
UNIVERSIDADE DE SÃO PAULO

FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE

DEPARTAMENTO DE ECONOMIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA

Gabriel Facundes Monteiro

Migration and Crop Change: Evidence from
Brazil using a Spatial Equilibrium Model

Migração e Mudança de Cultura Agrícola: Evidência do Brasil usando um Modelo de
Equilíbrio Espacial

São Paulo

2021



.

Prof. Dr. Vahan Agopyan
Reitor da Universidade de São Paulo

Prof. Dr. Fábio Frezatti
Diretor da Faculdade de Economia, Administração e Contabilidade

Prof. Dr. José Carlos de Souza Santos
Chefe do Departamento de Economia

Prof. Dr. Wilfredo Fernando Leiva Maldonado
Coordenador do Programa de Pós-Graduação em Economia



Gabriel Facundes Monteiro

Migration and Crop Change: Evidence from Brazil using
a Spatial Equilibrium Model

Migração e Mudança de Cultura Agrícola: Evidência do Brasil usando um Modelo de
Equilíbrio Espacial

Dissertação apresentada ao Programa de Pós-
Graduação em Economia do Departamento
de Economia da Faculdade de Economia, Ad-
ministração e Contabilidade da Universidade
de São Paulo, como requisito parcial para a
obtenção do título de Mestre em Ciências.

Orientadora: Paula Carvalho Pereda

Versão Corrigida
São Paulo

2021



Catalogação na Publicação (CIP)
Ficha Catalográfica com dados inseridos pelo autor

Monteiro, Gabriel Facundes
Migration and Crop Change: Evidence from Brazil using a Spatial

Equilibirum Model / Gabriel Facundes Monteiro. – São Paulo, 2021.
58p.

Dissertação (Mestrado) - Universidade de São Paulo, 2021.
Orientadora: Paula Carvalho Pereda.

1. Mudanças climáticas. 2. Produtividade agrícola. 3. Troca de
culturas agrícolas. 4. Migração interna. 5. Equilíbrio espacial. I.
Universidade de São Paulo. Faculdade de Economia, Administração
e Contabilidade. II. Título.



Gabriel Facundes Monteiro

Migration and Crop Change: Evidence from Brazil using
a Spatial Equilibrium Model

Migração e Mudança de Cultura Agrícola: Evidência do Brasil usando um Modelo de
Equilíbrio Espacial

Dissertação apresentada ao Programa de Pós-
Graduação em Economia do Departamento
de Economia da Faculdade de Economia, Ad-
ministração e Contabilidade da Universidade
de São Paulo, como requisito parcial para a
obtenção do título de Mestre em Ciências.

Paula Carvalho Pereda
IPE-USP

Juliano Junqueira Assunção
PUC-Rio

Eduardo Amaral Haddad
IPE-USP

Jaqueline Maria de Oliveira
Rhodes College

São Paulo
2021





Ao meu avô,
Raimundo Barros Facundes (in memoriam).





Acknowledgements

First of all, I would like to thanks my family – my parents, Jorge and Elenice,
and my sister, Mariana – for all the love, support, and patience throughout my life, but
specially during these last three years. Regardless of any distance or pandemic, you always
provided me the strength and affection I needed.

To my advisor, Professor Paula Pereda, for the guidance, trust, and support. For
all moments you helped me find a north in our many online meetings, and for every
opportunity you gave me. I cannot state how grateful I am for everything during this
journey, and for how much I learned from you.

To Professor Jaqueline Oliveira, whose advice, comments, critiques, and suggestions
had key roles in many points of this research. Thank you for all the helpful and fruitful
discussions.

To Professors Eduardo Haddad and Ariaster Chimeli, members of the qualifying
examination, for the contributions, critiques and suggestions that helped improve this
work.

To Professors Maria Dolores Diaz and Fabiana Rocha from BWE - EconomistAs
with whom it has been an honor to work with during the recent months. Also, to the
whole team from NEREUS for the support in this research.

To all my dear friends who ingressed in this master’s degree with me. I could
not have hoped for a better group of people to experience with everything we have been
through together. A special thanks to José, Leal, and Pedro Salerno for all our coffee breaks
and pizza meetings. Also, to João, Camila, Raíssa and Gabriel for the great adventures
we had all around São Paulo. To Debora, Pedro Oliveira, Sayon, Lucas, Rodrigo, Rafael
and Rafael, Vinícius and, Priscilla for all our moments and conversations inside or outside
the salinha.

Finally, I would like to thanks FIPE and CAPES for the financial support in my
first year of the master’s degree. Also, to Instituto Escolhas for believing in the potential
of this project and providing the financial support in my second year.





Abstract

Climate-change forecasts for Brazil points to sizable and spatially heterogeneous
changes in temperature. This is likely to spur migration and spatial changes in crop
patterns. We develop a unique tractable model that integrates both migration and
agricultural adaptation as responses to climate change. Our model considers that
workers’ locational choice is impacted by climate change through three channels: a
direct amenity-value channel, as well as the indirect agricultural wages and housing
prices channels. The impacts from indirect channels are affected by how farmers
adapt to the new climate. Our simulations predict up to an 18.25% increase in
micro-region migration rates, with barely no effect from crop change. On the other
hand, agricultural adaptation has important impacts in employment in agriculture.
The South macro-region is predicted to have an increase in agriculture share of em-
ployment when farmers change crop patterns, this includes a reduction in agriculture
area dedicated to the production of Maize and an increase the area dedicated to
Coffee in the region. Our results help to identify populations most vulnerable to
climate change and the regions where most gains from agricultural adaptation may
come from.

JEL Classification: Q15, Q54, R13, R14.

Keywords: Climate Change, Agriculture Productivity, Crop Switching, Internal
Migration, Spatial Equilibrium



Resumo

As previsões de mudanças climáticas para o Brasil apontam para mudanças de
temperatura consideráveis e espacialmente heterogêneas. É provável que isso estimule
migração e mudanças espaciais nos padrões de cultivo. Desenvolvemos, então, um
modelo estimável único que integra migração e adaptação agrícola como respostas
às mudanças climáticas. Nosso modelo considera que a escolha da localização dos
trabalhadores é impactada pelas mudanças climáticas por meio de três canais: um
canal direto de valor-amenidade, bem como os canais indiretos de salários agrícolas
e de custos de habitação. Os impactos dos canais indiretos são afetados pela forma
como os agricultores se adaptam ao novo clima. Nossas simulações prevêem um
aumento de até 18, 25% nas taxas de migração a nível de microrregião, com quase
nenhum efeito de mudanças de culturas agrícolas. Por outro lado, a adaptação
agrícola tem impactos importantes no emprego na agricultura. Prevê-se que a
macrorregião Sul terá um aumento na porção de emprego da agricultura quando os
agricultores mudam os padrões de cultivo, o que inclui uma redução na área agrícola
dedicada à produção de milho e um aumento na área dedicada ao café na região.
Nossos resultados ajudam a identificar as populações mais vulneráveis às mudanças
climáticas, assim como as regiões de onde pode vir a maior parte dos ganhos com a
adaptação agrícola.

Classificação JEL: Q15, Q54, R13, R14.

Palavras-Chave: Mudanças climáticas, Produtividade agrícola, Troca de culturas
agrícolas, Migração interna, Equilíbrio espacial
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1 Introduction

Climate change is one of the major concerns of the current time as climate affects
people’s lives, and we expect a warmer climate in the future. Even though countries
and international organizations discuss mitigation actions, there is no consensus on the
mechanisms to curb international Greenhouse Gas (GHG) emissions. Therefore, the most
likely scenario is that we would have to adapt to a warmer climate in the future. Many
papers investigate how agents will adapt to a warmer climate, from the change in energy
use (Mansur, Mendelsohn & Morrison, 2008; DePaula & Mendelsohn, 2010)1, the increase
in migration (Oliveira & Pereda, 2020; Sinha, Caulkins & Cropper, 2018)2, to changes
in crops (Costinot, Donaldson & Smith, 2016; Seo & Mendelsohn, 2008)3. However, this
literature has mainly focused on one single channel of adaptation to climate change. An
additional challenge that accounting for several adaptation mechanism in one analysis
brings is the need to consider the cross-effects between the different adaptation channels.
This, in turn, may have relevant implications on the predicted impacts of climate change.

This study provides a unique tractable model that integrates both migration and
agricultural adaptation as mechanisms that respond to climate change. Our approach
allows us to comprehend how these two mechanisms interact with each other and to assess
their relative impacts. We use several Brazilian microdata to do that. The country offers
an interesting setting due to its continental dimensions and its spatial diversity in terms
of climatic and agricultural conditions, which implies that regions are likely to be affected
differently. We employ our spatial equilibrium model features to assess the impacts of
climate change on internal migration, the share of employment in agriculture, the spatial
distribution of crops, and a welfare measure. We also simulate counterfactual exercises to
measure the impacts of migration and crop change separately as mechanisms of economic
adaptation. Furthermore, we evaluate results at a regional level, which reveals the potential
of climate change as a driver of regional inequalities.

Our spatial equilibrium model builds on Oliveira & Pereda (2020) which employs
discrete-choice techniques to model workers’ locational choice. A worker in our model
chooses to live and work in the location and sector that maximizes her utility, considering
a migration cost if she leaves her location of origin. The utility extracted from a location-
sector pair is a function of local attributes – sector’s wage, housing rental price, climatic and
1 As a response to changes in temperatures, households and firms may rely more or less on cooling or

heating with implications on energy demand.
2 Changes in climatic amenities and economic conditions have the potential to spur migration.
3 In the agricultural sector, because sizable and spatially heterogeneous changes in climate are expected,

crops that once were suitable to a certain region may then be suitable to another as agricultural
productivity is reshaped. Hence, farmers may have an opportunity to adapt to climate by changing
crops.
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non-climatic amenities – as well as a sector of employment amenity and an idiosyncratic
taste shock. Furthermore, our model incorporates two important novel features: agriculture
producers can reallocate their inputs across crops as a new form of adaptation to climate
change, and the housing market is affected by a new land value channel. To maximize
profits, farmers choose which crops to produce and how inputs are allocated, similarly
to Costinot, Donaldson & Smith (2016). As both developers and farmers use the land to
produce, land value affects housing production costs, thus impacting housing prices. Hence,
climate change has one direct – amenity value – and two indirect channels – agricultural
wages and housing prices – which can affect locational choice, with the additional feature
that agriculture adaptation affects the indirect channels.

The mechanisms by which our modeled economy responds to climate change can be
laid out in a series of steps. First, climate change has a direct impact on climatic amenities
and crop productivities. Farmers respond by reallocating their inputs according to the
new optimal set of crops for the new climate. As a result, changes in agriculture demand
for labor and land impact agricultural wages and housing rental prices. Workers then
evaluate their prospective indirect utilities based on the new climatic amenities, wages,
and housing prices and choose their location-sector pairs considering migration costs. As
workers migrate, wages and rents adjust by local supply and demand, which, in turn,
further alter locational choices. Therefore, our analysis accounts for general equilibrium
effects of population re-sorting. A new equilibrium is reached when no one has incentives
to migrate anymore.

Beyond the considerable impacts of climate change on the spatial distribution
of people and economic activity, Brazil is also an ideal setting for our study due to
the availability of data on internal migration flows in the Brazilian population censuses.
Moreover, as a considerable share of the country’s labor force is employed in agriculture
(23% in 2010)4, it is especially important to understand how climate change will affect
this population and what role agricultural adaptation will have within this context.
Furthermore, the Brazilian agricultural census also provides necessary data to estimate
farmers’ adaptation to climate change via crop choice.

We begin to identify the parameters of our model by the agriculture firm. We use
Brazilian agricultural census cross-section data and data on attainable crop yields from
GAEZ (Global Agro-Ecological Zones) to estimate the cropland share elasticity to price
and productivity. Then we estimate the parameters in our locational choice model following
a two-step estimation procedure (Oliveira & Pereda, 2020; Berry, Levinsohn & Pakes, 2004;
Timmins, 2007). In the first step, we exploit the information on migration flows developed
from our 1980-2010 population censuses panel data to estimate the location-sector specific
components of workers’ indirect utilities and our parameterized migration costs. Then we
4 According to data from the 2010 Brazilian Population Census.
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use the indirect utilities estimated in the first step, along with data on wage, rents, and
climate, to estimate the marginal utilities of income and climatic amenities. Finally, we
estimate the parameters in the equations that characterize the equilibrium in the labor and
housing market. We use instrumental variables to overcome endogeneity when estimating
the cropland share elasticity, the marginal utility of income, and the parameters in the
labor and housing market equations.

