• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.11.2016.tde-28042016-104725
Documento
Autor
Nombre completo
André Herman Freire Bezerra
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Piracicaba, 2015
Director
Tribunal
Lier, Quirijn de Jong van (Presidente)
Vaz, Carlos Manoel Pedro
Duarte, Sergio Nascimento
Moraes, Sergio Oliveira
Souza, Claudinei Fonseca
Título en inglés
Mechanistic numerical modeling of solute uptake by plant roots
Palabras clave en inglés
Michaelis-Menten
Solute transport
transient solute flux
Resumen en inglés
A modification in an existing water uptake and solute transport numerical model was implemented in order to allow the model to simulate solute uptake by the roots. The convection-dispersion equation (CDE) was solved numerically, using a complete implicit scheme, considering a transient state for water and solute fluxes and a soil solute concentration dependent boundary for the uptake at the root surface, based on the Michaelis- Menten (MM) equation. Additionally, a linear approximation was developed for the MM equation such that the CDE has a linear and a non-linear solution. A radial geometry was assumed, considering a single root with its surface acting as the uptake boundary and the outer boundary being the half distance between neighboring roots, a function of root density. The proposed solute transport model includes active and passive solute uptake and predicts solute concentration as a function of time and distance from the root surface. It also estimates the relative transpiration of the plant, on its turn directly affecting water and solute uptake and related to water and osmotic stress status of the plant. Performed simulations show that the linear and non-linear solutions result in significantly different solute uptake predictions when the soil solute concentration is below a limiting value (Clim). This reduction in uptake at low concentrations may result in a further reduction in the relative transpiration. The contributions of active and passive uptake vary with parameters related to the ion species, the plant, the atmosphere and the soil hydraulic properties. The model showed a good agreement with an analytical model that uses a linear concentration dependent equation as boundary condition for uptake at the root surface. The advantage of the numerical model is it allows simulation of transient solute and water uptake and, therefore, can be used in a wider range of situations. Simulation with different scenarios and comparison with experimental results are needed to verify model performance and possibly suggest improvements.
Título en portugués
Modelagem numérica de extração de solutos pelas raízes
Palabras clave en portugués
Fluxo transiente de solutos
Michaelis-Menten
Transporte de solutos
Resumen en portugués
Uma modificação em um modelo existente de extração de água e transporte de solutos foi realizada com o objetivo de incluir nele a possibilidade de simular a extração de soluto pelas raízes. Uma solução numérica para a equação de convecção-dispersão (ECD), que utiliza um esquema de resolução completamente implícito, foi elaborada e considera o fluxo transiente de água e solutos com uma condição de contorno à superfície da raiz de extração de soluto dependente de sua concentração no solo, baseada na equação de Michaelis- Menten (MM). Uma aproximação linear para a equação de MM foi implementada de tal forma que a ECD tem uma solução linear e outra não-linear. O modelo considera uma raiz singular com geometria radial sendo sua superfície a condição de contorno (limite) de extração e sendo o limite extremo a meia-distância entre raízes vizinhas, função da densidade radicular. O modelo de transporte de soluto proposto inclui extração de soluto ativa e passiva e prediz a concentração de soluto como uma função do tempo e da distância à superfície da raiz, além de estimar a transpiração relativa da planta, que por sua vez afeta a extração de água e solutos e é relacionado com a condição de estresse da planta. Simulações mostram que as soluções linear e não-linear resultam em predições de extração de solutos significativamente diferentes quando a concentração de solutos no solo está abaixo de um valor limitante (Clim). A redução da extração em baixas concentrações pode resultar em uma redução adicional na transpiração relativa. As contribuições ativa e passiva da extração de solutos variam com parâmetros relacionados à espécie de íon, à planta, à atmosfera e às propriedades hidráulicas do solo. O modelo apresentou uma boa concordância com um modelo analítico que aplica uma condição de contorno linear, à superfície da raiz, de extração de solutos dependente da concentração no solo. A vantagem do modelo numérico sobre o analítico é que ele permite simular fluxos transientes de água e solutos, sendo, portanto, possível simular uma maior gama de situações. Se faz necessário simulações com diferentes cenários e comparações com dados experimentais para se verificar a performance do modelo e, possivelmente, sugerir melhorias.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2016-05-04
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.