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Resumo

Esta tese é composta por dois artigos, ambos abordando a questão da tomada de decisão

em situações que envolvem risco e incerteza. O primeiro artigo aborda o efeito “Reach-for-

Yield”, ou seja, o aumento do apetite por risco de agentes econômicos em cenários de taxas

de juro baixas. Tais situações são interpretadas como cenários com baixas taxas livres de

risco, fazendo com que os agentes econômicos busquem riscos mais elevados para manter

seus ńıveis de retorno. Mais importante ainda, contribúımos para a literatura não apenas

ao identificar esse efeito no mercado de fundos de investimento brasileiros, mas também ao

investigar empiricamente quais das teorias propostas para explicar esse efeito são plauśıveis

do ponto de vista emṕırico.

O segundo artigo, intitulado “Teoria da Saliência com Informação Imprecisa”, propõe

propriedades para funções de que ponderação de probabilidade que podem ser usadas em

conjunto com teorias de decisão de risco estabelecidas (como a Teoria da Saliência de Bor-

dalo et al., 2012). Esta abordagem visa incorporar fatos estilizados derivados do extenso

crescimento desta literatura emṕırica e experimental no campo de decisões sob ambiguidade

nas últimas duas décadas. Assim, a nossa proposta procura não apenas acomodar, mas

também prever comportamentos em linha com os desenvolvimentos recentes na literatura

emṕırica e experimental.



Abstract

This dissertation comprises two articles, both addressing the issue of decision-making in

situations involving risk and uncertainty. The first article addresses the ”Reach-for-Yield”

effect, that is, the increase in risk-taking by economic agents in low-interest-rate scenarios.

Such situations are interpreted as scenarios with low risk-free rates, causing economic agents

to pursue higher risks to maintain their return levels. Most importantly, we contribute to

the literature not only by identifying this effect in the Brazilian fund market but also by

empirically investigating which of the proposed theories to explain this effect are plausible

from an empirical standpoint.

The second article, titled ”Salience Theory with Imprecise Information”, proposes prop-

erties for probability weighting functions that can be used in conjunction with established

risk decision theories (such as the Prominence Theory of Bordalo et al., 2012). This ap-

proach aims to incorporate stylized facts derived from the extensive growth of the literature

on decision-making under ambiguity over the past two decades. Hence, our proposal seeks

not only to accommodate but also to predict behaviors in line with recent developments in

empirical and experimental literature.

Keywords: Decision Under Ambiguity, Salience Theory, Finance, Reach-for-Yield
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Chapter 1

Introduction

The present dissertation comprises two articles, both addressing the issue of decision-making

in situations involving risk and uncertainty. The first article discusses the ”Reach-for-Yield”

effect, that is, the escalation in risk-taking by economic agents in low-interest rate scenarios.

Such scenarios are interpreted as periods of low risk-free rates, prompting economic agents

to pursue higher risks to maintain their return benchmarks. More crucially, we contribute

to the literature not only by identifying this effect in the Brazilian funds market but also by

empirically investigating which of the proposed theories to explain this effect are empirically

plausible.

The second article, ”Salience Theory with Imprecise Information” puts forward properties

for probability weighting functions that can be integrated with established decision theories

under risk (such as the Salience Theory by Bordalo et al., 2012), aiming to incorporate

stylized facts stemming from the extensive progression of this literature over the past two

decades. Thus, our proposal aims not merely to accommodate but to anticipate behaviors in

line with the recent advancements in empirical and experimental literature.
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Chapter 2

Shedding Light on the Causes for

Reaching for Yield: Evidence From an

Emerging Country

We test the Reach-for-Yield (RFY) phenomenon - agents’ greater risk appetite when base

interest rates are low - in the Brazilian equity fund market. We find evidence of RFY for

equity funds, despite the fact that Brazilian interest rates were well above the zero-lower

bound during the sample period. We also test empirically four of the latest theoretical ex-

planations for the RFY effect, finding favourable evidence for three of them: (i) a Behavioral

Hypothesis in the spirit of Lian, Ma & Wang (2019) and theories such as Salience (Bordalo,

Gennaioli & Shleifer, 2012); (ii) a Manager Skill Heterogeneity Hypothesis, as in the Guerri-

eri & Kondor (2009) model; (iii) a Budget Constraint Hypothesis, based on the sustainable

budget constraint of the Campbell & Sigalov (2022) model. These hypothesis are not mu-

tually exclusive, indicating that a model that integrates these explanations for RFY may be

a good venue for future research. To the best of our knowledge, this is the first paper to

empirically test different theoretical explanations for the RFY, and also the first one to find

direct evidence of this effect in an emerging economy.
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2.1 Introduction

The prolonged period of near-zero interest rates in developed markets since the 2010s has

aroused the interest of researchers in economics and finance regarding the effects of the

extended occurrence of this scenario on the portfolio choices of economic agents. In this

context, particular interest has arisen regarding the Reach for Yield effect (RFY), which can

be defined as the greater risk appetite by economic agents when basic interest rates are low

(Lian, Ma and Wang, 2019; Campbell and Sigalov, 2022)1 Much of the empirical literature

corroborates the occurrence of this effect in developed markets for institutional investors

(Boubaker et al, 2017; Di Maggio and Kacperczyk, 2016) and for individuals (Lian et al.,

2019). A notable exception, however, is the work of La Spada (2018), who, using a sample

of American Money Market Funds prior to 2008, finds that RFY occurs when there is an

increase in the market risk premium, but not when there is a decrease in the risk free rate.

RFY contradicts finance conventional theory (Merton, 1971), according to which the

risk-taking of agents should not change with variations in the risk-free interest rate. To

accommodate the existence of this effect, some of the theoretical model approaches adopted

in the literature are highlighted.

First, there are approaches that start from conventional finance models, such as those of

Merton (1975) and Black (1972), but changing the consumer’s budget constraint, so that their

consumption is linked to the expected return of their portfolio in each period. An important

consequence of this approach is that agents with higher leverage - and thus, ways to stretch

their expected returns in any given period - have the means to exacerbate their RFY, i.e.,

amplify their increase in risk-taking for a given decrease in the risk-free rate (Frazzini and

Pedersen, 2014; Campbell and Sigalov, 2022). Henceforth, we will call the forecasts reported

1We note that the RFY term was initially used with a slightly different meaning than the most recent
papers on the subject. This concept was initially associated with greater risk-taking by investment funds
and financial institutions due to incentives related to fund managers’ compensation rules (Rajan, 2006) and
imperfections in the risk metrics used in the evaluation of managers’ performance (Becker and Ivashina, 2015;
Choi and Kronlund, 2018; Czech and Roberts-Sklar, 2019). Two reasons lead us to adopt the more recent
concept of RFY as greater risk-taking by economic agents in environments of low basic interest rates: (i)
there was consensus in this initial literature that greater risk-taking is exacerbated in environments of low
interest rates; (ii) the greater risk taking in low interest rate environments was more recently documented
also for individual investors, both in the portfolio compositions of various economic agents (Boubaker et al,
2018; Di Maggio and Kacperczyk, 2017; LU et al, 2019), and in randomized experiments with individuals
(Lian et al., 2019).
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in this approach the Budget Constraint Hypothesis (BCH).

A second approach highlights the behavioral character of RFY. In this theoretical inter-

pretation, investors form reference points regarding the expected returns of investments. If

the risk-free rate falls, for example, the individuals would interpret the new expected return

scenario as a loss in comparison with the previous status quo. Assuming that the individual’s

preferences can be represented by a typical loss aversion function, the individual’s portfo-

lio would be located in the loss domain of this function, in which the individual would be

risk-loving (Ganzach and Wohl, 2018). Therefore, a decrease in the risk free would induce

economic agents to hold riskier portfolios, regardless of the existing institutional arrange-

ments, and their eventual frictions or resulting agency problems (Lian et al., 2019). This

hypothesis is also consistent with a Salience-theory like model (Bordalo et al., 2012), where

low interest rates make asset returns the more salient characteristic of the assets, estimu-

lating higher risk-taking and, consequently, RFY behavior2. It is noteworthy here that this

approach provides an important testable prediction: agents with higher reference points (in

terms of expected returns) will tend to RFY more. That is, in low interest rate environ-

ments, agents that need higher returns to consider themselves in a region of gains (in their

loss aversion type value function) tend to have more pronounced RFY. From now on, we will

refer to the hypothesis raised by this interpretation of the Behavioral Hypothesis (BH).

A third approach to RFY highlights the heterogeneity of investment managers, and how

they may have incentives to engage in RFY behavior to maintain their reputation and in-

vestors’ perception of their performance high enough to remain in the market. Guerrieri and

Kondor (2009), for example, propose a principal-agent model in which investors can ”fire”

their investment managers if their performance is too low. Managers are heterogeneous, and

may be sophisticated (S) - with superior information on asset risk - or unsophisticated (U).

Investors, however, do not know if their manager is S or NS, and they only look at the results

obtained by their manager in order to try to identify her type. The authors show that, in

equilibrium, low interest rate scenarios would be associated with lower risks for the market as

2Lian et al. (2019) highlight that there are interpretations of te Salience Theory Under Risk (Bordalo et
al., 2012) that could imply a ”reverse RFY”, i.e., less risk appetite whenever risk-free rates are low. However,
the discussion of this interpretation is not the focus of this paper, since the empirical and experimental
evidence for ”reverse RFY” is rather scarce in the literature.
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a whole (e.g., lower default risk due to low interest rates), which would encourage U managers

to RFY, so that they can increase their expected returns without incurring a sharp increase

in the probability of incurring losses that may imply the firing of theses managers. Thus, U

managers would be able to obtain visible performance comparable to S managers, not being

”fired” by investors. On the other hand, a high risk-free rate scenario would be associated

with high market risks, which would encourage the opposite behavior from U managers (re-

duce the risk of the managed portfolios), in order to avoid large losses that could result in

their ”dismissal” . Thus, a prediction of the model is the prediction that more sophisticated

investment managers - i.e., those with better information about the risk of assets available

in the market - tend to exhibit lower RFY behavior. Throughout this article, the predictions

associated with this approach to the literature will be called the Heterogeneous Manager

Skill Hypothesis (HMSH).

An additional hypothesis is raised in the principal-agent model proposed by Acharya and

Naqvi (2019). Their model suggests that RFY behavior is more pronounced for intermediaries

in capital management that have greater liquidity available. This would occur because these

capital managers would have incentives to underestimate the penalty generated by the risk

of a liquidity squeeze, as this penalty would only be observable for the principal (affecting

the fund’s returns) in cases where liquidity falls below a certain threshold. Furthermore,

expansionary monetary policies - typically associated with low basic interest rates - would

exacerbate the risk-taking of financial intermediaries, by reducing the risks associated with

lack of liquidity in the market. In this paper, this proposition will be referred to as the

Liquidity Risk Hypothesis (LRH).

Given the described theoretical propositions, the present study contributes to the existing

literature in the following ways: (i) we identify the relationship of characteristics of these

funds with the RFY, indicating which models are more plausible to explain the characteristics

related to the RFY effect; (ii) we verify the existence of RFY in an emerging country, taking

advantage of a base with the monthly composition of equity fund portfolios.

Regarding this last contribution, we note that there are other studies that seek to identify

RFY in emerging countries, especially in the sovereign debt securities market. In emerging

markets, a series of papers have already specifically documented the decrease in the spread
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of sovereign debt of emerging countries when there is a fall in international risk-free rates

(GONZALEZ-ROSADA and LEVY YEYATI, 2007; FOLEY-FISHER and GUIMARÃES,

2013), which would indicate an RFY movement of international investors, moving their cap-

ital from developed to emerging countries and thus affecting the pricing of securities in the

latter. Sabbadini (2019) formally proposes a behavioral model - in line with the BH hy-

pothesis proposed here - that seeks to explain this investor response to low risk-free rates.

From simulated data, the author shows that his model’s predictions are consistent with the

investors’ RFY.

However, as far as we know, this is the first paper that directly tests the effects of changing

risk-free rates on RFY behavior in fund portfolios in an emerging country - from the point

of view of the local investor. We also use direct evidence from fund portfolio compositions,

instead of indirect observation of this phenomenon via market prices (Battarai et al., 2021).

Furthermore, it is noted that Brazil, during the sample period (2010-2021), is a particularly

interesting case to test some characteristics of the RFY. Unlike developed countries (and

even some emerging ones) Brazilian interest rates showed great nominal and real interest

rate variability in this period, with periods of increase and decrease of these rates that do

not closely follow the international market3. These specific characteristics of the Brazilian

market allow for any asymmetries in the RFY to emerge from the data - and to differentiate

to what extent the international or local interest rates are the drivers of this effect. Figure

1 illustrates some of the statements about Brazil’s peculiar macroeconomic scenario in the

period studied.

Furthermore, in the period studied there were periods of domestic recession that do not

coincide with international recessions, which allows us to empirically disentangle the influence

of two potential explanations for the eventual occurrence of the RFY: (a) the argument for

the pro-cyclicality of the RFY based on at the time of the economic cycle of the argument,

which argues that moments of economic boom would stimulate the RFY due to the lower

need to concentrate portfolios in low-risk assets to protect against high systemic risks; (b) the

RFY for the variation of the risk-free rate, which conjectures that increases in the risk-free

3Illustrates In this scenario, the low correlation between the Brazilian and American risk-free rates in the
studied period - of 0.35.
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(a)

(b)

Figure 2.1: Brazil and US monthly risk-free rates. Subfigure (a) show the US nominal rate
taken from Kenneth French’s website (2022), and Brazil´s equivalent, taken from the São
Paulo University (USP) Nucleus for Finance Studies’ (NEFIN, 2022) website. Subfigure (b)
shows the same rates, inflation-adjusted by the US Consumer Price Index (CPI) and Brazil’s
IPCA inflation index, respectively.
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rates are perceived by economic agents as opportunities for attractive returns to risks that

are still relatively low, i.e., that low-risk assets have a risk-return ratio more attractive than

before.

These features are used to test LRH - which is in line with argument (a) - and BH -

which is in line with argument (b). Furthermore, in this article we were able to take advan-

tage of a database that contains characteristics of the fund’s regulation, to differentiate from

pooled OLS and fixed effect regressions the occurrence of RFY funds by their budget con-

straint (BCH) and by characteristics that denote differences in the skill of the fund managers

(HMSH).

Finally, this paper contributes to the literature by empirically testing different hypotheses

raised by several recent theoretical models. In this section, the four theoretical hypotheses to

be tested were highlighted: (i) the Budget Constraint Hypothesis (BCH); (ii) the Behavioral

Hypothesis (BH); (iii) the Heterogeneous Managers Skill Hypothesis (HMSH); and (iv) the

Liquidity Risk Hypothesis (LRH). These hypotheses are not mutually exclusive, i.e., an

eventual RFY behavior can be derived from several causes suggested in these hypotheses.

For example, it is possible that there is a behavioral factor associated with the formation

of a reference point of past return and also an influence of budget constraints that require

sustainable spending influencing the RFY behavior of agents. Besides, we identify whether

the RFY is found for all classes of funds studied here, and what factors influence this behavior

in each class of funds.

The rest of this paper is organized as follows: section 2 details the database and the

methodology used; section 3 reports the main results; finally, section 4 highlights the main

conclusions of the paper.

2.2 Data and Methodology

A database provided by Economática® was used in this paper. The database contains the

end of the month portfolios of investment funds, from December/2009 to December/2021.