Once we have estimates of all our main structural parameters, we conduct a series
of counterfactual exercises. We use the information on future crop productivity from GAEZ
and temperature forecasts by the National Institute for Space Research (INPE) to carry
out our simulations. We compare two future climate scenarios – a high-emissions scenario,
A2, and a low-emissions one, B1, – to a simulation where we keep the baseline climate -
average climatic attributes during 1961-1990. Comparing crop choices under both future
scenarios to the baseline ones, in aggregate terms, we can highlight a predicted reduction
of land use for the production of Coffee, Sugarcane, and Wheat. An example of predicted
change in the spatial distribution of crops in our model is that the South macro-region will
experience a reduction of land use for Maize production and an increase in land use for
Coffee production.5 In terms of migration, micro-region migration rates are 16.5% higher
under scenario A2 and 18.25% under scenario B1 than the scenario that maintains the
baseline climate, with crop change barely altering these results. On the other hand, the
adoption of crop change has a relevant impact on the share of employment in agriculture.
With crop change, fewer people leave the agriculture sector in the high-emissions scenario
(A2) than in the low-emissions one (B1), while the opposite happens if farmers do not
adapt. This result is due to a more significant impact of crop change on the sector of
employment in scenario A2. Furthermore, crop change also raises worker’s welfare under
both scenarios. However, crop change effects are much smaller than the comparative effect
of introducing migration relative to a counterfactual scenario where migration costs were
prohibitive.

When we analyze our results at a macro-region level, we see that climate change
impacts the Brazilian macro-regions differently. Under both scenarios, the Northeast – one
of the poorest macro-regions in Brazil – faces by far the most significant out-migration
increases, 98.83% under scenario B1 and 78.24% under scenario A2 with crop change. At
the same time, the Southeast macro-region has a decrease in out-migration under both
scenarios. In terms of share of employment in agriculture, the North and Northeast macro-
regions face the most considerable reductions, with the Northeast reaching a decrease of
42.33% under scenario B1 with crop change compared to the baseline climate scenario. On
the other hand, the South increases its share of employment in agriculture under both
future scenarios when crop change is introduced, with crop change having a sizable effect on
5 A map of Brazil’s macro-regions is available in Appendix Figure B.1.
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this phenomenon. In terms of workers’ welfare, the Northeast macro-region is more heavily
impacted by climate change, followed by the North and Midwest that present negative
impacts under both scenarios. Nevertheless, the South and Southeast macro-regions have
increased in workers’ welfare under scenario A2.

Our study contributes to the literature on crop change and migration as mechanisms
to cope with climate change. On the one hand, we explicitly provide simulations on how
farmers are likely to reallocate their inputs across crops, which connects us to studies as Seo
& Mendelsohn (2008), Wang et al. (2010), Moniruzzaman (2015). However, these studies
parameterize the relation between local climate attributes and crop profitability, leading
to crop choice. In contrast, we rely on agronomic models to determine land suitability,
a more similar approach to recent studies in the trade literature as Costinot, Donaldson
& Smith (2016) and Sotelo (2020). Moreover, empirical evidence of climate-driven crop
substitution (Cui, 2020) help support the exercise conducted in our study.

On the other hand, regarding migration as a response to climate change, this study
is closely related to Oliveira & Pereda (2020).6 Nevertheless, beyond new advances in the
theoretical model, as the inclusion of other forms of adaptation, our current analysis is
conducted at a finer geographic level. Other previous related works as Timmins (2007) and
Sinha, Caulkins & Cropper (2018) also linked locational choice, climate amenities, and
impacts of climate change. Moreover, our study relates to studies as Feng, Oppenheimer &
Schlenker (2012) and Cai et al. (2016) that explore the role of agriculture as a mechanism
by which climate change spurs migration. Our work not only explores this channel but
also includes another source of adaptation within it.

This paper is organized as follows. In Chapter 2 we lay out the theoretical model
that structures our quantitative analysis. Chapter 3 describes the datasets we use to
measure our variables of interest, as well as the treatment and building of necessary data.
In Chapter 4, we present our estimation strategies and the estimates of the structural
parameters. Chapter 5 outlines the main mechanisms of our counterfactual simulations.
Chapter 6 presents and discusses the results from our simulations. Chapter 7 concludes.

6 A series of studies examined migration as a strategy to cope with climate change: Findley (1994),
Barrios, Bertinelli & Strobl (2006), Saldaña-Zorrilla & Sandberg (2009), Drabo & Mbaye (2015),
Marchiori & Schumacher (2011) and Marchiori, Maystadt & Schumacher (2012). However, most of
these studies focus on partial equilibrium modeling. In contrast, the analysis in Oliveira & Pereda
(2020) and this study follow a general equilibrium approach. Furthermore, many of these studies focus
on extreme events, as opposed to long-term climate change.
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2 Model

The basis for our analysis is a spatial equilibrium model in which workers can
choose a location to live and a sector of work while farmers can choose crops to be produced
at each parcel of land in a location. Workers choose location and sector considering wages,
local prices (housing), amenities provided by location and sector, as well as costs of
migrating from a location to another and idiosyncratic tastes shocks. Farmers choose
how they allocate resources on crop production based on local farm-gate prices for each
crop and attainable crop yields. Climate impacts crop choice by affecting differently crops
productivities at each location. Also, because land value is a function of marginal land
productivity in agriculture, and as housing also depends on land, climate indirectly impacts
housing prices. The workers’ decision is affected by climate via three channels: (i) amenity
value of locations, (ii) wages offered in the agriculture sector and (iii) housing prices at
the location.

2.1 Locational Choice
The fundamentals of our locational choice model draws from Oliveira & Pereda

(2020). Consider a country with J locations. Each location k offers two employment sector,
agriculture and non agriculture, indexed by s = {r, u}. At time t, a worker n living in
location k and working in sector s, receiving wage wkst, consumes a bundle of agriculture
and non-agriculture goods traded nationally, Bkst, and local specific goods (represented
by housing), Hkst, costing respectively Pt and rkt. The worker also enjoys local amenities,
which are divided into climate, Ckt, non-climate, Ekt, and sector-of-employment amenities,
Sst. Preferences over consumption of goods and housing are Cobb-Douglas type. Workers
choose quantities {Bkst, Hkst} to maximize their utilities under the budget constraint
PtBkst + rktHkst ≤ wkst, this yields the following indirect utility7:

Vkst = Vtwkstr
−λl
kt e

λCCkteλEEkteλSSst , (1)

where Vt = λλll (1− λl)(1−λl)P
−(1−λl)
t .

7 A worker chooses quantities{Bkst, Hkst} that solve the following problem:

max B1−λl

kst Hλl

kste
λCCkteλEEkteλSSst

s.t PtBkst + rktHkst ≤ wkst,

which results in the indirect utility

Vkst =
(
λlwkst
rkt

)λl
(

(1− λl)wkst
Pt

)(1−λl)
eλCCkteλEEkteλSSst .
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A worker with origin in j who moves to k pays a migration cost µjk, which depends
on Djk, a vector of pairwise distance bins, following the function:

exp{µjk} = exp{µf1{j 6= k}+ µdDjk}.

Thus, assuming that, before choosing a location and a sector, an individual n
draws a vector ϑnkst of JX2 i.i.d idiosyncratic taste shocks with Fréchet distribution ,
P (ϑnkst < x) = exp {−x−σ}, the utility this individual will derive from migrating from j

to k to work in sector s in period t is:

Vnjkst = Vkstϑnkst
exp{µjk}

.

When the individual n stays in the same location – migrates from j to j –, the migration
cost can be expressed as exp{µjj} = 1.

Each individual chooses to live and work in the location-sector that provides
the higher indirect utility, it is (k, s) = arg maxl,q Vlqt exp{−µjl}ϑnlqt. Because of our
distribution assumption on ϑnlqt, we can derive the probabilities of each location-sector
being chosen:8

πjkst = Pr(Vnjkst ≥ Vnjlqt∀l 6= k,∀q 6= s)

= (Vkst exp{−µjk})σ∑
q∈{r,u}

∑J
l=1(Vlqt exp{−µjl})σ

.
(2)

Given an initial distribution of the population, N0
j , and assuming each worker

supplies inelastically one unit of labor to their location-sector of choice at the current
wage, the supply of labor at location k, sector s, period t is:

Nkst =
J∑
j=1

N0
j πjkst.

2.2 Agriculture and non-agriculture firms
We consider two economic sectors, agriculture and non-agriculture, indexed by s =

{r,u}. At each location k, an agricultural firm can produce M different goods (crops), with
quantities represented as Qm

krt, and a non-agricultural firm produces a composite good,
with quantities Qkut.9 Firms from both sector operate with Cobb-Douglas technologies.
8 Complete derivation of migration probabilities is available in Appendix A.1.
9 These are not necessarily final products, hence prices are not directly the prices paid by consumers

for their nationally and local-specific traded goods. In fact, agriculture firms in our model produce
exclusively primary goods sold at a farm-gate price with its own local-specific dynamics. We do not
model explicitly how farm-gate prices affect final nationally-traded good prices as these do not play a
main role in our final exercises.
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2.2.1 Non-agriculture firm

The non-agriculture firm uses only labor, Nkut, as an input. The production is
defined as:

Qkut = AkutN
αu
kut,

where Akut = Akt exp{νkut} is the productivity composed by Akt location-wide determi-
nants of productivity and νkut location-sector specific shocks. We follow the simplifying
assumption that climate has no direct impact on non-agriculture productivity.10 Firm’s
profit are characterized as:

Πkut = pkutAkutN
αu
kut − wkutNkut.

Then, assuming competitive labor market, profit maximization determines equilibrium
non-agriculture wages as:

wkut = αupkutAkutN
−(1−αu)
kut . (3)

2.2.2 Agriculture Firm

We assume that the technology to produce crop m presents constant returns to
scale. Production of agriculture firms takes place in perfectly divisible parcels of land ω
referred as plots. The suitability of a plot ω in location k for producing m is captured by
TFP Amkrt(ω) ≥ 0. Production of crop m at plot ω is

Qm
kr(ω) = Amkr(ω)[Nm

kr(ω)]αr [Lmkr(ω)]1−αr , (4)

where Qm
kr(ω) is the output of crop m, Nm

kr(ω) and Lmkr(ω) are labor and land inputs. We
assume cost shares of labor, αr, and land, 1− αr, do not vary across crops.11

In the spirit of Eaton & Kortum (2002), we assume that TFPs Amkr(ω) are inde-
pendently drawn for each (k, ω) from a Fréchet distribution with parameter θ > 1 such
that:

Pr(A1
krt(ω) ≤ a1, ..., AMkrt(ω) ≤ aM) =

exp{−γ[
∑
m∈M

(am/Amkrt)−θ]},

10 The absence of this channel could mean that our simulations understate the effects of climate change
on migration and welfare. Evidence of weather/climate effects on non-agriculture wages for Brazil from
Oliveira, Palialol & Pereda (2021) points out that a 2% uniform increase in temperatures effect on
non-agriculture wages would mean a 0.30% loss of GDP.

11 Our assumptions on agriculture firms’ technology are close to a simplified version of Sotelo (2020)
without intermediary inputs and where costs shares do not vary across crops.
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where γ ≡ (Γ(1− 1
θ
))−θ and Amkrt ≡ E[Amkrt(ω)].12 In a location where it is impossible to

grow crop m, we set Amkrt = 0. As Amkrt is an average land suitability for crop m across
plots, a high value of Amkrt suggests a high land quality in every plot in location k for
growing crop m. Within region k, between-plot dispersion in land quality decreases with
θ, which can be interpreted as an inverse measure of land heterogeneity.

The representative agricultural firm in location k hires labor and rents land. The
farmer decides how to allocate plots of land across crops and chooses the amount of labor
employed in each plot. Consider Ωk as the set of plots that are allocated to agriculture in
location k. The producer’s problem is to choose {Nm

kr(ω), Lmkr(ω), ω ∈ Ωk, ∀k} to maximize
profits:

max
M∑
m=1

pmkrtQ
m
krt −

∫
Ωk

M∑
m=1

[wkrtNm
krt(ω) +RktL

m
krt(ω)]∂ω (5)

where, for all k, total output of crop m is:

Qm
krt =

∫
Ωk
Amkrt(ω)[Nm

krt(ω)]αr [Lmkrt(ω)]1−αr∂ω.

Farmers’ profit maximization, under our current assumptions, will imply three
important features of our model. First, the ratio between land and labor remains fixed
across every agriculture productive plot and across crops produced within a location k
at time t, which implies that the share of total land used to produce a given crop m is
equal to the share of total labor used in the same production.13 Second, each parcel ω of
cultivated land is allocated to the crop which maximizes its marginal profit, and, because
parcels ω of land form a continuum at each location k, the share of cultivated land by
crop is equal to the probability that the crop is the maximizing crop at each parcel ω
cultivated. Lastly, agriculture wage will act as a function of land-labor ratio and land use
across crops inside a location k at time t. A more detailed discussion and the whole profit
maximization process is described in our Appendix A.

Land allocation across crops in location k at time t, given profit maximization, are
described in our model by ηmkrt = Pr(m = argmaxn pnkrtA

n
krt(ω)). Given our distributional

assumption on Ankrt(ω), this implies:

ηmkrt = (pmkrtAmkrt)θ∑M
l=1(plkrtAlkrt)θ

. (6)

12 We demonstrate the land suitability expected value in the Appendix A.3.
13 Let Lmkrt be the amount of land used in location k to produce crop m, and let Lkrt =

∑M
n=1 L

m
krt be

the total amount of land used in agriculture in location k. Similarly, consider Nm
krt the quantity of

labor in k used to produce m and Nkrt the total labor used in k. Then, profit maximization implies

Lmkrt
Nm
krt

= Lkrt
Nkrt

∀m −→ Nm
krt

Nkrt
= Lmkrt
Lkrt

∀m.
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Hence, the share of land in k allocated to m increases with the crop price, pmkrt, and with
the average land suitability of crop m to location k, Amkrt. When θ is large, land is more
homogeneous and a given increase in a crop’s price or average land suitability produces a
larger shift in its land use.

