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RESUMO 

Espectroscopia no infravermelho próximo para a predição de atributos do solo em tempo real  

A agricultura de precisão (AP) baseia-se na identificação da variabilidade espacial e 
temporal dos atributos que influenciam a produção agrícola. Nesse sentido, técnicas que 
permitam monitorar o solo e as culturas em alta densidade espacial vêm sendo estudadas pela 
comunidade de AP. A espectroscopia de reflectância difusa (DRS) é um técnica que permite, 
sobretudo na região do infravermelho próximo (NIR), coletar espectros de solo direto no campo, 
utilizando sensores embarcados em máquinas agrícolas. O uso dessa técnica permite coletar 
pontos em alta densidade espacial que, em conjunto com o aprendizado de máquina (ML), se 
transformam em dados quali-quantitativos dos atributos do solo. Entretanto, em solos tropicais, 
principalmente no Brasil, essa área ainda é pouca desenvolvida em comparação a estudos, por 
exemplo, da Austrália, Estados Unidos e Europa. O projeto de pesquisa dessa dissertação foi 
proposto no âmbito de ampliar o desenvolvimento da técnica nos solos tropicais brasileiros. Uma 
área experimental da Universidade de São Paulo, em Piracicaba-SP, foi utilizada para a coleta de 
espectros de solo em tempo real no infravermelho próximo. Foram testados diferentes modelos 
estatísticos para predição de atributos químicos e físicos do solo. Protocolos de calibração e de 
uso da DRS em campo foram avaliados. Os principais resultados desta dissertação foram 
organizados em três capítulos. O primeiro aborda protocolos de calibração quanto ao uso de 
técnicas de pré-procesamento do espectro e diferentes modelos estatísticos. Os resultados 
sugerem que o uso de dados brutos em conjunto com modelos de redução de dimensionalidade 
do espectro multivariado do solo oferecem a estratégia mais eficiente para calibração dos 
modelos preditivos. O segundo capítulo abordou a inserção de amostras de diferentes áreas na 
calibração dos modelos de ML. Os resultados mostraram predições mais robustas quando 
modelos foram calibrados apenas com amostras da própria área experimental, denotando a 
importância da calibração local para uso da DRS NIR. No terceiro e último capítulo, a área foi 
revisitada em um segundo dia de coleta espectral, três semanas após a primeira, seguindo os 
mesmos critérios experimentais e instrumentais. Os modelos de ML calibrados no primeiro dia 
foram testados para predição dos atributos do solo com espectros da segunda coleta. Reportou-se 
baixa capacidade preditiva dos modelos neste caso, indicando a necessidade de calibrações locais 
não só no espaço, mas também no tempo, para que a técnica desempenhe corretamente. Os 
resultados reportados provam o potencial da técnica para a agricultura, pois mostram que é 
possível a predição de atributos do solo com espectros NIR coletados diretamente no campo. 
Ainda, este trabalho pode auxiliar no desenvolvimento das práticas de AP, e oferecer diretrizes 
para futuras pesquisas que busquem o desenvolvimento da DRS para predição de atributos do 
solo em tempo real, a fim de estabelecer seu uso em larga escala na agricultura. 

Palavras-chave: Agricultura de precisão, Espectroscopia de reflectância difusa, Sensoriamento 
proximal do solo, Aprendizado de máquina, Variabilidade do solo  
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ABSTRACT 

Online near-infrared spectroscopy for soil attributes prediction  

Precision agriculture (PA) is based on the identification of spatial and temporal variability 
of the attributes that influence agricultural production. In this sense, techniques that allow 
monitoring soil and crops in high spatial density have been studied by the PA community. 
Diffuse reflectance spectroscopy (DRS) is a technique that allows, especially in the near-infrared 
(NIR) region, to acquire online soil spectra, embedding sensors in agricultural machines. The use 
of this technique allows data acquisition in high spatial density, which, together with machine 
learning (ML), are transformed into quali-quantitative data of soil attributes. However, in tropical 
soils, especially in Brazil, this research area is still poorly developed compared to studies from 
Australia, the United States of America and Europe. The research project of this dissertation was 
proposed to expand the development of the technique in Brazilian tropical soils. An experimental 
area of the University of São Paulo, in Piracicaba-SP, was used to acquire online soil NIR spectra. 
Different statistical models were tested to predict soil chemical and physical attributes. 
Calibration and use protocols of DRS in the field were evaluated. The main findings of this 
dissertation were organized into three chapters. The first one addresses calibration protocols 
regarding the use of spectrum preprocessing techniques and different statistical models. The 
results suggest that the use of raw data combined with dimensionality reduction statistical models 
offer the most efficient strategy for calibration of predictive models. The second chapter 
addressed the insertion of samples from different areas in the calibration of ML models. The 
results showed more robust predictions when models were calibrated only with samples from the 
experimental area itself, denoting the importance of local calibration for the use of DRS NIR in 
online acquisition. In the third and last chapter, the area was revisited on a second day of spectral 
acquisition, three weeks after the first one, following the same experimental and instrumental 
criteria. The ML models calibrated on the first day were tested for prediction of soil attributes 
with spectra from the second day of acquisition. Low predictive performance of the models was 
reported in this scenario, indicating the need for local calibrations not only in space, but also in 
time, for the technique to perform properly. The results reported in this dissertation prove the 
potential of the technique for agriculture, as they show that it is possible to predict soil attributes 
with online NIR spectra. Furthermore, this work can help in the development of PA practices, 
and offer guidelines for future research that seek the development of DRS for prediction of soil 
attributes in the field, to establish its large-scale use in agriculture. 

Keywords: Precision agriculture, Diffuse reflectance spectroscopy, Proximal soil sensing, 
Machine learning, Soil variability 
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LIST OF ACRONYMS 

A  range 

AI  artificial intelligence 

C0  nugget 

C1  sill 

Ca  calcium 

CEC  cation exchange capacity 

DRS  diffuse reflectance spectroscopy 

ET  extra trees 

g kg-1  grams per kilogram 

GNSS  Global Navigation Satellite System 

ISO  International Organization for Standardization 

K  potassium 

km h-1  kilometers per hour 

Lasso  least absolute shrinkage and selection operator 

LV  latent variable 

m s-1  meters per second 

MAE  mean absolute error 

Mg  magnesium 

ML  machine learning 

NIR  near-infrared 

OM  organic matter 

P  phosphorus 

PA  precision agriculture 

PC  principal components 

PCA  principal components analysis 

PCR  principal components regression 

pH  potential of hydrogen 

PLSR  partial least squares regression 

PP1  preprocessing sequence 1 

PP2  preprocessing sequence 2 

PSS  proximal soil sensing 

R²  coefficient of determination 

RD  raw data 

RF  random forest 

RMSE  root mean squared error 

RPIQ  ratio of performance to interquartile distance 

SG  Savitzky-Golay 

V  basis saturation 

VNIR  visible and near-infrared 

X²  chi-squared 
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1. GENERAL INTRODUCTION 

The International Society of Precision Agriculture defines precision agriculture (PA) as “a management 

strategy that takes account of temporal and spatial variability to improve sustainability of agricultural production” 

(ISPA, 2022). For this strategy to be adopted, techniques capable of identifying and mapping agricultural fields are 

essential, especially aspects related to soil and crops. 

Soil is a natural asset on which agriculture depends because it provides mechanical support, water, oxygen 

and nutrients that plants absorb. Soil characteristics can limit or leverage agricultural production and soils of 

different geological formations and different formation times have different pedogenetic characteristics (Topp et al., 

1997). In addition, the topographic position and the use and management by which this soil has passed over the 

years influence its physical and chemical characteristics (Zörb et al., 2014; Fontoura et al., 2019; Lu et al., 2021), 

which highlights the importance of identifying its attributes and the variability that exists among them. 

That is why soil sampling was established as a necessity for agriculture to base the planning and decisions 

of the productive steps. Once collected, soil attributes data are used to map the field (AbdelRahman et al., 2020). 

The characterization of spatial dependence is done using geostatistics tools, which consider the values of attributes 

associated with the geographic position of each collection (De Iaco et al., 2022). 

In geostatistical analysis, the range of the variogram is the main indicator to guide the sample density that 

must be used to correctly encompass the spatial variability of an attribute. The range varies for each analyzed 

attribute, and also with soil characteristics and area management (Vieira, 2000; Sória et al., 2018). With this 

knowledge, the practice of sampling, especially regarding the sample density, is repeatedly questioned by 

researchers, as it is far from ideal (Wollenhaupt et al., 1994; Montanari et al., 2012; Cherubin et al., 2014; Cherubin 

et al., 2015), which does not adequately represent the spatial variability of soil attributes. 

Both collecting a sample and analyzing it represent a cost. Due to this, those responsible for the decision-

making in the agricultural production chain resist increasing the sampling density in the traditional way due to the 

increase in cost and time that it would represent. Alternative techniques have been explored to increase the density 

of data about soil attributes, to find a faster method, capable of diluting the cost per acquisition and reducing the 

amount of inputs required for analysis (Molin & Tavares, 2019). Within this context, the diffuse reflectance 

spectroscopy (DRS) has been tested in an attempt to predict the attributes of a soil sample through the spectral 

signature that it emits when in contact with a certain type of energy (Kuang et al., 2012). 

The near-infrared region (NIR) shows potential for use, as it is the range of the spectrum that expresses 

primary interactions, the so-called fundamental vibrations, and secondary interactions, the overtones, with soil 

attributes (Pasquini, 2018). These interactions occur in the form of energy absorption, reflection or transmission, 

and can be related to soil attributes in terms of quantity and quality (Stenberg et al., 2010). 

Using the soil spectra, researchers have been applying multivariate statistical models that predict the values 

of interest from features called predictors. These techniques have been time-consuming and costly in the past. 

However, the recent development of technologies, leveraging machine learning (ML) methods and the beginning of 

intensive use of artificial intelligence (AI) in multiple knowledge areas, has been boosting the use of multivariate 

statistics for prediction models (Sharma et al., 2020). 

The DRS NIR is already widespread for research. However, its use is mainly documented by collecting 

samples from the field and taking them to a laboratory, where these samples are, in most cases, treated, and only 

then the spectrum of this soil sample is acquired (Lacerda et al., 2016; Demattê et al., 2017; Cezar et al., 2019). 
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However, to actually represent a change in agricultural production, this technique needs to act directly in the field, 

with all the challenges that a field operation represents, such as variations in moisture, temperature, non-uniformity 

of particles and others. All this while maintaining the maximum quality of the collected spectrum to enable the 

calibration of robust ML prediction models. 

Both soil scientists and PA researchers were dedicated to identify and overcome the main challenges of 

using DRS NIR in the field (Shonk et al., 1991; Sudduth & Hummel, 1993; Shibusawa et al., 2001; Stenberg et al., 

2007; Ben Dor et al., 2008; Mouazen et al., 2009), adapting the technology for proximal soil sensing (PSS) (Viscarra 

Rossel et al., 2011). This aspect was named the DRS for online spectra acquisition. The identification and 

quantification of soil attributes using online NIR spectra became possible. Some researchers have already reported 

success in using the DRS NIR for inference in the field, as is the case of Mouazen & Kuang (2016), who monitored 

the variability of phosphorus (P) in the soil of an UK agricultural field during three consecutive seasons. They were 

able to identify the sources of variability, and basing decision-making on the information obtained from the data, 

guiding a successful site-specific application of P, which was able to increase the homogeneity of the attribute in the 

area. 

In Brazilian tropical soils, however, few studies have been reported applying DRS to acquire online 

spectra. Franceschini et al. (2018) studied the effects of external factors and potential spectral correction for online 

visible and near-infrared (VNIR) soil attributes prediction, aiming the quantification of lime requirement. The study 

indicated that online soil spectra had potential for soil properties characterization, although advances in sensing 

solutions and chemometric methods applied in this context would be required. 

Eitelwein et al. (2022) used the strategy of calibrating ML models with VNIR spectra in a 15% portion of a 

commercial field in mid-west Brazil, trying to extrapolate the calibration to the entire area. For this, they sought to 

encompass the maximum variability of the attributes desired when choosing the calibration area. Despite reporting 

robust models in the calibration area for clay, organic matter (OM), cation exchange capacity (CEC), potential of 

hydrogen (pH), basis saturation (V), calcium (Ca), magnesium (Mg) and potassium (K), the extrapolation of these 

models to the entire area only reported good results for clay and OM, according to the evaluation parameters used 

by the authors. 

The research project of this dissertation was developed in the sense of continuing the advances of the 

DRS for PSS in tropical soils. This study has the hypothesis that the use of DRS NIR in the field, supported by ML 

techniques, can generate diagnoses of spatialization of soil attributes, if the correct guidelines for calibrating the 

prediction models are considered. The work was planned in four distinct stages: acquisition of online NIR spectra 

in an experimental area, and soil sampling associated with spectral acquisition; laboratory spectra acquisition of field 

samples and physico-chemical analysis; testing of different statistical techniques for ML models calibration; 

mapping the spatial variability of the predicted attributes using geostatistics tools. 

The objectives that coincide with the stages planned for this study were: to use the DRS NIR directly in 

the field to predict soil attributes; to determine the prediction potential of different statistical models using soil 

online NIR spectra; to identify the best procedures for ML models calibration using online NIR spectra, 

considering from where the samples that compose the initial dataset come from; to characterize the spatio-temporal 

stability of the use of DRS NIR for attribute prediction outside controlled laboratory conditions. The main findings 

of this study were organized into chapters, that follow. 
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2. EFFICIENCY OF PREPROCESSING TECHNIQUES APPLIED TO ONLINE 

NEAR-INFRARED SOIL SPECTRA IN DIMENSIONALITY REDUCTION 

STATISTICAL REGRESSION 

Abstract 

In soil science, near-infrared region (NIR) is the most studied electromagnetic spectrum for predicting attributes of 
agronomic interest using diffuse reflectance spectroscopy (DRS). The methods used for prediction vary both in the 
statistical model used and in the treatment applied to field spectra before prediction. There is no consensus in the 
literature about which model to use nor if preprocessed spectra prediction statistically differs from the use of raw 
spectra, and how both affect the data processing steps. As the amount of data acquired in the agricultural production 
grows, efficient data processing protocols are necessary to leverage PA techniques in large scale. This study was 
proposed to evaluate five statistical models for soil attributes prediction using online NIR spectra, and then compare 
the use of raw and preprocessed spectra to fit predictive models, evaluating how data processing was affected. 
Online NIR spectra were acquired in a Brazilian tropical soil and used in two calibration strategies: only local samples 
(Local calibration), and gathering samples from other fields (Global calibration). Each calibration strategy tested the 
use of raw data, and two different preprocessing sequences. For each soil fertility attribute considered, that were clay, 
sand, organic matter (OM), cation exchange capacity (CEC), potential of hydrogen (pH) and potassium (K), the 
study tested three dimensionality reduction statistical models: partial least squares regression (PLSR), principal 
components regression (PCR), and least absolute shrinkage and selection operator (Lasso), and two non-linear 
regressors: random forest (RF) and extra trees (ET). All dimensionality reduction statistical models outperformed the 
non-linear, except the K prediction using ET. The PCR is highlighted as presented the best parameters in 42% of 
models calibrated, and also close parameters to the best observed in other 50%. The prediction using raw and 
preprocessed spectra presented no statistical difference. However, an average increase of 200% was observed in the 
processing time demanded for prediction. The results reported in the scenario evaluated suggest the use of raw 
spectra as the most efficient strategy for online NIR spectra prediction of soil attributes. 
 
Keywords: chemometrics; near-infrared spectroscopy; data analysis, machine learning, spectra preprocessing. 
 

2.1 Introduction 

DRS in the NIR region is a potential method for wide application in agriculture for soil attributes 

prediction. This electromagnetic spectral region expresses primary and secondary energy-soil interactions (Stenberg 

et al., 2010). These interactions occur as absorption, reflection, or transmission features, and can be related to soil 

attributes in quality and quantity (Nocita et al., 2015). 

