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RESUMO 
 

Análise de sensibilidade e incerteza do modelo SAMUCA em ambientes contrastantes no 
Brasil 

 
      A indústria canavieira brasileira está em constante desenvolvimento, testando e lançando novas cultivares e 
práticas de manejo para aumentar a produtividade. Devido às questões das mudanças climáticas e às limitações para 
expandir as áreas agrícolas, as fazendas brasileiras são constantemente pressionadas a aumentar a eficiência da 
produção. A utilização de modelos baseados em processos (PBCM) para testar cultivares e opções de manejo em 
diferentes ambientes de produção é uma realidade e vem sendo cada vez mais utilizada. Os PBCM são o estado da 
arte em modelagem agrícola e são cada vez mais complexos, requerendo diversos parâmetros para descrever os 
processos de cultivo e as condições de contorno. Em geral, os PBCM utilizam a abordagem determinística para 
simplificar a incerteza presente no ambiente usando um único conjunto de parâmetros. Na prática, essa incerteza é 
vista na variabilidade dos dados coletados em um experimento de campo, que são comumente representados por 
estatísticas de dispersão, como desvio padrão e variância.  Uma maneira de explorar essa incerteza é usar a 
abordagem estocástica, inserindo uma faixa de variabilidade nos parâmetros e entradas da simulação. Este estudo 
teve como objetivo utilizar a abordagem estocástica para explorar a incerteza e determinar quais parâmetros do 
modelo SAMUCA são mais influentes no processo de simulação. Para isso foi utilizada a recente versão do modelo 
SAMUCA inserindo três cenários de incerteza: análise de incerteza apenas para parâmetros genéticos (UG), análise 
de incerteza apenas para parâmetros de solo (US) e análise de parâmetros de solo e genótipo (UGS). Nessa primeira 
etapa foram simulados esses três cenários para um experimento de campo de 4 anos, sendo a cultura cultivada sob 
efeito da palha (GCTB) e solo nu (Bare). A partir disso foi quantificado a variabilidade da simulação estocástica pela 
razão entre a média do desvio padrão das simulações e a média do desvio padrão dos dados observados. 
Posteriormente, para entender melhor quais os fatores que causam maior incerteza no processo de simulação foi 
relizada uma análise de sensibilidade global (GSA) pelo método extented Fourier Amplitude Sensitivity Test (eFAST) para 
o mesmo experimento de campo de 4 anos,  visando a identificar quais parâmetros foram responsáveis por explicar a 
maior variância do modelo e verificar o impacto do intervalo dos parâmetros escolhidos, bem como o número de 
simulações necessárias para se ter uma GSA confiável. Por fim, sabendo que além do método, o ambiente pode 
influenciar o resultado da GSA, fez-se uma nova análise de sensibilidade com dois métodos , eFAST e Partial Rank 
Correlation Coefficient (PRCC) para as principais regiões produtoras de cana de açúcar no Brasil, considerando 
condições irrigadas e de sequeiro. Os resultados indicaram que a variabilidade observada no campo não é totalmente 
explicada pelos parâmetros do solo, possivelmente devido à irrigação e boa distribuição das chuvas na área 
experimental. A UG e a UGS tiveram a mesma capacidade de quantificar a variabilidade presente no campo 
experimental. Nesse caso, a sensibilidade aos parâmetros do solo poderia ser simplesmente ignorada e os parâmetros 
genéticos podem ser escolhidos como a única fonte de variabilidade para aplicações práticas. A maior parte da 
incerteza nesse experimento é atribuída ao parâmetro plastochron, porém identificou-se que o conjunto de intervalo 
dos parâmetros pode influenciar a ordem dos parâmetros mais importantes. Isso foi observado quando se realizou a 
análise para dois conjuntos de intervalos de parâmetros diferentes ( o primeiro conjunto usou valores máximos e 
mínimos relatados na literatura; o segundo conjunto aplicou uma perturbação de 25% nos valores previamente 
calibrados). Por fim, dos 31 parâmetros,  24 genéticos e 7 de solo, apenas 13 parâmetros foram significativos, 
independentemente da variável de saída. Além disso, os resultados foram afetados pelo clima: em ambientes  com 
boa distribuição pluviométrica o plastochron foi o principal parâmetro, enquanto em ambientes submetidos a maior 
estresse hídrico, o parâmetro eff foi o mais importante. Notou-se que qualquer parâmetro do solo foi indiferente para 
as condições irrigadas, enquanto que para as condições de sequeiro, a capacidade de campo e o ponto de murcha 
permanente foram relevantes em ambientes com baixa distribuição de chuvas e solos rasos. Locais chuvosos com 
solos profundos também não apresentaram sensibilidade aos parâmetros do solo. 
 
Palavras-chave: Cana-de-açúcar, eFAST, PRCC, Sensibilidade, Incerteza 
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ABSTRACT 
 

Sensitivity and uncertainty analysis of SAMUCA crop model across contrasting 
environments in Brazil   

 
      The Brazilian sugarcane industry is constantly developing, testing, and launching new cultivars and management 
practices to increase productivity. Due to climate change issues and limitations for expanding areas, farms are 
constantly pressured to increase agricultural efficiency. The use of process-based models (PBCM) to test cultivars 
and management options in different production environments is a reality and has been increasingly used. PBCMs 
are the state of the art in agricultural modeling and are increasingly complex, requiring several parameters to describe 
cultivation processes and boundary conditions. In general, PBCMs use the deterministic approach to simplify the 
uncertainty present in the environment using a single set of parameters. In practice, this uncertainty is seen in the 
variability of data collected in a field experiment, which is commonly represented by dispersion statistics such as 
standard deviation and variance. One way to explore this uncertainty is to use the stochastic approach, inserting a 
range of variability in the parameters and inputs of the simulation. This study aimed to use the stochastic approach 
to explore uncertainty and determine which parameters of the SAMUCA model are most influential in the simulation 
process. For this, the recent version of the SAMUCA model was used, inserting three uncertainty scenarios: 
uncertainty analysis only for genotype parameters (UG), uncertainty analysis only for soil parameters (US), and 
analysis of soil parameters and genotype (UGS). In this first stage, these three scenarios were simulated for a 4-year 
field experiment, with the crop cultivated under the effect of green cane trash blanket (GCTB) and bare soil (Bare). 
The variability of the stochastic simulation was quantified by the ratio between the mean standard deviation of the 
simulations and the mean standard deviation of the observed data. Subsequently, to better understand which factors 
caused greater uncertainty in the simulation process, a global sensitivity analysis (GSA) was performed using the 
extended Fourier Amplitude Sensitivity Test (eFAST) method for the same 4-year experiment, in order to identify 
which parameters were responsible for explaining the higher variance of the model and verifying the impact of the 
range of the chosen parameters, as well as the number of simulations necessary to have a reliable GSA. Finally, 
knowing that the environment can influence the GSA result, a new sensitivity analysis was carried out with two 
methods, eFAST and Partial Rank Correlation Coefficient (PRCC) for the main sugarcane-producing regions in 
Brazil, considering irrigated and rainfed conditions. The results indicated that the observed variability in the field is 
not fully explained by soil parameters, possibly due to irrigation and good rainfall distribution in the experimental 
area. The UG and the UGS had the same ability to quantify the variability present in the experimental field. In that 
case, sensitivity to soil parameters could simply be ignored and genotype parameters could be chosen as the sole 
source of variability for practical applications. Most of the uncertainty in this experiment is attributed to the 
plastochron parameter, however, it was identified that the parameter range set could influence the order of the most 
important parameters. This was observed when the analysis was carried out for two sets of different parameter 
intervals (the first set used maximum and minimum values reported in the literature; the second set applied a 25% 
perturbation to the previously calibrated values). Finally, out of 31 parameters, 24 genotype and 7 soil, only 13 
parameters were significant, regardless of the output variable. In addition, the results were affected by climate: in 
environments with good rainfall distribution, plastochron was the main parameter, while in environments subjected to 
greater water stress, the eff parameter was the most important. It was noted that any soil parameter was indifferent to 
irrigated conditions. In contrast, for rainfed conditions, field capacity and permanent wilting point were relevant in 
environments with low rainfall distribution and shallow soils. Rainy sites with deep soils also showed no sensitivity to 
soil parameters. 
 
Keywords: Sugarcane, eFAST, PRCC, Sensitivity, Uncertainty 
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1. INTRODUCTION 

The use of modeling as a decision-making tool is a common practice in several areas of science. In 

agriculture, process-based crop models (PBCM) represent the state-of-art in this area of science (Jones et al., 2017). 

When properly calibrated, they are commonly used to simulate growth and development of crops in certain regions 

and test scenarios of management and adaptation strategies (Faivre et al., 2009). Scientist and decision makers have 

used crop modeling as a tool to address issues related to the climate change (Jones et al., 2015; Singels et al., 2013), 

plant breeding (Hoffman et al., 2018), risk analysis (Everingham et al., 2002) and yield forecasting (Everingham et al., 

2016).  

Most of the findings were achieved by using the deterministic approach, which meant that they 

considered a “best set” of parameters to characterize the simulated system and providing only one simulation path 

for the entire environment. This criterion implicitly means that such best value represents the state of the crop in the 

studied area, and that there are no sampling errors associated with the plant, microclimate, or soil variability 

(Petersen, 1994). However, agricultural experimental data usually shows great dispersion (variance and deviation) 

caused by the environment and management (Brogi et al., 2020; Usowicz and Lipiec, 2017; van Bussel et al., 2016). 

This dispersion in the measured data is common in a biological system, where the reality of processes that occur in 

nature are not deterministic, but rather stochastic (Wilkinson, 2006), as it considers situations influenced by random 

effects to be a stochastic process (e.g. light scattering). In this way, a stochastic process can show different possible 

pathways that a PBCM can take from varying a range of parameters (Wallach et al., 2018). This observed dispersion 

can be seen as uncertainty in the data collected and quantified in the PBCM simulation by the range of variation in 

the model's input parameters (He et al., 2009; Li et al., 2018). 

Sugarcane is a crucial crop for world bioenergy and for food supply (Raza et al., 2019), and several 

authors have studied sugarcane crop modeling (Inman-Bamber and Smith, 2005; Jones and Singels, 2018; Keating et 

al., 1999; Marin and Jones, 2014; Singels and Bezuidenhout, 2002; Thorburn et al., 2005; Valade et al., 2014; Vianna 

et al., 2020). Singels (2013) presented a detailed review of the main sugarcane models in the literature, highlighting 

sugarcane as one of the crops with highest need to be represented in PBCM given its specific farming systems and 

logistic requirements. To represent its physiological complexity, sugarcane PBCM have many genotype parameters 

compared to other crops, such as maize and wheat. For instance, the sugarcane models DSSAT/CASUPRO and 

DSSAT/CANEGRO have 33 and 18 genotype cultivar parameters respectively, while DSSAT/CERES-MAIZE and 

DSSAT/CERES-WHEAT have only respectively 6 and 7 cultivar parameters to be calibrated. 

