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RESUMO

Cientistas acreditam que, com as mudanças climáticas, algumas regiões da terra irão
observar um aumento na frequência e na intensidade de secas. Esta tese de doutorado
consiste em dois estudos que exploram os possíveis problemas de saúde que podem
surgir com um aumento da escassez hídrica. No primeiro estudo, investigamos
os efeitos de medidas implementadas repentinamente pela companhia de água
da Região Metropolitana de São Paulo para lidar com uma seca inesperada que
atingiu a região em 2014 e 2015. Apesar de a infraestrutura de água e saneamento
da região ser robusta, a seca foi tão intensa que levou o sistema para a beira do
colapso, e a empresa de água precisou implementar uma série de medidas restritivas
para garantir a continuidade do abastecimento. Uma importante medida desse
período foi a redução da pressão da água na rede de distribuição para evitar
vazamentos por pontos de fratura da tubulação. Nossa análise sugere que, apesar
de importante, essa política teve o resultado inesperado de aumentar o número
de hospitalizações por doenças de transmissão feco-oral. Alinhado às conclusões
da literatura, nossos resultados sugerem que os grupos mais afetados são crianças
e idosos de baixa renda. Analisando heterogeneidades espaciais na variação do
preço de garrafas de água mineral, encontramos evidências de que a população
adotou um comportamento defensivo para se proteger dos problemas relacionados
ao abastecimento de água. Essas ações defensivas parecem ter afetado os indicadores
de saúde observados na região. No segundo estudo desta tese, discutimos uma
outra consequência da escassez de água que surge em regiões que, assim como o
Brasil, tem grande dependência de usinas hidrelétricas. Nesses lugares, uma seca
pode impactar a matriz energética levando a uma maior dependência de usinas
termelétricas. Evidências sugerem que esse tipo de energia pode afetar a saúde
da população, e termelétricas movidas a carvão costumam ocupar o centro das
discussões pela sua elevada taxa de emissão. Apesar disso, outros combustíveis
de termelétricas também podem influenciar indicadores de saúde de comunidades
vizinhas. Neste trabalho, avaliamos o impacto de diferentes tipos de termelétricas
na saúde da população. Nossos resultados sugerem que as termelétricas a carvão
são as mais prejudiciais à saúde, levando a um aumento da mortalidade infantil em
regiões vizinhas. Os resultados também são robustos em sugerir que meninas são



mais afetadas que meninos. Nesta análise, encontramos ainda evidência de seleção
fetal, o que sugere que os resultados observados estão subestimados.

Palavras-chaves: Meio Ambiente e Desenvolvimento, Saúde, Políticas de Oferta
de Água, Geração Termelétrica



ABSTRACT

As climate changes, scientists expect that some parts of the earth will experience
a growth in the frequency and intensity of droughts. This doctoral dissertation
consists of two studies exploring possible health issues that might arise from an
increase in water scarcity. In the first study, we investigate the effects of abrupt
measures implemented by the water company of the Metropolitan Region of São
Paulo to cope with an unexpected drought that affected the region during 2014 and
2015. Even though the company manages a robust water and sanitation system,
the severity of the drought drove the local water supply services to the brink of
a collapse, and a series of strict measures had to be implemented to guarantee
the supply to the population. During this drought, an important measure was to
reduce the water pressure within the distribution network to avoid losses through
leakage points. Our analysis suggests that, although important, this policy had the
unexpected consequence of increasing the hospitalization by fecal-oral transmitted
diseases. Consistent with the literature, we find evidence that the low-income
children and elderly were the most affected groups. Analyzing variations in bottled
water prices, we also find evidence that the population engaged with defensive
behaviors against the water supply issues, which seems to have influenced the
observed health outcomes. In the second study from this dissertation, we discuss
another consequence of water scarcity that arises in places that, like Brazil, rely
on hydroelectric power plants to supply their energy demand. In these regions,
a drought might shift the energy production toward a more intensive use of
thermoelectric power. Mounting evidence suggests that this energy source has a
negative impact on the health outcomes of the population, and coal-fueled power
plants are usually at the center of discussion due to their high emission rates. Still,
other types of thermoelectric power plants might also be harmful to the health
of the surrounding population. In this work, we investigate if different types of
thermoelectric power plants affect the health of the population living nearby. We
find evidence that coal-fired power plants are the most harmful for health, increasing
the infant mortality rate in nearby communities. Our findings also robustly suggest
that female children are more affected than males, but the results are probably
underestimated, since we also find evidence of fetal selection.



Key-words: Environment and Development, Health, Water Supply Policies, Ther-
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1 Introduction

It is widely accepted by the scientific community that the current path of
Greenhouse Gas (GHG) emissions and land use will have a considerable impact
on the world’s climate conditions. Significant weather variations have already
been registered in the last decades and are likely to intensify in the coming years.
The Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC, 2013) summarizes different scenarios of climate conditions and extreme
weather events such as heatwaves, extreme temperature and precipitation, floods,
droughts, and others. It points to a large spatial heterogeneity of these events,
with different levels of uncertainty surrounding them. Scientists are fairly confident
that the temperature and extreme precipitations are rising and will continue to
do so. However, there is less confidence regarding a global trend for other events
such as droughts, which will likely affect some regions more than others. The
Brazilian northeast and southern Africa are low-income regions that, according
to some scenarios, could observe an increase in the intensity of droughts. Under
these projected climate scenarios, the affected regions might experience further
drawbacks in their pursuit of the United Nations’ Sustainable Development Goals
(SDG).1.0.1

Stanke et al. (2013) summarize the channels through which a drought might
affect morbidity and mortality rates. They argue that water shortages, migration,
and impacts on livelihood (loss of crops, livestock, fishery, among others) can
influence the incidence of illnesses related to malnutrition, mental health, water,
vector-borne and airborne diseases. This dissertation investigates two infrastructure
bottlenecks that could be severely impacted by the changing climate, influencing
societies’ health conditions.

After this introduction, the second chapter of this work studies a severe and
unexpected drought that affected the Metropolitan Region of São Paulo, the largest
urban agglomeration from South America. This extreme weather event drove the
region’s water and sanitation services to the brink of a collapse. The local water

1.0.1United Nations (2018), IPCC (2013).
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company implemented a series of strict measures to guarantee water supply to the
population, but some of these measures had unintended health consequences. In
this study, we analyze the health effects of the policies implemented by the water
company to cope with the drought. We also explore how the population engaged
with defensive mechanisms against the water issues and whether this behavioral
factor influenced the observed health outcomes.

The third chapter of this dissertation analyzes a different consequence of
a drought that might appear in regions highly dependent on hydroelectric power
plants. The water scarcity reduces the hydroelectric power plants’ capacity, and
thermoelectric facilities usually compensate for this reduction. We investigate if
thermoelectric power plants moved by different fuels impact the health outcomes
of nearby communities. We analyze the consequences of thermoelectric facilities on
early childhood health and infant mortality rates.

The fourth chapter concludes this work by discussing how the main findings
contribute to a deeper understanding of the health consequences of climate changes
on regions expected to observe an increase in the frequency and intensity of droughts.
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2 Health Consequences of Drought-Related Water Supply
Policies: Evidence from São Paulo, Brazil

2.1 Introduction

With the ongoing process of climate change, scientists expect that some
parts of the world will experience an increase in the frequency and intensity of
droughts. As a large share of the world’s population and economic activities are
located in urban centers, it is essential that these regions adapt to the new climate
conditions. Urban agglomerations face many threats related to climate change,
such as rising sea levels, heatwaves, flooding, air pollution, and droughts. The
increase in frequency and intensity of droughts is particularly unsettling for local
governments because they must guarantee proper access to quality water to the
population. Modern societies are starting to learn about mitigation and adaptation
policies against severe water scarcity, and the consequences of not learning it fast
enough are still not well comprehended. Many regions currently rely on a robust
water infrastructure with enough capacity to support society’s demands even in
a situation of water stress. Still, the new pattern of droughts caused by climate
change can intensify water scarcity, forcing these regions to adapt to the new
climate conditions.2.1.1

Because of the large investments needed to adjust supply, water providers
have little available short-term options to face a sudden decrease in water availability.
This study explores the possible health consequences of policies used to cope with
a decrease in water availability in the Metropolitan Region of São Paulo (MRSP).
The MRSP is a large urban agglomeration from Brazil that contains 10% of the
country’s population but produces around 20% of its Gross Domestic Product
(GDP).2.1.2 Although the region has a robust water infrastructure, it experienced
a severe drought that led the local water company to implement a series of strict
measures to guarantee the supply to the population, and to avoid the complete

2.1.1IPCC (2013), IPCC (2014).
2.1.2Antunes (2018).
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depletion of the Cantareira System, the biggest and most important water system
of the region.

One important measure to reduce water use during the drought was the
pressure reduction in the distribution network. This is an ordinary policy used
by water companies to prevent losses through leakage points, but the local water
company used it more intensely during the water scarcity period. The water company
stressed that this policy was crucial to saving water during the drought (SABESP,
2015b). Despite that, laboratory experiments suggest that pressure changes and
the interruption of water supply in the distribution network can compromise the
quality of the water delivered to the final user because it might lead to the intrusion
of external contaminants through cracks in the pipes.2.1.3

Another important water supply policy implemented to expand the capacity
of the Cantareira System was the use of the so-called Technical Reserve, a portion
of the reservoir below the level of the water collection pipes that had to be pumped
up to be used. The Technical Reserve was popularly known as the “dead volume”
of the Cantareira System and it had never been used to supply the MRSP. Even
without clear evidence of the direct relationship between water from the Technical
Reserve and health, salience on the local media led the population to mistrust
the newly available water. This mistrust, in turn, may have induced the residents
supplied by the Technical Reserve to invest in technologies to improve the quality
and availability of water, with possible positive impacts on health.

In this study, we investigate whether the pressure reduction affected hos-
pitalization by fecal-oral transmitted diseases in the MRSP. We also explore the
extent to which the Technical Reserve and behavioral factors might have influenced
the health consequences of the drought-related water policies.

This work relates to two streams of the literature. The first one explores the
linkages between health and access to quality water. Mangyo (2008) and Jalan e
Ravallion (2003) use survey information to investigate the health effects of access to
water in rural China and India. Their results suggest that improvements in access
to quality water improved child health and reduced the prevalence of diarrhea,

2.1.3Fontanazza et al. (2015).
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but these benefits might not be observed in households with uneducated mothers
(MANGYO, 2008). The evidence also suggests that child mortality, a more drastic
health outcome, reduces after improving access to quantity and quality water.2.1.4

Zhang (2012) finds evidence that improved water quality reduces the incidence of
illness in adults, and it also has a positive effect on the weight-for-height ratio for
both adults and children. In addition to direct health benefits, some scholars found
evidence of a long-term positive impact of water quality on school performance,
especially for female students.2.1.5

Ashraf et al. (2017) argue that expanding the infrastructure might not
be enough to guarantee all the health benefits from access to adequate water.
They investigate the effect of inadequate maintenance of the water infrastructure
in Lusaka, Zambia, on health outcomes, economic activity, and time use. Large
unanticipated water supply problems can eliminate most of the benefits from the
access to water infrastructure because households might not invest in alternative
purification methods if they trust the water received is adequate. The results
from Ashraf et al. (2017) suggest that water outages are related to adverse health
outcomes in children under five years of age (an increase in diarrhea, respiratory
infection, and a decrease in vaccination in children under one year of age). They
also find an adverse effect of the outages on economic activity and an increase in
time girls spend doing their chores.

The second stream of literature related to this work suggests that the
population defensively reacts to an increase in pollution, and failing to consider this
avoidance behavior can lead to biased estimates of the impact of pollution on health
(NEIDELL, 2009). Currie et al. (2013) note that there might exist a selection of
households more affected by inadequate water provision. Their work shows that
violations in the quality of water might affect birth outcomes, but more educated
mothers are more likely to move away from the districts exposed to the violations.
This is a particularly serious issue because the literature suggests that exposure to
pollution in the early-childhood might affect health and human capital formation

2.1.4Rocha e Soares (2015), Gamper-Rabindran, Khan e Timmins (2010), Galiani, Gertler e
Schargrodsky (2005).

2.1.5Zhang e Xu (2016).
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throughout the whole life of the exposed individuals (CURRIE et al., 2014). Graff
Zivin, Neidell e Schlenker (2011) find more evidence of defensive behavior against
low-quality water. They used data from a large grocery chain in California and
Nevada to find evidence of an increase in sales of bottled water as a response to
violations in the quality of water provided by the public utility company. Avoidance
behavior can also have a negative impact on populations’ health outcomes. Studying
outbreaks of Dengue in Fortaleza, Brazil, Pontes et al. (2000) find that during a
drought, an increase in the abundance of the Aedes aegypti mosquito might be
associated with households storing water at home, especially when public efforts
to suppress the disease vectors are interrupted. Avoidance behavior might be an
important factor in the drought of the MRSP. The intense media coverage of
the weather shock increased the salience of water-related problems in the region,
especially in the neighborhoods supplied by the Cantareira System, which might
have induced the population to adapt to the new situation.2.1.6

We contribute to this literature by investigating the unintended health
consequences of measures adopted under a severe drought to guarantee water
supply to the population. Unlike most of the literature, our region of interest
has a robust urban infrastructure that seemed adequate to cope with previously
experienced droughts. We focus the investigation on the health consequences of
the pressure reduction policy. Still, relying on time and spatial heterogeneities of
the policies, we also analyze the health impacts on the population supplied by
the Cantareira System and discuss how avoidance behavior affected the observed
results.

Our results suggest that, although important to save water, the pressure
reduction policy had a negative effect on health outcomes. Hospitalization by fecal-
oral transmitted diseases increased in regions exposed to this measure, especially
in low-income neighborhoods.2.1.7 The results also suggest that the low-income
population supplied by the Cantareira System observed a decrease in hospitalization
by fecal-oral transmitted diseases. This seems to be explained by a more active

2.1.6As discussed in Appendix 2.B.
2.1.7Low-income neighborhoods are defined as Census Tracts with more than 50% of the hou-
seholds living with monthly income below or equal to a minimum wage per capita.
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engagement with defensive behavior, as we also observed an increase in the price
of bottled water in these regions. Although our analyses suggest a positive impact
of the pressure reduction policy on hospitalization, we are not able to completely
decouple the specific effects of variations in the quality and quantity of water
from the effects of people’s behavior. We find evidence that these are all plausible
explanations, but we can not fully distinguish between these causes.

The remainder of this work is organized as follows. Section 2.2 presents
details about the water system that supplies the MRSP and discusses the main
efforts from the water company to guarantee water supply to the population.
Section 2.3 presents the data used in this analysis, and Section 2.4 discusses the
empirical strategy adopted. Section 2.5 shows the main results. Section 2.6 discusses
differential effects observed in the Cantareira-supplied regions and the possibilities
of population’s engagement with avoidance behavior. Finally, Section 2.7 concludes
this work.

2.2 Background

The Metropolitan Region of São Paulo is home to around 20 million inha-
bitants and comprehends 39 municipalities. The local water company, SABESP
(“Companhia de Saneamento Básico do Estado de São Paulo”), is a mixed capital
company with the state’s government being the majority shareholder. SABESP sup-
plies water for 35 municipalities from the MRSP and operates in 365 municipalities
in the State of São Paulo (SABESP, 2015a; SABESP, 2015b).

The water company manages the Integrated Metropolitan System (SIM)
that provided water to the MRSP through eight water reservoirs.2.2.1 The largest
water production facility, called Guaraú Water Treatment Facility (“ETA Guaraú”),
uses water from the Cantareira System’s reservoirs. Before the drought, it supplied
water to about half of the population of the MRSP, with a water treatment capacity
of up to 33 m3/s (SABESP, 2015a).

2.2.1Alto Cotia, Baixo Cotia, Alto Tietê, Guarapiranga, Rio Claro, Rio Grande, Ribeirão da
Estiva, and Cantareira (SABESP, 2015b).
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In 2014 and 2015, the MRSP was affected by a severe drought that put
stress on the whole water supplying system. This region is marked by a well-defined
wet period, from December to February, and a dry period during winter, from
June to August. During the wet season of 2013/2014 and 2014/2015, the region
experienced a large precipitation deficit, which was aggravated by the fact that
previous years were also below the historical average of precipitation for the wet
period (COELHO; CARDOSO; FIRPO, 2016). This water scarcity was remarkably
intense in the Cantareira System. In the period of 2013/2014, it registered only
53% of the historical average precipitation, reaching the lower amount of rain in
more than 80 years (SABESP, 2015a). As shown in Figure 2.2.1, with this adverse
weather scenario, the level of water in the reservoirs dropped sharply, and the water
company, along with the whole population, had to struggle to adapt to a situation
of severe water scarcity.2.2.2

Figure 2.2.1 – Level of the water reservoirs in recent periods

Notes: Figure built by the authors with information from the website of the water company. This figure shows the
water availability in relevant reservoirs supplying the MRSP. When the level of the reservoirs from Cantareira

System was not available, we interpolated it based on the water availability and its original capacity.

2.2.2The negative level of water for the Cantareira System’s reservoirs shows the use of the
Technical Reserve.
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The water company implemented strict actions to guarantee water supply
to the population and to prevent the complete depletion of the Cantareira System’
reservoirs. Some of these actions were: (i) rearrange the water distribution system
so that regions previously supplied by the Cantareira System could also be supplied
by other systems; (ii) as of May 2014, the water company started to withdraw
water from the Technical Reserve of the Cantareira System;2.2.3 (iii) the company
intensified programs to prevent losses in the system, which included a reduction in
the pressure of the distribution network to avoid leakage-related losses; (iv) the
company implemented a financial stimulus with bonuses and penalties to encourage
clients to save water, but only the latter seems to have been effective, as discussed
by Grover e Lucinda (2020); and (v) a wide variety of institutional actions, like
advertising to the population about the drought and how to save water.2.2.4

2.3 Data

To assess health issues arising in the MRSP during the drought, we used
data on hospitalization by water-related diseases taken from the Brazilian Ministry
of Health through its system of information (Datasus). This database allows us
to identify the zip code of residence of each patient whose hospitalization was
paid by the public health system. The data also contains information on the
patient’s age, gender, days of permanence in the hospital, main disease that led
to the hospitalization, among others. This information comes specifically from the
Hospital Information System (“SIH - Sistema de Informações Hospitalares”) that
registers every accepted request made by health facilities to be refunded by the
public health system. The main type of disease analyzed throughout this study is
the incidence of fecal-oral transmitted diseases with definition based on FUNASA

2.2.3In May/2014, when the Technical Reserve 1 was added to the Cantareira System’s reservoirs,
the total water volume increased 182 million cubic meters (from 982 to 1,164). With Technical
Reserve 2, that started to operate in October 2014, another 105 million cubic meters were added
to the system.

2.2.4While actions 1 through 3 are related to the supply side of the water market, the last two
actions can be related to the demand of water.
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(2010).2.3.1

Socioeconomic characteristics of the MRSP come from the 2010 Brazilian
Census of the Brazilian Institute of Geography and Statistics (IBGE), which allows
us to work at the Census Tract (CT) level in the regions of interest. To map each
zip code from Datasus to a CT of the MRSP, we used georeferenced databases of
streets and CTs provided by CEM (“Centro de Estudos da Metropole”2.3.2). In this
mapping, around 10% of the hospitalizations could not be mapped to a CT, so
we dropped them from the sample. With information from hospitalization, taken
from Datasus, and the population in each CT, taken from the 2010 Census, we are
able to build our main output variable, which is the hospitalization rates, given
by the number of hospital admissions in a specific month and CT divided by the
population of the CT normalized by a hundred thousand. Figure 2.3.1 shows that
the hospitalization rates by fecal-oral transmitted diseases increased in the years
2014 and 2015, especially in low-income neighborhoods exposed to the pressure
reduction policy.

2.3.1Diseases classified by the 10th revision of the International Classification of Diseases by the
codes A00 − A04, A06 − A09, and B15.

2.3.2http://centrodametropole.fflch.usp.br/en
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Figure 2.3.1 – Hospitalization rate by fecal-oral transmitted disease

Notes: Built by the authors with information from Datasus, IBGE, and georeferenced maps. This figure shows the
hospitalization rates by fecal-oral transmitted diseases in different regions of the MRSP.

To create the main treatment variable, we had to evaluate whether or not
the pressure reduction policy was targeting each CT and to find out which CTs
received water from the Cantareira System during the drought. Both of these
variables were built by georeferencing maps from the water company’s publicized
reports and regulations.

To evaluate which CTs were exposed to the pressure reduction measure,
we georeferenced a map disclosed by the water company showing regions under
the influence of Pressure Reduction Valves (PRVs).2.3.3 This treatment definition
contains some measurement error that can not be purged from the variable with
the available data. For example, it is possible that regions not influenced by the
PRVs also experience a reduction in the pressure of the distribution system, or had
PRVs installed after the disclosure of the map. Even regions under the influence of
the PRVs might have experienced different pressure dynamics through the drought.

2.3.3The water company disclosed this information as a response to deliberation 545/2015 from
the regulatory agency.
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For instance, we do not know how many hours a week each region experienced
the pressure reduction and neither how much was the pressure reduced in each
neighborhood (pressure can drop to zero or to half the usual value). Regions under
the influence of the PRVs disclosed in the map are considered the most likely
exposed to the pressure reduction policy, and, therefore, they will be considered as
the treated regions. We also consider that this pressure reduction policy started to
operate in February 2014, the same month as the first largely publicized action of
the water company to save water - a bonus program aiming at clients living within
the region supplied by the Cantareira System (SABESP, 2015a).

Water scarcity was different in each water reservoir supplying the MRSP
(as shown in Figure 2.2.1). Therefore, it is also important to consider which region
was supplied by each of the water systems. To gather this information, we used a
2015 report (SABESP, 2015a) that presents a map showing areas supplied by five
water reservoirs in three different periods (December of 2013, September of 2014,
and March of 2015). Georeferencing those maps, we were able to cross information
with georeferenced Census Tracts from IBGE and selected only CTs that were
supplied by the same water system during the whole analyzed period.