Established in the soil science, DRS NIR has its main use in laboratory. However, one of the challenges is 

the technique to work directly in the field, acquiring the called online spectra, to enhance the spatial density of soil 

data. The soil sampling density often adopted in agriculture is ineffective to identify spatial patterns in agricultural 

areas (Wollenhaupt et al., 1994; Montanari et al., 2012; Cherubin et al., 2014; Cherubin et al., 2015), leading to 

questionable decision-making and consequently inefficient management of agriculture inputs. 

Researchers are dedicated to leverage NIR spectra for soil attributes prediction using multivariate statistical 

methods (Pasquini, 2018). However, two main points remain unsolved. The statistical models used for calibration 

of prediction models are not a consensus. Nor the type of method, such as linear or non-linear models, or how to 

approach the multidimensionality of soil spectra, reducing the features or working with the entire spectra. Although 

partial least squares regression (PLSR) is often the most cited method applied to ML in soil spectroscopy (Bellon-

Maurel & McBratney, 2011; Rossel & Behrens, 2010), there is other methods available and not a single method 

recognized as the best. The performance seems to vary due to diverse agricultural conditions and also in different 

regions/soil types. 
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The other point is data pretreatment. The use of preprocessing techniques is commonly observed before 

fitting the predictive models (Franceschini et al., 2018; Munnaf et al., 2021a; Zhang et al., 2021). These techniques 

aim to reduce noise, highlight features, and extract useful information from the raw data (Dotto et al., 2018). 

Nevertheless, their use implies in a greater computational processing cost, fact that need to be accounted for the 

development of AI systems aiming the real time prediction and intervention. Some of the methods applied, as 

PLSR, are dimensionality reduction techniques, which can cope with multivariate data, and aid the noisy, redundant, 

and irrelevant data removal (Velliangiri et al., 2019). 

These data modeling steps are often neglected and few studies discussing it are available. Either which 

statistical model to use, evaluating the differences presented by the methods, and also the assessment of spectra 

preprocessing performance needs to be addressed. These considerations are important since to increase the density 

of information about the soil, especially considering PSS (Viscarra Rossel et al., 2011) and online DRS, the database 

collected in commercial areas will escalate. The studies on this research area already report from 50 to 300 sampling 

points per hectare. Therefore, an efficient data processing protocol is necessary to promote the technique in large 

scale. 

In this scenario, this study evaluated five ML methods applied in a database of online NIR spectra 

acquired in a Brazilian tropical field. Also, verified the feasibility of preprocessing techniques applied on two of the 

best performing ML calibrations from the previous step, assessing the data processing cost as the time demanded 

by the machine to perform a prediction, and its trade-off in models’ performance. 

 

2.2 Materials and Methods 

2.2.1. Soil spectral acquisition and laboratory analysis 

The experiment was conducted in a sandy loam agricultural area of 6.0 ha in Piracicaba, São Paulo state, 

Brazil (22°43'03.51"S, 47°36'50.03"W) where online NIR spectra were acquired. In the last three years, soybean was 

cultivated during summer season following a fallow system during winter. 

In November 2021, a structure mounted in the tractor’s three-point hydraulic hitch carried a subsoiler 

shank in 0.15 m depth, opening a furrow. The shank tip smoothened the bottom of the furrow. A steel armored 

case coupled in the back of the shank carried the spectrophotometer MicroNIR OnSite-W (Viavi Solutions Inc., 

California, EUA), acquiring spectra from 908.1-1676.2 nm, with a resolution of 6.2 nm, totaling 125 wavelengths. 

The spectra were acquired through a sapphire window, exported via USB, and converted via an Ethernet cable 

connected to a notebook. A 99% reflectance disc was used as maximum reflectance reference, and the own system 

had a minimum reflectance measuring system. A global navigation satellite system (GNSS) antenna Ag-Star 

(Novatel, Calgary, Canada) with TerraStar-C correction signal (Hexagon, São Paulo, Brazil) was used to track 

spectra geographical coordinates. 

The spectrophotometer software performs a principal component analysis (PCA), excluding samples that 

are outside the established confidence region, generating an average spectrum every 10 seconds. The acquisition 

lines were separated by 12 m. Following an operation speed of 0.583 m s-1 (2.1 km h-1) and the spectrophotometer 

acquisition time, 383 online NIR spectra was acquired in the area. A descriptive analysis aiming to exclude errored 

acquisition points, like field borders, was carried out before the data modeling. 
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One day after spectral acquisition, 72 soil samples were collected in the bottom of the furrow left by the 

shank tip. Aiming to calibrate prediction models with online spectra, the sampling region needed to match the 

spectral transect acquired. All start and end momentum of spectral acquisition points, signaled in the software, was 

simultaneously demarcated during field operation. The product of operation speed and acquisition time resulted in 

the transect length to be sampled (Figure 1). 

 

 

Figure 1. Schematic representation of soil spectral acquisition and associated sampling region. 

 

Soil physical-chemical analysis were performed in a commercial laboratory. The attributes considered in 

this study and its respective analysis method were clay and sand – NaOH dispersant, OM - oxidation, CEC – sum 

of basis plus total acidity, pH – CaCl2 and K - resin. 

 

2.2.2. Data modeling 

Data modeling was conducted in the software Jupyter Notebook (Kluyver et al., 2016; Python Software 

Foundation, 2022). A descriptive analysis, aiming to exclude sampling errors due to the field operation, as during 

maneuvers, resulted in the exclusion of 80 spectra. The dataset remained with 303 spectra. 

The calibrations built tested two approaches. Only spectra from the study area were used (Local dataset) 

and online spectra from experimental field gathered with laboratory spectra from other two fields (Global dataset). 

The samples from the two other fields were at the laboratory database and their respective descriptions can be 

found in Eitelwein (2017). This strategy is suggested to enhance models’ performance due to data augmentation in 

the calibration (Munnaf et al., 2019; Guerrero et al., 2021).  

The modeling tested the dimensionality reduction statistical models PLSR, principal components 

regression (PCR) and least absolute shrinkage and selection operator (Lasso), due to the multivariate character of 

soil spectra (Stenberg et al., 2010). Random forest (RF) and extratrees (ET), two non-linear regression models, were 

also tested.  

PLSR is a common technique applied in soil science (Bellon-Maurel & McBratney, 2011). It reduces data 

dimensionality producing latent variables (LV), named X scores (Wold et al., 2001). The combinations of latent 

variables generate the linear regression model (Kuang et al. 2015). The y-residuals, or deviations between measured 

and predicted values, are also obtained (Equation I). 

y = bX + e  Eq. I, 
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where, y = vector of response variables, b = vector of regression coefficients, X = matrix of independent 

variables and e = vector that indicates y-residuals. 

PCR occurs in three steps: a) PCA in the data matrix; b) a linear regression is applied to obtain the vector 

of estimated regression coefficients; c) the loadings (eigenvectors) of PCA are used to obtain the estimators (𝛽) of 

PCR, as shown in Equation II. 

β𝑘̂ =  𝑉𝑘𝛿𝑘̂  Eq. II, 

where, β̂ = PCR estimator, k belongs to {1, ..., p}, p = number of covariants, V = orthonormal set of 

eigenvectors, 𝛿̂ = coefficients vector of estimated regressors. 

Lasso is a penalty regression l1-norm that aims to find β = {βj}, values that minimizes Equation III 

(Tibshirani, 2011). 

∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗β𝑗𝑗
𝑁
𝑖=1 )2 +  𝜆 ∑ |β𝑗|

𝑝
𝑗=1   Eq. III, 

where, xij = normalized predictors, yi = central response values, i = 1, 2, ..., N and j = 1, 2, ..., p. 

 RF regression is a combination of decision trees, where each tree depends on a randomly sampled vector 

(Breiman, 2001). It reduces the bias basing the result on various decision trees (Blanco et al. 2018).  

 Statistical model ET, also known as Extremely Randomized Trees, differs from RF because has a robuster 

randomization of decision trees (Geurts et al., 2006). The ET model calculates an optimal value to be used as data 

matrix splitting rules. This difference leads to more diverse trees and fewer splits when training the model. The 

randomness obtained additionally allows lower processing cost to work with ET and reduction of the variance of 

the model, but with slightly higher bias (Eslami et al., 2019). 

Data was split in the proportion of 75% for calibration and 25% for validation, using k-fold cross-

validation, with k = 10 (Jung et al., 2018). In this technique, each sample is used one time in the validation set, and 

k-1 times in calibration, ensuring a less biased estimation of the model performance. 

Statistical metrics used was the coefficient of determination (R²), the root mean squared error (RMSE) and 

the mean absolute error (MAE). The higher the R² values, and lower the RMSE and MAE, it is implied that the 

model had a better performance. 

 

2.2.3. Preprocessing techniques 

After the data modeling step, the method with the best results reported and the PLSR, as the most 

observed regression model in the literature of soil spectroscopy, were used to test the feasibility of preprocessing 

techniques. Raw data (RD), preprocessing sequence 1 (PP1) and preprocessing sequence 2 (PP2) datasets were 

created to compare the predictive performance applying preprocessing techniques (Table 1). The techniques were 

tested in sequences as observed in the literature (Guerrero et al., 2021; Munnaf et al. 2019; Tavares et al., 2020). 

 

Table 1. Datasets created to test the application of preprocessing techniques. 

Acronym   Preprocessing techniques order 

RD   ---------------------------------  
PP1   MA  +  1st SG derivative +  2nd SG derivative  +  smoothing SG  
PP2   MA  +  MN (0,1)  +  1st SG derivative  +  smoothing SG  

RD: raw data; PP1: preprocessing sequence 1; PP2: preprocessing sequence 2; MA: moving average; MN: maximum 
normalization; SG: Savitzky-Golay. 
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Preprocessing methods applied were the moving average, to reduce the effect of noisy wavebands; 

maximum normalization, a method to scale and uniform the distribution of variation (Rinnan et al., 2009); first and 

second Savitzky-Golay (SG) derivatives, used to reduce noise and highlight spectral features and possible hidden 

information (Ben Dor et al., 1995); and SG smoothing algorithm. 

A 95% Kruskal-Wallis test was applied in the prediction values from RD, PP1 and PP2. This statistic is 

used to assess the similarity of k groups, presenting the degrees of freedom, the chi-squared (X²), and the calculated 

p-value. The test is significant if p-value < 0.05. 

In this study, the processing cost was considered as the time demanded by the machine to perform a 

prediction. The datetime function within datetime library (Python Software Foundation, 2022) was used to measure 

the time needed for ten consecutive predictions (repetitions) of each attribute considered. The time of each 

repetition was calculated by the average of the prediction of the six attributes evaluated. Data were processed in a 

notebook with the specifications: SSD Kingston NV1 2280 NVMe, IntelCore i5 octa-core 1.60 GHz processor, 8 

Gb of DDR4 2,666 MHz memory. 

 

2.3 Results and Discussion 

2.3.1. Statistical model selection 

Global dataset presented the best R² in validation using raw spectral data, while Local dataset presented 

the lowest errors of prediction (Table 2). In general, R² gives the idea of the adjustment of the model comparing the 

predicted and observed values. The lower the errors of prediction, the higher R² is expected to be. However, 

especially for Local models, some cases were out of this rule. OM prediction with PLSR had RMSE of 3.48 g kg -1 

and MAE of 2.75 g kg-1, with R² 0.22. Lasso prediction for the same attribute presented RMSE of 4.28 g kg-1 and 

MAE of 3.09 g kg-1, with R² 0.54. For CEC, PCR and Lasso models, respectively, presented 3.54 mmolc kg-1 and 

3.04 mmolc kg-1 of RMSE, 3.82 mmolc kg-1 and 3.13 mmolc kg-1 of MAE, but the R² values were 0.70 for PCR to 

0.39 for Lasso. 

For both datasets, PCR and Lasso performed better in nine out of 12 prediction models calibrated. PLSR 

performed better for clay of Local and sand of Global datasets. Overall, the dimensionality reduction models 

outperformed the non-linear models tested, RF and ET. The K prediction with ET of Local dataset were the only 

non-linear model with the best R², RMSE and MAE. 

Soil electromagnetic spectra is multivariate (Stenberg et al., 2010; Nocita et al., 2015), sensors reported in 

literature will acquire from 100 up to 2,200 features (Nawar & Mouazen, 2019; Coblinski et al., 2021; Eitelwein et al., 

2022). Few algorithms are able to train powerful models if the number of observations (n) in the dataset is lower 

than the number of features (p); this is known as the “Curse of Dimensionality”. Thus, p needs to be reduced for 

efficient data modeling (Velliangiri et al., 2019). PCR uses the feature extraction method for dimensionality 

reduction. Since no feature is excluded, dimension can be decreased without losing much information of the initial 

dataset (Jolliffe, 2011; Velliangiri et al., 2019). This method is demonstrably robust to noisy, sparse, and possibly 

mixed valued covariates (Agarwal et al., 2019). These factors can explain the performance this model achieved in this 

study using online NIR soil spectra, and corroborate other studies that applied PCR to laboratory NIR spectra 

(Chang et al., 2001; Pudełko & Chodak, 2020; Wei et al., 2022). PCR obtained the best numerical parameters in five 
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of the 12 prediction models calibrated, and values close to the best calibration method in clay prediction of Local 

dataset, and clay, OM, CEC and K of Global dataset. 

Lasso regression uses all predictors variables inserted in calibration, but weights each one of them, 

penalizing those with lower importance in the variance of target variable, being so considered as a dimensionality 

reduction model (Tibshirani, 2011). However, it differs from PCR and PLSR, as these last will not use all the 

original variables and will perform the linear regression using as predictors the features extracted from original 

dataset (principal components or LVs), selected in calibration. This reduces considerably the processing cost. A 

PCR calibration and prediction took an average of 2% of the time demanded to perform a Lasso prediction. 

Therefore, in this study, the PCR was selected as the most efficient model tested for soil attributes prediction using 

DRS NIR. 

 

2.3.2. Prediction performance using raw and preprocessed data  

The validation parameters of prediction models testing raw and preprocessed data are presented in Table 

3. For PCR modeling, PP2 did not presented any models with the best validation parameters, in both Local and 

Global datasets. Raw data had the best parameters for sand, CEC and pH predictions using Global dataset, and 

clay, sand and CEC using Local dataset, totalizing six models. The modeling applying PP1 performed better for 

clay, OM and K prediction with Global dataset, and for OM, pH and K with Local dataset. 

The best parameters for Global dataset prediction using PLSR were divided into the three strategies: raw 

data had the best numerical performance for physical attributes clay and sand, PP1 for CEC and K, and PP2 for OM 

and pH. For Local dataset prediction applying PLSR, PP1 was the one without any best reported predictions. Clay, 

OM and CEC had the best parameters using raw data, and sand, pH and K using PP2. 

No pattern on the best strategy (raw data, or preprocessing sequences) was observed using either PCR or 

PLSR. The results varied for dataset and attribute predicted. This can imply that it is difficult to assess the direct 

effects of preprocessing techniques applied to soil spectroscopy prediction modeling. Other studies that compared 

preprocessing techniques for soil attributes prediction using visible and NIR spectra also struggle to define a best 

method (Benedet et al., 2020; Wei et al., 2022). 

Preprocessing techniques are commonly applied in soil spectroscopy to remove noisy and redundant data, 

and highlight important features. However, the best numerical parameters observed, as previously highlighted in this 

study, are usually the method authors adopt to define which strategy to follow (Benedet et al., 2020; Munnaf et al., 

2021a; Munnaf et al., 2021b; Wang et al., 2020). Although best values of the given metrics used in this research area 

can be defined as the highest R² and ratio of performance to interquartile distance (RPIQ), or the lowest errors of 

prediction (RMSE or MAE), when it comes to close values, as observed in the test of RD, PP1 and PP2, the 

existence or not of a proven statistical difference needs to be addressed. The main parameters used for soil 

spectroscopy ML evaluation are metrics of mean values. Therefore, the 95% Kruskal-Wallis test was carried out, and 

detected no statistical difference among the predicted values using the three strategies for any soil attribute 

considered (Table 4). 