According to Sinclair & Seligman (1996), the development of different PBCM by other research groups 

allows to improve the understanding of crop processes. Marin & Jones (2014) developed the SAMUCA focusing on 

the specific characteristics of sugarcane farming systems in Brazil. Recently, the SAMUCA model was improved by 

reducing the uncertainties around the soil water balance, heat flux and physiological mechanisms such as carbon 

partition, photosynthesis, tillering and root growth (Vianna et al., 2020). As any other PBCM, SAMUCA represents a 

simplification of the real system and requires several parameters whose determination is a problem for practical 

operational applications (Makowski et al., 2002). Most parameters are acquired through field observations, which are 

expensive and time-consuming, and the acquisition of certain parameters is difficult. Yet, many parameters vary 

depending on environmental conditions, cultivars, seasonal variation, among other factors (Wang et al., 2013). 

In practice, it is well known that only part of the parameters is usually responsible for most of the model 

uncertainty, while most of them have only minor influence (LI et al., 2019; Varella et al., 2010; Zhang et al., 2020). 
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The parameter sensitivity analysis (SA) method can identify the most important parameters for a given model output 

variable, which allows users to focus on the most important model parameters during the calibration process. 

Furthermore, based on the SA, the balance and robustness of the model can be analyzed for future improvement, 

model development, and applications (Chu-Agor et al., 2011; Confalonieri, 2010; Fraedrich and Goldberg, 2000; 

Hirabayashi et al., 2011). 

The SA can be divided into two groups: the local sensitivity analysis (LSA) and the global sensitivity 

analysis (GSA). The LSA consists of changing a single parameter at a time, while the other parameters are kept at 

their reference values; in other words, this method is based on the local derivatives of the model's output concerning 

the variation of a single parameter, which indicates how strong is the output changes around the reference parameter 

values (Saltelli et al., 1999). The GSA allows you to evaluate the entire uncertainty range of parameters, considering 

changes in all parameters along with their range, as well as the interactions among parameters (Saltelli et al., 1999). 

The GSA has several aspects that can affect sensitivity indices and their uncertainty, regardless of the 

method adopted. In general, the most important uncertainty sources of GSA are: (i) sample size, (ii) range of 

parameters, and (iii) complexity of the model (Gan et al., 2014; Song et al., 2015; Xu and Gertner, 2011). To our 

knowledge, there are no studies in the literature investigating effects in GSA caused by sample size and parameter 

range on extended Fourier Amplitude Sensitivity test (eFAST) method in sugarcane models. In the case of sample 

size, the available studies used eFAST and were based on evidence provided by Wang et al. (2013), which has been 

replicated for different crops. In those studies that were not based on Wang et al. (2013), it was adopted a very large 

sample size without a clear definition criterion (Tan et al., 2016). However, by adopting the sample size suggested by 

Wang et al. (2013), the model characteristics are ignored, and when one uses a very large sample size, an unnecessary 

large computational time is required for the analysis. 

The SAMUCA crop model has been relatively undervalued compared to well-established models such as 

DSSAT/CANEGRO and APSIM-Sugar (Marin et al., 2015, 2014; Sexton et al., 2017; Thorburn et al., 2005), and 

some issues remained unclear for well understanding the model complexity. Studies have shown that a GSA can be 

dependent on the method used (Marino et al., 2008), the parameter range (Wang et al., 2013), the time series for 

which the output variable is analyzed (Xing et al., 2017), climate (Sexton et al., 2017), soil (Varella et al., 2010) and 

management (Zhang et al., 2020; Zhao et al., 2014). In Brazil there are different climates and soils in which sugarcane 

is produced under rainfed and irrigated conditions, and it is desired to understanding how the model would perform 

in terms of sensitivity in each condition. As far as we know, there are no studies evaluating the impact of soil and 

genotype parameters in different environments and what their real impacts are on the main output variables of 

SAMUCA crop model. 

Based on the exposed rationale, this study tested the following hypotheses: the stochastic approach can 

represent the variability existing in an experimental field; (ii) the methodology applied in a global sensitivity analysis 

has a direct influence on the results; (iii) for different boundary conditions, such as soil, climate, and management, 

the model may present different parameters as the most influential for a given variable 
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1.1. Objectives 

Based on the hypotheses presented above, the overall objective of this study was to test the capacity of 

PBCM to represent the variability in field experiments in different conditions of cultivation and identify the main 

parameters responsible for explaining the greater uncertainty of the model in different environments of sugarcane 

production in Brazil. 

 

1.1.1. Specific objectives 

This objective, in turn, can be subdivided into specific objectives, as follows:  

(i) explore the uncertainty in the soil-hydraulic and textural parameters (US), genotype (UG) and 

both together (UGS); (iii) to model the variability present in the field considering the presence 

or absence of the green trash blanket (GCTB). 

(ii)  determine the optimal sample size for the eFAST method  

(iii) Investigate whether there is a difference between the ranges of parameters used in GSA 

(iv) Identify which parameters are responsible for the greatest uncertainty in the SAMUCA 

model. 

(v) Determine which are the most important soil and genotype parameters using a robust set of 

experiments conducted across different producing environments in Brazil for irrigated and 

rainfed environments 

(vi) Evaluate the importance of the soil parameters across different producing environments in 

Brazil. 
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2. GLOBAL SENSITIVITY AND UNCERTAINTY ANALYSIS OF A SUGARCANE 

MODEL CONSIDERING THE TRASH BLANKET EFFECT 

 

Abstract 

       The deterministic approach in crop modeling simplifies uncertainty present in the environment using a unique 
parameter set. In practice, this uncertainty is seen in the variability of data collected in a field experiment. One way to 
exploit this uncertainty is to use the stochastic approach, by inserting the range of plausible variability into the model 
parameters and inputs. This study aims to evaluate the ability of a process-based crop model to simulate the 
uncertainty of a sugarcane field. We employed the recently updated version of SAMUCA model to simulate the 
sugarcane growth and development in a 4-year field experiment, where the crop was grown under the effect of green 
cane trash blanket (GCTB) and bare soil (Bare). To analyze the effect of genotype and soil variability on output 
variables, a stochastic approach was applied to the corresponding parameters of the SAMUCA model. A global 
sensitivity analysis was utilized to prioritize and identify the most important parameters to explain the model 
uncertainty. Then, the uncertainty was analyzed in three different ways: uncertainty analysis only for genotype 
parameters (UG), uncertainty analysis only for soil parameters (US) and the analysis of both soil and genotype 
parameters (UGS). We quantified the variability of the stochastic simulation by the ratio between the average of the 
standard deviation of the simulations and the average of the standard deviation of the observed data. The variability 
observed in the field is not fully explained by the hydraulic parameters of the soil, possibly due to irrigation and good 
rainfall distribution in the area. Furthermore, the variability in US simulations were higher for GCTB than in Bare 
treatment, suggesting that the GCTB has a larger influence in SAMUCA’s variability than for the hydraulic 
parameters in the conditions of this study. The UG and UGS had the same capacity to quantify the variability 
present in the environment for the treatments Bare and GCTB.Therefore, sensitivity to soil parameters can simply 
be ignored and genotype parameters can be chosen as the only source of variability for practical applications. Our 
suggestion for future work is to explore environments without irrigation, different amounts of GCTB and other soil 
parameters present in the model.  

 
Keyword: Correlated parameters, GLUE, PRCC, stochastic 

 

2.1. Introduction 

The use of modeling as a decision-making tool is a common practice in several areas of science. In 

agriculture, process-based crop models (PBCM) represent the state-of-art in this area of science (Jones et al., 2017). 

When properly calibrated, they are commonly used to simulate the growth and development of crops in certain 

regions and test “what if '' scenarios of managements and adaptation strategies (Faivre et al., 2009). Scientist and 

decision makers have used crop modeling as a tool to address issues related to the sugar and bioenergy sectors, 

including climate change (Jones et al., 2015; Singels et al., 2013), plant breeding (Hoffman et al., 2018), risk analysis 

(Everingham et al., 2002) and yield forecasting (Everingham et al., 2016).  

Most of the findings were achieved by using the deterministic approach, which meant that they 

considered a “best set” of parameters to characterize the simulated system and providing only one simulation path 

for the entire environment. This criterion implicitly means that such best value represents the state of the crop in the 

studied area, and that there are no sampling errors associated with the plant, microclimate, or soil variability 

(Petersen, 1994). However, agricultural experimental data usually shows great dispersion (variance and deviation) 

caused by the environment, management and by measurement errors (Brogi et al., 2020; Usowicz and Lipiec, 2017; 

van Bussel et al., 2016). This dispersion in the measured data is common in a biological system, where the reality of 

processes that occur in nature are not deterministic, but rather stochastic (Wilkison, 2006), as it considers situations 

influenced by random effects to be a stochastic process. In this way, a stochastic process can show the different 

possible pathways that a PBCM can take from varying a range of parameters (Wallach et al., 2018). This observed 
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dispersion can be seen as uncertainty in the data collected and quantified in the PBCM simulation by the range of 

variation in the model's input parameters (He et al., 2009; Li et al., 2018).  

Four different approaches can be used to estimate uncertainty in PBCM simulations: (i) comparison of 

hindcasts with observations; (ii) multi-model ensemble studies; (iii) propagating input and/or parameter uncertainty 

through the model; (iv) using simulations with multiple model structures, multiple input and multiple parameter 

vectors for each model (Wallach et al., 2016). The first two approaches provide a unique answer or explore the 

uncertainty present in the structure of each PBCM. However, for daily-practical problems, we are often not 

interested in a model with average parameters, as a simulated area may have different genotypes and variability 

associated with soil properties and microclimate conditions (Wallach et al., 2016; Wallach and Thorburn, 2017).  

One of the challenges in crop modeling stochastic simulation is to accurately choose parameters 

distributions respecting the correlation between them, which is often neglected (Jones et al., 2011). To preserve the 

correlation between the parameters, a normal multivariate distribution must be generated (He et al., 2009), and the 

Generalized Likelihood Uncertainty Estimator (GLUE) combined with the Cholesky decomposition of the variance-

covariance matrix is a robust option for generating a set of correlated parameters (Baigorria and Jones, 2010; Marin 

et al., 2017). Yet, the sensitivity of the parameters is relevant when using the stochastic approach in PBCM, as it can 

aid on selecting the set of parameters with largest influence in the targeted process or output (Wallach et al., 2018; 

Zhang et al., 2020).  

In a previous attempt to include uncertainty in the sugarcane model Marin et al., (2017) used a previous 

version of the SAMUCA model (Marin and Jones, 2014) under a stochastic approach. In that study, the uncertainty 

of 13 genotype parameters was considered, considering their correlation with parameters of two genotypes grown in 

several environments of Brazil. However, those authors listed some important limitations in that study: (i) the 

structural uncertainty of the model, (ii) uncertainty in the experimental data, (iii) uncertainty present in the 

environment, mainly in relation to the soil parameters. Yet, Marin et al., (2017) only used data from plant cane, they 

neglected the sensitivity of model parameters, and they did not evaluate the model simulation ability to capture the 

effect of green cane trash blanket (GCTB) on the growth and development of sugarcane, an important component 

of Brazilian sugarcane cropping systems.  