Because the MRSP is a large and heterogeneous region, we had to overcome a
couple of challenges to build the database for this study. Initially, some municipalities
from the MRSP do not have well-defined zip codes. Streets from these municipalities
are all registered under the same few zip codes. In these municipalities, allocating
hospitalization to a CT would be unreliable because every hospital admission
would be equally allocated among every CT within the city (because they all
share the same few zip codes).2.3.4 Another challenge is that some CTs changed
the supplying water systems throughout the drought. In these regions, we do not
have precise information about the supplying system in each period of time, so
we risk allocating these CTs to the wrong water reservoir.2.3.5 Besides that, for

2.3.4Black regions in Figure 2.G.1 show these municipalities with few zip codes.
2.3.5We consider that two groups of CTs changed the water system. The first one are those
that appeared to be supplied by different reservoir in each of the periods from the maps (maps
from December of 2013, September of 2014, and March of 2015) of the 2015 report from the
water company (SABESP, 2015a). The second group contains CTs from the Paulista Avenue and
the Pinheiros regions. They were originally supplied by the Cantareira System, but the report
mentioned above (SABESP, 2015a) indicated that they would start to be supplied by other water
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some CTs we do not have sufficient information about the water system.2.3.6 To
avoid considering the wrong assumptions regarding the water condition in each
neighborhood, we excluded from the main sample all these CTs with incomplete
and unreliable information about the supplying water system.

Figure 2.3.2 presents the details of the main sample used throughout this
study after all the exclusions discussed in the previous paragraphs. Dark blue
and dark green areas in the north of the MRSP contain CTs constantly supplied
by the Cantareira System, while those in light colors received water from some
other water system. CTs painted in blue (dark or light) are those exposed to
the pressure reduction policy. White regions contain CTs that changed the water
system throughout the drought (the central region) or CTs in which we have no
precise information about the supplying system. Regions in black are those in
municipalities with few zip codes that were excluded from the sample.

systems throughout 2015.
2.3.6We consider that we do not have precise information for two groups of CTs: CTs not allocated
to any supplying system in the report from 2015 (SABESP, 2015a), and CTs allocated to the
Cantareira System in this 2015 report, but not in other reports from the company. A 2011
environmental impact report of the São Lourenço Production System (“Relatório de Impacto ao
Meio Ambiente do Sistema Produtor São Lourenço”) had a map showing regions supplied by each
water reservoir (SABESP, 2011). We georeferenced regions from the Cantareira System in this
report to further check for regions allocated to the wrong water system.
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Figure 2.3.2 – Sample selection

Notes: This figure presents the main sample selection used throughout the analysis.

Appendix Section 2.G presents different maps of the MRSP and the selected
sample,2.3.7 and the Table 2.A.1 compares characteristics of the CTs included in the
main sample with those excluded from the analysis. The region used in this study
is larger than that not used, both in terms of population and number of Census
Tracts (but not in land cover).

Table 2.3.1 compares characteristics of the CTs from the main sample.
Column 1 shows the characteristics of CTs that receive water from the Cantareira
water system but that are not exposed to the pressure reduction policy. Column
2 shows those regions receiving water from the Cantareira that are exposed to
the pressure policy. Column 3 presents the characteristics of CTs that do not
receive water from the Cantareira System and that are not exposed to the pressure

2.3.7Figure 2.G.1 shows all the 39 municipalities from the MRSP, highlighting the cities excluded
from the analysis and the regions most likely exposed to the pressure reduction policy. Figure
2.G.2 shows the full MRSP highlighting in red the CTs included in the main sample. Figure 2.G.3
shows which regions were considered to be supplied by which water reservoir throughout the
whole drought, and Figure 2.G.4 shows the average altitude of each CT from the sample.
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reduction policy. Finally, column 4 shows the regions that do not receive water
from the Cantareira System but that are exposed to the pressure reduction.

Initially, we note that the regions presented in column 3 (outside Canta-
reira System and not exposed to pressure reduction) are much larger in terms
of inhabitants and number of Census Tracts. The regions outside the Cantareira
System’s influence also concentrate a larger share of the low-income population,
both outside (column 3) and inside (column 4) the pressure reduction area. The
population living in regions receiving water from the Cantareira System (columns
1 and 2) are slightly older, with higher income, more educated, and better served
by urban utilities than the rest of the sample. The access to the public water
system and to garbage collection is close to 100% in every region from the sample
(not shown in the table), but access to the sewage system is slightly higher in the
neighborhoods receiving water from the Cantareira System.2.3.8 This shows that the
water infrastructure in the MRSP is already robust compared to those investigated
in most of the papers from the literature related to this study. Finally, CTs exposed
to the pressure reduction policy (columns 2 and 4) have a slightly lower altitude.

2.3.8Being connected to the sewage system is different from having the sewage treated. Although
the share of people connected to the sewage collecting system is high, the share of treatment
waste water is low.
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Table 2.3.1 – Descriptive statistics

Cantareira No Cantareira
No Pr. Reduc Pr. Reduc No Pr. Reduc Pr. Reduc

Variables (1) (2) (3) (4)
Low-income CTs 1429 1082 5223 1987
High-income CTs 2456 2179 4506 1466
Low-income pop [MI] 1.09 0.79 3.76 1.36
High-income pop [MI] 1.5 1.3 2.74 0.86
Total fecal-oral hosp. [K] 3.41 3.61 9.92 3.64
Shr pop 0-5 years 0.06 0.06 0.07 0.07

(0.02) (0.02) (0.02) (0.02)
Shr pop above 60 0.11 0.12 0.09 0.09

(0.06) (0.06) (0.06) (0.05)
Income pc [2018 K BRL] 1.67 1.79 1.28 1.29

(1.5) (1.82) (1.34) (1.51)
Literacy rate 0.96 0.96 0.95 0.95

(0.04) (0.04) (0.04) (0.04)
Shr HH sewage 0.89 0.91 0.88 0.89

(0.23) (0.2) (0.24) (0.24)
Average height [m] 777.35 763.13 790.22 774.76

(29.72) (25.65) (24.16) (26.67)
Notes: This table shows the main characteristics of the preferred sample dividing it
between the regions analyzed. Column 1 shows CTs supplied by the Cantareira System
but not exposed to the pressure reduction policy. Column 2 presents the characteristics
of CTs that receive water from the Canteira System and are exposed to the pressure
reduction. Column 3 shows CTs not supplied by the Cantareira System and not exposed
to the pressure reduction. Column 4 presents the characteristics of the CTs not supplied
by the Cantareira System but exposed to the pressure reduction policy. The data comes
from the 2010 IBGE Census and from the INPE’s Topodata project. The income per
capita is given in thousands of 2018 BRL. Low-income Census Tracts are defined as CTs
where more than half of the households live with less than one minimum wage per capita.

To gather information on the level of water in each of the main water
reservoirs from the MRSP, we averaged daily information taken from the water
company’s website. We used data from the Topodata project, of the National
Institute for Spatial Research (INPE), to build the average altitude of each Census
Tract. This data contains information about altitude in a grid with a resolution
of around 90 meters, and the average altitude is calculated based on the average
grid that falls within each CT, or the closest grid point. Finally, the period of the
analysis is from January 2011, three years before the beginning of the drought,
until the end of 2015, when the Technical Reserve from the Cantareira System
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stopped being used (two years after the beginning of the drought).

2.4 Specification

In this study, we are interested in evaluating if the pressure reduction policy
implemented by the water company in the MRSP affected health outcomes of
the population. We rely on the heterogeneous spatial distribution of the water-
saving measure to investigate its impact on hospitalization by fecal-oral transmitted
diseases. Our first specification presented in Equation 2.4.1 is a difference-in-
differences regression.

yit = β1dtLowPressi + θLit + γmt + δi + εit (2.4.1)

Where yit is the hospitalization rate on CT i at month t. LowPressi and
dt are indicator variables equal to 1, respectively, if CT i is exposed to the pressure
reduction policy and if at month t the policy had already started. Lit controls
for the monthly average level of the water reservoir supplying CT i at period t,
to account for diseases caused not by the policy under scrutiny but by the low
level of the water in the supplying reservoir. γmt is a municipality by period fixed
effect that captures actions implemented in each period t by the municipality m
to which CT i belongs. δi is a Census Tract fixed effect to capture time-invariant
characteristics of that CT. εit is an idiosyncratic error. The coefficient of interest
is β1 that captures the relative increase in hospitalization by a hundred thousand
inhabitants from patients exposed to the pressure reduction policy.

As discussed in the data section, our pressure reduction variable includes
measurement errors that could not be purged away with the available information,
and we might be mistakenly allocating some CTs to the treatment or control status.
Therefore, our estimations might be suffering from attenuation bias. Besides that,
the estimated coefficients capture not only the effect of the quality of the water on
health outcomes, but the net effect of it bundled with any type of avoidance behavior
that the population might have engaged with. The underlying assumption of the
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difference-in-differences method is that health outcome trends would have been the
same in control and treatment groups, had the policies not being implemented. To
investigate this hypothesis, in Section 2.5.3 we conduct robustness checks using
hospitalization rates by other types of diseases unrelated to water.

We estimate the regressions with a two-way cluster robust covariance matrix
at the month and Census Tract levels to account for: (i) within Census Tract serial
correlation over time; and (ii) spatial correlation between the Census Tracts in a
given month. We also weigh the regressions by the number of inhabitants from
each Census Tract.

To better understand the dynamic effects of the policy under investigation,
the difference-in-differences analysis will also be replicated with an event-study fra-
mework interacting the treatment with dummies for lags and leads from the month
considered as the beginning of our treatment (January of 2014). This approach
intends to capture policy heterogeneous responses along the time dimension. Time
heterogeneity may arise, for instance, if people realize after a few months that the
quality of water is getting worse and react by taking preventive measures. This
could result in an initially high impact of the policy on health outcomes, followed
by a decrease in treatment effect. On the other hand, it is also possible that the
length of exposure to low-quality water has cumulative effects on the population’s
health, so the usage of the public health system might be higher after some months
of the policy in place. The effect of the media coverage of the water issues is also
relevant to time heterogeneity since it can influence peoples’ behavior throughout
the drought.

Analyzing treatment effect before the policy implementation in an event-
study setup is also akin to a parallel trend test, therefore, with this specification,
we further analyze the validity of the difference-in-differences hypothesis. The
estimated equation for the event-study is given by Equation 2.4.2:

yit =
∑

τ∈(pbp,pap)
(ϕτDτtLowPressi) + θLit + γmt + δi + εit (2.4.2)

Where yit stands for the same health outcomes as in the difference-in-
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differences analysis. pbp and pap stand for periods before and after the policy was
implemented (that varies from -36 in January of 2011 to +23 in December 2015).
LowPressi equals 1 if CT i is exposed to the pressure reduction policy. Dτt is an
indicator variable that equals 1 if period t is τ months away from the beginning
of the policy. Before the policy is implemented, τ is negative, it is equal to zero
in January of 2014, and it is positive thereafter. γmt, δi, and Lit are fixed effects
and a control like in the previous specification. εit is an idiosyncratic error. The
coefficient of interest is ϕτ , which measures the relative variation of hospitalization
by a hundred thousand inhabitants τ months away from the policy implementation
for patients living in CTs exposed to the pressure reduction policy.

2.5 Results

2.5.1 Main result

Table 2.5.1 presents the main results of this analysis. Panel A and B, show
the results for, respectively, low and high-income populations. Columns 1 through
3 use the rate of hospitalization as the dependent variables, while in column 4, the
dependent variable is in level (hospitalization by month in each CT).
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Table 2.5.1 – Hospitalization by fecal-oral transmitted disease

Dependent variable
Rate Level

(1) (2) (3) (4)

Panel A: low-income neighborhoods

lowPress:dt 0.282∗∗ 0.417∗∗∗ 0.361∗∗ 0.003∗∗
(0.121) (0.133) (0.149) (0.001)

Mean dep. var 2.83 3.03 3.03 0.03

Observations 805,740 583,260 583,260 583,260
Adjusted R2 0.0004 0.001 0.033 0.045

Panel B: high-income neighborhood

lowPress:dt 0.112 0.235∗∗ 0.192∗ 0.002∗∗
(0.103) (0.099) (0.104) (0.001)

Mean dep. var 2.02 2.05 2.05 0.02

Observations 934,320 636,420 636,420 636,420
Adjusted R2 0.00000 0.00004 0.104 0.100

Preferred sample x x x
CT FE x x
Period x Mun FE x x
Level control x x

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract
and date levels. Robust standard errors are in parentheses. Regressions are
weighted by the number of inhabitants in each CT. Columns 1 through 3
use the rate of hospitalization by a hundred thousand inhabitants as the de-
pendent variable, while column 4 uses hospitalization in level. Low-income
Census Tracts are defined as CTs where more than half of the households
live with less than one minimum wage per capita.

Column 1 is a simple difference-in-differences without any controls or fixed
effects. Because in this model we are not controlling for the level of the reservoir
supplying each CT, we can use the whole MRSP without the need to exclude
those CTs that either changed the supplying system or for which we have no
information. This larger sample is presented in Figure 2.G.1. In this specification,
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we only exclude from the sample CTs from municipalities with few zip codes. In
column 2, we repeat the specification without controls of fixed effects but using
only the preferred sample presented in Figure 2.3.2. Columns 3 and 4 present our
benchmark specification, with the preferred sample and all the controls and fixed
effects discussed in the previous sections. While in column 3, the dependent variable
is the rate of hospitalization, in column 4, we use the variable in levels.

The effect of the pressure reduction policy in hospitalization by fecal-oral
transmitted disease is positive in every specification, and it is always stronger
in low-income neighborhoods.2.5.1 When we move from the specification with the
whole metropolitan region to that with our preferred sample (from column 1 to 2),
the effect increases in magnitude and becomes more significant. Results from the
benchmark specification (column 3) suggest that the effect of the pressure reduction
policy in the rate of hospitalization by fecal-oral transmitted diseases accounts for
around 10% of the average hospitalization rate, with low-income neighborhoods
observing slightly larger effects.

Figure 2.5.1 presents the estimated coefficients from the event-study aggre-
gating the months at the trimester level. We notice that the average coefficients,
represented by the dashed horizontal red lines, are larger after the beginning of the
pressure reduction policy than before it, especially for low-income neighborhoods.
In these regions, we observe an increase in hospitalization in the four trimesters
after the beginning of the policy, then the coefficient drops to a value close to zero
again. The event-study, presented in appendix Figure 2.E.1, uses the specification
with monthly periods instead of trimesters. It shows a similar pattern but with
noisier coefficients. The increase in the coefficients after the policy intervention
followed by an eventual drop is consistent with the population increasingly engaging
with defensive behavior.

2.5.1Results are similar when using a larger spatial aggregation. In Appendix 2.F, we repeat this
analysis using Weighting Areas (an aggregation of Census Tracts) as the unit of observation. The
results are similar, but slightly less significant, which might be due to the reduced number of
observations.
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Figure 2.5.1 – Event-study for the hospitalization by fecal-oral diseases

Notes: This figure presents the estimated coefficients for the event-study showing the impact of the pressure
reduction policy on hospitalization in each trimester before and after the beginning of the policy.

Before the beginning of the pressure reduction policy, the coefficients seem
to be stably varying around a mean. This is an evidence in favor of the parallel
trend hypothesis for the treatment and control groups before the implementation
of the policy, as discussed in the specification section.

2.5.2 Age heterogeneity

Using our benchmark specification, in Table 2.5.2 we investigate the effect
of the pressure reduction policy for different age groups. The dependent variables
are defined as hospitalization of people in each age group by a hundred thousand
inhabitants from the same age group in each CT. Results suggest that the population
under 5 and above 60 years of age are the most affected groups, and the effect is
much stronger in low-income neighborhoods.
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Table 2.5.2 – Hospitalization by fecal-oral transmitted disease by age group

Dependent variable
Age 0-5 Age 5-18 Age 19-60 Age 60-more

(1) (2) (3) (4)
Panel A: low-income neighborhoods

lowPress:dt 2.529∗∗ 0.148 0.063 1.190∗
(1.204) (0.303) (0.078) (0.687)

Mean dep. var 18.05 3.18 0.78 5.35

Observations 583,260 583,260 583,260 583,260
Adjusted R2 0.020 0.012 0.007 0.004
Panel B: high-income neighborhood

lowPress:dt 0.604 0.330 0.067 0.387
(1.217) (0.271) (0.061) (0.289)

Mean dep. var 13.56 2.77 0.61 3.29

Observations 628,500 628,500 628,500 628,500
Adjusted R2 0.088 0.056 0.016 0.011

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract and
date levels. Robust standard errors are in parentheses. Regressions are weighted
by the number of inhabitants in each age group. 143 high-income Census Tracts
did not contain age information, so they were excluded from the sample. Low-
income Census Tracts are defined as CTs where more than half of the households
live with less than one minimum wage per capita. Each column presents a diffe-
rent age group.

2.5.3 Robustness check

Table 2.5.3 shows the main robustness check from this exercise. We use the
benchmark specification to investigate if the beginning of the pressure reduction
policy affected other diseases that are not directly related to water.
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Table 2.5.3 – Hospitalization by other diseases

Dependent variable
Vector Flu Neoplasm Appendicitis Head injury
(1) (2) (3) (4) (5)

Panel A: low-income neighborhoods

lowPress:dt 0.135 −0.007 −0.056 0.025 0.198
(0.133) (0.443) (0.068) (0.160) (0.193)

Mean dep. var 0.57 25.41 0.68 4.37 6.83

Observations 583,260 583,260 583,260 583,260 583,260
Adjusted R2 0.045 0.154 0.017 0.030 0.050
Panel B: high-income neighborhood

lowPress:dt 0.129 0.444 −0.150∗ 0.253∗ −0.082
(0.103) (0.482) (0.080) (0.130) (0.222)

Mean dep. var 0.45 18.7 0.85 3.14 5.89

Observations 636,420 636,420 636,420 636,420 636,420
Adjusted R2 0.041 0.337 0.020 0.083 0.245

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract and date levels. Ro-
bust standard errors are in parentheses. Regressions are weighted by the number of inhabitants in
each CT. Low-income Census Tracts are defined as CTs where more than half of the households
live with less than one minimum wage per capita. The dependent variable from each column is
the hospitalization rate by a specific disease considering all age groups.

Most coefficients are statistically indistinguishable from zero, and we observe
mixed signs in both income groups. The only borderline statistically significant
coefficients are for neoplasm and appendicitis in high-income neighborhoods.
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2.6 Cantareira System and the avoidance behavior

We previously discussed that the Cantareira System’s reservoirs were the
most affected by the drought, and that, as of May 2014, the water company
started using the Technical Reserve to increase the water capacity of it. In this
section, we test whether the population receiving water from this water reservoir
experienced different dynamics in hospitalizations by fecal-oral transmitted disease.
The first specification, presented in Equation 2.6.1, tests whether the water from the
Technical Reserve also affected hospitalization by fecal-oral transmitted diseases.

yit = β1dtLowPressi + β2dcanttCanti + θLit + γmt + δi + εit (2.6.1)

In this specification, Canti is an indicator variable that equals 1 if Census
Tracts i receives water from the Cantareira System throughout the whole period of
the drought and the variable dcantt equals 1 if period t is after the implementation
of the Technical Reserve (equals 1 after May of 2014). Table 2.6.1 shows the
results for this specification in columns (1) for low-income and (3) for high-income
neighborhoods.

Because the Cantareira System was more affected by the drought, it is also
possible that the pressure reduction policy was more intensely used in regions sup-
plied by this reservoir. We test this hypothesis with a triple-differences specification
presented in Equation 2.6.2. The interpretation of this model is slightly different
from the regular triple-differences used in the literature. Usually, this method is
used to control for two sets of unobservable time-varying characteristics, so each
control group would be used to purge the variations of a specific characteristic. Here,
the triple-differences is used to investigate whether the pressure reduction policy
had a different effect inside and outside of the region supplied by the Cantareira
System. The model specification is as follows:

yit =β1dtLowPressi + β2dtCanti + β3dtLowPressiCanti

+ θLit + γmt + δi + εit
(2.6.2)
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This specification is similar to the regular differences-in-differences from
Equation 2.4.1, but we add another interaction term Canti (equals 1 if CT i is
supplied by the Cantareira System). The coefficients of interest are β1, β2, and β3. In
this triple-differences specification, β1 is the relative increase in the hospitalization
rate from patients exposed to the pressure reduction policy. Similarly, β2 in the
relative increase of hospitalization from patients living within the Cantareira region.
Finally, β3 is the coefficient of the triple interaction, and it measures the relative
increase in hospitalization of patients affected by the pressure reduction within the
Cantareira region. In other words, this coefficient is the excess impact of being
exposed to the pressure reduction within the Cantareira region relative to the
impact of it outside this region. Table 2.6.1 shows results for this specification in
columns (2) for low-income and (4) for high-income neighborhoods.
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Table 2.6.1 – The effect of the Cantareira System

Dependent variable
Rate of hospitalization: fecal-oral

(1) (2) (3) (4)
Low-income High-income

lowPress:dt 0.380∗∗ 0.439∗∗∗ 0.192∗ 0.489∗∗∗
(0.150) (0.154) (0.106) (0.156)

cant:dcant −1.095∗∗∗ −0.010
(0.315) (0.199)

dt:cant −0.696∗ 0.223
(0.359) (0.240)

lowPress:dt:cant −0.190 −0.593∗∗
(0.271) (0.242)

Mean dep. var 3.03 2.05

Observations 583,260 583,260 636,420 636,420
Adjusted R2 0.033 0.033 0.104 0.104

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract
and date levels. Robust standard errors are in parentheses. Regressions are
weighted by the number of inhabitants in each CT. The dependent variable
is the rate of hospitalization by a hundred thousand inhabitants for fecal-oral
transmitted diseases. Columns 1 and 2 analyze the effects in low-income regi-
ons, while columns 3 and 4 are for high-income CTs. Low-income Census Tracts
are defined as CTs where more than half of the households live with less than
one minimum wage per capita. Columns 1 and 3 use the specification from
Equation 2.6.1, and columns 2 and 4 use specification from Equation 2.6.2.

The results from both specifications suggest that the low-income CTs
receiving water from the Cantareira System improved after the beginning of the
policy when compared to the rest of the population of the MRSP. Hospitalization
by fecal-oral transmitted diseases decreased in low-income neighborhoods after
the beginning of the usage of the Technical Reserve (column 1), and the triple-
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differences specification presents no evidence that the pressure reduction was more
harmful in the Cantareira region. In fact, for high-income neighborhoods, the
beginning of the pressure reduction policy actually reduced the hospitalization in
regions supplied by the Cantareira System, relative to the effect observed outside
this reservoir.