For an efficient ML modeling, any step added to the process must be justified, as it inevitably represents a 

higher processing cost, requiring either more time for prediction or the use of more sophisticated machines, making 

the application of the technique more expensive and hindering its leverage in agriculture. Thus, the efficiency of the 

acquisition, processing and analysis must be considered. The processing time for the machine to perform ten 
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predictions of the six attributes considered in this study was measured, using the strategies RD, PP1, and PP2. The 

time required for prediction with preprocessed spectra was, on average, 200% higher than from using raw spectral 

data (Table 5). 
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Table 2. Validation parameters of principal components regression (PCR), least absolute shrinkage and selection operator (Lasso), partial least squares regression (PLSR), random forest (RF) and 
extratrees (ET) in Local and Global datasets. 
 

  PCR   Lasso     PLSR   RF   ET 

  NC R² RMSE MAE   R² RMSE MAE   LV R² RMSE MAE   R² RMSE MAE   R² RMSE MAE 

  Local dataset 
 clay 4 0.15 21.61 15.88   0.16 20.97 15.26   1 -0.08 29.76 22.96   0.04 24.93 19.43   0.04 24.93 19.41 
 sand 1 0.02 24.01 17.67  0.00 24.35 18.49  6 0.06 20.72 17.14  0.07 25.27 20.02  0.02 28.86 23.02 
 OM 9 0.71 3.34 2.48  0.54 4.28 3.09  7 0.22 3.48 2.75  0.00 5.85 4.33  0.15 5.95 4.46 
 CEC 9 0.70 3.54 3.04  0.39 3.82 3.13  4 0.03 5.39 3.71  0.00 4.92 3.62  0.21 5.12 3.61 
 pH  4 0.03 0.29 0.24  0.01 0.30 0.27  4 -0.26 0.50 0.38  0.15 0.40 0.34  0.02 0.38 0.31 
 K  2 0.03 1.00 0.78   0.00 2.99 2.95   3 -0.22 0.94 0.76   0.21 1.09 0.87   0.38 0.86 0.76 

  Global dataset 

 clay 8 0.94 31.45 23.77   0.94 32.16 24.20   7 0.94 29.22 23.82   0.68 69.58 49.22   0.65 80.26 60.20 
 sand 10 0.97 36.37 28.47  0.97 40.19 29.92  10 0.97 39.12 30.19  0.75 106.58 60.52  0.69 117.29 58.19 
 OM 10 0.80 3.15 2.39  0.80 3.08 2.31  10 0.77 3.15 2.45  0.39 4.91 3.57  0.33 5.16 3.62 
 CEC 5 0.77 11.18 8.44  0.78 10.97 8.28  5 0.65 15.58 10.75  0.71 13.67 9.89  0.69 14.07 9.74 
 pH 3 0.51 0.40 0.26  0.50 0.41 0.27  1 0.29 0.45 0.33  0.50 0.40 0.31  0.46 0.41 0.31 
 K 5 0.70 1.57 1.11   0.70 1.57 1.06   3 0.63 1.72 1.16   0.57 1.85 1.23   0.52 1.96 1.22 

clay: g kg-1; sand: g kg-1; OM: organic matter, g kg-1; CEC: cation exchange capacity, mmolc kg-1; pH: potential of hydrogen, dimensionless; K: potassium, mmolc kg-1; NC: number of principal 
components applied in regression; R²: coefficient of determination; RMSE: root mean squared error; MAE: mean squared error; LV: number of latent variables applied in regression. Highlighted in 
bold are the models that presented the best statistical parameters on validation. 
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Table 3. Results presented in validation of partial least squares regression (PLSR) and principal components regression (PCR) prediction models testing the use of raw data (RD) 
and two different spectra preprocessing sequences (PP1 and PP2) in Local and Global datasets. 

  Global dataset  Local dataset  

  RD PP1  PP2  
 

RD PP1  PP2   

  
NC R²  RMSE  MAE  NC R²  RMSE  MAE  NC R²  RMSE  MAE  

 
NC R²  RMSE  MAE  NC R²  RMSE  MAE  NC R²  RMSE  MAE   

PCR 

clay 8 0.94 31.45 23.77 8 0.95 28.97 23.21 10 0.94 32.33 25.46 
 

4 0.15 21.61 15.88 3 0.12 21.77 16.74 1 0.04 20.44 15.97  

sand 10 0.97 36.37 28.47 8 0.97 36.90 30.46 10 0.97 42.34 33.12 
 

1 0.02 24.01 17.67 4 0.02 25.48 19.47 2 0.02 25.62 19.35  

OM 10 0.80 3.15 2.39 9 0.80 3.04 2.20 4 0.80 3.12 2.46 
 

9 0.71 3.34 2.48 9 0.71 3.24 2.41 8 0.24 4.82 3.62  

CEC 5 0.77 11.18 8.44 3 0.76 11.54 8.28 3 0.76 11.59 8.93 
 

9 0.70 3.54 3.04 9 0.58 4.29 3.43 8 0.10 5.27 4.16  

pH  3 0.51 0.40 0.26 2 0.49 0.41 0.29 5 0.51 0.40 0.30 
 

4 0.03 0.29 0.24 3 0.02 0.28 0.23 3 0.03 0.28 0.23  

K  5 0.70 1.57 1.11 3 0.72 1.52 1.03 3 0.69 1.59 1.14 
 

2 0.03 1.00 0.78 5 0.21 0.92 0.77 2 0.06 0.96 0.75  

  LV R²  RMSE  MAE  LV R²  RMSE  MAE  LV R²  RMSE  MAE  
 

LV R²  RMSE  MAE  LV R²  RMSE  MAE  LV R²  RMSE  MAE   

PLSR 

clay 7 0.94 29.22 23.82 4 0.93 31.68 23.78 3 0.80 57.04 40.54 
 

1 -0.08 29.76 22.96 3 -0.21 31.49 24.26 1 -0.19 31.18 22.10  

sand 10 0.97 39.12 30.19 16 0.96 44.76 36.98 7 0.96 48.38 36.42 
 

6 0.06 20.72 17.14 2 0.12 19.99 16.51 2 0.15 19.65 15.64  

OM 10 0.77 3.15 2.45 8 0.78 2.94 2.37 9 0.80 2.87 2.17 
 

7 0.22 3.48 2.75 4 -0.08 4.10 3.18 5 -0.08 4.11 3.27  

CEC 5 0.65 15.58 10.75 2 0.69 10.88 7.80 3 0.56 16.58 11.09 
 

4 0.03 5.39 3.71 5 -0.16 5.90 4.46 7 -0.28 6.20 4.95  

pH  1 0.29 0.45 0.33 1 0.29 0.47 0.35 3 0.48 0.37 0.28 
 

4 -0.26 0.50 0.38 1 -0.12 0.47 0.32 1 -0.09 0.47 0.32  

K  3 0.63 1.72 1.16 3 0.81 1.44 1.04 3 0.68 1.72 1.28 
 

3 -0.22 0.94 0.76 15 -0.50 1.04 0.76 2 -0.06 0.87 0.71  

clay: g kg-1; sand: g kg-1; OM: organic matter, g kg-1; CEC: cation exchange capacity, mmolc kg-1; pH: potential of hydrogen; K: potassium, mmolc kg-1; NC: number of principal components applied in 
regression; R²: coefficient of determination; RMSE: root mean squared error; MAE: mean squared error; LV: number of latent variables applied in regression. Highlighted in bold are the models that 
presented the best statistical parameters on validation.  
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Table 4. Kruskal-Wallis test results for comparison of physicochemical soil attributes predicted attributes using online NIR 
spectra. 

 p-value  
 Local Global 

clay 0.734 0.958 

sand 0.998 0.472 

OM 0.849 0.157 

CEC 0.735 0.522 

pH  0.970 0.079 

K  0.988 0.980 

OM: organic matter; CEC: cation exchange capacity; pH: potential of hydrogen; K: potassium. 

 

Once a ML model is calibrated, when an online spectrum is acquired, it can be directly applied to 

prediction. Preprocessing sequences applied before prediction will consume extra time; that can be justified if it 

represents a gain in the accuracy. However, this was not observed in this study. The addition of the steps of 

preprocessing resulted in twice the processing cost, here assessed as the time required for prediction, with no gain 

in predictive accuracy. 

Even the existence of automatic methods to test preprocessing techniques and fit predictive models using 

soil spectra, such as the “all-possibilities approach”, defined as “an extremely computer power-consuming method” 

(Kopacková et al., 2017), its applicability is still questionable. This relapses in the efficiency of the processing 

protocol, especially for online DRS soil attributes prediction, which the use of ML calibrations can develop AI 

systems to predict soil attributes and intervein in the field in real time. For this achievement, standard, rapid, simple 

and efficient processing protocol, preferably reducing human interference, needs to be developed (Rossi et al., 2022; 

Wei et al., 2022). Therefore, it is suggested that the use of spectrum preprocessing techniques in the scenario 

evaluated in this study was not feasible. 

 

Table 5. Average time processing cost demanded by the machine to predict ten times the six attributes evaluated in this study. 

  RD PP1  PP2  
  seconds  

1 0.1346 0.2692 0.2692 
2 0.0470 0.0997 0.1012 
3 0.1037 0.2074 0.2074 
4 0.1166 0.2356 0.2333 
5 0.1306 0.2586 0.2639 
6 0.1126 0.2422 0.2422 
7 0.1346 0.2558 0.2558 
8 0.1152 0.2315 0.2315 
9 0.0985 0.1757 0.2010 
10 0.1198 0.2397 0.2397 

Mean  0.1113 0.2215 0.2245 
%  - 199% 202% 

RD: raw data; PP1: preprocessing sequence 1; PP2: preprocessing sequence 2; %: % of time compared with the model of lower 
processing time. 

 

Future works should further investigate whether non-linear models can perform better with augmented 

number of samples, possibly outperforming the dimensionality reduction statistical models. Also, investigate the 

differences observed in the prediction using raw and preprocessed spectra, to confirm if the reported in this study is 

repeated for other areas. 
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2.4 Conclusions 

Five statistical methods were applied to online NIR spectra prediction of soil attributes in a Brazilian 

tropical field. The dimensionality reduction statistical models performed better than the non-linear models. PCR 

models was mostly more accurate than PLSR models, and more efficient than Lasso models since it consumed less 

computer processing time. 

No group of predicted values, for any of the six attributes evaluated, presented statistical difference from 

the others. The use of preprocessing techniques did not reach the expected objective of aiding the model to be more 

accurate. However, the application of these techniques increased the time required by the machine to perform a 

prediction using field spectra. It is then suggested that raw data was the most efficient for the scenario evaluated in 

this study. 
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3. SPATIAL DISTRIBUTION AS A KEY FACTOR FOR EVALUATION OF SOIL 

ATTRIBUTES PREDICTION AT FIELD LEVEL USING ONLINE NEAR-

INFRARED SPECTROSCOPY 

This section has been published in Frontiers in Soil Science journal (Canal Filho R and Molin JP. 2022. Spatial 

distribution as a key factor for evaluation of soil attributes prediction at field level using online near-infrared 

spectroscopy. Front. Soil Sci. 2:984963. doi: 10.3389/fsoil.2022.984963) 

 

Abstract 

In soil science, near-infrared (NIR) spectra are being largely tested to acquire data directly in the field. Machine 
learning (ML) models using these spectra can be calibrated, adding only samples from one field or gathering different 
areas to augment the data inserted and enhance the models’ accuracy. Robustness assessment of prediction models 
usually rely on statistical metrics. However, how the spatial distribution of predicted soil attributes can be affected is 
still little explored, despite the fact that agriculture productive decisions depend on the spatial variability of these 
attributes. The objective of this study was to use online NIR spectra to predict soil attributes at field level, evaluating 
the statistical metrics and also the spatial distribution observed in prediction to compare a local prediction model 
with models that gathered samples from other areas. A total of 383 online NIR spectra were acquired in an 
experimental field to predict clay, sand, organic matter (OM), cation exchange capacity (CEC), potassium (K), 
calcium (Ca), and magnesium (Mg). To build ML calibrations, 72 soil spectra from the experimental field (local 
dataset) were gathered, with 59 samples from another area nearby, in the same geological region (geological dataset) 
and with this area nearby and more 60 samples from another area in a different region (global dataset). Principal 
components regression was performed using k-fold (k=10) cross-validation. Clay models reported similar errors of 
prediction, and although the local model presented a lower R2 (0.17), the spatial distribution of prediction proved 
that the models had similar performance. Although OM patterns were comparable between the three datasets, local 
prediction, with the lower R2 (0.75), was the best fitted. However, for secondary NIR response attributes, only CEC 
could be successfully predicted and only using local dataset, since the statistical metrics were compatible, but the 
geological and global models misrepresented the spatial patterns in the field. Agronomic plausibility of spatial 
distribution proved to be a key factor for the evaluation of soil attributes prediction at field level. Results suggest that 
local calibrations are the best recommendation for diffuse reflectance spectroscopy NIR prediction of soil attributes 
and that statistical metrics alone can mispresent the accuracy of prediction. 
 
Keywords: soil variability, geostatistics, diffuse reflectance spectroscopy, machine learning, agriculture management. 
 

3.1 Introduction 

PSS is a relevant technique to make soil data acquisition faster and more cost effective (Viscarra Rossel et 

al., 2011; Wang et al., 2015). In this sense, many authors have studied techniques to be adapted for PSS. DRS in the 

VNIR has been largely tested to predict soil physical and chemical attributes (Pasquini, 2018; Molin & Tavares, 

2019). The prediction can perform on primary NIR response attributes, which means attributes like clay and OM, 

that have direct spectral absorption patterns in this region or even on secondary response attributes that do not 

have direct patterns in NIR but can be predicted due to the construction of indirect calibrations. 

The idea of using ML models of DRS NIR spectra for soil attributes prediction lies into the choice of the 

statistical model and then in the accurate prediction of these attributes. Dimensionality reduction models are often 

chosen due to the multidimensionality of soil spectra (Williams & Norris, 1987). Besides coping with multivariate 

data analysis (Velliangiri et al., 2019), dimensionality reduction models can sometimes smooth the values predicted, 

loosing extreme values that the model considers as outliers (Bellon-Maurel et al., 2010) and therefore needs careful 

implementation. In this sense, PCR is a multivariate method of simple implementation, which had its potential 

https://www.frontiersin.org/articles/10.3389/fsoil.2022.984963/full
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demonstrated since the beginning of studies for soil properties prediction using DRS. Authors reported successful 

prediction of this technique for diverse soil attributes, such as soil organic carbon, OM, pH, and macronutrients, 

such as total nitrogen and total and extractable P and K (Chang et al., 2001; Barthès et al., 2008, Christy et al., 2008; 

Wang et al., 2015; Morellos et al., 2016). Then, statistical metrics are being used for the assessment of ML model 

robustness (Vishwakarma et al. 2021), such as the R², which gives the idea of the variance portion of the data that 

the model is explaining; the RMSE and MAE, which represent the error of prediction the model offered; and the 

RPIQ, which is calculated using the RMSE and the range between first and third quantiles of the data. 

However, PA has in its very definition the consideration of temporal and spatial variability of agricultural 

production (ISPA, 2022). This fact comes from the necessity of understanding the patterns of the variability in the 

field, since agriculture needs to adapt or act in the variability of production. Soil physical and chemical attributes 

have well-known relations and patterns defined by soil science in the study of agricultural soil fertility, and these 

relations are studied by means of the spatial dependence in geostatistics (Abdel Rahman et al., 2021). The range of a 

fitted variogram means the distance in which a point is still related, or spatial dependent, to another. 

