• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.11.2021.tde-15092021-120624
Document
Author
Full name
Tatiana Fernanda Canata
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2021
Supervisor
Committee
Molin, Jose Paulo (President)
Gimenez, Leandro Maria
Inamasu, Ricardo Yassushi
Motomiya, Anamari Viegas de Araujo
Title in English
High-resolution data for mapping the spatio-temporal variability of sugarcane fields
Keywords in English
Point cloud
Precision agriculture
Remote sensing
Vegetation index
Abstract in English
Data-driven solutions have been more common in agriculture, mainly, with the progress of technology to optimize the operations at the field. Precision agriculture and remote sensing techniques have enabled the data acquisition of agronomical variables and more accurate diagnostics than using traditional methods. The crop monitoring for sugarcane area is commonly associated with regional scale or classification of sugarcane areas based on satellite imagery. Some alternative techniques can support the assessment of the spatio-temporal variability of the fields using three-dimensional (3D) sensing data provided by LiDAR (Light Detection and Ranging) technology, which have contributed to the site-specific crop management considering the canopy height or volume variation. Researchers have applied LiDAR data and aerial images in small areas, which indicated the requirement of understanding better the data acquisition and processing for large-scale applications, such as sugarcane areas in Brazil. This study aims to investigate the potential of 3D sensing data and satellite imagery to map the spatio-temporal variability of sugarcane fields before harvesting. Chapters 1 and 2 introduce the topic of the thesis and highlight the state of the art of the concepts used in the research. Chapter 3 describes the applied methods for data processing of 3D sensing data and aerial images in order to assess the spatio-temporal variability of a commercial sugarcane field. The sugarcane yield map was generated by a sensor-system that measures the mass flow based on the difference of hydraulic pressure of the chopper system in the harvester. The plant height of sugarcane fields was obtained with an ALS (Airborne Laser Scanning) in the final crop production cycle for two consecutive seasons. The point cloud generated, followed by the data filtering, enabled to obtain the canopy height model (CHM) as an information to investigate the association between the spatial variation of crop height and the yield map. A moderate relationship was found between the CHM and the yield map, which demonstrated the potential of high-resolution data to identify the spatial variability at the field level. Chapter 4 explores the use of orbital images for sugarcane yield mapping using reflectance data and vegetation index over the crop cycle for three consecutive crop seasons. The yield prediction models were developed by integrating satellite images, machine learning and multiple linear regression. The regression using Random Forest (RF) showed greater accuracy, since the non-linearity of the dataset was observed, and the spectral bands showed a lower error in estimation of yield. Crop vigor mapping using time-series analysis of satellite imagery supports the identification of the spatial variability of sugarcane fields. The results of this research demonstrated the potential applications of high-resolution data for guiding complementary diagnostics and local interventions in agricultural systems, since it indicates the crop height or vigor variation in large-scale before harvesting.
Title in Portuguese
Dados de alta resolução para o mapeamento da variabilidade espaço-temporal de talhões de cana-de-açúcar
Keywords in Portuguese
Agricultura de precisão
Índices de vegetação
Nuvem de pontos
Sensoriamento remoto
Abstract in Portuguese
As soluções direcionadas por dados têm sido mais comuns na agricultura, principalmente, com o avanço da tecnologia para otimizar as operações no campo. As técnicas de agricultura de precisão e sensoriamento remoto tem permitido a aquisição de dados de variáveis agronômicas e diagnósticos mais precisos do que por meio dos métodos tradicionais. O monitoramento de áreas de cana-de-açúcar é comumente associado à escala regional ou a classificação de áreas de cana-de-açúcar baseada em imagens de satélite. Algumas técnicas podem apoiar a avaliação da variabilidade espaço-temporal dos talhões utilizando dados tridimensionais (3D) a partir da tecnologia LiDAR (Light Detection and Ranging), a qual tem contribuído no manejo específico da cultura considerando a variação da altura ou volume de plantas. Os pesquisadores têm aplicado os dados LiDAR e imagens aéreas em pequenas áreas, o que indica a necessidade de se compreender melhor a aquisição e o processamento de dados para as aplicações em larga escala, como nas áreas de cana-de-açúcar no Brasil. Este estudo tem como objetivo investigar o potencial dos dados 3D e imagens de satélite para mapear a variabilidade espaço-temporal dos talhões de cana-de-açúcar previamente a colheita. Os Capítulos 1 e 2 introduzem o tema da tese e destacam o estado da arte dos conceitos utilizados na pesquisa. No Capítulo 3 são descritos os métodos aplicados no processamento de dados 3D e imagens aéreas para avaliar a variabilidade espaço-temporal de uma área comercial de cana-de-açúcar. O mapa de produtividade foi gerado por um sistema-sensor que mede o fluxo de massa de acordo com a diferença da pressão hidráulica do picador na colhedora. A altura de plantas foi obtida com ALS (Airborne Laser Scanning) no ciclo final de produção da cultura por duas safras consecutivas. A nuvem de pontos gerada, seguida da filtragem de dados, possibilitou a obtenção do modelo de altura do dossel (CHM) como uma informação para investigar a associação entre a variação espacial da altura de plantas e o mapa de produtividade. Foi encontrada uma relação moderada entre o CHM e o mapa de produtividade, o que demonstrou o potencial dos dados de alta resolução para identificar a variabilidade espacial ao nível de talhão. O Capítulo 4 explora o uso de imagens orbitais para o mapeamento da produtividade de cana-de-açúcar usando dados de refletância e índices de vegetação ao longo do ciclo da cultura por três safras consecutivas. Os modelos de predição de produtividade foram desenvolvidos integrando imagens de satélite, aprendizado de máquina e regressão linear múltipla. A regressão utilizando Random Forest (RF) apresentou maior acurácia, uma vez que foi observada a não-linearidade do conjunto de dados, e as bandas espectrais apresentaram um menor erro na estimativa de produtividade. O mapeamento do vigor da cultura por meio da análise de séries temporais de imagens de satélite auxiliaram na identificação da variabilidade espacial dos talhões de cana-de-açúcar. Os resultados desta pesquisa demonstram o potencial de aplicação dos dados de alta resolução para orientar diagnósticos complementares e intervenções locais nos sistemas agrícolas, uma vez que indicam a variação do porte e vigor de plantas em larga escala antes da colheita.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-09-16
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.