Being the sugarcane the main source of sugar and the second largest feedstock for bioenergy in the world 

(Goldemberg et al., 2008; Jaiswal et al., 2017; Marin et al., 2019) and to overcome the model and experimental 

limitations reported in Marin et al. (2017), we use a detailed 4-year experiment to evaluate model uncertainty under a 

stochastic approach together with a new version of SAMUCA (Vianna et al., 2020), which would allowed us to 

evaluate aspects related to soil variability, different crop stages (plant cane and ratoons) and the effect of GCTB on 

the crop growth and development. Thus, in this paper we aimed to evaluate a sugarcane crop model used under a 

stochastic approach to represent the existing variability in an experimental plot. Our specific objectives were: (i) to 

perform a global sensitivity analysis of genotype parameters to determine which are significant and use them in the 

stochastic simulation with correlated parameters; (ii) to explore the uncertainty in the soil-hydraulic and textural 

parameters (US), genotype (UG) and both of them together (UGS); (iii) to model the variability present in the field 

considering the presence or absence of the GCTB. 
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2.2. Material and Methods 

2.2.1. Brief history of the SAMUCA model 

The SAMUCA model was created due to the argument of Sinclair and Seligman (1996), where they highlight 

the importance of developing the proper models for knowledge groups, allowing to deepen the mechanisms 

involved in the simulation process and the uncertainties inherent to the used models. In addition, the SAMUCA 

model also had the objective of exploring the uncertainty in genotype parameters, incorporating a calibration 

procedure based on the Generalized Likelihood Uncertainty Estimator (GLUE) to ensure a consistent and reliable 

adaptation of the model for applications in Brazil (Marin and Jones, 2014). The SAMUCA model was built with a 

database of different locations in Brazil, comprising of different climates, soils and managements which is also used 

to evaluate other widely used sugarcane dynamic models (Marin et al., 2015). Even with good results to simulate the 

growth and development of sugarcane, it was a first version with several limitations. Such limitations were primarily 

related to the oversimplified soil water balance and the non-inclusion of GCTB effect into the model routines as it is 

extremely important to represent the Brazilian sugarcane cropping systems.  

Because of this, a new version of SAMUCA model was built by Vianna et al. (2020) to reduce the 

uncertainties around model structure, soil moisture and heat flow in comparison with its previous version. Soil 

moisture is simulated by the widely tested “tipping bucket” method, whereas heat flow is solved numerically 

according to Kroes et al. (2009). Both processes can also be simulated under the effect of GCTB, which has recently 

emerged as an important operational practice for Brazilian farmers (Carvalho et al., 2017). Further improvements 

were also made to the subroutines dedicated to the simulation of carbon partitioning at phytomer level, layered-

canopy photosynthesis, tillering and root growth (Bezuidenhout et al., 2003; Laclau and Laclau, 2009; O’Leary, 

2000). This new version of SAMUCA model is also included in the DSSAT platform v4.8. 

 

2.2.2. Field Experiment 

We conducted a field experiment of approximately 2.5 hectares of sugarcane at the experimental fields of 

the College of Agriculture “Luiz de Queiroz”, Piracicaba, São Paulo (Lat: 22º41’55’’S, Lon: 47º38’34’’W, Alt: 540 m). 

The sugarcane cultivar was RB86-7515, a widely used genotype in Brazil (ca. 30% of Brazil’s planted area). It was 

planted on October 16, 2012, with a row spacing of 1.4 m and depth of 0.2 m. A bare soil treatment (Bare) was 

conducted during the four sequential years, whereas the GCTB treatment started in the first ratoon (Oct-2013) and 

was carried out for 3 years. Agricultural practices were adopted to represent high yield farming systems and to ensure 

the crop was free from pests, diseases, and nutritional stress. The climate is characterized by hot and humid summer 

with dry winter (Cwa – Köppen classification), and the soil classified as Typic Hapludox. The experiment was 

irrigated by a center-pivot, based on monitoring the soil moisture by Frequency Domain Reflectometry (FDR) and 

the evapotranspiration by Bowen Ratio Method (BRM) in both treatments (Nassif et al., 2014) 
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Table.1 Description of seasons, planting and harvesting dates, duration in days, treatments, and measurements variables of the 
field experiment in Piracicaba, Brazil. 

Season Planting Haverst Duration Variables Treatments 

Plant Cane 10/16/2012 10/15/2013 364 SDM,SFM,TIL,LAI and POL  Bare 

1st Ratoon 10/15/2013 07/15/2014 273 SDM,SFM,TIL,LAI and POL Bare and GCTB 

2nd Ratoon 07/15/2014 06/08/2015 328 SDM,SFM,TIL,LAI and POL  Bare and GCTB 

3rd Ratoon 06/08/2015 06/08/2016 365 SDM,SFM,TIL Bare and GCTB 

Green cane trash blanket (GCTB), stalk dry mass (SDM) and stalk fresh mass (SFM) , leaf area index (LAI), sucrose concentration 

in fresh matter (POL) and tillering (TIL).  

 

Crop growth was monitored by regular destructive sampling of biomass (stalk fresh and dry mass; SFM and 

SDM) throughout the sugarcane growing cycles. A total of 30 plants per treatment were collected every month at 

random locations and immediately transported to weigh fresh biomass. Biomass was then dried at 60ºC in an air 

circulation oven (TE-394/5-MP, Tecnal®, Piracicaba, São Paulo, Brazil) for four days before weighing as dry 

biomass parts with a precision balance (Toledo, model 2098). Crop development was monitored with non-

destructive sampling in four sub-plots of 35 m² randomly positioned at the beginning of each season (total of 8 

plots). The tiller population (TIL) was regularly counted in the non-destructive plots and scaled to 1.0 m². The Leaf 

Area Index (LAI) was regularly measured with a plant canopy analyser (LAI-2000, LI-COR, Inc, Lincoln, Nebraska, 

USA) with eight repetitions for each treatment. During crop maturation, fifteen culms per treatment were randomly 

cut and immediately transported for milling to determine the fraction of fiber and sugars using a digital saccharimeter 

(SDA5900, Acatec, São Paulo, São Paulo Brazil) and precision balance (Prix 110, Mettler Toledo, Mississauga, 

Ontario, Canada), this allowed to determine the sucrose concentration in fresh matter (POL. 

 

2.2.3. Genotype parameters and global sensitivity analysis 

The choice of genotype parameters for uncertainty analysis was based on a global sensitivity analysis 

(GSA) using the partial rank correlation coefficient (PRCC) method (Wallach et al., 2019). We employed this method 

as the arbitrary selection of parameters could not generate variations in the output of the model that would explain 

the variability in the real environment (Varella et al., 2010). The method consists of massive sampling of parameters 

using the Monte Carlo method, to assess the correlation between each parameter and model output. To do so, we 

obtained the linear relationship between the genotype parameters and the model output with the PRCC method, 

where the positive PRCC values a direct linear relationship while the negative PRCC values an inverse linear 

relationship. The difference between the PRCC and its advantage over Person correlation coefficient and the partial 

correlation coefficient is that it can explore the non-linear relationships between inputs and outputs. The PRCC 

values range from -1 to 1, as does the Pearson correlation, taking a measure of the strength of a linear association 

between an input and an output.  Mukaka (2012) presented different classes of interpretation for the PRCC 

correlation (Table 2). In the following analysis, we only considered the genotype parameters that were statistically 

significant at 1% for the output model components of sugarcane: SDM, SFM, TIL, LAI and POL. 
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Table 2. Rules for interpreting the size of a correlation coefficient (Mukaka, 2012) 

Size of Correlation Interpretation 

0.90 to 1.00 ( -0.90 to -1.00) Very high positive (negative) correlation 

0.70 to 0.90 (-0.70 to -0.90) High positive (negative) correlation 

0.50 to 0.70 (-0.50 to -0.70) Moderate positive (negative) correlation 

0.30 to 0.50 (-0.30 to -0.50) Low positive (negative) correlation 

0.00 to 0.30 (-0.00 to -0.30) Negligible correlation 

 

2.2.4. Soil parameters 

The hydraulic soil parameters (HSP) were obtained from samples taken at four random locations within 

the experimental area. At each location, three repetitions of undisturbed soil samples were taken at the depths of 5, 

15, 30, 60 and 100 cm. The 60 undisturbed samples were used to obtain water retention curves (at the potentials of 

10, 20, 60, 100, 330, 1,000, 3,000, and 15,000 kPa) for each depth, used to derive the permanent wilting point (WPp), 

field capacity (FCp), saturation point (STp) and saturated hydraulic conductivity (Ksat) required by the SAMUCA 

model. Thus, a retention curve was obtained for each depth and location, where maximum, minimum and average 

values of parameters were obtained for each depth (Table 3). We chose to work with the maximum and minimum 

values to generate a uniform distribution, regardless of the spatial position of the sample; that is, within the study 

area we considered that the soil parameters varied berween these maximum and minimum values.  

The soil texture parameters (TSP) used were clay (Pclay), sand (Psand) and silt (Psilt) for the same depths as 

HSP. The TSP interval (Table 3) was obtained in the literature from two studies conducted in the same experimental 

area at different periods, at a depth of 60 cm and in this case, we considered for the depth of 100 cm the same 

interval measured at a depth of 60 cm. 

To determine which parameters would be inserted in the uncertainty and stochastic simulations, we 

performed a GSA by applying the same method as the parameters of the genotype, considering the parameters 

presented in Table 3 and their respective depths. If at least one of depths was significant, we assumed the other 

depths would have the uncertainty inserted, maintaining the correlation between them. 
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Table 3. Average (Avg), maximum (Max) and minimum (Min) for: depth (DP), wilting point (WPp), field capacity (FCp), saturation point (STp), saturated hydraulic conductivity (Ksat), content clay 

(Pclay), content silt (Psilt), content sand (Psand). 

Hydraulic parameters  

DP FCp (cm3.cm-3) Ksat (cm.h-1) STp (cm3.cm-3) WPp (cm3.cm-3) 

(cm) Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

5 0.285 0.305 0.255 1.7 2.51 1.03 0.38 0.413 0.34 0.216 0.23 0.191 

15 0.303 0.325 0.287 1.01 1.2 0.85 0.352 0.396 0.334 0.24 0.245 0.224 

30 0.347 0.414 0.305 0.95 1.02 0.14 0.39 0.448 0.36 0.278 0.357 0.231 

60 0.394 0.406 0.346 0.62 1.02 0.14 0.428 0.474 0.392 0.307 0.35 0.273 

100 0.393 0.434 0.357 0.21 0.4 0.1 0.456 0.486 0.422 0.253 0.304 0.198 

Texture parameters 

DP Pclay (g.g-1) Psilt (g.g-1) Psand (g.g-1) 
 

(cm) Avg Max Min Avg Max Min Avg Max Min 

5 0.544 0.624 0.464 0.234 0.296 0.172 0.222 0.240 0.204 

 

15 0.544 0.624 0.464 0.234 0.296 0.172 0.222 0.240 0.204 

30 0.596 0.694 0.498 0.215 0.292 0.138 0.189 0.210 0.167 

60 0.633 0.689 0.576 0.200 0.264 0.136 0.168 0.160 0.175 

100 0.633 0.689 0.576 0.200 0.264 0.136 0.168 0.160 0.175 
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2.2.5. Generalized likelihood uncertainty estimation method 

The generalized likelihood uncertainty estimation method (GLUE) was used to select the parameter set 

with the highest likelihood to reproduce the end-of-season observation; hereafter called the best parameter set. Yet, 

GLUE was used to create the variance-covariance correlation matrix of model parameters, which in turn was used 

for generate the correlated parameter sets for stochastic simulations. It is a parameter estimation method that deals 

with problems associated with parameter interactions and non-linearity in the model’s response (Beven and Binley, 

1992). Present in platforms such as DSSAT, it is widely used to estimate genotype parameters (He et al., 2010; Jones 

et al., 2011), especially those that cannot be measured directly in typical experiments; instead, they should be 

estimated based on data measured in experiments (Marin and Jones, 2014). The method is an approach based on the 

Monte Carlo application, which uses a set of parameters in massive simulation process to select a set of parameters 

in a uniform distribution within the sample space (Sreelash et al., 2012).   