With this knowledge, investigations show that the relation between soil attributes will affect the 

construction of ML models. Early when DRS were tested for PSS, Stenberg et al. (2010) stated that prediction 

models using VNIR spectrum should consider only samples from the same morphopedological formation, since the 

variations in soil mineralogy will affect the spectral signature, and the model will not be able to accurately predict 

attributes with this variation. Nevertheless, studies have been reaching satisfactory prediction metrics in 

constructing models not only with the fusion of samples from the same geological region (Ulusoy et al., 2016; 

Franceschini et al., 2018) but also using samples from fields with different soil formations (Guerrero et al., 2021). 

The statistical metrics are important to define the accuracy of a prediction model. However, the way the 

ML calibration affects the distribution of attributes should be considered with the same importance, since this 

distribution will directly affect the decision making in agriculture productive process. Hence, this study aimed to 

understand if the insertion of outside samples in the calibration of NIR soil attributes prediction models affect the 

spatial dependence of predicted values. The objective was to define whether the spatial distribution should be 

always taken into account when evaluating the quality of prediction from an ML model for both primary and 

secondary NIR response soil attributes. 

 

3.2 Materials and Methods 

The steps followed for this study development are summarized by the flowchart shown in Figure 1. These 
steps will be further explained in detail. 

 
Figure 1. Flowchart of steps developed in this study. 



31 

3.2.1. Study area 

The study area is located in Piracicaba, São Paulo state, Brazil (22°43'03.51"S, 47°36'50.03"W), where online 

NIR spectra were acquired for high spatial resolution prediction of soil attributes. Following the criteria of using 

another area from the same geological formation region, samples from another area of 3,300 m distance from the 

experimental field, described in Eitelwein (2017), were used (22°41'57.64"S, 47°38'33.13"W). For the composition of 

a dataset with samples from multiple geological formations, samples were added from an area located in Mato 

Grosso state, Brazil (14°06'05.02"S, 57° 46'01.66"W), also described in Eitelwein (2017) (Figure 2). 

 

 
Figure 2. Location of areas from where samples were acquired for models’ calibrations. Highlighted, located in Piracicaba, São 
Paulo State (SP), the experimental field shape, sensored transects, spectral points acquisition and associated soil samples. Samples 
from another field nearby were used to compose Geological dataset. Global dataset was built adding samples from another area, 
located in Mato Grosso (MT) state. 

 

3.2.2. Online spectral acquisition and soil sampling 

In November 2021, online soil spectral data were acquired using a structure mounted on the three-point 

hydraulic hitch of a tractor. A subsoiler shank was attached to this structure carrying a steel armored case that 

protects the NIR spectrophotometer (MicroNIR from VIAVI Solutions Inc., USA). The tip of the shank makes the 

0.15-m-depth furrow, and the soil is smoothed by the bottom of the case, where the NIR spectrophotometer collects 

online soil spectra through a sapphire window at a spectral resolution of 908.1–1676.2 nm, every 6.2 nm, resulting in 

125 different wavelengths. Spectra are collected at the base of the case, which were transported by a USB cable, 

converted for transmission via an ethernet cable, and recorded on a laptop computer. 

A 99% reflectance disk was used as reference for white (maximum reflectance), and the equipment itself has 

an internal reference measurement for black (minimum reflectance). Each spectrum collected in the field was 

associated with its geographic coordinates using a GNSS Ag-Star (Novatel, Calgary, Canada) receiver with TerraStar-

C differential correction (Hexagon, Alabama, USA). 

The tractor traveled the area in the normal direction of the machine traffic, limited by the presence of 

terraces and with 12 m between each transect sensored. The spectrometer carries an internal data acquisition that 

groups spectra samples using principal components (PCs), excluding samples that are outside the confidence interval 

established in the software, and thus generates a spectrum by the mean. The acquisition time was 10 s each at a speed 

of 0.583 m s-1 (2.1 km h-1), resulting in 383 online NIR spectra acquired. During the field operation, 72 random 
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starting sensing points (12 samples ha-1), indicated by the acquisition software, were demarcated and further sampled 

at the bottom of the furrow, excluding 1.0 m at the beginning and at the end of the transect, which aimed to overlap 

the area that corresponded to an online spectrum acquired (Figure 3). Those samples were submitted for laboratory 

analysis and used for model calibration. In addition, the density of 12 samples ha-1 allowed to generate maps from 

laboratory analysis to be used as counter proof of the models’ prediction. 

 

 
Figure 3. (A) Scheme of subsoiler shank carrying the spectrophotometer; (B) Scheme of spectral acquisition, associated soil 
sample and coordinate. 

 

3.2.3. Soil physicochemical analysis 

Soil physicochemical analysis were carried out on a commercial laboratory. The soil attributes that were 

considered and the respective analysis method were as follows: clay and sand, HMFS+NaOH; OM, oxidation; CEC, 

sum of basis (resin) plus soil total acidity (KCl); and Mg, K and Ca, resin. P models were discarded, as the 

preliminary analysis presented its independence distribution with primary NIR response attributes in the 

experimental area (Stenberg et al., 2010). 

 

3.2.4. Prediction models calibration 

The software Jupyter Notebook (Kluyver et al., 2016; Python Software Foundation, 2022) was used for data 

processing. Calibration models were built using three datasets: local—only the 72 samples from the experimental 

field; geological—adding 59 samples from a field of the same morphopedological region, nearby; and global—adding 

60 samples from a field in Mato Grosso on the geological dataset. 

Adding samples from other areas is a strategy adopted by researchers to augment the number of 

observations in the calibration, thus improving the accuracy of model (Munnaf et al., 2019; Guerrero et al., 2021; 

Zhang et al., 2021). 

The statistical model used was the PCR. PCR is a dimensionality reduction model, indicated to build 

calibrations with soil spectra due to its multidimensionality characteristic and the possible collinearity among 

variables (Williams & Norris, 1987). Velliangiri et al. (2019) described that dimensionality reduction models, such as 
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PCR, can aid ML models in the removal of noisy and redundant data. Therefore, raw spectral data were used for 

models calibration in this study. Each dataset was randomly divided in the proportion of 70% for calibration and 

30% for validation, using k-fold (k = 10) cross-validation (Jung, 2018), which is recommended for the evaluation of 

ML models to reduce bias. A random state in the software function was always set to ensure repeatability and that 

after the split, the same 21 samples from the experimental field would be used for the validation of all three 

calibration strategies. The assessment of the models’ accuracy was performed using common metrics from the 

literature of soil attributes prediction using VNIR spectra: R2, RMSE, MAE, and RPIQ. The parameters were 

evaluated as the higher the R2 and RPIQ values and the lower the RMSE and the MAE values, the better was the 

model performance. 

 

3.2.5. High spatial resolution prediction and data interpolation 

The models calibrated were then used to predict the soil attributes considered using the online spectra 

acquired in the experimental field. A descriptive analysis aiming to exclude acquisition points, like field borders, was 

carried out before the prediction, which resulted in the use of 303 online spectra for prediction that were then used 

for data interpolation. Data of each attribute were individually interpolated by ordinary kriging, using the software 

VESPER (Minasny et al., 2006). The method used was block kriging, in 3.0 × 3.0 m pixels, and the minimum and 

maximum neighboring points for interpolation was determined as 4 and 300, respectively. Additional kriging 

parameters are available in Table A1 of Appendix. After kriging interpolation, the maps generated for each predicted 

attribute were exported to QGIS software (QGIS Development Team, 2022) for analysis and comparison. 

 

3.3 Results and Discussion 

3.3.1. Soil attributes correlation 

The correlation observed among soil attributes can indicate that a secondary calibration that can be 

explored (Stenberg et al., 2010). The Pearson correlations of datasets used in this study are presented in Figure 4. For 

the local dataset, which only contains samples from the experimental field, the only primary–secondary NIR 

response attributes strong correlation observed is OM-CEC of 0.76. On the other hand, the geological and global 

datasets presented all common physicochemical correlations: clay and OM strongly and positively correlated to CEC 

and, consequently, to plant nutrients (Syers et al., 1970). 
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Figure 4. Pearson’s correlation matrix of laboratory analysis from soil samples that composed the three strategies of datasets used 
in this study. (A) Local dataset; (B) Geological dataset; (C) Global dataset. 
 

3.3.2. Prediction models performance 

The results for k-fold cross-validation of local, geological, and global prediction models are presented in 

Table 1. The local model usually performed its best prediction using fewer principal components than geological and 

global calibrations. Lower values for prediction errors (RMSE and MAE) were observed for the local model for all 

soil attributes predicted, except OM. On the other hand, R2 and RPIQ values for geological and global models 

overcame the local strategy, which presented R2 >0.60 for only OM and CEC and its best RPIQ of 1.35 for Ca 

prediction, while both geological and global models surpassed RPIQ = 2.00 for all attributes predicted. 

 

Table 1. Results of online prediction of soil clay, sand, organic matter (OM), cation exchange capacity (CEC) and calcium (Ca) 
using principal components regression (PCR) models developed for the different calibration strategies of only in-field samples 
(Local), adding samples from the same geological region (Geological) and from different geological regions (Global). 

 Local Geological Global 

 NC R² RMSE MAE RPIQ NC R² RMSE MAE RPIQ NC R² RMSE MAE RPIQ 

Clay 4 0.17 19.88 15.08 0.67 7 0.97 25.83 20.71 11.34 8 0.95 28.96 23.25 9.58 

Sand 1 0.05 23.41 17.53 0.12 9 0.97 30.45 25.33 15.76 10 0.97 36.74 29.1 12.64 

OM 9 0.75 3.11 2.28 1.25 9 0.87 2.64 2.26 4.36 10 0.8 3.03 2.22 3.73 

CEC 6 0.6 3.51 2.78 1.1 8 0.73 11.92 8.74 3.06 5 0.76 11.6 8.66 3.69 

K 6 0.14 0.93 0.77 0.51 4 0.56 2.11 1.57 2.2 5 0.72 1.51 1.03 3.62 

Ca 10 0.39 2.54 2.08 1.35 8 0.68 6.91 5.01 2.13 3 0.55 7.01 5.17 2.43 

Mg 1 0.01 1.83 1.41 0.52 8 0.65 7.1 5.1 2.27 3 0.57 6.99 4.83 2.51 

NC = number of principal components used in calibration; R² = coefficient of determination; RMSE = root mean square error; 
MAE = mean absolute error; RPIQ = ratio of performance to interquartile distance. 

 

Note that RPIQ values variation follows R2 values, departing from the prediction error presented by the 

model, since the smallest errors of the local model were not accompanied by better RPIQ values. This may imply 

that another parameter is needed to fully comprehend if the prediction model is sufficiently assertive to be used as a 

field technique for soil data acquisition. Agriculture is an activity that depends on the soil and its characteristics in 

deciding on productive steps. Not only the statistical distribution but also knowing the soil attributes content in the 

determined location is crucial for decision making (Abdel Rahman et al., 2021). The spatial dependence of an 

attribute is known to be described by geostatistics, fitting variograms with the samples of the area (de Iaco et al., 

2022). In this sense, it is suggested that the comprehension of the predicted values variation can contribute to a 

precise decision-making process of DRS NIR as a technique applied in the context of PA, both in quantitative terms, 

by the error of prediction, and in qualitative terms, by evaluating the spatial distribution of predicted values. 
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However, before evaluating the models in terms of variation in values observed, defining what is implied in 

the construction of soil attributes ML models is needed. A set of 72 soil samples from the nearby area located in 

Piracicaba (SP, Brazil) added to build geological and global datasets was divided and submitted for analysis to four 

different commercial laboratories, aiming to verify the difference in values that a standard laboratory analysis of a soil 

sample can present. A mean variation of 21.4 g kg−1 for clay content and 24.4 g kg−1 for sand content was observed 

between the analysis of the four laboratories. For chemical attributes, the results were even more discrepant. The 

analysis of OM and CEC exhibited a maximum Pearson correlation coefficient of 0.51 between laboratories. It is 

noteworthy that the mean error of prediction of the models calibrated in this study presented lower values than the 

variation observed among the different laboratories. The complete analysis of the 72 soil samples from the four 

laboratories is available in Eitelwein (2017). 

The certification of soil analytical laboratories in international level is a competence of the International 

Organization for Standardization (ISO) (ISO, 2022a; ISO, 2022b). The standards of procedures and certification 

include acceptable errors and calibration limits for soil testing. This means that every analysis, even from certified 

laboratories, is susceptible to errors in some scale, and stakeholders of agriculture production always dealt with these 

possible variations. 

Finding the correct values instead of generalizing attributes and variability is an obvious goal of PA (ISPA, 

2022), but the calibration of ML models depends on the reference values inserted in the calibration. DRS is directly 

related to the intrinsic content of an attribute of response in the determined electromagnetic spectrum region (Fang 

et al., 2018; Pasquini, 2018). Thus, if there is no consensus in the value inserted for calibration, a misbalance of 

predicted versus observed values occurs, and the models automatically incorporate errors of prediction in some 

magnitude. This could imply that while we use this basis for ML models using DRS in soil science (Barra et al., 

2021), we will hardly reach an accuracy level that allows to find the exact same values due to the model input, one of 

the three main sources that can lead to output uncertainty (Huang et al., 2015). Instead, we should aim to minimize 

the errors of prediction as much as possible and look forward to the repeatability of distribution and the agronomic 

plausibility of predicted attributes distribution, assuming that variations of some kind, already present in current 

analytical methods used, will not overcome the benefits that the technique can offer. Therefore, we suggest that 

evaluating the predicted attributes in quantiles associated with the prediction errors (Malone et al., 2011; Ma et al., 

2017; Vaysse et al., 2017) is an effective approach rather than equalizing categories (Somarathna et al., 2016; 

Franceschini et al., 2018; Pouladi et al., 2019). 

PCR models presented a described characteristic of this statistical method of smoothing predicted values 

when compared to those inserted in calibration (Bellon-Maurel et al., 2010) (Table 2). Besides the loss of extreme 

values of all datasets, the major portion of the population followed the distribution (Velliangiri et al., 2019) (Figure 

5). For clay and Mg prediction, the local model caused the major concentration of values when compared to 

geological and global predictions. 
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Table 2. Range of values observed for clay, organic matter (OM), cation exchange capacity (CEC), potassium (K), calcium (Ca) 
and magnesium (Mg) in laboratory analysis (Lab), and predicted values using online spectrum of experimental field from three 
different calibrations strategies of only in-field samples (Local), adding samples from the same geological region (Geo) and from 
different geological regions (Global). 

 Clay   OM   CEC 

 g kg-1  mmolc kg-1 

  Min Max R   Min Max R   Min Max R 

Laboratory 51 183 132  12 35 23  44 68 24 

Local 89 149 60  12 26 14  45 70 25 

Geological 79 175 96  11 29 18  37 74 37 

Global 50 182 132   11 30 19   43 65 22 

 K   Ca   Mg 

 mmolc kg-1 

  Min Max R   Min Max R   Min Max R 

Laboratory 0 5 5  10 34 24  5 22 17 

Local 0 4 4  12 29 17  8 12 4 

Geological 1 4 3  9 33 24  -1 19 20 

Global 1 4 3   15 26 11   5 19 14 

Min: minimum value observed; Max: maximum value observed; R: range (Max – Min) 

 

The global model followed the exact range of values observed in the laboratory for its clay prediction, and 

presented the major concentration of values for Ca prediction. For OM and K, the three strategies presented similar 

population distribution, even though all three flattened the distribution curve observed in the values of laboratory 

analysis. CEC prediction is highlighted as the most similar distribution for all populations. Nevertheless, the range of 

predicted values places the local calibration as the closest to laboratory population. 