We filter in the database all actively managed equity funds. To determine the class of an

investment fund and if it is actively or passively managed, the following information was



21

used: (i) the classification made by the regulatory agency (CVM, 2020), as recorded in the

database; (ii) when (i) was not available, the classification made by Economática®, similar

to that of the regulatory agency, was used; (iii) if none of the above information was available

for any fund, the classification made by the Brazilian Association of Financial and Capital

Market Entities (ANBIMA) was used. Additionally, only funds with more than 12 months

of portfolio data were used - to avoid overweighting any seasonal effects. After those filters,

we had an unbalanced panel of 4187 funds selected.

Once this classification was made, some additional filters were used to determine the

sample of funds considered: (i) if the fund does not have portfolio composition data for

December/2021, its’ last month is excluded from the sample, to avoid distortions caused

by portfolio compositions chosen to meet fund closure procedures 4; (ii) mirror funds are

disregarded5, to avoid duplicating portfolio decisions of the master fund (from a master-

feeder fund structure) in the database 6; (iii) funds with assets under management of less

than R$ 100 thousand 7 are disregarded; (iv) if any position in a single asset by a fund in

a given month has value greater than 10 times the funds’ net worth, it is also discarded.

This last filter avoids that outliers - that are likely due to misreporting by investment funds

- distort estimations, and represent about 0.1% of all observations after filters (i) through

(iii) were applied.

After the sample was selected, each fund portfolio risk premium was estimated for each

month, using the Four-Factor Carhart (1997) model, with betas estimated based on weekly

sample returns from January/2001 to December/20218. This model was chosen because the

4This treatment is necessary because investment funds that are closing typically increase their holdings
of cash and low-risk, high-liquidity assets to pay their shareholders. These choices are related to the fund’s
closure process, not to portfolio choices that may reflect the agents’ risk appetite.

5Mirror funds are defined by the Brazilian regulatory agency as funds with at least 95% of their portfolios
allocated in other funds of the same class.

6To illustrate the need for this treatment, suppose that the fund i is a fund of accounts fund that invests
100% of its capital in fund j. Since the fund j is already considered in the sample, if we also include the
fund i, we will be considering that two individuals from the population of investment funds have adopted
exactly the same portfolio composition. However, the i fund in the example is usually created to reduce costs
and take advantage of possible scale gains, and not because it represents a coincidence of portfolio choices
between two different economic agents

7about 20 thousand USD in the average exchange rate of the sample period
8We take the approach of estimating risk premium for the entire sample - as opposed to rolling window

estimates used in other articles (e.g. Frazzini & Pedersen, 2014) - to expand the amount of assets with a
sufficient sample so that the estimation of a specific for each asset was possible. This was the same reason
why weekly returns were used to estimate the model, since daily returns could distort the risk estimate of
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Brazilian market is sensitive to the classic three-factors of Fama & French (1993) and also has

significant premium for the momentum factor (Vuong & Vu, 2017). The estimation was made

from OLS regressions of the traditional CAPM equation for each asset n with a minimum

sample of 30 periods (weeks) of available return data:

rn,s − rf,s = αn + βn(rM,s − rf,s) + βSMB
n SMBs + βHML

n HMLs + βWML
n WMLs (2.1)

where rn,s is the asset n return, rf,s is the risk-free rate and rM,s is market portfolio

return - all for the s week. The market, SMB, HML and WML portfolios are extracted from

the Nucleus for Finance Studies’ (NEFIN) data library (2022)9. Since the ex-ante premium

for each factor cannot be estimated using Brazilian market data, for a lack of historical

sample (Giovanetti et al., 2016), we use the Kenneth French’s library factor premiums for

each factor, using data from 1927 to 2021, together with the β estimated in the equation

above, to get to a risk premium estimate for each asset available in the sample (i.e., ˆRiskn =

β̂n RUS + β̂SMB
n SMBUS + β̂HML

n HMLUS + β̂WML
n WMLUS).

Once this ˆRiskn have been estimated for all assets that meet the minimum sample size

requirements, the following procedure is adopted for the other M assets that did not meet

the previous estimation requirements: (i) the industry β is used of the issuer’s performance

of M , estimated for the sample period by the equation (2)10 ; (ii) the average β of assets of

the same type as n is used, considering possible leverage of the risk assumed in the case of

derivatives. After this procedure, about 98 % of the database observations (assets in funds’

portfolios for each month) had a risk estimate attributed to them. The remaining either

used sectorial or asset class risk estimates (about 0.8 %), and the remainder consisted of

unidentified/undeclared asset allocations.

assets due to nontrading (a common occurrence in an emerging market), and monthly returns would greatly
reduce the number of assets with a representative sample for estimation.

9Robustness tests were also made using the Ibovespa Index as the market portfolio. The results obtained
are very similar to those reported, and are in agreement with the other results here presented.

10The industry returns used are calculated by the Nucleus of Finance of the University of São Paulo
(NEFIN, 2021) for the Brazilian market, using a similar methodology to that adopted by French (2022) for
the American market. The sectoral classification of issuers of assets used is made by Economática in the
database. The reduction procedure is not adopted in this case due to the lower variability of the beta of
industry portfolios.
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Once we have a ˆRiskn estimate for each asset available at the database, the portfolio risk

for each investment fund i and month t is calculated:

ˆRiski,t =
N∑

n=1

ωi,n,t
ˆRiskin (2.2)

where ωi,n,t is the share of asset n in the composition of the portfolio of fund i at the end

of month t.

The fund’s portfolio liquidity is also variable of interest in this study, so we measure

each asset’s liquidity based on the ZEROS indicator, as suggested by Lesmond, Ogden and

Trzcinka (1999):

ZEROSn =
1

D

D∑
d=1

1n,d (2.3)

where D is the set of days that goes from the first to the latest day when there is a valid

end-of-the day price for the asset (in the January/2001 to December/2021 period) for asset n

at the database. 1n,d is an indicator that assumes the value one if there is a trade registered

for the asset n on the day d and zero otherwise. Intuitively, equation (4) calculates the

percentage of days in the sample in which the asset n was not traded. Thus, greater values

of ZEROSn indicate that the asset n is more illiquid (or less liquid). From this indicator,

the liquidity of the fund’s portfolio i in a given month is defined in a similar way to (3):

ILQi,t =
N∑

n=1

ωi,n,tZEROSn (2.4)

After estimating funds’ risk-taking, we want to estimate how this variable responds to

changes in response to the risk-free rate level - to directly test if there is a RFY effect for

Brazilian investment funds. We also want to test how an eventual RFY effect interacts with

proxies for the different theoretical hypothesis that explain this behavior. These proxies and

the model equation estimated by pooled OLS are detailed in equation (6):
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ˆRiski,t = β0 + β1rf,t + β2(rf,tRi,t−1) + β3(rf,tILQi,t) + β4(rf,tLEVi,t) + β5(rf,tQi,t) + β5Xi,t + ϵi,t

(2.5)

where Ri,t−1 is the i fund return in the twelve months prior to the month t, ILQi,t is the

illiquidity of the fund’s portfolio i in t, LEVi,t is a dummy that takes the value 1 if the fund’s

regulations i allow leverage, and zero otherwise; Qi,t is a dummy that assumes the value one if

the fund is intended exclusively for accredited or professional investors. Xi,t is the set of con-

trol variables Xi,t = {Rt,t−1, LIQi,t, LEVi,t, Qi,t, Real12mGDPgt, lnSizei,t, Inflation12mt,

∆IV OLt}. Real12mGDPgt is the growth of the Brazilian real GDP accumulated in 12

months (ending at the end of the month t); lnSizei,t is the natural logarithm of the mar-

ket value of the fund i at the end of of the month t, measured in local currency (BRL);

Inflation12mt is the accumulated inflation in 12 months, measured by the IPCA index;

∆IV OLt is the variation of the calculated IVOLBR by NEFIN, and which is an index sim-

ilar to the VIX for the American market, denoting a measure of expected market volatility

11. This last variable helps to differentiate variations in portfolio due to changes in the risk

expected by economic agents, and the effect of RFY, in which changes in risk taking are only

due to the change in the risk-free rate (without this being interpreted as a change in market

risk). Equation (7) is estimated by the pooled OLS method, in a similar spirit to the Choi

and Kronlund (2017) RFY tests.

his estimate is related to the hypotheses raised in the following way. First, if there is

RFY behavior in the studied fund class, it is expected that β1 < 0, i.e., the increase in risk

of the fund portfolio is related to low risk-free rate environments.

Second, if the Behavioral Hypothesis (BH) is true, β2 > 0 is expected, which would

indicate higher RFY of funds with a past history of low returns. The idea here is that for

a fund that already has low recent returns it is more likely to already have recent returns

below the reference point of its loss aversion function. If these agents suffer an additional loss

in their expected return due to the fall in basic interest rates, they will tend to become even

more risk-loving - thus increasing the risk of their portfolio to compensate for the losses. Here,

11This variable is available from August/2011 to December/2021
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it is implicitly assumed in the methods that we adopt that the reference point is common for

funds of the same class.

Third, if the Liquidity Risk Hypothesis (LRH) is true, β3 > 0 is expected, indicating that

less illiquid (or more liquid) funds are more prone to RFY. Here, it is assumed that funds

with more liquid portfolios are less subject to the risk of their liquidity falling below the

threshold that observablely affects the fund’s returns (Acharya and Naqvi, 2019).

Fourth, if the Budget Constraint Hypothesis (BCH) is true, β4 < 0 is expected, indicating

that funds that have access to leverage RFY more. The logic here is that funds with access to

leverage would be able to respond more to declines in expected return caused by low interest

rates (CAMPBELL and SIGALOV, 2022).

Fifth, if the Heterogenous Manager Skill Hypothesis (HMSH) is true, β5 > 0 is expected,

indicating that funds intended exclusively for accredited investors have milder RFY behavior.

The premise adopted here is that funds intended exclusively for accredited investors are

operated by managers who are better informed about the risks of market assets, given that

the fund’s shareholders are investors who have a degree of qualification and high invested

capital, so that fund-market competition should allocate the most qualified managers in this

kind of fund. Thus, it is assumed that this type of funds is managed by more qualified and

sophisticated managers, who should have a milder RFY, if the HMSH is true.

Finally, the choice of the pooled OLS - besides its previous use in the literature (Choi

& Kronlund, 2001) - occurs for two main reasons. First, the estimators are asymptotically

unbiased, consistent, and
√
I normal for panels with large cross-section samples (large I) for

a given sample size in the time series (T) (Wooldridge, 2001). This is particularly relevant

given the sizes of I and T in our sample. Second, some fund characteristics of interest are

not rarely constant over time for the same fund i (such as Qi,t LEVi,t). This makes other

panel data methods (e.g. Fixed Effects) less interesting than the methodology used here, as

they mix the effects of different constant fund characteristics in the estimates. When using

this method, it is also important to note that it is implicitly assumed that the intercept and

the estimated angular coefficients for each independent variable are the same for funds of the

same class. It is argued that this is a reasonable assumption, given that funds of the same

class have the same regulatory restrictions on their capital allocation (CVM, 2020).
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2.3 Results

A first glance at our sample shows that there are more than 1000 equity funds for all the

months in the sample (Fig. 2). The equity funds quantity grows over time with the sample, in

line with the Brazilian funds market growth during the sample period (ANBIMA, 2022). In

addition, descriptive statistics of the main variables of interest of the model to be estimated

are exposed in tables 1 and 2 below.

First of all, it is worth noting that the annual returns obtained by equity funds are

relatively low, considering its’ country risk premium is about 4.8 % 12, and returns in local

currency of equity funds are about 6.9 %. This is a well-known characteristic of the Brazilian

market at least in the last three decades, where fixed-income securities - including sovereign

debt - have historically had returns close to the local stock exchange, without risk-adjustment.

Second, as expected, the Equity funds, which by monetary authority regulation are required

to hold at least 67% of their portfolio in stocks13 keep on average high percentages of their

portfolios (between 80 and 90 percent), but also keeps anything between 8 and 15 percent of

their portfolios in local sovereign bonds.

Additionally, table 2 shows something that was already invoked in the introduction of this

text: the Brazilian risk-free rate is significantly high - being 65bps above its American equiv-

alent, although this rate has fluctuated greatly during the sample period. The consideration

of the Brazilian risk-free rate is particularly important in the present study because, from

the point of view of a Brazilian investor, the US rate may not represent a risk-free option.

Currency risk, which makes the American risk-free option risky from the point of view of a

Brazilian investor (assuming that the Brazilian economic agent cares about the purchasing

power of its wealth in BRL) helps to explain the reason for this difference.

Moreover, Figure 3 shows graphically the evolution between the average risk (in the

cross-section) taken by equity funds per month. Comparing this evolution with that of the

Brazilian risk-free rate, it is noted that there are times when the relationship between the fall

in the risk-free rate and the increase in the risk taken seems to be more pronounced. Notably,

12Data library of Damodaran (2022), considering the average country risk premium between 2001 and 2021
13Stock funds must allocate 67% of their portfolio among the following types of assets: actions; Brazilian

Depositary Receipts (BDRs); Bonuses, subscription rights and share deposit certificates; share fund quotas
(CVM, 2020).
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Figure 2.2: Sample Fund Quantity, by fund class and month.

the periods between 2010 and 2012, and from 2017 to 2021 seem to show an increase in risk

taking by Equity Funds.

Finally, Figure 4 shows the evolution of average allocations (in the cross-section) among

some of the main types of assets.

Table 2.1: Time-Series descriptive statistics. This table contains time-series descriptive statis-
tics (over the 133 months in the sample, dec/2009 to dec/2021) of the cross-sectional mean
of each variable.

Variable TS Mean TS SD TS Minimum TS Maximum

Riski,t 0.059 0.004 0.052 0.071
Ri,t−1 0.067 0.179 -0.218 0.681
ILQi,t 0.040 0.009 0.021 0.054
LEVi,t 0.423 0.052 0.355 0.516
Qi,t 0.333 0.080 0.220 0.441

lnSizei,t 17.32 0.45 16.71 18.17

(a) Equity Funds
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Variable Mean SD Minimum TS Maximum

rBR
f,t 0.69 % 0.27 % 0.14 % 1.21 %
rUS
f,t 0.04 % 0.06 % 0.00 % 0.21 %

Table 2.2: Monthly Risk-Free Rate (Brazil and US) descriptive statistics. Sample period:
jan/2010 to dec/2021.

Figure 2.3: Fund Risk-Taking and Brazil monthly risk-free rates. Each subfigure shows the
cross-sectional monthly average CAPM ˆRiski,t for a class of funds - estimated by equation
(6). On the right axis (and red line in the graph), the Brazilian Montlhy Risk-Free Rate is
shown.

(a)

Figure 2.4: Monthly Fund Allocation. The figure shows the cross-sectional monthly average
allocation among asset types. On the right axis (and red line in the graph), the Brazilian
Montlhy Risk-Free Rate is shown.

(a)
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Table 2.3: Regression Estimation Results. Each column in the table reports estimates and
statistics for the Pooled OLS estimates of equation (7) for the entire sample. The Long &
Ervin (2001) heteroskedasticity-robust standard errors are in parentheses. ./∗/∗ ∗ indicates
statistical significance at the 10%, 5%, and 1% level, respectively.