The GLUE procedure consists of five stages: (i) Develop prior parameter distributions, in this case, we 

assume uniform distributions from predefined range of variation for soil and genotype parameters (Marin et al., 

2017); (ii) Generate random parameters sets from prior parameter distributions based on the Monte Carlo method, 

where the largest the number of simulations leads to more stable results. However, only a limited number of 

parameter sets had significant likelihood values that could be used to derive posterior distributions, even though 

10,000 sets of parameters were generated in this study, considered a large sample (He et al., 2010); (iii) Run the 

model with the random parameters sets, where the model was run for each parameter set using developed R-scripts. 

The input files for the parameters were changed to simulate each random parameter set in sequence and for each 

parameter set the model outputs (SDM, SFM,TIL, LAI and POL) were tabulated for use in the GLUE likelihood 

calculations; (iv) Calculate the likelihood values to generated observations (O, three replicates each for each variables) 

were used along with the corresponding simulated outputs to compute the likelihood value, 𝐿(𝜃𝑖|𝑂), for each of the 

N generated parameter vectors 𝜃𝑖 . Then, the probability 𝑝𝑖  of each parameter set was computed with the following 

equation (1) and likelihood function was: 

𝐿(𝜃𝑖|𝑂) =∏
1

√2. 𝜋. 𝜎𝑜
2
. 𝑒𝑥𝑝 (−

(𝑂𝑗 − 𝑓(𝜃𝑖))²

2𝜎𝑜
2

)
𝑀

𝑗=1
 (1) 

𝑝(𝜃𝑖) =
𝐿(𝜃𝑖|𝑂)

∑ 𝐿(𝜃𝑖|𝑂)
𝑁
𝑗

 (2) 

Lcomb[𝜃𝑖] =  ∏Lk(θi|Ok)

K

k=1

 (3) 

where 𝑝(𝜃𝑖) is probability or likelihood weight of the ith parameter set 𝜃𝑖 ; 𝐿(𝜃𝑖|𝑂) is the likelihood value 

of parameter set 𝜃𝑖 ; given observations Oj the j-th observation of O. The M is the number of observation replicates; 

𝑓(𝜃𝑖) is the model output referring to 𝜃𝑖 ; K is the number of observation types; Lcomb[𝜃𝑖] is the combined 

likelihood value of ith parameter set 𝜃𝑖 ; 𝜎𝑜
2 the variance model errors, assumed to be the variances of observations 

for this study. 
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(v) Construct posterior distribution and statistics. The pairs of parameter sets and probabilities, (𝜃𝑖 , 𝑝𝑖), 

i=1 , …N, were used to construct empirical posterior distributions and to compute the means and variance of 

selected parameters using the following equations:  

𝜇̂ = ∑𝑝(𝜃𝑖). 𝜃𝑖

𝑁

𝑖=1

 (4) 

𝜎̂2 =∑𝑝(𝜃𝑖). (𝜃𝑖 − 𝜇̂)²

𝑁

𝑖=1

 (5) 

where 𝜇̂ , 𝜎̂2 they are the mean and variance of the posterior distribution of the set parameters; N 

(10,000) is the number of random parameters set.  

 

To apply and evaluate the performance of the GLUE method, this study used the following measured 

data: dry (SDM) and fresh stalk mass (SFM), leaf area index (LAI), tillers population (TIL) and sucrose concentration 

on fresh sugarcane basis (POL). For the GLUE method, only the measured data of SDM, SFM, and TIL were used 

to estimate the optimal parameters (genotype and soil), since these were the only variables sampled continuously 

over the four years of the experiment. To evaluate the model performance and the stochastic simulations, we used 

SDM, SFM, TIL, LAI, and POL.  

 

2.2.6. Simulation of correlated parameters 

We applied the Toeplitz-Cholesky decomposition (Baigorria, 2014) from a correlation matrix obtained 

from the 10,000 sets of parameters generated by the GLUE method. From this correlation matrix, we then generate 

a new set of parameters, comprised of 10,000 combinations. This new set was used to run the stochastic simulations, 

respecting the correlation among parameters. 

R = 

{
 
 

 
 r1

ψ
= r1C1,1 +⋯+ rnC1,n

.

.

.

rn
ψ
= rnCn,1 +⋯+ rnCn,n}

 
 

 
 

 

 

(6) 

The R matrix is multiplied by a square matrix containing the weighting values Cij (i is the parameter and 

jth simulation), which are calculated based on the pairwise correlation values that form the correlation matrix P 

(Baigorria and Jones, 2010). As mentioned, the factorization matrix used here was the Toeplitz-Cholesky 

factorization matrix C:  

𝐂 = 𝐔diag(𝐔
1
2) (7) 

where U is an upper triangular matrix with positive diagonal entries generated from a special case of the 

symmetric LU decomposition of the correlation matrix, with L=UT. 
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2.2.7. Parameter set analysis and model evaluation. 

From the 10,000 simulations with the correlated parameters sets we extracted the standard deviation of 

the simulations outputs to evaluate the model performance in replicating the variability observed in the field. This 

analysis was divided into three different sets to isolate the uncertainty of: (i) genotype parameters (UG); (ii) soil 

parameters (US); and (iii) both genotype and soil parameters (UGS). This means that only genotype parameters were 

considered for the GLUE method in the UG analysis, only soil parameters in the US, and both sets of parameters 

were considered for GLUE processing for the UGS analysis. When the GLUE method is not used for uncertainty 

analysis (e.g. soil parameters in UG), we assume the genotype and soil parameter values as reported by Vianna et al. 

(2020) (Table 4 and Table 3).  

To evaluate the model performance in replicating the average condition of the experiment and its 

uncertainty, the statistical analysis was done in two different ways. Firstly, we compared the best set parameters 

obtained by GLUE with the average of the observed data. In this way, it was used the statistical indices root mean 

squared error (RMSE), determination index (R2), Nash-Sutcliff modeling efficiency (EF) (Nashand Sutcliffe, 1970) 

bias index (Bias) and Wilmont accuracy index (d) (Willmott et al., 2012). Secondly, we compared the variability 

observed in the field experiment, by using the standard deviation σ(σobs), with those from stochastic simulations using 

the standard deviation of the stochastic simulations σ(σsim). We also calculated the ratio (ξ in %) between σsim and σobs 

in order to verify the model skill in representing the observed variability. 
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Table 4. Cultivar-specific parameters, descriptions, units, and range used for uniform distribution sampling and standard values assumed for initial simulations. In bold are the parameters used in 

GLUE. 

Parameter Description Min  Max Reference 

amax Assimilation rate at light saturation point (μmol.m-2.s-1) 41.3 44.9 60.7 Sage et al., (2013) 

chudec Heat units for start of tiller abortion (°C.d) 1200 1600 1800 Liu et al., (1998) 

chumat Heat units for population establishment (ºC.d) 1500 1600 2850 Zhou and Shoko, (2011)/Marin and Jones, (2014) 

chupeak Heat units for population peak (°C.d) 400 1400 1950 Coelho et al., (2020); Marin et al., (2017) Nassif et 

al., 2012) 

 

chustk Heat units for start culm elongation (°C.d ) 404 650 1050 Marin et al., (2017); /Singels and Bezuidenhout, 

(2002) 
eff Carboxylation efficiency ( μmol.m-2.s-1 / μmol.m-2.s-1) 0.040 0.069 0.080 Sage et al., (2013) 

end_tt_it_gro Thermal time for completion of internode growth (°C.d ) 600 1200 1400 Lingle, (1999) 

end_tt_lf_gro Thermal time for completion of leaf growth (°C.d ) 1100 1300 1500 Smit and Singels, (2006) 

init_lf_area Initial leaf area of first appeared leaf (cm²) 15 10 30 Zhou et al., (2003) 

max_ini_la Initial leaf area of leaves appeared after top parts formation (cm²) 80 120 180 Zhou et al., (2003) 

max_it_dw Maximum dry biomass of internodes (g) 18 28 35 Lingle, (1999) 

maxdgl Maximum number of developed green leaf a tiller can hold (#/tiller) 6 6 12 Vianna et al., (2020) 

maxgl Maximum number of green leaf a tiller can hold (#/tiller) 10 12.0 12 Marin et al., (2015) 

mid_tt_it_gro Thermal time where internodes can achieve half of its maximum biomass 380 400 600 Lingle, (1999) 

mid_tt_lf_gro Thermal time where leaves can achieve half of its maximum biomass 400 700 800 Smit and Singels, (2006) 

mla Maximum leaf area (cm²) 450 600 800 Marin et al. (2014) 

n_lf_it_from Number of leaves appeared before internode formation (#/tiller) 2 3 6 Vianna et al., (2020) 

n_lf_stk_em Number of leaves appeared before stalks emerges at soil surface (#/tiller) 3 4 8 Vianna et al., (2020) 

phyllochron Phyllochron interval for leaf appearance (°C.d) 107 132 169 Marin et al., (2015)/Inman-Bamber, 1994 

plastochron Thermal time required for the appearance of phytometer (ºC.d) 107 132 169 Marin et al., (2015)/Inman-Bamber, 1994 

popmat Number of tillers on maturation (tiller/m²) 8.0 9.5 12.0 Marin and Jones, (2014)  

poppeak Maximum number of tillers (tiller/m²) 17.0 22.0 30.0 Marin et al., (2015) 

sla Specific leaf area (cm2.g-1) 100.0 120.0

0 

121.0

0 

Ehara et al., (1994)  

tillochron Thermal time required for emergence of new tiller (ºC.d) 48.1 69.0 134.8 Bezuidenhout, (2000); Zhou and Shoko, (2011) 

 is the value calibrated by Vianna et al. (2020) for cultivar RB867515; Max and Min value are range used for random parameters uniform distribution.  
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2.3. Results 

2.3.1. Global sensitivity analysis for soil and genotype parameter 

The GSA was performed for 24 genotype parameters (Table 5), and among those only five were 

statistically significant and had a monotonic response to the model outputs: n_lf_stk_emerg, n_lf_it_form, tillochron, mla, 

plastochron. Thus, these five genotype parameters were used to perform the stochastic simulations with correlated 

parameters in the UG and UGS analysis. The GSA analysis was performed considering the two treatments used in 

the experiment (GCTB and Bare), and no difference was found in terms of the correlation among parameters. For 

GCTB treatment, all output variables have at least one significant (0.01) parameter, being: two parameters for SDM 

(plastochron; n_lf_it_from) and SFM (plastochron; n_lf_it_from) and only one for TIL (tillochron), POL (n_lf_it_from) and 

LAI (mla) (Table 5). For the Bare treatment, only POL variable does not have any significant parameter, while SDM 

(plastochron; n_lf_it_from; n_lf_stk_eme) and SFM (plastochron; n_lf_it_from; n_lf_stk_eme) showed three significant 

parameters, and LAI (mla) and TIL (tillochron) had only one significant parameter (Table 5). The correlation levels 

obtained from all parameters were classified as high or very high correlation levels, as described in Table 3. We 

observed that among the significant parameters analyzed, only mla showed positive correlation (PRCC = 0.92) for 

LAI. The remaining parameters have a strong negative correlation with other variables, such as tillochron for TIL 

(PRCC = -0.92), plastochron for SDM and SFM (PRCC = -0.85 and PRCC = -0.83, respectively), and n_lf_it_from for 

POL (PRCC = -0.81) (Table 5). We perfomerd the GSA considering the parameters for the different layers of the 

soil and found its significance depending on the layer. Unlike the GSA for genotype parameters, there was no 

parameter with a strong correlation with the model output variables. The highest correlations were WPp for POL 

(PRCC = -0.70 and -0.65) at a depth of 100 cm (Table 6). TIL was the only variable that did not present any 

significant soil parameterts in both treatments. The texture parameters in both treatments. The texture parameters 

Psand, Psilt and Pclay were not evaluted, as well as the hydraulic parameters Ksat and STp. Finally, only the FCp and 

WPp parameters were the significant soil parameters, so in the stochastic simulation we inserted the uncertainty in 

the five layers (5,15,30,60, and 100 cm) to maintain the correlation between them. 
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Table 5. Value of the partial rank correlation coefficient (PRCC) for genotype parameters (PAR) for output variables stalk dry 
mass (SDM), stalk fresh mass (SFM), tillering (TIL), sucrose concentration (POL) and leaf area index (LAI). Parameters marked 

with * were statiscally significant at 1%. 