The equilibrium wage in agriculture in location k is described by the following
Equation:

wkrt = αr

(
Lkrt
Nkrt

)1−αr M∑
m=1

pmkrt(ηmkrt)1− 1
θAmkrt. (7)

Thus, if an exogenous event increased the land-labor ratio, Lkrt
Nkrt

, in a location k, making
labor relatively more productive, we would witness an increase in agriculture wages.
Because in our constant returns to scale setting a firm in equilibrium has zero profit
and divides its revenue between inputs according to the parameter αr, then the optimal
allocation of land across crops {ηmkrt,m = 1, ...,M} also maximizes agriculture wage.

2.3 Land and Housing Market
Following Diamond (2016) and Oliveira & Pereda (2020) we assume that each

location has a well-developed housing market. Developers produce homogeneous housing
units, Hkt, using land as input. Absentee landlords are the owners of land, which they
rent to either developers or farmers. Let Lhkt be the quantity of land used by developers,
and let Lfkt be the quantity of land used by farmers, the demand of land at location k is
LDkt = Lhkt + Lfkt < L̄k, where L̄k is the full capacity of land supply in a location which
we assume is not exhausted. In the asset market equilibrium, prices are set equal to the
discounted value of rents, such that land rents are Rkt = itP

land
kt , and housing rents are

rkt = itP
house
kt .

From the workers’ utility maximization problem we know that the demand for
housing follows:

rktH
D
kt = λl(wkrtNkrt + wkutNkut),

and from the agricultural producers problem we have that:

RktL
f
kt = (1− αr)Nαr

krt(L
f
kt)1−αr

M∑
m=1

pmkrt(ηmkrt)1− 1
θAmkrt.

We model the developers’ technology as Hkt = Tkt(Lhkt)φg(λl
∑
s∈{r,u}wkstNkst),

where g(λl
∑
s∈{r,u}wkstNkst) is intended to capture a “congestion cost" for housing supply.

Hence, supposing φ < 1, profit-maximizing developers, renting land at a cost Rkt, will pick
a land quantity

Lhkt =
(
φTktrktg(λl

∑
s∈{r,u}wkstNkst)
Rkt

) 1
1−φ

. (8)
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Thus the supply curve of housing in location k and time t is

HS
kt = Tkt

(
φTktrktg(λl

∑
s∈{r,u}wkstNkst)
Rkt

) φ
1−φ

g(λl
∑

s∈{r,u}
wkstNkst). (9)

Assuming that in each period housing demand and supply meet, HD
kt = HS

kt, the
equilibrium housing rental price is defined by the expression:

rkt = φ−φT−1
kt R

φ
kt

[
(λl

∑
s∈{r,u}wkstNkst)1−φ

g(λl
∑
s∈{r,u}wkstNkst)

]
. (10)

We will use a reduced form of this expression in the rest of our paper:

rkt = φ−φT−1
kt R

φ
kt

λl ∑
s∈{r,u}

wkstNkst

ψ . (11)

A greater value of φ increases the effect of land rental costs on housing rents, and a greater
value of ψ increases the impact of housing demand on housing rental prices.
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3 Data

We combine several datasets in our analysis in order to gather information in four
dimensions of our paper: (i) data on actual agriculture production, input uses, revenue
and trade; (ii) data on model-predicted attainable yields under baseline and future climate
scenarios; (iii) data on population distribution, wages and housing rents; and (iv) data
on historical climate and climate forecast for future scenarios. This allows us to connect
our model to actual data on the Brazilian economy and climate, capture and estimate our
parameters of interest, as well as simulate counterfactual future scenarios.

Furthermore, a contribution of this study is our analysis of the effects of climate
change on the Brazilian economy at a micro-region level. The finest level of geography in
Brazil is the municipality. Municipalities are grouped into micro-regions, a finer geographic
level than the meso-regions used in Oliveira & Pereda (2020). While the meso-region is
described by the Brazilian Institute of Geography and Statistics (IBGE) as an area of
shared cultural history, natural resources, and connectivity, the micro-regions within it
are defined by its specificities regarding the structure of agricultural, industrial, mining
and fishing production.14 Hence, our use of micro-regions fits more adequately our more
detailed analysis of the agriculture sector production.

3.1 Agriculture Data
The main use of agriculture data on our model is to identify the parameter θ in

Equation 6, by this we are linking actual agricultural land use by crop to farm-gate prices
and land suitability. Both farm-gate prices and agricultural land use are constructed using
data from Brazilian 2006 agricultural census. Land suitability is measured using data from
GAEZ (Global Agro-Ecological Zones). Additional agriculture data are used in our analysis:
Brazilian Municipal Agriculture Surveys (PAM) from 1974, 1980, 1991, 2000 and 2010, as
well as the Agrostat dataset from 2005, a dataset on Brazilian agribusiness international
commerce statistics made available by Brazil’s Ministry of Agriculture, Livestock and
Food Supply.

3.1.1 Agricultural Census

The Brazilian agricultural censuses collect information on farming, livestock and
agribusiness at the unit of production level, independently if production is destined to
14 See https://www.ibge.gov.br/en/ for details.
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sales or subsistence, and occurs in a periodicity close to decennial.15 However, although
the data collection is made at a unit of production level, only aggregated data is available.
We use municipal-level data on crop revenue, production and land use to construct our
compatible micro-region data.16 Farm-gate prices are constructed by dividing crop revenue
by crop production at the municipality level, then we aggregate to the micro-region level by
finding the median price of each crop within the micro-region.17 The land share occupied
by each crop in a micro-region is constructed by dividing the total area used to grow a
crop by the sum of total areas used to grow the set of crops we are analysing. We use
these information on median prices and land shares together with information on land
suitability from the GAEZ dataset to identify the parameter θ in Equation 6. All nominal
monetary values were converted to 2010 BRL (Brazilian Reais), and then converted to
2010 USD using the average exchange rate in 2010.

The 2006 Agricultural Census provides information on value, quantities and area
occupied by 34 crops. The distribution of occupied area and value produced by crop can be
observed on Tables 1 and 2. However, as our analysis depends on the use GAEZ data for
attainable crop yields, we will narrow our crop sample to the ones observed in both datasets,
leaving us with 18 crops: Banana, Cassava, Coconut, Coffee, Cotton, Cowpea, (Dryland)
Rice, Groundnut, Maize, Onion, (Phaseoulus) Bean, Soybean, Sugarcane, Sunflower,
Tobacco, Tomato, Wheat, and White Potato. This set of crops account for 95.90% of the
area occupied by crops and 89.51% of total value of crops produced. Hence, our analysis
captures the crops in which agricultural activity is mostly concentrated.

3.1.2 Global Agro-Ecological Zones

Our measure of land suitability of a crop to a location is used to identify the
parameter θ in Equation 6. This measure comes from the GAEZ (Global Agro-Ecological
Zones) dataset. The GAEZ project was developed by the International Institute for Applied
System Analysis (IIASA) and the UN’s Food and Agriculture Organization (FAO). The
dataset uses state-of-the-art agronomic models and high resolution data on geographic
characteristics such as soil, topography, elevation and climatic conditions to predict the
15 Although the Brazilian agricultural censuses follow a certain periodicity, they are not comparable

among each other as different censuses have different crop-year measures. The 2006 Agricultural Census
was conducted in 2007 collecting information about the agricultural production from the previous
calendar year, while the 1995-1996 Agricultural Census utilized a crop-year from August 1995 to July
1996 and the 2017 Agricultural Census was based on a crop year from October 2016 to September
2017.

16 During our period of analysis, Brazil had a large increase in the number of municipalities, with older
municipalities being divided into new ones. The micro-region geographical division was only introduced
in 1989, not obeying older municipal border that were not in place anymore. Hence, in our analysis we
grouped municipalities back into their older 1970 borders and allocated them into our new “compatible
micro-regions" that aim to follow Brazil’s official micro-region division.

17 Using median prices can reduce the impact of measurement error of farm-gate price in a given
municipality within the micro-region when compared to using a mean price measure.
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Table 1 – 2006 Percentage of Area Occupied by Crop

Crop Area (%) Crop Area (%)
1 Soybean 35.149 18 Castor Bean 0.214
2 Maize 23.013 19 Grape 0.139
3 Sugarcane 10.879 20 White Potato 0.126
4 Rice 4.772 21 Groundnut 0.118
5 Cowpea 4.322 22 Pineapple 0.094
6 Coffee 3.997 23 Lemon 0.069
7 Beans 3.964 24 Apple 0.066
8 Cassava 3.364 25 Passion Fruit 0.056
9 Wheat 2.541 26 Tangerine 0.053
10 Cotton 1.459 27 Tomato 0.051
11 Orange 1.429 28 Palm Heart 0.043
12 Cocoa 1.217 29 Black Pepper 0.040
13 Tobacco 1.125 30 Sunflower 0.040
14 Banana 0.720 31 Papaya 0.036
15 Watermelon 0.314 32 Melon 0.031
16 Onion 0.267 33 Peach 0.030
17 Coconut 0.241 34 Guava 0.023

Note: This table contains information on all 34 crops that present
occupied area in the 2006 Agricultural Census. Values are per-
centage of occupied area by crop at a national level. Data source:
2006 Agricultural Census.

obtainable yield by a given crop at high-resolution grid cells – approximately 10 km × 10
km – covering the the surface of the earth. The GAEZ dataset is available both under a
baseline climatic condition – using historical climate spanning from year 1961 to 1990 –
and under climate change scenarios used by the UN’s Intergovernmental Panel on Climate
Change (IPCC).

The GAEZ project offers attainable crop yields predictions under different as-
sumptions of production technology and inputs. It is possible to obtain predictions based
on assumption that farmers use irrigation or rain-fed water supply and that the input
levels are low, intermediary or high. In a low input level farm, management is considered
traditional, farming system is largely subsistence based, production uses labor intensive
techniques and no use of nutrients, chemicals or disease control. In an intermediary in-
put level farm, management is considered improved, farming system is partially market
oriented, there is both subsistence and commercial production, and there is some use
of fertilizers, chemicals and disease control. In a high input level farm, it is assumed
an advanced management with a mainly market-oriented system, production uses high
yielding crop varieties, mechanization and optimum use of nutrients, chemicals and disease
control. A complete documentation on GAEZ methods is available in IIASA (2012).
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Table 2 – 2006 Percentage of Crop Yield Value

Crop Value (%) Crop Value (%)
1 Sugarcane 22.125 18 Watermelon 0.631
2 Soybean 20.888 19 White Potato 0.359
3 Maize 12.321 20 Pineapple 0.353
4 Coffee 9.573 21 Lemon 0.349
5 Banana 5.559 22 Onion 0.236
6 Rice 4.452 23 Passion Fruit 0.211
7 Orange 4.447 24 Melon 0.202
8 Cassava 4.121 25 Papaya 0.195
9 Tobacco 3.118 26 Tangerine 0.189
10 Cotton 2.985 27 Black Pepper 0.181
11 Bean 1.631 28 Groundnut 0.094
12 Grape 1.092 29 Peach 0.086
13 Cowpea 1.016 30 Tomato 0.085
14 Wheat 0.942 31 Guava 0.072
15 Cocoa 0.818 32 Palm Heart 0.045
16 Apple 0.791 33 Castor Bean 0.032
17 Coconut 0.786 34 Sunflower 0.016

Note: This table contains information on all 34 crops that present
occupied area in the 2006 Agricultural Census. Values are per-
centage of total crop yield value at a national level. Data source:
2006 Agricultural Census.

In our analysis, we restrict for grid cells in Brazil where the GAEZ indicated
that there was already agriculture land use. We assumed water supply as rain-fed and
intermediary input level. The 18 crops chosen in our analysis are the crops for which we
have productivity data on GAEZ and cultivated area information on the 2006 agricultural
census. Moreover, we gather data under the baseline climate (1961-1990), and under future
climate scenarios for the period 2041-2070. The climatic predictions were generated by
the Hadley Centre Coupled Model version 3 (HadCM3) for scenarios A2 (high emissions)
and B1 (low emissions). We aggregate grid cell data into micro-region such that our land
suitability measure is the average attainable crop yield (ton/ha) in the micro-region.18

3.1.3 PAM and Agrostat

We use data on agriculture crop revenue from the Brazilian Municipal Agriculture
Surveys (PAM) from years 1980, 1991, 2000 and 2010, as well as data from crop land
shares in 1974 to construct a shift-share instrument further discussed in Chapter 4 used
to identify the parameters in Equation 11. Data are available at a municipal level for all
18 Under the baseline climate and our current assumptions, the distribution of attainable yields for all

crops per micro-region can be seen in Table B.1.
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years, and are aggregated into our compatible micro-regions. All nominal monetary values
were converted to 2010 BRL (Brazilian Reais), and then converted to 2010 USD using the
average exchange rate in 2010.