Regression Results

All Equity Funds (Pooled OLS)

rf,t -0.44 (-2.25)*
rf,t x Ri,t−1 0.29 (0.93)
rf,t x ILQi,t -11.02 (-1.85).
rf,t x LEVi -0.03 (-0.20)
rf,t x Qi 0.21 (1.32)
Ri,t−1 -0.01 (-1.84).
ILQi,t 0.01 (0.05)
LEVi -0.01 (-2.03)*
Qi -0.01 (-2.38)*

Real12mGDPgt 0.17 (5.49)**
lnSizei,t -0.01 (-13.54)**

Inflation12mt -0.04 (-4.41)**
∆IV OLt -0.01 (-2.27)*
constant 0.08 (37.31)***

AdjustedR2 24.43 %
F − stat 1279.00**

Sample Size NxT 232445

2.3.1 Estimation Results

We then proceed to the analysis of the results of the estimation of equation (6) by Pooled

OLS, as stated in section 2 of this paper. Regressions are estimated separately for each type

of fund analyzed. The results are reported in Table 3 below.

The pooled OLS results already point out to the existence of the RFY effect (β1 < 0,

statistically significant). This result agrees with the extensive evidence regarding RFY in

fixed income funds (BECKER and IVASHINA, 2015; CHOI and KRONLUND, 2017) and in

equity funds (KIM and OLIVAN, 2015). However, none of the interactions of the risk free

rate with our variables of interest has a statistically significant coefficient. The only one that

is significant at 10 % is the iliquidity coefficient - even though it is in the opposite direction

compared to what was expected if the LRH was not to be rejected. Otherwise, all the other

coefficients of interest have a sign that agrees with their hypothesis.
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Table 2.4: Fixed Effects Regression Estimation Results. Each column in the table reports
estimates and statistics for fixed effects regressions that ran on subsamples of the fund portfo-
lios panel data, separated by the criterion displayed on the top of each column. For example,
the first column is a fixed effects regression for the subsample where Ri,t = 1. The Long &
Ervin (2001) heteroskedasticity-robust standard errors are in parentheses. ./∗/∗ ∗ indicates
statistical significance at the 10%, 5%, and 1% level, respectively.

Regression Results

LEVi,t = 1 LEVi = 0 Qi = 1 Qi = 0

rf,t -0.50 (-1.68). 0.50 (11.10)** 0.76 (1.08) -0.30 (-2.34)*
rf,t x Ri,t−1 0.28 (0.31) -0.72 (-6.57)** -1.70 (-1.58) 0.16 (0.40)
rf,t x ILQi,t -1.78 (-0.83) -24.23 (-81.10)** -22.04 (-1.58) -6.44 (-3.09)**

Ri,t−1 -0.01 (-0.10) 0.01 (6.49)** 0.02 (1.71). -0.01 (-0.33)
ILQi,t -0.17 (-0.79) 0.07 (35.08)** 0.06 (0.67) 0.01 (0.66)

Real12mGDPgt -0.04 (-0.60) 0.10 (6.13)** 0.14 (3.16)** 0.09 (2.66)**
lnSizei,t 0.01 (0.08) 0.01 (8.72)** 0.01 (1.61) 0.01 (0.49)

Inflation12mt -0.03 (-2.94)** -0.04 (-7.71)** -0.01 (-0.25) -0.05 (-5.40)**
∆IV OLt 0.01 (0.63) -0.01 (-2.31)* -0.01 (-0.03) -0.01 (-1.32)

AdjustedR2 -1.42 % 50.21 % 52.40 % 28.00 %
F − stat 42.84** 5339.53** 1886.8 238.89**

Sample Size NxT 99516 132929 75648 156797

Table 2.5: Fixed Effects Regression Estimation Results. Each column in the table reports
estimates and statistics for fixed effects regressions that ran on subsamples of the fund portfo-
lios panel data, separated by the criterion displayed on the top of each column. For example,
the first column is a fixed effects regression for the subsample where Ri,t = 1. The Long &
Ervin (2001) heteroskedasticity-robust standard errors are in parentheses. ./∗/∗ ∗ indicates
statistical significance at the 10%, 5%, and 1% level, respectively.

Regression Results

RWini,t−1 = 1 RWini,t−1 = 0 HILQi,t = 1 HILQi,t = 0

rf,t -0.45 (-3.83)** 0.56 (6.72)** -0.71 (-9.43)** -0.15 (-0.95)
rf,t x Ri,t−1 -0.30 (-1.17) 0.16 (0.30)
rf,t x ILQi,t -3.51 (-1.88). -24.34 (-56.01)**

Ri,t−1 0.01 (2.12)* -0.01 (-0.22)
ILQi,t -0.01 (-0.53) 0.07 (24.23)**

Real12mGDPgt 0.09 (2.52)* 0.08 (2.62)** 0.15 (6.57)** 0.02 (0.46)
lnSizei,t 0.01 (0.70) 0.01 (5.29)** 0.01 (0.28) 0.01 (0.66)

Inflation12mt -0.08 (-7.35)** -0.01 (-1.18) -0.02 (-0.81) -0.03 (-1.91)
∆IV OLt -0.01 (-2.13)* -0.01 (-0.35) -0.01 (-2.45)* -0.01 (-0.30)

AdjustedR2 3.63 % 43.22 % -2.00 % -5.42 %
F − stat 386.84** 2666.16** 115.23** 20.43**

Sample Size NxT 109880 82603 52203 52203
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To investigate further, we run fixed effects models for subsamples that are formed based in

the following criteria: (i) we run separate regressions for funds that have access to leverage

LEVi = 1 and the ones that don’t LEVi = 0. An analogous procedure is done in the

subsampling of the Qi variable; (ii) we define RWini,t−1 as a dummy variable wwith value one

for all the observations where Ri,t−1 > RIBOV,t−1, where RIBOV,t−1 is the inflation adjusted

last twelve (from t-12 to t-1) returns of the most common benchmark used by Brazilian

equity funds - the Ibovespa index. RWini,t−1 = 0, otherwise. We then subsample the

dataset into past winners (RWini,t−1 = 1) and past losers (RWini,t−1 = 0); (iii) we split

the fund observations by portfolio liquidity: above vs. below the median liquidity of all the

observations. The idea is that differences in the reaching for yield with a fixed effect for funds

of each category should highlight the hypotheses that are more (and least) likely to be true.

With that in mind, we see in tables 3.4 and 3.5 the results of such estimations. As for

the regression for the LEVi = 1 and LEVi = 0 subsamples, we see that funds that can access

leveraged positions do indeed reach for yield, whilst the unleveraged ones seem to take the

opposite approach, by the signal of β1 in each estimate. However, the regression for LEVi = 1

seem to fit the data poorly, by its’ adjusted R2 and F-stat results, besides the fact that β1

is only significant at 10 % in that case. Taken altogether, we can consider the evidence that

funds that can leverage their positions can be considered weakly favorable and - assuming

that leverage is associated with the possibility of reaching for yield - the evidence in favor of

the BCH is also only weakly favorable.

As for Qi, we have a clearer result: funds that are not exclusively destined to accredited

investors do reach for yield (β1 < 0 and significant), while other funds don’t. This is stronger

evidence in favor of the HMSH - assuming that the best fund managers are allocated to

funds for accredited investors. That does not mean that these managers are able to generate

excess risk-adjusted returns, but only that they respond differently to the cycles in monetary

policy in terms of risk-appettite. This result contrasts with experimental results such as Lian

et al. (2019), that find RFY behavior from amateurs and MBA students. Further research

to separate which characteristics of funds and/or managers that explain this diminished

sensitivity to the monetary policy is an object for future research

From the signals and significance of β1 an the RWini,t−1 regressions we actually find that
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funds that are winning versus the benchmark tend to reach-for-yield more - not less. This

finding contrasts with the previous experimental evidence, and suggests venues that contrast

with what we posed here as the Behavioral Hypothesis. However, this is not an unseen before

result, as evidence of managers that are winning to take higher gambles has been previously

documented, and behavioral models of ”tournaments” among fund managers can explain the

phenomenon (Taylor, 2003). Furthermore, as Lian et al. (2019) points out, Salience Theory

of choice under risk (Bordalo et al., 2013) actually predicts reaching against yield for the loss

domain (and RFY for the gain domain). It is only the interpretation of RFY coming from

the ”consumer-theory” version of Salience Theory (Bordalo et al., 2012) - that considers that

expected returns become more salient when interest rates change and that dominates the

decision-making process - that is incompatible with the results here obtained.

Finally, the fixed effects model still gives us results that go against the proposed LRH,

since more illiquid funds (higher HILQi,t) tend to reach for yield more. However, even that

statement has to be made with caution, since the F-stats and adjusted R2 of the equation

are low, so that we cannot safely say there is any evidence in the data in favor of the LRH.

2.4 Conclusion

In this paper, we studied empirically four theoretical hypothesis raised to explain the existence

of reach-for-yield effect. First, we found evidence of the effect in the Brazilian equity fund

market. The occurrence of this effect seem to be more strongly related to the absence

of a accredited investor requirements for shareholders. Assuming that the fund manager

allocation is related with skill so that more skilled managers get higher earnings, we can

affirm that our results support that manager skill heterogeneity may explain partially the

existence of this effect, with non-skilled managers reaching for yield trying to boost their

returns - so that the fund shareholders can not differentiate if they are skilled managers or

not, as in the Guerrieri & Kondor (2009) model.

We also found evidence that funds that are past winners against a benchmark tend to

RFY more, suggesting that tournament-like behavioral models (Taylor, 2003) or models that

consider that losses become more salient in decision-making when the interest rate decreases
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(Bordalo et al., 2013) seem to be promising venues to explain the effect. However, models

that consider that the change in the reference point of exepected returns due to a decrease

in the interest rates (Lian et al., 2019) do not seem suited to explain our results.

Moreover, we found some weak evidence that factors associated with heterogenous budget

constraints might relate to the RFY phenomenon. However, we alert that future research is

needed to corroborate if in fact agents that heterogeneity in budget constraints can influence

RFY behavior, as suggested by Campbell & Sigalov (2022). Finally, we found no evidence

that liquidity risk plays a role in the RFY behavior, at least when it comes to equity funds,

going against what was conjectured by the model of Acharya & Naqvi (2009), for example.

The development of plausible models that take into account the patterns empirically found

in this paper is a topic for future research. Also, exploring more proxies to test the theory as

here presented, and expanding this test to other markets is also a promising research subject.
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Chapter 3

Salience Theory with Imprecise

Information

We propose a generalization of the Salience Model for Choice Under Risk for decision under

ambiguity (Bordalo et al., 2012). We achieve so by altering the the probability weighting

function for valuation of alternatives in settings of decision under ambiguity. Our model is

able to predict stylized facts of the literature, such as: (i) likelihood insensitivity, the fact that

people tend to overestimate(underestimate) the expected probability of low(high)-likelihood

events to happen in ambiguous settings - in comparison with non-ambiguous ones; (ii) the

fourfold pattern of ambiguity attitudes, where decision-makers are usually ambiguity averse

for bets on high probability gains and low probability losses, and ambiguity seeking otherwise.

A key feature of our model is that ambiguity attitude is a result of the combination of: the

outcome domain (gain or loss) of a bet; the expected probability of the outcome combinations

that are relevant to the outcome of the bet; how many outcome combinations are deemed

possible by the decision maker. The model may be interpreted as representing how decision-

making under ambiguity is affected by bottom up attention - i.e., how the context of a

decision-making setting may be in conflict with the decision-maker’s goal.
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3.1 Introduction

Since Ellsberg’s (1961) seminal thought experiments for choice under ambiguity, decision-

making behavior under ambiguity has been studied. Specifically, theoretical models that

deal with decision under ambiguity try to accommodate and/or describe decision-makers

(DMs) behavior when dealing with decisions involving uncertainty where assessing a unique

probability distribution (even if subjective) of events relevant to the outcomes of the possible

courses of action is scarce and/or imprecise. Ambiguity attitudes have received much atten-

tion as a possible explanation for economic phenomena such as the equity premium puzzle

(Rieger & Wang, 2012), stock market non-participation (Antoniou et al., 2015; Dimmock et

al., 2016) and home bias in portfolio choices (Dimmock et al., 2016; Ardalan, 2019).

We contribute to the theoretical literature by extending the Salience Theory for Choice

Under Risk (STR) to decision under ambiguity contexts. To do so, we add to the original

model a probability weighting function that reflects DMs’ behavior for second-order probabil-

ity representations of decision under ambiguity problems. This extended version of the model

is able to predict many empirical regularities of the experimental literature, such as: (i) likeli-

hood insensitivity, the idea that under ambiguity DMs tend to distort the weighting of events

in the evaluation of an act in the direction of a naive probability distribution (for example,

a 50-50 naive probability distribution for a bet with two possible outcomes) (Dimmock et

al., 2013; Trautmann & van de Kuilen, 2017); (ii) the fourfold pattern of ambiguity attitude,

meaning that decision-maker’s are ambiguity averse for moderate-to-high probability gains

and low-probability losses, but ambiguity seeking low-probability gains and moderate-to-high

probability losses (see Table 1 below). For example, when comparing a risky (with objec-

tively know probability of win) and an ambiguous bet (with imprecise information on the

probability of win) that involve the possibility of gaining a positive value with small expected

probability, DMs usually tend to choose the ambiguous act (be ambiguity seeking). However,

if the bet now involves the same gain, but events with mid to high expected probability of

the win outcome, now the DM will usually prefer the risky bet (Trautmann & van de Kuilen,

2015)

More specifically, our model can be interpreted as relating the stylized facts above in the
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Table 3.1: Ambiguity Attitudes as a function of expected probability and the outcome domain
(loss or gain).

Domain

Expected Probability Loss Gain

Low Ambiguity Aversion Ambiguity Seeking
Mid/High Ambiguity Seeking Ambiguity Aversion

following way: once faced with imprecise information about the probabilities of events that

are relevant to the outcomes of a number of alternative courses of action, the decision-maker

“fills” the information gap with other information that she is able to assess from the choice

set, such as the number of possible events framed as relevant to the decision. This use of

the number of possible states of the world induced by the choice set description causes like-

lihood insensitivity, interpreted as the DM’s distortion in weighting of the events toward a

naive equal probability for each relevant event deemed possible. Therefore, likelihood in-

sensitivity causes the fourfold pattern of ambiguity attitudes: for ambiguous acts, it causes

an underweight of high likelihood events, resulting in an pessimistic (optimistic) view of ex-

pected gains (losses), causing ambiguity aversion (seeking) behavior. Conversely, ambiguous

acts contingent on low likelihood events are overweighted, causing ambiguity seeking (averse)

behavior for gains (losses).

The central idea of our paper of the choice set outcomes shaping the DM’s perception of

the state-space has been applied to other decision contexts. Specifically, the psychological

rationale of bottom-up attention, i.e., a stimulus caused by the specific context of a choice

problem attracting the decision maker’s attention “bottom up,” automatically and involun-

tarily, is the main driver of Salience Theory of Choice Under Risk (STR) (Bordalo et al.,

2021). As may be expected, our probability weighting function is then particularly well suited

to be applied to extend STR for Choice Under Ambiguity. We explore as a base case this way

to apply the probability weighting function as a theory of Choice Under Ambiguity that has

STR as a special case - when the decision collapses to risky acts. Salience Theory has also

already been tested and used to explain a variety of stylized facts, such as the tendency to

take right-skewed tisks and avoid left-skewed ones (Kahneman & Tversky, 1979) and Allais
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paradoxes (Bordalo et al., 2012)1.