PAR 
GCTB treatment - PRCC Bare treatment -PRCC 

SDM SFM TIL POL LAI SDM SFM TIL POL LAI 

amax 0.00 0.01 -0.05 0.00 0.03 0.02 0.01 -0.21 0.02 0.06 

chudec -0.03 -0.03 0.05 0.01 -0.01 -0.03 -0.04 0.05 0.00 -0.03 

chumat 0.03 0.04 -0.03 0.00 -0.05 0.03 0.05 -0.02 -0.04 -0.03 

chupeak -0.06 -0.07 0.03 0.00 -0.02 -0.07 -0.07 0.03 0.00 -0.02 

chustk 0.05 0.04 -0.02 0.03 0.02 0.04 0.03 -0.07 0.03 0.02 

eff 0.00 -0.01 0.04 0.07 0.08 0.10 0.08 0.00 0.04 0.17 

end_tt_it_gro -0.07 0.01 -0.02 -0.20 -0.01 -0.33 -0.19 -0.02 -0.34 0.07 

end_tt_lf_gro -0.02 -0.01 0.11 -0.10 -0.44 -0.02 -0.02 0.12 0.01 -0.40 

init_lf_area -0.06 -0.06 -0.11 0.00 -0.03 -0.07 -0.05 -0.26 -0.02 -0.11 

max_ini_la -0.03 -0.04 -0.12 0.02 -0.10 -0.08 -0.07 -0.41 0.01 0.21 

max_it_dw 0.35 0.35 0.00 0.06 0.25 0.53 0.52 -0.27 -0.05 -0.26 

maxdgl 0.01 0.02 -0.01 0.00 0.05 0.01 0.02 -0.02 0.00 0.03 

maxgl 0.03 0.04 0.00 0.00 0.46 0.00 0.02 -0.02 0.02 0.50 

mid_tt_it_gro -0.54 -0.62 -0.01 0.34 0.01 -0.59 -0.73 0.00 0.64 0.07 

mid_tt_lf_gro 0.04 0.06 0.69 0.00 -0.31 0.06 0.08 0.50 -0.02 0.01 

mla -0.11 -0.11 -0.65 0.02 0.92* -0.15 -0.14 -0.50 0.02 0.91* 

n_lf_it_from -0.85* -0.82* -0.01 -0.50 0.11 -0.88* -0.81* 0.00 -0.81* 0.25 

n_lf_stk_em -0.85* -0.83* -0.14 -0.50 0.3 -0.79 -0.70 -0.40 -0.64 0.49 

phyllochron -0.07 -0.06 -0.03 -0.10 0.01 -0.07 -0.07 -0.06 -0.02 -0.01 

plastochron -0.85* -0.83* 0.63 -0.40 -0.55 -0.87* -0.82* 0.69 -0.68 -0.13 

popmat 0.17 0.19 0.71 0.00 0.73 0.23 0.25 0.63 -0.02 0.65 

poppeak -0.01 0.00 0.04 0.00 -0.01 0.01 0.01 -0.01 0.00 -0.02 

sla 0.02 0.02 0.04 0.06 -0.03 0.02 0.01 -0.02 0.01 -0.01 

tillochron -0.15 -0.16 -0.92* 0.00 -0.71 -0.29 -0.30 -0.91* 0.01 -0.77 
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Table 6. Absolute value of the partial rank correlation coefficient (PRCC) for soil parameters (PAR) for output variables stalk dry 
mass (SDM), stalk fresh mass (SFM), tillering (TIL), sucrose concentration (POL) and leaf area index (LAI). Parameters marked 

with * were statistically significant at 1%. 

PAR 
Depth GCTB treatment - PRCC Bare treatment -PRCC 

(cm) SDM SFM LAI POL TIL SDM SFM LAI POL TIL 

F
C

p 

5 0.03 0.05 0.01 -0.07 0.00 -0.15 -0.11 -0.17 -0.06 -0.11 

15 0.01 0.02 -0.04 -0.03 -0.01 -0.06 -0.05 -0.06* -0.02 0.06 

30 0.17 0.25 -0.19 -0.34 0.00 -0.17 -0.08 -0.29* -0.14 0.03 

60 0.06 0.09* -0.04 -0.12* 0.00 0.08 0.12* -0.03 -0.13* 0.05 

100 0.35 0.43* 0.07 -0.49* -0.04 0.31 0.47* 0.01 -0.59* 0.03 

K
sa

t 

5 -0.01 -0.05 0.05 0.09 0.00 0.02 0.01 0.03 0.03 -0.09 

15 0.02 0.03 -0.02 -0.02 -0.04 -0.01 -0.03 0.00 0.03 -0.08 

30 -0.05 -0.09 0.10 0.17 -0.14 0.06 0.03 0.09 0.05 0.02 

60 0.07 0.06 0.12 -0.03 0.01 0.01 0.03 0.07 -0.01 -0.01 

100 0.06 0.07 0.05 -0.01 0.07 0.03 0.04 0.00 -0.03 -0.05 

P
cl
ay

 

5 0.00 0.02 0.03 -0.06 -0.03 -0.05 -0.03 0.03 -0.01 0.00 

15 0.04 0.03 0.08 0.00 0.02 0.06 0.05 0.09 -0.01 0.02 

30 0.02 0.02 0.05 0.00 0.00 0.06 0.04 0.08 0.01 -0.01 

60 -0.01 -0.01 -0.08 -0.02 -0.10 0.07 0.07 -0.03 -0.01 0.00 

100 -0.04 -0.03 -0.07 0.01 -0.06 -0.05 -0.03 -0.07 -0.02 -0.04 

P
sa

nd
 

5 -0.01 0.01 0.03 -0.04 -0.10 -0.04 0.00 0.02 -0.06 -0.02 

15 -0.01 -0.03 0.04 0.02 -0.04 0.00 -0.01 0.04 0.07 0.05 

30 -0.02 -0.04 0.05 0.07 -0.10 0.03 0.03 0.05 -0.01 0.02 

60 -0.11 -0.06 -0.06 -0.07 -0.05 -0.06 -0.09 -0.01 0.09 -0.02 

100 0.07 0.07 0.00 -0.04 0.02 0.07 0.06 0.02 -0.03 0.04 

P
si

lt
 

5 0.04 0.04 0.06 0.00 0.05 0.02 0.03 0.08 -0.04 0.04 

15 0.04 0.06 0.09 -0.09 -0.03 0.07 0.04 0.17 0.01 -0.06 

30 -0.06 -0.08 0.00 0.07 0.02 -0.02 -0.03 0.02 0.06 0.01 

60 -0.03 -0.05 -0.03 0.08 0.06 0.02 0.01 0.00 0.05 0.01 

100 0.00 0.04 0.00 -0.09 0.08 0.00 0.00 0.00 -0.06 0.00 

S
T

p 

5 -0.16 -0.14 -0.35 0.04 0.10 -0.08 -0.07 -0.25 0.00 0.03 

15 -0.08 -0.08 -0.35 0.01 0.15 -0.05 -0.03 -0.23 -0.05 0.06 

30 -0.15 -0.17 -0.25 0.16 -0.02 -0.13 -0.11 -0.22 -0.02 -0.04 

60 0.04 0.04 0.17 0.01 -0.10 -0.03 -0.03 0.09 0.04 -0.05 

100 0.13 0.15 0.14 -0.14 -0.01 0.13 0.12 0.15 -0.03 0.09 

W
P

p 

5 -0.05 -0.11 0.07 0.18 -0.02 0.14 0.07 0.12 0.13 0.05 

15 -0.07 -0.08 0.07 0.05 -0.02 0.04 0.02 0.09 0.05 0.00 

30 -0.17 -0.24* 0.28* 0.32* -0.02 0.24 0.13 0.44* 0.20 0.00 

60 -0.20* -0.25* -0.09 0.26* 0.00 0.00 -0.07 0.02 0.18* 0.02 

100 -0.60* -0.67* -0.30* 0.70* 0.02 -0.44* -0.59* -0.17 0.65* 0.00 
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2.3.2. Best parameters set obtained with GLUE 

The values obtained from GLUE were compared with the values reported by Vianna et al., (2020), that 

used the BFGS technique (Broyden-Fletcher-Goldfarb-Shanno) to calibrate the genotype parameters of SAMUCA 

model for the same dataset. We noticed that there was a difference in Tilochron and mla (Table 7). These two 

genotype parameters increased by 18% for TILL and 4% for mla compared to the prior calibration. In the soil 

parameters the biggest difference was WPp at a depth of 30 cm, reaching 6%. The 5 and 15 cm layers did not exceed 

2%. In the 60 and 100 cm layer, the variation was up to 5% for WPp compared with Vianna et al. (2020), that 

considered the average soil values for each soil layer. 

 To confirm there were differences in soil water storage from the parameters estimated by GLUE, we 

calculated the available water (AW) for sugarcane in each layer. Figure 1 shows that the correlation of soil parameters 

resulted in almost constant available water (AW) to the crop within the 0-15 cm soil depth, whereas the AW 

significantly varied for deeper layers (30-to-100 cm). The total available water (TAW) was 90 mm from the GLUE 

and the TAW obtained from the data by Vianna et al. (2020) was 102 mm. 

 

 

Figure 1. Histogram of total available water (AW) for 5 layers. The red dashed lines are the AW averages. 
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Table 7. Best set of parameter values considering four crop seasons (1 plant cane and 3 ratoons) for cultivar RB867515 based on the generalized likelihood uncertainty estimation 
method (GLUE) analyzing the uncertainty due to genotype parameters (UG), uncertainty due to soil parameters (US) and uncertainty due both genotype and soil parameters 
together (UGS). 

