the matter to support a higher gravi-

tational force, and consequently the maximum mass for this kind of matter can be higher

than for nuclear matter.

5.4 Strange Stars in a CFL phase

Alcock et al. (1986; hereafter referred as AFO), employed the MIT bag model EoS to

describe the properties of a SS assuming quarks to be asymptotically free, and neglecting

the strange quark mass (ms), given by Eq. (5.12). Results led to a maximum mass value

around 2 M⊙ (Figure 3 in Alcock et al., 1986), for B = 57 MeV fm−3, for a strange star

in the MIT phase.

Rajagopal and Wilczek (2001) worked in a model of strange matter in the color flavor

locked (CFL) phase, made of u, d and s quarks with no electrons. They argue that at

sufficiently high densities a phase transition may occur between CFL and nuclear matter,

so that SS might be composed of CFL matter. Lugones and Horvath (2002) worked on

a CFL star model with pairing interactions, since they appears to be relevant for dense

phases. The presence of pairing gaps actually enhance the possible stability of the quark

matter phase (Lugones and Horvath, 2002, 2003).

We made a series expansion of Eq. (5.20) to derive a equation of state that depends

only on the energy density ρ and the free parameters η and B, and conserved only up to

the first order:

P (r) =
1

3
ρ +

2η

π
ρ1/2 −

(
3η2

π2
+

4B

3

)
. (5.22)

This expansion was made in order to simplify the system of equations, resulting in an easier

way to treat them analytically, while remaining essentially identical to the exact one. AS
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we can see from EQ. 5.21, if we assume ms → 0 and noninteracting quarks, the MIT bag

model EoS is restored.

Following the same procedure as Tolman (1939) and many others in literature, we

worked on the construction of exact solutions for the Einstein Field Equations (EFE) that

describes a uncharged, static and spherically symmetric fluid with anisotropic pressure,

i.e., an anisotropic energy-momentum tensor. The idea that the tangential component of

pressure differs from the radial component inside compact stars was proposed by Ruderman

(Kumar and Bharti, 2022). For fluids under high-density regimes many phenomena can

happen leading to pressure anisotropy, as the presence of solid cores, pion-condensation,

slow rotation, strong magnetic fields and etc. Even if the system is initially isotropic,

processes such as dissipative fluxes will lead to anisotropies.

The set of equations describing the macrophysics of the compact object, yet with sphe-

rical symmetry, is now distinct from those given in Eq. (2.18), since the radial (Pr) and

tangential (Pt) pressures are different:

8πG

c2
ρ =

2λ′

r
e−2λ +

1 − e−2λ

r2
,

8πG

c4
Pr(r) =

2ν ′

r
e−2λ − 1 − e−2λ

r2
,

8πG

c4
Pt(r) = e−2λ

[
ν ′′ + ν ′2 − ν ′λ′ +

ν ′ − λ′

r

]
.

(5.23)

In addition, the equation describing the hydrostatic equilibrium of the object is no longer

given by the famous TOV, but instead by what is called the generalized TOV :

− dPr

dr
=

G(ρc2 + Pr)(m(r)c2 + 4πr3Pr)

r2(c2 − 2Gm(r)/r
+

2(Pr − Pt)

r
(5.24)

To fully resolve the system of EFE describing a SS we assumed: two different ansatz

(later discussed) for the metric function, a radial pressure given by Eq. 5.22, and inital

and boundary conditions to ensure physical acceptability, as described in Sec. 2.4.1.

5.4.1 Thirukkanesh-Ragel ansatz

Using the ansatz proposed by Thirukkanesh and Ragel (2012) as follows:

e−2λ = Z(r) =
(
1 − aCr2

)n
, (5.25)

where a and C are real constants and n an adjustable integer, we construct the first class of

solutions for the system. Energy density profile, pressure profiles and mass-radius diagrams
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were constructed for different combinations of free parameters and are shown in Figures

(5.3) and (5.4). The product aC(= ρc
6

) was determined in terms of the central density ρc,

and we assumed n = 2.2 The construction of solutions can be followed with more detail in

our published work (Rocha et al., 2020a)
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Figure 5.3: Thirukkanesh-Ragel ansatz. The first graph (top-left) is a construction of energy density

profiles monotonically decreasing with r, in which low central densities (darkest curves) shows a lower

decrease slope. The following three graphics represents pressure profiles, being Pr represented by dotted

lines and Pt by dashed lines. For η = −2000 MeV2 we setms = 150 MeV and ∆ = 50 MeV; for η = 0 MeV2

we have ms = ∆ = 0 MeV; and finally, for η = 2900 MeV2 we fixed ms = 150 MeV and ∆ = 100 MeV.

The surface of a given star is reached when Pr vanish, and at this point the anisotropy factor is maximum.