These reductions in hospitalization observed in regions supplied by the
Cantareira System might be explained by the population engaging in defensive
behavior against the consequences of water issues. Salience about the problems
related to the water supply in the Cantareira System was high in the MRSP during
the drought, and it is possible that the population reacted to this information
by avoiding consuming the water supplied by the water company.2.6.1 To test this
hypothesis, we follow Graff Zivin, Neidell e Schlenker (2011) and test if the policies
affected the consumption of bottled water. We have information on the average
price of bottled water in different zip codes from the MRSP.2.6.2 This data was
gathered by the Foundation Institute for Economic Research (FIPE) to calculate
the region’s price index. To allocate bottled water prices from zip codes to CTs, we
calculated the average price observed in every zip code within 2 kilometers of each
CT, and weighted by the inverse of the distance between the CT and the zip code.

2.6.1We discuss the salience and media coverage of the problems related to the Cantareira System
in Appendix 2.B.

2.6.2We don’t observe the volume of water sold in each zip code, but we assume that the price
and volume are related.
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Table 2.6.2 – Observed effect in bottled water prices

Dependent variable
Within 2 km price of bottled water

(1) (2) (3) (4)
Low-income High-income

lowPress:dt 0.022 0.017 −0.035∗∗∗ −0.028∗∗∗
(0.016) (0.018) (0.010) (0.010)

cant:dcant 0.189∗∗∗ 0.036
(0.062) (0.02355)

dt:cant 0.220∗∗∗ 0.067∗∗
(0.070) (0.027)

lowPress:dt:cant 0.003 −0.017
(0.027) (0.017)

Mean dep. var. 1.93 1.89

Observations 203,629 203,629 331,075 331,075
Adjusted R2 0.523 0.526 0.553 0.554

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract
and date levels. Robust standard errors are in parentheses. Regressions are
weighted by the number of inhabitants in each CT. The dependent variable is
the average price of bottled water within 2 km of each CT. Columns 1 and
2 analyze the effects in low-income regions, while columns 3 and 4 are for
high-income CTs. Low-income Census Tracts are defined as CTs where more
than half of the households live with less than one minimum wage per capita.
Columns 1 and 3 use the specification from Equation 2.6.1, and columns 2 and
4 use specification from Equation 2.6.2.

Results presented in Table 2.6.2 suggest that bottled water prices increased
in low-income regions supplied by the Cantareira System. This result, combined
with results in columns 1 and 2 from Table 2.6.1, corroborates with the avoidance
behavior hypothesis. For the high-income neighborhoods, the low-pressure region
seems to induce a reduction in the prices, but the magnitude of the coefficient
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is much smaller than the increase observed in low-income Cantareira regions.
Furthermore, it is possible that high-income households invested in more costly
defensive actions such as better water filtration and storage systems.2.6.3 These
investments, in turn, might have led to a relative drop in the demand for bottled
water. Results are similar when using prices from within 10 km of each CT, as
shown in Appendix Table 2.D.2.

These results are suggestive that the population reacted to the intense
media coverage about water scarcity in the Cantareira System’s water reservoirs by
engaging in avoidance behavior. This defensive behavior might have led the more
at risk population from the low-income regions to observe a relative reduction in
the hospitalization by fecal-oral diseases.

2.7 Discussion

Climate change is expected to increase water scarcity in different parts of the
planet. This adverse weather shock can have severe effects on urban agglomerations,
posing a risk to water supply services of local governments around the world. In
this work, we investigate health consequences of a policy implemented to cope with
a severe and unexpected drought that affected a large metropolitan region from a
developing country.

In 2014 and 2015, the Metropolitan Region of São Paulo (MRSP) suffered
one of the most severe droughts of its recent history. This adverse weather shock
drove the water services, which seemed adequate to deal with past weather events,
to the brink of a collapse. To manage this situation, the local water company had to
implement a series of strict measures to guarantee water supply to the population
and to avoid the complete depletion of the Cantareira System, the largest and
most important water reservoir from the region. In this work, we analyzed the
unintended health consequences of the pressure reduction policy, which consisted
of reducing the pressure of water within the distribution network to prevent losses

2.6.3Figure 2.B.2, from Section 2.B, shows an increase in the volume of internet searches for
terms related to defensive mechanisms against droughts. Although not conclusive, this could
indicate higher interest in investing in defensive methods.
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through leakage points. We also discussed the health dynamics in regions supplied
by the Cantareira System and the influence of avoidance behavior.

The main results suggest that the pressure reduction policy increased
hospitalization by fecal-oral transmitted diseases. We also found evidence that
the population engaged with defensive behavior against the drought, especially
in regions supplied by the Cantareira System. The defensive measures seems to
have influenced the observed hospitalization rates. In accordance with most of the
literature, our results indicate that children under 5 years of age and the elderly
population above 60 years old, living in low-income neighborhoods, are the most
affected by the water policy. In our benchmark specification, the pressure reduction
policy in low and high-income neighborhoods represents, respectively, around 12%
and 9% of the hospitalization rates observed in each region.

This study highlights that the sudden implementation of water-supply
policies to cope with an unexpected drought can affect the population’s health.
While the pressure reduction and the Technical Reserve of the Cantareira System
can both be considered a water-supply policy, we only found evidence that the former
had a negative effect on health. Nevertheless, our evidence on the population’s
engagement with defensive behavior, along with Grover e Lucinda (2020) argument
that consumers react to financial stimulus, suggests that water companies could
also rely on demand-side policies to manage a situation of water stress.

It is important to note that, in this study, we only investigate the aggre-
gated impact of the pressure reduction policy, without delving into the specific
mechanisms that led to the increase in hospitalization. The quality of the tap
water, water shortages, as well as behavioral factors, are all potential channels
influencing the observed hospitalization rates, and they all seem to play a role in this
negative consequence of the water-saving policy. Further investigations are needed
to disentangle these effects and they would contribute to a better understanding of
the impacts of droughts in urban agglomerations.
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Appendix

2.A Descriptive statistics

Table 2.A.1 – Preferred sample compared to the rest of the MRSP

Variable Preferred region Rest of the MRSP
1 Total population [MI] 13.49 6.17
2 Quantity of Census Tracts 20452 9423
3 Pop. under 1 year of age [thousand] 179.83 80.92
4 Pop. between 1 and 5 years old [thousand] 721.4 324.53
5 Pop. between 6 and 18 years old [thousand] 2931.02 1318.8
6 Pop. between 19 and 60 years old [thousand] 8364.48 3799.5
7 Pop. above 60 years old [thousand] 1288.15 636.7
8 Shr. of pop. under 1 year of age 0.01 0.01
9 (0.01) (0.01)
10 Shr. of pop. between 1 and 5 years old 0.05 0.05
11 (0.02) (0.02)
12 Shr. of pop. between 5 and 18 years old 0.22 0.21
13 (0.06) (0.06)
14 Shr. of pop. between 18 and 60 years old 0.62 0.62
15 (0.04) (0.05)
16 Shr. of pop. above 60 years old 0.1 0.1
17 (0.06) (0.06)
18 Inhabitants per CT 658.22 651.52
19 (332.58) (353.13)
20 CT altitude 780.86 780.51
21 (27.85) (41.15)
22 Monthly income per capita 1434.01 1641.16
23 (1494.51) (1756.25)
24 Shr. of dwellings under 1 min. wage 0.49 0.47
25 (0.23) (0.24)
26 Shr. of dwellings from 1 to 2 min. wage 0.27 0.26
27 (0.09) (0.1)
28 Shr. of dwellings from 2 to 3 min. wage 0.09 0.09
29 (0.06) (0.06)
30 Shr. of dwellings from 3 to 5 min. wage 0.07 0.08
31 (0.07) (0.08)
32 Shr. of dwellings from 5 to 10 min. wage 0.05 0.07
33 (0.09) (0.1)
34 Shr. of dwellings above 10 min. wage 0.02 0.03
35 (0.07) (0.08)
36 Literacy rate 0.96 0.96
37 (0.04) (0.04)
38 HH with water 0.99 0.95
39 (0.06) (0.18)
40 HH with sewage 0.9 0.82
41 (0.22) (0.32)
42 HH with garbage 1 0.99
43 (0.03) (0.04)
Notes: Comparing the characteristics of the main sample with the Census Tracts excluded from it. Standard
deviations are presented in parenthesis.
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2.B Salience of water issues in the Metropolitan Region of
São Paulo

In this section, we discuss the salience of the drought in the media during
the period of water scarcity. Figure 2.B.1, shows the number of articles found
on the website of Folha de São Paulo, a large Brazilian newspaper, for three
different categories of search parameters. The first category, Cantareira, contains
phrases associated with the Cantareira System. The second category contains
generic searches about the drought. The third specifically looks for references to
the pressure reduction in the water distribution system.2.B.1

This figure reveals some caveats about the information received by the popu-
lation that could potentially influence awareness of the drought, and, consequently,
the observed hospitalization by fecal-oral transmitted diseases. Initially, we notice
almost no discussion about the drought or the Cantareira System prior to 2014.
However, at the beginning of that year, the water company implemented the first
bonus program in regions supplied by the Cantareira System, and, around the
same time, news about the drought and about the Cantareira started to appear in
the media. News related specifically to the pressure reduction in the distribution
system appeared only at the beginning of 2015.

This salience about problems in the Cantareira System might have led
the population to engage more intensely with avoidance behavior, explaining the
increase in the price of bottled water in this region, as well as the relative in
reduction hospitalization by fecal-oral transmitted disease.

2.B.1A single article can belong to more than one category and we rely entirely on the search
engine from the newspaper to select articles according to input words.
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Figure 2.B.1 – Count of articles related to the water issues of the MRSP

Notes: Search parameters (in Portuguese) were defined as follows. Cantareira: “crise hídrica reservatório
cantareira”; “sabesp volume morto”; “sabesp reserva técnica”; “são paulo qualidade volume morto”; and “são
paulo volume morto”. Drought: “sabesp rodízio água”; “são paulo corte fornecimento de água”; “sabesp
racionamento de água”; “sabesp crise hídrica”. Pressure: “crise hídrica são paulo redução de pressão”; “sabesp
válvula redutora de pressão”; “sabesp válvula redução de pressão”; “sabesp pressão reduzida”.

We further discuss population’s engagement with defensive behavior by
analyzing the dynamics of internet search for certain terms related or not to the
water shortage. We use data gathered by Google Trends and investigate internet
searches within the State of São Paulo. Google Trends initially provides a search
index in a weekly basis. In order to compare the results with other analyses from
this study, we aggregate this data to a monthly search index. We analyze this
search index for three terms associated to protection against water shortage, and
four terms associated to public policy, but not to the drought. The search terms
were all in Portuguese, and their translations are: water tank, cistern, artesian well,
public transportation, corruption, violence, and traffic.

Based on Bai e Perron (2003), we investigate structural breaks in the time
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series of the search index for each term.2.B.2 Considering a time series with m

structural breaks and m+ 1 segments of data (j), we analyze the model given by:

searcht = δj + βjxt + ut (2.B.1)

where j = 1, ...,m+ 1 and t = tj−1 + 1, ..., tj . searcht is the search index for
a given term within the State of São Paulo in month t. δj is the average search index
in the segment j and is our variable of interest. xt controls for search indexes for the
same term as searcht, but for all states outside the southeast region. This control
accounts for changes in the interest for each term that might not be correlated
to the drought in the MRSP. We excluded states from southeast because they
might have experienced similar patterns of water scarcity. To aggregate the search
index of every state, we transformed it to standard deviations and averaged it
for each month. For each possible segment of the data, the algorithm calculates
the least-square estimates for each coefficient and computes the Residual Sum
of Squares (RSS). A dynamic programming algorithm is used to compute the
breakpoints that minimize the sum of all RSS.2.B.3

The Figures 2.B.2 and 2.B.3 show the estimated structural breaks and
corresponding confidence intervals for search indexes of terms related to the drought
(Figure 2.B.2) and unrelated to water shortages (Figure 2.B.3). The gray vertical
lines indicate the estimated structural break and the red dates on the x axis show
the dates associated with the breaks. Red horizontal lines show the confidence
interval for each break point calculated by the algorithm. The search indexes for
all terms related to protection against droughts have two structural breaks, one in
the beginning of 2014 and another in the beginning of 2015. The terms unrelated
to droughts either have no structural breaks or the break is before the beginning of
the drought.

2.B.2Estimation of the structural breaks are implemented by the R package strucchange (ZEILEIS
et al., 2003).
2.B.3For more details, refer to Bai e Perron (2003) and Zeileis et al. (2003).
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Figure 2.B.2 – Monthly searches in Google Trend São Paulo State: drought-related
terms

(a) Water tank

(b) Cistern

(c) Artesian well

Notes: These figures show the dynamic in search entries from Google Trends for each specific term related to the
drought. The gray vertical lines indicate the estimated structural break and the red dates on the x axis show the
estimated date of the break. Red horizontal lines show the confidence interval for each break point calculated by

the algorithm.
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Figure 2.B.3 – Monthly searches in Google Trend São Paulo State: terms not
related to the drought

(a) Public Transportation

(b) Corruption

(c) Violence

(d) Traffic

Notes: These figures show the dynamic in search entries from Google Trends for each specific term unrelated to
the drought. The gray vertical lines indicate the estimated structural break and the red dates on the x axis show
the estimated date of the break. Red horizontal lines show the confidence interval for each break point calculated

by the algorithm.
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2.C Spatial heterogeneities

Low pressure in the water distribution system might lead to stronger water
shortages in regions with a higher altitude. Figure 2.G.4 shows that the MRSP
has a heterogeneous ground elevation, therefore, we investigate if the altitude of a
CT influences the impact of the pressure reduction policy on hospitalization by
fecal-oral transmitted disease. It’s important to notice that, as presented in the
descriptive statistics from Table 2.3.1, the regions exposed to the pressure reduction
policy are, on average, at a lower altitude. This is due to the fact that the Pressure
Reduction Valves - used to define regions most likely exposed to pressure reduction
policy - are usually installed on regions with a lower altitude.

Each column of Table 2.C.1 presents a sub-sample of CTs in different altitude
groups, and the row “Mean altitude” shows the average altitude in each group of
CTs. This heterogeneous analysis suggests that the altitude of a CT does not affect
the impact of the policy on hospitalization.
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Table 2.C.1 – Hospitalization by fecal-oral transmitted disease by average altitude
of CTs

Dependent variable
Altitude quartiles

(1) (2) (3) (4)
Quartile 1 Quartile 2 Quartile 3 Quartile 4

Panel A: low-income neighborhoods

lowPress:dt 0.477 0.656∗∗ 0.188 0.164
(0.323) (0.278) (0.242) (0.248)

Mean dep. var 3.31 3.04 2.88 2.97
Mean altitude 747.43 771.04 788.02 819.72

Observations 118,860 130,920 147,540 185,940
Adjusted R2 0.036 0.036 0.030 0.038
Panel B: high-income neighborhood

lowPress:dt −0.108 0.266 0.542∗∗∗ 0.196
(0.260) (0.177) (0.175) (0.260)

Mean dep. var 2.23 2.07 1.83 2.03
Mean altitude 747.59 770.61 787.64 813.11

Observations 187,020 173,040 158,160 118,200
Adjusted R2 0.097 0.114 0.041 0.176

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract and
date levels. Robust standard errors are in parentheses. Regressions are weighted
by the number of inhabitants in each CT. Each column shows the results for a
group of Census Tract in a given altitude group, where column 1 represents the
lower group CTs and column 4 the higher. Each panel shows a different income
group. Low-income Census Tracts are defined as CTs where more than half of the
households live with less than one minimum wage per capita.

The water provided by the water company must travel from the water towers
to the households. It is possible that the longer the water travels inside the pipes,
the higher the probability of infiltration from exterior contaminants. We also test
this hypothesis by dividing the CTs according to its distance to the closest water
tower. We calculated this distance by a proxy considering the euclidean distance
between the centroid of each CT and the closest water tower. To locate the water
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towers in the MRSP we georeferenced a map from the 2011 environmental impact
report of the Production System São Lourenço that contained information about
the water metropolitan system (SABESP, 2011). These results suggest that there
is no direct relationship between the effect of the pressure reduction policy and the
distance to a water tower.

Table 2.C.2 – Hospitalization by fecal-oral transmitted disease by average distance
to the closest water tower

Dependent variable
Distance to the closes water tower quartiles
(1) (2) (3) (4)

Quartile 1 Quartile 2 Quartile 3 Quartile 4
Panel A: low-income neighborhoods

lowPress:dt 0.615∗∗ 0.407 0.534∗∗ −0.008
(0.295) (0.283) (0.251) (0.225)

Mean dep. var 3.11 3.45 3.28 2.54
Mean altitude 793.99 786.58 784.21 783.01
Mean dist. water tower 0.68 1.35 1.95 3.7

Observations 104,280 124,200 150,540 204,240
Adjusted R2 0.032 0.043 0.032 0.033
Panel B: high-income neighborhood

lowPress:dt −0.004 0.507∗∗∗ 0.146 0.057
(0.168) (0.170) (0.223) (0.246)

Mean dep. var 1.81 2.19 2.33 1.83
Mean altitude 780.74 775.01 773.09 772.62
Mean dist. water tower 0.67 1.34 1.92 3.07

Observations 200,640 180,720 154,380 100,680
Adjusted R2 0.038 0.129 0.168 0.036

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract and date levels.
Robust standard errors are in parentheses. Regressions are weighted by the number of inhabi-
tants in each CT. Each column shows the results for a group of Census Tract dividing them
according to the distance to the closest water tower. Column 1 show the results for CTs close
to a water tower, while column 4 presents the results for CTs far from the towers. Each panel
shows a different income group. Low-income Census Tracts are defined as CTs where more
than half of the households live with less than one minimum wage per capita.
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2.D Alternative specification

Table 2.D.1 shows different specifications for the main results. In columns 1
to 4, we do not include the level of each reservoir as a control, so we are able to
use all CTs from the MRSP, but those within municipalities with few zip codes (in
these initial models, we use all non-dark CTs from Figure 2.G.1). Column (1) is a
simple difference-in-differences without any fixed effects or controls. In column (2)
we add CT and period fixed effects. In columns (3) we interact the period fixed
effect with a municipality fixed effect. In column (4) we further add a specific
trend for each CT. In column (5) we reduced the sample to the preferred selection
and run the model with CT fixed effect, a period by municipality fixed effect, but
without controlling for the level of each reservoir. In column (6), which corresponds
to the benchmark specification discussed in Section 2.4, we include control for the
level of the reservoir. Finally, in column (7) we add a CT specific trend to the main
specification.
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Table 2.D.1 – Hospitalization by fecal-oral transmitted disease using different
specifications

Rate of hospitalization: fecal-oral
(1) (2) (3) (4) (5) (6) (7)

Panel A: low-income neighborhoods

lowPress:dt 0.282∗∗ 0.282∗∗ 0.217 0.389∗ 0.365∗∗ 0.361∗∗ 0.500∗∗
(0.121) (0.124) (0.140) (0.228) (0.151) (0.149) (0.234)

Mean dep. var 2.83 3.03

Observations 805,740 805,740 805,740 805,740 583,260 583,260 583,260
Adjusted R2 0.0004 0.030 0.033 0.029 0.033 0.033 0.029
Panel B: high-income neighborhood

lowPress:dt 0.112 0.112 0.079 0.133 0.240∗∗ 0.192∗ 0.215
(0.103) (0.109) (0.110) (0.180) (0.101) (0.104) (0.209)

Mean dep. var 2.02 2.05

Observations 934,320 934,320 934,320 934,320 636,420 636,420 636,420
Adjusted R2 0.00000 0.200 0.202 0.114 0.104 0.104 0.058

CT and period FEs x x x x x x
Mun. x period FE x x x x x
CT spec. trend x x
Preferred sample x x x
Lvl of reservs x x

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract and date levels. Robust standard errors
are in parentheses. Regressions are weighted by the number of inhabitants in each CT. Dependent variable is the
hospitalization by fecal-oral transmitted disease and each column uses a different specification

The results seem to be stable across the different models (especially in
low-income neighborhoods), but we notice a slight increase in magnitude when
using our preferred sample selection.

Table 2.D.2 repeats the bottled water price analysis, but calculating the
price in each CT as an average of prices within 10 km of the CT. The results are
weaker but similar to those observed in the previously presented model.
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Table 2.D.2 – Observed effect in bottled water prices

Dependent variable
Within 10 km price of bottled water

(1) (2) (3) (4)
Low-income High-income

lowPress:dt −0.002 −0.004 −0.009∗∗∗ −0.008∗∗∗
(0.008) (0.010) (0.003) (0.003)

cant:dcant 0.0771∗∗ −0.009
(0.036) (0.017)

dt:cant 0.095∗∗ 0.014
(0.039) (0.021)

lowPress:dt:cant 0.004 −0.005
(0.008) (0.006)

Mean dep. var. 1.87 1.88

Observations 548,849 548,849 602,445 602,445
Adjusted R2 0.702 0.703 0.777 0.777

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Census Tract
and date levels. Robust standard errors are in parentheses. Regressions are
weighted by the number of inhabitants in each CT. The dependent variable
is the average price of bottled water within 10 km of each CT. Columns 1
and 2 analyze the effects in low-income regions, while columns 3 and 4 are for
high-income CTs. Low-income Census Tracts are defined as CTs where more
than half of the households live with less than one minimum wage per capita.
Columns 1 and 3 use the specification from Equation 2.6.1, and columns 2 and
4 use specification from Equation 2.6.2.

2.E Alternative event-study specification

This section presents the event-study for fecal-oral transmitted diseases using
the monthly coefficients. Although the evidence is similar to what was observed in
the previous exercise, in the monthly analysis the results are noisier.
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Figure 2.E.1 – Monthly event-study for the hospitalization by fecal-oral diseases

This figure shows the estimated coefficients for the event-study showing the impact of the pressure reduction
policy on hospitalization in each month before and after the beginning of the policy.