 

 
Figure 5. Kernel density estimate plots of clay, organic matter (OM), cation exchange capacity (CEC), potassium (K), calcium 
(Ca) and magnesium (Mg) for the attributes observed in the laboratory analysis of experimental area and predicted using online 
spectra on three strategies of calibration: only in-field samples (Local), adding samples from the same geological region 
(Geological) and from different geological regions (Global). 
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3.3.3. High spatial resolution prediction and data interpolation 

The parameters of fitted variograms for clay, sand, OM, CEC, K, Ca, and Mg, using the three strategies of 

calibration, hardly presented similar values (Table 3). However, the nugget to total sill ratio (Cambardella et al., 1994) 

presented moderate spatial dependence for almost all predicted attributes. Only Ca prediction from the local dataset 

and sand prediction from the global dataset exhibited pure nugget effect, indicating the inexistence of spatial 

dependence on the distribution of these attributes contents on the experimental field. Regardless, for Ca, geological 

and global calibrations were able to find spatial dependence. The same was observed for sand, in which local and 

geological calibrations pointed spatial dependence. This indicates that the spatial distribution of predicted values can 

be affected depending on the calibration model, despite the prediction error presented, corroborating with the results 

found in Pouladi et al. (2019). 

 

Table 3. Parameters of fitted variograms for clay, sand, organic matter (OM), cation exchange capacity (CEC), potassium (K), 
calcium (Ca) and magnesium (Mg) predicted values using online spectra of experimental field from three different calibrations 
strategies of only in-field samples (Local), adding samples from the same geological region (Geological) and from different 
geological regions (Global). 

 Local Geological Global 

  C0 C1 A C0 C1 A C0 C1 A 

Clay 115.8 67.2 230.3 187.5 167.5 52.2 213.1 500.1 139.9 

Sand 7.0 3.4 196.9 154.1 126.0 33.5 - - - 

OM 5.3 2.8 189.3 3.4 3.3 28.5 5.9 1.9 37.0 

CEC 32.7 35.0 199.2 13.6 20.3 21.8 0.0 17.6 142.4 

K 0.04 0.02 197.6 0.08 0.04 85.7 0.02 0.1 21.3 

Ca - - - 2.7 7.9 26.4 2.7 1.3 89.4 

Mg 2.7 1.3 89.5 4.6 3.9 27.7 3.2 1.28 108.1 
C0 = nugget; C1 = sill; A = range. 

 

Clay prediction was not considerably affected by the addition of samples from outside areas, which could 

have happened due to the relation of clay and the fundamentals of NIR with soil mineralogy (Fang et al., 2018). Due 

to the direct response of this attribute in VNIR, other authors even reported satisfactory prediction in independent 

tests, extrapolating predictive models in scanned but previous unsampled agricultural areas (Eitelwein et al., 2022). 

The range presented by the three variograms fitted for clay prediction was discrepant: 230.3 m for local dataset, 52.2 

m for geological dataset, and 139.9 m for the global dataset. Despite that, the ordinary kriging reached similar 

patterns and also similar values for the attribute (Figure 6), highlighting the variation amplitude observed in quantiles 

division, which is small. Class discrepancy of values was also lower than the MAE of prediction models (15.08 g kg-1 

for local, 20.71 g kg-1 for geological, and 23.25 g kg-1 for global). The evaluation of R2 and RPIQ would lead to the 

discarding of clay local model. However, the spatial distribution of predicted values alongside the error of prediction 

proved the ability of the local calibration to predict this attribute of primary response in NIR. 
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Figure 6. Maps of the five quantiles obtained by ordinary kriging for clay prediction using three different strategies of calibration 
only in-field samples (Local), adding samples from the same geological region (Geological) and adding samples from different 
geological regions (Global). 
 

The prediction of OM is widely explored using DRS NIR due to the fact that OM is a primary response 

attribute in this region of electromagnetic spectrum, with its typical wavelength absorption being reported to 

comprise (nm) 1,660, 1,728, 1,754, 2,056, 2,264, 2,306, and 2,347 (Nocita et al., 2015). Its prediction can also arise in 

moist soil (not in field capacity) (Wang et al., 2020), a condition often observed in field soils. This is the most likely 

explanation for the satisfactory prediction of OM using the local, geological, and global dataset calibrations (Figure 

7). 

 

 
Figure 7. Maps of the five quantiles obtained by ordinary kriging of organic matter (OM), in red, and cation exchange capacity 
(CEC), in green. Maps are presented in order of: laboratory analysis; prediction model calibrated with only in-field samples 
(Local); difference of Laboratory and Local values (Lab – Local); prediction model calibrated adding samples from the same 
geological region (Geological); and adding samples from different geological regions (Global). 

 

Although with different calibrations, the models reached similar patterns of distribution, which was also 

observed by Pouladi et al. (2019). As was observed for clay, the variation amplitude in quantiles distribution is small 

for OM prediction. The most divergent area was observed in the northwest portion of the field, where the local 
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calibration pointed a zone of high OM content and geological and global calibrations pointed the opposite. In 

addition, the addition of outside samples in the calibration set clearly affected the spatial dependence of prediction of 

OM, since the range of the variograms expressively decreased. For local calibration, a spatial dependence until 189.3 

m of distance was observed from one sampling point to another. For geological and global calibration, however, the 

spatial dependence was found until 28.5 and 37.0 m. 

Although there were similarities among the maps of local, geological, and global calibrations, when 

comparing the map generated from the high density of 72 soil samples analyzed in the laboratory, it is noted that the 

local model presented the best fitted prediction for OM in the experimental field, similar to that reported by Stevens 

et al. (2013). An explanation for local better prediction can be that changes in iron oxide content can cancel 

variations in OM absorption features (Adar et al., 2014). The major portion of the area presented a difference of 

<2.5 g kg-1. The greatest difference was observed in the same region that the local model disagreed with geological 

and global calibrations. Exactly in this region, laboratory analysis presented a single sample with 35 g kg−1 of OM 

content. The second highest OM content observed in the laboratory was 28 g kg-1. The upper limit loss in the range 

presented for local calibration was clearly affected for this sample only (Table 2). The errors of prediction of this 

model (MAE = 2.28 g kg-1 and RMSE = 3.11 g kg-1) were also increased due to what was quoted. Thus, it is assumed 

that a resampling of that area is needed to verify if the sample of 35 g kg-1 was accurate or it was an outlier due to the 

error in the sampling procedure/laboratory analysis (Hemingway, 1955). Nevertheless, if laboratory analysis showed 

greatest values than the local model, which classified the area as a high content one, geological and global calibrations 

are wrong in the assumption of a low OM content area. 

CEC prediction was discrepant between the three models (Figure 7). The geological model reached an 

irregular distribution of patterns in the field. While local calibration presented a variogram range of 199.2 m and 

global calibration of 142.4 m, the geological model reduced the range to 21.8 m. The difference between local and 

global prediction stands for the inversion of patterns observed, changing high CEC values zones into low ones. 

Although the range of 24 mmolc kg-1 in CEC values was observed in the laboratory, followed by three datasets 

predictions (Table 2), the quantiles limits presented a small variation of 1.5–2.0 mmolc kg-1. 

Attributes that do not have direct spectral response in the region studied can be predicted if the attribute 

presents covariation with another of primary response (Stenberg et al., 2010). Thus, various authors have dedicated 

their attention to construct indirect VNIR calibrations to predict these soil attributes (Munnaf et al., 2019; Pätzold et 

al., 2020; Bönecke et al., 2021). The use of calibrations that compile soil samples from different areas to predict these 

attributes is a common practice, usually gathering data from the same morphopedological region (Stenber et al., 

2010). Nevertheless, the strategy of putting together the areas from different regions is also observed and stated as an 

effective approach depending on the results demonstrated (Munnaf et al., 2021). In this study, although smaller 

prediction errors were obtained from local model prediction of CEC, geological and global models presented better 

R2 and RPIQ and metrics similar to others (Ulusoy et al., 2016; Rehman et al., 2019; Chen et al., 2021). However, it is 

noted that the values obtained from different strategies led to different patterns of attributes spatialization in the 

field, affecting the spatial dependence as for the geological model or the inversion of patterns as for the global 

model. 

The comparison between the kriging maps obtained for CEC analysis in the laboratory and that obtained 

using local model calibration leads to the conclusion that the local model was the only strategy among the three that 

successfully predicted the attribute. At the north of the area, the region of greatest discrepancy was observed, where 

even though the model accurately defined the region of higher CEC at the field, it downsized the value observed by 
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the laboratory analysis, characteristics smoothing reported for PCR prediction models (Bellon-Maurel et al., 2010). It 

is highlighted that, although there was a small range of CEC values from both laboratory analysis (24 mmolc kg−1) 

and local prediction (25 mmolc kg−1) and a small variation amplitude in quantiles division, the local calibration was 

able to accurately identify the spatial patterns in the field. 

The failure of the prediction of CEC for geological and global models, despite the considered good metrics 

presented by these two strategies, can be explained by the correlation observed between soil attributes (Kuang et al., 

2012) (Figure 4). For only the experimental area, CEC had a strong correlation with OM of 0.76, which is a primary 

response attribute in NIR. Note that in the experimental area, CEC is almost independent from clay, with a 

correlation coefficient of −0.06. By the addition of samples from the area of the same geological region than the 

experimental field, the correlation of CEC with OM is maintained at 0.76. Yet, the model identifies a strong 

correlation with other primary NIR response attributes, where CEC and clay had a correlation coefficient of 0.75. 

The similar effect happened for the global dataset. Although the kernel density estimation plots pointed the 

same statistical distribution of predicted values for all datasets (laboratory analysis, and local, geological, and global 

predictions) (Figure 5) and satisfactory metrics were presented (R2, RMSE, MAE, and RPIQ) (Table 1), the prediction 

of CEC with neither geological nor global models was accurate, which places spatial distribution and agronomic 

plausibility of this distribution as a fundamental factor for classifying the model as robust or not. Even though other 

authors found a positive influence of creating calibrations from multiple fields (Carmon & Ben Dor, 2017; Munnaf 

et al., 2019), this was not the case for the one tested in this study when the field spatialization parameter was taken 

into account. This could also be possible due to the use of other techniques more related to fundamental vibrations 

of soil attributes in the spectra, like mid- infrared (Greenberg et al., 2022) or X-ray fluorescence (Qu et al., 2022), or 

other factors that were not investigated in this study. 

The prediction of plant nutrients was not consistent for any of the datasets used for model calibration, and 

Ca maps represented the same patterns observed for K and Mg (Figure 8). Local and geological datasets resulted in a 

prediction without coherent spatial patterns, and for the global dataset, although the north portion of the area 

presented the same pattern and similar values to those observed in the laboratory, it may be assigned by chance, once 

the other patterns were not steady. 

 

 
Figure 8. Maps of the five quantiles obtained by ordinary kriging of calcium (Ca) values of laboratory samples analysis (Lab) and 
the prediction models using three different strategies of calibration: only in-field samples (Local), adding samples from the same 
geological region (Geological) and adding samples from different geological regions (Global). 
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The unsuccessful prediction of Ca can be related to the correlations presented for this attribute (Figure 4), 

as it was for the successful prediction of CEC (Stenberg et al., 2010; Kuang et al., 2012). In the experimental field, Ca 

had an average correlation with OM of 0.44. This fact could explain the slightly better R2 and RPIQ values presented 

in the validation of local Ca model, although this was not true for K (Table 1), even with a 0.55 positive correlation 

with OM presented in the local dataset. Nevertheless, this correlation magnitude proved to be insufficient to allow 

an accurate prediction using DRS NIR. For geological and global models, once outside samples were entered in the 

dataset, nutrient correlations were modified, presenting, in both cases, significant positive correlation with clay and 

OM and negative correlation with sand. Therefore, the ML models used in this study, which are helpful tools to deal 

with spectral data and correlations between soil attributes (Barra et al., 2021), were not able to perform a consistent 

prediction. 

This study suggests that the correlation coefficient itself, even when corroborated with satisfactory 

statistical metrics on prediction models validation, cannot identify if a secondary response attribute can be predicted 

with DRS ML models (Marín-González et al., 2013). The correlation observed in the target area alone must be taken 

into account, and it is of high importance that this correlation is not twisted after the union of outside samples in the 

model calibration, which can cause the distortion of the attributes spatial distribution in the field. 

 

3.4 Conclusions 

Spatial distribution in terms of zones and agronomic plausibility of predicted values obtained from DRS 

NIR prediction models proved to be a key factor of robustness evaluation. Using R2 and RPIQ without field 

spatialization is suggested to be a vulnerable strategy due to misleading decisions that these metrics would lead into 

in the present study. This study suggests to further investigate the spatialization of soil attributes predicted using NIR 

spectra in areas with greater variability. It is necessary to further check the weaknesses that ML models of NIR 

spectra calibrated with samples from more than one area presented in the spatialization of the predicted attributes. If 

the observed results in the present study are repeated for other agricultural fields, it may indicate that local models 

are the best recommendation for DRS used for field-scale PSS. 
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Appendix 

Table A1. Variograms and kriging additional parameters reported for clay, sand, organic matter (OM), cation exchange capacity 
(CEC) and calcium (Ca) for the different calibration strategies of only in-field samples (Local), adding samples from the same 
geological region (Geological) and from different geological regions (Global). 

  Local Geological Global 

  Model RMSE SE Pred Model RMSE SE Pred Model RMSE SE Pred 

      min max     min max     min max 

Clay Lin 3.65 2.46 4.54 Exp 6.14 5.57 10.57 Sph 16.73 5.82 11.11 

Sand Lin 0.14 4.53 9.75 Exp 5.80 5.51 9.96 - - - - 

OM Lin 0.23 0.54 1.00 Lin 0.61 0.89 1.79 Sph 1.20 0.95 1.34 

CEC Gaus 5.04 0.63 2.06 Lin 3.03 2.12 4.36 Mat 0.61 1.34 2.85 

K Lin 0.01 0.04 0.09 Sph 0.00 0.09 0.17 Exp 0.01 0.11 0.36 

Ca - - - - Sph 0.24 0.47 0.98 Exp 0.08 0.48 0.85 

Mg Sph 0.01  0.25 0.62  Sph 0.18 1.12 1.90 Exp 0.09 0.47 0.83 

Model: variogram model; RMSE: root mean square error of fitting variogram; SE Pred: minimum (min) and maximum (max) 
kriging prediction associated error; Lin: linear with sill; Gaus: gaussian; Sph: spherical; Exp: exponential; Mat: matern. 
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4. ONLINE NEAR-INFRARED SOIL ATTRIBUTES MAPPING REQUIRE LOCAL 

CALIBRATION IN SPACE AND TIME 

Abstract 

Near-infrared (NIR) region can be used for diffuse reflectance spectroscopy (DRS) direct in agricultural areas as an 
alternative for acquiring soil data faster and more cost-effective. Building machine learning (ML) calibrations, soil 
attributes can be predicted in high spatial density. However, for these calibrations to work it is commonly used a 
higher density of soil samples analyzed in laboratory than the adopted in agricultural production. There are no 
reports on if a ML model calibrated on this basis can consistently perform over the time, being useful more than 
once, or require calibration on every online spectra acquisition. Therefore, this study’s objective was to acquire online 
NIR spectra in an agricultural field where a previous spectral acquisition and ML models were built and validated, 
assessing the performance of predictive models over the time, using the same sensor, operational and 
instrumentational conditions. Two spectral acquisitions were made separated by 21 days over a fallow Brazilian 
tropical soil. A total of 140 spectra were acquired on each day, and used for comparisons. Physical and chemical soil 
properties were predicted using principal components regression models calibrated in day 1. Spectra characteristics, 
such as morphology, features and intensity, were compared, and also the attributes predicted values and maps 
interpolated by ordinary kriging. Besides the core of DRS NIR seemed to be maintained analyzing the spectra 
acquired in both days, neither high correlated or overlapped spectra presented similar values of predictions. The only 
Pearson’s correlation coefficient (r) significative at 99% was for calcium prediction, of 0.22 for the comparison of the 
entire 140 spectra prediction of each day. For clay, organic matter and cation exchange capacity, that presented a 
robust prediction in day 1, the r values ranged from -0.14 to 0.32, but were not significative. The maps generated 
showed no similar attributes spatial distribution, hindering the use for agricultural management decisions. Soil 
moisture is suggested to take a role as a source of variation, but the analysis of residual maps and the likely water 
dynamic based on the altimetry map of the area may indicate that were not the only factor actuating. Other 
environmental variables should be considered to identify the variations observed in online NIR spectra acquired in 
same experimental conditions. If overcome of these variations do not succeed, the reported in this study suggest that 
online NIR spectra ML models require local calibrations in space and time. 
 