As required, the energy density is positive at the origin of the star and decrease mo-

notonically with radius. The grey scale represents different values for central densities,

being the darkest colors associated with lower densities. The remaining three panels pre-

sents radial (dotted) and tangential (dashed) pressures for different values of η. Assuming

ms = 150 MeV and ∆ = 50 MeV , we have η = −2000 MeV 2, while for the same value

of ms but with ∆ = 100MeV , we found η = 2900 MeV 2. The result of η = 0 comes from

ms = ∆ = 0, that reproduces the MIT EoS. Bowers and Liang (1974) discussed an additio-

nal condition stating that the anisotropy factor (δ = Pt−Pr) must vanish for r → 0, so the

gradient of Pr is finite at the origin. This condition is also satisfied in our treatment, as we

2 The solution for n = 1 resulted in constant energy density and radial pressure, violating the criteria

of a null radial pressure at the surface.
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can see at the figures, despite the fact that tangential pressure is maximum at the surface

of the star. The nature of Pt is beyond the scope of our work, but we emphasize that it

is not necessarily required that it vanishes at r = R. It is important to note that it is the

cancellation of the radial pressure at the surface that guarantees that the Schwarzschild

matches at this point.
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Figure 5.4: Mass-radius relation using Thirukkanesh-Ragel ansatz. Solid lines assumes ∆ = 100 MeV

and ms = 150 MeV, while the dashed lines assumes ∆ = ms = 0 MeV (resembling the MIT bag model),

and for dotted lines ∆ = 50 MeV and ms = 150 MeV. From the darkest curves to the lightest ones we set

B = 115 MeV/fm3, B = 70 MeV/fm3 and B = 57.5 MeV/fm3.

The M-R relation was constructed for the three η values described before, with combi-

nations of three different values of B, Figure (5.4). Dotted lines assumes η = −2000 MeV 2,

dashed lines assumes η = 0 and solid lines were constructed using η = 2900 MeV 2. From

the lightest to darkest curves (left to right) the bag constant increases, assuming the values

of 57.5 MeV/fm3, 70 MeV/fm3 and 115 MeV/fm3, respectively. As can be noted, the

radial increase in the tangential pressure component seems to have a huge effect on the

total mass supported against gravitational collapse. The results with B = 57.5 MeV/fm3

support maximum masses up to 3 M⊙, and gives room for the existence of extremely

massive NSs.

5.4.2 Sharma-Maharaj ansatz

Sharma and Maharaj (2007) proposed the ansatz :

e−2λ = 1 − br2

(1 + ar2)
, (5.26)
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where a and b are positive constants. Parameter b is defined as a function of central density

and a is an implicit function of ρc, carefully chosen to control the anisotropy in such a way

that Pt approaches zero at the same point as Pr (the surface of the star). Figure (5.5)

show the energy density profile and pressure profiles for the same values of η and B used

in Section 5.4.1.
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Figure 5.5: Sharma-Maharaj ansatz. The first graph (top-left) is a construction of energy density profiles

monotonically decreasing with r, in which low central densities (darker curves) shows a lower decrease

slope. The following three graphics represents pressure profiles, with Pr represented by dotted lines and

Pt by dashed lines. For η = −2000 MeV2 we set ms = 150 MeV and ∆ = 50 MeV; for η = 0 MeV2 we

have ms = ∆ = 0 MeV; and finally, for η = 2900 MeV2 we fixed ms = 150 MeV and ∆ = 100 MeV. The

surface of a given star is reached when Pr vanishes, at this point the anisotropy factor also vanishes.

Energy density still positive at the origin, monotonically decreasing until it reaches the

surface of the star. The difference in comparison with the previous treatment is that now

we restrict the solution to those where the both pressure components match at the surface,

i.e., the anisotropy factor (δ) is zero. Solutions with positive and negative δ at the surface

are not discarded, but are more difficult to solve and were not treated in our work.

The mass-radius diagram is shown in Figure 5.6 for an unique value of bag constant,

B = 57.5MeV/fm3. Given that this model is quasi-isotropic, since anisotropy is very

mild, the anisotropy has an almost negligible effect on the total mass supported by stars.
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Figure 5.6: Mass-radius relation in Sharma-Maharaj ansatz. Solid lines assumes ∆ = 100 MeV and

ms = 150 MeV, the dashed lines assumes ∆ = ms = 0 (resembling the MIT bag model), and for dotted

lines ∆ = 50 MeV and ms = 150 MeV. All of the curves were done for B = 57.5 MeV/fm3.

5.5 Conclusions

In this chapter we worked on the construction of exact solutions under two different

ansatz for the Einstein Field Equations, assuming an EoS in the CFL strange matter phase,

and allowing anisotropy in the pressure. The CFL phase at zero temperature is modeled

as an electrically neutral and colorless gas of quark Cooper pairs, allowing this matter to

be the true ground state of strong interactions for a wide range of the parameters B, ms

and ∆. Most works in literature make use of toy models to construct solutions for EFE,

so we emphasize that we provided a realistic EoS that completely satisfy all the necessary

conditions to represent a compact star. An extended and detailed discussion of our work

is found in Rocha et al. (2020b).

Since the inner composition of observed pulsars stills uncertain, discussions in the

theoretical side are also of great importance to constrain physical parameters, including

the macro ones, like mass and radius. As seen in Section 5.4.1, the presence of significant

anisotropy leads to a maximum mass much higher than observed and expected by the

scientific community at the moment. The effect of increasing both Mmax and Rmax in

the presence of anisotropies is expected, as suggested by the work of Bowers and Liang

(1974), but detailed discussions about the nature and effects it has on the matter are still

necessary.