2.F Alternative spatial aggregation

This section repeats the main exercise of this study, but uses a larger spatial
unit. We aggregate the Census Tracts into Weighting Area level (in Portuguese
called “Área de Ponderação”). This is a regional aggregation, usually bigger than the
Census Tract, used by IBGE to calibrate weights of each surveyed observation.2.F.1

We consider a Weighting Area to be within a specific reservoir if more than
50% of its area lies within that specific water system. The same rule was applied

2.F.1These Weighting Areas aggregate contiguous Census Tracts from the same district. This
aggregation aims to group similar Census Tracts according to population and known infrastructure
characteristics (including share of private residential households, share of households connected
to water and sewage systems, average number of residents per dwellings, among others). At the
2010 IBGE Census, Brazil was divided into 10,184 Weighting Area and 316,574 Census Tracts
(IBGE, 2010).
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to define a region exposed to the pressure reduction policy. Figure 2.F.1 shows the
map of the MRSP with blue regions considered to be affected by the policy.

Figure 2.F.1 – Map of pressure reduction area considering a larger spatial
aggregation

Notes: Figure showing the main sample aggregated to the level of a Weighting Area, as defined by IBGE.

Table 2.F.1 presents the results from this exercise, that corroborate with
our main conclusions, but loose statistical significance. This might be because now
we have fewer observations in our sample.
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Table 2.F.1 – Aggregating to the Weighting Area level

Hospitalization by fecal-oral disease
Rate Level

(1) (2) (3) (4)

Panel A: low-income neighborhoods

lowPress:dt 0.424∗∗ 0.558∗∗ 0.575∗ 0.193
(0.213) (0.252) (0.305) (0.123)

Mean dep. var 2.85 3.04 3.04 1.15

Observations 19,320 12,960 12,900 12,900
Adjusted R2 0.007 0.008 0.234 0.303

Panel B: high-income neighborhood

lowPress:dt 0.138 0.161 0.008 0.0001
(0.122) (0.150) (0.153) (0.054)

Mean dep. var 1.98 2 2 0.69

Observations 17,160 11,400 11,280 11,280
Adjusted R2 0.0004 0.002 0.249 0.184

Preferred sample x x x
CT FE x x
Period x Mun FE x x
Level control x x

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Two-way clusters at the Cen-
sus Tract and date levels. Robust standard errors are in parentheses.
Regressions are weighted by the number of inhabitants in each CT.
Columns 1 through 3 use the rate of hospitalization by a hundred
thousand inhabitants as the dependent variable, while column 4 uses
hospitalization in level. Low-income Census Tracts are defined as
CTs where more than half of the households live with less than one
minimum wage per capita.
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2.G Maps library

Figure 2.G.1 – Full MRSP

Notes: Blue regions are the most likely exposed to pressure reduction; black regions are municipalities from the
MRSP excluded from the analysis.

Figure 2.G.2 – Main sample

Notes: This figure shows all the MRSP highlighting the main sample from the analysis in red.
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Figure 2.G.3 – Regions supplied by each water reservoir used in this study

Notes: Regions considered to be supplied by each of the water reservoirs throughout the drought period.

Figure 2.G.4 – Average altitude of Census Tracts

Notes: This figures, built by the authors with data from Topodata project from INPE, shows the average altitude
of each Census tract from the main sample.
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3 Health Consequences of Thermoelectric Power Plants

3.1 Introduction

Thermoelectric power plants are notorious stationary sources of air pollution,
but many countries still rely on them as an important source of energy. The role of
this type of power on the emission of Greenhouse Gas (GHG) is largely discussed
by scientists due to its impacts on the ongoing process of climate change. Still,
increasingly more attention is paid to the short and long-term impacts of the
energy sector on local air pollution and its health consequences. Because of its high
emissions of carbon dioxide, an important GHG, power plants fueled by coal are
usually at the center of the discussion, but, despite not being major threats to
climate change, other fuels might also generate local air pollution with deleterious
consequences to the human health.

In this study, we analyze the health consequences of different types of
thermoelectric power plants in Brazil, a region with a low share of thermoelectric
power on its energy mix. The country relies mostly on renewable energy sources,
with hydroelectric power accounting for 65% of the generation and almost 7% of
wind and solar power. Despite this fact, thermoelectric power has increased in
the past few years, up from 15% in 2009 to around 20% in 2017. This increase is
mainly driven by natural gas-fueled power plants (EPE, 2018a; EPE, 2010).3.1.1

In the past few decades, Brazil has also drastically reduced the mortality rate of
children under five years of age, which changed from 53 deaths by a thousand live
births in 1990 to 13 in 2018 (UNICEF, 2019). Since air pollution can potentially
have adverse effects on health outcomes, it is important to understand if the use of
thermoelectric power in Brazil can affect the path of further improving health in
early childhood and how the different types of fuel influence the health conditions
of the surrounding population.

The connection between air pollution and health is widely discussed in the
3.1.1See Figure 3.2.1 for more details on the Brazilian energy mix.
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literature, and there is evidence pointing to a positive relation.3.1.2 While most
of the literature considers a developed country, some studies focus on developing
countries, where there is usually a challenge to assess the data related either to
mortality or the air pollution levels.3.1.3 Arceo, Hanna e Oliva (2016) suggest that
the observed effect of pollution on health in developing countries might differ
from what the literature usually finds in developed countries. They argue that a
non-linear dose-response relationship between pollution and infant mortality could
overly harm developing countries that usually observe higher levels of pollution.
Besides that, they point that behavioral effects could also differ between these
groups of countries. Although infant mortality is the most dramatic consequence
of air pollution, many analyses also investigate its effects on pregnancy quality as
reflected by health outcomes after birth.3.1.4

The Fetal Origin Hypothesis, discussed by Almond e Currie (2011) and
Currie (2009), suggests that health shocks before birth can influence people’s health
throughout the whole life.3.1.5 Isen, Rossin-Slater e Walker (2017) analyze such
claims using the enactment of the Clean Air Act in 1970 in the United States as a
source of exogenous variation in air pollution. They find evidence that newborns
more exposed to pollution in the year of birth presented worse labor market
outcomes some 30 years later. There is also evidence that the consequences of
pollution shocks during pregnancy have heterogeneous effects according to gender
and the type of pollutant. Sanders e Stoecker (2015) and Jedrychowski et al. (2009)
find that male children are more vulnerable to air quality shocks before birth, but
the opposite result has also been found (TANAKA, 2015). A constant concern
from the literature analyzing birth outcomes and infant deaths is that the observed
adverse effects of shocks during pregnancy are understated due to fetal selection.

3.1.2Deryugina et al. (2019), Knittel, Miller e Sanders (2016), He, Fan e Zhou (2016), Tanaka
(2015), Sanders e Stoecker (2015), Greenstone e Hanna (2014), Luechinger (2014), Jayachandran
(2009), Currie, Neidell e Schmieder (2009), Currie e Neidell (2005), Chay e Greenstone (2003)

3.1.3Tanaka (2015), Greenstone e Hanna (2014), Jayachandran (2009), and He, Fan e Zhou
(2016).

3.1.4Rangel e Vogl (2019), Gehrsitz (2017), Yang e Chou (2018), Knittel, Miller e Sanders (2016),
Currie e Walker (2011).

3.1.5There are many types of shocks that could affect pregnancy, birth outcomes, and the future
well being of an individual, such as violence (KOPPENSTEINER; MANACORDA, 2016), stress
(PERSSON; ROSSIN-SLATER, 2018), water scarcity (ROCHA; SOARES, 2015), among others.
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This selection happens because the weaker fetuses die before ever being born, so
the sample of newborns observed by the researchers is a selection of the strongest
individuals. Because only the stronger fetuses survive, the fetal selection might
induce the researchers to underestimate the real negative consequences of the shocks
during pregnancy on birth outcomes.3.1.6

Hospital admission is another variable usually analyzed by researchers
interested in investigating the health consequences of air pollution.3.1.7 This variable
allows the researcher to evaluate the consequences of pollution on distinct stages of
life. However, results usually suggest that the most affected groups are the children
and the elderly population. Air pollution also has consequences that go beyond a
worsening in health outcomes, and the literature has analyzed its impacts on labor
productivity (HANNA; OLIVA, 2015; Graff Zivin; NEIDELL, 2012), education
(CHEN; GUO; HUANG, 2018), crime (BURKHARDT et al., 2019), among others.

A challenge from the literature that investigates the impact of pollution on
health is to isolate the effect of air pollution from other determinants of health.
Many studies try to isolate this effect by either finding an adequate instrument
or rely on a quasi-experiment. Some strategies adopted in recent works are to use:
changes in regulation and in the economic activity;3.1.8 weather instruments and
variations in the wind direction;3.1.9 exogenous changes in large emission sources,
such as ports, airport, agricultural fires, and stationary pollutant facilities.3.1.10

Changes in the energy sector are also used as exogenous variations in some
works from this literature. Luechinger (2014) analyzes a German policy aiming
to install scrubbers to reduce Sulfur Dioxide(SO2) emissions from power plants.
The author uses this new regulation, along with predominant wind direction in

3.1.6Rocha e Soares (2015), Currie (2009).
3.1.7Guidetti, Pereda e Severnini (2020), Schlenker e Walker (2016), Chagas, Azzoni e Almeida

(2016), Moretti e Neidell (2011), Neidell (2009).
3.1.8Yang e Chou (2018), Gehrsitz (2017), He, Fan e Zhou (2016), Sanders e Stoecker (2015),
Tanaka (2015), Greenstone e Hanna (2014), Luechinger (2014), Chay e Greenstone (2003).

3.1.9Guidetti, Pereda e Severnini (2020), Deryugina et al. (2019), Rangel e Vogl (2019), Arceo,
Hanna e Oliva (2016).
3.1.10Rangel e Vogl (2019), Yang e Chou (2018), Severnini (2017), Schlenker e Walker (2016),
Knittel, Miller e Sanders (2016), Chagas, Azzoni e Almeida (2016), Hanna e Oliva (2015), Moretti
e Neidell (2011), Currie e Walker (2011), Jayachandran (2009), López et al. (2005).
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the power plants, to isolate the effect of SO2 concentration on infant mortality.
Results point to a significant reduction in mortality and suggest that the policy
avoided around a thousand infant deaths a year. Severnini (2017) shows that the
shutdown of nuclear power plants in the Tennessee Valley led to an increase in
the use of coal-fueled power plants, which increased pollution in counties where
the facilities were located. The author finds that this increase in the concentration
of Total Suspended Particle (TSP) had a negative effect on the average birth
weight of newborns. Yang e Chou (2018) evaluate that the shutdown of a coal-fired
power plant led to a reduction in the probability of having low-birth weight and
preterm-born babies in the regions downwind of the facility. Ordonez (2020) uses
river flows as an instrument for thermoelectric power generation and investigates
the effect of fossil fuel facilities on pollution concentration and hospitalization.
His results suggest that the use of thermoelectric power plants can lead to issues
in respiratory and mental health. His analysis also suggests that diesel and coal
facilities have the most significant effect on pollution, with no observed negative
consequence of natural gas power plants.

Most of the literature analyzing the effects of power plants on pollution and
health investigate the consequences of coal-fueled facilities, because they account
for a large share of the world energy production. Although considered cleaner, other
types of power plants are also sources of air pollution and can influence the health
of people living nearby. Ordonez (2020) showed that different fuels had distinct
impacts on pollution and on hospitalization. We further contribute to the literature
by investigating the effects of the different types of power plants from a developing
country on the infant mortality rate. We use wind direction and the schedule of
energy generation from different thermoelectric facilities in Brazil to investigate
the health consequences of exposure to a nearby operational power plant. We build
a variable that captures exposure to an operational power plant during pregnancy
and investigate its effects on infant mortality.

The main results from this analysis suggest that exposure to coal power
plants leads to a small increase in the infant mortality rate. Although the result is
consistent across different specifications, the magnitude of the effect is small. Every
additional Gigawatt hour (Gwh) of energy generated that influences a municipality
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leads to an increase in 0.003 deaths in the first year of life by a thousand live
births. The results are robust in suggesting that the infant mortality effect is mainly
driven by female children. We also find evidence that the population living closer
to the power plants are more affected by it and that fetal selection is likely to
interfere with the observed results biasing them toward zero. To have a broader
sense of the health consequences of using thermoelectric power, we also investigate
the effect of the contemporaneous exposure to power plants on hospitalization by
air-related diseases in different age groups, but there is no evidence that increasing
the exposure in a given month leads to an increase in hospitalization in the same
period.

This paper is organized as follows. The next section discusses the energy
market in Brazil. Section 3.3 presents the data used in this analysis. In Section 3.4,
we discuss the methodology. Next, in Section 3.5, we present the main results, and
Section 3.6 concludes this work.

3.2 Brazilian energy market

Brazil is a country that heavily relies on hydroelectric power plants to
generate its energy, as noted in Figure 3.2.1. In the country’s regulatory framework,
a centralized agency called National System Operator (ONS) coordinates energy
production from every agent supplying for the National Interconnected System
(SIN), which encompasses most of the energy produced in the country. The system
is divided into four subsystems (North, Northeast, Southeast/Central-West, and
South) that are connected to the same grid. ONS is responsible for optimally
dispatching energy from different sources and regions, considering the trade-offs
between current and future water availability in reservoirs and the energy production
cost.

Figure 3.2.1 shows that in recent years the use of wind power, and especi-
ally the use of thermoelectric power plants, has been increasing. Changes in the
hydrological cycle contributed to this shift in energy sources (MENDES; STHEL,
2017), and this movement away from hydropower is likely to keep happening in the
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next few years (EPE, 2018b, p. 67). The left panel of Figure 3.2.2 points out that
the increase in thermoelectric power taking place in the country is mainly focused
on natural gas power plants, while the right panel shows that many large power
plants were built only in the last decades.

Figure 3.2.1 – Brazilian energy mix

Notes: Figure build by the author with information taken from ONS. This figure shows the monthly generation by
source of energy.
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Figure 3.2.2 – Increase in the use of thermoelectric power plants

Notes: Figure build by the author with information taken from ONS. The red vertical dashed line shows the
beginning of the period analyzed in this study. The left panel shows the thermoelectric generation from each fuel
type, while the right panel shows how many power plants from the main sample were operational in each period.

Besides being a larger source of carbon dioxide (CO2), that directly contri-
butes to climate change, thermoelectric power plants also generate a series of other
pollutants that can be harmful to human life. The quantity and type of pollutant
depend on the technology and type of fuel used. Particle matters (PM) are small
particles and liquid droplets that, if inhaled, can harm human health. They are
emitted by natural and human-induced processes such as dry soil, pollen, sea salt
spray, agricultural fires, some industrial facilities, power plants, among others.
Particles with a diameter under 2.5 micrometers are referred to as PM2.5 and are
among the most harmful types of air pollution (MULLER; MENDELSOHN, 2007).

Carbon monoxide (CO) is a colorless and odorless toxic gas generated by
the incomplete combustion of fuel that can harm the absorption of oxygen (O2)
by the respiratory system, with known negative consequences for human health
(CURRIE; NEIDELL, 2005; CURRIE; NEIDELL; SCHMIEDER, 2009). In our
society, CO is mainly produced by the transport sector, but thermoelectric power
plants can also generate it (HINRICHS; KLEINBACH, 2012). Sulfur oxides (SOx)
are primarily generated by the use of fossil fuel power plants, and there is evidence
that it has adverse effects on infant health (LUECHINGER, 2014). Oxidation of
sulfur dioxide generates SO3 that, when reacting with water, becomes sulfuric
acid that can lead to acid rain. This phenomenon has severe consequences for the
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environment, the economy, and the health of affected communities.

Volatile Organic Compounds (V OCs) are compounds of carbon and hy-
drogen atoms. They are produced by natural and human activities, such as fuel
combustion, evaporation of industrial solvents, and biological decay of vegetation.
Most of the V OCs are generated by natural sources, but those emitted by human
activities are usually the more reactive ones. Nitrogen-oxygen compounds (NOx)
are mainly generated by the transport sector, but thermoelectric facilities can also
lead to their formation in the atmosphere. This sort of pollutant is not generated by
the burned fuel itself, but by the air used in the combustion process (atmospheric
air contains around 78% of nitrogen). NOx reacts with V OCs in the presence of
light to generate ozone, which is a major source of air-related health problems,
especially for people used to practice outdoor activities (NEIDELL, 2009).

The impact of a power plant on air quality depends on many factors like
the type of fuel, the type, and age of the generation and control equipment, the
location, local weather, among others (MASSETTI et al., 2017). Coal, natural
gas, and oil are all fossil fuels used to power a thermoelectric facility. The level of
emissions from coal-fired power plants depends on the quality of the burned coal.
Significant pollutants in this source of energy are carbon dioxide (CO2), nitrogen
oxides (NOx), sulfur oxides (SOx), and particle matters (PM). In Brazil, the
emission rates of SO2 and PM are higher in power plants using national coal than
in those that use the imported fuel (EPE, 2007b).

Natural gas power plants are usually a cleaner source of energy, emitting
less CO2, but NOx and CO can also be observed in this type of facility. A relative
advantage of natural gas compared to other fossil fuels is its low emission of PM
and SOx (TOLMASQUIM, 2016). For the oil-fueled power plants, the main emitted
pollutants are CO2, NOx, and SO2, but, depending on the fuel’s characteristics,
smaller amounts of CO can also be observed (EPE, 2007b; AVELINO; HEWINGS;
GUILHOTO, 2014).

Biomass power plants can be fired by different types of fuels, some of which
are residuals and byproducts of industrial or agricultural processes. Still, some
commodities are grown specifically to be used as fuels for the power plants. Biomass-
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fueled power plants are considered renewable sources of energy, and, in Brazil, they
are usually fueled by sugar cane. Because they are associated with the sugar cane
growth cycle, this type of energy has a seasonal pattern, and it is usually active
between April and October (TOLMASQUIM, 2016). Particulate matter (PM) is
the most significant emission from biomass power plants, but NOx and CO can
also be observed depending on the specific fuel used (EPE, 2007a).

In Brazil, the central government, through the National Board for the En-
vironment (CONAMA - “Conselho Nacional do Meio Ambiente”), sets minimal
air quality standards for the country, but local authorities can define stricter rules.
The first national regulation is the CONAMA resolution number 3, from 1990
(CONAMA, 1990). This resolution defined a threshold for maximum concentration
of Total Suspended Particles, smoke, SO2, CO, O3, and NO2. Although an impor-
tant sign to indicate that the country was perusing better air quality standards,
this regulation set lax thresholds for pollution concentration when compared to
the current best practices, and there were no specific rules for PM2.5. In 2018,
after almost 30 years of the original regulation, a new resolution from CONAMA
(Resolution 491/2018) established new standards in line with the World Health
Organization’s guidelines (WHO, 2006), which includes rules for the concentration
of PM2.5. Although the objectives of this new regulation respect WHO standards,
Siciliano et al. (2020) points that these standards are defined as a goal to be reached
in the future but without a clear road map of implementation, as each State will
structure its own plans.

3.3 Data

Assessing pregnant mothers’ and newborns’ exposure to pollution is a
challenge from this literature because the researcher rarely observes the amount
of pollution inhaled by each person.3.3.1 Usually, economic studies consider the
readings of pollution from monitoring stations near the population of interest (zip

3.3.1There are works from the medical literature that give portable air quality sensors to the
research subjects, but even this type of work is usually done to a limited number of individuals
and covers only a limited time period (JEDRYCHOWSKI et al., 2009).
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code areas or municipalities). Unfortunately, Brazil does not have a large network
of air quality monitoring stations spread throughout the country, therefore, we use
a reduced form strategy to investigate if an operational power plant affects the
downwind population’s health outcomes.

3.3.1 Health outcomes

The health variables used throughout this study are gathered by the Bra-
zilian Ministry of Health. The three data sets used are the System of Mortality
Records (SIM/Datasus), the System of Live Birth Records (SINASC/Datasus),
and the System of Hospitalization Records (SIH/Datasus).

The SIM provides data on every death officially registered in the country
containing information such as the age (and date of birth), the municipality of
residence, the cause of death, the gender of the dead, etc. As the main dependent
variable, we select every infant’s death on the first day, first week, first month, first
three months, and first year of life. This mortality data is aggregated at the month
of birth and municipality level and the spanning period of the analysis goes from
January 2010 to December 2016. Data from 2018 are still preliminary at Datasus,
so we will not use it. Because the main dependent variable is death in the first
year of life, the last month in the sample has to be December 2016 so we can use
complete information up to December 2017. Figure 3.A.1 shows that the infant
mortality rate has been fairly stable in the past few years, around 12 deaths per
thousand live births.

We will also use data from hospitalization to investigate the broader effects
of power plants on health. The SIH contains information about every hospitalization
paid for by the Brazilian public health system. It informs the patient’s zip code and
municipality of residence, the date of the hospital admission, and the cause of it. It
also shows the age and gender of every patient, along with other information. We
will aggregate this data to the municipality by month level to analyze if a month
with high exposure to power plant influences the hospitalization rate in different
age groups.
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The mortality and hospitalization data contain information about the main
diseases that led to the health issue. We selected disease groups that are likely to
be influenced by air pollution to investigate their prevalence on the population
exposed to power plants. We will divide the causes of infant mortality into three
main groups that account for a large share of the infant deaths and have some
evidence that might be related to air pollution (VRIJHEID et al., 2011; TEIXEIRA
et al., 2019): respiratory illnesses; conditions that originated in the perinatal period;
and congenital malformation.3.3.2 We also analyze subgroups of respiratory diseases:
Asthma (ICD-10 codes J45-46), Acute Respiratory diseases (ICD-10 codes J00-06,
J20-22), Chronic Obstructive Pulmonary Disease - COPD (ICD-10 codes J40-44),
and Pneumonia (ICD-10 codes J12-18).3.3.3

Finally, we use birth data to analyze health at birth and to calculate the
number of live births in each municipality and month. SINASC from Datasus
contains data of every live birth in Brazil, informing the length of the pregnancy
(grouped in coarse week periods), birth weight, APGAR1, APGAR5, date of birth,
municipality of residence, previous pregnancies of the mother, type of birth (cesarean
or natural birth), prenatal care (how many times has the mother seen a doctor
during pregnancy), child’s gender, among other variables. We aggregate this data at
the month of birth by municipality level. The infant mortality rate used throughout
this study is calculated using data from SIM and SINAC. It considers deaths in
the first year of life of children born in a given month (from SIM), divided by the a
thousand live births in that month (from SINAC). The descriptive statistics of the
main health variables are presented in Table 3.3.1.

