• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.14.2019.tde-03112018-200210
Documento
Autor
Nombre completo
Miguel Andres Paez Murcia
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Pereira, Vera Jatenco Silva (Presidente)
Almeida, Amaury Augusto de
Friaca, Amancio Cesar Santos
Gonçalves, Diego Antonio Falceta
Opher, Merav
Valio, Adriana Benetti Marques
Título en inglés
Study of the formation of Kelvin-Helmholtz instability and shocks in coronal mass ejections
Palabras clave en inglés
instabilities
particle emission
shock waves
solar wind
Sun: coronal mass ejections (CMEs)
Sun: magnetic fields
Resumen en inglés
The coronal mass ejections (CMEs) are phenomena that evidence the complex solar activity. During the CME evolution in the solar wind (SW) the shock and sheath (Sh) are established. With these, the transfer of energy and shock thermalization have origin through several processes like instabilities and particle acceleration. Here, we present two studies related to CMEs. In the first study, we analyze the existence of the KelvinHelmholtz instability (KHI) at the interfaces CMESh and ShSW. For this purpose, we assumed two CMEs that propagate independently in the slow and fast SW. We model velocities, densities and magnetic field strengths of sheaths, and SW in the CMEs flanks, in order to solve the Chandrasekhar condition for the magnetic KHI existence. Our results reveal that KHI formation is more probably in the CME that propagate in the slow SW than in CME propagating in the fast SW. It is due to large shear flow between the CME and the slow SW. Besides we find that the interface ShSW is more susceptible to the instability. In the second study, we examine the distributions of particle acceleration and turbulence regions around CME-driven shocks with wave-like features. We consider these corrugated shock as the result of disturbances from the bimodal SW, CME deflection, irregular CME expansion, and the ubiquitous fluctuations in the solar corona. We model smooth CME-driven shocks using polar Gaussian profiles. With the addition of wave-like functions, we obtain the corrugated shocks. For both shock types are calculated the shock normal angles between the shock normal and the radial upstream coronal magnetic field in order to classify the quasi-parallel and quasi-perpendicular regions linked to the particle acceleration and turbulence regions, respectively. Our calculations show the predisposition of the shock to the particle acceleration and indicate that the irregular CME expansion is the relevant factor in the particle acceleration process. We consider that these wave-like features in shocks may be essential in the study of current problems as injection particle, instabilities, downstream-jets, and shock thermalization.
Título en portugués
Estudo da formação da instabilidade Kelvin-Helmholtz e choques em ejeções de massa coronal
Palabras clave en portugués
emissão de partculas
instabilidades
ondas de choque
Sol: campos magnéticos
Sol: ejeções de massa coronal (CMEs)
vento solar
Resumen en portugués
As ejeções de massa coronal (do inglês coronal mass ejections, CMEs) são consideradas traçadores da atividade solar. Durante a evolução das CMEs no vento solar (do inglês solar wind, SW), o choque e o envoltório (do inglês sheath, Sh) são estabelecidos. Nesta fase, a transferência da energia e a termalização do choque podem ter origem através de vários processos, entre eles instabilidades e aceleração de partculas. Aqui nós apresentamos dois estudos relacionados às CMEs. No primeiro estudo, analisamos a existência da instabilidade KelvinHelmholtz (KHI) nas interfaces CMESh e ShSW. Para isto, supomos duas CMEs que se propagam independentemente no SW lento e rápido. Modelamos as velocidades, densidades e a intensidade do campo magnético dos envoltórios e SW nos flancos das CMEs, a fim de resolver a condição de Chandrasekhar para a existência da KHI magnética. Nossos resultados revelam que a formação da KHI pode ser mais provável na CME que se propaga no SW lento do que na CME que se propaga no SW rápido. Isto é devido a um maior cisalhamento entre a CME e o SW lento. Além disso, encontramos que a interface ShSW é ser mais suscetvel à instabilidade. No segundo estudo, examinamos as distribuições das regiões de aceleração de partculas e turbulência em choques ondulados com caractersticas semelhantes a ondas. Assumimos choques ondulados como resultado de perturbações do SW bimodal, deflexão da CME, expansão irregular da CME, e flutuações onipresentes na coroa solar. Construmos choques sem ondulações usando perfis Gaussianos. Com adição de funções semelhantes a ondas, obtemos os choques ondulados. Para ambos tipos de choques, calculamos os ângulos entre o vector normal ao choque e o campo magnético coronal radial, assim classificamos as regiões como quase-paralelas e quase-perpendiculares que são ligadas às regiões de aceleração de partculas e turbulência, respectivamente. Nossos cálculos mostram a predisposição do choque para o fenômeno de acceleração de partculas, e indicam que a expansão irregular da CME é o fator de maior relevância neste processo. Consideramos que assumir ondulações nos choques pode ser essencial nos estudos de problemas atuais como injeção de partculas, instabilidades, jatos e termalização dos choques.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese_versao_final.pdf (32.46 Mbytes)
Fecha de Publicación
2019-01-22
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.