In the theoretical literature about decision under ambiguity, our model’s representation of

ambiguity closely relates to previous models that incorporate the treatment of ambiguity as

imprecision about objective information on events’ probabilities with the subjective multiple

priors approach of Gilboa & Schmeidler (1989). Gajdos et al. (2008) interpretation of

ambiguity is an example that closely relates to our approach. However, in the model we

propose ambiguity attitude is not a function of some combination of pessimism or optimism,

but is a result of the combination of the outcome domain, expected probability of events. As

we will show throughout the paper, choice set characteristics such as the number of possible

relevant outcomes will also help to define how low an event likelihood has to be to be in the

“low probability” row in Table 1.

To the best of our knowledge, our model is the first one that incorporates an interpreta-

tion of ambiguity as imprecise objective information that is simultaneously able to predict

likelihood insensitivity and the fourfold pattern of ambiguity attitudes. We take advantage

of the rapid growth in the experimental and empirical literature on decision-making under

ambiguity to make our model more in line with the regularities in DMs behavior found in

the literature.

The rest of this paper is organized as follows. Section ?? presents a running Ellsberg-urn

example that is going to be used throughout the paper to explain the concepts and conse-

quences of our model. Section 3.2 gives the preliminaries of our model: how our second-order

belief approach describes decision under ambiguity and some background on Salience Theory.

Section 3.3 presents our Context-Weighting model, and its’ implementation as a generaliza-

tion of Salience Theory of Choice Under Risk (Bordalo et al, 2012). In the subsection within

this section, we describe the model’s postulates about how the model represents decision-

making under ambiguity and, whenever possible, illustrate how theses postulates affect DM’s

preferences and weighting of act outcomes. For concreteness, we also provide a parametric

example of a Context-weighting function, and apply it to our running example and some cho-

1However, we note that any theory that results in an expected value function that is not rank-dependent
(such as the original Prospect Theory of Kahneman & Tversky (1979) or Regret Theory (Loomes & Sugden,
1982). The detailed development of the consequences of our proposal for the probability weighting function
to these other theories is left for future research.
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sen modifications of it that help to illustrate our model’s properties. Section 3.4 illustrates

how Choice set characteristics, DMs beliefs and the Outcome Domain of act payoffs influence

ambiguity attitude in our model. We also analyze the Machina reversal problem and how

events with correlated probability are dealt with. We follow with Section 3.5, where we com-

pare our model’s characteristics and results with other popular second-order belief models in

the literature. Finally, we draw conclusions and give suggestions for future research.

3.2 Preliminaries

3.2.1 Decision Under Ambiguity Representation

We start setting up the preliminaries of our model, that follow objective ambiguity models

that extend the multiple-prior approach of Gilboa & Schmeidler (1989), such as Gajdos et al.

(2008). Let X be an arbitrary set of outcome combinations, defined on the RN space, without

loss of generality. Each element of X is denoted as xi. ∆(X) = {π(x1), π(x2), ...} is a set of

simple distributions over X. A pure outcome is defined as Ln = ∆(X)× en, where en is the

canonical basis vector in RN , that is, a N -dimensional vector that has its’ n-th component

equal to one, and all other components equal to zero. L = {L1, ..., LN} is the set of pure

outcomes of the choice problem. For simplicity, we denote xnπyn the lottery that pays xn

with probability π and yn otherwise. This first part is close to a von-Neumann Morgenstern

setting, but we explicitly define X as vectors of outcome combinations of distinct lotteries,

similarly to the Bordalo et al. (2012, p. 1253) representation.

Additionally, we define Θ as a non-empty countable finite set of states of the world, and

A(Θ) the family of nonempty subsets of Θ. ∆(A(Θ)) is the set of probability measures

defined for each θ ∈ ∆(A(Θ)). Let P(θ) be the family of compact and convex subsets of

∆(A(Θ))2, and P =
⋃

θ∈A(Θ) P(θ) the family of probability-possibility sets occurring with

positive probability3. Let F = {f : Θ → ∆(X)} be the set of lottery acts - where each act

2Compactness is defined here with respect to the Euclidean space RA(Θ)

3For the sake of notational simplicity, we consider that all probability distributions are defined over Θ
and that p(θ) = 0∀θ ∈ Θ \ supp(p), where supp(p) indicates the support of the probability distribution p. In
other words, any states of the world not in the support of a probability-possibility set p is a null-probability
state under p. This is similar to Gajdos et al.(2008) representation.
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can be viewed as a constant act which delivers that lottery regardless of the states. The

decision-maker’s preferences are defined over the P × F × {L} space - the choice set.

The decision-maker then compares pairs of probability-possibility sets p ∈ P and how they

affect the probabilities of the outcome of each lottery being true - conditional on all the other

possible outcomes that could have been obtained if another lottery was chosen. Note that in

this setting acts map states of the world into von-Neumann Morgenstern lotteries defined on

the set of combinations of outcomes XN , and not directly on outcomes. This setting follows

closely other second-order belief models of objective ambiguity, such as Gajdos et al. (2008)

and Olszewski (2007).

For concreteness, let’s apply the definition to an Ellsberg urn example with a discrete

state-space, to illustrate the model’s representation. Suppose there is an urn with 3 balls.

The decision-maker (DM) knows has objective information that: (i) there is 1 red ball in the

urn; (ii) the remaining 2 balls are either black or yellow, in proportion unknown. We assume

this information is given to the DM at the outset, and cannot be modified by her.

The DM is then offered the lotteries L1 and L2, contingent on the color of a single ball

drawn from the urn. Table 3.2 below describes the monetary outcomes associated with each

possible color of the drawn ball:

Table 3.2: Outcome matrix of example 1, an Ellsberg urn ambiguity example with two
lotteries (L1 and L2).

Red Yellow Black

L1 100 0 0
L2 0 100 0

It is easy to see that the outcome combination represented by “a red ball is drawn” is

unambiguous, whilst “a yellow ball is drawn” and “a black ball is drawn” are ambiguous.

According to our preliminaries, this problem could be described as follows: X = {x1, x2, x3} is

the set of outcome combinations, where x1 = (100, 0), x2 = (0, 100), x3 = (0, 0) represent the

outcomes of the lotteries when a red, yellow or black ball is drawn, respectively. L = {L1, L2}

is the set of lotteries, where L1 = 100πr0, L
2 = 100πy0. πr and πy are the probabilities of a

red and a yellow ball being drawn - given a true composition of the urn θ ∈ Θ, respectively.

Θ = {θ1, θ2, θ3} is the set of possible ball compositions of the urn, given the objective infor-
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mation available about it. In the example, this can be represented as θ1(π(x1), π(x2), π(x3)) =

(1/3, 0, 2/3), θ2(π(x1), π(x2), π(x3)) = (1/3, 1/3, 1/3), θ3(π(x1), π(x2), π(x3)) = (1/3, 2/3, 0).

Note here that a state-space represents a true ball composition of the urn, and not an out-

come realization - following a common way to represent objective ambiguity in the literature

(Gajdos et al., 2008).

The probability-possibility set P = {p(θ) : p(θ) ∈ (0, 1]∀θ ∈ Θ and
∑

θ∈Θ p(θ) = 1}

set represents the DM’s beliefs about the probability of each ball composition θ ∈ Θ being

the true one - representing all states θ that may happen with positive probability. For

concreteness, consider a decision maker that believes that either: (i) with 50% chance, the

urn has one ball of each color, and with 50% chance the urn has one red and two yellow balls;

(ii) there is a 1/3 chance of each ball composition being true. Then, P = {p1, p2}, where

p1(θ1, θ2, θ3) = (0, 1/2, 1/2) and p2(θ1, θ2, θ3) = (1/3, 1/3, 1/3).

Given the DM’s beliefs about possible urn composition and how likely each composition

is (P), and the objective combination probabilities of each outcome combination given by

each lottery (∆(X)), the DM decides which lottery he wants to bet on.

In the next subsections, we comment on two main assumptions of the model, and on the

Salience (Bordalo et al., 2012) representation that we primarily use in this paper, and how

we represent the DM’s valuation of a lottery through a value function.

3.2.2 Salience Representation

Following the BGS Model (Bordalo et al., 2012), we define a continuous and bounded salience

function for each combination of outcomes. Denote xn as the pure outcome that is associated

with the outcome combination x if lottery Ln is chosen, and x−n the vector of outcomes

that would be obtained if lotteries that are not Ln were chosen. Then, define a function

ω : X → R so that, ω(xn, x−n) is considered a salience function if it satisfies:

(i) Ordering: if xn = max x, then for any ϵ, ϵ′ ≥ 0, with at least one strict inequality:

ω(xn + ϵ, x−n − ϵ′) > ω(xn, x−n)

if xn = min x, then for any ϵ, ϵ′ ≥ 0, with at least one strict inequality:

ω(xn − ϵ, x−n + ϵ′) > ω(xn, x−n)

(ii) Diminishing sensitivity: if xn > 0 for all n s. t. Ln ∈ L, then for any ϵ > 0,
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ω(xn + ϵ, x−n + ϵ) < ω(xn, x−n)

(iii) Reflection: for any two outcome combinations xni , x
n
j s.t. Ln ∈ L and xn > 0 for all

n, we have:

ω(xni , x
−n
i ) < ω(xnj , x

−n
j ) ⇔ ω(−xni ,−x−n

i ) < ω(−xnj ,−x−n
j )

Heuristically, ordering affirms that states with more disperse payoffs are more salient.

Diminishing Sensitivity makes sure that, all else constant, states with payoffs closer to the

origin are more salient. Reflection makes sure that the ideas of ordering and diminishing

sensitivity are also valid for negative payoffs.

Another important remark is that the average x̄−n =
∑

m̸=n
1

N−1
xm can substitute the set

x−n as an argument of the salience function, while keeping the properties (i), (ii) and (iii).

In other words, ω(xn, x̄−n) is also a salience function (Bordalo et al., 2012).

The salience function is meant to represent how a stimulus attracts the DM’s attention

“bottom up”, that is, how perceived characteristics of a state of the world within a specific

set of possible courses of action may impact decision-making. This concept contrasts with

the traditional economic approach, which views attention as either unlimited or optimally

allocated “top-down” based on current goals and expectations. This approach does not

highlight that “bottom up” stimulus-driven attention may compete with the DM’s “top

down” goals (Bordalo et al., 2022). As Kahneman (2011, p. 324) puts it, “our mind has a

useful capability to focus on whatever is odd, different or unusual”. Salience Theory calls

the payoff combinations that draw the decision maker’s attention “salient”.

An example is a DM confronted with the decision of using $10 that he has in his pocket

to buy a lottery ticket for a 0.001% chance of winning a $1, 000, 000 dollar prize, or investing

that money for a sure outcome of $11 (the inicial $10 plus a $1 return). The expected value of

betting in the lottery is $0 (= 0.001%× ($1, 000, 000−$10)+99.999%× ($−10)), clearly less

than the sure $11 outcome of investing. In the standard Expected Utility Theory approach,

it is evident that the risky bet’s expected value being lower than the sure value of investing

implies that any individual who is not risk-seeking should choose to invest. However, in

reality, just the perspective of winning such a huge prize may tempt the DM to bet in the

lottery instead.

That is an example of the high contrast between an outcome (receiving the lottery’s
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prize), conditional on an outcome combination being true (the outcome combination that

happens when numbers drawn in the prize draw match the lottery ticket, in the example)

and a course of action chosen (buying the lottery ticket), compared to the outcome when a

different course of action is taken (getting $11 for investing). Salience theory interprets this

as the outcome combination associated with “the numbers drawn in the prize draw match the

DM’s ticket” being highly salient, because different choices lead to wildly different outcomes

if this state is true. As a result, the state of the lottery prize going to the available ticket may

have more weight in the DM’s (called a Local Thinker by Bordalo et al. (2012)) evaluation

of his options than the weight a Bayesian decision-maker would, making her more inclined to

buy the ticket for a chance of winning that huge prize. That change in weights given to each

state represents the DM’s fear of regretting that she did not buy the lottery ticket when it

is the winning ticket.

A slight change to our running example illustrates how salience may affect the weight

given by the DM to each state, conditional on the acts’ outcomes, in a ambiguity decision

setting. Say we add ϵ > 0 to the outcome combination associated with a red ball eing drawn

from the urn for both lotteries (L1, L2) (Table 2 below).

Table 3.3: An Ellsberg-like ambiguity example (Example 2). The difference between this
example and example 1 is that ϵ > 0 is added to the outcomes associated with a red ball is
drawn from the urn being true, for both L1 and L2 lotteries.

Red Yellow Black

L1,ϵ 100+ϵ 0 0
L2,ϵ 0+ϵ 100 0

Then, by diminishing sensitivity, ω((100 + ϵ, 0 + ϵ)) < ω((100, 0))). That would result in

an overweight of the outcome combination (100, 0) associated with a yellow ball being drawn

from the urn. That is, the difference between $100 and $0 outcomes in favor of L2,ϵ when a

yellow ball is drawn seems now more attractive than the $100 + ϵ versus $0 + ϵ difference in

outcomes when a red ball is drawn. That would result in a more favorable view of the L2,ϵ

option. If in example 1 the DM’s preferences are L1 ≻ L2, then for Salience Theory there

is some ϵ > 0 such that L1,ϵ ⪯ L2,ϵ. This representation sharply contrasts with standard

economic theory, specifically with the Sure-Thing Principle of Subjective Expected Utility
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(SEU) Theory (Savage, 1954). For SEU, the addition of ϵ as portrayed necessarily does not

alters preferences.

All of that considered, the value function that represents the DM’s preferences and the

effect of Salience in their choice is given by:

V (Ln) =
∑

x∈X π(x)ω(x)v(xn)

where ω(x) is a monotone increasing function of the salience of payoff combination x,

given the set L. v(xn) is the value of the outcomes associated with the choice of lottery n

when the outcome combination x is true. π(x) is the probability of the outcome combination

x happening4. Since Bordalo et al. (2012) propose a theory of choice under risk - not yet

considering the case of decision under ambiguity - they assume that π(x) are objective and

known probabilities that exist for each x ∈ X. In our model, we build upon the relaxation

of that assumption.

3.3 The Model

3.3.1 Main Assumptions

Next we describe two main assumptions of our model. The first one concerns the representa-

tion of preferences over constant acts - i.e., acts that do not involve risk nor ambiguity and

result in the same outcome no matter what is the true state of the world. The assumptions

asserts that there is a value function that represents the DM’s preferences over such acts,

with the standard properties of other similar models.

(A1 - Value Function on Acts) Let xi, xj be constant lotteries, with outcomes xi, xj ∈ x

obtaining with probability one regardless of the true state of the world, respectively. Then,

there exists a value function v : R → R, continuous, strictly increasing, and normalizable so

that v(0) = 0 such that, xi ⪰ xj if and only if v(xi) ≥ v(xj).

Our second assumption states that the choice problem analyzed with our problem is not

trivial, i.e., there is at least one act that is not constant in the choice set.

4that is, the n-th element of the x vector
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(A2 - Nontriviality) By contrast, define a non-constant lottery Ln as one where at least

two outcomes xnj , x
n
k s.t. xnj ̸= xnk can obtain with probability greater than zero. Then, we

assume the lottery set L contains at least two non-constant lotteries.

With that taken care of, we can move to the main definition of our model in the next

section.

3.3.2 Ambiguity Adjustment Function

Given our preliminary setting, we define a Ambiguity Adjustment Function Ψ, that represents

how probability weighting representing preferences may be affected by event ambiguity. We

also postulate the function’s properties that are sufficient for the main predictions of our

model.