Keywords: agricultural field operations; machine learning; environmental factors; diffuse reflectance spectroscopy. 
 

4.1. Introduction 

Aiming the sustainability of production systems, the use of inputs of a supply chain needs to be 

optimized. In this sense, efforts are being made in PA towards the identification of spatial and temporal variability of 

agricultural systems to support management decisions (International Society of Precision Agriculture, 2022). The soil 

is an essential part of agriculture, providing water, nutrients, air and mechanical sustentation for plants. Its intrinsic 

and extrinsic variability identification and management practices regulate the variability of agriculture production 

(Molin and Tavares, 2019; Yin et al., 2021) and ensure continued soil fertility (Johnston and Poulton, 2018). 

Therefore, techniques to turn soil data acquisition faster, more efficient and cost-effective have been an interest of 

soil scientists and precision agriculture researchers (Molin and Tavares, 2019; Viscarra Rossel et al., 2011). 

DRS is a technique of energy-matter interaction that allow to capture inherent data about an object. NIR 

region is an alternative for DRS application that has been proven its potential in soil science (Nocita et al., 2015). 

Tested for the first time in laboratory, researchers have identified specific wavelengths of interaction between diverse 

soil properties with NIR spectra, such as mineralogy (Fang et al., 2018), texture (Bönecke et al., 2021), soil OM and 

organic carbon (Bönecke et al., 2021; Munnaf et al., 2021; Wang et al., 2015). These were called the primary NIR 

response attributes (Stenberg et al., 2010). It was established that other attributes could also be related to NIR 

spectra, if a covariation with one of primary response occurs. Then, studies have related NIR spectra with CEC, pH 



48 

and plant nutrients, like soil nitrogen, P, K, Ca and Mg (Munnaf et al., 2019; Munnaf and Mouazen, 2021; Yang et al., 

2020), calling them as secondary or indirect NIR response attributes. 

As the development of this research area advanced, the introduction of ML techniques allowed to 

quantify soil attributes using DRS (Barra et al., 2021; Morellos et al., 2016). The idea is to use the electromagnetic 

spectra with laboratory analysis as reference values, training models that will latter need only the soil spectra to 

predict the sample attributes. 

Once the technique was validated, an adjacent research area started trying to adapt the DRS NIR for PSS 

(Viscarra Rossel et al., 2011), acquiring soil spectra direct from agricultural areas in high spatial density, the so-called 

online spectra (Ben-Dor et al., 2008; Mouazen et al., 2009; Stenberg et al., 2007). The possible advantages are the 

primary goals of acquiring soil data faster, reducing the cost of acquisition per sample, the laboratory reagents waste 

and the laborious work that laboratory spectral analysis demand, as drying, grinding and sieving soil. Researchers 

have been reporting results showing that is possible to map soil attributes using DRS NIR online spectra, with most 

studies being reported in temperate regions (Kuang et al., 2012) and few studies exploring the tropical soils 

(Eitelwein et al., 2022; Franceschini et al., 2018). The online NIR spectra was used to build ML calibrations to 

quantify all the same attributes that were previously tested in laboratory, both the primary and the secondary NIR 

response attributes (Munnaf and Mouazen, 2021; Yang et al., 2020). 

However, the ML calibrations reported in these studies invariably use a higher density of soil samples 

acquired in commercial scale. To achieve the benefits of fine-scale soil mapping of optimization of input distribution, 

reaching resource use efficiency, profitability and sustainability of agricultural production systems, understanding the 

calibration protocols the technique require is crucial. This includes comprehending if the online NIR spectra is stable 

over the time, allowing repeatability of products generated. Researchers identified the importance of local 

calibrations for predicting soil attributes using visible and NIR spectra (Brown, 2007; Canal Filho and Molin, 2022; 

Stenberg et al., 2010), and although efforts are being made trying to overcome this limitation, no definitive strategy is 

established (Gogé et al., 2014; Stevens et al., 2013; Wetterlind et al., 2010). In this sense, it is also needed to assess 

the usefulness of ML calibrations based on DRS NIR spectra in terms of spatial and time specificity. No studies were 

found reporting the prediction of a ML calibration of online NIR spectra over the time, assessing if the models 

require local calibrations in time to perform properly. 

We hypothesized that if online NIR spectra present spatiotemporal stability, even the models with poor 

prediction performance would present similar patterns in the field, denoting that a model calibrated using online 

NIR spectra can repeat the products generated for soil attributes prediction along the time. Therefore, the objective 

of this study was to acquire online NIR spectra in an agricultural field where a previous spectral acquisition and ML 

models were built and validated, assessing the performance of predictive models over the time, using the same 

sensor, operational and instrumentational conditions.  

 

4.2. Materials and Methods 

This study was carried out following the steps presented in Figure 1, that will be further explained in the 

sections 4.2.1 to 4.2.4. 
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Figure 1. Graphical abstract of the methodology developed in this study. 

 

4.2.1. Study area 

The study area is a sandy loam experimental field of 6.0 ha, from University of São Paulo (USP), located in 

Piracicaba, São Paulo state, Brazil (22°43'03.51"S, 47°36'50.03"W). In the last three years, a soybean-fallow system 

was conducted. The study happened in November, 2021, at the end of the fallow phase, before soybean seeding. 

During the 21 days that separated the two spectral acquisitions, no operations took place in the area. 

Water topsoil dynamic is quite dependent of altimetry (Lee et al., 2011; Orth et al., 2013; Uebbing et al., 

2017), and soil moisture is known to affect NIR spectra (Pasquini, 2018; Wang et al., 2020). The area presents a mid-

west highest point of 586 m, with declivity direction to the south, with lowest point in 576 m. Two north-south 

terraces divide the area and delimit the lowest portions at the east. The north portion of the area is a plateau with 

little altitude variation (Figure 2). 

 

4.2.2. Online spectra acquisition and soil sampling 

Online soil spectral data were acquired using a subsoiler shank making a 0.15-m-depth furrow, attached to 

a structure mounted on the three-point hydraulic hitch of a tractor. This shank carried a steel armored case 

protecting the NIR spectrophotometer (MicroNIR from VIAVI Solutions Inc., USA), that acquired in 125 

wavelengths from 908.1 to 1676.2 nm with a spectral resolution of 6.14 nm. The complete description of how the 

spectrophotometer calibrates and acquire online spectra can be found in Canal Filho & Molin (2022). Acquisition 

points were georeferenced using a GNSS Ag-Star (Novatel, Calgary, Canada) receiver with TerraStar-C differential 

correction (Hexagon, Alabama, USA).  
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Figure 2. Altimetry map of the experimental field, with respective contour lines. The higher portions are colored in green tones, 
and the lower portions, in red. 

 

Two subsequent spectral acquisitions occurred in the area, separated by 21 days. Day 1 was used to validate 

the methods of spectra acquisition, associated soil sampling, calibrate and evaluate the robustness of ML models for 

prediction. The tractor traveled the area limited by the presence of terraces, making 12 acquisition lines in day 1. The 

speed was set to 0.583 m s-1 (2.1 km h-1). A total of 383 spectral points were acquired in day 1, followed by a filtering 

process of measurement errors that excluded 80 spectra. The complete report for this study can be found in Canal 

Filho and Molin (2022). Data acquisition in day 21 followed the same experimental and instrumental conditions from 

day 1. Once the models were calibrated and validated, in day 21 only the odd lines of day 1 were acquired, resulting 

in six acquisition lines and 140 spectra. Then, for the comparison between the spectra and product generated in both 

days, day 1 of acquisition was reduced to the same lines of day 21, resulting in the same number (140 points) of soil 

spectra to be compared. 

Soil sampling occurred in day 1, and was used as reference values to compose the dataset for ML models 

calibration and evaluation. The soil was sampled in the bottom of the furrow left by the subsoiler shank, in the 

spectral acquisition transect, to ensure that soil analysis was correspondent to the area previously sensed. For this, 

the spectrophotometer acquisition time of one spectrum (10 s) was multiplied by the operation speed, resulting in 

the transect length sensed (7 m). As the software indicated in real-time the starting point of each spectrum, the 

demarcation of 72 random starting points allowed the afterward soil sampling. To reduce uncertainty, one meter was 

discarded at the beginning and end of each transect sampled, resulting in a five-meter-long soil sample along the 

furrow. The attributes considered in laboratory analysis for posterior ML models’ prediction were clay, OM, CEC, 

pH, P, K, Ca and Mg. 

In each day of acquisition, ten soil samples were randomly collected at the bottom of the furrow left by 

the subsoiler shank to monitor the soil moisture. These samples were collected during the field operation, sealed and 

weighted at field condition. Then, taken to a forced ventilation oven at 105ºC during 72 h to obtain their dry weight 

(Teixeira et al., 2017). The soil moisture at each day was considered as the mean value for the ten samples collected. 
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4.2.3. Machine learning models and data interpolation 

ML models for soil attributes prediction were calibrated using PCR, a well described technique applied to 

cope with multivariate data (Agarwal et al., 2021; Chang et al., 2001). The number of PCs used in regression was set 

following the criteria of reducing the RMSE, and using at most 10 PCs to avoid model’s overfitting (Seasholtz and 

Kowalski, 1993; Tracy et al., 2016). Data modeling was developed using Jupyter Notebook software (Kluyver et al., 

2016; Python Software Foundation, 2022). The dataset composed of online near spectra from day 1 acquisition and 

analysis of corresponding soil samples was divided in the proportion of 70% for calibration and 30% for validation. 

To reduce the bias of the results reported, k-fold cross-validation (k = 10) was applied (Jung, 2018). The function 

random state was set to n = 456 to ensure repeatability of results after validation.  

The strategy of using only local samples, from the experimental area, yielded the best predictions, and 

therefore were applied in this study. Further description of ML models applied in this study can be found in Canal 

Filho and Molin (2022). These same models were applied to the online spectra acquired in day 21. 

After the prediction of the 140 points for both days of acquisition, data of each attribute were individually 

interpolated by ordinary kriging, using the software VESPER. Variograms were fitted within the software, that 

provides RMSE and AIC index for model adjustment, and gives the parameters nugget (C0), sill (C1) and range (A) 

(Minasny et al., 2006), that were further compared between both days. The method used was block kriging, in 3.0 × 

3.0 m pixels, and the minimum and maximum neighboring points for interpolation was to software minimum and 

maximum values, of 4 and 300, respectively. The kriging results were converted to a raster format to be exported and 

analyzed in a geographic information system software. 

 

4.2.4. Spectra stability and product analysis 

4.2.4.1. Spectra and prediction values analysis 

 Firstly, a 99% significance Pearson’s correlation analysis was used to compare the spectra and predicted 

attributes values from day 1 and day 21. The 125 wavelengths measured were the variables compared for spectra 

analysis. The 20 highest correlated spectra pairs (day 1 x day 21) were identified to be compared in: spectra 

characteristics (morphology, intensity, absorption features), location of spectra acquisition, and prediction values 

generated from those spectra. For prediction values comparison, the nearest neighbors were joined in pairs, yielding 

140 pairs used for correlation analysis.  

 Secondly, at the field operation, two spectra would hardly be acquired at exactly the same point. Although 

tractor’s operator, operation speed and acquisition lines were strictly the same, variations in orientation or border 

maneuvers could offset the spectra from day 21 from the location of day 1. This would hinder the direct comparison 

of day 1 x day 21 as: spectrumday1 1 x spectrumday21 1; spectrumday1 n x spectrumday21 n; …; spectrumday1 140 x 

spectrumday21 140. To undermine the distance between two acquisition points, an ellipse buffer of 2.5 m radius in the 

direction of tractor’s movement was created to extract overlap points. As the soil sampling were carried in the length 

of five meters to match the transect of spectral acquisition, this buffer had the purpose of selecting the points that 

overlapped each other, being collected at the same location in relation to the length of the sensed transect. 
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4.2.4.2. Comparison of maps generated by ordinary kriging 

 The maps comparison is aimed to assess the similarity between the final products of DRS NIR soil 

attributes prediction from day 1 and day 21. For that, C0, C1 and A parameters from the variograms fitted for day 1 

and day 21 values were compared. Also, kriged values converted to raster format were exported to QGIS software 

(QGIS Development Team, 2022). The raster calculator was used to subtract the values contained in both maps. 

Individually, each attribute difference of prediction was obtained, always subtracting the map of day 1 from the map 

of day 21. Positive values in the residual map mean day 21 overestimated the prediction from day 1. Negative values 

mean day 21 prediction underestimated day 1 prediction. That analysis allows to spatialize the differences of 

prediction in the experimental area. 

 

4.3. Results and Discussion 

The results for k-fold cross-validation of ML models used in this study are presented in Table 1. Primary 

response attributes, clay and OM, have well-known wavelengths of response (Fang et al., 2018; Nocita et al., 2015). 

As previously shown in Canal Filho and Molin (2022), both clay and OM ML models allowed the mapping of 

experimental area, although clay reported a considered low R² = 0.17. Of secondary response attributes, only CEC 

achieved similar field patterns of those observed in laboratory analysis, presenting an R² of 0.60 and RMSE of 3.51 

mmolc kg-1. The poor parameters, especially of R², of 0.03 for pH, 0.02 for P, 0.14 for K, 0.39 for Ca and 0.01 for 

Mg, was confirmed as poor predictions results, although comparable errors of prediction and variance explained with 

clay, OM and CEC. 

 

Table 1. Results of principal components regression models k-fold cross validation for clay, organic matter (OM), cation 
exchange capacity (CEC), potential of hydrogen (pH), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg). 

 unit min  max range R² RMSE MAE NC % var 

Clay 
g kg-1 

51 - 183 132 0.17 19.88 15.08 4 24.01 

OM 12 - 35 23 0.75 3.11 2.28 9 40.69 

CEC mmolc kg-1 45 - 68 24 0.60 3.51 2.78 6 26.70 

pH - 4.1 - 6.8 2.7 0.03 0.32 0.27 4 12.09 

P mg kg-1 5 - 68 63 0.02 9.39 8.59 3 18.42 

K 

mmolc kg-1 

0.4 - 5 4.6 0.14 0.93 0.77 6 32.68 

Ca 10 - 34 24 0.39 2.54 2.08 10 58.62 

Mg 5 - 22 17 0.01 1.83 1.41 1 5.85 

min: minimum value inserted in calibration; max: maximum value inserted in calibration; range: range of values inserted in 
calibration; R²: coefficient of determination; RMSE: root mean squared error; NC: number of principal components used in 
regression; % var: percentage of total of outcome variance explained. 
 

4.3.1. Spectra and prediction values analysis 

The mean spectra from day 1 and day 21 proved that the intensity of reflectance was higher in day 1 

(Figure 3). One possible factor contributing for that is the soil moisture. In day 1, the soil gravimetric moisture (θ) 

was 41.6 g g-1, while, in day 21, θ was 69.5 g kg-1. Water has an effect on DRS NIR spectra of augmenting absorption 

(Morellos et al., 2016; Nocita et al., 2015, 2013; Wang et al., 2020). The interaction of energy with matter can happen 

as transmission, reflexion or absorption, and one of it is a function of the other (Kortüm et al., 1963). The higher the 
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absorption, the lower the reflectance. Even a tender rise in soil moisture could be perceived, reducing the mean 

reflectance values from approximately 0.135-0.145 to 0.110-0.120. Nevertheless, other factors can be contributing 

for the mean reduced intensity observed, such as environmental factors not considered in this study (sunlight 

radiation, temperature, etc.). 