Models describing microphysics of compact objects are roughly constrained by as-

trophysical observations and experimental nuclear physics. The SQM hypothesis is beco-
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ming favorable in recent times face to last discoveries. While the nuclear matter has diffi-

culties to describe masses as high as ∼ 2.6 M⊙, and seems impossible that the core-collapse

of iron cores lead to formation of stars lighter than 1.17 M⊙ (Suwa et al., 2018), the SQM

easily accommodates both lightest and heaviest objects. The Central Compact Object

recently found within the supernova remnant HESS J1731-347, previously called XMMM

J173203.3-344518, has a mass of m = 0.77+0.20
−0.17 M⊙ and a radius of R = 10.4+0.86

−0.78 km

(Doroshenko et al., 2022), and was shown to be consistent with different models describing

SS’s, including the one we described in this chapter (Horvath et al., 2023). At the same

time these models of SS’s can account for the less massive component in the GW190814,

with m = 2.59 M⊙.
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Chapter 6

Conclusions

At the beginning of the current century a scientific magazine published an article men-

tioning 11 unanswered questions of Physics whose resolutions could provide a new era in

science (Haseltine, 2002). Among them is the behaviour of matter at ultrahigh densities

and temperatures, a challenging topic that is directly related with neutron stars physics.

The research conducted in this Thesis aimed to deepen our understanding of neutron

stars and their formation processes. Throughout the study, we explored various aspects of

neutron star physics, including the analysis of their mass distribution with special interest

in their maximum mass, the formation of double neutron star systems, and the construction

of a viable model for very massive compact stars. By addressing these objectives, we aimed

to contribute to the existing knowledge and uncover new insights into neutron star physics.

The Introduction chapter provided an overview of neutron stars, delving into concepts

such as degeneracy pressure, formation scenarios, and the description of relativistic stars

under the EFE. In the case of formation scenarios of NS’s, we highlighted the break with

previous paradigm about the existence of an unique channel, showed the most recent results

supporting the birth of massive stars without necessity of accretion (Burrows et al., 2020)

and commented on alternative scenarios as the AIC and double-degenerate AIC, as well

as the merger of a NS with a WD (Zhong et al., 2023). In the subsection about relativistic

stars we also discussed how the mass limit emerges, and its significance in understanding

the behavior of neutron stars at ultra-high densities.

In Chapter 2, we conducted a statistical analysis of the mass distribution of neutron

stars in galactic binary systems, where we assumed the distribution to follow a mixture of

Gaussian components. Firstly, although the frequentist approach is not recommended to

analyze the sample of NS masses, we applied Kolmogorov-Smirnov and Anderson-Darling
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hypothesis tests to gather any conclusion about the shape of the distribution, and the result

ruled out a unimodal shape. Under the Bayesian framework we first presented the result

of our model selection to justify the discussion of the bimodal model only. Our findings

are in line with previous studies for the location and scale of Gaussian peaks. However,

the inferred maximum mass of neutron stars exceeded previous predictions, suggesting the

existence of ultra-massive neutron stars. While the result of Shao et al. (2020) points to a

maximum mass of ∼ 2.26 M⊙, our analysis results in an average value of 2.6 M⊙.

A posterior predictive check was conducted to check if the maximum masses derived

for the GW170817 by different works are consistent with the maximum mass expected

from the galactic population, and the result is negative. Higher values of mmax are indeed

preferred. We also investigated the absence of a sharp cutoff in the mass distribution, and

found that is unlikely that this sharp cutoff is present for large values of mmax. Finally, we

implemented the model employed in Alsing et al. (2018); Shao et al. (2020) and discovered

that the assumption of a uniform distribution for cos i can be responsible for underestimate

the results. The ideal treatment would include the information of i for each binary system.

The threshold we derived for NS masses supports the NS nature of the less massive

component of the GW190814, with m = 2.59 M⊙. Furthermore, it is in agreement with the

maximum mass inferred for NS with differential rotation. These findings have significant

implications for the state of matter at ultra-high densities. Although mass measurements

can be subject to systematic errors in some cases and the sample is small, our results shows

that it is perfectly possible that extremely massive NSs, with masses up to at least 2.6 M⊙,

exists. All statistical analysis in Chapter 2 were developed by me.

Chapter 3 was dedicated to the construction of a catalogue of double neutron star

systems. An online version will be constantly updated. The goal is to provide a valuable

resource that scientific groups around the world can use to investigate the characteristics

and evolutionary pathways of these systems, which ultimately merge within the Hubble

time. This work can also provides a foundation for future gravitational wave detections.

The plots shown at Chapter 3 were made by me, and are an update of the extensive

analysis on the formation of DNS systems in Tauris et al. (2017). The webpage available

at https://donutss.onrender.com/ was also developed by me during my visit to the

MPIfR Bonn Group.

In Chapter 4, we developed a class of exact solutions to the EFE based on the strange

https://donutss.onrender.com/
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matter hypothesis, accounting for pressure anisotropies and pairing interactions between

quarks, since they are expected to be present for such high-densities. The resulting mass-

radius relation supports the existence of neutron stars extremely massive, and gives room

for the result we found from the Bayesian analysis of observed systems. I made the analy-

tical calculations for the both cases we discuss. The graphics were jointly constructed by

me with the help of my colleague Antônio Bernardo.

Collectively, the findings from this research have significantly advanced our knowledge

of neutron stars and their formation processes. The investigation into the mass distribution

has revealed insights into the existence of ultra-massive neutron stars and the nature of

matter at ultra-high densities. The catalog of double neutron star systems solidifies our

understanding of their characteristics and evolutionary paths. Additionally, the anisotropic

model for strange stars in the color-flavor locked phase contributes to our understanding

of microphysics inside these unique objects.