Definition 1 (Ambiguity Adjustment Function Ψ): Define a function Ψ : P × ∆(X) →

[0, 1]. Let π(x) be the probability of outcome combination x being true. Denote p(π(x))

a probability distribution on π(x). E[π(x)] =
∑

θ∈Θ p(θ) π(x|θ) is the expected probability

π(x) of outcome combination x occurring, and σ(π(x)) its’ standard deviation. Denote ||Xn||

as the cardinality of the set of outcome combinations where an outcome for lottery Ln is

defined. Then, Ψ is a Salience Ambiguity Function if:

(P1) For a fixed σ(π(x)) = σ, Ψ(p(θ(πx))) is increasing on E[π(x)];

(P2) Ψ is decreasing on ||Xn||, the cardinality of Xn;

(P3) For fixed E[π(x)] = π̄(x) and Xn, |Ψ(π(x)) − π̄(x)| is decreasing on σ(π(x)), where

|a| denotes the absolute value of a. Moreover, if σ(π(x)) = 0, then Ψ(π(x)) = E[π(x)].

Considering Definition 1, we propose that a decision-maker faced with a choice under

ambiguity values lotteries according to the equation below:

V (Ln) =
∑

x∈Xn
Ψ(π(x), ||xx||) ω(x) v(xn)

Note that the Ψ function aggregates the objective information on the probabilities π of x

being the resulting outcome combination, given the subjective probabilities p ∈ P(θ) of each
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state θ ∈ Θ being true. Also, as we are going to see in later sections, the inclusion of the

cardinality of x is crucial for our model to represent the likelihood insensitivity behavior for

choice under ambiguity documented in the experimental literature (Dimmock et al., 2013).

In the next section, we illustrate the properties of the function with additional Ellsberg

urn examples.

Illustrating Properties of the function

We proceed to give examples that illustrate why each property is important, and its’ conse-

quences to the representation of choice under ambiguity and preferences in this circumstances

of decision-making. Take a modification of our Ellsberg-urn example. Take again the urn with

3 balls of example 1. Assume that the only states of the world (ball compositions of the urn)

with positive probabilities (in the probability-possibility space) are: 1 red ball, 0 yellow balls

and 2 black balls as (θ0, with π(xy|θ0) = 0; 1 ball of each color as θ1 (with π(xy|θ1) = 1/3); 1

red ball, 2 yellow balls and no black balls as θ2 (with π(xy|θ2) = 2/3). Additionally, suppose

that P = {p1, p2}, where p1(θ0, θ1, θ2) = (1/2, 1/2, 0) and p2(θ0, θ1, θ2) = (0, 1/2, 1/2). Con-

sider the probability of a yellow ball being drawn from the urn, π(xy). It is easy to see that

the standard deviation of π(xy) is the same under p1 and under p2, but the expected value

of π(xy) is higher under p2.

In our model, we interpret the standard deviation σπ(xy) being the same for p1 and p2

as the same level of ambiguity applying for both sets of beliefs. However, since one of the

(second-order) probability distributions results p2 results in a higher expected probability of

the outcome combination xy obtaining, then the weight given to that outcome combination

when evaluating lotteries should be higher. That is, the value of the weighting function Ψ

should be higher in the case where the DM’s beliefs are represented by p2 than in p1.

However, we highlight that - depending on the specific form of the probability distributions

p representing the DM’s beliefs, it is possible that an increase in the expected probability of

an outcome combination x results in a decrease in the weighting Ψ(x) due to P3 property.

We will show an example of this situation when we state our parametric example of Ψ,

but for now it suffices to say that a tradeoff between more precise information about the

probability of an outcome combination and the belief on a higher probability of the outcome
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happening may affect the weighting of that outcome combination in lottery evaluation in

both directions. That is so precisely to represent that - contrary to other models of objective

ambiguity (Gajdos et al., 2008) - we do not predict that DM’s are always averse to imprecision

in probability information, but that their attitude towards that imprecision depends on how

they “fill the gap” using other information available in the choice problem.

That gets us to property P2: that Ψ is decreasing on the cardinality of ||Xn||, the cardi-

nality of Xn. This property represents how we expect our model to represent the ”gap filling”

of the imprecise information about outcome combination probabilities. Note that ||X|| is just

the quantity of outcome combinations that are possible in the problem. In our Ellsberg urn

example 1, there are three outcome combinations possible: xr = (100, 0), xy = (0, 100) and

xb = (0, 0), representing the situations where a red, yellow or black ball is drawn from the

urn, respectively. That is, there are three possible outcomes combinations to consider - and

this information is used in the DM’s weighting of combinations.

This property makes sure that, if a new outcome combination is added to the problem,

the weighting of every outcome combination that has ambiguous probability of happening

is diminished. To illustrate, take again the setting of example one, except for that we add

one green ball to the urn, and both lotteries L1 and L2 pay $150 if the green ball is drawn

from the urn. Now there is a new outcome combination in the problem xg = (150, 150) in X.

With that, we expect likelihood sensitivity to affect differently the weighting of ambiguous

outcome combinations in the DM’s evaluation of the lotteries. That is so because now, with

for outcome combinations possible, a naive guess of each would just be 1/4, while with only

three possible outcome combinations, the naive guess would be higher (1/3). This means

that we interpret likelihood insensitivity as a function of how many possible combinations of

outcomes are presented, which translates into what is the naive probability of an outcome

combination that the DM considers to ”fill the gap” of the imprecise information on the

probability of such outcomes happening.

Moreover, we specify that the effect of the quantity of outcome combinations only affects

weighting for outcome combinations to which the lottery being evaluated (Ln) has a defined

outcome (Xn ⊂ X). The importance of this distinction may be seen with a two-urn Ellsberg-

like example. Define a choice problem where the DM may choose between lottery L1 from
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example 1, and lottery L2,urn2, that has outcomes equivalent to L2, but contingent on the

ball being drawn from a second identical urn (call it urn 2, and the urn that determines L1

outcomes as urn 1). Then, there is no defined outcome for L1 if the ball drawn from urn 2 is

red, for example, simply because the possible outcomes of choosing L1 are not contingent on

urn 2, nor correlated to any draw from that urn. By being more specific about the set that

represents likelihood insensitivity (Xn as opposed to simply X, that contains the outcomes

of L2,urn2), we make sure that only changes in the quantity of outcome combinations in urn

1 affect the Ψ weighting function of outcome combinations. Intuitively, that means that the

“naive estimate” of probabilities of each color being drawn from urn one is unaffected by the

information on urn 2 when evaluating L1, since the outcomes associated with L1 are also

unaffected by any characteristic of urn 2.

Finally, we get to property P3, that states that, for fixed expected probability of an

outcome combination E[π(x)] and quantity of outcome combinations Xn, an increase in the

standard deviation of the probability σπ(x) should amplify how far Ψ applied to x is from

a rational expectations weighting - that uses E[π(x)] as weighting. Again, since our model

interprets the dispersion of σπ(x) (i.e., the dispersion of the possible ball compositions of the

urn) as the level of ambiguity associated with the outcome combination x, P3 assures that

higher ambiguity level means greater distortion in the weighting function. Three things are

important to note here: first, we define the Ψ function codomain as [0, 1], so that there are no

negative nor infinite weights possible to attribute to any outcome combination5. Second, we

do not specify in which direction the distortions in weighting take, since we need distortions

in both directions to predict the fourfold ambiguity pattern found in the empirical literature

(Trautmann & van de Kuilen, 2015). Third, whenever there is no ambiguity about the prob-

ability of an outcome combination being true - as is the case with the outcome combination

of a red ball being draw in example 1 - then the function collapses to a rational expecta-

tions weighting based on the objective information available (in the example, the objective

information that there is one red ball in the urn).

5the value of the outcome combination, considered in a given lottery Ln being evaluated, on the other hand,
may be negative, so that a specific outcome combination applied to Ln may make Ln seem less favorable.
However, what is important here is that any outcome combination that may happen with positive probability
has weight in the decision-making process.
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A Parametric Example of Ψ

For concreteness, we provide below a parametric example of Ψ for a discrete state-space

Θ6, and we heuristically describe that is actually an ambiguity adjustment function7 and

then apply it to the example to draw the same conclusion as in the previous paragraph.

For simplicity, we also drop the function argument in parenthesis when dealing with the

parametric function below, from now on. We also pose the proposition that Ψ̂ is in fact an

ambiguity adjustment function.

Ψ̂(π(x), ||xn||) = E[π(x)](1−γ·σπ

(
1 + η

||Xn||

)γ·σπ

(3.1)

Proposition 1 (Ψ̂ is an Ambiguity Adjustment Function): Let Ψ̂ be defined as in equation

3.1. Then, Ψ̂ is an Ambiguity Adjustment Function, as per Definition 1.

Proof: in Appendix A.

here the notations follow the preliminaries section and definition 1. Since the standard

deviation of π(x) is bounded at 1
2
8 and we assume γ ∈ [0, 2], the exponents of the equation

are always between zero and one. γ can be seen as the degree to which the DM “distorts”

the weight given to an event as a function of the imprecision of the information about its’

probability.

By our nontriviality assumption A2, for any ambiguous act, that is, with σpi > 0,

||Xn|| ≥ 1. In other words, there is at least one possible outcome considered in the out-

come combinations relevant to the lottery Ln pure outcomes. Moreover, ||Xn|| is constant

for each outcome combination, given a lottery Ln considered. That means η ∈ (−1, 0) as-

sures that the second term in parenthesis in 3.1 is always greater than zero, but less than

one. Here, η is the parameter that indicates at what value of expected likelihood E[π(x)]

the DM is indifferent between being totally ignorant about the probability distribution (and

6We discuss continuous state-spaces in Appendix D.
7The complete proof is in Appendix A.
8To see this, note that the maximum standard deviation for π(x) is obtained when the probability mass

is concentrated in its’ extreme points, since π(x) ∈ [0, 1] is bounded. That is, the maximum standard
deviation of π(x)) is obtained when π(x1) = 0, π(x2) = 1 and p(π(x1)) = 1/2, p(π(x2)) = 1/2. In that case,
σpi =

√
1/2(1− E[π(x)]2 + 1/2(0− E[π(x)])2.
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relying heavily on a naive distribution 1/||Xn|| to determine the weight of combination x in

the evaluation of the act) and knowing for sure that the probability of outcome combination

x happening is π(x) = E[π(x)]. Higher η indicate a higher fixed point Ψ̂(π(x), ||xn||). Also,

for values close to the extremes in the (−1, 1) range, this indifference point may not exist at

all under some distributions p ∈ P .

To make it tangible, take a modified version of example 1. Let there be an Ellsberg

urn with 100 balls, and consider two possible information sets: (1) the DM knows that

the Ellsberg urn contains either zero or r̄ red balls, and the remaining balls can be either,

yellow, black or green, in unknown proportion; (2) the DM only knows that the urn contains

either r or 100 red balls, and the remaining balls can be either, yellow, black or green, in

unknown proportion9. In our model, assuming the DM interprets that each possible red ball

composition as being equally likely, Case 1 would be described by π1(xr) = 0, π2(xr) = r̄/100

and p1(π1(xr)) = p1(π1(xr)) = 1/2. Similarly, Case 2 would be described by π3(xr) =

r, π4(xr) = 1 and p2(π3(xr)) = p1(π4(xr)) = 1/2.

Also, note that in case (1), the expected probability of a drawn ball being red is r̄/2 ∈

[0, 0.5], while in case (2) this expected probability is (0.5 + (1 − r)/2) ∈ [0.5, 1]. Figure 3.2

shows the effect of varying η and γ in the described cases.

Figure 3.2 shows that greater values of γ indicate greater distortion in probability weight-

ing due to ambiguity. In other words, it means that the DM is more sensitive to ambiguity

for greater γ, i.e., the difference in weighting is larger for the DM, given an ambiguity level

represented by the standard deviation of the probability distribution p(π(xr)). However, γ

alone does not predict nor indicate ambiguity attitude, except when γ = 0, in which case the

DM is ambiguity neutral for any ambiguous event.

As we previously mentioned, η indicates where the Ψ̂ function crosses the 45°curve, so

that higher η dislocate that point to the right in the graph. Also, it may be that, for some

extreme values of η and an act fi that implies Si, the two curves cross only at E[π(xr)] = 0

and E[π(xr)]. In subfigures (a) and (b) of Figure 3.2, we can see that for η = −0.99. In

Appendix A we give a detailed assessment of the value function calculations for this modified

9In both cases, we assume that each possible ball color (red, yellow, black or green) is relevant relevant
in determing the outcome of the evaluated act.
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Figure 3.1: Effect of varying parameter η on Ψ̂, as a function of the expected probability of
the ambiguous event. Subfigures (a) and (b) show the variation of η (with fixed γ = 1) in
Cases 1 and 2, respectively. Cases 1 and 2 are described in the text, in this section. Finally,
the gray dashed line represents the 45°line, that is the weighting f Ψ̂ for unambiguous events.

(a)

(b)

example.

Considering η ∈ (−1, 1) and γ ∈ [0, 2], then for any γ > 0, V (L2) < V (L1) and the DM

chooses lottery L1 over L2 for the given information set. That is the same ambiguity aversion

result usually obtained in the literature when ambiguity choices concern mid-likelihood gains.

If γ = 0, i.e., the individual is ambiguity neutral for any event, then V (L2) = V (L1) and the

DM is indifferent between L1 and L2.

3.4 Ambiguity Attitudes

One of the main reasons that make decision under ambiguity an interesting topic is the fact

that it is usual that people differentiate between acts that are contingent on unambiguous and
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Figure 3.2: Effect of varying parameter γ on Ψ̂. Subfigures (a) and (b) show the variation of
γ (with fixed η = −0.01) in Cases 1 and 2, respectively. Cases 1 and 2 are described in the
text, in this section. Finally, the gray dashed line represents the 45°line, that is the weighting
f Ψ̂ for unambiguous events.

(a)

(b)
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ambiguous events - and also between distinct degrees of ambiguity of the events. The way

people relate the imprecision of information on likelihoods of events to their choices is what

we can call ambiguity attitude. So, when comparing acts with the same payoff structure,

we can derive ambiguity attitude if payoffs are contingent on events that have the same

expected probability of happening, but with different levels of imprecision (or vagueness)

of the information about that probability. In our example 1, that is exactly what we are

analyzing, since the $100 payoff is associated with the outcome combination xr for L1, and

xy for L2. Therefore, for the $100 payoff and the L = {L1, L2} lottery set, we can say that

the individual is ambiguity averse if L1 ⪰ L2, and ambiguity seeking if L2 ⪯ L1. If both are

true (i.e., L1 ∼ L2), then the DM is ambiguity neutral. In different settings, both ambiguity

aversion and ambiguity seeking behavior have been observed, which is why we use the more

appropriate term ambiguity attitude (Trautmann & van de Kuilen, 2015).

Thus, we argue that ambiguity attitude is a result of two factors: (i) the (im)precision

of available information about the probability distribution of events that are relevant to the

outcomes of any act in the choice set; (ii) how people interpret this and incorporate other

information about the choice set to determine their preferences.

In our model, (i) is given by p(π(x)), that attaches probabilities to each distribution of

events in the probability-possibility set. (ii) is described by the Ψ function that relates how

that information - and complementary information about the choice set - is incorporated in

the DM’s choice. We discuss this in more detail in the next subsections.