 

 

Figure 3. Mean spectra from day 1 and day 21 representing the intensity of reflectance on each acquisition day, obtained by 
averaging the reflectance values of the wavelengths read by the sensor.  

 

The 20 most correlated spectra from day 1 and day 21 had their Pearson’s correlation coefficient (r) ranging 

from 0.76-0.91, all were significative at 99%. Analyzing the spatialization of the 20 most correlated pairs, it is 

observed that 12 of those are at a distance of 20 up to 40 m from the other (Figure 4). None pair had a distance 

between each other lower than 20 m. The other pairs were far from each other. The pair represented by the blue 

square, for example, was separated by up to 500 m. This imply that the correlation of 8 out of the 20 most correlated 

pairs (or 40%), was not due to the proximity in the field, as it was expected and observed for the other 60%. 

However, this analysis indicates the need of further investigate if the variation of clay and OM in the experimental 

area can be the cause for the distant but highly correlated spectra. If two different portions had the same content (in 

quantity and quality) of primary NIR response attributes, it would be logic that the spectra from these two portions 

would be correlated since the sensor would perceive the same wavelengths of response (Kuang et al., 2012; Pasquini, 

2018; Stenberg et al., 2010). 

 

 

Figure 4. Distribution of the 20 highest correlated spectra pairs (day 1 x day 21) in the experimental field. Each pair is composed 
of a day 1 spectrum and its corresponding day 21 correlated spectrum., and are represented by the same geometric shape (square 
or circle) and color. 
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The spectra intensity was higher in day 1 on 16 of the 20 most correlated pairs, corroborating the mean 

spectra obtained on the entire population (140 from day 1 and 140 from day 21), and the implication of the higher 

soil moisture observed in acquisition of day 21, reducing the reflectance (Morellos et al., 2016; Nocita et al., 2015, 

2013; Wang et al., 2020). For the spectra morphology, similar shapes and absorption features can be observed along 

the wavelengths of NIR spectra. Figure 5 exemplifies two pairs of correlated spectra separated by approximately 30 

m. As it was observed from other authors, the primary attributes have characteristic wavelengths of interaction 

(Nocita et al., 2015; Pasquini, 2018). Even the acquisition happened separated by 21 days, the sensor perceived the 

same soil-spectra peculiarities, implying that the core of DRS technique was maintained in both acquisition days. 

 

 

Figure 5. Spectra morphology analysis of two pairs of high-correlated spectra presenting comparable shape and absorption 
features. 

 

Almost all the predicted values of day 1 and day 21 presented low correlation (Table 2). The total 

population had its strongest positive correlation for Ca prediction, with r = 0.22, which was the only positive r value 

significative at 99%. As Ca is a secondary NIR response attribute, and did not show adequate quantification or 

spatialization by the models used in this study, indicating no causal relation in the prediction, its exceptional 99% 

significative correlated prediction in both days might have happened by chance. 

 

Table 2. Pearson’s correlation coefficient of predicted values of entire day 1 and day 21 populations (Total – nearest neighbor), 
of the most correlated spectra pairs (20 most correlated) and the 32 pairs of day and day 21 overlap spectra extracted using an 
ellipse of 2.5 m radius (Overlap). 

 Clay OM CEC pH P K Ca Mg 

Total -0.02 -0.03 -0.14 -0.26* -0.56* -0.01 0.22* 0.20 

20 most correlated -0.06 0.19 0.32 0.04 -0.80* -0.03 0.24 0.19 

Overlap -0.10 0.09 -0.11 -0.19 -0.73* -0.22 0.33 0.13 

OM: organic matter; CEC: cation exchange capacity; pH: potential of hydrogen; P: phosphorus; K: potassium; Ca: calcium; Mg: 
magnesium. *99% significative correlation. 

 

Despite P and pH also presenting significative r, as it were negative r values, it is not of interest for the use 

of the ML models, denoting that zones of high values were inverted into zones of low P and pH values. P prediction 

had an alternance of distribution comparing the two days, represented by the negative r values of -0.56 for total 

population, and also observed in the most correlated and in the overlap spectra, with r = -0.80 and -0.73, 

respectively.  
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The attribute P has no direct response in NIR spectra, and its successful prediction is hardly obtained with 

this technique, particularly in tropical soils, because of the great adsorption specificity of this attribute with iron and 

aluminum oxides, and 1:1 clay minerals such as kaolinite (Pavinato et al., 2020). Usually, the best predictions of P are 

observed in temperate soils, especially those under organic fertilization, since the organic amendments compete for 

site-specific P adsorption, leaving more P labile (Mouazen and Kuang, 2016). In this situation, a positive correlation 

is frequently observed between P and OM. Being the last one a direct NIR response attribute, that allow to map P 

using the technique. In this context, the P prediction was not expected to work properly in the present study. 

However, the inversion of patterns in P prediction can further indicate that, when the model identifies no 

pattern for an attribute, it will randomly assign values depending on the conditions of the spectra. Therefore, using 

DRS NIR spectra for indirect calibrations have to be strictly used after a covariation analysis with primary attributes 

in the desirable area (Chang et al., 2001; Stenberg et al., 2010). As a random attribution of values will follow, there is 

the risk of still presenting a reasonable prediction, but the absence of causality in this situation puts in risk the 

leverage of the technique as a reliable PA tool. 

The correlation of predicted values for the 20 most correlated spectra is an indication that, however the 

spectra presenting correlation, similar shape and absorption features, as previously observed, the ML models 

consider other characteristics for attribute’s quantification. Perchance, the spectra intensity is one of the major 

characteristics considered, as properties like moisture, mineralogy, clay content and OM directly affect the reflectance 

intensity (Stenberg et al., 2010; Terra et al., 2018). 

 The overlap predictions represent those spectra acquired in the same position in the area. The greatest 

positive correlation was observed for Ca prediction, with r = 0.33. Nevertheless, attributes like clay, OM, CEC and 

Mg were nearly independent between day 1 and day 21 predictions, while pH, P and K had negative correlation, 

whose are also not desirable for the use of a ML calibration of DRS NIR spectra over the time. Especially for 

primary NIR attributes, these contents are well-known for being stable in an agricultural area over a short period of 

time, either for clay that changes along soil weathering stages (Jackson and Sherman, 1953), or for OM even with 

long-term applications and conservationist management (Lu et al., 2021; Wang et al., 2019). The predictions for these 

attributes separated by 21 days, as it was made in this study, is expected to reach similar values. 

 The kernel density estimation plots show the distribution of predicted spectra from day 1 and day 21 

(Figure 6). Clay prediction presented a similar distribution pattern. However, day 21 prediction tended to 

overestimate clay content in comparison with day 1. This may be in line with the observed for the mean spectra of 

both days. Both water and clay had a positive influence in absorption features of NIR spectra and negative influence 

in spectra intensity (Terra et al., 2018; Wang et al., 2020), and overtones of water and clay can also be observed in the 

same wavelengths (Nocita et al., 2015; Stenberg et al., 2010). Soil moisture was slightly higher in acquisition of day 

21. As physical properties of soils dictate that the higher the clay content, the higher the water-holding capacity due 

to micropores augmentation (Rasa et al., 2018), it is suggested that the model identified the greater absorption 

features and lower intensity in day 2, and attributed that to clay. 

Since a small change in soil moisture could have presented an influence in prediction, alternatives used to 

deal with the variation in soil moisture for NIR laboratory acquired spectra, such the external parameter 

orthogonalization (Wijewardane et al., 2016), the normalized soil moisture index (Nocita et al., 2013), direct 

standardization or orthogonal signal correction (Franceschini et al., 2018), should be also considered for online NIR 

spectra calibrations. Nevertheless, these strategies often use consecutive spectral acquisition of soil samples in 

different moisture contents. Authors resort to soil drying and rewetting and then build ML calibrations that consider 
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the moisture level in prediction. This may be challenger to apply for online spectra, since the acquisition need to be 

made in field conditions. 

 

 

Figure 6. Kernel density estimation plots of the attributes predicted using the 140 online spectra from each acquisition day. 

 

Other attributes that presented a similar pattern as clay, of overestimation on day 21, are CEC, K and Mg. 

This can also be related to the above described. However, the correlation among soil attributes predicted in both 

days suggest that it is now related to OM content (Figure 7). OM also has a property of water absorption and 

regulates negative charges in soil (Shepherd et al., 2002; Soane, 1990). CEC is directly related to the proportion of 

negative charges per mass unit, and also K and Mg contents, as their cation forms will be attracted by the negative 

charges of soil, absorbed by plants and extracted in laboratory. However, this was not true for Ca prediction, that are 

also a cation and can be directly related to the availability of negative charges, and therefore with OM and clay 

content. 

 

 

Figure 7. Pearson’s correlation among soil attributes predicted using online NIR spectra from day 1 and day 21 acquisitions. 

 

 The correlation analysis of populations predicted by both days shows that, especially observing the 

correlations with primary response attributes, no relationship was inverted (positive turn to negative, or the 

contrary). But it shows a pattern of intensification in correlations on day 21 prediction, either for negative or positive 

values. Despite this study suggest that water content can be related to this aspect observed, two main points remain: 

1) The water could intensify the values predicted. However, this may be not the only explanation for the failure of 

day 21 spectra prediction using ML models calibrated in day 1. The analysis of predicted values, as shown in Table 2, 

are almost independent from each other; 2) This may imply that other environmental factors can be interfering in 
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spectra acquisition, which can explain the differences between the two days’ prediction. Since is harder to control 

circumstances of a field operation than of a laboratory, any peculiarity can change the aspects of acquired spectra.  

The ML models developed seem to be very dependent on these circumstances, and a further investigation 

on factors as sunlight, soil temperature, air temperature, etc., needs to be carried out. This means to investigate if 

there is a possibility of providing the models the necessary data to deal with it, guaranteeing more stability in online 

NIR spectra (therefore, in ML calibrations that depend on them) over the time. The answers for these questions may 

clarify the need for real-time calibrations of NIR soil spectra for ML prediction. 

 

4.3.2. Comparison of maps generated 

The parameters of fitted variograms for day 1 and day 21 predictions highlight the differences between the 

two days (Table 3). Only Mg kept its theoretical model over the predictions, using exponential model in both. 

However, the C0 = 0.42 and A = 46.4 for day 1 changed for C0 = 0.02 and A = 17.5 in day 21 prediction. For 

primary response attributes, OM had a similar A, of 23.0 m for day 1 and 21.1 m for day 21. But for clay it increased 

in 50%, 24.1 m in day 1 and 36.8 m in day 21. CEC had the closer values for day 1 and day 21, for either C0, C1 and 

A. For pH and plant nutrients considered, the changes in variogram parameters were expected not only because of 

the differences above described in soil spectra of two days, but also due to the inability of ML models to predict 

these attributes in first place, as reported in Canal Filho and Molin (2022). A possible explanation is described by 

Huang et al. (2015), that outputs generated from gathered data and various processes have sources of errors that can 

accumulate, especially when applying machine learning to chemistry data (Vishwakarma et al., 2021). 

 

Table 3. Parameters of fitted variograms for predicted attributes using Day1 and Day2 spectral acquisitions for clay, organic 
matter (OM), cation exchange capacity (CEC), pH and soil available nutrients, phosphorus (P), potassium (K), calcium (Ca) and 
magnesium (Mg). 

 Day 1 Day 21 

 Model C0 C1 A Model C0 C1 A 

Clay Sph 13.59 102.6 24.1 Exp 42.71 59.70 36.8 

OM Exp 1.82 3.85 23.0 Gau 0.00 10.18 21.1 

CEC Exp 0.00 8.50 18.5 Gau 0.00 10.82 20.5 

pH Lin 0.00 0.01 88.9 Exp 0.00 0.02 16.7 

P Gau 0.24 21.40 32.9 Exp 0.03 0.80 37.6 

K Gau 0.10 0.46 27.3 Lin 0.01 0.19 35.9 

Ca Sph 5.62 4.50 95.6 Gau 0.00 26.79 25.2 

Mg Exp 0.42 0.32 46.4 Exp 0.02 0.26 17.5 

C0: nugget; C1: sill; A: range; ratio; Sph: spherical; Exp: exponential; Gau: gaussian; Lin: linear with sill. Str: strong; Mod: 
moderate 

 

The maps generated from ordinary kriging and subtracted using the formula day 21 – day 1 are presented in 

Figure 8. How it was previously suggested, the water took a role in prediction differences between the two days, but 

was probably not the only factor of influence. Clay residual map had a tendency of being positive, showing the 

pattern of day 21 in overestimation in comparison with day 1 prediction. However, if the water was the only factor 

actuating, the water dynamic in topsoil would appear in clay residual map, since the greater soil moisture would 

affect the NIR spectra, highlighting the regions where altimetry would conduct the water such as described in Lee et 

al. (2011), Orth et al. (2013), and Uebbing et al. (2017). The lower portions of the area, following the altimetry and 
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agricultural terraces, were not where the higher differences of prediction appeared. OM had a more random residual 

distribution than the observed for clay, with more portions where day 21 underestimated the prediction in day 1, 

despite the greater soil moisture and related wavelengths of OM and water in NIR spectra (Nocita et al., 2015; 

Wang et al., 2020). This corroborates the analysis that water content in the soil was not the only factor actuating in 

the differences observed between both days’ spectra, predicted values and maps interpolated. 

 

 
Figure 8. Maps of each evaluated attribute demonstrating the spatialization of the differences observed in the predictions of the 

two days, calculated by subtracting Day 21 - Day 1. 

 

 How it was suggested, this study may lead to different analysis of online NIR spectra. Environmental 

variables can be considered. ML models using different information that can be simultaneously acquired in field 

operations need to be tested. Other factors, not mentioned in this study, can also be proposed as sources of 

variation. The elucidation of these questions may clarify to the DRS community if there are strategies to consolidate 

the stability of online NIR spectra over the time. On the contrary, if the reported in this study prevail, the need for 

local calibrations in space and time to predict soil attributes using DRS in NIR region will be proven, and further 

strategies to deal with this will be necessary to leverage the technique into agricultural production.  

 

4.4. Conclusions 

An agricultural area where online NIR spectra and ML models for soil attributes prediction were validated 

was revisited, maintaining the operational and instrumentational parameters. NIR spectra morphology was preserved, 

but spectra intensity has changed, what can be related to soil moisture variation between both days. Highly correlated 
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spectra were observed in close but also distant acquisition locations. However, high correlation did not mean similar 

values predicted, presenting almost independent values. Overlapped spectra between the two days also presented 

independent values in prediction. Therefore, ML models calibrated in the first day did not performed as consistent 

when used spectra acquired in the second day, suggesting the requirement of local calibrations for DRS NIR 

prediction both in space and time. The distribution of residuals between day 1 and day 21 suggested that the soil 

moisture was not the only issue of variation. Other factors, such as environmental, need to be investigated to address 

if the variation between different days of acquisition can be overcome.  