The Brazilian Municipal Agriculture Surveys are conducted yearly by the Brazilian
Institute of Geography and Statistics (IBGE). The survey’s objective is to inform at a
municipality-crop level on quantities produced, planted and harvested area, and agricultural
production value. The survey constitutes in an annual consolidation, at December 31st, of
data collected during the whole year by a systematic survey of agricultural production
(LSPA).

We also use additional data from Agrostat for data on exports and imports of
crops and related products. Agrostat data is used to construct an instrument for farm-gate
prices further discussed in Chapter 4. The Agrostat system is run by the Brazil’s Ministry
of Agriculture, Livestock and Food Supply. We used aggregated data at the national level
for the year of 2005. Data is available at US dollars, however, conversion is not necessary
for our use.

3.2 Wages and Housing Rents
We use microdata of the population censuses of 1980, 1991, 2000 and 2010 to

calculate wages, housing rents, employment and migration flows. We aggregate our data
into micro-regions. These information are used to estimate parameters in Equations 1, 2,
3 and 11.

As in Oliveira & Pereda (2020), we restrict our sample to workers aged 25 to 60.
This is done in order to exclude people who have not completed their schooling and people
in retirement age. Wage is the monthly labor income in the main occupation divided by
total monthly hours of work on the activity. The population censuses have information on
both formal and informal sectors, and the available data on workers’ sector of employment
allow us to model the choice between agriculture and non-agriculture sector. Our housing
rent measure is the amount paid by month in housing rents divided by the number of
rooms.19 The censuses cover both formal and informal housing rents. We convert nominal
wages and rents to 2010 BRL (Brazilian Reais) and then convert to 2010 USD using the
average 2010 exchange rate.

Our work exploit a feature of the Brazilian population censuses, which is the
availability of data on workers’ municipality in a past period. For the years 1991, 2000
and 2010, we use municipality of residence five years prior to the census. For 1980, the
information available is the municipality of the most recent move within the previous 10
19 The 2000 Census did not collect data on rents. To fill this gap, we use rental price data from the 1999

Brazilian Household Survey (PNAD).
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years.

3.3 Weather and Climate Data
Climate data is used to estimate the marginal utility of climate amenities, in

Equation 1, and simulate its impact on workers’ locational choice. We employ 10-year-
averages of climate variables that are taken over the census year and nine years previous to
the census. This reflects the average exposure of workers to the climate in each micro-region.

The climatic variables measured are temperatures, rainfall and sunshine hours and
are divided into Summer (Dec-Feb) and Winter(Jun-Aug) averages for each micro-region.
These averages are calculated from historical daily weather station data from the Brazilian
Institute of Meteorology. Daily weather station data were interpolated to calculate the
micro-regions data.

To simulate the impact of climate change we employ 30-year-average climate. As
in Oliveira & Pereda (2020), our analysis cover only changes in temperature, because
future sunshine hours predictions are not available and climate change data on rainfall are
volatile and too sensitive to the choice of GCM (Global Climate Model) and scenarios. The
baseline temperature is the 30-year-average summer and winter temperatures constructed
from the daily weather stations data spanning the 1961-1990 period. Our data on future
climate are sourced from the National Institute for Space Research (INPE). The INPE
calculates regional climate change over South America by down-scaling the GMC of Hadley
Centre. Scenarios from INPE are in line with scenarios from GAEZ. Again, we consider two
scenarios: the pessimistic (high-emissions) scenario, A2, and the optimistic (low-emissions),
B1. The A2 scenario describes a high population growth world (15 billion by 2100) with
slower technological change and higher carbon emission, while the B1 scenario assumes a
low increase in population that peaks in 2050 and the declines, with the introduction of
cleaner technologies, this scenario’s carbon emissions are equivalent to 65% of the total
emissions in A2 scenario.

In Figure 1 we see, across micro-regions, the spatial distribution of temperature
changes under A2 and B1 scenarios relative to the baseline climate. There is large tem-
perature variation across the country: while some micro-regions face a relatively small
reduction in temperature in some scenarios and seasons, temperature is expected to rise
in most of the country, specially in the Midwest, where some micro-regions are expected
to see up to 8oC in summer average temperature.
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Figure 1 – Change in temperature (in degrees Celsius) in summer and winter, B1 and A2
scenarios

Notes: Change in temperature relative to the baseline. Baseline climate covers the 1961-1990 period;
climate change forecast covers the 2041-2070 period. Data source: INMET and CPTEC/INPE
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4 Estimation of Parameters

From the development of our theoretical model, we have: a description of how
workers choose their sector of work and living locations; the determination of non-agriculture
and agriculture wages, and how farmers allocate land resources between crops according to
agro-climatic conditions; and, a stylized land and housing market defining housing rental
prices. Now, we present the empirical strategies used to estimate the main structural
parameters.

The estimation of our model follows mainly two fronts: an estimation of the
parameters from the agricultural firm problem, using mostly cross-section data from the
agricultural census and GAEZ; and an estimation of the parameters from the locational
choice model and housing market, with panel data from the population censuses, historical
climatic data and municipal agricultural production survey data.

To capture the parameters governing the agricultural producers’ problem, we can
input αr with information from agricultural firms expenses and θ can be estimated through
Equation 6. We input the parameter αr using the the information on agricultural spending
shares from Avila & Evenson (2010). Because, estimating θ directly from Equation 6 would
mean incurring in a simultaneity bias , we employ an instrumental variable approach to
estimate our parameter of interest.

To estimate the parameters from the locational choice model, following Oliveira
& Pereda (2020), we use a two-step approach proposed by Berry, Levinsohn & Pakes
(2004). First, we parameterize µjk as a function of distance, and use the data on bilateral
migration flows , πjks, to estimate vkst = log Vkst in Equation 2. Then, on the second
step, we decompose the indirect utility by the effects of its components: wages, rents and
amenities. First differences are used here to exploit the variation on actual changes of these
variables. On sequence, non-agriculture labor demand and housing market elasticities are
also estimated using a first-differences strategy with instrumental variables.

4.1 Agricultural firm parameters
We have two parameters to be captured from the agricultural firm problem: αr,

the agriculture production elasticity to labor, and θ, the land share elasticity to price and
crops suitability.

We can input the value of αr using information from Avila & Evenson (2010).
Given our assumptions on the agricultural firm technology αr is the labor share of total
costs, and 1− αr is the land share, with labor and land characterizing the only inputs. In
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Avila & Evenson (2010) we have input share costs for a variety of inputs during the period
1981-2001. The labor share cost for Brazil in this study is 43.78% and cropland share cost
is 17.26%. If we consider only expenses on these two inputs, then the labor share cost is
αr = 0.71.

By applying log on the Equation 6, we can estimate the parameter θ.

log ηmk = θ log(pmk Amkr) + ak + ξmk , (12)

where ak = log
(∑M

l=1(plkAlkr)θ
)
. However, a direct estimation of this equation would incur

in a simultaneity bias. If crop prices result – at least in part – from a local market
equilibrium, then land use (ηmk Lk) affects quantity produced which affects price if there is
any finite elasticity of demand.

The overcome the simultaneity bias, we construct an instrument for agriculture
farm-gate prices. We employ an interaction between distance to the closest major port
for agricultural products and an index of crop exposure to international trade: Im ×
log(Dist. Port). We use the study from Neto (2006) to determine what were the major
Brazilian ports for agriculture near our year of analysis.20

For the crop exposure to international trade index, we gathered data on exports
and imports of crops and its related products from the Agrostat system run by Brazil’s
Ministry of Agriculture, Livestock and Food Supply. We aggregated the data from 2005
by crop at the national level to create a measure of “international trade share" by crop.21

After this we divide the international trade shares by crop revenue shares to create an
index of relative exposure to international trade, such that crops with a greater index
value Im are more exposed to international markets:22

Im = (Exportsm + Importsm)/(∑l∈M Expl + Impl)
(Revenuem)/(∑l∈M Revenuel) .

We estimate the parameter θ in Equation 12 using a 2SLS estimator with Im ×
log(Dist. Port) as our instrumental variable for farm-gate prices. Results from second
and first stage can be seen in Tables 3 and 4, and standard errors are clustered at the
micro-region level.23 Our estimate for the parameter θ is 1.117, which is lower than the
value found for the same parameter for the Peruvian economy in Sotelo (2020), which
20 We consider the top five ports in terms of imports and exports of agriculture and wood products:

Santos - SP, Paranaguá - PR, Rio Grande - RS, Itajaí - SC, and São Francisco do Sul - SC.
21 2005 is the year previous to our agricultural census data on prices and land shares.
22 A Table with the values for our international trade exposure index per crop is available in the Appendix

C. Crops with an index above 1 represent a greater share of export and import related products than
their national agricultural revenue share: Tobacco, Wheat, Soybean, Coffee and Sugarcane. Hence,
those are crops relatively more exposed to international trade than crops like Cassava and Bean, for
example, that have an index close to 0.

23 Results presented in Table 4 have farm-gate prices as dependent variable, our actual first stage estimates
uses log pmk Amk as dependent variable. As expected, both estimates bring the same results, except by
the fact that logAmk coefficient from Table 4 are added 1, as can be seen in Table C.2.
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suggests a greater within-region within-crop heterogeneity in land quality in the Brazilian
micro-regions. This means that land-shares are relatively less responsive to shocks on
prices or land suitability in our case.

Table 3 – Estimate of Land Share Elasticity
Parameter

(1)
b/se

θ 1.117***
(0.0880)

Obs. 4585
Kleibergen-Paap Wald rk F stat. 29.24

Notes: Prices are median farm-gate prices in-
side micro-region. Standard errors clustered
at the micro-region level. GAEZ data on
agricultural productivity restricted to areas
where agricultural land was reported. Data
source: Agricultural Census 2006, GAEZ.
P-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 4 – Land Share Elasticity Estimation: First
Stage on Prices

Dependent variable Pm
k

(1)
b/se

Im log Distance to Port -0.0554***
(0.0103)

logAmkrt -0.433***
(0.0271)

Obs. 4585
Kleibergen-Paap Wald rk F stat. 29.24

Note: Prices are median farm-gate prices
inside micro-region. Standard errors clustered
at the micro-region level. GAEZ data on
agricultural productivity restricted to areas
where agricultural land was reported. Data
source: Agricultural Census 2006, GAEZ,
PAM 2005, Agrostat 2005. P-values: ∗ p <
0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

We present the results for goodness of fit of our land share predictions in Figure
2. Our model’s current predictions do not match the data well, however there is still

20



Figure 2 – Model’s goodness of fit: land share occupied by crop.

Note: Each point is a share of agriculture land employed in the production of a crop in
a micro-region. Data source: Agricultural Census 2006, GAEZ, Model estimates.

room for improvements in further versions of our work. Relaxing some of our current
assumptions on agriculture may provide better results in the future. It may be the case
that the assumptions that all crops are grown using the same input levels and factor cost
shares are too restrictive.24,25 Nevertheless, despite not being a good predictor of land
allocation across crop in the current format, our model can still be useful to measure
changes in agricultural productivity and to have a sense of climate-change-driven changes
in land allocation across crops as they are functions of land suitability.26

4.2 Migration costs
We parameterize migrations costs as:

µjk = µf1{j 6= k}+ µdDjk,
24 Bustos, Caprettini & Ponticelli (2016) explores different crops technological advancements that can be

labor or land saving. Authors use the GAEZ data and exploit the difference in gains across crops of
changing input level.

25 Sotelo (2020) which develops a similar agriculture production model uses different factor cost shares
per crop.

26 In the Appendix we present the Figures of goodness of fit separated by crops and the results when we
estimate the model using only a subset of ten main crops.
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where µf is a fixed utility cost of migrating and Djk represents the Euclidean distance
between locations j and k in 100km.

Taking log of Equation 2, we can treat the denominator as an origin-year fixed
effect δjt and identify σvkst as a location-sector-year fixed effect, δkst. Thus, by adding an
error term to capture unobservable components of migration cost, we reach the following
Equation:

log πjkst = δkst + δjt + σµf1{j 6= k}+ σµdDjk + σεjkst, (13)

which is estimated using a Poisson ML strategy, following Oliveira & Pereda (2020). Hence,
our dependent variable is the number of people living in micro-region k (k = 1, ..., 529)
and working in sector s (s = r, u) in year t (t = 1980, 1991, 2000, 2010) who originated
from micro-region j (j = 1, ..., 529), which we use to estimate the (529× 2× 4 = 4232)
indirect utilities δkst and the parameters of the migration cost function σµf and σµd. The
results in Table 5 suggest sizable fixed costs of migrating and substantial increases in costs
with distance. In fact our estimation using data at micro-region level show even greater
costs of relocating than the ones found in Oliveira & Pereda (2020).