Our model puts forward a non-axiomatic approach about how people interpret probabili-

ties within the context of choice under ambiguity - leaving an eventual axiomatization of the

choice criterion put here for future research. However, with that approach, we are able to

make predictions that match stylized facts of the literature and relates them in a meaning-

ful way. That contrasts with previous models, that require an additional assumption about

what ambiguity attitude the DM has based on the model parameters, such as the Smooth

Ambiguity Preference Model (Klibanoff et al., 2005) and the α-maxmin model (Gilboa &

Schmeidler, 1989). Our model closely relates to the idea of the Gajdos et al. (2008) model

that indicates that people are in general averse to information imprecision, which is granted

by property P3 in our model. However, we incorporate all the information about probability
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distributions over outcome combinations into the DM’s choice - and not only rational expec-

tatnios and the most pessimistic scenario in terms of utility. That is, we specifically indicate

how the DM’s ambiguity attitude varies as a function of the expected probability of a given

event and characteristics of the presented choice set, without needing to assume that the

DM is always averse to imprecise information - in agreement with the empirical evidence.

Of course, we are taking advantage of the fact that empirical and experimental research on

ambiguity attitudes has flourished, so that we can list stylized facts and construct our model

so that our predictions match the evidence - instead of having to make a model so general

that it is harder to predict ambiguity attitudes in different decision settings. We expand on

our model’s interpretation on how this additional factors influence ambiguity attitude in the

next subsections.

3.4.1 Ambiguity Attitudes and the Choice Set

As it happens with Salience Theory of Choice Under Risk - STCUR - (Bordalo et al., 2012),

our model also incorporates the context of a decision, interpreted as the influence of choice set

characteristics in the DM’s choice. STCUR assimilates how the state-contingent outcomes

and the contrast of those outcomes across acts may affect a DM’s choice, as exemplified in our

lottery ticket example in Section 3.2.2. We now incorporate the amount of possible outcome

combinations to the context of Decision Under Ambiguity, represented by the cardinality

of the outcome combination space (||Xn||) in our model, for discrete state-spaces10. This

addition makes our model able to explain the widely reproduced likelihood insensitivity effect:

people do not sufficiently discriminate between different levels of likelihood of an ambiguous

event, transforming subjective likelihood towards a naive equal distribution among events

(Dimmock et al., 2012).

Therefore, it is useful to see how changing the cardinality of the choice set may change

the DM’s choice in a modified version of example 1. Suppose now we get a second urn (call

it urn 1), that is equal to the one in example 1 (call this urn −g), except that: urn 1 is

equal to the original urn of example 1, except that we add one green ball to it; urn 2 is

equal to the original urn of example 1, except that we add one black ball to it. All the

10We discuss continuous state-spaces in Appendix C
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remaining assumptions remain the same as in our running example. From now on, we call

this second urn the (g) urn. Moreover, suppose that the DM has three lotteries available to

choose: L1 = 100πr,urn10, L
2 = 100πy,urn10 and L−g = 100πy,urn −g0. That is, L1 and L2

are contingent on red and yellow balls being drawn from the urn (respectively), and L−g is

contingent on a yellow ball being drawn from the −g urn.

Consequently, the DM knows for sure that there are no green balls in the −g urn, and any

payoffs contingent on the ball drawn from this second urn being green (Eg,−g) are meaningless

to the pure outcomes of L1 and L2. We represent the new outcome combination set, that

considers both urns asX = {xr,urn1, xy,urn1, xb,urn1, xg,urn1, xr,urn −g, xy,urn −g, xb,urn −g}, where

all events with the −g indicate events associated with the ball drawn from the second urn11.

Thus, L = {L1, L2, L−g}. The payoff matrix of the acts is then given below:

Table 3.4: Outcome matrix of an Ellsberg urn decision under ambiguity example (example
3), with three lotteries and results contingent on the color of the ball being drawn from two
independent urns.

Red Yellow Black Green Red - Urn −g Yellow - Urn −g Black - Urn −g)

L1 100 0 0 0
L2 0 100 0 0
L−g 0 100 0

With this set of information about urn −g, the DM also knows that there is between 1 and

3 black balls in the urn. The plausible probabilities of the outcome combination associated

with the color of the ball drawn from urn −g bein red or yellow is unchanged across urns,

that is, π(xr,urn1) = π(xr,−g) and π(xy,urn1) = π(xy,−g). So, the set ∆(X)−g of non-null

distributions for the outcome combinations associated with the second urn are:

Table 3.5: Non-null first-order probability distributions in Ellsberg urn example 3.

π(xr,−g) π(xy,−g) π(xb,−g)

π1 1/4 0 3/4
π2 1/4 1/4 2/4
π3 1/4 2/4 1/4

11This example can be seen as an adaptation of a thought experiment due to Takashi Hayashi (Ahn, 2008),
that - to the best of our knowledge - may be one of the first ones to explicitly pose the problem of how
probability estimates of relevant events depend on the choice set.
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It is easy to see that L−g outcomes are contingent on ambiguous events, since there is

somewhere between 0 and 1/2 probability of winning $100 and somewhere between 1/2 and

1 probability of getting nothing. Observe that E[π(xy,urn1)] = E[π(xy,−g)] = 1/4. This new

example is then constructed exactly in a way that the choice set changes so that the only

difference in π and P of non-zero pure outcomes in lotteries L1, L2 and L−g is the quantity

of outcome combinations to which each lottery is defined, i.e., Xn. In other words, both

L1, L2 and L−g pay $100 if a ball that has probability between 0 and 1/2 is drawn, and zero

otherwise. The differences between the lotteries are: (i) the probability of winning in L1 is

unambiguous (it is precisely 1/4), while it is ambiguous (between 0 and 1/2) for both L2 and

L−g; (ii) the amount of outcome combinations to which L−g has a defined outcome is three

(red, yellow or black ball drawn from urn −g) so that we can analyze concretely how the

model responds to a change in the cardinality of the relevant partition of the state-space for

each act.

Applying our model’s valuation function of acts, we get:

V (L1) = Ψ(π(xr,urn1), ||X1||) ω v(100)

V (L2) = Ψ(π(xy,urn1), ||X2||) ω v(100)

V (L−g) = Ψ(π(xy,urn −g), ||Xg||) ω v(100)

First, note the salience is the same ω in each state of the final equation (since it involves a

$100 payoff in one of the acts and null payoffs for the other ones). Then, the DM’s choice hinge

on the relation between Ψ̂(π(xr,urn1), ||X1||), Ψ̂(π(xy,urn1), ||X2||), Ψ̂(π(xy,urn −g), ||X3||). Note

that the marginal distributions are such that p(π(xy,urn1)) = p(π(xy,urn −g)). Then, property

P3 is essential. Since ||X−g|| < ||X1||, then Ψ̂(π(xy,urn1), ||X2||) ≤ Ψ̂(π(xy,urn −g), ||X−g||)

and, thus, V (L−g) ≿ V (L2). On the other hand, the preference between V (L−g) and V (L1)

depends on the specific form of the Ψ function, since two effects working in opposite directions

are in play: (i) on one hand, ||X−g|| < ||X1||, which means that the naive distribution that

affects weighting for ||X−g|| is larger, by P2; (ii) on the other hand, the marginal distribution

p(π(xr,urn1)) is a mean-preserving spread of p(π(xy,urn −g)). By P3, that means that the DM
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has more precise information about the probability of a red ball being drawn from urn 1 than

a yellow ball being drawn from urn −g, and then should weight π(xr,urn1) more. Therefore,

depending on the sensibility of the DM’s weighting to information imprecision and to likeli-

hood insensitivity, the DM’s preferences may either be L1 ≿ L−g or L1 ≾ L−g. In Appendix

B, we calculate theses value functions for our parametric example of Ψ̂, and conclude that,

for any γ > 0, η ∈ (−0.25, 0) =⇒ L−g ≻ L1 and η ∈ (−1,−0.25) =⇒ L1 ≻ L−g.

Comparing this with the use of our parametric model in example 1, we can see that the

DM is more prone to overweight L−g for given η and γ > 0 parameters, since the last term

of V (L2) is now ((1 + η)/3)γ/3 instead of ((1 + η)/4)γ/3. We can interpret that as the DM

changing what is his naive probability distribution, now that only three events relevant to the

acts are possible - so that the naive probability distribution would be each event occurring

with 1/3 chance. That means that a given expected probability of an event is more likely

to be perceived as a low-probability event, which has its’ weight increased by likelihood

insensitivity, in our model.

Finally, we highlight that the question whether the (0, 0) outcomes relative to the draw

of black or a green ball should be considered as different outcome combinations or not. As

suggested elsewhere (Dertwinter-Kalt & Koester, 2020), this question is probably subject to

how the choice problem is framed to the DM, and the way to represent the choice set - either

with both ball colors considered as the same outcome or not. The ways that framing may

affect this quantity of outcome combinations is an empirical question left for future research.

To sum up, our model considers that the choice set affects probability weighting by the

presentation of a set of possible combinations of outcomes, as perceived by the DM. Property

P2 makes sure that, if there are more possible outcome combinations associated with the

results of a lottery, then likelihood insensitivity skews the weighting of an event down (as

we saw Ψ(π(xy,urn1), ||X1||) ≤ Ψ(π(xy,urn −g), ||X−g||), ||X−g||) in our example). That is, the

more possible outcome combinations are presented as relevant to a bet, more this information

is interpreted as a lesser probability of any one of the states of the world being true, which

is the essence of the likelihood insensitivity effect observed in the literature (Dimmock et al.,

2013).
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3.4.2 Ambiguity Attitudes and Second-Order Probabilities

In our model, as it is usual in second-order belief models of decision under ambiguity (Etner

et al., 2012), second-order probabilities p represent the (im)precision of event probability

information available to the DM. Since p is defined on a set of first-order probability distri-

butions of events ∆(X), the marginal compound probability distribution has finite expected

value. Its’ standard deviation is taken as a measure of the imprecision of the available infor-

mation. Other than that, p here is purposely defined in a broad sense, since many factors

may influence the DM’s beliefs about the probability of each probability distribution on out-

come combinations being true, such as related historical data, the framing of the decision

problem, and so forth. Furthermore, the model that we present is static, in the sense that

it represents a one-shot decision under ambiguity. Eliciting second-order belief formation

processes and incorporating dynamic updating of beliefs in our model is an important venue

for future research.

We are also able to separate in our model how ambiguity attitudes are affected by out-

come combinations with different expected probability of happening. Here, we represent the

likelihood of an outcome combination assessed by the expected probability of the event, given

the second-order probabilities p, for any outcome combination that has positive probability

of obtaining under some p. With that, we are able to separate any over/under-weighting of

states in decision-making due to lack of information about states and their probability (am-

biguity itself, represented by the Ψ function) and due to salience of the known information

of outcomes, represented by the salience function ω(x) and its covariance with the known

state-contingent outcomes (Bordalo et al., 2012) - as the STCUR model already does.

However, we note that second-order distribution by itself does not elicit a DM’s ambiguity

attitude. Only together with ||Xn|| and the specific parametric form of Ψ can p indicate if

a state of the world is considered as a highly or lowly likely. It is this comparison of the

likelihood of the outcome combination x with other characteristics of x that may pinpoint if

a given expected probability of an event is considered high or low - and that in turn imply

if likelihood insensitivity causes over or under-weighting of a given outcome combination,

as we will see in the next section. However, once the low/high likelihood of the outcome

combination is determined, the properties of our model make sure that low likelihood events



58

are overweighted and high likelihood events are underweighted. Again, this is in agreement

with the experimental evidence on likelihood insensitivity (Trautmann & Van de Kuilen,

2015).

It is useful to see how changing the assumptions on p may change the DM’s choice in a

modified version of our example 1. But now, assume the DM has the additional information

that there are either 0 or 2 yellow balls in the urn, i.e., p∗(π2(x)) = 0 - where p∗ represents the

DM’s new beliefs considering this additional information. Now, only p∗(π1(x)) and p∗(π3(x))

are plausible (non-null) elements of P , i.e., ∆(X) = {π1, π3}, where p∗(π1(xr = 1/3)) =

p∗(π3(xr = 1/3)) = 1, p∗(π1(xy = 0)) = p∗(π1(xb = 2/3)) = 1/2 and p∗(π1(xy = 2/3)) =

p∗(π1(xb = 0)) = 1/2. Since information precision about π1 and π3 is the same, let’s assume

the DM beliefs them as equally likely for the sake of concreteness, i.e., p∗(π1) = p∗(π3) = 1/2.

Comparing this new p with our example 1 distribution, observe that E[π(xy)] = E[π(xy)],

that is, the expected probability of outcome combination (0, 100) obtaining is the same

in both cases12, but σπ|p∗ > σπ|p. So, what we can affirm based in our model is that

|Ψ(p∗(π(xy)), ||Xn||)−Ep∗((π(xy)))| > |Ψ(p(π(xy)), ||Xn||)−Ep((π(xy)))|. That is, Ψ(p∗(π(xy)))

is farther from the expected probability of outcome xy or, in other words, the probability

weighting distortion is larger, even though it is not possible to affirm if it goes in the direction

of overweighting or underweighting without further assumptions. So, even though the DM

has narrowed the possible first-order probability distributions down to just two alternatives

(versus 3 possibilities in our example 1), it is not obvious that outcome combination xy be-

comes more over-weighted (or underweighted) under p∗. That happens because our model

predicts that, given a choice set and two probability distributions with the same expected

probability, more information about the second-order probability distribution only increases

the weighting of the outcome combination if: (i) the expected probability of the outcome

combination is equal to a parametrically defined certain likelihood insensitivity indifference

point (where Ψ(p(π(x))) = Ep[π(x)] for some outcome combination x); (ii) the new informa-

tion imply a decrease in the standard deviation of the second-order probability of the event

happening. In Appendix B.2 we illustrate how that happens in our example of parametric

12In fact, the expected probability is the same for all outcome combinations considered, but we focus on the
one associated with a yellow ball being drawn from the urn, because it is the relevant one to our conclusions.
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Ψ̂ function.

What this section’s example highlights is that - for a given expected probability of an event

- new information impact probability weighting “distortions” (Ψ farther from the expected

probability of the event) depend on the relationship between sensitivity to information impre-

cision and likelihood insensitivity. There has been recent evidence in favor of underweighting

for additional information that increases standard deviation for bets involving gains (Chew

et al., 2017), that can be accommodated by our model 13. However, further empirical and

experimental evidence is needed for this to be a stylized fact, and so we construct our model

in a way that can accommodate both behaviours.

3.4.3 Ambiguity Attitudes and the Outcome Domain

According to the evidence in the literature (Trautmann & van de Kuilen, 2017; Di Mauro

& Maffioletti, 2004; Viscusi & Chesson, 1999), one of the factors that influences ambiguity

attitude is the outcome domain - interpreted as whether a given bet involves gains or losses,

with respect to a reference point. Typically, this is tested experimentally comparing individ-

uals choices when presented with a choice set involving a risky lottery of the form xπ(x0)0

and an ambiguous lottery involving xπ(xα)0, where π0 is the probability of a risky outcome

combination x0 (i.e., the objective probability π(x0) is known to the decision-maker), and

π(xα) is an ambiguous outcome combination. The tests usually involve the cases where x > 0

and x < 0 and the same value of expected probabilities for Ep[π(x0)] and Ep[π(xα)]. If an in-

dividual chooses xπ(xα)0 over xπ(x0)0, we conclude that the individual is ambiguity seeking,

and, conversely, if she chooses xπ(x0)0 over xπ(xα)0 she is ambiguity averse.

