• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.11.2021.tde-14022022-164102
Documento
Autor
Nome completo
Leonardo Felipe Maldaner
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2022
Orientador
Banca examinadora
Molin, Jose Paulo (Presidente)
Baio, Fabio Henrique Rojo
Gimenez, Leandro Maria
Silva, Rouverson Pereira da
Título em inglês
Sugarcane plant detection and mapping for site-specific management
Palavras-chave em inglês
Crop sensing
High-resolution image
Plant variability
Precision agriculture
Resumo em inglês
The sugarcane production sector is one of the most adept at adopting technology to manage equipment and sugarcane fields. Developing new technologies and optimizing the use of the technologies already used in other production systems is essential for successful field management. The optimized use of technologies will help in the localized management to increase viability, maximize profitability, and minimize the environmental impacts of sugarcane production. Technologies to detect, measure, and spatialize plants can be one of the solutions for the row level management. Moreover, this data can be used to temporally follow the development of sugarcane fields, being essential data for localized field management. The spatialization of plants and plant spacing can help in the investigation of factors that influence sugarcane yield. In this context, the overall objective of the thesis was to explore tools and methods for detecting plants at row level to improve and support localized management of sugarcane plantations. An approach to sugarcane plant detection using photoelectric and ultrasonic sensors was developed and evaluated. Aerial image and ground sensors have been tested to detect and measure sugarcane plant spacing. Temporal evaluation of sensors and aerial images during four different stages of sugarcane development was made to propose the best time to detect sugarcane plants and measure the plant spacing. High-resolution images were used to map plant population and plant spacing. These two data were used to check the relationship between slope, path angle, and the plant population, furthermore, map regions with higher susceptibility to plant reduction over the years. At last, a spatio-temporal analysis of yield and plant spacing was performed to verify the relationship between these two variables in regions with different yield potentials in commercial crops. Results show that ultrasonic and photoelectric sensor fusion associated with the machine learning model has accuracy above 95%. These two sensors and high-resolution images had the best accuracy and precision in detecting and measuring plant spacing at 31 and 47 days after harvest. Spatial and temporal analysis showed that regions with a terrain slope of 5-8% and greater than 8% with curved paths have an inferior number of plants compared to other regions. The local analysis identified that regions with steeper slopes and curved paths have high susceptibility of plant reduction over the years compared to other regions. Finally, yield loss within the sugarcane row occurs with increasing plant spacing. Regions with different yield potentials require different optimum populations to maximize yield. Low-yielding regions require a larger plant population and are more susceptible to lose in yield within the row with increasing plant spacing.
Título em português
Detecção e mapeamento de plantas de cana-de-açúcar para gerenciamento específico do local
Palavras-chave em português
Agricultura de precisão
Imagem de alta resolução
Sensoriamento da cultura
Variabilidade da cultura
Resumo em português
O setor de produção de cana-de-açúcar é um dos mais aptos a adotar tecnologia para gerenciar equipamentos e as lavouras de cana-de-açúcar. Desenvolver novas tecnologias e otimizar o uso das tecnologias já utilizadas em outros sistemas de produção é essencial para o sucesso da gestão das lavouras. O uso otimizado de tecnologias ajudará na gestão localizada a aumentar a viabilidade, maximizar a rentabilidade e minimizar os impactos ambientais da produção de cana-de-açúcar. Tecnologias para detectar, medir e espacializar plantas podem ser uma das soluções para o gerenciamento a nível de fileira. Além disso, estes dados podem ser usados para acompanhar temporariamente o desenvolvimento das lavouras de cana-de-açúcar, sendo dados essenciais para o gerenciamento localizado da lavoura. A espacialização das plantas e o espaçamento entre plantas podem ajudar na investigação dos fatores que influenciam a produtividade da cana-de-açúcar. Neste contexto, o objetivo geral da tese foi explorar ferramentas e métodos de detecção de plantas em nível de fileira para melhorar e apoiar o gerenciamento localizado de plantações de cana-de-açúcar. Uma abordagem para a detecção de plantas de cana-de-açúcar usando sensores fotoelétricos e ultrassônicos foi desenvolvida e avaliada. A imagem aérea e os sensores terrestres foram testados para detectar e medir o espaçamento entre plantas de cana-de-açúcar. A avaliação temporal dos sensores e imagens aéreas durante quatro estágios diferentes de desenvolvimento da cana-de-açúcar foi feita para propor o melhor momento para detectar plantas de cana-de-açúcar e medir o espaçamento entre as plantas. Imagens de alta resolução foram usadas para mapear a população e o espaçamento das plantas. Estes dois dados foram utilizados para verificar a relação entre declividade, ângulo do percurso e a população de plantas, além disso, mapear regiões com maior suscetibilidade à redução de plantas ao longo dos anos. Finalmente, foi realizada a análise espacial-temporal da produtividade e espaçamento de plantas para verificar a relação entre estas duas variáveis em regiões com diferentes potenciais produtivos em lavouras comerciais. Os resultados mostram que a fusão de sensores ultrassônico e fotoelétrico associada ao modelo de aprendizagem da máquina tem precisão acima de 95%. Estes dois sensores e imagens de alta resolução tiveram a melhor precisão e acurácia para detectar e medir o espaçamento das plantas em 31 e 47 dias após a colheita. A análise espacial e temporal mostrou que regiões com uma declive do terreno de 5-8% e maior que 8% com percursos curvos têm um número inferior de plantas em comparação com outras regiões. A análise local identificou que regiões com declives mais acentuados e caminhos curvos têm alta suscetibilidade de redução da planta ao longo dos anos, em comparação com outras regiões. Finalmente, a perda de produtividade dentro da fileira da cana de açúcar ocorre com o aumento do espaçamento entre as plantas. Regiões com diferentes potenciais produtivos requerem diferentes populações ótimas para maximizar a produtividade. Regiões de baixa produtividade requerem uma população de plantas maior e são mais suscetíveis a perder produtividade dentro da fileira com o aumento do espaçamento entre plantas.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2022-04-05
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2022. Todos os direitos reservados.