Table 5 – PPML estimates of cost parame-
ters

(1)

1{j 6= k} 5.73***
(0.022)

Distancejk [2, 4) 1.68***
(0.029)

Distancejk [4, 8) 2.91***
(0.030)

Distancejk [8, 16) 3.84***
(0.039)

Distancejk [16, 32) 4.12***
(0.038)

Distancejk [32,max) 4.55***
(0.13)

No. micro-region-sector pairs 2,238,728
Notes: Parameters generated using Poisson ML
estimator. Positive coefficient implies negative
impact on bilateral migration. 1{j 6= k} is an in-
dicator for whether the destination micro-region
is different from the origin location; Distancejk
is the Euclidean distance, in 100km; the omit-
ted category is Distancejk [0, 2). Data source:
Population Census, 1980-2010. P-values: ∗ p <
0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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4.3 Decomposing the indirect utility
On our second step we capture our indirect utility parameters using our estimated

δ̂kst by applying a first differences strategy. This strategy cleans out possible time invariant
unobservable location characteristics that are correlated with wages and amenities. With
that we have:

∆δ̂kst = σ(∆ logwkst − λr∆ log rkt + λC∆Ckt + λE∆Ekt + λS∆Sst).

The parameter λr is the share of housing on total income and is assigned as λ̂r = 0.2
from Oliveira & Pereda (2020), where it was calculated with data from the 2009 Household
Budget Survey (POF). Non-climate and sector-of-employment amenities are not observed
in the data, and thus, are controlled by macro-region-year fixed effects, meso-region trend
controls and an agriculture dummy variable: amacro−region,t + ameso−region + as. Adding also
an idiosyncratic amenity growth shock ∆ϕkst to the equation, we estimate:

∆δ̂kst = amacro−region,t + ameso−region + as + σ(∆ logwkst− 0.2∆ log rkt + λC∆Ckt) + ∆ϕkst.
(14)

4.4 Non-agriculture labor demand
Restricting our data to non-agriculture workers we can estimate the elasticity of

non-agriculture wage through Equation 3. Applying log and taking first differences:

∆ logwkut = ∆ log pkut + ∆ logAkut + γ∆ logNkut,

where γ = −(1−αu). Again, as we do not observe directly non-agriculture prices and worker
productivity, we assume: ∆ log pkut + ∆ logAkut = bmacro−region,t + bmeso−region + ∆νkut,
where ∆νkut is a location-period idiosyncratic shock. Hence, we estimate:

∆ logwkut = bmacro−region,t + bmeso−region + γ∆ logNkut + ∆νkut. (15)

4.5 Land-Housing market parameters
Taking logs and using first difference on Equation 11, we have:

∆ log rkt = φ∆ logRkt + ψ∆ log
λl ∑

s∈{r,u}
wkstNkst

−∆ log Tkt.

We assume −∆ log Tkt = cmacro−region,t + cmeso−region + ∆ζkt, where ∆ζkt is an location-
period idiosyncratic shock. Because, we cannot observe directly land rents, we use the

23



predicted first differences on log land rents. Hence, the equation estimated is:

∆ log rkt =φ∆
(
α̂r∆ logNkrt − α̂r∆ logLfkt + ∆

M∑
m=1

pmkrt(ηmkrt)
1− 1

θ̂Amkrt

)

+ ψ∆ log
λ̂l ∑

s∈{r,u}
wkstNkst

+ cmacro−region,t + cmeso−region + ∆ζkt
(16)

4.6 Estimating indirect utility, labor and housing equation
A direct estimation of Equations 14, 15 and 16 would fail to identify correctly our

parameters due to endogeneity.

When estimating directly the effect of wage growth on location-sector indirect
utility growth, we must remember that wage growth is impacted by labor supply growth,
which is itself affected by indirect utilities via migration probabilities. Hence an increase
in unobserved non-climate amenities, for example, is likely correlated with wage growth,
biasing the estimator.

A direct estimation of the effect of non-agriculture labor supply growth on non-
agriculture wages would also incur in bias. Consider any unobserved local wage shock, this
would alter the indirect utility offered by the location-sector, which would affect migration
probabilities that impacts the location-sector labor supply. This means any local shock on
wages is likely correlated with labor supply growth.

At last, when estimating the impacts of land rent price growth and housing demand
growth on housing rent growth, one must consider, for example, that housing rents can
impact, via migration, the local agriculture labor supply, which is a determinant of both
land rental prices and housing demand. Thus, an unobserved local housing rent shock is
likely correlated with both our explanatory variables.

The first two instruments we present were already used in Oliveira & Pereda (2020)
under a similar setting. The first instrument is a labor demand shifter, known as Bartik
shock (Bartik, 1991), which is calculated as:

∆Bartikkt =
∑
ind

(logwind,−k,t − logwind,−k,t−10)Nind,k,t0

Nk,t0

,

where ind indexes industry, t0 represents a baseline year (1970), wind,−k,t is the average
national wage in industry ind at time t excluding location k from the average, and Nind,k,t0

Nk,t0

is the share of the total employment in location k and time t0 that comes from industry
ind.

The second instrument is a measure of “labor market access" (Morten & Oliveira,
2016; Donaldson & Hornbeck, 2016; Oliveira & Pereda, 2020). Because migration is costly,
labor supply on a location k will be affected by the difficulty to be accessed from other

24



localities. Also, consequently, the ease of access to a location will influence its wage, driven
precisely by its exogenous effect on labor supply. We construct our measure of labor market
access as:

∆ logMAkt = ∆ log
∑
j 6=k

1
µ̂jk

Njt

 ,
where µ̂jk are our estimated migration costs, and Njt is the total number of people in
year t that originated from location j. The Bartik shocks and the labor market access
instruments are employed to estimate the parameters σ and γ in Equations 14 and 15.

For our estimation of parameters φ and ψ in Equation 16, besides our already
used market access measure instrument, we employ as instruments: an indicative variable
if the locality in 1970 was between the 5% micro-regions with largest labor force; an
agricultural revenue shift-share instrument; and the interaction between this agricultural
revenue shift-share shock and the distance from the locality to the coast.

The agricultural revenue shift-share shocks are calculated as:

∆Agric.SSIV =
M∑
m=1

(
log(1 + Revm−k,t)− log(1 + Revm−k,t−10)

)
ηmk,1974,

where Revm−k,t is the total agricultural revenue from crop m excluding revenue from locality
k.27 ηmk,1974 is the share of crop-land occupied by crop m in locality k in 1974, which
pre-dates our main sample and is the farthest date achievable in our data. This instrument
should capture exogenous growth in crop prices or in agricultural productivity for some
crops (e.g. country-wide-available technological improvements on crop productivity). We
also interact this agricultural shock with distance to coast, because of possible spatially
heterogeneous effects. Notably in Brazil technological advancements impacted greatly
the agricultural productivity in the Brazilian Midwest (Nehring (2016)), a macro-region
distant to coasts.

Results from second and first stage estimates for parameters in Equation 14 are
shown in Tables 6 and 7. Specification on column 1 uses only market access as instrument,
on column 2 only the Bartik shocks are used, and in column 3 both instruments are
included. Only the first specification passed the Weak Instrument test. An increase in
summer temperatures reduce individual utility, while an increase in winter temperatures
are perceived as a positive amenity. Increases in wages also impact positively individual
indirect utilities.

Results from second and first stages estimates of parameter γ from Equation 15 are
seen in Tables 8 and 9. Again, first and second columns include only market access and
Bartik shocks as instrument respectively, and the third column include both instruments.
The third specification is our preferred one in this case. The estimated γ corresponds to a
α̂u = 0.68.
27 We use log(1 +Revm−k,t) to handle with zeroes.
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Table 6 – Estimating the Parameters in the Indirect utility: Sec-
ond Stage

(1) (2) (3)

σ 1.64** -3.93 1.52**
(0.67) (9.29) (0.65)

σλsummer temp. -0.22*** -0.30* -0.22***
(0.070) (0.17) (0.069)

σλwinter temp. 0.21*** 0.16 0.21***
(0.055) (0.13) (0.053)

Observations 3,174 3,174 3,174
Kleibergen-Paap rk Wald F-stat. 17.6 0.25 9.00
Hansen p-value 0.25

Notes: Standard errors clustered at the micro-region level. Each of the
529×2×4 = 4, 232 observations is a micro-region-sector-year. Parameters
estimated on first-differenced data. Additional controls: summer and
winter sunshine and rain; region-year FE; meso-region trend; and controls
on sector, closeness to ocean, closeness to state capital and large labor force
in 1970. Data source: CPTEC/INPE and Population Census, 1980-2010.
P-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

Table 7 – Estimating the Parameters in
the Indirect utility: First Stage
IV Coefficients on Wage Growth

(1) (2) (3)

∆Bartik 0.13 0.13
(0.27) (0.27)

∆ logMA -0.43*** -0.43***
(0.10) (0.10)

Notes: Standard errors clustered at the micro-
region level. Each of the 529× 2× 4 = 4, 232
observations is a micro-region-sector-year. Pa-
rameters estimated on first-differenced data.
Summer (Dec-Feb) and winter (Jun-Aug)
temperatures are 10-year averages prior to
the census year. Additional controls: summer
and winter sunshine and rain; region-year FE;
meso-region trend; and controls on sector,
closeness to ocean, closeness to state capital
and large labor force in 1970. Data source:
CPTEC/INPE and Population Census, 1980-
2010. P-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p
< 0.01.
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Table 8 – Estimating the Labor Demand Parameters: Second
Stage

(1) (2) (3)
b/se b/se b/se

γ -0.19 -0.71 -0.32**
(0.12) (0.45) (0.13)

Observations 1587 1587 1587
Kleibergen-Paap rk Wald F-stat. 21.2 3.65 12.3
Hansen p-value 0.11

Notes: Standard errors clustered at the micro-region level. Each of
the 529× 2× 4 = 4, 232 observations is a micro-region-sector-year.
Parameters estimated on first-differenced data. Additional controls:
region-year FE; meso-region trend; and controls on sector, closeness
to ocean, closeness to state capital and large labor force in 1970. Data
source: Population Census, 1980-2010. P-values: ∗ p < 0.1; ∗∗ p <
0.05; ∗∗∗ p < 0.01.

Table 9 – Estimating the Labor De-
mand Parameters: Fist Stage
IV Coefficients on Labor Force
Growth

(1) (2) (3)

∆Bartik -0.73* -0.72*
(0.38) (0.38)

∆ logMA 0.63*** 0.63***
(0.14) (0.14)

Notes: Standard errors clustered at the
micro-region level. Each of the 529 × 2 ×
4 = 4, 232 observations is a micro-region-
sector-year. Parameters estimated on first-
differenced data. Additional controls: region-
year FE; meso-region trend; and controls on
sector, closeness to ocean, closeness to state
capital and large labor force in 1970. Data
source: Population Census, 1980-2010. P-
values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Results from second and first stages estimates of parameters φ and ψ from Equation
16 are seen in Tables 10 and 11. Instruments employed to identify the parameters in this
Equation include: labor market access, an indicative variable for previously having a large
labor force, the agriculture revenue shift share and its interaction with distance to coast.
The third specification includes all instruments, while the first and second specification
respectively leave out the agriculture revenue shift-share interaction with distance to coast
and the agriculture revenue shift-share itself. From the third specification we estimate an
housing rent elasticity to land rent of 0.12, which indicates a relatively low importance of
micro-regions’ land prices to the formation of housing prices. Also, we estimate an housing
rent elasticity to local aggregate housing demand of 0.74, which suggests that rents do not
respond much to increases in local housing demand.

Table 10 – Estimating the Housing Market Parameters: Second
Stage

(1) (2) (3)
b/se b/se b/se

φ 0.085 0.12* 0.12*
(0.080) (0.071) (0.071)

ψ 0.78*** 0.80*** 0.74***
(0.12) (0.12) (0.12)

Kleibergen-Paap rk Wald F-stat. 16.6 17.5 13.2
Hansen p-value 0.22 0.34 0.24

Notes: Standard errors clustered at the micro-region level. Each of the
529×2×4 = 4, 232 observations is a micro-region-sector-year. Parameters
estimated on first-differenced data. Hansen J statistic p-values of preferred
specification is 0.24. Differences on 10-year averages of accumulated rain,
accumulated insolation and average temperature were used as controls.
Additional controls: macro-region-year FE and meso-region trend. Data
source: CPTEC/INPE, PAM (1974, 1980, 1991, 2000, 2010), Population
Census, 1980-2010. P-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.
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Table 11 – Estimating the Housing Market Parameters: First Stage IV Coefficients

(1) (2) (3)
R HD R HD R HD

b/se b/se b/se b/se b/se b/se
∆ logMA 1.44*** 0.34** 1.37*** 0.33** 1.39*** 0.33**

(0.45) (0.15) (0.45) (0.15) (0.45) (0.15)
1{N1970 >= p(95)} 0.054 -0.16*** 0.058 -0.16*** 0.056 -0.16***

(0.054) (0.022) (0.053) (0.022) (0.053) (0.022)
∆ Agric. SSIV 0.81*** 0.14*** 0.24 0.056

(0.14) (0.049) (0.45) (0.15)
∆ Agric. SSIV × log Dist. Coast 0.055*** 0.0098*** 0.040 0.0062

(0.0096) (0.0033) (0.030) (0.0098)
Notes: Standard errors clustered at the micro-region level. Each of the 529 × 2 × 4 = 4, 232 observations is
a micro-region-sector-year. Parameters estimated on first-differenced data. Differences on 10-year averages of
accumulated rain, accumulated insolation and average temperature were used as controls. Additional controls:
macro-region-year FE; meso-region trend. Data source: CPTEC/INPE, PAM (1974, 1980, 1991, 2000, 2010),
Population Census, 1980-2010. P-values: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01.