A stylized fact drawn from this literature is that there are some regularities in the most

common ambiguity attitude behavior of individuals, that are a function of the expected

probability of the event for which the outcome of an act is contingent and the outcome

domain of the act’s results (Trautmann & Van de Kuilen, 2015). The ambiguity attitude in

each case is portrayed in the table below:

One of the main advantages of our model’s interpretation of the probability weighting

function and the way DM’s transform the available information to form their decision weights

13Details in Appendix B.2.
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Table 3.6: Ambiguity Attitudes and Effects on Value Function - Unsureness Aversion Theory

Domain

Expected Probability Loss Gain

Low Ambiguity Aversion Ambiguity Seeking
Mid/High Ambiguity Seeking Ambiguity Aversion

on outcome combinations is that we can account for different ambiguity attitudes for different

expected probabilities. That is possible because we separate how people interpret informa-

tion on probabilities of events from other regularities involving how people evaluate acts

and outcomes. That has similarities to how Prospect Theory axiomatizes its’ probability

weighting function (Kahnemann e Tversky, 1979; Prelec, 1998; Wakker, 2010), but here we

can make specific predictions about how these behaviors relate to events with different levels

of ambiguity, and choice sets that have different implications in terms of how bottom-up

attention may affect the DM’s choice.

Concretely, by assumption A1 we have that the value function v(x) can be normalized as

v(0) = 0. By monotonicity of v, for any positive xn, xn > 0 and −(xn) < 0. Therefore, the

evaluation of acts is such that a higher value of probability weighting increases the value of

the act when x > 0 and decreases the value of the bet when x < 0. To see how that works,

consider a modified version of our running example, now with negative payoffs.

Table 3.7: Outcome matrix of an Ellsberg-like ambiguity example with negative payoffs
(Example 4).

Red Yellow Black

L−1 -100 0 0
L−2 0 -100 0

Now we have the following evaluations of each act, under our parametric example of the

model:

V (L−1) = Ψ(π(xr)) ω v(−100)

V (L−2) = Ψ(π(xy)) ω v(−100)

Since v(−100) < 0, now Ψ(π(xr)) ≥ Ψ(π(xy)) imply a worse evaluation of the risky
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act V (L−1), reversing the result obtained in our previous example. Therefore, Ψ(π(xr)) ≥

Ψ(π(xy)) would indicate ambiguity seeking behavior (V (L−2 ⪰ V (L−1), the opposite of the

ambiguity aversion (V (L−1 ⪰ V (L−1) obtained in example 1 with payoffs in the gain domain.

Moreover, as detailed in Section 3.4.2, our model also predicts that weighting of more

ambiguous events is farther from their expected probability, but if that distortion is an over

or under-weighting depends on the specific parameters of the model. Therefore, we are also

able to accommodate for the stylized fact that overweighting is more typical for low expected

probability events and underweighting is more typical for mid to high likelihood events, as

summed up in table 3.6. We show that in our parametric Ψ̂ function on Appendix B.3.

Since the ambiguity attitudes also change for different expected likelihoods of outcome

combinations, it is also useful to consider an additional example where we change the expected

likelihoods, but nothing else. Consider the following example: let there be an urn with 100

balls, that can be either yellow or black. The DM knows that there are either 100 yellow

balls (and no black balls) or 100 black balls (an no yellow balls). That is, ∆(X) = {π1, π2},

where π1(xy) = 1, π1(xb) = 0 and π2(xy) = 0, π2(xb) = 1. We analyze in the graphs below

various values of p′(π1(xy)) = a, with a ∈ [0, 1]. Note that our example is constructed so that

E′
p(π1(xy)) = p′(π3(xy)), and we assume that the quantity of possible outcomes in Xn that is

relevant is P = {π(xy), π(xb)}, so that ||Xn|| = 2 for any non-constant act Ln.

We again show the complete application of our parametric Ψ̂ example in act valuation in

Appendix B.3. We also show in the graph below in the x axis different values of Ep(π(xy))

implied by different p′ in agreement with our example settings, while in the y axis we have

values of the Ψ̂ function for different values of η and γ.

In graph 3.3, we can see that for lower values of Ep(π(xy)), typically Ψ̂ is above the 45°

line, which means that there is an overweight of these low expected probability outcome

combinations. On the other hand, for higher expected probabilities, the Ψ̂ function has

values below the 45° line, which indicate underweighting. We can interpret the point where

the Ψ̂ line and the 45° line cross as the point that determines what is a “low” and what is

a “high” likelihood outcome combination. The specific value that determines that inversion

in the ambiguity attitude, as we described in table 3.6, is a question for the empirical and

experimental literature, and the choice of parameters and functional forms of our model will
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Figure 3.3: Variations in the Ψ̂ parametric function for this section’s example, as a function of
the expected probability of the ambiguous outcome combination xy. Subfigure (a) shows the
effect of varying η in the probability weighting function (with fixed γ = 1), while subfigure (b)
shows the effect of varying γ (with fixed η = −0.01). Finally, the gray dashed line represents
the 45°line, that is the weighting f Ψ̂ for unambiguous events.

(a)

(b)
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depend on the results obtained in future research on the matter.

It is important to highlight that, in our parametric example Ψ̂, the point that determines

what is a high or low likelihood depends on how the DM responds to likelihood insensitivity,

i.e., how she considers the information on the amount of outcome combinations in her naive

probability calculations, and how these affect probability weighting. That is represented in

our parametric example of the model by the parameter η, where lower values of η indicate

that the DM needs a really low expected probability to consider it a “low likelihood” case

(for which she is typically ambiguity averse for bets on gains and ambiguity seeking for bets

on losses). And, conversely, higher values of η mean that there is overweighting of events up

to a higher value of Ep(π(xy)). On the other hand, γ indicates the level of distortion due to

the DM’s sensibility to information imprecision, but not what is the indifference point that

separates the region of overweighting and underweighting of probabilities. In graph 3.3 (b)

we can see that the point where Ψ̂ crosses the 45° line remains the same for different values

of γ, exemplifying this statement.

The careful reader will also note that these graphs have similarities with the inverse

S-shaped probability weighting curves of the original Prospect Theory of Kahnemann &

Tversky (1979), designed to explain behavior for choices under risk. This is not by accident:

there the prediction was also an overweighting of small probability events, and underweighting

of high-probability events14. However, the interpretation and implications here are vastly

different: in our model we are saying that more imprecise information about the probability

of an event (higher σπ, in our parametric example) mean that the DM use information about

the choice set ||Xn|| to modify the weighting that would results from a bayesian interpretation

of the available information on the expected probability of the event otherwise (Ep(π(x))).

So, it is not only the expected probability that changes the weighting of ambiguous events,

as in some adaptations of the Prospect Theory and Cumulative Prospect Theory Model

14We note that more recent developments of both the original Prospect Theory and Cumulative Prospect
Theory (Kahneman & Tversky, 1993) also make the probability weighting function flexible enough so that
over or underweighting are possible for every probability value, be it high or low, depending on the specific
functional form and parameters chosen (Wakker, 2010). On the other hand, that flexibility also means that
meaningful predictions about the DM’s behavior for choice under risk - and the model’s extensions to Decision
Under Ambiguity - may be prone to be too dependent on the specific parameters chosen. We argue that
these models may accommodate results that are too general to give meaningful predictions about economic
agents’ behavior, at least in the context of Decision Under Ambiguity.
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(Wakker, 2010), but the choice set and the degree of information imprecision (represented by

σπ) that determines the probability weighting for ambiguous events. Moreover, as we saw in

previous examples and in Figure 3.2, it may be that for some events only high or only low

probabilities are deemed plausible by the DM.

Since now we posed how the interaction between the outcome domain and expected

probabilities influence the value of our Ambiguity Adjustment Function, we turn to how

these same outcomes may affect salience, and that in turn may affect the results of our

model.

3.4.4 Ambiguity Attitude, Salience and Context-Dependence

As we saw in section 3.2.2, the STCUR model proposes that salience is a characteristic that

relates how the evaluation of a lottery Li by a DM is affected by how it relates to outcomes,

contingent on an outcome combination x obtaining and the outcomes associated with x that

would have been obtained if other lotteries Lm,m ̸= n in the choice set were chosen. In the

STCUR model interpretation, the weighting of each outcome combination in evaluating acts

is dependent on how salient the combination is, where a salient outcome combination is one

with highly contrasting, prominent, or surprising payoffs for the acts in the choice set. In

other words, the outcomes of the choice set shape the DM’s perception of the state-space

(Bordalo et al., 2012).

In applying the probability weighting function as proposed in this paper to extend Salience

Theory for Decision Under Ambiguity, the same principle is also present. However, it is not

only the information about acts’ outcomes that shape the DM’s perception of the outcome

combination possibilities, but also information on the probabilities of each outcome combi-

nation happening, how (im)precise is that information and the quantity of outcomes that are

possible in each outcome combination. Therefore, our model does incorporate information

about the choice set that does not concern the outcomes in terms of their payoffs, but the

quantity of elements of outcome combination sets, in how the DMs evaluate lotteries. Again,

that inclusion is crucial for models of decision under ambiguity, since the separation of an

ambiguous and an unambiguous event depends on the precision of the DM’s assessment of the

likelihood of the event, no matter the outcomes associated. So, extending the psychological
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reasoning of bottom-up attention15 influencing lottery evaluation through the information

about the outcome combination is a natural extension of the same principle to deal with

decision under ambiguity. Moreover, this information about the outcome combinations is

induced by the available information of the choice set - in the sense that changes in the

outcome set may affect the evaluation of a lottery Ln, even if those changes concern other

lotteries.

We interpret the empirical evidence on likelihood insensitivity as the bottom-up attention

driver of the empirical and experimental findings on ambiguity attitude (see Table 3.6).

This is so because our model regards likelihood insensitivity as the DM’s response to the

information about which of the events that are relevant to the outcome of the acts in the

choice set are plausible. Therefore, likelihood insensitivity is not separate from the fourfold

pattern of ambiguity attitude, but part of what explains that attitude. Postulate P2 is

instrumental for that to hold in the description of our model.

Furthermore, it is only natural that we also do not assume transitivity of preferences, since

that is an assumption of the STCUR model. That is one of the main differences between

Salience Theory and some of the concurring approaches, such as rank-based expectations

theories (Cumulative Prospect Theory, Choquet Expected Utility (Wakker, 2010)) and other

approaches based the Expected Utility framework (Klibanoff et al., 2005; Gul e Pesendorfer,

2013). However, we do imply that, for a fixed choice set, there is consistency on how the DM

weights each event. Postulate P1 makes sure there is some monotonicity to that interpreta-

tion, insofar as increasing the expected probability of an event unequivocally increases its’

weight, ceteris paribus. More, postulate P2 makes sure that only events that are relevant to

the outcomes in a choice set matter, so that the way the choice set shapes the state-space is

what matters for the ambiguity adjustment function.

Another question that perpasses the Salience Theory literature is whether a continu-

ous (Bordalo et al., 2013; 2020) or a rank-based salience function (Bordalo et al., 2012)

is desirable. Recently, Lanzani (2022) axiomatized STR, and argued that for representing

preferences among acts with outcomes associated with correlated events, using continuous

15I.e., stimuli that attract the decision-maker attention automatically and involuntarily (Bordalo et al.,
2021).
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salience functions is desirable. Moreover, the continuous version of the salience function has

been the most used one in the empirical literature (Dertwintel-Kalt et al., 2021; Nielsen et

al., 2021). Considering that, and the fact that correlation of events’ probabilities plays a

highly important role in decision under ambiguity, we consider here the continuous version of

salience weighting as the standard for the application of our probability weighting function

to Salience Theory.

An important note is that we are proposing a probability weighting function applicable

to act evaluation functions that are not rank-based (such as Cumulative Prospect Theory

and Choquet-Expected Utility Theory), nor we require an entanglement between an opti-

mism/pessimism criterion to ambiguity attitude directly (as Gajdos et al. (2008) and other

SEU-based models typically do). Similarly to what happens to Salience Theory for Choice

Under Risk, that results in a model that does not assume nor imply transitivity (Bordalo et

al., 2012; Ellis & Masatlioglu, 2019; Lanzani, 2022). That fundamentally happens because

of the fact that choices are not context-independent, i.e., the acts and outcomes not chosen

influence act evaluation.

Finally, we note that at this moment there is no conclusive evidence in the literature that

indicate salience is entangled with ambiguity weighting in a way that they could be non-

separable. Therefore, we assume that salience and ambiguity weighting can be separated

in our function representing the DM’s preferences. Nevertheless, verifying if this kind of

entanglement exists and if it is economically relevant is an important direction for future

research.

3.5 Related Literature

We now briefly relate our model to other previously developed models in the literature,

focusing on the most used models for decision under ambiguity and on other second-order

belief models.
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Smooth Ambiguity Preferences

One of the most popular second-order belief models for Decision Under Ambiguity is the

Smooth Ambiguity Preferences model (Klibanoff et al., 2005). It avoids the problem of non-

differentiability typical of previous models, such as the α-maxmin model (Gilboa & Schmei-

dler, 1989). Besides, it also considers the whole first and second-order distributions - not

only the most optimistic or pessimistic scenarios - in the DM’s evaluation of an act. Taking

Savage’s Subjective Expected Utility as a starting point, and with preliminaries that are

similar to our own model, in the case of a finite set of states s ∈ S and a finite set of second-

order probabilities (“scenarii”) represented by p, the value function that represents the DM’s

preferences is:

V SAP (fi) =
∑

θ∈Θ p(θ)Φ(πθ(s) u(xs))

In other words, the preference criterion can be read as two-layer expected utility: first, the

decision-maker evaluates the expected utility with respect to all possible priors π ∈ ∆(S),

so that the DM has then a set of first-order expected utilities indexed by θ. Then, the DM

takes an expectation of these utilities, “distorted” by a Φ function (Etner et al., 2012). Φ,

in turn, determines the ambiguity attitude of the DM, in the folllowing sense: if Φ were

linear, the compound lottery representing the decision under ambiguity would just reduce to

an Expected Utility problem; for concave Φ, the DM weighs more “bad” πθ(s)u(xs) in its’

evaluation of results, and thus is ambiguity averse; if Φ is convex, the DM gives more weight

to “good” πθ(s)u(xs), and so she is ambiguity seeking.

In that way, the decision criterion proposed by Klibanoff et al. (2005) involves both

an expected utility evaluation of the possible first-order probability distributions and a pes-

simistic, neutral or optimistic criterion given by the Φ function. Even though the authors

allow for different Φ for different supports of Π (i.e., for different sets of first-order probabil-

ity distributions), when aplying the model one still has to assume a DM ambiguity attitude

through the choice of the Φ function.

Particularly, even though the Smooth Ambiguity Preferences Model provides an inter-

esting extension of the Subjective Expected Utility framework to analyze decision under
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ambiguity, it still does not imply any specific prediction about DM’s ambiguity attitudes,

nor what may influence that ambiguity attitude. Moreover, since Φ is defined on a classic

SEU-like function, one cannot use the model to assume difference in probability weighting

that is independent of the outcome xs and its’ associated utility function, unless if using a

rather ad hoc approach for defining the Φ function differently for many different supports of

Π. Therefore, it is hard to use this framework to predict the fourfold pattern of ambiguity

attitudes empirically observed. Concretely, we can see that this usually implies that experi-

menters testing the Smooth Ambiguity Preferences model put an additional assumption on

the Φ function to test the theory - and therefore on ambiguity attitudes (Conte & Hey, 2013;

Attanasi et al., 2014; Gneezy et al., 2015).