§ Parameters 
UG US UGS Calibration by 

(µ ± σ) (µ ± σ) (µ ± σ) Vianna et al. (2020) 

G
en

o
ty

p
e 

n_lf_stk_eme 5 ± 1 # 5 ± 1 4 

n_lf_it_form 3 ± 1 # 3 ± 1 3 

tillochron 82 ± 20 # 82 ± 20 69 

mla 625 ± 82 # 627± 84 600 

plastochron 134 ± 15 # 135 ± 15 132 

S
o

il
 

FCp (5 cm) # 0.2800 ± 0.0144 0.2800 ± 0.0144 0.2850 

FCp (15 cm) # 0.3060 ± 0.0055 0.3060 ± 0.0055 0.3030 

FCp (30 cm) # 0.3590 ± 0.0316 0.3590 ± 0.0316 0.3470 

FCp (60 cm) # 0.3760 ± 0.0175 0.3760 ± 0.0175 0.3940 

FCp (100 cm) # 0.3900 ± 0.0209 0.3900 ± 0.0209 0.3930 

WPp(5 cm) # 0.2110 ± 0.0112 0.2110 ± 0.0112 0.2160 

WPp(15 cm) # 0.2340 ± 0.0061 0.2340 ± 0.0061 0.2400 

WPp(30 cm) # 0.2950 ± 0.0361 0.2950 ± 0.0361 0.2780 

WPp(60 cm) # 0.3110 ± 0.0222 0.3110 ± 0.0222 0.3070 

WPp(100 cm) # 0.2661 ± 0.0283 0.2660 ± 0.0283 0.2530 
§ For parameter definitions, see Table 2 and Table 3; # value used by calibration Vianna et al. (2020) 

µ average calculated by Eq. 4 and σ standard deviation by Eq. 5. 
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2.3.3. Uncertainty analysis considering the genotype parameters (UG) 

In the GCTB treatment, variables that had better model efficiency were SDM (EF = 0.83), SFM (EF = 

0.75), POL (EF = 0.56), TIL (EF = 0.32) and LAI (EF = 0.70), respectively. The sim over time (gray area in Figure 

2A) was less or equal than the obs for SFM (Figure 2A), representing 106% of the observed field variability (Table 

8). The simulations for SFM (blue line) underestimated the observed data (Bias = -14.69 Mg ha-1; Table 8), with an 

RMSE = 23.79 Mg ha-1 (Table 8). For SDM, the variability of the stochastic simulation was able to explain 64% of 

the observed data (Table 8). The simulations were also underestimated (Bias = -2.80 Mg ha-1; Table 8), and with an 

RMSE = 4.30 Mg ha-1. The POL, TIL, and LAI variables were also underestimated in comparison with observed 

data, showing Bias = -0.50, -2.48, and -0.01, respectively. Unlike SFM, SDM, and TIL, for POL and LAI, the 

variability was overestimated by 23% and 13%, respectively. The simulated variability for TIL = 52% of the 

observed one (Table 8). 

 For the Bare treatment, the SDM and SFM variables had EF = 0.83 and 0.87 (Table 8), followed 

by POL (EF = 0.58), TIL (EF = 0.53) and LAI (EF = 0.44) (Table 8). The variability of the stochastic simulation 

(gray area in Figure 2B) was less or equal, over time than the standard deviation of the observed SFM data (Figure 

2B), explaining 85% of the variability seen in the field (Table 8). The simulation for SFM (blue line) was 

underestimated about the observed data (Bias = -12.66 Mg ha-1; Table 8), with an RMSE of 20.94 Mg ha-1 (Table 8). 

For SDM, the variability of the stochastic simulation was able to explain 56% of the observed data (Table 8). The 

average of the simulations was also underestimated (Bias = -2.21 Mg ha-1; Table 8), with an RMSE of 4.21 Mg ha-1. 

The variables POL and TIL were also underestimated about the observed data, with Bias = -0.50, -2.48, respectively. 

Unlike SFM, SDM, and TIL, for the POL and LAI variables, the variability was overestimated by 21% and 24% 

(Table 8), respectively. The simulated variability in TIL was 68% the observed variability (Table 8). 
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Figure 2. Representation of the uncertainty due to genotype parameters (UG) in stalk fresh (SFM) and dry (SDM) mass, tillering, 
sucrose concentration of fresh matter (POL) and leaf area index (LAI), considering parameters statistically significant in the global 
sensitivity analysis. Blue line simulation with best set parameters (Table 7); gray area is the standard deviation of the stochastic 
simulation; green and red square are the observed data with their respective error bar for treatments GCTB and Bare, respectively.  

 

2.3.4. Uncertainty analysis considering the soil parameters (US) 

Considering the data collected for the Bare treatment, the variability of the stochastic simulation did not 

well represent the variability observed in the observed data, considering all the variables analyzed (Figure 3). The 

variance in US was almost zero (SDM = 0.001%; SFM = 0.004%; POL = 0.001%; TIL = 0.0002% and LAI = 

0.002%) for all variables (Table 8). The variables referring to mass, SFM and SDM, were well characterized over time 

by the best set parameters (blue line in Figures 4 A and C), with EF = 0.87 for both SDM and SFM (Table 8). TIL 

simulations well agreed with observed data (Table 8), with major discrepancies only for 3rd ratoon (Figure 3 E), for in 

which simulated TIL did not reach the observed peak of TIL and decreased faster than other ratooning cycles. For 

POL, EF = 0.82 and R² = 0.84, showing that model well simulated this output variable. For LAI, EF = 0.48 and R² 

= 0.58, and such weak results might be related to the great dispersion observed in this variable, mainly for 1st ratoon. 

For GCTB treatment, the stochastic simulated variability for US was generally lower than that observed in 

the observed data (Table 8 and Figure 3), representing only 3% for SDM, 6% for SFM, 23% for POL, 3% for TIL 

and 15% for LAI (Table 8). Still, the variables referring to crop mass, such as SDM and SFM, were well characterized 

over time by the best set parameters (blue line in Figs 3A and B), with EF = 0.90 and 0.84 for SDM and SFM, 

respectively. For TIL, the simulations obtained good statistical indexes (Table 8), being negatively affected per 3rd 
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ratoon (Figure 3 E), for which maximum value of TIL was not well simulated. The LAI data observed had less 

dispersion in the 1st ratoon in the Bare treatment, which resulted in better statistical indices in relation to the 

simulation with GCTB 

 

 
Figure 3. Representation of the uncertainty due to soil parameters (US) in stalk fresh (SFM) and dry (SDM) mass and tillering, 
sucrose concentration of fresh matter (POL) and leaf area index (LAI), considering parameters statistically significant in the global 
sensitivity analysis. Blue line simulation with best set parameters (Table 7); gray area is the standard deviation of the stochastic 
simulation; green and red square are the observed data with their respective error bar for treatments GCTB and Bare, respectively.  

 

2.3.5. Uncertainty analysis considering the combined effect genotype and soil parameters 

(UGS) 

For the Bare treatment, the UGS analysis had a similar performance than the UG in explaining both the 

variability and average of the observed data. The variables that had the best performance based on the coefficient of 

modeling efficiency (EF), were SDM (EF = 0.83), SFM (EF = 0.81), POL (EF = 0.55), TIL (EF = 0.49) and LAI 

(EF = 0.48). The variability of the stochastic simulation (gray area in Figure 4B) was less or equal, over time than the 

standard deviation of the observed SFM data (Figure 4B), explaining 84% of the variability seen in the field (Table 

8). The simulations for SFM (blue line) underestimated observed data (Bias = -13.33 Mg ha-1; Table 8), with an 

RMSE = 21.24 Mg ha-1 (Table 8). For SDM, the variability of the stochastic simulation was able to explain 56% of 

the observed data (Table 8). The simulation was also underestimated (Bias = -2.37 Mg ha-1; Table 8), and with an 

RMSE = 4.24 Mg ha-1. The TIL and POL variables were also underestimated about the observed data, with Bias = -
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1.97 and -0.88, respectively. Unlike SFM, SDM, and TIL, POL and LAI variables, the variability was overestimated 

by 115% and 24% (Table 8), respectively. The simulated variability for TIL was 66% of the observed variability 

(Table 8). 

The variability of the stochastic simulation was greater than the observed over time for GCTB treatment 

for all variables (Figure 4). It was overestimatied by 6% for SFM, 120% for POL, and 13% for LAI (Table 8). In the 

GCTB treatment the output variables with better performance were SDM (EF = 0.79), SFM (EF = 0.71), TIL (EF = 

0.61), LAI (EF = 0.60) and POL (EF = 0.33, and the simulations for SFM (blue line) underestimated the observed 

data (Bias = -16.63 Mg ha-1; Table 8), with an RMSE = 25.61 Mg ha-1 (Table 8). The simulations also underestimated 

SDM (Bias = -3.20 Mg ha-1; Table 8), and with and RMSE = 4.69 Mg ha-1, as well as POL and TIL (Bias = -0.72 and 

-1.49, respectively). 

 

 
Figure 4. Representation of the uncertainty due to genotype and soil parameters (UGS) in stalk fresh (SFM) and dry (SDM) mass 
and tillering, sucrose concentration of fresh matter (POL) and leaf area index (LAI), considering parameters statistically significant 
in the global sensitivity analysis. Blue line simulation with best set parameters (Table 7); gray area is the standard deviation of the 
stochastic simulation; green and red square are the observed data with their respective error bar for GCTB and Bare treatments, 

respectively.  
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Table 8. Statistical indexes of performance of the SAMUCA model applied with best set of parameters. UG: Uncertainty analysis considering only genotype parameters; US: Uncertainty analysis 

considering only soil parameters; UGS: Uncertainty analysis considering both genotype and soil parameters.  

Bare Treatment 
 

Variables 
 

Bias RMSE EF R² d obs sim 
 

ξ Uncertainty Analysis Sample Size 

  
Stalk UG -2.21 4.21 0.83 0.88 0.84 

 
2.72 

 
56% 

Dry Mass US -0.87 3.69 0.87 0.88 0.84 4.83 5.0e-05 25 0.001% 

(Mg ha-1) UGS -2.37 4.24 0.83 0.89 0.84 
 

2.71 
 

56% 

Stalk UG -12.66 20.94 0.87 0.88 0.84 
 

12.92 
 

85% 

Fresh Mass US -5.24 17.41 0.87 0.89 0.84 15.18 6.0e-04 24 0.004% 

(Mg ha-1) UGS -13.33 21.24 0.81 0.89 0.80 
 

12.80 
 

84% 

POL 

(%[fresh]) 
 

UG -0.77 1.52 0.58 0.83 0.68 
 

1.15 
 

221% 

US -0.14 1.00 0.82 0.84 0.80 0.52 3.0e-06 14 0.001% 

UGS -0.88 1.57 0.55 0.83 0.67 
 

1.12 
 

215% 

Tillering UG -2.02 3.76 0.53 0.68 0.69 
 

1.71 
 

72% 

(# m-2) US -0.73 3.07 0.68 0.70 0.76 2.53 4.5e-06 34 0.0002% 

 
UGS -1.97 3.89 0.49 0.63 0.68 

 
1.67 

 
70% 

LAI UG 0.19 0.99 0.44 0.58 0.65 
 

0.42 
 

124% 

(m².m-2) US 0.03 0.95 0.48 0.58 0.66 0.34 7.1e-06 23 0.002% 

 
UGS 0.18 0.95 0.48 0.10 0.67 

 
0.42 

 
124% 

*continues on the next page 
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GCTB Treatment 
 