3.3.2Chapters X (Diseases of the respiratory system), XVI (Certain conditions originating in
the perinatal period), and XVII (Congenital malformations, deformations and chromosomal
abnormalities) of the International Classification of Diseases (ICD). Selected diseases for these
groups are those whose ICD codes starts with the letters “J”, “P”, and “Q” respectively.

3.3.3Disease groups defined similar to Tao et al. (2014) and Song et al. (2018).
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Table 3.3.1 – Health characteristics of the main sample

Variable Mean SD Min Max
IMR (deaths under 1 year of age by a thousand live births) 12.12 13.23 0.00 1000.00
Male IMR 6.66 9.74 0.00 1000.00
Female IMR 5.41 8.76 0.00 1000.00
IMR from resp. diseases 0.63 2.74 0.00 1000.00
IMR Perinatal 6.96 10.17 0.00 1000.00
IMR malform. 2.73 6.09 0.00 1000.00
Rate of asthma: under 1 4.35 11.42 0.00 542.89
Rate of acute: under 1 21.81 35.24 0.00 855.80
Rate of COPD: under 1 1.74 6.97 0.00 630.25
Rate of pneumonia: under 1 36.20 45.89 0.00 1551.35
Rate of all resp: under 1 69.60 73.74 0.00 1861.62
Average live births 75.69 116.77 0.00 682.00
Birth weight 3181.36 81.56 466.00 5400.00
Share low birth weight (< 2500) 0.09 0.03 0.00 1.00
Share very low birth weight (< 1500) 0.01 0.01 0.00 1.00
Notes: This table, built by the authors with data from Datasus, presents the descriptive statistics related to 500 munici-
palities from the main sample.

3.3.2 Weather variables

Weather conditions are obtained from the ERA5 reanalysis data, gathered
by the ECMWF (European Center for Medium-Range Weather Forecasts). This
dataset contains information on hourly atmospheric conditions with a resolution of
around 30 km x 30 km.3.3.4 To aggregate the grid data to the municipality level,
we use a weighted average from each grid cell intersecting a municipality. The
weights are calculated according to the share of the municipalities’ land covered
by each grid (similar to Auffhammer et al. (2013)). The weather control variables
are given in monthly averages, but we also test an alternative definition for the
temperature variable by dividing the daily averages into five bins and counting
the number of times within a month that the daily average temperature falls into
each bin (similar to Deschênes, Greenstone e Guryan (2009)).3.3.5 The results are
indifferent from the definition of weather control, as will be shown in Appendix
Table 3.B.1. Throughout this study, we will use the variables as monthly averages

3.3.4https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels?tab=overview

3.3.5The temperature bins are: under 10◦C, between 10◦C and 20◦C, between 20◦C and 30◦C,
between 30◦C and 40◦C, and above 40◦C.
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instead of bins. Table 3.3.2 presents the descriptive statistics of the municipalities’
characteristics, as well as weather variables.

Table 3.3.2 – Municipalities’ characteristics and weather variables

Variable Mean SD Min Max
Population [thousand] 56.59 83.54 1.56 458.67
Population: until 5 years old [K] 5.01 7.21 0.08 36.54
Population: 6 to 64 years old [K] 47.76 70.93 1.26 387.87
Population: above 65 years old [K] 3.68 5.75 0.15 58.91
Income per capita [2010 K BRL] 0.45 0.21 0.10 1.57
Nearby power plants 4.25 2.69 1.00 9.00
Average temperature 23.16 3.82 9.33 31.01
Average wind speed 2.46 1.10 0.52 7.61
Average daily precipitation 3.59 3.05 0.00 22.18
Notes: Descriptive statistics from municipalities’ characteristics and weather condi-
tions considering only the main sample. The information built by the authors with
data from the 2010 Brazilian Census and from ERA5 weather data.

3.3.3 Exposure to energy generation

The main explanatory variable used throughout this analysis considers
how much energy is produced in the vicinity of a municipality, as well as the
population exposed to it. To build this variable, we need to know how much
energy a power plant produces and verify to which municipalities the wind is
transporting the generated pollution. Many highly complex models have been used
to evaluate pollution dispersion and health outcomes3.3.6, but simpler structures
using wind direction, wind speed, and distance to the pollution source have also
been successfully used.3.3.7 A common strategy in this literature is to collapse the
municipality to its centroid (or population-weighted centroid), evaluate if this point
is within a range of the wind direction coming from the pollution source, and then
verify the health outcomes in the municipality.

We use a similar strategy but also consider the share of the population in
each municipality exposed to the pollution from the power plant. Figure 3.3.1 helps
to illustrate how we build the exposure variable. Initially, we calculate the wind

3.3.6Avelino, Hewings e Guilhoto (2014), López et al. (2005).
3.3.7Rangel e Vogl (2019), Yang e Chou (2018), Schlenker e Walker (2016), Currie e Walker

(2011).
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direction in each power plant with data from ERA5 (the same data presented in
Section 3.3.2). The direction in a power plant is based on the values observed in
the four closest grid points. We calculate the average wind direction weighted by
the inverse of the distance between the power plant and each of the four grid points.
We aggregate the hourly wind direction from the four points to each power plant,
and then calculate the daily averages. Panel A of Figure 3.3.1 shows a histogram of
the daily wind direction in each octant of the wind rose at the Jorge Lacerda power
plant in each month of the year. The further away from the center, the higher
the frequency of the wind direction falling in that octant. The colors indicate the
observed daily wind speeds.

Then, we use Census Tracts (CTs) from the 2010 Brazilian Census to evaluate
the share of the population from a municipality exposed to each power plant in
a given day. First, we calculate if the centroid of each CT from a municipality is
downwind from a power plant in a given day. We consider the centroid of a CT
to be downwind of a power plant if it is within 45◦ from the wind blowing from
that power plant.3.3.8 This process is illustrated in Panel B of Figure 3.3.1, which
shows the example of the municipalities of Capivari de Baixo and Tubarão, that
are close to the Jorge Lacerda power plants.3.3.9 Suppose the wind is blowing in
the East-West direction. CTs in green are considered to be downwind of the power
plants, so we sum their population and divide it by the number of inhabitants of
the entire municipality.

Finally, we multiply the share of the population exposed by the quantity
of energy generated by the power plant. We use the information of the operation
history of the electric system gathered by ONS (National System Operator), which
contains data on the daily energy generation of each power plant. Panel C of Figure
3.3.1 shows the histogram of daily energy generation of the Jorge Lacerda power
plant.

3.3.8If the absolute value of the difference between the wind direction and the power plant-census
tract centroid direction is smaller than 22.5◦, than the Census Tract is considered to be downwind
of the power plant.

3.3.9There are three Jorge Lacerda power plants, but we are only showing the example for one of
them.



81

Figure 3.3.1 – Exposure variable: example of Jorge Lacerda power plant

(a) Wind direction histogram

(b) Exposed Census Tracts (c) Energy generation histogram

Notes: These figures show how the exposure variable is built for the particular case of the Jorge Lacerda A2 power
plant, near the municipalities of Capivari de Baixo and Tubarão. Panel A presents a histogram of the frequency of
the observed wind direction and speed. Panel B shows which Census Tracts are considered to be exposed to the
pollution when the wind is blowing in the East-West direction. Panel C shows a histogram of the daily energy

generation for the power plant.
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This process calculates the exposure of one municipality to one power plant,
but we use the same procedures to calculate the daily exposure of every municipality
to every nearby power plant. Formally, this daily exposure variable is calculated as
follows:

Ef
id =

∑
∀j∈i

∑
∀s∈i

Gf
jd ∗W i

sjd ∗ ps,i (3.3.1)

where Gf
jd is the total energy generated on day d at thermoelectric power

plant j fueled by f . W i
sjd is an indicative variable equals 1 if the centroid of the

Census Tract s from municipality i is downwind of the power plant j on day d. ps,i
is the share of the population from municipality i that lives at Census Tract s, as
recorded by 2010 Census. We sum over all Census Tracts (s) from municipality i
and then over all power plants (j) within 50 km of the center of that municipality.
The same municipality and CT can be exposed to different power plants, and the
final exposure variable sums the exposure to each individual power plant.3.3.10 This
variable is the daily exposure of a municipality to operational power plants and it
measures the amount of energy generated as well as the share of the population
that was exposed to it. Because we work at the monthly level, we sum the daily
exposure to find the monthly variable and then sum it with the eight months prior
to the birth month m, as shown in Equation 3.3.2.

Ef
im =

m∑
τ=m−8

∑
∀d∈τ

Ef
id (3.3.2)

where τ assumes the value of each of the pregnancy months of a child born
at month m, and d is each day from month τ .

Besides the data sources presented above, to build the exposure variable
we also need data on thermoelectric power plants’ locations and the type of fuel
each of them use. The data gathered by ONS contains information about the daily
energy generation for more than 200 thermoelectric power plants operating in the

3.3.10In Figure 3.3.1, we only presented the exposure to one of the Jorge Lacerda power plants,
but we do the same thing for the other two, and then sum the results.
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National Interconnected System, but around 95% of all the thermoelectric energy
from this system comes from 75 facilities, so we focused this study on this group
of the largest power plants. To find the fuel and location of these facilities, we
used three main sources: (1) maps from the OpenStreetMaps, that contains user-
inserted information about sites all around the world;3.3.11 (2) the SIGEL dataset,
provided by the Brazilian Electricity Regulatory Agency (ANEEL), that contains
georeferenced information of power plants and also the type of fuel used;3.3.12 and
(3) articles from newspapers and the website of the companies. We couldn’t find
information about 5 facilities from the largest 75, so the final sample contains
70 thermoelectric power plants spread throughout the country, as presented in
Figure 3.3.2.

3.3.11https://www.openstreetmap.org/
3.3.12Not all power plants from ONS appear in SIGEL’s shapefile, and some facilities were placed
in the center of a municipality, instead of its real location outside the urban area. That’s why we
also used other sources of information.
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Figure 3.3.2 – Map of power plants from the sample

Notes: Location and type of all 70 power plants used in the analysis.

Table 3.3.3 presents the descriptive statistics of the exposure during the
pregnancy period. Panel A shows average exposure in all municipalities from
the main sample, while Panel B shows the information averaging only among
municipalities near a type of power plant.3.3.13

3.3.13If a municipality is only near a coal power plant, the exposure to natural gas, oil and biomass
power plants is always zero. Some municipalities are near more than one type of power plant.
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Table 3.3.3 – Exposure to energy generation

Variable Mean StdDv Min Max N.mun
Panel A: All municipalities

Coal power plant 36.17 183.59 0.00 3224.44 500
Natural gas power plant 147.03 397.85 0.00 6312.53 500
Oil power plant 41.72 153.05 -0.00 2993.85 500
Biomass power plant 3.92 36.94 0.00 1046.99 500
Panel B: Only municipalities affected by fuel

Coal power plant nearby mun 226.04 409.58 0.00 3224.44 80
Natural gas power plant nearby mun 172.57 425.88 0.00 6312.53 426
Oil power plant nearby mun 78.41 202.87 -0.00 2993.85 266
Biomass power plant nearby mun 19.81 81.10 0.00 1046.99 99
Notes: Descriptive statistics of the monthly exposure variable. Panel A shows the average
exposure to each type of thermoelectric power plant, considering all the municipalities in
the main sample. Panel B also shows the average exposure but considers only cities in the
vicinity of each type of power plant.

3.3.4 Other data and sample selection

We use the 2010 Brazilian Census, from the Brazilian Institute of Geography
and Statistics (IBGE), to gather the socioeconomic characteristics of the regions
exposed to pollution from the power plants and to analyze the population’s spatial
distribution based on the georeferenced Census Tracts (CTs). To assess the economic
activity of each region during the period of pregnancy, we use data from the SIDRA
system (“Sistema IBGE de Recuperação Automática”) from IBGE. They gather
information about the municipality’s Gross Domestic Product (GDP) at the annual
level. We equally divide the annual value through each month of the year, and sum
over the months of each pregnancy.

We included in the main sample, only municipalities in the vicinity of at
least one of the 70 selected power plants. In this study, we consider a city to
be in the vicinity of a power plant, if the city’s center lays within 50 km of the
facility. To increase precision in selecting the sample, we calculate the center of a
municipality as the point with the city’s highest population density. To this end,
we use information about population distribution from the Oak Ridge National
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Laboratory (ORNL).3.3.14 Their LandScan data shows yearly estimations of the
average population at a resolution of approximately one square kilometer for the
whole earth. We consider the centroid of the 3 km by 3 km square with the highest
population as the center of a municipality.

Large municipalities might have a different dynamic of air pollution, there-
fore, the cities in the top 5% of the population distribution are excluded, so that
the main sample contains 500 municipalities analyzed at the monthly level. Table
3.3.2 presented some characteristics of these municipalities selected to the main
sample.

3.4 Methodology

This section presents the methodology used to investigate the effect of an
operational power plant on health outcomes. The main explanatory variable is
the exposure to power plants presented in the previous section, but there is the
possibility of some confounder effects impacting the results. Initially, the weather
conditions might influence the fetal health, the dispersion of pollution, and the use
of thermoelectric power (DESCHÊNES; GREENSTONE; GURYAN, 2009; EYER;
WICHMAN, 2018). Besides that, the economic activity might also pose a challenge
for the identification strategy if it relates to both the amount of energy generated
and the health outcomes. Fortunately, the regulatory framework of the Brazilian
energy sector decouples the regional conditions from the demand for local sources
of energy, because it is designed to work as a grid centrally dispatched by the
ONS. Therefore, it is not likely that the local economy or weather conditions affect
the energy production of nearby power plants. Nevertheless, to guarantee these
possibilities are accounted for, we include control variables for the local economic
activity and weather conditions. To control for the economic activity, we include the
monthly GDP of each municipality estimated from the SIDRA data as discussed in
the previous section. The weather controls are the minimum, maximum and average
temperatures; the total precipitation; and the average wind speed. Deryugina et

3.3.14https://landscan.ornl.gov/
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al. (2019) show that air pollution can increase when the wind blows from a more
polluted region to a cleaner one. Therefore, similar to Rangel e Vogl (2019), the
main specification also includes a control for the predominant wind direction in
each municipality. All of these control variables will be aggregated to the nine
months of pregnancy of babies born at each month (m) and municipality (i). The
benchmark specification is presented in Equation 3.4.1.

IMRim =
∑
∀f
βfEf

im +X
′

imδ + ωim + φgc + λm + εim (3.4.1)

IMRim is the infant mortality rate in municipality i and month m. Ef
im is

the exposure to power plants fueled by f during pregnancy of children born at
month m in municipality i. Xim includes the weather and GDP controls related
to the pregnancy period of babies born at month m in municipality i. Xim also
controls for the average characteristics of pregnancies of babies born at month m
and municipality i. These pregnancy characteristics are the average share of doctor
visits before birth, the share of twins birth, the share of regular birth (or share of
cesarean), and mother’s average quantity of prior pregnancies. Infant mortality in
the first year of life might also be affected by exposure to pollution in the months
after birth, therefore, we also include in Xim the average exposure in the 12 months
after birth. ωim controls for the predominant wind direction in municipality i during
the pregnancy period of babies born at month m. This variable represents the share
of days during the pregnancy period of babies born at month m that the average
wind direction blew in each octant of the wind rose at municipality i (so there will
be eight variables per municipality, one for each octant). φgc is a calendar-month
(c) by municipality block (g) fixed effect that controls for regional seasonality effect.
These municipality blocks are defined as municipalities near the same power plant
or group of power plants.3.4.1 λm are month fixed effects to capture common time
effects, and εim represents the error term.

3.4.1When facilities are too close to each other, it doesn’t make sense to assume that municipalities
close to one or to another will observe distinct seasonal patterns, so municipalities near power
plants within 30 km from one another are considered to be in the same block. There are 37 blocks
of municipalities in the the sample, with an average of 13.5 cities per block.
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The coefficients of interest in this specification are the βf , that measure the
effect of increasing exposure to f type power plants on the infant mortality rate.
An increase in 1 GWh generated by a f -fueled thermoelectric power plant that
affects a full municipality will cause an additional βf deaths by every thousand live
births. Observations in the regression are weighted by the average live births in each
municipality, and the standard errors are clustered at the level of the municipality
block g to account for spatial dependence in the model.

The identification strategy relies on the assumption that the municipality
exposure to energy generation is conditionally unrelated to unobserved determinants
of birth outcomes. This assumption seems credible because there are two sources
of plausibly exogenous variation in the exposure variable. The first is the operation
schedule of each power plant defined by the central authority to optimize the
system, and the second is the wind direction blowing in each facility.

As discussed in Section 3.3.3, we only consider the large thermoelectric power
plants from the ONS data. Nevertheless, smaller facilities generating energy, within
or without the SIN, might also pollute the environment with health consequences
to local communities. This poses a challenge to the identification strategy if the
operation of these small power plants correlates with the generation from the
considered power plants and also influences the health of the population. Although
this is a relevant threat to the identification, the amount of energy generated by
this group of power plants is much smaller than the energy from the included
power plants. Besides that, the calendar-month (c) by municipality block (g) fixed
effect (φgc) controls for constant characteristics within a region and calendar-month.
Therefore, reducing the problem of facilities with cyclical patterns of operation.

3.5 Results

Table 3.5.1 presents the main results of this analysis as well as the gender
heterogeneity. In columns 1 through 5, the dependent variables are the infant
mortality rate on the first day, first week, first month, first three months, and first
year of life. In columns 6 and 7 the analysis focus on female and male deaths.
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Results suggest that only coal-fueled power plants led to an increase in the
infant mortality rate, which is consistent with this type of facility being one of
the largest stationary sources of air pollution. The mean value of the dependent
variables, presented in the lower part of the table, shows that around half of the
infant mortality rate happens in the first week of life, while the rest is equally
spread in the other time frames.

Table 3.5.1 – Infant mortality rate

Infant mortality rate (by thousand live births)
1d 1w 1m 3m 1y Female 1y Male 1y
(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.002∗∗ 0.0001 0.002∗∗∗ 0.003∗ 0.003∗ 0.008∗∗∗ −0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.002)

Preg. n. gas exp. 0.0002 −0.0002 0.0003 0.0001 0.001 0.001 −0.001
(0.0003) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. −0.001 0.0002 0.001 −0.0002 −0.001 −0.003 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

Preg. bio exp. −0.004 0.009 0.012 0.004 −0.003 0.006 −0.015
(0.011) (0.014) (0.014) (0.011) (0.010) (0.018) (0.010)

Mean dep. var 2.65 6.3 8.39 10.66 12.12 11.1 13.05

Observations 35,701 35,701 35,701 35,701 35,701 34,970 35,043
Adjusted R2 0.030 0.032 0.032 0.034 0.031 0.007 −0.002

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each
municipality. Standard errors clustered at the municipality block level. The dependent variable in Columns
1, 2, 3, 4, and 5 are the infant mortality rate in the 1st day (1d), 1st week (1w), 1st month (1m), 1st three
months (3m), and 1st year of life (1y). Columns 6 and 7 show results for only female, and only male deaths
in the first year of life. Main explanatory variables are the exposure to each type of power plant during the
pregnancy period.

Columns 6 and 7 of Table 3.5.1 present the gender heterogeneity. The
dependent variables in these specifications are defined as female (male) deaths
by a thousand female (male) live births. The estimated coefficients suggest that
only girls are affected by the in utero exposure to energy generation. The higher
effects observed for female children is robust in different analysis throughout this
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work, and, although not typical in this literature, this result finds support in some
exercises from the work of Tanaka (2015). He finds larger effects of air pollution
on the health of female newborns, but the only statistically significant difference
in his exercise appears in the birth weight. We conduct some robustness analysis
in the appendices of this work. In Section 3.B, we test the effects of the exposure
variable on the infant mortality rate in the first year of life using different model
specifications and we test birth outcomes as the dependent variable. In Section 3.C,
we use different definitions for the economic activity controls, but the results are
similar to those presented in the Table 3.5.1. In Section 3.D, we include controls
for the agricultural activity and nearby fire spots, and Section 3.E investigates the
exposure in different trimesters of the pregnancy. Results are fairly stable in all of
these exercises, but next section argues that fetal selection could be biasing these
results toward zero.

3.5.1 Fetal selection

A common concern from the literature analyzing the effect of shocks during
pregnancy on health outcomes is the possibility of fetal selection, discussed in
Section 3.1. To investigate the extent to which selection bias affects the main
results, we analyze if exposure to energy generation during pregnancy influences
the incidence of fetal deaths in the surrounding municipalities (similar to Rocha e
Soares (2015)). Columns 1 through 3 analyze slightly different definitions of fetal
death. Column 1 estimates the effect of exposure to power plants on the number of
fetal deaths (in level). The dependent variable in columns 2 is the fetal death rate
calculated by dividing fetal deaths by the number of potential births, defined as
the sum of the observed live births with fetal deaths normalized by a thousand.
Column 3 uses as dependent variable a measure of potential infant mortality rate
that is calculated by dividing total deaths (fetal death plus infant deaths) by the
potential births (fetal death plus observed live birth). Columns 4 and 5 repeat this
potential infant death specification from column 3, but focusing on the mortality
of, respectively, girls only and boys only.
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Table 3.5.2 – Fetal death

Dependent variable:
F.D. lvl F.D. rate F.D. + 1y rate Female: F.D. + 1y rate Male: F.D. + 1y rate

(1) (2) (3) (4) (5)

Preg. coal exp. 0.0005∗∗ 0.005∗ 0.008∗∗∗ 0.015∗∗∗ −0.003
(0.0002) (0.003) (0.003) (0.003) (0.006)

Preg. n. gas exp. −0.0001 −0.0003 0.0003 0.001 0.001
(0.0002) (0.001) (0.001) (0.001) (0.002)

Preg. oil exp. 0.00002 0.0003 −0.001 −0.002 0.002
(0.0003) (0.002) (0.002) (0.002) (0.002)

Preg. biomass exp. 0.001 −0.003 −0.006 0.011 −0.032∗∗
(0.0005) (0.008) (0.005) (0.020) (0.013)

Mean dep. var 2.67 10.49 22.48 19.19 21.86

Observations 35,701 35,701 35,701 34,976 35,049
Adjusted R2 0.581 0.037 0.058 0.034 0.034

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each municipality.
Standard errors clustered at the municipality block level. Column 1 shows the results for the number of fetal deaths. Column 2
presents the results for the fetal death divided by the potential live births in each month and municipality, normalized by a
thousand. Column 3 uses as dependent variable total deaths (fetal deaths + infant mortality) divided by potential births (fetal
death + live births), normalized by a thousand. Columns 4 and 5 repeats specification from column 3, but divides the sample
between girls only and boys only deaths. Main explanatory variables are the exposure to each type of power plant during the
pregnancy period.