On the other hand, our model takes advantage of the great growth in experimental and

empirical evidence in recent decades to actually predict how ambiguity attitudes change as a

function of the expected probability of events the outcome domain, and other specific contex-

tual information about a given choice set. Even though assumptions about the parametric

form of our model still need to be chosen and calibrated according to empirical results - as

it is usual for any such model - ambiguity attitudes result from specific properties implied in

our model, instead of being just assumed ex ante as in the Smooth Ambiguity approach. So,

not only we can accommodate for different ambiguity attitudes depending on the context,

we specifically predict which factors affect ambiguity attitude in a choice problem.

We also retain the interesting properties of continuity and differentiability of the act

evaluation function V , for a given choice set F and beliefs p based on the available information

to the DM.

Choquet Expected Utility and Cumulative Prospect Theory

Rank-dependent theories, meaning models that rely on the valuation of acts according to

the ranking of outcomes by the DM, have also been employed for decision under ambiguity

problems. Choquet Expected Utility and Cumulative Prospect Theory, proposed by Schmei-

dler (1989) and Tversky & Kahneman (1992) respectively and later generalized and adapted

for decision under ambiguity (Chateauneuf & Faro, 2009; Chateauneuf, Eichberger & Grant

(2007); Wakker, 2010), are two such models.



69

If taken in full generality, both models can accommodate the fourfold pattern empiri-

cally observed, depending on the ambiguity parameters of the Cumulative Prospect Theory

probability weighting function (Wakker, 2010). For Choquet Expected Utility, the relevance

of each prior assigned in a Confidence Function such as that of Chateauneuf & Faro (2009)

may also accommodate those factors. However, there may be a large number of free parame-

ters involved, so that for empirical applications a calibration of these parameters is required.

Again, the models are general enough so that calibrating their free parameters may result in

the fourfold pattern, but without that specific calibration we do not have a priori meaningful

predictions about ambiguity attitude and how they change over time.

Contraction Second-Order Belief Model

Gajdos et al. (2008) propose a model that contains an idea of how DM’s use objective

information on the probability of events that is similar to the one contained in our model. The

authors give axiomatic foundations for a preference foundation that considers two criterion:

(i) a Bayesian criterion, where information is summarized by the available information on

probability distribution of events that is independent on the outcomes; (ii) a pessimistic

criterion, so that the DM takes into account the distribution giving the lowest expected

utility possible. The evaluation of an act can be represented by the function below:

V CM(fi) = minΦ∈ΦCM (p(Π)) Ep(Π) u(fi)

where ΦCM(p(Π)) is a subjective set of second-order priors estimated from the available

information on event likelihood, and Ep(Π) is the vector of expected probabilities of each

event associated with an outcome of act fi. The ΦCM function concept is similar to our

Ψ transformation of the second-order subjective probability distribution - the idea that ob-

jective information about ambiguous event probabilities is somehow distorted in the DM’s

evaluation of an act. There are, however, some important differences between our model

and the Contraction Model. First, we do not assume the pessimistic criterion (as we can see

from the min operator) for the evaluation of acts, but consider that the state-space partition

induced by the act and the choice set is what determines if a DM is “optimistic” or “pes-
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simistic” about ambiguous prospects and events. In that way, ambiguity seeking behavior as

a function of expected probability of events is easily accommodated by our model, while there

is no clear effect of the expected probability of an ambiguous event on ambiguity attitude in

the Contraction Model.

Second, we consider the whole set of priors in the DM’s evaluation - not only the most

pessimistic scenario. In that way, the dispersion of the second-order priors matter, and

not only what is the subjective probabilities associated with the most pessimistic scenario.

This kind of nuance in the DM’s reaction for different degrees and forms of ambiguity is

corroborated by recent experimental evidence (Chew et al., 2017).

3.6 Conclusion

Our article explores how contextual characteristics of decision under ambiguity may influence

decision-maker’s preferences, and how can that be represented through probability weighting

functions. We argue that, when faced with highly imprecise information on the probabilities

of each outcome combination for different courses of action involving uncertainty, then the

DM uses other information from the choice set, such as the number of possible (and relevant)

outcomes that can happen to “fill the gap” of information about the probabilities of each event

with a naive equal probability distribution for each event. This bottom up stimuli distorts the

weighting of different outcome combinations, in a phenomenon called likelihood insensitivity

by the literature. Likelihood insensitivity, in turn, causes the DM to overweight (underweight)

low (high) likelihood ambiguous events, causing the fourfold ambiguity attitude observed in

the literature.

However, our postulates also imply some ways in which decision-maker’s are consistent

when dealing with ambiguous outcome combinations, once her choice set is given. Property

P3 makes sure that, for a given expected probability of an event, any increase in expected

probability that doesn’t alter the distribution dispersion increases weighting of the x outcome

combination. For example, an outcome combination that has between 10% and 11% of

happening is going to be weighted more than an ambiguous outcome combination with that

has between 9% and 10% chance of happening. That is, for a given level of noise in the
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information on probabilities, raising expected probability increases the weighting of a given

outcome combination. Property P2 introduces likelihood insensitivity as a function of this

amount of relevant outcome combination ||Xn||. Finally, property P3 That is, for a given

level of expected probability, adding noise to second order probabilities (i.e., making an

event more ambiguous) monotonically increases (decreases) the weighting of a low (mid-

to-high) probability outcome combinations. Altogether, these properties of the proposed

probability weighting function Ψ introduce how a naive equal probability of each relevant

outcome combination is used by the DM to classify an outcome combination as a low or high-

likelihood, and then to adjust their weighting through likelihood insensitivity, to generate the

fourfold pattern of Ambiguity Attitudes.

This model specification contrasts with previous ones as we define properties not about

preferences over lotteries themselves, but about the DM’s interpretation of available infor-

mation on outcome/event probabilities and the context of the decision, given by choice set

information.

For future research, some interesting questions arise, besides the ones already pointed

out throughout the paper. For example, is there a limit to how many pure outcomes in an

outcome combination can be considered by a decision-maker when calibrating his weighting

of x with a naive probability distribution: That is, if there are 100 possible lottery outcomes

relevant to lottery’s Ln outcome, is the cutoff to define a “low” expected probability of an

outcome combination less than the cutoff when there are 99 relevant combinations? Or is

there a limit to this cutoff point? Is there an interaction between sensitivity to salience and

sensitivity to distortions in probability weighting? In other words, are people who are more

affected by bottom up salience are also more affected by bottom up Ambiguity Adjustment

distortions in probability weighting? These questions will certainly provide great insights

to calibrate and apply the proposed model many different puzzles related to decision under

ambiguity.
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Chapter 4

Conclusion

The present dissertation addressed two approaches regarding the phenomenon of decision-

making under risk: one from a theoretical standpoint and the other from an econometric

perspective, testing previously developed theories.

Economics is fundamentally a science about human decision-making. In this thesis, we

aim to depict this crucial aspect of our field of study, both from a theoretical viewpoint, as

discussed in Chapter 3, as well as from an empirical perspective, as elaborated in Chapter 2.
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4.1 Appendix

This appendix complements chapter 3 of this dissertation, with proofs of propositions, the

expanded analysis of examples given in the main text, and notes on the model’s application

in specific instances of decision problems.

4.2 Appendix A: Proofs of Propositions

Proposition 1 Proof:

Ψ̂(π|p) = Ep[π]
(1−γσpi) (1 + η/||Xn||)γ σp(pi) is an Ambiguity Adjustment Function, which

means properties (P1), (P2) and (P3) of Definition 1 are valid for Ψ̂(π|p). First, note that

Ψ̂(π|p) : ∆(X) → [0, 1]. That is so because: (i) since Ep[π] is the expected probability of a

random variable defined on the [0, 1] domain - therefore both also on the [0, 1] domain; (ii)

σpi ∈ [0, 1/2], since standard deviations are always positive or zero, and in our setting the

maximum standard deviation for π(x) is obtained when the probability mass is concentrated

in its’ extreme points, 0 and 1, which gives σpi = 1/2; (iii) η ∈ (−1, 0), γ ∈ [0, 2] and

||Xn|| ∈ N∗ which, together with (i) and (ii), determine that all the terms in Ψ̂(π|p) are

positive and between 0 and 1, so that Ψ̂(π|p) ∈ [0, 1].

Now we prove that the (P1) holds for Ψ̂(π|p): Take fixed σpi = σ and ||Xn|| = c. Then,

taking the partial derivative with respect to Ep[π] gives:

δΨ̂

δEp[π]
= (1− γσ)Ep[π]

−γσ 1 + η

c

γσ

Given the domains of Ep[π] ∈ [0, 1], η, ||Xn||, that max(σ) = 1/2, all the terms are

positive, and δΨ̂
δEp[π]

≥ 0.

Now we prove that the (P2) holds for Ψ̂(π|p). Taking the partial derivative:

δΨ̂

δ||Xn||
= Ep[π]

Since π is only defined for an exogenously given set Xn, π[x],Ep[π], σpi are not correlated

with ||Xn||, and the partial derivative above suffices to prove (P2).

We will now prove that (P3) holds for Ψ̂.
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First, consider the case where σπ = 0. In that case:

Ψ̂ = Ep(π(x))

Moreover, since |Ψ̂− π̄(x)| = Ep(π(x))
1−γ σπ((1+η)/||Xn||)γ σπ = π(x) and Ep(π(x)) = E,

||Xn|| = c and π(x) are fixed in the P3 property definition, δ(|Ψ̂ − π̄(x)|)/δ(σπ). Then,

given the domains of the variables, both terms in the δ(|Ψ̂− π̄(x)|)/δ(σπ) will decrease with

increasing σπ.

4.3 Appendix B: Value Function Calculations of the

Parametric Ψ̂

4.3.1 Appendix B.1 section 3.4.1 example

We can observe these relations applying our parametric Ψ̂ function to this example:

Ψ̂(pxr , ||X−g||) = Ep[xr]
(1−γ·σp(xr))

(
1 + η

||X−g||

)γ·σp(xr)

=

(
1

4

)(1−γ·0)(
1 + η

4

)(γ·0)

=
1

4

(4.1)

Ψ̂(pxy , ||X−g||) = Ep[xy]
(1−γ·σp(xy))

(
1 + η

||X−g||

)γ·σp(xy)

=

(
1

4

)(1−γ/3)(
1 + η

4

)(γ/3)
(4.2)

Ψ̂(pEy,−g , ||X−g||) = Ep[Ey,−g]
(1−γ·σp(Ey,−g))

(
1 + η

||X−g||

)γ·σp(Ey,−g)

=

(
1

4

)(1−γ/3)(
1 + η

3

)(γ/3)
(4.3)

First, note that in our parametric function, for any γ ∈ (0, 2), fα,−g ≻ fα,xg=0 and f0,xg=0 ≻

fα,xg=0 unequivocally. The preference relation between fα,−g and f0,xg=0 than depends on the

parameters for aversion to information precision γ and likelihood insensitivity η. Specifically,

for any γ > 0, η ∈ (−0.25, 1) =⇒ fα,−g ≻ f0,xg and η ∈ (−1,−0.25) =⇒ f0,xg ≻ fα,−g, as
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stated in the main text.

4.3.2 Appendix B.2: section 3.4.2 example

Applying our parametric Ψ̂ function to section 3.4.2 example, we get:

Ψ̂(p∗(Π(xr))) =
1

4
(4.4)

Ψ̂(p∗(Π(xy))) = Ep[xy]
(1−γ·σp(xy))

(
1 + η

||X2||

)γ·σp(xy)

=

(
1

4

)(1−γ/6)(
1 + η

4

)(γ/6)
(4.5)

Therefore, the probability weighting ”distortions” depend on the relationship between

sensitivity to information imprecision (γ) and likelihood insensitivity (η). Specifically, for any

γ > 0, η ∈ (−1, 0) =⇒ Ψ̂(p∗(Π(xy))) < Ψ̂(p(Π(xy))) and η ∈ (0, 1) =⇒ Ψ̂(p∗(Π(xy))) >

Ψ̂(p(Π(xy))).

There has been recent evidence in favor of underweighting for additional information

that increases standard deviation for bets involving gains (Chew et al., 2017), that can be

accommodated in our parametric example with η ∈ (−1, 0).

4.3.3 Appendix B.3 section 3.4.3 example

Applying our parametric example of Ψ̂ to the first example of the Section 3.4.3 of a bet

involving losses, we get the following probability weighting functions:

Ψ̂(p(Π(xr))) =
1

4
(4.6)

Ψ̂(p(Π(xy))) =

(
1

4

)(1−γ/4)(
1 + η

4

)(γ/4)

(4.7)

Again, in this specific example the preferences depend on the γ and η parameters. Specif-

ically, for any γ > 0, η ∈ (−1, 0) =⇒ f−α ≻ f−0 and η ∈ (0, 1) =⇒ f−0 ≻ f−α.

In our second example of the section, we explore how changes in the expected likelihoods
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(but nothing else) affect probability weighting of events. Specifically, applying our parametric

function to the second example of Section in the main text, then the value of Ψ̂(xy) for an

act zxy0 with z ̸= 0 is given by:

Ψ̂(p(Π(xy))) = (Ey)

(
1−γ·

√
Ey(1−Ey)

)(
1 + η

2

)(
γ·
√

Ey(1−Ey)
)

(4.8)

where we simplify the notation so that Ey = E′
p(Π(xy)). We also note that, in our

example, p follows a Bernoulli distribution, and since E′
p(Π(xy)) = p′(Π1(xy)), we can express

the typical
√
p(1− p) standard deviation of a Bernoulli distribution as

√
Ey(1− Ey)).

4.4 Appendix C: A Note on Continuous State-Spaces

In this paper we purposely focus on discrete outcome combination problem. When dealing

with decision under ambiguity, these seem to be the most relevant cases, since the simpli-

fication of the possible combinations and their associated outcomes is a common way for

individuals to deal with complex and/or incomplete information about probabilities. Even

in the experimental literature, it is usual to represent continuous distributions, even some of

the most known ones as the univariate normal distribution as discrete approximations (Lian

et al., 2019), since the continuous distribution information itself may be too complex for

the decision-maker to form meaningful scenarios that she can use in choosing from a given

set of lotteries. There has also been a long-standing literature on simplifying rules used by

decision-makers, when faced with complex decisions (Kahneman et al., 1982; Sundstroem,

1987), without losing significant effectiveness in decision-making (Bruce & Johnson, 1996;

Hertwig & Todd, 2003).

However, we also recognize that there may be instances where considering a continu-

ous outcome combinations may be useful, specially to relate discrete and continuous spaces

through measure theory. Therefore, we alter property P2 to adapt the definitions of ambigu-

ity adjustment function and the context-based ambiguity adjustment function, but now for

continuous finite outcome combinations. Basically, now the use of the cardinality of ||Xn||

now does not make any sense (since cardinality is not a good measure of how likely an event

in a continuous outcome combination is). Instead, we use the Lebesgue Measure to measure
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it. Below we adapt postulate P2 considering that, which we rename as property P2’.

(P2’) Ψ is decreasing on l(Xn), where l(A) denotes the Lebesgue measure of set A;

Analogously, we also redefine our parametric example function Ψ̂′, but now adapted to a

continuous state-space:

Ψ̂(π(x)) = Ep[π(x)]
(1−γ·π)

(
1 + η∑
i l(x

i)

)γ·σπ

(4.9)

where l(xi) is the Lebesgue measure of the pure outcome xi associated with outcome com-

bination xi if lottery Li is chosen. The proof that this function is an Ambiguity Adjustment

Function Ψ (for continuous state-spaces) is analogous to the discrete case proof of Appendix

A.
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