Moving forward, there are promising avenues for future research. Incorporating new

observational data will allow for a more comprehensive analysis of neutron star populations

and their mass distribution. Refining the formation models for double neutron star sys-

tems will provide a more accurate understanding of their evolution and merger processes.

Additionally, investigating other properties and phenomena related to neutron stars will

expand our knowledge and open new avenues for exploration.

In conclusion, the research presented in this Thesis has provided significant contribu-

tions. Through the analysis of their mass distribution, the examination of double neutron

star systems, and the development of an anisotropic model, we have advanced our kno-

wledge of these fascinating celestial objects. The implications of this research extend

beyond the realm of astrophysics and have implications for our understanding of ultra-

high density matter and the mysteries of the universe. Continued research in this field will

undoubtedly lead to further discoveries and advancements in neutron star physics.
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Appendix A

Sample of neutron stars masses in galactic binary

system

Table A.1 - Neutron Star mass measurements for 112 NS binary systems displayed at Fig.

3.1 with 1σ uncertainties.

Object Type Mass(M⊙) Reference

2S 0921-630 X-ray/Optical 1.44+0.10
−0.10 Steeghs and Jonker (2007)

4U 1538-522 X-ray/Optical 1.02+0.17
−0.17 Falanga et al. (2015)

4U 1608-52 X-ray/Optical 1.57+0.30
−0.29 Özel et al. (2016)

4U 1700-377 X-ray/Optical 1.96+0.19
−0.19 Falanga et al. (2015)

4U 1702-429 X-ray/Optical 1.90+0.30
−0.30 Nättilä et al. (2017)

4U 1724-307 X-ray/Optical 1.81+0.25
−0.37 Özel et al. (2016)

4U 1820-30 X-ray/Optical 1.77+0.25
−0.28 Özel et al. (2016)

4U 1822-371 X-ray/Optical 1.96+0.36
−0.35 Munoz-Darias et al. (2005)

B1957+20 X-ray/Optical 2.40+0.12
−0.12 Van Kerkwijk et al. (2011)

Cen X-3 X-ray/Optical 1.57+0.16
−0.16 Rawls et al. (2011)

Cyg X-2 X-ray/Optical 1.71+0.21
−0.21 Casares et al. (2010)

EXO 0748-676 X-ray/Optical 2.01+0.21
−0.21 Knight et al. (2022)

EXO 1722-363 X-ray/Optical 1.91+0.45
−0.45 Falanga et al. (2015)

EXO 1745-248 X-ray/Optical 1.65+0.21
−0.31 Özel et al. (2016)

Her X-1 X-ray/Optical 1.073+0.358
−0.358 Rawls et al. (2011)

J01326.7+303228 X-ray/Optical 2.0+0.40
−0.40 Bhalerao et al. (2012)

J0212.1+5320 X-ray/Optical 1.85+0.32
−0.26 Shahbaz et al. (2017)

J0427.9-6704 X-ray/Optical 1.86+0.11
−0.11 Strader et al. (2019)

J0846.0+2820 X-ray/Optical 1.96+0.41
−0.41 Strader et al. (2019)

J0952-0607 X-ray/Optical 2.35+0.17
−0.17 Romani et al. (2022)

J1301+0833 X-ray/Optical 1.60+0.22
−0.25 Kandel and Romani (2022)

J1311-3430 X-ray/Optical 2.22+0.10
−0.10 Kandel and Romani (2022)

J1417.7-4407 X-ray/Optical 1.62+0.43
−0.17 Strader et al. (2019)

J1555-2908 X-ray/Optical 1.67+0.07
−0.05 Kennedy et al. (2022)

J1653-0158 X-ray/Optical 2.15+0.16
−0.16 Kandel and Romani (2022)

J1723-2837 X-ray/Optical 1.22+0.26
−0.20 Strader et al. (2019)

To be continued...
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Tabela A.1 – ...continued

Object Type Mass(M⊙) Reference

J1810+1744 X-ray/Optical 2.11+0.04
−0.04 Kandel and Romani (2022)

J2039.6-5618 X-ray/Optical 2.04+0.37
−0.25 Strader et al. (2019)

J2129-0429 X-ray/Optical 1.74+0.18
−0.18 Strader et al. (2019)

J2215+5135 X-ray/Optical 2.27+0.17
−0.15 Linares et al. (2018)

J2339-0533 X-ray/Optical 1.47+0.09
−0.09 Kandel et al. (2020)

KS 1731-260 X-ray/Optical 1.61+0.35
−0.37 Özel et al. (2016)

LMC X-4 X-ray/Optical 1.57+0.11
−0.11 Falanga et al. (2015)

OAO 1657-415 X-ray/Optical 1.74+0.30
−0.30 Falanga et al. (2015)

SAX J1748.9-2021 X-ray/Optical 1.81+0.25
−0.37 Özel et al. (2016)

SAX J1802.7-2017 X-ray/Optical 1.57+0.25
−0.25 Falanga et al. (2015)

SMC X-1 X-ray/Optical 1.21+0.12
−0.12 Falanga et al. (2015)