These results suggest that fetal selection is an important factor affecting
the main estimations. Exposure to coal power plant during pregnancy seems to be
inducing an early termination of pregnancies, especially for female fetuses (column
4). Therefore, the main results presented in Table 3.5.1 are likely underestimating
the real impact of thermoelectric power on infant mortality rate (results considering
fetal death are around three times larger than the benchmark specification). It’s
worth noting that this measure of fetal deaths is also an underestimation of the real
life loss since fetal deaths are only observed after a certain gestational age. This
table also has an unexpected result for male children exposed to biomass energy
during pregnancy. It suggests that the higher the exposure to biomass power plants,
the lower the males’ potential infant mortality rate.
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3.5.2 Infant mortality rate by cause of death

In the previous section, we acknowledged that fetal selection is likely biasing
the observed results. This section breaks the main exercise of the infant mortality
rate in the first year of life (Column 5 of Table 3.5.1) into different registered causes
of death. Column 1 repeats the main analysis showing results for all deaths of
children under one year of age. Column 2 shows the results for deaths caused by
diseases of the respiratory system. Column 3 shows the estimations for conditions
that originated in the perinatal period, while column 4 presents a subgroup of
these diseases that relates to respiratory and cardiovascular issues. Column 5 shows
deaths related to congenital malformation, and column 6 is a subgroup containing
respiratory and cardiovascular conditions. Column 7 is a robustness check, where
we test the effect of power plants on deaths unrelated to air pollution. It shows
deaths related to external causes such as accidents, assault, complications from
medical and surgical care.
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Table 3.5.3 – Infant mortality by cause

Dependent variable:
All dths Resp. Per Per R-C MF MF C Ext

(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.003∗ −0.0001 0.001 0.001 0.003∗ 0.001 −0.0003
(0.002) (0.001) (0.001) (0.001) (0.002) (0.001) (0.0003)

Preg. n. gas exp. 0.001 0.0004∗∗ 0.001 0.0003 −0.001 −0.0004 0.0001
(0.001) (0.0002) (0.001) (0.001) (0.0004) (0.0003) (0.0002)

Preg. oil exp. −0.001 0.00003 0.002∗∗ 0.002∗∗ −0.002∗∗ −0.001∗ −0.0003
(0.001) (0.0003) (0.001) (0.001) (0.001) (0.0005) (0.0003)

Preg. biomass exp. −0.003 −0.002 0.008 −0.004 0.008∗ 0.011∗∗∗ 0.0003
(0.010) (0.001) (0.010) (0.005) (0.005) (0.002) (0.0004)

Mean dep. var 12.12 0.63 6.96 2.63 2.73 1.29 0.4

Observations 35,701 35,701 35,701 35,701 35,701 35,701 35,701
Adjusted R2 0.031 0.013 0.035 0.023 −0.006 −0.012 0.012

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each muni-
cipality. Standard errors clustered at the municipality block level. Column 2 considers deaths related to diseases
of the Respiratory system (ICD-10 codes that start with the letter “J”). Column 3 contains deaths related to
certain conditions originating in the Perinatal period (ICD-10 codes that start with the letter “P”). Column 4
shows deaths related to Respiratory and Cardiovascular disorders specific to the perinatal period (ICD-10 codes
“P20-29”). Column 5 shows deaths related to congenital malformations (MF), deformations and chromosomal
abnormalities (ICD-10 codes that start with the letter “Q”). Column 6 shows deaths related to congenital malfor-
mations of the Respiratory and Circulatory system (ICD-10 codes “Q20-28” and “Q30-34”). Column 7 shows
results of deaths related to external causes and accidents (ICD-10 codes that start with “V”, “W”, “X”, and
“Y”). Main explanatory variables are the exposure to each type of power plant during the pregnancy period.

The bottom row of Table 3.5.3 shows the mean value of the dependent
variables. It suggests that around 5% of the mortality rate in the first year of life
are due to respiratory diseases (0.63 out of 12.12 deaths), half of it comes from
conditions that originated in the perinatal period (6.96 out of 12.12 deaths per live
births), and another 20% comes from congenital malformation (2.73 out of 12.12).
The robustness check (column 7) analyzes deaths unrelated to air pollution. This
type of death represents only a small share of the total observed infant mortality,
but it does not respond to any sort of nearby energy generation. The observed
effect from exposure to coal energy generation comes mainly from deaths due to
congenital malformation, deformations, and chromosomal abnormalities (column
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5), therefore, in Table 3.5.4, we investigate heterogeneous effects of this disease in
different periods of life and gender.
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Table 3.5.4 – Age and gender heterogeneity for congenital malformation diseases

Mortality rate by malformation
1d 1w 1m 3m 1y
(1) (2) (3) (4) (5)

Male children

Preg. coal exp. 0.0001 0.0004 −0.002 −0.002 −0.001
(0.001) (0.001) (0.003) (0.004) (0.004)

Preg. n. gas exp. −0.0001 −0.0003 −0.001∗ −0.001∗ −0.001
(0.0002) (0.0004) (0.0004) (0.001) (0.001)

Preg. oil exp. 0.0003 −0.0004 −0.001 −0.001∗ −0.002∗
(0.0003) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. 0.001 0.014∗∗∗ 0.011∗∗ 0.015∗∗∗ 0.012∗
(0.003) (0.005) (0.005) (0.005) (0.006)

Mean dep. var 0.59 1.31 1.81 2.4 2.81

Observations 35,043 35,043 35,043 35,043 35,043
Adjusted R2 0.029 0.014 0.008 −0.005 −0.019

Female children

Preg. coal exp. 0.002∗∗∗ 0.001∗∗ 0.002∗∗∗ 0.002∗∗ 0.004∗∗∗
(0.001) (0.0005) (0.0004) (0.001) (0.001)

Preg. n. gas exp. 0.0001 0.0002 0.0001 −0.0001 −0.0004
(0.0002) (0.0003) (0.0003) (0.0003) (0.0004)

Preg. oil exp. −0.001∗∗ −0.0002 0.0001 −0.001 −0.001
(0.0004) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. 0.003 0.004 −0.001 0.001 0.005
(0.003) (0.005) (0.007) (0.006) (0.008)

Mean dep. var 0.57 1.15 1.58 2.17 2.62

Observations 34,970 34,970 34,970 34,970 34,970
Adjusted R2 0.013 −0.001 −0.002 −0.005 −0.008

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of
live births in each municipality. Standard errors clustered at the municipality block level.
The dependent variable is infant death by congenital malformations (MF), deformations
and chromosomal abnormalities (ICD-10 code starts with the letter “Q”). Each columns
analyzes a specific period of death, and each panel shows the results for a specific gender.
Main explanatory variables are the exposure to each type of power plant during the
pregnancy period.
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The results observed in the mortality from congenital malformation are
mixed. While male children seem to be more affected by exposure to biomass
power plants, female kids are more affected by facilities fueled by coal. The effects
observed in this table are the main drivers of the adverse impact of coal-fueled
power plants on female children’s health. Appendix Section 3.G further explores
the mortality from each disease by gender and period of life.

3.5.3 Distance from power plant

Table 3.5.5 analyzes the heterogeneous effects of each type of power plant
according to the distance between a facility and the affected population. A caveat
from this exercise is that the infant mortality rates used as dependent variables
are only measured at the municipality level. Therefore, we will slightly change the
explanatory (but not the dependent) variables to assess if exposure to a power plant
in a given distance range has more or less influence on the results. We consider the
share of the population exposed to a power plant within 20 km, between 20 and 40
km, and above 40 km. This variable is built like in Equation 3.3.1, but interacting
it with another categorical variable saying if each Census Tract (s) is within each
of the distance groups of the power plant (j). We present this new explanatory
variable in Equation 3.5.1.

Efr
id =

∑
∀j∈i

∑
∀j∈i

∑
∀r∈{0−20,20−40,40+}

Gf
jd ∗W i

sjd ∗ ps,i ∗Dr
sj (3.5.1)

This equation is similar to the previously presented model (Equation 3.3.1),
but includes an interaction with an indicative variable (Dr

sj) that equals 1 if the
distance between Census Tract s and power plant j is within the distance group r.

The results suggest that the increase in the infant mortality rate from
exposure to coal power plants are driven by the population living near this type of
facility. In most of the time frames analyzed, the coefficient to coal power plant
within 20 km is larger than the other distance groups and is the only statistically
significant coefficient. Female children living near a coal power plant also seem to
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be largely affected by the energy generation, but male kids appear to have a large
and unexpected signed coefficient. Columns 7 and 9 also present the exercise using
the potential death outcomes (which considers fetal death) as dependent variables.
Fetal deaths also seem to be affecting the results for female children living near the
power plants. Besides coal power plants, biomass facilities show some mixed results
depending on the distance group analyzed, but the aggregated effects, presented in
Table 3.5.1, are statistically equal to zero.

Table 3.5.5 – Infant mortality rate by distance to the emitting source

Dependent variable:
1d 1w 1m 3m 1y Fem 1y Fem. ftl. dth. Male 1y Male ftl. dth
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Coal exp.: up to 20 km 0.004∗∗∗ 0.0003 0.006∗ 0.008∗∗∗ 0.009∗∗∗ 0.032∗∗∗ 0.042∗∗∗ −0.016∗∗∗ −0.005
(0.001) (0.004) (0.003) (0.002) (0.002) (0.002) (0.005) (0.005) (0.010)

20 to 40 km −0.001 −0.003 0.0003 −0.003 −0.001 −0.005 −0.0004 0.002 −0.003
(0.002) (0.002) (0.005) (0.004) (0.003) (0.003) (0.009) (0.007) (0.009)

above 40 km 0.004∗∗∗ 0.002 0.003 0.005 0.005 0.011∗∗ 0.019∗∗∗ 0.0005 −0.003
(0.001) (0.002) (0.004) (0.003) (0.004) (0.005) (0.003) (0.006) (0.009)

N.gas exp.: up to 20 km 0.001∗ −0.0001 −0.0001 −0.001 −0.00002 −0.001 −0.0005 0.0001 −0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.004) (0.001) (0.003)

20 to 40 km −0.00002 −0.0003 0.001 0.001 0.002∗∗ 0.002∗ 0.002 0.002 0.003
(0.0004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

above 40 km −0.0001 0.0001 −0.0002 −0.001 −0.002 0.003 0.001 −0.008∗∗ −0.002
(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004)

Oil exp.: up to 20 km 0.0002 0.003∗∗ 0.002 −0.0004 −0.001 0.003 −0.001 −0.0005 0.004
(0.002) (0.001) (0.002) (0.002) (0.002) (0.003) (0.003) (0.005) (0.003)

20 to 40 km −0.003 −0.002 0.001 0.001 0.001 −0.005 −0.004 0.006 0.002
(0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.006) (0.005) (0.006)

above 40 km 0.001 −0.0002 −0.001 −0.002 −0.004 −0.006 0.001 0.007 0.001
(0.001) (0.002) (0.002) (0.003) (0.004) (0.004) (0.006) (0.009) (0.009)

Bio exp.: up to 20 km −0.025∗∗ −0.023 −0.030∗∗ −0.014 −0.017 0.001 −0.033 −0.032 −0.125∗∗∗
(0.009) (0.022) (0.011) (0.013) (0.013) (0.016) (0.063) (0.046) (0.032)

20 to 40 km 0.006 0.026∗∗∗ 0.029∗∗∗ 0.020∗∗∗ 0.011∗∗∗ 0.019 0.025∗∗∗ −0.001 −0.023
(0.007) (0.003) (0.003) (0.002) (0.003) (0.011) (0.009) (0.004) (0.015)

above 40 km −0.039∗∗∗ −0.052∗∗∗ −0.047∗∗∗ −0.059∗∗∗ −0.056∗∗∗ −0.046∗∗∗ −0.036∗∗∗ −0.066∗∗∗ −0.033
(0.007) (0.006) (0.008) (0.010) (0.012) (0.009) (0.013) (0.017) (0.033)

Mean dep. var 2.65 6.3 8.39 10.66 12.12 11.1 19.19 13.05 21.86

Observations 35,701 35,701 35,701 35,701 35,701 34,970 34,976 35,043 35,049
Adjusted R2 0.030 0.032 0.032 0.034 0.031 0.007 0.034 −0.002 0.034

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each municipality. Standard errors clustered at the
municipality block level. All dependent variables are normalized to a thousand live-births. The dependent variable in Columns 1, 2, 3, 4, and 5 show estimations
for the infant mortality rate in the 1st day (1d), 1st week (1w), 1st month (1m), 1st three months (3m), and 1st year of life (1y). Columns 6 and 7 show results for
female death and the potential female infant mortality, that considers the fetal death. Columns 8 and 9 show results for male death and for the potential male
infant mortality. Main explanatory variables are the exposure in a given distance range to each type of power plant during the pregnancy period.
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3.5.4 Hospitalization

In this section, we discuss the effects of using thermoelectric power plants
on hospitalization rates for the population in different age groups.3.5.1 The hospita-
lization data from Datasus indicates the zip code of residence of each hospitalized
patient, therefore, in this analysis, we will use a geographical unit of observation
smaller than a municipality. The “CEP Aberto” project3.5.2 collects, in collabora-
tion with the community, information from Brazilian zip codes such as the state,
municipality, street name, altitude, latitude, and longitude. We used this data to
allocate hospitalizations from the zip code of residence of a patient to the Census
Tract (CT) that contains it. We used the same municipality sample selection as
in the previous section, and, from all hospitalization in this sample, around 10%
could not be found in the “CEP Aberto” data and were dropped from the analysis.
Figure 3.5.1 shows the hospitalization rate by respiratory diseases from the main
sample selection compared to the country as a whole.3.5.3 The rates are in the same
order of magnitude and follow a similar trend.

3.5.1In the previous exercises, we investigate the consequences of exposure during pregnancy,
while in this section, we analyze if a month with higher exposure leads to higher hospitalization
in the same period.

3.5.2https://cepaberto.com/
3.5.3We considered all hospitalizations containing the information about the zip code of residence.
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Figure 3.5.1 – Monthly hospitalization rate by respiratory diseases in different
regions

Notes: Figure shows the rate of hospitalization, given as the number of hospitalizations by a thousand inhabitants,
in Brazil and in the main sample from the analysis.

Because in this analysis the unit of observation is a CT, we will slightly
change the exposure variable to work with this more refined geographical aggrega-
tion. Instead of calculating the share of the population exposed to a power plant, we
will consider that everyone from the CT is exposed to a power plant if its centroid
is downwind of the facility. This variable is presented in Equation 3.5.2.

Ef
sm =

∑
∀j∈i

Gf
jm ∗W s

jm (3.5.2)

where Ef
sm is the exposure of Census Tract s at monthm to energy generated

by fuel f . Gf
jm is the energy generated by power plant j, fueled by f , at month

m. W s
jm is an indicative variable equals 1 if the Census Tract s is within a range

of 45◦ of the average wind direction at month m. Like in the previous definition
of the exposure variable, we sum over all power plants within 50 km of the center
of municipality i that contains the Census Tract s. Table 3.5.6 presents the main
characteristics of the sample of Census Tracts and also the exposure to each type
of energy.



100

Table 3.5.6 – Monthly exposure to energy generation

Variable Mean StdDv Min Max
Census Tract characteristics

Total population 646.26 367.43 1.00 4020.00
Pop. age: under 1 9.51 7.19 0.00 76.00
Pop. age: under 5 58.40 40.06 0.00 471.00
Pop. age: 6 to 64 555.46 310.60 1.00 3546.00
Pop. age: above 65 42.48 28.23 0.00 318.00
Share pop. below 1 Min Wage 0.63 0.24 0.00 1.00
Exposure to energy generation

Coal power plant 3.29 20.51 0.00 354.36
Natural gas power plant 22.69 48.53 0.00 965.50
Oil power plant 4.97 17.04 -0.00 371.32
Biomass power plant 0.12 2.22 0.00 131.03
Notes: Descriptive statistics of Census Tract characteristics and monthly
exposure to a nearby operating power plant. The main sample contains
43,706 Census Tracts. The variable “Share pop. below 1 Min Wage” is the
average share of the population from the Census Tracts with a wage per
capita below the minimum wage.

In this section, we also slightly change the main specification to consider
that we are working with smaller observation units. CTs that belong to the same
municipalities might experience similar shocks, therefore, we include controls and
fixed effects to capture common monthly characteristics of all CTs within the same
municipality. The regressions are weighted by the population of each Census Tract
within an age group, and the standard errors are clustered at the municipality level.
The main specification used in this exercise is given by Equation 3.5.3.

Hsm =
∑
∀f
βfEf

sm +X
′

smδ + σs + ωim + φgc + αim + εsm (3.5.3)

where Hsm is the hospitalization rate at month m and CT s. Ef
sm is the ex-

position to energy defined by Equation 3.5.2. Xsm includes weather control variables
for CT s at month m. The weather control variables are total precipitation, mean
wind speed, mean, maximum, and minimum temperature during the month m.3.5.4

3.5.4To calculate weather conditions for each Census Tract we used the same algorithm as
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σs is a Census Tract fixed effect. ωim is a variable that controls for predominant
wind direction in each municipality, which is similar to the previous specification.
For computational reasons, instead of considering the share of days the wind in a
municipality blew in each octant of the wind rose, we divide the wind directions
into quadrants, therefore, we have half the number of variables. φgc is a block of
municipalities by calendar-month fixed effect to capture regional seasonality. αim is
a municipality by month fixed effect to capture common trends in CTs from the
same city, and εsm is the error term.

Table 3.5.7 shows the hospitalization by all respiratory diseases in different
age groups. Most of the coefficients are indistinguishable from zero, except for
the borderline significant results with unexpected signs for the exposure to oil
power plants in patients under one year of age. Appendix Table 3.I.4 suggests that
hospitalization by pneumonia drives this unexpected result.

Table 3.5.7 – Hospitalization by all respiratory diseases in different age groups

All ages Age 0-1 Age 0-1: male Age 0-1: fem. Age 0-5 Age 6-64 Age 65+
(1) (2) (3) (4) (5) (6) (7)

Coal expo -0.00028 -0.00692 -0.00442 -0.00251 -0.00163 -0.00012 -0.00364
(0.00026) (0.01093) (0.00694) (0.00469) (0.00196) (0.00018) (0.00299)

Ngas expo -0.00016 -0.00291 -0.00027 -0.00264 -0.00087 -0.00010 -0.00021
(0.00023) (0.00480) (0.00303) (0.00205) (0.00097) (0.00021) (0.00046)

Oil expo -0.00066* -0.01304* -0.00884** -0.00420 -0.00548** -0.00018 -0.00072
(0.00036) (0.00686) (0.00405) (0.00319) (0.00240) (0.00014) (0.00087)

Bio expo 0.00149 0.01791 0.01250 0.00541 0.00791 0.00073* 0.00150
(0.00129) (0.01804) (0.01030) (0.00885) (0.00897) (0.00044) (0.00329)

Mean dep.var 0.37 6.44 3.77 2.66 2.03 0.18 1.07

Obs 3451308 3451308 3451308 3451308 3451308 3451308 3451308
R-squared 0.77 0.55 0.52 0.45 0.61 0.71 0.60

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the number of inhabitants in each Census Tract in each
age group. Standard-errors clustered at municipality level. Each column shows the result for hospitalization by all types of
respiratory disease in a specific age group. Main explanatory variables are the exposure to each type of power plant during the
pregnancy period.

presented in Section 3.3.2.
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3.6 Discussion

Brazil is a large country that relies heavily on hydroelectric power in its
energy mix, but in recent years the use of thermoelectric power plants has increased
from 5% in the 2000s to something around 20% by 2017. Adverse weather shocks
that compromised the capacity of water reservoirs supplying hydroelectric facilities
and investments in other types of energy generation - mainly thermoelectric and
wind facilities - help explain this shift away from hydroelectric power. In this study,
we investigate if the use of thermoelectric power plants affects health outcomes of
nearby communities.

We conduct two exercises. The first one analyzing the infant mortality rate
at the municipality level, and the second one evaluating hospitalization at the
Census Tract level. We built an index variable to measures the exposure of each
geographical unity (municipality or Census Tract) to nearby operational power
plants. The results suggest that exposure to coal power plants during pregnancy
can lead to an increase in the infant mortality rate, but there is no clear evidence of
increasing hospital admissions in months with higher use of thermoelectric power.

Only coal-fueled power plants seem to lead to an increase in the infant
mortality rate, but the coefficients’ magnitude is low. In the benchmark specification,
every additional gigawatt-hour of energy affecting a whole municipality increased
the mortality in 0.003 deaths by a thousand live births in a month, from an average
mortality rate of 12. In our results, this negative effect of coal power plants is highly
concentrated in female children.

The low coefficients observed in the results should be interpreted with
caution because there is evidence that fetal selection plays an important role in
biasing down the estimations. The use of thermoelectric power plants might lead
to an early termination of pregnancies, which must also be treated as an adverse
health consequence of this type of facility. Besides that, these negative consequences
are not homogeneously spread through space, and the results suggest that the
population living closer to power plants might be more affected by their pollution.

Brazil is increasingly relying on thermoelectric power to supply its energy
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demand, but most of the new investments focus on natural gas facilities. Although
this shift toward thermoelectric power should raise concerns regarding the increase
of emissions, it is reassuring that the country does not rely entirely on coal power
plants since these facilities are more harmful to the environment and the nearby
population’s health. As further developments of this research, it would be important
to expand the sample of thermoelectric power plants to contemplate more facilities
operating in the country. Besides that, the length of exposure to an operational
power plant might influence the health of the affected population, therefore, it
would be interesting to include this variable in the analysis.
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Appendix

3.A Descriptive statistics

Figure 3.A.1 shows the evolution of infant mortality rates for children up
to one day, one week, one month, three months, and one year of life from 2010 to
2016. There is a slight decrease in these rates, but this variation is small.