 

References 

Agarwal, A., Shah, D., Shen, D., Song, D., 2021. On Robustness of Principal Component Regression. J Am Stat 

Assoc 116. https://doi.org/10.1080/01621459.2021.1928513 

Barra, I., Haefele, S.M., Sakrabani, R., Kebede, F., 2021. Soil spectroscopy with the use of chemometrics, machine 
learning and preprocessing techniques in soil diagnosis: Recent advances–A review. TrAC - Trends in 
Analytical Chemistry. https://doi.org/10.1016/j.trac.2020.116166 

Ben-Dor, E., Heller, D., Chudnovsky, A., 2008. A Novel Method of Classifying Soil Profiles in the Field using 
Optical Means. Soil Science Society of America Journal 72. https://doi.org/10.2136/sssaj2006.0059 

Bönecke, E., Meyer, S., Vogel, S., Schröter, I., Gebbers, R., Kling, C., Kramer, E., Lück, K., Nagel, A., Philipp, G., 
Gerlach, F., Palme, S., Scheibe, D., Zieger, K., Rühlmann, J., 2021. Guidelines for precise lime management 
based on high-resolution soil pH, texture and SOM maps generated from proximal soil sensing data. Precision 
Agriculture 22. https://doi.org/10.1007/s11119-020-09766-8 

Brown, D.J., 2007. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in 
a 2nd-order Uganda watershed. Geoderma 140. https://doi.org/10.1016/j.geoderma.2007.04.021 

Canal Filho, R., Molin, J.P., 2022. Spatial distribution as a key factor for evaluation of soil attributes prediction at 
field level using online near-infrared spectroscopy. Frontiers in Soil Science 2. 
https://doi.org/10.3389/fsoil.2022.984963 

Chang, C.-W., Laird, D.A., Mausbach, M.J., Hurburgh, C.R., 2001. Near-Infrared Reflectance Spectroscopy-Principal 
Components Regression Analyses of Soil Properties. Soil Science Society of America Journal 65. 
https://doi.org/10.2136/sssaj2001.652480x 

Eitelwein, M.T., Tavares, T.R., Molin, J.P., Trevisan, R.G., de Sousa, R.V., Demattê, J.A.M., 2022. Predictive 
Performance of Mobile Vis–NIR Spectroscopy for Mapping Key Fertility Attributes in Tropical Soils through 
Local Models Using PLS and ANN. Automation 3. https://doi.org/10.3390/automation3010006 

Fang, Q., Hong, H., Zhao, L., Kukolich, S., Yin, K., Wang, C., 2018. Visible and Near-Infrared Reflectance 
Spectroscopy for Investigating Soil Mineralogy: A Review. Journal of Spectroscopy. 
https://doi.org/10.1155/2018/3168974 

Franceschini, M.H.D., Demattê, J.A.M., Kooistra, L., Bartholomeus, H., Rizzo, R., Fongaro, C.T., Molin, J.P., 2018. 
Effects of external factors on soil reflectance measured on-the-go and assessment of potential spectral 
correction through orthogonalisation and standardisation procedures. Soil and Tillage Research 177. 
https://doi.org/10.1016/j.still.2017.10.004 

Gogé, F., Gomez, C., Jolivet, C., Joffre, R., 2014. Which strategy is best to predict soil properties of a local site from 
a national Vis-NIR database? Geoderma 213. https://doi.org/10.1016/j.geoderma.2013.07.016 



60 

Huang, J., Zare, E., Malik, R.S., Triantafilis, J., 2015. An error budget for soil salinity mapping using different 
ancillary data. Soil Research 53. https://doi.org/10.1071/SR15043 

International Society of Precision Agriculture, 2022. Precision Agriculture definition [WWW Document]. 

Jackson, M.L., Sherman, G.D., 1953. Chemical Weathering of Minerals in Soils. Advances in Agronomy 5. 
https://doi.org/10.1016/S0065-2113(08)60231-X 

Johnston, A.E., Poulton, P.R., 2018. The importance of long-term experiments in agriculture: their management to 
ensure continued crop production and soil fertility; the Rothamsted experience. European Journal of Soil 
Science 69. https://doi.org/10.1111/ejss.12521 

Jung, Y., 2018. Multiple predicting K-fold cross-validation for model selection. Journal of Nonparametric 
Statistics 30. https://doi.org/10.1080/10485252.2017.1404598 

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., 
Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., 2016. Jupyter Notebooks—a publishing format for 
reproducible computational workflows, in: Positioning and Power in Academic Publishing: Players, Agents 
and Agendas - Proceedings of the 20th International Conference on Electronic Publishing, ELPUB 2016. 
https://doi.org/10.3233/978-1-61499-649-1-87 

Kortüm, G., Braun, W., Herzog, G., 1963. Principles and Techniques of Diffuse-Reflectance Spectroscopy. 
Angewandte Chemie International Edition in English 2. https://doi.org/10.1002/anie.196303331 

Kuang, B., Mahmood, H.S., Quraishi, M.Z., Hoogmoed, W.B., Mouazen, A.M., van Henten, E.J., 2012. Sensing soil 
properties in the laboratory, in situ, and on-line. A review, in: Advances in Agronomy. 
https://doi.org/10.1016/B978-0-12-394275-3.00003-1 

Lee, H., Beighley, R.E., Alsdorf, D., Jung, H.C., Shum, C.K., Duan, J., Guo, J., Yamazaki, D., Andreadis, K., 2011. 
Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. 
Remote Sensing Environment 115. https://doi.org/10.1016/j.rse.2011.08.015 

Lu, Y., Gao, Y., Nie, J., Liao, Y., Zhu, Q., 2021. Substituting chemical P fertilizer with organic manure: effects on 
double-rice yield, phosphorus use efficiency and balance in subtropical China. Scientific Reports 11. 
https://doi.org/10.1038/s41598-021-87851-2 

Minasny, B., McBratney, A.B., Whelan, B.M., 2006. VESPER version 1.62. 

Molin, J.P., Tavares, T.R., 2019. Sensor systems for mapping soil fertility attributes: Challenges, advances, and 
perspectives in brazilian tropical soils. Engenharia Agricola 39. https://doi.org/10.1590/1809-4430-
ENG.AGRIC.V39NEP126-147/20190126 

Morellos, A., Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R., Tziotzios, G., Wiebensohn, J., Bill, R., 
Mouazen, A.M., 2016. Machine learning based prediction of soil total nitrogen, organic carbon and moisture 
content by using VIS-NIR spectroscopy. Biosystems Engineering 152. 
https://doi.org/10.1016/j.biosystemseng.2016.04.018 

Mouazen, A.M., Kuang, B., 2016. On-line visible and near infrared spectroscopy for in-field phosphorous 
management. Soil and Tillage Research 155. https://doi.org/10.1016/j.still.2015.04.003 

Mouazen, A.M., Maleki, M.R., Cockx, L., van Meirvenne, M., van Holm, L.H.J., Merckx, R., de Baerdemaeker, J., 
Ramon, H., 2009. Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy 
of soil phosphorus measured using an on-line visible and near infrared sensor. Soil and Tillage Research 103. 
https://doi.org/10.1016/j.still.2008.10.006 

Munnaf, M.A., Guerrero, A., Nawar, S., Haesaert, G., van Meirvenne, M., Mouazen, A.M., 2021. A combined data 
mining approach for on-line prediction of key soil quality indicators by Vis-NIR spectroscopy. Soil and Tillage 
Research 205. https://doi.org/10.1016/j.still.2020.104808 



61 

Munnaf, M.A., Mouazen, A.M., 2021. Development of a soil fertility index using on-line Vis-NIR spectroscopy. 
Computers and Electronics in Agriculture 188. https://doi.org/10.1016/j.compag.2021.106341 

Munnaf, M.A., Nawar, S., Mouazen, A.M., 2019. Estimation of secondary soil properties by fusion of laboratory and 
on-line measured Vis-NIR spectra. Remote Sensing (Basel) 11. https://doi.org/10.3390/rs11232819 

Nocita, M., Stevens, A., Noon, C., van Wesemael, B., 2013. Prediction of soil organic carbon for different levels of 
soil moisture using Vis-NIR spectroscopy. Geoderma 199. https://doi.org/10.1016/j.geoderma.2012.07.020 

Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Dor, E. ben, Brown, D.J., 
Clairotte, M., Csorba, A., Dardenne, P., Demattê, J.A.M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., 
Noon, C., Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-Disla, J.M., Shepherd, K.D., Stenberg, B., 
Towett, E.K., Vargas, R., Wetterlind, J., 2015. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil 
Monitoring. Advances in Agronomy 132. https://doi.org/10.1016/bs.agron.2015.02.002 

Orth, R., Koster, R.D., Seneviratne, S.I., 2013. Inferring soil moisture memory from streamflow observations using a 
simple water balance model. Journal of Hydrometeorology 14. https://doi.org/10.1175/JHM-D-12-099.1 

Pasquini, C., 2018. Near infrared spectroscopy: A mature analytical technique with new perspectives – A review. 
Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2018.04.004 

Pavinato, P.S., Cherubin, M.R., Soltangheisi, A., Rocha, G.C., Chadwick, D.R., Jones, D.L., 2020. Revealing soil 
legacy phosphorus to promote sustainable agriculture in Brazil. Scientific Reports 10. 
https://doi.org/10.1038/s41598-020-72302-1 

Python Software Foundation, 2022. Python [WWW Document]. 

QGIS Development Team, 2022. QGIS Geographic Information System. 

Rasa, K., Heikkinen, J., Hannula, M., Arstila, K., Kulju, S., Hyväluoma, J., 2018. How and why does willow biochar 
increase a clay soil water retention capacity? Biomass Bioenergy 119. 
https://doi.org/10.1016/j.biombioe.2018.10.004 

Seasholtz, M.B., Kowalski, B., 1993. The parsimony principle applied to multivariate calibration. Analytica Chimica 
Acta 277. https://doi.org/10.1016/0003-2670(93)80430-S 

Shepherd M.A.*, Harrison, R., Webb, J., 2002. Managing soil organic matter – implications for soil structure on 
organic farms. Soil Use Management 18. https://doi.org/10.1079/sum2002134 

Soane, B.D., 1990. The role of organic matter in soil compactibility: A review of some practical aspects. Soil and 
Tillage Research 16. https://doi.org/10.1016/0167-1987(90)90029-D 

Stenberg, B., Rogstrand, G., Bölenius, E., Arvidsson, J., 2007. On-line soil NIR spectroscopy: Identification and 
treatment of spectra influenced by variable probe distance and residue contamination, in: Precision Agriculture 
2007 - Papers Presented at the 6th European Conference on Precision Agriculture, ECPA 2007. 

Stenberg, B., Viscarra Rossel, R.A., Mouazen, A.M., Wetterlind, J., 2010. Visible and Near Infrared Spectroscopy in 
Soil Science, Advances in Agronomy. https://doi.org/10.1016/S0065-2113(10)07005-7 

Stevens, A., Nocita, M., Tóth, G., Montanarella, L., van Wesemael, B., 2013. Prediction of Soil Organic Carbon at 
the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PLoS One 8. 
https://doi.org/10.1371/journal.pone.0066409 

Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., 2017. Manual de métodos de análise de solo, 
Embrapa. 



62 

Terra, F.S., Demattê, J.A.M., Viscarra Rossel, R.A., 2018. Proximal spectral sensing in pedological assessments: vis–
NIR spectra for soil classification based on weathering and pedogenesis. Geoderma 318. 
https://doi.org/10.1016/j.geoderma.2017.10.053 

Tracy, T., Fu, Y., Roy, I., Jonas, E., Glendenning, P., 2016. Towards machine learning on the Automata processor, 
in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-41321-1_11 

Uebbing, B., Forootan, E., Braakmann-Folgmann, A., Kusche, J., 2017. Inverting surface soil moisture information 
from satellite altimetry over arid and semi-arid regions. Remote Sensing Environment. 
https://doi.org/10.1016/j.rse.2017.05.004 

Viscarra Rossel, R.A., Adamchuk, V.I., Sudduth, K.A., McKenzie, N.J., Lobsey, C., 2011. Proximal Soil Sensing. An 
Effective Approach for Soil Measurements in Space and Time. Advances in Agronomy 113. 
https://doi.org/10.1016/B978-0-12-386473-4.00010-5 

Vishwakarma, G., Sonpal, A., Hachmann, J., 2021. Metrics for Benchmarking and Uncertainty Quantification: 
Quality, Applicability, and Best Practices for Machine Learning in Chemistry. Trends Chem. 
https://doi.org/10.1016/j.trechm.2020.12.004 

Wang, D., Chakraborty, S., Weindorf, D.C., Li, B., Sharma, A., Paul, S., Ali, M.N., 2015. Synthesized use of VisNIR 
DRS and PXRF for soil characterization: Total carbon and total nitrogen. Geoderma 243–244. 
https://doi.org/10.1016/j.geoderma.2014.12.011 

Wang, H., Xu, J., Liu, X., Zhang, D., Li, L., Li, W., Sheng, L., 2019. Effects of long-term application of organic 
fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage 
Research 195. https://doi.org/10.1016/j.still.2019.104382 

Wang, Y.P., Lee, C.K., Dai, Y.H., Shen, Y., 2020. Effect of wetting on the determination of soil organic matter 
content using visible and near-infrared spectrometer. Geoderma 376. 
https://doi.org/10.1016/j.geoderma.2020.114528 

Wetterlind, J., Stenberg, B., Söderström, M., 2010. Increased sample point density in farm soil mapping by local 
calibration of visible and near infrared prediction models. Geoderma 156. 
https://doi.org/10.1016/j.geoderma.2010.02.012 

Wijewardane, N.K., Ge, Y., Morgan, C.L.S., 2016. Moisture insensitive prediction of soil properties from VNIR 
reflectance spectra based on external parameter orthogonalization. Geoderma 267. 
https://doi.org/10.1016/j.geoderma.2015.12.014 

Yang, M., Mouazen, A., Zhao, X., Guo, X., 2020. Assessment of a soil fertility index using visible and near-infrared 
spectroscopy in the rice paddy region of southern China. European Journal of Soil Science 71. 
https://doi.org/10.1111/ejss.12907 

Yin, H., Cao, Y., Marelli, B., Zeng, X., Mason, A.J., Cao, C., 2021. Soil Sensors and Plant Wearables for Smart and 
Precision Agriculture. Advanced Materials. https://doi.org/10.1002/adma.202007764 

  



63 

5. FINAL REMARKS 

 The use of diffuse reflectance spectroscopy in near-infrared region for online spectra acquisition and soil 

attributes prediction was tested in this study. The main findings were organized into three chapters, whose remarks 

can be synthetized as: 

 

a) Procedures for data modeling were assessed. Dimensionality reduction statistical techniques outperformed 

the non-linear ones for machine learning models calibration, highlighting the efficiency and robustness of 

principal components regression models to deal with the multivariate character of soil spectra. The 

common applied spectra preprocessing techniques was tested and did not attend the expectation of creating 

more accurate models, suggesting it did not aid in the identification of noisy, redundant and irrelevant data. 

b) The best strategy reported for the calibration of machine learning models was to use only soil samples from 

the area desired for attributes prediction. The spatial distribution of predicted attributes, particularly in the 

sense of agronomic plausibility of this distribution, proved to be a key factor for evaluation alongside the 

already established statistical parameters. These lead to the recommendation of local calibrations in space 

for the use of diffuse reflectance spectroscopy in proximal soil sensing. 

c) The characterization of spatio-temporal stability of online near-infrared spectra proved that this factor is a 

challenger condition to the leverage of the technique into agricultural production. The prediction models 

calibrated in one day of soil online spectral acquisition did not consistently perform in a posterior soil 

acquisition that followed the same experimental and instrumentational parameters. Spectra characteristics, 

predicted values and soil mapping presented discrepancies between the two days. Besides other variables 

should be investigated to define if there are strategies to overcome the low stability of online near-infrared 

spectra, this can indicate for the recommendation of local calibrations not only in space, but also in time for 

the use of diffuse reflectance spectroscopy in proximal soil sensing. 

 

The results obtained and presented in this work provide guidelines for the application of diffuse reflectance 

spectroscopy in agriculture, allowing to conclude that the use of online near-infrared spectra for soil attributes 

prediction is possible due to the predictive quality of both quantification and spatialization of the values obtained. 

The findings contribute to the advancement of these tools as techniques to support precision agriculture practices 

and suggest the orientation of future research that should be dedicated to the test of the technique for inference in 

the field, in the decision-making of the productive steps, in order to establish its use in large scale. 

 