5 Simulation

Once we have in hand estimates of all our main structural parameters we may
conduce our counterfactual simulations through a set of equilibrium equations. Nevertheless,
a last additional difficulty is that we do not have data on non-climate and sector-of-
employment amenities. To overcome this issue, we follow Oliveira & Pereda (2020) and
estimate their sum, Xkst, as the residual indirect utility after netting out the utility
from components we have actual data: climate amenities, wages and housing rent prices.
Following Oliveira & Pereda (2020) we assume that the provision of these non-climate
and sector-of-employment amenities will not vary over time. We employ the estimates
of indirect utilities for the 2010 period, the wages and rents of the same period and the
climate amenities of the baseline period (1961− 1990) to construct our estimate of the
residual indirect utility:

X̂bline
kst = δ̂ks,2010 − σ̂(logwks,2010 − λ̂r log rk,2010 + λ̂cC

bline
k ). (17)

Let sco = {A2, B1} indicate our climate change scenarios, where A2 is the pes-
simistic high-emission scenario, and B1 is the optimistic low-emission scenario. We need
to calculate the initial values for agriculture wages and rent prices under the new climatic
conditions:

logwscokr,0 = logwkr,2010+log
(

M∑
m=1

pmk A
m,sco
kr (ηm,scok )1− 1

θ

)
−log

(
M∑
m=1

pmk A
m,bline
kr (ηm,blinek )1− 1

θ

)
;

(18)
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log rscok,0 = log rk,2010+φ log
(

M∑
m=1

pmk A
m,sco
kr (ηm,scok )1− 1

θ

)
−φ log

(
M∑
m=1

pmk A
m,bline
kr (ηm,blinek )1− 1

θ .

)
(19)

The initial value for non-agriculture wages is wku,0 = wku,2010, because we assume climate
has no direct effect on the non-agriculture sector. Hence, the initial value for the indirect
utilities is:

δ̂scoks = σ̂(logwscoks,0 − λ̂r log rscok,0 + λ̂cC
sco
k + X̂bline

kst ). (20)

For the migration probabilities we use our estimates on bilateral migration costs,
σ̂µ̂jk = σ̂(µ̂f1{j 6= k}+ µ̂dDjk), and the indirect utilities, such that:

π̂scojks = exp{δ̂scoks − σ̂µ̂jk}∑
q∈{r,u}

∑J
l=1 exp{δ̂scolq − σ̂µ̂jl}

. (21)

With these Equations, we can start to simulate the impact of climate change
on the economy. The new climatic conditions exert initial effects on agricultural wages
(through agriculture productivity), housing rents (through land prices that also respond to
agriculture productivity), and climatic amenities, which impact workers indirect utilities
derived from each locality-sector. In response, some workers may choose new localities
and/or sector of employment. However as migration occurs, general-equilibrium effects
make wages and rents adjust through the following Equations:

logwku,i+1 = wresku,0 − (1− αu) logNku,i, (22)

logwkr,i+1 = wreskr,0 − (1− αr) logNkr,i, (23)

log rk,i+1 = rresk + ψ log
λl ∑

s∈r,u
wks,iNks,i

+ φαr logNk,i, (24)

where wresku,0 = logwku,0 + (1 − αu) logNku,0, wreskr,0 = logwscokr,0 + (1 − αr) logNkr,0 and
rresk = log rk,0−ψ log

(∑
s∈r,uwks,0Nks,0

)
−φαr logNk,0. New wages and prices induce more

reallocation, which again incites changes in wages and rent prices. A new equilibrium is
reached when population converges.
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6 Results

Once we have gathered the results from our counterfactual simulations, we can begin
answering some questions. What changes in agricultural production and crop distribution
do our model predict? What is the effect of climate change on migration and agriculture?
To what extent does crop change as an adaptation to climate change influence those
outputs? How different macro-regions are affected? And what are the implications in terms
of welfare in our model? One by one, we will tackle all of these questions in this Chapter.

6.1 Changes in Agriculture Production
One of the novel contributions of our model is to consider the possibility of

agricultural adaptation to climate change via crop choice, or, more precisely, via farmers’
input allocation choices across crops. In Table 12, we observe the land shares occupied
by the main crops under the baseline climate and how those land shares would change
under the new climate scenarios.28 Changes follow the same sign under both future climate
scenarios, with, generally, greater changes seen under scenario A2 (higher emissions). The
crops that presented a higher predicted increase were: Cassava, Phaseoulus Bean, Dryland
Rice, Maize and Cowpea. Only three of the main crops presented a decrease in land shares:
Sugarcane, Coffee and Wheat.

We can also observe the spatial distribution of the change of land shares per crop
in Figures 3 and 4. A subgroup of eight of our main crops were included in this analysis.
Under both climatic scenarios it is possible to observe some reallocation of crops in the
territory. For example, in both scenarios our model predicts that Maize will occupy less
cultivated area in the South macro-region of Brazil, while Coffee is predicted to increase its
occupation in the same macro-region; Soybean is predicted to slightly increase its occupied
area in most of Brazil, with decreases concentrated mainly in the South, while Cassava is
predicted to be more present in the South and less present in parts of the Northeast and
North macro-regions.

Although our current analysis presents limitations that should be improved regard-
ing the prediction of land shares, what drives changes in crops land shares in our model is
solely changes in land suitability measured by GAEZ - because we maintain crop prices
fixed -, hence, even being skeptical of the intensity of changes presented, it is possible to
28 The main crops are the 10 crops that occupied more agriculture area in the 2006 agricultural census, as

we can see in Table 1, and were also in the GAEZ data. The term “Others" sums the area occupied by
all remaining crops in our analysis, they are: Banana, Coconut, Groundnut, Onion, Sunflower, Tobacco,
Tomato and White Potato.
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Figure 3 – Changes in Crop Land Shares - A2 Climate vs. Baseline

Notes: Changes in percentage points. Land Shares are our model’s optimal land shares under each
climate. Data source: Model estimates, GAEZ, 2006 Agricultural Census
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Figure 4 – Changes in Crop Land Shares - B1 Climate vs. Baseline

Notes: Changes in percentage points. Land Shares are our model’s optimal land shares under each
climate. Data source: Model estimates, GAEZ, 2006 Agricultural Census
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Table 12 – Predicted Changes in Agriculture Land Shares by Crops

Crops Predicted Land Share Change in Land Share Change in Land Share
in Baseline (%) p.p. - A2 Climate p.p. - B1 Climate

Soybean 2.907 0.454 0.223
Maize 4.871 1.481 0.705
Sugarcane 2.744 -0.180 -0.085
Dryland Rice 3.421 1.490 0.984
Cowpea 4.729 1.176 0.700
Coffee 8.073 -0.241 -0.259
Phaseoulus Bean 6.209 1.956 0.940
Cassava 7.262 2.016 1.476
Wheat 1.592 -0.886 -0.652
Cotton 1.338 0.858 0.545
Others 56.853 -9.399 -6.106

Notes: All results in this Table are based on our model’s optimal farmers’ land share allocation. Our
aggregate predicted land share values are constructed by micro-regions land shares weighted by micro-region
cultivated area. Changes in aggregate land shares are in percentage points, they are calculated as Optimal
Land Share under Scenario Climate - Optimal Land Share under Baseline Climate. Source: Model estimates,
GAEZ, 2006 Agricultural Census

interpret our results as signs of reallocation of land suitability that suggests actual spatial
crop reallocation in future scenarios.

6.2 Climate change effects on migration and agriculture
In Table 13 we present the simulated effects of temperature changes in migration

rates compared to a scenario where temperatures remained constant. We measure changes
in migration rates in terms of percentage variation compared to a scenario where baseline
climate was maintained. First line presents results where farmers reallocate their pro-
ductions of crops according to the optimal choice for the new climate. Second line is an
experiment in which farmers cannot alter the land shares of their crops, it is, they are
locked with the optimal allocation for the baseline climate.

Surprisingly, migration rates are higher under scenario B1 compared to scenario
A2. In Oliveira & Pereda (2020), the same occurred under the exercise in which climate
impacted only agricultural activity. As crop change presented very small effects on aggregate
migration rates, it does not seem the case where greater changes in climate are triggering
new crop allocations that are keeping people in the same micro-region via agricultural
productivity. Two remaining possible explanations are that different changes in summer
and winter temperatures under the two scenarios might be inducing this unexpected
migration pattern, and that the agricultural productivity effect on housing rents might be
having part in this phenomena.
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Table 13 – Simulated impact of climate
change on aggregate migration
rates

Main specification
∆ Migration Rate (%)

B1 A2
With Crop Change 18.25 16.5
Without Crop Change 18.25 16.48

Note: Climate change scenarios for
2041–2070 period. The effects represent
changes relative to baseline climate,
which is the long-term average over
1961–1990. Baseline migration rate in our
main specification is 9.23%. Simulations
use non-climate amenity levels of year
2010. Data source: Model estimates,
CPTEC/INPE, GAEZ, 2006 Agriculture
Census, and 1980–2010 Population Census.

In Table 14, we see the effect of climate change on agricultural employment. When
farmers are not able to change crops, climate change has a greater negative impact on
share of workers in the agriculture sector under scenario A2 than under scenario B1. The
opposite phenomena is observed when farmers adopt the new optimal crop choice, with
less workers in agriculture under scenario B1 than under A2. Adaptation has a greater
impact on agriculture employment than the difference between the high and low emissions
scenarios.

Tables 15 and 16 show the different effects of climate change over migration rates
and share of workers employed in agriculture across Brazilian macro-regions. Again, crop
change has small effects over migration rates. However, we now observe that the greatest
shifts in share of employment in agriculture due to crop change come from the South
macro-region.

6.3 Climate change effects on welfare
We also conduct an exercise of measuring the impact of climate change and

agricultural adaptation on workers’ welfare. Our welfare measure for workers is not simply
their indirect utilities derived from living in location k and working in sector s. Instead we
consider workers’ expected utility conditional on having chosen to live and work in the pair
(k, s).29 This means that the worker’s welfare is not derived just from the indirect utility
29 The format and derivation of the worker’s expected indirect utility is available in the Appendix A.2
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Table 14 – Simulated impact of climate
change on agricultural shares

Main specification
∆ Agric. Share (%)

B1 A2
With Crop Change -19.05 -18.48
Without Crop Change -20.66 -20.89

Note: Climate change scenarios for
2041–2070 period. The effects represent
changes relative to baseline climate, which
is the long-term average over 1961–1990.
Baseline agricultural share of employment
in our main specification is 21.17%.
Simulations use non-climate amenity levels
of year 2010. Data source: Model estimates,
CPTEC/INPE, GAEZ, 2006 Agriculture
Census, and 1980–2010 Population Census.

Table 15 – Simulated impact of climate change on macro-regions’ migration rates

NO NE SE SO MW
∆ Mig. Rate (%)

B1 A2 B1 A2 B1 A2 B1 A2 B1 A2
W/ Crop Change -0.79 22.75 98.83 78.24 -6.16 -7.82 -2.39 1.74 5.32 11.22
W/o Crop Change -0.44 23.32 98.51 77.49 -7.05 -9.27 -0.76 4.36 4.77 10.38

Note: Climate change scenarios for 2041–2070 period. The effects represent changes
relative to baseline climate, which is the long-term average over 1961–1990. Simulations
use non-climate amenity levels of year 2010. Baseline macro-regions’ out-migration
rates are respectively: 2.55%, 2.96%, 2.22%, 2.79%, 3.34%. Data source: Model esti-
mates, CPTEC/INPE, GAEZ, 2006 Agriculture Census, and 1980–2010 Population Census.

Table 16 – Simulated impact of climate change on macro-regions’ agricultural shares

NO NE SE SO MW
∆ Agric. Share (%)

B1 A2 B1 A2 B1 A2 B1 A2 B1 A2
W/ Crop Change -26.69 -39.81 -42.33 -38.67 -3.17 -3.02 1.61 7.24 -12.7 -23.28
W/o Crop Change -28.7 -42.93 -43.52 -39.87 -3.52 -3.43 -2.53 0.17 -13.12 -24.2

Note: Climate change scenarios for 2041–2070 period. The effects represent changes relative to
baseline climate, which is the long-term average over 1961–1990. Simulations use non-climate
amenity levels of year 2010. Baseline macro-regions’ agriculture shares are respectively: 28.24%,
30.79%, 13.05%, 23.39%, 19.47%. Data source: Model estimates, CPTEC/INPE, GAEZ, 2006
Agriculture Census, and 1980–2010 Population Census.
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Table 17 – Simulated impact of climate change on aggregate workers’
welfare

Main specification Prohibitive mig. cost
∆ Workers’ Welfare (%)

B1 A2 B1 A2
With Crop Change -2.56 4.37 -6.76 -0.21
Without Crop Change -2.9 3.83 -7.06 -0.69

Note: Climate change scenarios for 2041–2070 period. The effects
represent changes relative to baseline climate, which is the long-term
average over 1961–1990. Simulations use non-climate amenity levels
of year 2010. Data source: Model estimates, CPTEC/INPE, GAEZ,
2006 Agriculture Census, and 1980–2010 Population Census.