Figure 3.A.1 – Evolution of the infant mortality rate

Notes: This figure shows the evolution of the infant mortality rate in different periods of the first
year of life including the 500 municipalities from the main sample.

Figure 3.A.2 shows the distribution of the population in the vicinity of
power plants according to the distance between the Census Tract of residence and
the facility.
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Figure 3.A.2 – Share of the population according to distance to a power plant

Notes: Figure showing the distribution of population in the vicinity of power plants including the
500 municipalities from the main sample.

Figure 3.A.3 presents the share of days (after the first operational day) that
each power plant is operational by its maximum observed daily generation capacity
(on the x axis). There is a large variation in the share of operational days. Larger
facilities (to the right of the Figure) are used more often, but a large share of the
power plants from the sample is frequently turned on and off.
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Figure 3.A.3 – Power plants’ operational days

Notes: This figure shows the share of days each power plant operated (generation larger than zero) since the first
operational day according to the generating capacity. The capacity axis (x) shows the maximum one-day observed

generation in the sample.

3.B Alternative specification

Table 3.B.1 shows different model specifications for the mortality rate in the
first year of life to compare them to the benchmark specification presented in column
9. Once we include the municipality fixed effect (in column 5), the coefficients for the
exposure to coal and to natural gas become positive and significant. The coefficient
for coal exposure remains almost unchanged in all the other specifications, but the
coefficient to exposure to natural gas losses significance after including controls for
predominant wind direction (Column 7).

In columns 1 through 10, we use the main sample in which we exclude
27 municipalities (5%) with the largest populations. In column 11, we add these
municipalities to the sample to analyze if this exclusion is affecting the results, but
the estimated coefficient for exposure to coal remains similar.
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Table 3.B.1 – Alternative specification

Dependent variable:
Infant mortality (death by a thousand live births)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Preg. coal exp. −0.001∗∗∗ −0.001 −0.001 −0.001 0.002∗ 0.002∗ 0.003 0.003∗ 0.003∗ 0.004∗ 0.004∗∗
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002)

Preg. n. gas exp. 0.0003 0.0004 0.0003 0.0004 0.001∗ 0.001∗ 0.001 0.001 0.001 0.0004 −0.0004
(0.001) (0.001) (0.0005) (0.0005) (0.0004) (0.0005) (0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. 0.00002 −0.002 −0.002 −0.002 0.001 0.001 −0.002∗∗ −0.001 −0.001 −0.001 0.001
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. −0.003 −0.008 −0.006∗ −0.006∗ −0.003 −0.004 0.005 −0.003 −0.003 −0.001 −0.001
(0.005) (0.005) (0.003) (0.003) (0.005) (0.005) (0.010) (0.010) (0.010) (0.009) (0.010)

Mean dep. var 12.12

Weather controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Birth controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month FE Yes Yes Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes Yes
Mun. block x cal mth FE Yes Yes Yes Yes Yes Yes
Wind dir x city Yes Yes Yes Yes Yes
1st year expos Yes Yes Yes Yes
GDP control Yes Yes Yes
Weather bins Yes
Add big cities Yes

Observations 35,701 35,701 35,701 35,701 35,701 35,701 35,701 35,701 35,701 35,701 37,645
Adjusted R2 0.0001 0.003 0.015 0.017 0.036 0.035 0.031 0.031 0.031 0.031 0.056

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each municipality. Standard-errors clustered at the municipality
block level. All columns show estimation for the same dependent variable, but controls and fixed effects are added in each column according to bottom rows. Column 9
is the benchmark specification, with birth variables and weather controls, regional specific seasonality, month fixed effect, and with controls for municipality specific
wind direction. Column 10 repeats the benchmark specification, but instead of using average weather variables as controls, it divides the weather variables in frequency
within bins. Column 11 returns to the benchmark specification but uses the full sample, without excluding the largest municipalities. Main explanatory variables are the
exposure to each type of power plant during the pregnancy period.
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Table 3.B.2 shows the estimation of the effect of the exposure on different
birth outcomes. Results for coal exposure on the share of Low Birth Weight (column
2) and of Pre-Term (column 4) are statistically significant, but the coefficients
have an unexpected sign and are small. These coefficients pointing to the direction
opposite to what would be expected could reflect the fetal selection affecting birth
outcomes. If this is the case, because the weaker fetuses died before birth, only the
stronger individuals ended up being born.

Table 3.B.2 – Birth outcomes

Dependent variable:
Weight LBW VLBW PT VPT APGAR1 APGAR5
(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.008 −0.00001∗∗∗ −0.00000 −0.00002∗∗ 0.00000 0.00002 0.00003
(0.018) (0.00000) (0.00000) (0.00001) (0.00001) (0.00005) (0.0001)

Preg. n. gas exp. 0.002 0.00000 0.00000 −0.00000 0.00000 −0.00003 −0.00005
(0.004) (0.00000) (0.00000) (0.00001) (0.00000) (0.00005) (0.00004)

Preg. oil exp. 0.005 −0.00000 −0.00000 0.00002 −0.00000∗ −0.0002 −0.0001
(0.010) (0.00000) (0.00000) (0.00001) (0.00000) (0.0001) (0.0001)

Preg. biomass exp. 0.025 −0.00000 0.00001 0.00001 0.00003∗∗ −0.001∗∗∗ −0.0004∗∗
(0.081) (0.00002) (0.00001) (0.00004) (0.00001) (0.0002) (0.0001)

Mean dep. var 3181.36 0.09 0.01 0.11 0.02 8.37 9.34

Observations 35,701 35,701 35,701 35,701 35,701 35,665 35,665
Adjusted R2 0.389 0.192 0.059 0.240 0.057 0.425 0.484

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each municipality.
Standard-errors clustered at municipalities near the same power plant or group of nearby power plants. Column 1 shows results
for the average birth weight. Columns 2 and 3 presents the share of low birth weight (under 2500 g) and very low birth weight
(under 1500g). Columns 4 and 5 are the results for pre-term (under 36 weeks), and very pre-term (under 32 weeks). Columns
6 and 7 show results for APGAR 1 and APGAR5. Main explanatory variables are the exposure to each type of power plant
during the pregnancy period.

3.C Alternative controls for the economic activity

In this section, we use alternative methods to further investigate if the
economic activity might be interfering with the results. In Table 3.C.1, we replace the
GDP control variable for an alternative variable that captures the economic activity.
We use public data gathered by the Brazilian Central Bank that presents monthly
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information of the banking activities in each municipality. It contains information
about the municipalities’ total cash availability, banking deposits, securities, real
estate bonds, credit operations, among others. We use the total cash availability and
credit operations within a month as a proxy for the monthly economic activity in a
given municipality. However, a caveat is that only municipalities with banks appear
in the data. We used these banking variables as controls in the main regressions and
considered them as zero in the municipalities not showing in the data. The results,
presented in Table 3.C.1, are equal to those observed in the main specification, at
least up to the decimal precision presented here.3.C.1

Table 3.C.1 – Infant mortality rate controlling for banking variables

Infant mortality rate (by thousand live births)
1d 1w 1m 3m 1y Female 1y Male 1y
(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.002∗∗ 0.0002 0.002∗∗∗ 0.003∗ 0.003∗ 0.008∗∗∗ −0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.002)

Preg. n. gas exp. 0.0002 −0.0002 0.0003 0.0001 0.001 0.001 −0.001
(0.0004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. −0.001 0.0003 0.001 −0.0001 −0.001 −0.003 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

Preg. bio exp. −0.003 0.009 0.012 0.004 −0.002 0.006 −0.014
(0.011) (0.014) (0.013) (0.011) (0.010) (0.018) (0.009)

Mean dep. var 2.65 6.3 8.39 10.66 12.12 11.1 13.05

Observations 35,701 35,701 35,701 35,701 35,701 34,970 35,043
Adjusted R2 0.030 0.032 0.031 0.034 0.031 0.007 −0.002

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each
municipality. Standard errors clustered at the municipality block level. The dependent variable in Columns
1, 2, 3, 4, and 5 are the infant mortality rate in the 1st day (1d), 1st week (1w), 1st month (1m), 1st three
months (3m), and 1st year of life (1y). Columns 6 and 7 show results for female only, and male only deaths
in the first year of life. Main explanatory variables are the exposure to each type of power plant during the
pregnancy period. This specification replaces the GDP control for banking variables.

We conduct yet another exercise to investigate if the economic activity affects
3.C.1Differences between the results appear when we increase the decimal places.



111

the observed results. To disentangle the energy production in each power plant from
the local economic activity and weather, we estimate the energy generation from a
thermoelectric power plant in a given month based on the water available to all
hydroelectric power plants of the system on the previous month. We use monthly
data from the ONS on the levels of water available to all hydroelectric power plants
of the country to find an estimated energy generation in each thermoelectric facility.
After that, we repeat the main exercise of this study, replacing the observed energy
generation from Equation 3.3.1 by the estimated values. Formally, we pool the
observations from all thermoelectric power plants and estimate Equation 3.C.1 that
follows.

TGjm = Lm−1 + θj + Lm−1 ∗ θj + εjm (3.C.1)

where TGjm is the total energy generation from power plant j at month
m. Lm−1 is the level of available water in all hydroelectric reservoirs in the month
beforem, θj is a fixed effect for power plant j, and εjm is the error term. Some power
plants only started to operate in the middle of the period we are analyzing.3.C.2

In these situations, the generation was defined as a missing value. Figure 3.C.1,
compares the sum of the total observed energy generation from all thermoelectric
power plants in the sample, with the fitted values estimated by Equation 3.C.1.

3.C.2As pointed by Figure 3.2.2.
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Figure 3.C.1 – Comparing the observed monthly energy generation with the fitted
value

Notes: This figure compares the observed total energy generation from the power plants in the sample to the total
generation estimated based on the level of the water reservoirs in the last period.

We have the estimated monthly energy generated by each power plant of
the sample, but we still need to find the daily values to use in Equation 3.3.1.
We split the estimated monthly values between the days following the same daily
generation schedule from the observed data, as shown in Equation 3.C.2.

Ĝjd = T̂Gjm ∗ Gjd

TGjm

(3.C.2)

T̂Gjm is the total estimated energy generation from power plant j at month
m. TGjm is the observed value for the energy generation of power plant j at month
m. Gjd is the observed daily generation from power plant j at day d, and Ĝjd is
the estimated daily generation that will be used in Equation 3.3.1 to build the new
data set.

Table 3.C.2 shows the estimations of the main specification using the
new dataset. The results are similar to those observed in the main exercise. The
coefficients of the impact of exposure to coal are slightly smaller and less significant,
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but they still point in the same direction. The effect of exposure to natural gas
power plants in the first three months of life becomes negative and significant, and
there is no relevant difference for the exposure to oil and biomass power plants.

Table 3.C.2 – Infant mortality rate using the estimated energy generation to
calculate the exposure variable

Infant mortality rate (by thousand live births)
1d 1w 1m 3m 1y Female 1y Male 1y
(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.0001 0.001 0.003∗∗ 0.002∗ 0.002 0.006∗∗∗ −0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

Preg. n. gas exp. −0.0004 −0.002∗∗∗ −0.002∗∗ −0.001∗∗ −0.001 −0.00002 −0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Preg. oil exp. 0.0001 0.001 0.003∗ 0.001 0.001 −0.003 0.016
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.011)

Preg. bio exp. −0.003 0.019 0.019 0.009 0.007 −0.008 0.022
(0.008) (0.014) (0.015) (0.014) (0.014) (0.014) (0.017)

Mean dep. var 2.65 6.3 8.39 10.66 12.12 11.1 13.05

Observations 35,701 35,701 35,701 35,701 35,701 34,970 35,043
Adjusted R2 0.030 0.032 0.032 0.034 0.031 0.007 −0.002

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each
municipality. Standard errors clustered at the municipality block level. The dependent variable in Columns 1,
2, 3, 4, and 5 are the infant mortality rate in the 1st day (1d), 1st week (1w), 1st month (1m), 1st three months
(3m), and 1st year of life (1y). Columns 6 and 7 show results for only female, and only male deaths in the first
year of life. Main explanatory variables are the exposure to each type of power plant during the pregnancy
period estimated by the level of hydroelectric water reservoirs in the preceding period.

3.D Controlling for the agricultural activity and the incidence
of fire spots during pregnancy

In the analysis so far, we used the GDP of each municipality to control for
the economic activity, but, in this section, we slightly change the main specification
to investigate if the agricultural economic activity influences the results. In Table
3.D.1, we use information from SIDRA about a municipalities’ agricultural GDP to
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build the control variables for the economic activity. We replace the GDP variable
for this agricultural GDP, and the results remain almost unchanged.

Table 3.D.1 – Infant mortality rate controlling for agricultural GDP

Infant mortality rate (by thousand live births)
1d 1w 1m 3m 1y Female 1y Male 1y
(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.002∗∗ 0.0002 0.002∗∗∗ 0.003∗∗ 0.003∗∗ 0.008∗∗∗ −0.002
(0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.002)

Preg. n. gas exp. 0.0001 −0.0003 0.0003 0.0001 0.0005 0.001 −0.001
(0.0003) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. −0.001 0.0002 0.001 −0.0002 −0.001 −0.003 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

Preg. bio exp. −0.003 0.009 0.012 0.004 −0.003 0.006 −0.015
(0.011) (0.014) (0.013) (0.011) (0.011) (0.018) (0.010)

Mean dep. var 2.65 6.3 8.39 10.66 12.12 11.1 13.05

Observations 35,701 35,701 35,701 35,701 35,701 34,970 35,043
Adjusted R2 0.030 0.032 0.032 0.034 0.031 0.007 −0.002

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each
municipality. Standard errors clustered at the municipality block level. The dependent variable in Columns 1, 2,
3, 4, and 5 are the infant mortality rate in the 1st day (1d), 1st week (1w), 1st month (1m), 1st three months
(3m), and 1st year of life (1y). Columns 6 and 7 show results for only female, and only male deaths in the first
year of life. Main explanatory variables are the exposure to each type of power plant during the pregnancy
period. In this specification, the GDP control variable is replaced by the agricultural GDP in each municipality.

In Table 3.D.2, we investigate if the occurrence of fire spots in the vicinity of
a municipality during the pregnancy period of a newborn changes the relationship
between the use of power plants and the mortality rates. We use data from the
program “Queimadas” of the Brazilian National Institute for Space Research
(INPE).3.D.1 We downloaded shapefiles with information on daily fire spots and
counted the number of spots within 50 km from the center of each municipality
for the whole pregnancy period of babies born at a given month. The results
are indifferent for the exposure to fossil fuels, but there is a slight difference in
the exposure to biomass power plant. The coefficient showing the impact of the
3.D.1http://queimadas.dgi.inpe.br/queimadas/portal.
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exposure to biomass on the mortality of male children, that was negative but
indistinguishable from zero in the main specification, becomes significant in this
exercise.

Table 3.D.2 – Infant mortality rate controlling for the incidence of fire

Infant mortality rate (by thousand live births)
1d 1w 1m 3m 1y Female 1y Male 1y
(1) (2) (3) (4) (5) (6) (7)

Preg. coal exp. 0.002∗∗ 0.0003 0.003∗∗∗ 0.003∗ 0.003∗ 0.008∗∗∗ −0.001
(0.001) (0.001) (0.001) (0.001) (0.002) (0.003) (0.002)

Preg. n. gas exp. 0.0001 −0.0004 0.0002 −0.00004 0.0004 0.001 −0.001
(0.0004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. −0.001 0.0001 0.001 −0.0002 −0.001 −0.003 0.004
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.003)

Preg. bio exp. −0.004 0.009 0.012 0.004 −0.002 0.006 −0.015∗
(0.010) (0.013) (0.013) (0.010) (0.009) (0.016) (0.008)

Mean dep. var 2.65 6.3 8.39 10.66 12.12 11.1 13.05

Observations 35,701 35,701 35,701 35,701 35,701 34,970 35,043
Adjusted R2 0.030 0.032 0.031 0.034 0.031 0.007 −0.002

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each
municipality. Standard errors clustered at the municipality block level. The dependent variable in Columns 1, 2,
3, 4, and 5 are the infant mortality rate in the 1st day (1d), 1st week (1w), 1st month (1m), 1st three months
(3m), and 1st year of life (1y). Columns 6 and 7 show results for only female, and only male deaths in the first
year of life. Main explanatory variables are the exposure to each type of power plant during the pregnancy period.
In this specification we further add another variable to control for nearby fire spots.

3.E Infant mortality by trimester of exposure

Table 3.E.1 divides exposure in each trimester of pregnancy. The dependent
variables are similar to the main specification presented in Table 3.5.1, with columns
1 through 5 representing infant mortality in the first day, first week, first month,
first three months, and first year of life. Columns 6 and 7 are infant mortality
rates up to 1 year of age from female and male children, and column 8 shows the
results for the same potential mortality rate variable built to study fetal selection
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in section 3.5.1. This variable equals fetal deaths plus infant mortality divided
by fetal deaths plus live births, normalized by a thousand. A caveat arises when
studying fetal death due to exposure in each trimester of pregnancy. Because we
don’t have precise information of the gestational length before fetal death for the
full sample, if, for example, a fetus died in month six of pregnancy, what we are
considering as exposure in the last trimester is actually the exposure in the second
trimester. Besides that, most of the fetal deaths observed happened in the last
trimester of pregnancy. As of 2012, data from SIM/Datasus started to report the
fetal age in the moment of death. Figure 3.E.1 presents the distribution of deaths
by fetal week, and the large majority of the deaths occur either in the second half of
the second trimester or in the third trimester. There is no clear pattern of influence
of the exposure in each trimester of pregnancy on the infant mortality rate.
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Table 3.E.1 – Infant mortality by trimester of exposure

Dependent variable:
1d 1w 1m 3m 1y Female 1y Male 1y F.D. + 1y rate
(1) (2) (3) (4) (5) (6) (7) (8)

Coal exp.: 3rd trim 0.00001 −0.001 0.002 0.0004 −0.003 0.017∗∗ −0.001∗∗∗ −0.003
(0.002) (0.003) (0.003) (0.003) (0.009) (0.008) (0.0002) (0.004)

2nd trim 0.005∗ 0.004∗∗ 0.004 0.005 0.013 0.005 −0.0001 0.016∗∗
(0.003) (0.002) (0.003) (0.003) (0.012) (0.006) (0.0003) (0.008)

1st trim 0.00003 −0.003∗∗∗ −0.0001 0.001 −0.008 0.007 −0.001∗∗ 0.006
(0.001) (0.001) (0.002) (0.004) (0.012) (0.012) (0.0003) (0.007)

N.gas exp.: 3rd trim 0.001∗∗ 0.0001 0.001 0.0004 0.001 −0.0002 0.0001 −0.0002
(0.0005) (0.001) (0.001) (0.001) (0.002) (0.002) (0.0002) (0.002)

2nd trim −0.001 −0.001 −0.001 −0.001 −0.002 0.002 −0.0001 0.001
(0.001) (0.001) (0.001) (0.002) (0.003) (0.002) (0.0002) (0.002)

1st trim 0.0002 0.001 0.002 0.001 0.002 0.001 0.0004 −0.001
(0.001) (0.001) (0.001) (0.002) (0.004) (0.003) (0.0003) (0.002)

Oil exp.: 3rd trim −0.004∗∗∗ −0.005∗ −0.004 −0.004 −0.014 −0.003 −0.001∗ −0.006
(0.001) (0.003) (0.003) (0.004) (0.010) (0.004) (0.001) (0.005)

2nd trim 0.00001 0.005∗ 0.006∗ 0.002 0.002 −0.002 0.001 −0.005
(0.002) (0.003) (0.003) (0.004) (0.010) (0.005) (0.001) (0.006)

1st trim 0.001 −0.001 −0.001 0.001 0.006 −0.009 −0.0004 0.008
(0.002) (0.002) (0.003) (0.004) (0.009) (0.006) (0.001) (0.006)

Bio exp.: 3rd trim −0.007 0.014 0.008 −0.003 −0.086∗∗∗ 0.003 −0.001 −0.032∗∗
(0.017) (0.028) (0.031) (0.028) (0.019) (0.033) (0.002) (0.013)

2nd trim 0.008 0.023 0.030∗ 0.026 0.040 0.009 −0.0002 −0.016
(0.007) (0.020) (0.017) (0.016) (0.037) (0.013) (0.001) (0.019)

1st trim −0.014 −0.012∗∗ −0.007∗ −0.015∗∗∗ −0.110∗∗∗ 0.050∗∗∗ −0.002∗∗ 0.031∗∗
(0.011) (0.006) (0.003) (0.004) (0.033) (0.014) (0.001) (0.015)

Mean dep. var 2.65 6.3 8.39 10.66 25.23 10.84 1.71 22.48

Observations 35,701 35,701 35,701 35,701 34,970 35,043 35,701 35,701
Adjusted R2 0.030 0.032 0.031 0.034 0.027 0.008 0.495 0.058

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in each municipality. Standard errors clustered
at the municipality block level. The dependent variable in Columns 1, 2, 3, 4, and 5 are the infant mortality rate in the 1st day (1d), 1st week
(1w), 1st month (1m), 1st three months (3m), and 1st year of life (1y). Columns 6 and 7 show results for only female, and only male deaths in the
first year of life. Column 8 shows results for the potential infant deaths considering fetal death. Main explanatory variables are the exposure to
each type of power plant during each trimester of pregnancy.
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Figure 3.E.1 – Count of fetal death by gestational week

Notes: Data from Datasus/SIM. As of 2012 the fetal death data contains information on the gestational week of
the fetal death. This figure counts how many deaths there are in each gestational week.

