• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.12.2020.tde-10052021-212420
Document
Auteur
Nom complet
Henrique Leone Alexandre
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2020
Directeur
Jury
Dario, Alan de Genaro (Président)
Bueno, Rodrigo de Losso da Silveira
Fernandes, Marcelo
Souza, Thársis Tuani Pinto
 
Titre en anglais
Machine learning for intraday returns forecasting in the brazilian stock marketing
Mots-clés en anglais
Elastic net
Lasso
Machine learning
PCR
PLS
Ridge
Resumé en anglais
This paper applies different estimation methods, specialized in dealing with high data dimensionality, to make rolling five-minute-ahead return forecasts using high frequency data, 5 minutes. The methods used are ridge, LASSO, elastic net, PCR and PLS. The explanatory variables are only the lagged returns of their own and of all the other stocks on the Ibovespa index. More than just statistical, the economic sense behind these variables is that they can quickly capture the impact of new information about the companies. The aim of this paper is to perform a comprehensive comparison of out-of-sample forecast performance of stock returns among methods. The results show that Ridge Regression produces the best performance among all methods with a significant advantage. To assess the robustness of the results, different portfolios were formed. The returns obtained for the portfolio built with the most volatiles stocks and the portfolio that exploits the predictability of machine learning methods, even under a conservative assumption on transaction cost, suggest that these approaches appear to be promising for traders.
 
Titre en portugais
Machine learning para previsão intraday de retornos no mercado acionário brasileiro
Mots-clés en portugais
Elastic net
Lasso
Machine learning
PCR
PLS
Ridge
Resumé en portugais
Esse trabalho aplica diferentes métodos de estimação, especializados em lidar com alta dimensionalidade dos dados, em janelas móveis para realizar previsões de retorno um passo a frente utilizando dados de alta frequência, 5 minutos. Os métodos utilizados são o ridge, LASSO, elastic net, PCR e PLS. As variáveis explicativas são apenas os retornos defasados da própria e de outras ações presentes no índice Ibovespa. Mais que somente estatísticos, o sentido econômico por trás dessas variáveis é que elas tornam possível capturar, de forma rápida, o impacto de novas informações sobre as empresas. O objetivo deste trabalho é realizar uma comparação do desempenho para previsão de retornos fora da amostra entre os métodos citados. Os resultados mostram que o Ridge produz o melhor desempenho entre todos os métodos, com uma vantagem significativa. Para avaliar a robustez dos resultados, foram formadas diferentes carteiras. Os retornos obtidos para o portfólio composto pelas ações mais voláteis e para o portfólio que explora a previsibilidade dos métodos de machine learning, mesmo sob uma premissa conservadora sobre o custo da transação, sugerem que essas abordagens parecem promissoras para serem aplicadas por traders.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-05-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs.
CeTI-SC/STI
© 2001-2024. Bibliothèque Numérique de Thèses et Mémoires de l'USP.