Stalk UG -2.80 4.30 0.83 0.92 0.87 
 

2.59 
 

64% 

Dry Mass US -1.32 3.27 0.90 0.92 0.87 4.02 0.11 21 3% 

(Mg ha-1) UGS -3.20 4.69 0.79 0.90 0.81 
 

2.59 
 

64% 

Stalk UG -14.69 23.79 0.75 0.87 0.83 
 

13.26 
 

106% 

Fresh Mass US -6.83 18.87 0.84 0.87 0.83 12.53 0.77 20 6% 

(Mg ha-1) UGS -16.63 25.61 0.71 0.83 0.77 
 

13.28 
 

106% 

POL UG -0.50 0.70 0.56 0.87 0.66 
 

0.78 
 

223% 

(%[fresh]) US -0.23 0.57 0.71 0.94 0.71 0.35 0.08 6 23% 

 
UGS -0.72 0.87 0.33 0.88 0.60 

 
0.77 

 
220% 

Tillering UG -2.48 3.28 0.32 0.70 0.63 
 

1.30 
 

52% 

(# m-2) US -1.49 2.73 0.61 0.74 0.74 2.52 0.07 24 3% 

 
UGS -1.49 2.71 0.61 0.74 0.74 

 
1.32 

 
52% 

LAI UG -0.01 0.65 0.70 0.72 0.73 
 

0.44 
 

113% 

(m².m-2) US -0.09 0.70 0.66 0.68 0.69 0.39 0.06 12 15% 

 
UGS 0.04 0.76 0.60 0.66 0.69 

 
0.44 

 
113% 

Bias: model bias index; RMSE: Root mean squared error; EF: Modeling efficiency; R²: Determination index;   
d: accuracy index of Wilmot; obs is the average of the standard deviation of the observed data;  
sim is the average of the standard deviation of the simulated data; ξ is the ratio bet sim/obs in percentage   
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2.4. Discussion 

We observed that Bare and GCTB treatments influenced the GSA results, here used to select which 

genotype and soil parameters to use in the uncertainty analysis (Table 5 and 6). Therefore, using both treatment was 

complemental for choosing the parameters sets that best represent the field variability. Results from the GSA shown 

that the most influential parameters of SAMUCA to the main sugarcane growth components were the genotype 

parameters of plastochron, n_lf_when_eme, n_lf_it_from, tillochron, and mla; and the soil parameters of field capacity (FCp) 

and wilting point (WPp). We note the inclusion of the n_lf_when_eme parameter only for the GCTB treatment (SFM 

and SDM), whereas we didn’t find any statistically significant parameter for the POL output. In total, the new 

version of SAMUCA has 101 parameters that were divided to represent the species, ecotype and genotype 

characteristics of sugarcane, accordingly with the DSSAT framework (Vianna et al., 2020; Jones et al., 2003). In our 

study, we considered that only the genotype parameters would have an influence on the simulation’s uncertainty 

(Table 4), assuming that the species and ecotype parameters were well defined. Further, finding plausible ranges for 

all the species and ecotype parameters is challenging, and considering the full list of parameters would dramatically 

increase the computation requirements of this study (GSA, GLUE and stochastic).  

The calibration obtained from GLUE to UG had a lower performance for all variables (Table 8), when 

compared to the simulation performed by Vianna et al., (2020). However, we must emphasize that we do not 

estimate all genotype parameters, only those significant that were obtained from the GSA. In future studies it would 

be interesting to evaluate the different calibration methods, such as GLUE and BFGS to the operational cost for the 

simulation and performance, while there’s still no consensus on the choices of methods and decisions made by 

modelers during crop models calibrations (Wallach et al., 2020). Nevertheless, we observed that the application of 

GLUE to soil parameters (US) generated a performance like the results of Vianna et al., (2020) (Table 8). 

The PRCC method provides answers to questions about how the result is affected if we increase (or 

decrease) a specific parameter (linearly discounting the effects on the other parameters) (Marino et al., 2008). Thus, 

the PRCC can be informative about which parameters to target if we are to achieve specific objectives. For example, 

one can identify the set of parameters that most likely can be used to determine how to increase biomass (SDM or 

SFM) with the PRCC results. The main limitation of this method is that it does not answer which parameters are 

responsible for the greatest variance in the model's output (Marino et al., 2008). Different simulation conditions such 

as the biophysical environment (Sexton et al., 2017), management (Zhang et al., 2020), and even GSA methods 

(Drouet et al., 2011; Marino et al., 2008) can generate divergent results obtained from GSA. Thus, for a more robust 

overview of the model's sensitivity to parameters, more than one GSA method and other experimental sets could be 

considered in future studies to confirm our findings.  

Nevertheless, when one wants to explore the variability in the environment through stochastic simulation, 

not necessarily the use of statistically significant parameters would produce the best results. In the present study, we 

show that by considering only the statistically significant parameters we were able to well simulate the mean of field 

observations. However, such procedure overestimated the variability of some model’s outputs in comparison with 

that observed in the experimental field, as it was found for POL and LAI variables in Bare and SFM, POL, and LAI 

in GCTB (Table 8). We used the whole set of observed data in GLUE procedure, but a possible solution would be 

on implementing a filter in GLUE methodology to constrain the generated parameters within the observed 

variability. 
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The greatest variability in simulations for UG and UGS was due to the greater model sensitivity to 

genotype parameters. For the US, we found that the variability was less than the other two (UG and UGS). This 

result agreed with previous studies showing soil parameters with less influence on model behavior likely as a result of 

irrigation in the experiment, which further reduced the model sensitivity to soil parameters (Attia et al., 2021; 

Dejonge et al., 2012; Zhang et al., 2020). We have not included the soil textural parameters because they did not have 

any significance in the GSA, nor were the physical characteristics of the mulch layer in our analysis of US and UGS. 

In addition, our field conditions were not limited (adequate inputs in clay soil) and the distribution of soil parameters 

showed small variation TAW, which can help explain why the soil parameters did not have a greater influence in the 

field variability.   

 The model performance under GCTB conditions was slightly better for the SDM, TIL and LAI in 

comparison with the Bare treatment, whereas the Bare simulations performed better in the SDM and POL 

simulation. The GCTB is interpreted in the SAMUCA model as an additional soil layer, with its respective saturation 

point and water content (Vianna et al., 2020). According to Ritchie (1998), the number of layers and their depth is an 

important factor to simulate the water balance more precisely. This is specifically important to guarantee water and 

heat fluxes in the soil medium (Harper et al., 2020). Furthermore, the SAMUCA is still not capable of capturing all 

the belowground processes affecting crop growth, such as soil compaction, nutrient uptake, and microbiological 

processes (Vianna et al., 2020). These model limitations may explain the low capacity to simulate the variability seen 

in US. Finally, it leads to two possible causes for the low model responses to soil parameters found in the present 

study: (i) the low influence of the soil hydraulic parameters in a irrigated experiment; and (ii) that the observed 

variability in the field is not fully explained by the soil hydraulic process and parameters represented in the model. 

 

2.5. Conclusion 

The GSA was a useful tool for choosing parameters for stochastically simulating crop growth and 

development aiming to explore the genotype variability existing in the environment. The UG and UGS had the same 

capacity to quantify the variability present in the environment for the treatments Bare and GCTB, and we did not 

find any influence of soil parameters in model variability, probably because our data were collected in fully irrigated 

experiments and with no nutritional limitation. In our case, because the water stress is the main reducing factor 

linked with soil that is accounted for in the SAMUCA model, the sensitivity to the soil parameters may be simply 

ignored and the genotype parameters can be chosen as the only source of variability for practical applications. 

Indeed, the simulated variability found in the US was caused by GCTB and not due to soil hydraulic parameters. Our 

suggestion for future work is to explore rainfed environments, different amounts of GCTB and other soil types.  
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3. SAMPLING SCHEME, RANGE OF PARAMETERS, AND TIME-DEPENDENT 

EFFECTS ON GLOBAL SENSITIVITY ANALYSIS IN SUGARCANE 

MODELLING 

 

Abstract:  

      Process-based crop models (PBCM) are the state of the art in agricultural modeling. Some PBCMs are 
increasingly complex and require many parameters to describe crop processes and boundary conditions. Sugarcane is 
a key crop for food and fuel security in many countries around the world. PBCMs for sugarcane present a high 
number of genotype parameters compared to other crops, which make it harder to calibrate. Global sensitivity 
analysis (GSA) has thus become an important tool for understanding, calibrating and further developing PBCMs. 
The GSA methods are based on Bayesian approach and rely on sampling techniques and parameters variation 
ranges. In this paper we used a recently updated sugarcane model (SAMUCA) to simulate the crop growth and 
development along a 4-year field experiment, conducted with two treatments: with green cane trash blanket (GCTB) 
and under bare soil (Bare). Using the extended Fourier Amplitude Sensitivity (eFAST) algorithm, GSA was 
performed on the 24 genotype parameters of the SAMUCA. The objective of this study was the determine the 
sample size, the influence of parameters range, and to quantify the genotype parameters responsible for the greater 
uncertainty in simulation of the SAMUCA model with bare soil and GCTB. The results showed that sample size 
highly affected the convergence of the sensitivity indices, and it differed as a function of the output variable. In our 
case, the required sample size must be greater than 2049 for the analysis to cover all variables. Two sets of parameter 
ranges were used for analysis (the first set uses maximum and integer values of each parameter reported in the 
literature; the second set applied a 25% perturbation to the previously calibrated values), and the results indicated 
that the parameters range affected the order of importance of the parameters. Furthermore, we identified that at 
different phenological stages during the sugarcane, distinct parameters were responsible for explaining the most 
variance of the output. However, there was no difference among ratoons or interference in the results of bare soil or 
GCTB. 

 
Keywords: SAMUCA, Uncertainty, Sample size, Crop modelling 

 

3.1. Introduction 

In agriculture, process-based crop models (PBCM) represent the state of the art for simulating crop 

growth and development (Jones et al., 2017; Marin et al., 2017). When properly calibrated, they are commonly used 

to simulate crop growth and development under different conditions, thus being able to test hypothetical 

management, climate, and soil scenarios (Faivre et al., 2009). Scientists and decision-makers have used modelling as a 

tool to address issues related to the sugar and bioenergy sectors, including climate change (Jones et al., 2015; Marin et 

al., 2013; Singels et al., 2013), plant breeding (Hoffman et al., 2018), risk analysis (Everingham et al., 2002) and crop 

forecast (Everingham et al., 2016).  

Sugarcane is a crucial crop for world bioenergy (Raza et al., 2019), and several authors have studied 

sugarcane crop modeling and sugarcane crop modelling (Inman-Bamber and Smith, 2005; Jones and Singels, 2018; 

Keating et al., 1999; Marin and Jones, 2014; Singels and Bezuidenhout, 2002; Thorburn et al., 2005; Valade et al., 

2014; Vianna et al., 2020). Singels (2013) presented a detailed review of the main sugarcane models in the literature, 

highlighting sugarcane as one of the crops with a high need to be represented in PBCM given its specific farming 

systems and logistic requirements. To represent its physiological complexity, sugarcane PBCM have many genotype 

parameters compared to other crops, such as maize and wheat. For instance, the sugarcane models 

DSSAT/CASUPRO and DSSAT/CANEGRO make use of 33 and 18 genotype cultivar parameters respectively, 

while DSSAT/CERES-MAIZE and DSSAT/CERES-WHEAT use only respectively 6 and 7 cultivar parameters to 

be calibrated. 
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According to Sinclair & Seligman (1996), the development of different PBCM by more research groups 

allows improve the understanding of processes. In this context, Marin & Jones (2014) developed the SAMUCA 

focusing on the specific characteristics of sugarcane farming systems in Brazil. Recently, the SAMUCA model was 

improved by reducing the uncertainties around the soil water balance, heat flux and physiological mechanisms such 

as carbon partition, photosynthesis, tillering and root growth (Vianna et al., 2020).  