Table 18 – Simulated impact of climate change on macro-regions’ worker welfare

NO NE SE SO MW
∆ Workers’ Welfare (%)

B1 A2 B1 A2 B1 A2 B1 A2 B1 A2
W/ Crop Change -5.77 -10.73 -24.68 -16.84 -0.13 9.39 -1.48 4.5 -6.15 -4.26
W/o Crop Change -6.41 -11.61 -25.01 -17.23 -0.23 9.24 -2.9 2.02 -6.28 -4.51

Note: Climate change scenarios for 2041–2070 period. The effects represent changes relative to
baseline climate, which is the long-term average over 1961–1990. Simulations use non-climate
amenity levels of year 2010. Data source: Model estimates, CPTEC/INPE, GAEZ, 2006 Agriculture
Census, and 1980–2010 Population Census.

enjoyed in her location, but also from the indirect utilities of other locations although
discounted by a migration cost.

In Table 17 we can observe the impact of climate change on workers’ welfare
measured by our model. Our welfare measure indicate a lower worker aggregate welfare
under B1 scenario than under A2. Crop change increases workers’ welfare under both
scenarios. Our exercise to measure welfare under prohibitive migration costs suggests that
migration has an important role in off-setting the negative effects of climate change on
individuals.

In Table 18 we display the welfare impacts of climate change on workers by macro-
region. By this exercise, we see that the positive welfare impacts of climate under the
A2 scenario are driven by the results from the South and Southeast macro-regions. The
Northeast macro-region suffers from the most negative impacts from climate change under
both scenarios. The second most negatively affected region in terms of workers’ welfare
depends on scenario and if crop change is adopted: the North macro-region occupies this
second place under scenario A2 and under the B1 scenario when there is no crop change,
while the Midwest macro-region is worse under scenario B1 with crop change. These
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results suggests that climate change will have an impact on deepening inequalities among
macro-regions in Brazil as the most developed regions are less negatively affected – or
even positively affected – by this phenomena when compared to the least developed ones.
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7 Final Remarks

In this paper, we analyze how climate change is expected to affect agricultural crop
production patterns, internal migration, and the distribution of the labor force in Brazil
using a single approach. We advance on the existing and related literature – Costinot,
Donaldson & Smith (2016) and Oliveira & Pereda (2020) that investigate climate-induced
crop change and internal migration – by using a more extensive set of crops for adaptation
and a more refined geographic level for migration.

We propose and estimate a spatial equilibrium model with costly migration where
climate affects workers’ locational choice and farmers’ crop choice. Climate can directly
affect workers’ location decisions through a location-amenity channel and agricultural
productivity, affecting agricultural wages and housing rental prices. Farmer’s ability to
reallocate their inputs towards new and more productive crops impacts agricultural
productivity. Furthermore, general equilibrium effects on labor and housing markets play
a role in workers’ spatial distribution and welfare.

Our results suggest that there will be a spatial redistribution of crop productions
under future climatic conditions that helps mitigate some of the effects of climate change
on agricultural productivity and agriculture share of employment. However, agriculture
adaptation will likely have minimal effects on aggregate micro-region migration. In terms
of regional effects, the Northeast macro-region will be the most affected under any scenario
with more significant increases in out-migration rates, decreases in agriculture share of
employment, and negative impacts on workers’ welfare. The South macro-region is where we
expect that crop change will impact the most agricultural share of employment. Potential
welfare gains for workers are primarily concentrated in the Southeast macro-region, which
is already the more prosperous and most populated region in Brazil. Hence, our results
map the regions with higher potential for agriculture adaptation and reaffirm the potential
deepening of the existing north-south inequality in Brazil diagnosed in Oliveira & Pereda
(2020). Our results may help guide public policies by identifying the more vulnerable
populations and the regions where most gains from agricultural adaptation may come
from.
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Appendix A - Model

A.1 Deriving Migration Probabilities
Given the distributional assumption that P (ϑnkst ≤ x) = exp{−x−σ}, the proba-

bility that locality-sector pair (k, s) maximizes the indirect utility is

P (Vkst exp{−µjk}ϑnkst ≥ Vlqt exp{−µjl}ϑnlqt∀l 6= k, ∀q 6= s).

We define the random variablesW = Vkst exp{−µjk}ϑnkst andM = max(l,q)6=(k,s) Vlqt exp{−µjl}ϑnlqt.

FW (x) = P (Vkst exp{−µjk}ϑnkst ≤ x)

= P (ϑnkst ≤
x

Vkst exp{−µjk}
)

= exp

−
(

x

Vkst exp{−µjk}

)−σ
Hence W has a Fréchet distribution with E[W ] = Vkst exp{−µjk}Γ(1− 1

σ
) = aW . Further-

more:

FM(x) = P ( max
(l,q)6=(k,s)

Vlqt exp{−µjl}ϑnlqt ≤ x)

=
∏

(l,q)6=(k,s)
P (Vlqt exp{−µjl}ϑnlqt ≤ x)

=
∏

(l,q)6=(k,s)
P (ϑnlqt ≤

x

Vlqt exp{−µjl}
)

= exp

−∑
l 6=q

∑
q 6=s

(
x

Vlqt exp{−µjl}

)−σ
= exp

−
(

x

(∑l 6=q
∑
q 6=s(Vlqt exp{−µjl})σ)1/σ ,

)−σ
which is a Fréchet distribution with E[M ] =

[∑
l 6=q
∑
q 6=s(Vlqt exp{−µjl})σ

] 1
σ Γ(1− 1

σ
) = aM .
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Let y = exp
{
−
(

x
(aσW+aσM )1/σ

)−σ}
. We can derive πjkst as:

πjkst =
∫ ∞

0

[
1− e−(x/aW )−σ

] ( σ

aM

)(
x

aM

)−σ−1
e−(x/aM )−σ∂x

= 1−
∫ ∞

0
exp


(

x

(aσW + aσM) 1
σ

)−σσaσMx−σ−1∂x

= 1−
∫ 1

0

aσM
aσW + aσM

∂y

= aσW
aσW + aσM

= (Vkst exp{−µjk)σ}∑J
l=1

∑
q∈{r,u} (Vlqt exp{−µjl})σ

.�

A.2 Workers’ Welfare - Expected Utility
To quantify the welfare impacts of climate change and of agricultural adaptation, we

need to compute the expected utilities conditional on location choice, E[V njks| choose k and s].
When an individual chooses a locality k and a sector s, this means that (k, s) =
arg maxl,q{Vnjlq}. Then, E[V njks| choose k and s] = E[maxl,q{Vnjlq}]. Moreover, from
our distributional assumptions:

P (max
l,q
{Vnjlq} ≤ x) =

J∏
l=1

∏
q∈r,u

P (Vlqe−µjlϑnlq ≤ x)

=
J∏
l=1

∏
q∈r,u

P (ϑnlq ≤
x

Vlqe−µjl
)

=
J∏
l=1

∏
q∈r,u

−
(

x

Vlqe−µjl

)−σ
= exp

−
J∑
l=1

∑
s∈{r,u}

(
x

Vlqe−µjl

)−σ
= exp


 x(∑J

l=1
∑
s∈{r,u}(Vlqe−µjl)σ

)1/σ


−σ .

Hence, E[maxl,q{Vnjlq}] =
[∑J

l=1
∑
s∈{r,u}(Vlqe−µjl)σ

]1/σ
Γ(1− 1

σ
).
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A.3 Land Suitability Expected Value
The distribution of Amkrt(ω) is:

Fkrt,m(t) = exp
{
−γ( t

Amkrt
)−θ

}

= exp
{
−( t

γ
1
θAmkrt

)−θ
}
.

Using the properties of the Fréchet distribution, the unconditional expectation of Amkrt(ω)
is:

E[Amkrt(ω)] = γ
1
θAmkrtΓ(1− 1

θ
)

= Amkrt.

A.4 Profit Maximization
The representative agricultural firm in locality k hires labor and rents land. The

farmer decides how to allocate plots of land across crops and chooses the amount of labor
employed in each plot. Consider Ωk as the set of plots that are allocated to agriculture in
locality k. The producer’s problem is to choose {Nm

kr(ω), Lmkr(ω), ω ∈ Ωk,∀k} to maximize
profits:

max
M∑
m=1

pmkrtQ
m
krt −

∫
Ωk

M∑
m=1

[wkrtNm
krt(ω) +RktL

m
krt(ω)]∂ω

where, for all k, total output of crop m is:

Qm
krt =

∫
Ωk
Amkrt(ω)[Nm

krt(ω)]αr [Lmkrt(ω)]1−αr∂ω.

An equivalent problem for the agricultural producer is to maximize the profits
obtained in each plot ω and then add up the profits across the plots. The profits in a plot
ω are:

M∑
m=1

pmkrtA
m
krt(ω)[Nm

krt(ω)]αr [Lmkrt(ω)]1−αr − wkrtNm
krt(ω)−RktL

m
krt(ω).

Following Sotelo (2020), we can characterize the farmer’s problem in term of the
unit cost function of producing each good in a given plot ω. Consider Ωm

k as the set of plots
in locality k allocated for growing crop m. Suppose that ω ∈ Ωm

k , such that Lmkrt(ω) > 0.
The cost minimization problem when producing this crop m is to choose Nm

krt(ω) and
Lmkrt(ω) such that:
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min wkrtN
m
krt(ω) +RktL

m
krt(ω)

s.t. Amkrt(ω)[Nm
krt(ω)]αr [Lmkrt(ω)]1−αr ≥ Q̄m

krt.

The solution to this problem will consist on a cost function and conditional demands
for inputs. The Lagrangean to this problem is:

L = wkrtN
m
krt(ω) +RktL

m
krt(ω)− µ[Amkrt(ω)[Nm

krt(ω)]αr [Lmkrt(ω)]1−αr − Q̄m
krt].

Which yields the following first order conditions:

[Nm
krt(ω)] : wkrt = µαrA

m
krt(ω)[Nm

krt(ω)]−(1−αr)[Lmkrt(ω)]1−αr ,

[Lmkrt(ω)] : Rkt = µ(1− αr)Amkrt(ω)[Nm
krt(ω)]αr [Lmkrt(ω)]−αr .

Using the production function from Equation 4 and rearranging the first order
conditions, we reach the conditional input demands:

Nm
krt(ω) = µαrQ

m
krt(ω)

wkrt
,

Lmkrt(ω) = µ(1− αr)Qm
krt(ω)

Rkt

.

Now, note that µ is the marginal cost. We can substitute the input demands in the
production function to find the cost function.

Qm
krt(ω) = Amkrt(ω)

[
cmkrt(ω)αrQm

krt(ω)
wkrt

]αr [cmkrt(ω)(1− αr)Qm
krt(ω)

Rkt

](1−αr)

Rearranging the equation we find the marginal cost of producing crop m in plot ω:

cmkrt(ω) = α−αrr (1− αr)(1−αr)w
αr
krtR

1−αr
krt

Amkrt(ω)

= c̄
wαrkrtR

1−αr
krt

Amkrt(ω)

where c̄ = α−αrr (1− αr)(1−αr)

Also, through the conditional input demands, we have:

wkrt
Rkt

= αr
1− αr

Lmkrt(ω)
Nm
krt(ω) .
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Because, within a locality k, agricultural wage and land rent are fixed across crops and
plots, and cost shares are constants, this means that the land-labor ratio will be the same
across every ω ∈ Ωm

k and every produced crop in the locality. Consequently, will also hold:

wkrt
Rkt

= αr
1− αr

Lkrt
Nkrt

,

where Nkrt is the total amount of labor employed in agriculture in locality k and Lkrt is
the total area used to grow crops in locality k. Also, this will imply that, within a locality,
the share of land used to grow a crop m and the share of labor to grow the same crop will
be the same:

Lmkrt
Nm
krt

= Lkrt
Nkrt

∀m −→ Nm
krt

Nkrt

= Lmkrt
Lkrt

∀m.

A.5 Implications of Profit Maximization
Once we have characterized the marginal cost function, we can return to the

farmer’s problem. At the crop-plot level, the farmer will chooses Qm
krt(ω) that maximizes

profit:

max pmkrtQ
m
krt(ω)− cmkrt(ω)Qm

krt(ω).

Because technology has constant returns to scale, it is not possible to determine an optimal
output by solving this problem. Instead, all we have is a condition that must be held at
an optimum: pmkrt ≤ cmkrt(ω), with equality when Qm

krt(ω) > 0. Thus, if Qm
krt(ω) > 0, we can

derive the equilibrium between gains and costs of an optimal increase in inputs:

pmkrtA
m
krt(ω) = c̄wαrkrtR

1−αr
krt .

The costs associated with an optimal increase in inputs are invariant across crops within
locality k.