3.F Alternative definition of the exposure variable

Table 3.F.1 compares the benchmark specification (reproduced in column
3) with alternative definitions of the exposure variable. In columns 1 and 2, we
consider that the whole municipality is exposed to a power plant: in column 1 if
the population-weighted centroid is downwind of a power plant, and in column
2 if the center of the municipality is downwind.3.F.1 Column 3 is the benchmark
specification that considers the share of the population exposed to a power plant,
based on downwind Census Tracts, as discussed in Section 3.3.3. Comparing the
benchmark specification with the simpler exposure variables presented in columns
1 and 2, we notice larger coefficients with different signs in the coal variable. In
column 4, instead of considering a Census Tract to calculate the share of the
population exposed, we consider the population grid from the Oak Ridge National
Laboratory (presented in Section 3.3.4). Like in the previous case, initially we

3.F.1Center of the municipality considered as the region with highest population density.
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consider a grid to be exposed to a power plant if its centroid is downwind of a
facility, and then we calculate the share of the population living in these downwind
grids. Results are similar to the benchmark specification. All these initial four
columns consider the main sample of municipalities, where a city is selected if its
center lies within 50 km of a power plant. In column 5, we use a different sample
selection and include all municipalities that have at least one Census Tract within
50 km of a power plant. If there is a large municipality far from a power plant, but
with one Census Tract within the analyzed range, then this whole municipality
will be included in the sample (but the exposure variable still considers only the
share of the population from the Census Tracts within the 50 km range). In this
last specification, results point to the same direction and are even stronger than
in the benchmark definition. Once we start to consider the population exposed to
the operating power plant, as of column 3, the results are fairly stable and with
comparable magnitudes.
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Table 3.F.1 – Infant mortality rate with different rules for municipality exposure

Infant mortality (death by a thousand live births)
P. centroid Center CT: benchm Grid CT in range

(1) (2) (3) (4) (5)

Preg. coal exp. −0.00001∗ −0.00002 0.003∗ 0.003∗ 0.005∗∗∗
(0.00001) (0.00001) (0.002) (0.002) (0.001)

Preg. n. gas exp. 0.00004∗ 0.00002 0.001 0.001 0.0003
(0.00002) (0.00002) (0.001) (0.001) (0.0003)

Preg. oil exp. −0.0001∗∗∗ −0.0001∗∗ −0.001 −0.001 −0.0005
(0.00002) (0.00002) (0.001) (0.001) (0.002)

Preg. biomass exp. −0.0001∗∗ −0.0001∗∗∗ −0.003 −0.002 0.004
(0.00003) (0.00002) (0.010) (0.009) (0.039)

Mean dep. var 12.12 12.16

Observations 35,701 35,701 35,701 35,701 49,895
Adjusted R2 0.031 0.031 0.031 0.031 0.030

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live births in
each municipality. Standard errors clustered at the municipality block level. The dependent variable
in all columns are the infant mortality rate in the first year of life. Each column shows the result for a
specific definition of the exposure variable.

3.G Infant mortality rate heterogeneity analysis

In this section, we analyze the gender and age heterogeneities of the mortality
rates by the different diseases discussed in Table 3.5.3. Each table contains the
results for one specific type of disease. The columns represent the age of death, and
each panel shows the results for a specific gender.

Table 3.G.1 suggests that exposure to coal leads to an increase in the
mortality rate by respiratory diseases of female children but not males, while the
opposite happens with exposure to natural gas power plants. These effects are only
statistically significant in the specification that evaluates death up to one year of
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age, and death at younger ages are all statistically equal to zero. In this analysis, we
also observe an unexpected sign in the impact of biomass power plants on female
deaths in the first year of life.

Table 3.G.1 – Age and gender heterogeneity for respiratory diseases

Mortality rate by respiratory disease
1d 1w 1m 3m 1y
(1) (2) (3) (4) (5)

Male children

Preg. coal exp. 0.000 −0.00002 −0.00004 −0.001 −0.001
(0.000) (0.00002) (0.0001) (0.001) (0.001)

Preg. n. gas exp. 0.000 0.00001 0.00003 0.0002 0.0004∗∗
(0.000) (0.00001) (0.0001) (0.0001) (0.0002)

Preg. oil exp. 0.000 −0.0001 −0.0002 −0.0003 −0.001
(0.000) (0.0001) (0.0002) (0.001) (0.001)

Preg. biomass exp. 0.000 0.00004 0.0004 −0.001 0.001
(0.000) (0.00003) (0.001) (0.002) (0.003)

Mean dep. var 0 0 0.05 0.4 0.68

Observations 35,043 35,043 35,043 35,043 35,043
Adjusted R2 −0.033 −0.012 0.011 0.008

Female children

Preg. coal exp. 0.00000 −0.00001 0.00004 0.001 0.001∗∗
(0.00001) (0.00001) (0.0001) (0.001) (0.0004)

Preg. n. gas exp. 0.00000 −0.00001 0.00005 0.0001 0.0003
(0.00000) (0.00001) (0.0001) (0.0001) (0.0002)

Preg. oil exp. 0.00000 0.00001 −0.00004 0.0003 0.0004
(0.00000) (0.00001) (0.0001) (0.0004) (0.001)

Preg. biomass exp. −0.00002 −0.00003 0.0001 −0.001 −0.004∗∗∗
(0.00002) (0.00004) (0.0004) (0.001) (0.001)

Mean dep. var 0 0 0.05 0.32 0.57

Observations 34,970 34,970 34,970 34,970 34,970
Adjusted R2 −0.042 −0.029 0.038 0.010 0.008

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of
live births in each municipality. Standard errors clustered at the municipality block level.
The dependent variable is infant death by respiratory diseases (ICD-10 codes that start with
the letter “J”). Each columns analyzes a specific period of death, and each panel shows the
results for a specific gender. Main explanatory variables are the exposure to each type of
power plant during the pregnancy period.
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Tables 3.G.2 and 3.G.3 suggest that the effects observed in the mortality
from conditions originated in the perinatal period are driven mainly by male
children and can be observed in all ages but on the first day of life.
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Table 3.G.2 – Age and gender heterogeneity for diseases originated in the
perinatal period

Mortality rate by perinatal disease
1d 1w 1m 3m 1y
(1) (2) (3) (4) (5)

Male children

Preg. coal exp. −0.0001 −0.004 0.002 −0.0004 0.00004
(0.002) (0.002) (0.004) (0.004) (0.005)

Preg. n. gas exp. 0.0002 −0.0003 −0.0001 −0.0004 −0.0003
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. −0.0004 0.002∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. −0.010 −0.011 −0.002 −0.009 −0.010
(0.008) (0.012) (0.010) (0.009) (0.009)

Mean dep. var 2.19 5.46 7.01 7.52 7.63

Observations 35,043 35,043 35,043 35,043 35,043
Adjusted R2 0.013 0.012 0.013 0.014 0.014

Female children

Preg. coal exp. 0.001 0.001 0.0004 0.001 0.001
(0.001) (0.001) (0.003) (0.003) (0.003)

Preg. n. gas exp. 0.0002 0.0002 0.001 0.001 0.001
(0.0004) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. 0.0003 −0.0003 −0.001 −0.001 −0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. −0.009 0.006 0.008 0.008 0.009
(0.008) (0.008) (0.008) (0.009) (0.008)

Mean dep. var 1.81 4.33 5.71 6.17 6.25

Observations 34,970 34,970 34,970 34,970 34,970
Adjusted R2 0.013 0.016 0.016 0.016 0.017

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number
of live births in each municipality. Standard errors clustered at the municipality block
level. The dependent variable is infant death related to certain conditions originated in
the perinatal period (ICD-10 codes that start with the letter “P”). Each columns analy-
zes a specific period of death, and each panel shows the results for a specific gender.
Main explanatory variables are the exposure to each type of power plant during the
pregnancy period.
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Table 3.G.3 – Age and gender heterogeneity for respiratory and cardiovascular
diseases originated in the perinatal period

Mortality rate by resp. card. perinatal disease
1d 1w 1m 3m 1y
(1) (2) (3) (4) (5)

Male children

Preg. coal exp. 0.001 −0.0003 0.002∗∗ 0.002 0.002
(0.001) (0.001) (0.001) (0.002) (0.002)

Preg. n. gas exp. −0.00000 −0.0003 −0.0002 −0.001 −0.0004
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. 0.00002 0.001∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. −0.002 −0.007 −0.009∗ −0.010∗ −0.010∗
(0.003) (0.005) (0.005) (0.005) (0.005)

Mean dep. var 0.89 2.27 2.69 2.85 2.92

Observations 35,043 35,043 35,043 35,043 35,043
Adjusted R2 0.009 0.005 0.008 0.009 0.009

Female children

Preg. coal exp. −0.002∗∗∗ −0.002 −0.001 −0.002 −0.002
(0.0003) (0.001) (0.003) (0.003) (0.003)

Preg. n. gas exp. 0.001 0.001 0.001∗ 0.001 0.001∗
(0.0003) (0.001) (0.001) (0.001) (0.001)

Preg. oil exp. 0.001 0.001 0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. biomass exp. −0.011∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.008∗∗∗ −0.008∗∗∗
(0.002) (0.002) (0.003) (0.003) (0.003)

Mean dep. var 0.73 1.8 2.14 2.28 2.33

Observations 34,970 34,970 34,970 34,970 34,970
Adjusted R2 −0.003 −0.001 −0.002 −0.003 −0.003

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number of live
births in each municipality. Standard errors clustered at the municipality block level. The depen-
dent variable is infant death related to respiratory and cardiovascular disorders specific to the
perinatal period (ICD-10 codes “P20-29”). Each columns analyzes a specific period of death, and
each panel shows the results for a specific gender. Main explanatory variables are the exposure
to each type of power plant during the pregnancy period.
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Table 3.G.4 – Age and gender heterogeneity for congenital malformation
respiratory and cardiovascular diseases

Mortality rate by hart and resp malformation
1d 1w 1m 3m 1y
(1) (2) (3) (4) (5)

Male children

Preg. coal exp. 0.001 0.0002 0.0003 −0.0002 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Preg. n. gas exp. −0.00002 −0.00004 −0.0003 −0.001 −0.001
(0.0001) (0.0002) (0.0003) (0.0004) (0.0005)

Preg. oil exp. 0.0001 −0.00005 −0.001 −0.0004 −0.001
(0.0002) (0.0004) (0.001) (0.001) (0.001)

Preg. biomass exp. 0.003 0.014∗∗∗ 0.014∗∗∗ 0.019∗∗∗ 0.019∗∗∗
(0.002) (0.004) (0.003) (0.005) (0.005)

Mean dep. var 0.17 0.52 0.81 1.17 1.4

Observations 35,043 35,043 35,043 35,043 35,043
Adjusted R2 0.044 0.010 0.007 −0.017 −0.037

Female children

Preg. coal exp. −0.0004 −0.001 −0.001 −0.001 0.001
(0.0003) (0.001) (0.001) (0.001) (0.001)

Preg. n. gas exp. −0.0001 0.00000 0.00004 −0.0002 −0.0002
(0.0001) (0.0002) (0.0002) (0.0003) (0.0003)

Preg. oil exp. −0.0002 0.0002 0.0002 −0.0004 −0.001
(0.0002) (0.0002) (0.0003) (0.001) (0.001)

Preg. biomass exp. −0.0004 0.002∗∗∗ −0.002 −0.0003 0.003
(0.001) (0.001) (0.003) (0.001) (0.004)

Mean dep. var 0.12 0.4 0.64 0.95 1.18

Observations 34,970 34,970 34,970 34,970 34,970
Adjusted R2 0.010 −0.0001 0.004 0.004 −0.001

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the average number
of live births in each municipality. Standard errors clustered at the municipality block
level. The dependent variable is infant death related to congenital malformations (MF),
deformations and chromosomal abnormalities of the respiratory and circulatory systems
(ICD-10 codes “Q20-28” and “Q30-34”). Each columns analyzes a specific period of death,
and each panel shows the results for a specific gender. Main explanatory variables are the
exposure to each type of power plant during the pregnancy period.
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3.H Alternative specification for the hospitalization by respi-
ratory diseases

Table 3.H.1 presents the results for hospitalization by respiratory diseases
for all age groups using different specifications that grow in complexity until, in
column 8, it reaches the preferred model. Columns 1 and 2 are, respectively, the
regressions without any controls and fixed effects, and including only the weather
controls. In these specifications, exposure to coal and biomass power plants seem to
have a positive effect on hospitalization. In the following two columns, we include
CT and month fixed effects. As expected, the explanatory power increases, but the
coefficients become negative and statistically significant. In column 5, we include a
month fixed effect for each municipality, allowing non-parametric trends to differ in
each city. In this specification, we are capturing differences between the exposure
of Census Tracts within a specific municipality and month. In columns 6, 7, and 8,
we add, respectively, fixed effects for block of municipalities by calendar-month,
control variables for predominant wind direction, and both of these variables
together. Once we include the municipality by month fixed effect, results are mostly
indistinguishable from zero.
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Table 3.H.1 – Hospitalization by all respiratory diseases with different specification

(1) (2) (3) (4) (5) (6) (7) (8)

Coal expo 0.00264*** 0.00225** -0.00045** -0.00037** -0.00041 -0.00041 -0.00028 -0.00028
(0.00098) (0.00097) (0.00019) (0.00019) (0.00028) (0.00028) (0.00026) (0.00026)

Ngas expo -0.00029 -0.00037 -0.00003 -0.00004 -0.00015 -0.00015 -0.00016 -0.00016
(0.00029) (0.00028) (0.00009) (0.00009) (0.00022) (0.00022) (0.00023) (0.00023)

Oil expo -0.00101* 0.00000 -0.00058** -0.00045* -0.00065* -0.00065* -0.00066* -0.00066*
(0.00058) (0.00053) (0.00024) (0.00024) (0.00036) (0.00036) (0.00036) (0.00036)

Bio expo 0.00399* 0.00504** -0.00443*** -0.00386** 0.00163 0.00163 0.00149 0.00149
(0.00222) (0.00207) (0.00168) (0.00176) (0.00130) (0.00130) (0.00129) (0.00129)

Mean dep.var 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

Obs 3451308 3451308 3451308 3451308 3451308 3451308 3451308 3451308
R-squared 0.00 0.00 0.76 0.76 0.77 0.77 0.77 0.77

Weather ctrl x x x x x x x
CT FE x x x x x x
Month FE x
Month by mun FE x x x x
Cal. mth by block mun. FE x x
Wind pttrn. ctrl x x

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the number of inhabitants in each Census Tract. Standard-errors clustered at
municipality level. The dependent variable in all columns is the hospitalization by all types of respiratory diseases considering every age group.
Each column shows the results for one specification determined by the controls’ panel on the bottom of the table. Main explanatory variables are
the exposure to each type of power plant during a month.

3.I Age and disease heterogeneity analysis for hospitalization
by respiratory disease

This section analyzes age heterogeneity for the hospitalization by diffe-
rent diseases. The results are similar to that observed in Table 3.5.7, with most
coefficients indistinguishable from zero.
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Table 3.I.1 – Hospitalization by asthma in different age groups

All ages Age 0-1 Age 0-1: male Age 0-1: female Age 0-5 Age 6-64 Age 65+
(1) (2) (3) (4) (5) (6) (7)

Coal expo -0.00002 -0.00069 -0.00053 -0.00016 -0.00014 -0.00002 0.00022**
(0.00005) (0.00090) (0.00067) (0.00044) (0.00020) (0.00004) (0.00010)

Ngas expo -0.00005 -0.00005 0.00003 -0.00008 -0.00011 -0.00004 -0.00012
(0.00006) (0.00056) (0.00033) (0.00028) (0.00022) (0.00006) (0.00010)

Oil expo -0.00011 0.00015 -0.00029 0.00044 -0.00102* -0.00004 0.00002
(0.00008) (0.00077) (0.00072) (0.00041) (0.00055) (0.00004) (0.00012)

Bio expo 0.00012 0.00440* 0.00342 0.00098 0.00151* 0.00005 -0.00011
(0.00015) (0.00258) (0.00244) (0.00148) (0.00077) (0.00012) (0.00040)

Mean dep.var 0.04 0.44 0.28 0.17 0.26 0.02 0.04

Obs 3451308 3451308 3451308 3451308 3451308 3451308 3451308
R-squared 0.55 0.24 0.19 0.13 0.31 0.58 0.27

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the number of inhabitants in each Census Tract in each age
group. Standard-errors clustered at municipality level. Each column shows the result for asthma hospitalization in a specific age
group. Main explanatory variables are the exposure to each type of power plant during the pregnancy period.

Table 3.I.2 – Hospitalization by acute respiratory diseases in different age groups

All ages Age 0-1 Age 0-1:male Age 0-1: female Age 0-5 Age 6-64 Age 65+
(1) (2) (3) (4) (5) (6) (7)

Coal expo -0.00002 -0.00443 -0.00231 -0.00211 -0.00029 -0.00001 0.00014
(0.00003) (0.00449) (0.00252) (0.00227) (0.00038) (0.00003) (0.00012)

Ngas expo 0.00003 -0.00059 0.00004 -0.00063 -0.00012 0.00004 0.00004
(0.00003) (0.00208) (0.00134) (0.00083) (0.00027) (0.00004) (0.00004)

Oil expo -0.00015** -0.00266 -0.00273* 0.00008 -0.00114* -0.00005* -0.00005
(0.00007) (0.00231) (0.00150) (0.00101) (0.00062) (0.00003) (0.00006)

Bio expo -0.00004 0.00379 0.00409 -0.00030 0.00047 -0.00007 0.00019
(0.00013) (0.00387) (0.00346) (0.00205) (0.00079) (0.00007) (0.00029)

Mean dep.var 0.04 2.04 1.22 0.82 0.38 0.01 0.02

Obs 3451308 3451308 3451308 3451308 3451308 3451308 3451308
R-squared 0.46 0.42 0.36 0.29 0.45 0.34 0.15

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the number of inhabitants in each Census Tract in each age
group. Standard-errors clustered at municipality level. Each column shows the result for hospitalization by acute respiratory
diseases in a specific age group. Main explanatory variables are the exposure to each type of power plant during the pregnancy
period.
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Table 3.I.3 – Hospitalization by COPD diseases in different age groups

All ages Age 0-1 Age 0-1:male Age 0-1: female Age 0-5 Age 6-64 Age 65+
(1) (2) (3) (4) (5) (6) (7)

Coal expo -0.00000 -0.00019 0.00010 -0.00030 0.00003 0.00001 -0.00111
(0.00006) (0.00056) (0.00029) (0.00044) (0.00013) (0.00005) (0.00077)

Ngas expo 0.00000 -0.00009 -0.00012 0.00004 -0.00003 0.00000 0.00002
(0.00002) (0.00021) (0.00016) (0.00010) (0.00005) (0.00002) (0.00013)

Oil expo -0.00002 -0.00021 -0.00015 -0.00006 -0.00006 -0.00001 -0.00011
(0.00002) (0.00023) (0.00017) (0.00012) (0.00009) (0.00001) (0.00020)

Bio expo -0.00046 0.00050 -0.00115 0.00165 -0.00002 -0.00025 -0.00395
(0.00047) (0.00122) (0.00089) (0.00117) (0.00023) (0.00021) (0.00400)

Mean dep.var 0.03 0.14 0.08 0.06 0.05 0.02 0.21

Obs 3451308 3451308 3451308 3451308 3451308 3451308 3451308
R-squared 0.61 0.11 0.08 0.06 0.16 0.50 0.38

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the number of inhabitants in each Census Tract in each age
group. Standard-errors clustered at municipality level. Each column shows the result for hospitalization by COPD (Chronic
Obstructive Pulmonary Disease) in a specific age group. Main explanatory variables are the exposure to each type of power
plant during the pregnancy period.

Table 3.I.4 – Hospitalization by pneumonia diseases in different age groups

All ages Age 0-1 Age 0-1:male Age 0-1: female Age 0-5 Age 6-64 Age 65+
(1) (2) (3) (4) (5) (6) (7)

Coal expo -0.00020 0.00025 -0.00100 0.00125 -0.00076 -0.00012 -0.00233
(0.00020) (0.00610) (0.00386) (0.00297) (0.00156) (0.00013) (0.00224)

Ngas expo -0.00014 -0.00199 -0.00026 -0.00173 -0.00059 -0.00009 -0.00024
(0.00017) (0.00245) (0.00161) (0.00119) (0.00054) (0.00015) (0.00035)

Oil expo -0.00039* -0.00930** -0.00529** -0.00401** -0.00294** -0.00012 -0.00051
(0.00022) (0.00431) (0.00269) (0.00198) (0.00131) (0.00010) (0.00059)

Bio expo 0.00130 0.01186 0.00749 0.00437 0.00556 0.00046 0.00393
(0.00118) (0.01592) (0.01021) (0.00620) (0.00843) (0.00042) (0.00579)

Mean dep.var 0.19 3.26 1.88 1.38 1.06 0.08 0.63

Obs 3451308 3451308 3451308 3451308 3451308 3451308 3451308
R-squared 0.70 0.46 0.40 0.36 0.56 0.60 0.49

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Regressions are weighted by the number of inhabitants in each Census Tract in each age
group. Standard-errors clustered at municipality level. Each column shows the result for pneumonia hospitalization in a specific
age group. Main explanatory variables are the exposure to each type of power plant during the pregnancy period.
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4 Conclusion

In this dissertation, we discussed health consequences that could arise in
societies relying on infrastructures not adapted to the new scenarios of a changing
climate. In the first study, we analyzed a severe and unexpected drought that
affected the Metropolitan Region of São Paulo in 2014 and 2015. To cope with
the water scarcity, the local water company adopted a series of strict measures
with potential unintended health consequences to the population. We found that,
although important to save water, the policy of reducing the pressure of water
within the distribution network had a negative effect on the hospitalization rates.
Analyzing variations in bottled water prices, we also argued that the population
engaged with defensive behavior against the water issues and that this avoidance
behavior influenced the observed results. Although our results suggested that both
the pressure reduction policy and the avoidance behavior affected hospitalization
rates, we can not fully disentangle their effects.

In the second study from this dissertation, we investigated the effect of using
thermoelectric power plants moved by different fuels on health indicators of nearby
communities. The results suggested that using coal-fueled power plants increases
the infant mortality rate, especially for female children. We also found evidence
that coal-fueled power plants influence the incidence of fetal deaths, therefore, the
observed results on infant mortality rate are likely underestimated.

These studies suggest that abrupt variations in water availability can in-
fluence health outcomes of societies. Because adapting the infrastructure to a
new situation of water scarcity is costly and time-consuming, an increase in the
frequency and intensity of droughts can affect the health of the population, posing a
challenge to regions pursuing improvements in the Sustainable Development Goals.
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