Vela X-1 X-ray/Optical 2.12+0.16
−0.16 Falanga et al. (2015)

XTE J1855-026 X-ray/Optical 1.41+0.24
−0.24 Falanga et al. (2015)

XTE J2123-058 X-ray/Optical 1.53+0.30
−0.42 Casares et al. (2002)

B1534+12 DNS 1.3332+0.0010
−0.0010 Fonseca et al. (2014)

B1534+12Cp DNS 1.3452+0.0010
−0.0010 Fonseca et al. (2014)

B1913+16 DNS 1.4398+0.0002
−0.0002 Weisberg et al. (2010)

B1913+16Cp DNS 1.3886+0.0002
−0.0002 Weisberg et al. (2010)

B2127-11C DNS 1.358+0.010
−0.010 Jacoby et al. (2006)

B2127-11CCp DNS 1.354+0.010
−0.010 Jacoby et al. (2006)

J0453+1559 DNS 1.559+0.004
−0.004 Martinez et al. (2015)

J0453+1559Cp DNS 1.174+0.004
−0.004 Martinez et al. (2015)

J0509+3801 DNS 1.34+0.08
−0.08 Lynch et al. (2012)

J0509+3801Cp DNS 1.46+0.08
−0.08 Lynch et al. (2012)

J0514-4002A DNS 1.25+0.05
−0.05 Ridolfi et al. (2019)

J0514-4002ACp DNS 1.22+0.05
−0.05 Ridolfi et al. (2019)

J0737-3039A DNS 1.338185+0.000012
−0.000014 Kramer et al. (2021)

J0737-3039B DNS 1.248868+0.000013
−0.000011 Kramer et al. (2021)

J1518+4904 DNS 0.72+0.51
−0.58 Janssen et al. (2008)

J1518+4904Cp DNS 2.00+0.58
−0.51 Janssen et al. (2008)

J1756-2251 DNS 1.341+0.007
−0.007 Ferdman et al. (2014)

J1756-2251Cp DNS 1.230+0.007
−0.007 Ferdman et al. (2014)

J1757-1854 DNS 1.3406+0.0005
−0.0005 Cameron et al. (2022)

J1757-1854Cp DNS 1.3922+0.0005
−0.0005 Cameron et al. (2022)

J1807-2500B DNS 1.3655+0.0021
−0.0021 Lynch et al. (2012)

J1807-2500BCp DNS 1.2064+0.0020
−0.0020 Lynch et al. (2012)

J1829+2456 DNS 1.306+0.007
−0.007 Haniewicz et al. (2021)

J1829+2456Cp DNS 1.299+0.007
−0.007 Haniewicz et al. (2021)

J1906+0746 DNS 1.291+0.011
−0.011 Van Leeuwen et al. (2015)

J1906+0746Cp DNS 1.322+0.011
−0.011 Van Leeuwen et al. (2015)

J1913+1102 DNS 1.62+0.03
−0.03 Ferdman et al. (2020)

J1913+1102Cp DNS 1.27+0.03
−0.03 Ferdman et al. (2020)

B1516+02B NS-WD 2.08+0.19
−0.19 Freire et al. (2008)

B1802-07 NS-WD 1.26+0.08
−0.17 Thorsett and Chakrabarty (1999)

B1855+09 NS-WD 1.54+0.13
−0.13 Reardon et al. (2021)

To be continued...
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Tabela A.1 – ...continued

Object Type Mass(M⊙) Reference

B2303+46 NS-WD 1.38+0.06
−0.10 Thorsett and Chakrabarty (1999)

J0024-7204H NS-WD 1.48+0.03
−0.06 Kiziltan et al. (2013)

J0337+1715 NS-WD 1.4401+0.0015
−0.0015 Voisin et al. (2020)

J0348+0432 NS-WD 2.01+0.04
−0.04 Antoniadis et al. (2016)

J0437-4715 NS-WD 1.44+0.07
−0.07 Reardon et al. (2016)

J0621+1002 NS-WD 1.53+0.10
−0.20 Kasian (2012)

J0740+6620 NS-WD 2.08+0.07
−0.07 Fonseca et al. (2021)

J0751+1807 NS-WD 1.64+0.15
−0.15 Desvignes et al. (2016)

J0955-6150 NS-WD 1.71+0.02
−0.02 Serylak et al. (2022)

J1012+5307 NS-WD 1.72+0.16
−0.16 Mata Sánchez et al. (2020)

J1017-7156 NS-WD 2.0+0.8
−0.8 Reardon et al. (2021)

J1022-1001 NS-WD 1.4+0.5
−0.5 Reardon et al. (2021)

J1125-6014 NS-WD 1.68+0.16
−0.16 Shamohammadi et al. (2022)

J1141-6545 NS-WD 1.27+0.01
−0.01 Bhat et al. (2008)

J1528-3146 NS-WD 1.61+0.14
−0.13 Berthereau et al. (2023)

J1600-3053 NS-WD 2.4+0.5
−0.5 Reardon et al. (2021)

J1614-2230 NS-WD 1.94+0.03
−0.03 Shamohammadi et al. (2022)

J1713+0747 NS-WD 1.28+0.08
−0.08 Reardon et al. (2021)

J1738+0333 NS-WD 1.47+0.07
−0.06 Antoniadis et al. (2012)

J1741+1351 NS-WD 1.14+0.43
−0.25 Kirichenko et al. (2020)