We call ckrt(ω) = c̄wαrkrtR
1−αr
krt the marginal cost of an optimal increase in inputs in

plot ω ∈ Ωk. As ckrt(ω) is invariant across crops, if a crop m is being produced in plot ω
and the farmer knows the productivities associated with all crops, a profit maximization
behavior ensures that crop m is the one that would produce maximum returns in that
plot. Therefore:

∀ω ∈ Ωk : ckrt(ω) = max
m
{pmkrtAmkrt(ω)}.

As each plot of land is allocated to the crop which gives the highest returns, and
there is a continuum of plots in each locality k, the share of land occupied by each crop
will be:

ηmkrt = Pr(m = argmax
n

pnkrtA
n
krt(ω)).
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Then, given our distributional assumptions about, Ankrt(ω):

ηmkrt = (pmkrtAmkrt)θ∑M
l=1(plkrtAlkrt)θ

. (25)

Proof: Given the distributional assumption, P (Amkrt(ω) ≤ am) = exp
{
−γ( am

Am
krt

)−θ
}
,

with E[Amkrt(ω)] = Amkrt. The probability that crop m maximizes revenue at plot ω can
be described as: P (pmkrtAmkrt(ω) ≥ maxn6=m{pnkrtAnkrt(ω)}). We define the random variables
W = pmkrtA

m
krt(ω) and M = maxn6=m{pnkrtAnkrt(ω)}. Then,

FW (x) = P (pmkrtAmkrt(ω) ≤ x)

= P (Amkrt(ω) ≤ x

pmkrt
)

= exp

−γ
(

x

pmkrtA
m
krt

)−θ
= exp

−
(

x

γ
1
θ pmkrtA

m
krt

)−θ ,
which is a Fréchet distribution with E[W ] = pmkrtA

m
krt = aW . Furthermore,

FM(x) = P (max
n6=m
{pnkrtAnkrt(ω)} ≤ x)

=
∏
n 6=m

P (pnkrtAnkrt ≤ x)

= exp

−γ ∑
n6=m

(
x

pnkrtA
n
krt

)−θ
= exp

−γx−θ ∑
n6=m

(pnkrtAnkrt)θ


= exp

−γx−θ

∑
n6=m

(pnkrtAnkrt)θ
− 1

θ


−θ

= exp

−
 x

γ
1
θ

(∑
n 6=m(pn

krt
An
krt

)θ
) 1
θ


−θ ,

which is a Fréchet distribution with E[M ] =
[∑

n 6=m(pnkrtAnkrt)θ
] 1
θ = aM .
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Let y = exp

−γ
(

x

(aθW+aθM )
1
θ

)−θ. We can derive ηmkrt as:

ηmkrt =
∫ ∞

0

[
1− e−γ(x/aW )−θ

]
( θγ
aM

)( x
aM

)−θ−1e−γ(x/aM )−θ∂x

= 1−
∫ ∞

0
exp

−γ
(

x

(aθW + aθM) 1
θ

)−θ θγ(aM)θx−θ−1∂x

= 1−
∫ 1

0

aθM
aθW + aθM

∂y

= 1− aθM
aθW + aθM

= aθW
aθW + aθM

= (pmkrtAmkrt)θ∑M
l=1(pnkrtAnkrt)θ

. �

A.6 Conditional Distribution of Land Quality
To match the model to data, we must characterize the distribution of the land

suitability conditional on ω ∈ Ωm
k . Defining:

Gm
krt(x) = P [Amkrt(ω) ≤ x | pmkrtAmkrt(ω) = maxn p

n
krtA

n
krt(ω)] .

We can rearrange the probability function:
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Gm
krt(x) = 1

ηmkrt
P

[
pnkrt
pmkrt

Ankrt(ω) ≤ Amkrt(ω) ≤ x ∀n
]

= 1
ηmkrt

∫ x

0

∏
n6=m

P

[
pnkrt
pmkrt

Ankrt(ω) ≤ v

]
fmkrt(v)∂v

= 1
ηmkrt

∫ x

0

∏
n6=m

exp

−γ
 v

pn
krt

pm
krt
Ankrt


−theta

 exp

−γ
(

v

Amkrt

)−θ θγ(Amkrt)θv−θ−1∂v

= 1
ηmkrt

∫ x

0
exp

{
−γ(pmkrtv)−θ

M∑
n=1

(pnkrtAnkrt)θ
}
θγ(Amkrt)θv−θ−1∂v

=
∫ x

0
exp

{
−γ(pmkrtv)−θ

M∑
n=1

(pnkrtAnkrt)θ
}(∑M

n=1(pnkrtAnkrt)θ
(pmkrtAmkrt)θ

)
θγ(Amkrt)θv−θ−1∂v

=
∫ x

0
exp

{
−γ(pmkrtv)−θ

M∑
n=1

(pnkrtAnkrt)θ
}(

M∑
n=1

(pnkrtAnkrt)θ
)
θγ(pmkrt)−θv−θ−1∂v

= exp
{
−γ(pmkrtx)−θ

M∑
n=1

(pnkrtAnkrt)θ
}

= exp

−γ
 x

(
∑M

n=1(pn
krt

An
krt

)θ)
1
θ

pm
krt


−θ .

Thus:

E[Amkrt(ω) | m = arg max
n
{pnkrtAnkrt(ω)} ] =

(∑M
n=1(pnkrtAnkrt)θ

) 1
θ

pmkrt
= (ηmkrt)−

1
θAmkrt (26)

A.7 Agricultural Wage
At last, we return to the agricultural firm profit maximization problem to obtain a

last equation for the agricultural wage. The firm profit can be presented as:

Πkrt =
M∑
m=1

{∫
Ωk
pmkrtA

m
krt(ω)[Nm

krt(ω)]αr [Lmkrt(ω)]1−αr∂ω
}
− wkrtNkrt −RkrtLkrt

=
M∑
m=1

{
pmkrtE[Amkrt(ω)| m = arg max

n
pnkrtA

n
krt(ω)](Nm

krt)αr(Lmkrt)1−αr
}
− wkrtNkrt −RkrtLkrt

=
M∑
m=1

{
pmkrt(ηmkrt)−

1
θAmkrt(Nm

krt)αr(Lmkrt)1−αr
}
− wkrtNkrt −RkrtLkrt.

As the technology from the agricultural firm follows a constant returns to scale
Cobb-Douglas, the firm will have zero profit in equilibrium. Revenue is divided between
remuneration of labor and land: αr is the share of revenue destined to labor, and 1− αr is
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the share destined to land. Hence, expenditures on labor are:

wkrtNkrt = αr
M∑
m=1

pmkrt(ηmkrt)−
1
θAmkrt(Nm

krt)αr(Lmkrt)1−αr

= αr
M∑
m=1

pmkrt(ηmkrt)−
1
θAmkrt(ηmkrtNkrt)αr(ηmkrtLkrt)1−αr

= αr(Nkrt)αr(Lkrt)1−αr
M∑
m=1

pmkrt(ηmkrt)1− 1
θAmkrt,

where we used the fact that, following our hypothesis on technology, share of labor employed
in the production of a crop is the same as the share of land. The agricultural wage follows
the equation:

wkrt = αr

(
Lkrt
Nkrt

)1−αr M∑
m=1

pmkrt(ηmkrt)1− 1
θAmkrt.
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Appendix B - Data

Figure B.1 – Brazil’s Macro-regions

Note: 26 Brazilian states and 1 Federal District grouped into five macro-regions. Macro-
regions are: Midwest (MW), Northeast (NE), North (NO), Southeast (SE), and South
(SO). Data source: IBGE

52



Table B.1 – GAEZ Crop Productivities Distribution (t/ha)

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
Banana 3.443 2.108 0.000 1.736 3.926 5.280 6.399
Cassava 5.870 1.991 0.000 5.433 6.732 7.177 7.859
Coconut 0.542 0.844 0.000 0.000 0.000 1.009 2.820
Coffee 1.023 0.592 0.000 0.538 1.265 1.460 1.830
Cotton 0.412 0.179 0.000 0.305 0.406 0.535 0.793
Cowpea 1.609 0.347 0.205 1.454 1.677 1.868 2.082
Dryland Rice 2.556 1.081 0.000 2.366 2.985 3.307 3.556
Groundnut 1.773 0.565 0.002 1.552 2.020 2.173 2.397
Maize 5.440 1.470 0.721 4.119 5.591 6.701 9.043
Onion 5.535 1.349 0.503 4.820 5.718 6.616 8.648
Phaseoulus Bean 2.150 0.452 0.247 1.932 2.309 2.471 2.731
Soybean 2.247 0.469 0.256 2.059 2.378 2.586 2.898
Sugarcane 5.510 2.099 0.000 4.119 6.028 7.249 8.454
Sunflower 1.635 0.912 0.000 0.789 2.124 2.309 2.996
Tobacco 0.682 0.188 0.000 0.600 0.701 0.813 1.031
Tomato 4.217 0.934 0.199 3.832 4.534 4.825 5.963
Wheat 1.148 1.319 0 0 0.2 2.5 4
White Potato 1.945 2.282 0 0 0.2 4.4 7

Note: This table contains the distribution of micro-region average GAEZ crop produc-
tivities (t/ha). Crop productivities are set with the baseline climate and intermediate
input level assumption and filtered to areas that presented agricultural production in
the GAEZ data. First two columns present the mean and standard deviation of the
crop productivity values, while the following columns present the quartile distribution
of micro-region crop values. Data source: GAEZ.
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Appendix C - Estimation of the Parameters

Table C.1 – International Trade Exposure Index

Crop Index Crop Index
1 Tobacco 1.83914 10 Rice 0.13995
2 Wheat 1.80686 11 White Potato 0.13221
3 Soybean 1.65704 12 Maize 0.08254
4 Coffee 1.63053 13 Banana 0.05302
5 Sugarcane 1.35450 14 Coconut 0.04219
6 Sunflower 0.99366 15 Tomato 0.02878
7 Cotton 0.97538 16 Cassava 0.00641
8 Groundnut 0.50460 17 Bean 0.00002
9 Onion 0.20990

Note: Im is a relative crop exposure to interna-
tional trade measure constructed by dividing the
crop share of the sum of exports and imports by
the crop share revenue of agricultural production.
Im = (Exportsm+Importsm)/(

∑
l∈M Expl+Impl)

(Revenuem)/(
∑

l∈M Revenuel) is how we
calculate the index. Data source: Agrostat 2005, PAM
2005.

Table C.2 – Land Share Elasticity: First Stage

Dependent variable Pm
k A

m
k

(1)
b/se

Im log Distance to Port -0.0554***
(0.0103)

log Amk 0.567***
(0.0271)

Obs. 4585
Kleibergen-Paap Wald rk F stat. 29.24

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
Note: Prices are median farmgate prices inside micro-region. Standard
errors clustered at the micro-region level.
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Figure C.1 – Model’s goodness of fit per crop: land share occupied by crop

Note: Each point is a share of agriculture land employed in the production of a crop in
a micro-region. Data source: Agricultural Census 2006, GAEZ, Model estimates.

C.1 Alternative Agriculture Production Model with 10 crops

Table C.3 – Land Share Elasticity

Dependent variable η
(1)
b/se

θ 2.079***
(0.228)

Obs. 2988
Kleibergen-Paap Wald rk F stat. 115.9

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
Note: Alternative model estimation in-
cluding only ten crops (Soybean, Maize,
Sugarcane, Dryland Rice, Cowpea, Coffee,
Phaseoulus Bean, Cassava, Wheat, Cotton).
Prices are median farm-gate prices inside
micro-region. Standard errors clustered at
the micro-region level.
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Table C.4 – Land Share Elasticity: First Stage
on Prices

Dependent variable η
(1)
b/se

Im log Distance to Port -0.149***
(0.0139)

logAmkrt -0.808***
(0.0489)

Obs. 2988
Kleibergen-Paap Wald rk F stat. 115.9

∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
Note: Alternative model estimation in-
cluding only ten crops (Soybean, Maize,
Sugarcane, Dryland Rice, Cowpea, Coffee,
Phaseoulus Bean, Cassava, Wheat, Cotton).
Prices are median farmgate prices inside
micro-region. Standard errors clustered at
the micro-region level.
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Figure C.2 – Model’s goodness of fit (Model with 10 crops): land share occupied by crop

Note: Alternative model estimation including only ten crops (Soybean, Maize, Sug-
arcane, Dryland Rice, Cowpea, Coffee, Phaseoulus Bean, Cassava, Wheat, Cotton).
Estimated value for θ with this selection of crop is 2.079. Each point is a share of
agriculture land employed in the production of a crop in a micro-region. Data source:
Agricultural Census 2006, GAEZ, Model estimates.
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Figure C.3 – Model’s goodness of fit per crop (Model with 10 crops): land share occupied
by crop

Note: Alternative model estimation including only ten crops (Soybean, Maize, Sug-
arcane, Dryland Rice, Cowpea, Coffee, Phaseoulus Bean, Cassava, Wheat, Cotton).
Estimated value for θ with this selection of crop is 2.079. Each point is a share of
agriculture land employed in the production of a crop in a micro-region. Data source:
Agricultural Census 2006, GAEZ, Model estimates.
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