• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Igor Velecico
Knowledge Area
Date of Defense
São Paulo, 2013
Duarte, Pedro Garcia (President)
Bianchi, Francesco
Kanczuk, Fabio
Nakane, Márcio Issao
Picchetti, Paulo
Title in English
Learning in DSGE macroeconomics
Keywords in English
Rational expectations
Abstract in English
In this thesis we analyze learning mechanisms applied to a variety of macroeconomic models. In the first chapter, we present and discuss the advantages and limitations of estimating Dynamic Stochastic General Equilibrium (DSGE) models added with learning, thus suppressing the central assumption of rational expectations. First, we introduce the reader on how learning can be inserted in those models, starting from the discussion of where and how the rational expectations operator is substituted by the learning mechanism. We then present several additional learning setups related to the information set available to agents considered by the literature, which affect directly the dynamics of the final model. Last, we estimate three different models to assess the advantages of learning in our artificially generated data and real data for Brazil. In the second chapter, we algebraically show the limitations of learning and propose two flexible methods to deal with the parameter instability in data. The first of these methods is closely related to the DSGE-VAR methodology, which we call Learning DSGE-VAR, and the second, which departs even further from the DSGE model, which we call Learning Minimum State Variable, or LMSV. Finally, in the third chapter we provide evidences that the supposedly moderate improvements found in the previous chapters have more to do with the nature of the model at hand than to the learning method itself. To do so, we simulate problems using a time-varying structure similar to the one presented in chapter 1 and evaluate the likelihood improvements with different learning mechanisms. We then provide empirical evidences of learning in reduced form models to forecast inflation, interest rates and output gap for the Brazilian economy, using ad-hoc reduced form models commonly used by practitioners.
Title in Portuguese
Aprendizado em macroeconomia DSGE
Keywords in Portuguese
Expectativas racionais
Abstract in Portuguese
Nesta tese analisamos os instrumentos de aprendizado (Learning) aplicados a uma variedade de modelos macroeconômicos. Em nosso primeiro capítulo, apresentamos e discutimos as vantagens e limitações de se estimar modelos dinâmicos e estocásticos de equilíbrio geral (DSGE) acrescidos de um mecanismo de aprendizado, ou seja, abandonando-se a hipótese de expectativas racionais, tão cara a estes modelos. Em primeiro lugar, mostramos como esse mecanismo pode ser introduzido nesses modelos, começando pela discussão de onde e como o operador de expectativas racionais é substituído pelo operador de aprendizado. Em seguida apresentamos configurações alternativas em relação ao conjunto de informações disponível aos agentes dentro do mecanismo de aprendizado, que afeta diretamente a dinâmica do modelo final a ser estimado. Por fim, estimamos três modelos usando nosso mecanismo de aprendizado, aplicando-o a dados artificiais e reais para a economia brasileira. No segundo capítulo, mostramos algebricamente as limitações do mecanismo de aprendizado em modelos DSGE e propomos dois métodos mais flexíveis para lidar com a instabilidade dos parâmetros nos dados. O primeiro desses métodos é intimamente ligado à literatura de DSGEVAR, e que chamamos de Learning DSGE-VAR, enquanto o segundo método, que se afasta ainda mais do modelo DSGE, ao qual chamamos de LMSV. No terceiro capítulo, provemos evidências de que os ganhos supostamente moderados de nosso modelo de aprendizado apresentados nos dois primeiros capítulos têm mais a ver com a natureza dos modelos estimados do que com o método de aprendizado utilizado. Para tal, simulamos dois grupos de dados usando uma estrutura econômica que varia no tempo, semelhante àquela estudada no primeiro capítulo, e estimamos os modelos utilizando diferentes mecanismos de aprendizado. Por fim, fornecemos evidências empíricas de aprendizado em modelos de forma reduzida para projetar inflação, taxas de juros e hiato do produto para a economia brasileira, através de modelos ad-hoc comumente utilizado por econometristas.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
IgorVelecicoVC.pdf (1.79 Mbytes)
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2023. All rights reserved.