J1748-2021B NS-WD 2.74+0.21
−0.21 Freire et al. (2008)

J1748-2446am NS-WD 1.649+0.037
−0.11 Andersen and Ransom (2018)

J1748-2446I NS-WD 1.91+0.02
−0.10 Kiziltan et al. (2013)

J1748-2446J NS-WD 1.79+0.02
−0.10 Kiziltan et al. (2013)

J1750-37A NS-WD 1.26+0.39
−0.36 Freire et al. (2008)

J1802-2124 NS-WD 1.24+0.11
−0.11 Ferdman et al. (2010)

J1811-2405 NS-WD 2.0+0.80
−0.50 Ng et al. (2020)

J1824-2452C NS-WD 1.31+0.04
−0.47 Bégin (2006)

J1909-3744 NS-WD 1.45+0.03
−0.03 Shamohammadi et al. (2022)

J1910-5958A NS-WD 1.55+0.07
−0.07 Corongiu et al. (2023)

J1918-0642 NS-WD 1.29+0.10
−0.09 Arzoumanian et al. (2018)

J1933-6211 NS-WD 1.4+0.25
−0.25 Geyer et al. (2023)

J1946+3417 NS-WD 1.828+0.022
−0.022 Barr et al. (2017)

J1949+3106 NS-WD 1.34+0.16
−0.16 Zhu et al. (2019)

J1950+2414 NS-WD 1.496+0.023
−0.023 Zhu et al. (2019)

J2043+1711 NS-WD 1.38+0.12
−0.13 Arzoumanian et al. (2018)

J2045+3633 NS-WD 1.251+0.021
−0.021 McKee et al. (2020)

J2053+4650 NS-WD 1.40+0.21
−0.18 Berezina et al. (2017)

J2222-0137 NS-WD 1.831+0.010
−0.010 Guo et al. (2021)

J2234+0611 NS-WD 1.353+0.014
−0.017 Stovall et al. (2019)

J0045-7319 NS-MS 1.58+0.34
−0.34 Thorsett and Chakrabarty (1999)

J1023+0038 NS-MS 1.71+0.16
−0.16 Deller et al. (2012)

J1903+0327 NS-MS 1.667+0.010
−0.021 Arzoumanian et al. (2018)
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Appendix B

Modeling, constraints and a priori choices

One of the most important features of a Bayesian analysis is that they fully account for

measurement uncertainties. As can be noted in Fig. 3.1 and Table A.1, some measurements

are highly precise, while others are linked to large errors due to measurement methods.

To proceed with the analysis, in the case of asymmetric uncertainties we took the average

value for the uncertainty. For example, for PSR 4U 1724-307 with a reported mass of

m = 1.81+0.25
−0.37 M⊙, we assumed m = 1.81 ± 0.31 M⊙. Each data was modeled as a

Gaussian distribution, P (di|mi
p) = N (mi, ui). We have checked that this procedure of

“symmetrizing” the error bars introduces a negligible difference in the final results.

We implemented the MCMC algorithm with pystan (Team et al., 2020). To improve

efficiency, avoid computational errors and streamline the algorithm convergence, we can set

some constraints when defining model parameters. With this purpose we considered: the

mean of first peak to be limited by 1 < µ1 < 2.5; the mean of second peak to lie above the

mean of first peak µ1 < µ2 < 2.5; standard deviations to be positive {σ1, σ2}> 0. A priori

distributions where chosen to be rj ∼ Beta(2, 2), µj ∼ N (1.75, 1) and σj ∼ N (0, 2), with

j = 1, 2 for both components. Beta(α, β) distribution is a family of continuous probability

distributions parametrized by the shape parameters α, β > 0, and is defined in the interval

[0, 1], satisfying that
∑

j rj = 1, being the analogue of the Dirichlet distribution in the case

n = 2. The lower truncation, mmin was fixed at zero. We made an attempt to include an

analysis regarding the minimum of the distribution, however, the choice of an a priori that

does not bias the results proved to be a little more tricky. We runned 4 parallel chains,

with 10000 iterations each. The model already converges for this amount of iterations, so

it is not necessary to increase the number.

A priori choices are often criticized because they are quite subjective and represents the
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previous knowledge an individual have about the subject. This means that a priori choices

can change from analysis to analysis, as well as it is updated if new evidences emerges.

Highly informative priors are generally avoided since they might strongly influence final

results, while non-informative priors can lead to a divergence in the calculations. Since

our data carries significant information about ri, µi and σi, their priors are not substantial

and change it will not affect the results, contrary to what happens with the parameter

mmax. The data set has not enough information about the truncation point, other than

the masses of the most massive observed objects. Since the posterior distribution is a

balance between likelihood and a priori distributions, the distribution set for mmax plays

a significant role when marginalizing it.

We analyzed different mmax priors to check their influence on posterior probability, with

some results shown in Table B.1. When adopting a Uniform a priori, the marginal posterior

distribution showed a flat behaviour, without preferred values, and for this reason we choose

to adopt a Gaussian distribution with a “non-negligible” standard deviation to avoid bias

(a standard deviation equal to 1 had a similar behaviour of using Uniform distributions).

Since the interval of values we are dealing with is small, it is more challenging to choose a

balance to determine the a priori.

We started with a a priori set to N (2.15, 0.5), and even so the results tell us that the

most likely mmax is around 2.5 M⊙, as seen at the second column of the table. It is clear

that results of the maximum mass show a tendency to increase as we increase the mean

value of the a priori, a consequence of the low content of information in the likelihood, but

the weight attributed to it is not too large, or in the case of N (2.15, 0.5) we would expect

the mean posterior value to be closer to 2.15 M⊙. Since the mass threshold is, until now,

not expected to go beyound 2.7 M⊙, we adopt N (2.35, 0.5) as the a priori in our analysis.
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Table B.1 - Comparison of marginalized posterior distribution of mmax for different a priori distributions.

The first column indicates the prior, the second is the mean value of marginalized parameter, the third

column is the standard deviation and the fourth and fifth indicate the highest probability density which

can be seen as an interval of the most likely values.

a priori mean sd HPD 3% HPD 97%

N (2.15, 0.5) 2.495 0.356 1.855 3.128

N (2.25, 0.5) 2.551 0.368 1.896 3.237

N (2.35, 0.5) 2.597 0.381 1.913 3.303

N (2.45, 0.5) 2.672 0.390 1.947 3.379

N (2.55, 0.5) 2.727 0.398 2.022 3.501

N (2.65, 0.5) 2.793 0.412 2.029 3.553
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Appendix C

Mass inferences

As we discussed in Sections 3.1 and 3.3.2.4, with exception of systems where strong

relativistic effects are present, determine the mass of pulsars can be a challenging task. In

cases where the companion is optically bright, geometrical constraints can be set, that helps

to infer the mass, but they can still be subject to systematic errors. The orbital inclination

angle is the most sensitive parameter and exerts a large influence in the inference of pulsar

mass.

The work of Alsing et al. (2018) and Shao et al. (2020) constructed likelihood functions

describe by equations 3.30 and 3.31 to sample the individual pulsar mass for sytems where

only the total mass or the mass ratio are provided, in addition to the mass function. The

main assumption in their modelling is to consider the orbital inclination angle to assume

any value between 0◦−90◦. Four of these systems were expected from observations to have

masses above 2 M⊙, and in Sec. 3.3.2.4 we checked the impact they have on the marginal

distribution of mmax.

In the following we described how the observations lead to mass values we listed in Table

3.6, so we can see how the mass sampled in their model is inconsistent with observations.

C.1 PSR B1957+20

A Black-Widow system. Light curve analysis of the companion results in a radial-

velocity amplitude of K2 = 353± 4 km s−1 that combined with the pulsar’s mass function

gives a minimum companion mass of mc,min = 0.022 M⊙. The mass ratio and inclination

angle best fits are q = 69.2 ± 0.8 and i = 65o ± 2o, and combined gives a best-fit pulsar

mass of m = 2.40 ± 0.12 M⊙ (Van Kerkwijk et al., 2011). Although light curve modeling
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relies in a few assumptions, a lower limit to the pulsar mass is found to be 1.66 M⊙.

C.2 PSR J1311-3430

Until recently this black-widow system had a light-curve based mass of m = 2.63+0.3
−0.2 M⊙

(Romani et al., 2012), but constraints on i were poor. Kandel and Romani (2022) presents

an analyisis of heating models for the light curve, from where they derive NS masses.

Their preferred model results in i = 68.7◦ ± 2.1◦. With a radial velocity amplitude of

K2 = 641.2± 3.6 and a companion mass of mc = 0.012± 0.006, the pulsar mass is inferred

to be m = 2.22 ± 0.10.

C.3 PSR B1516+02B

Placed in the globular cluster NGC 5904 with a companion that is either a WD or a

low-mass MS star. The binary system has a mass of 2.29 ± 0.17 M⊙ and leads to a pulsar

best-fit in m = 2.08 ± 0.19 M⊙ (Freire et al., 2008). There is a 90% probability that the

pulsar is more massive than 1.82 M⊙, and a 0.77% probability that the inclination angle

is low enough for m to fall between 1.20 − 1.44 M⊙.

C.4 PSR J1748-2021B

Massive binary system with mt = 2.92 ± 0.20 M⊙ obtained from a precise ω̇ and

assuming it is fully relativistic (Freire et al., 2008). The probability that the pulsar mass

lies between 1.20 and 1.44 M⊙ is only 0.10%, requiring a very low orbital inclination.

The median mass of companion star is at 0.142 with lower and upper 1σ limits at 0.124

and 0.228 M⊙, respectively, indicating that it can be a WD or an unevolved MS star and

implies a pulsar mass of 2.74 M⊙.



Appendix D

Orbital properties of DNS systems



164 Appendix D. Orbital properties of DNS systems

P
rop

erties
of

27
D

N
S

sy
stem

s
in

clu
d

in
g

u
n

con
fi

rm
ed

can
d

id
ates,

an
d

2
G

W
even

ts
from

th
e

m
ergers

of
D

N
S

’s

P
u
lsa

r
T
y
p
e

P
Ṗ
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The maximum mass of neutron stars may be higher than expected: an inference from
binary systems

L.S. Rocha,1, ∗ R.R.A. Bachega,1, † J.E. Horvath,1, ‡ and P.H.R.S. Moraes1
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We have analyzed in this work the updated sample of neutron star masses derived from the study
of a variety of 96 binary systems containing at least one neutron star using Bayesian methods.
After updating the multimodality of the distributions found in previous works, we determined
the maximum mass implied by the sample using a robust truncation technique, with the result
mmax ∼ 2.5−2.6M�. We have checked that this mass is actually consistent by generating synthetic
data and employing a Posterior Predictive Check. A comparison with seven published mmax values
inferred from the remnant of the NS-NS merger GW170817 was performed and the tension between
the latter and the obtained mmax value quantified. Finally, we performed a Local Outlier Factor
test and verified that the result for mmax encompasses the highest individual mass determinations
with the possible exception of PSR J1748-2021B. The conclusion is that the whole distribution
already points toward a high value of mmax, while several lower values derived from the NS-NS
merger event are disfavored and incompatible with the higher binary system masses. A large mmax

naturally accommodates the lower mass component of the event GW190814 as a neutron star.

I. INTRODUCTION

The upper limit of the mass of a neutron star (NS)
is one of the biggest unsolved problems in Astrophysics.
Within General Relativity, the solutions of the hydro-
static equilibrium Tolman-Oppenheimer-Volkoff equa-
tion reach a critical value Mmax for the mass of such
objects, above which the structure collapses. This value
Mmax depends on the equation of state describing the
matter inside the star [1, 2], although effects such as ro-
tation [3, 4] and anisotropy [5] can increase the mass
value. Rhoades and Ruffini [6] established an “absolute”
upper limit of Mmax = 3.2 M� without the necessity of
introducing the real equation of state, although ignoring
effects of rotation and exotic behavior [7].

Observational information would help to shed light on
the composition issue [8, 9], but after 50 years of the dis-
covery of pulsars the actual value of Mmax is still subject
to discussion. Recent fundamental advances in observa-
tional techniques, namely the detection of gravitational
wave (GW) mergers in which at least one member is a NS
and accurate timing detecting the Shapiro delay among
the most important, have improved the situation to a
point in which the issue can be studied thoroughly.

Statistical analysis of the observed mass distribution of
NSs has been employed over the years to address its fea-
tures [10–13]. More recently, the application of Markov
Chain Monte Carlo (MCMC) methods [14] to analyze
the distributions became viable and common. Previous
studies have concluded that an unique evolutionary chan-
nel to form these compact objects is heavily disfavored,

∗Electronic address: livia.silva.rocha@usp.br
†Electronic address: rrhavia@if.usp.br
‡Electronic address: foton@iag.usp.br

since observed mass distribution shows a high variation
that cannot be accommodated by a single scale [15–17],
although the lack of a firm conclusion about the prefer-
ence of two or more scales is still present [18, 19] and the
maximum mass still undetermined.

An additional source became possible with the detec-
tion of GWs emitted by the merger of two NSs, accom-
panied by electromagnetic counterparts [20]. Since the
detailed dynamics of coalescence depends on the behav-
ior of matter [21], a connection of the observations with
Mmax was worked out (see below). The recent detection
of the event GW190814 [22] led to considerable discussion
on the maximum mass due to the fact that the smaller
component with ∼ 2.6 M� falls in the “gap” between
observed NSs and black holes. If confirmed as a NS it
would require a Mmax & 2.5 M�, while the analysis of
GW170817 remnant was consistent with a lower Mmax

[23]. In the present article, we perform an extended anal-
ysis of the mass distribution of observed NSs in binary
systems, using advanced statistic techniques like MCMC
and related tools, to extract information about the max-
imum mass parameter and confront our results with the
inferences obtained by several groups on the maximum
mass through the observation of GW signal observed
from the GW170817 event, using the Posterior Predictive
Check (PPC) method [24]. As a complementary analy-
sis, we look for anomalous mass points (or outliers) in NS
sample, which may not belong to the distribution, using
the Local Outlier Factor (LOF) algorithm [25]. The pur-
pose of the later is to check if the evidence in the existence
of very massive NSs is statistically robust. We elaborate
on these analysis below.

In the following we name as mmax the value derived
from the distribution, i.e., a statistical inferred value,
while the value Mmax is a physical threshold, which ulti-
mately would coincide with the former for a large sample
if properly analyzed.
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The search for the true ground state of the dense matter remains open since Bodmer,

Terazawa and others raised the possibility of stable quark matter, boosted by Witten’s

strange matter hypothesis in 1984. Within this proposal, the strange matter is assumed
to be composed of strange quarks in addition to the usual ups and downs, having an

energy per baryon lower than the strangeless counterpart, and even lower than that
of nuclear matter. In this sense, neutron stars should actually be strange stars. Later

work showed that a paired, symmetric in flavor, color-flavor locked (CFL) state would

be preferred to the one without any pairing for a wide range of the parameters (gap ∆,
strange quark mass ms and bag constant B). We use an approximate, yet very accurate,

CFL equation-of-state (EoS) that generalizes the MIT bag model to obtain two families

of exact solutions for the static Einstein Field Equations (EFE) constructing families of
anisotropic compact relativistic objects. In this fashion, we provide exact useful solutions

directly connected with microphysics.

Keywords: Strange stars; exact solutions; compact objects.

1. Introduction

Immediately after Einstein’s General Relativity Theory was published, Karl

Schwarzschild managed to obtain the first exact solution of Einstein’s field equa-

tions. The number of different exact solutions (with various applications) has been

2050044-1
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