As any other PBCM, SAMUCA represents a simplification of the real system and requires several 

parameters whose determination is a problem for practical operational applications (Makowski et al., 2002). Most 

parameters are acquired through field observations, which are expensive and time-consuming, and the acquisition of 

certain parameters is difficult. Yet, many parameters vary depending on environmental conditions, cultivars, seasonal 

variation, among other factors (Wang et al., 2013).  

Furthermore, for reliable simulations, accurate parameter estimation is required (Guérif and Duke, 2000; 

Wallach et al., 2019), and so several parameter estimation algorithms have been developed, part of which based on 

Bayesian approaches (He et al., 2010, 2009; Marin et al., 2017; Sheng et al., 2019; Sreelash et al., 2012; Zhang et al., 

2020). To some extent, these methods solved the problem of difficult-to-acquire parameters, and they are quite 

efficient but applicable to a small number of parameters (Varella et al., 2010). Still, the inclusion of many parameters 

in a PBCM raises a dilemma related to the difficulty to simultaneously estimate all unknown parameters and ensuring 

at the same time they keep their biophysical meaning coherent.  

In practice, it is well known that only part of the parameters is usually responsible for most of the model 

uncertainty, while most of them have only minor influence (LI et al., 2019; Varella et al., 2010; Zhang et al., 2020). 

The parameter sensitivity analysis (SA) method can identify the most important parameters for a given model output 

variable, which allows users to focus on the most important model parameters during the calibration process. 

Furthermore, based on the SA, the balance and robustness of the model can be analyzed for future improvement, 

model development, and applications (Chu-Agor et al., 2011; Confalonieri, 2010; Fraedrich and Goldberg, 2000; 

Hirabayashi et al., 2011). 

The SA can be divided into two groups: the local sensitivity analysis (LSA) and the global sensitivity 

analysis (GSA). The LSA consists of changing a single parameter at a time, while the other parameters are kept at 

their reference values; in other words, this method is based on the local derivatives of the model's output concerning 

the variation of a single parameter, which indicates how strong is the output changes around the reference parameter 

values (A Saltelli et al., 1999). The GSA allows you to evaluate the entire uncertainty range of parameters, considering 

changes in all parameters along with their range, as well as the interactions among parameters (A Saltelli et al., 1999).  

The GSA methods can also be classified into three groups: screening, regression, and variance; all of these 

following the Bayesian sampling principle. The most used screening method is the Morris method, which permits to 

define the most important model parameters and it is often considered a qualitative method (Dejonge et al., 2012; 

Morris, 1991). Regression methods, such as the Partial Rank Correlation Coefficient, provide the correlation between 

the model's output and the selected parameters and they are mandatory when the parameter and the model outputs 

have a monotonic relationship (Krishnan and Aggarwal, 2018; Marino et al., 2008). The methods based on the 

variance are most common, and the three mains are: Sobol (2001), Fourier Amplitude Sensitivity Test (FAST) 

(Cukier et al., 1978), and the extended Fourier Amplitude Sensitivity Test (eFAST) (A Saltelli et al., 1999); they 

provide information about the parameters causing the highest variability in the model output and they usually 

demand a high computational cost. To define which method to be applied is the most suitable, some properties of 

the model must be known (linearity, prior distribution of parameters, and monotonicity), furthermore considering 
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the number of parameters to be evaluated and the computational cost (Iooss and Lemaître, 2015). The Sobol and 

eFAST are the most applicable to any type of PBCM, but while Sobol is very computationally expensive, eFAST 

integrates the merits of FAST and Sobol's algorithms, representing a method with high efficiency and precision, and 

ability to adequately compute interaction effects among parameters (Iooss and Lemaître, 2015). 

The GSA has several aspects that can affect sensitivity indices and their uncertainty, regardless of the 

method adopted. In general, the most important uncertainty sources of GSA are: (i) sample size, (ii) range of 

parameters, and (iii) complexity of the model (Gan et al., 2014; Song et al., 2015; Xu and Gertner, 2011). To our 

knowledge, there are no studies in the literature investigating effects in GSA caused by sample size and parameter 

range on eFAST method in sugarcane models. In the case of sample size, the available studies used eFAST and were 

based on evidence provided by Wang et al. (2012), which has been replicated for different crops. In those studies 

that were not based on Wang et al. (2012), very large sample size without a clear definition criterion was adopted 

(Tan et al., 2016). However, by adopting the sample size suggested by Wang et al. (2012), the model characteristics 

are ignored, and when using a very large sample size, an unnecessary large computational time required for the 

analysis.  

The parameter range is another source of uncertainty in PBCM when using Bayesian approaches for 

parameter estimation (Makowski et al., 2006). Depending on the range of parameters, it is possible to generate 

calibrations that do not represent the desired genotype (He et al., 2010, 2009; Marin et al., 2017; Sexton et al., 2016) 

or correctly quantify the uncertainty (Dzotsi et al., 2013; Gan et al., 2014; Pereira et al., 2021; Soetaert and Petzoldt, 

2010; Zhang et al., 2020b). Wang et al. (2012) compared a range of parameters measured for maize and a relative 

range of 10% in relation to a reference calibration and found important differences in the GSA results. Li et al., 

(2019) evaluated different relative ranges, from 10 to 50%, in relation to a reference value and concluded that the 

most important parameters for the 10% range diverged from those obtained using the 50% range. Many recent 

PBCM studies (Jin et al., 2018; LI et al., 2019; Tan et al., 2016; Vazquez-Cruz et al., 2014) have adopted relative 

parameter ranges to apply a GSA, which can result in serious methodological errors. According to (Homma and 

Saltelli, 1996), the GSA principle is to identify the parameters that cause the greatest uncertainty in the model, and 

this is not possible when all parameters are disturbed to create relative parameters range. Finally, there is still the 

model complexity, which is a source of considerable uncertainty and a complicated issue to be considered in the 

GSA (Razavi and Gupta, 2015).  

The SAMUCA crop model has been relatively little evaluated compared to well-established models such 

as DSSAT/CANEGRO and APSIM-Sugar (Marin et al., 2014; Marin et al., 2015; Thorburn et al., 2005, Sexton et al., 

2017). Pereira et al. (2021) used the PRCC to perform a GSA to identify the most important parameters for 

SAMUCA and then to explore the model uncertainty. However, some issues remained unclear due to the following 

limitations: (i) the GSA was performed only for the end-of-season output values; (ii) the PRCC method is limited 

when the parameter relation is not monotonic, and only 4 out of the 24 genotype parameters are monotonic in 

SAMUCA, which means that some parameters responses might be neglected during the GSA; (iii) authors did not 

consider the effect of the range of parameters on GSA results. The first two limitations may result in the omission of 

important parameters because they affect certain variables at a different time of simulation (Dejonge et al., 2012; 

Lamboni et al., 2009), and the third has never been investigated for sugarcane crop models, and even for other crops 

the range of parameters effect on GSA was little studied (Wang et al., 2012).  
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Considering the aspects mentioned above, this paper aimed to: (i) determine the optimal sample size for 

the eFAST method; (ii) Investigate whether the range of parameters used in GSA affects the; (iii) identify which 

parameters are responsible for the greatest uncertainty in the SAMUCA model. 

 

3.2. Material and Methods 

3.2.1. SAMUCA model 

The SAMUCA model is a mechanistic crop growth model. The motivation for the development of this 

model came from the argument of Sinclair and Seligman (Sinclair and Seligman, 1996), that research groups must 

develop their models, as this way it is possible to deepen the process in the simulation process and as uncertainties 

inherent to the models used. Thus, the SAMUCA model was mainly developed by Marin and Jones (Marin and 

Jones, 2014) and Marin et al. (2017), using a large database for different Brazilian production conditions. 

Subsequently, Vianna et al. (2020) improved the model structure by decreasing the uncertainty in the soil water 

balance and including the effect of straw cover on sugarcane growth and development, modifying routines of soil 

moisture and the flow of water and heat from soil, compared to the previous versions. The most recent version is 

also included in the DSSAT platform v.4.8. 

 

3.2.2. Data and management 

The crop growth simulation scenario was based on a field experiment conducted in the College of 

Agriculture “Luiz de Queiroz”, Piracicaba, São Paulo (Lat: 22º41’55’’S, Lon: 47º38’34’’W, Alt: 540 m). The sugarcane 

cultivar was the RB86-7515, a widely used genotype in Brazil (ca. 30% of Brazil’s planted area). It was planted on 

October 16, 2012, with a row spacing of 1.4 m and depth of 0.2 m. A bare soil treatment (Bare) was conducted 

during the four sequential years, whereas the green cane trash blanket (GCTB) treatment onset in the first ratoon 

(Oct-2013) and was carried out for 3 years (Table 9). Agricultural practices were adopted to represent high yield 

farming systems and to ensure the crop was free from pests, diseases, and nutritional stress. The climate is 

characterized by hot and humid summers with dry winters (Cwa-Köppen classification), and the soil classified as 

Typic Hapludox. The experiment was irrigated by a center-pivot, based on monitoring the soil moisture by 

Frequency Domain Reflectometry (FDR) and the evapotranspiration by Bowen Ratio Method (BRM) in both 

treatments. 
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Table 9. Description of seasons, planting and harvesting dates, duration in days, treatments, and measurements variables of the 
field experiment in Piracicaba, Brazil. 

Season Planting Harvest Duration Variables Treatments 

Plant Cane 10/16/2012 10/15/2013 364 SDM,SFM,TIL,LAI and POL  Bare 

1st Ratoon 10/15/2013 07/15/2014 273 SDM,SFM,TIL,LAI and POL Bare and GCTB 

2nd Ratoon 07/15/2014 06/08/2015 328 SDM,SFM,TIL,LAI and POL  Bare and GCTB 

3rd Ratoon 06/08/2015 06/08/2016 365 SDM,SFM,TIL,LAI and POL Bare and GCTB 

Green cane trash blanket (GCTB), stalk dry mass (SDM) and stalk fresh (SFM) of, leaf area index (LAI), sucrose 
concentration in fresh matter (POL) and tillering (TIL).  
 

 

As the eFAST method requires a high computational time, we divided our study into two steps. In the 

first step (STp1) we simulate sugarcane plant cane (bare soil) and first ratoon with GCTB and bare, testing different 

sample sizes and two sets of parameter ranges (Table 10). The main objective of STp1 was to define what minimum 

sample size is needed to obtain a reliable GSA and then apply them to the second step (STp2) of the study. In the 

STp1 we ran the GSA using as reference the end-of-cycle values of the variables: stalk dry mass (SDM), stalk fresh 

mass (SFM), leaf area index (LAI), sucrose concentration in the fresh matter (POL). In the STp2, after defining the 

most adequate sample size, we performed a long simulation considering the different ratoons and ran the GSA in 

function of the daily values simulated in the whole season of each variable (SDM, SFM, POL, LAI, and tillering 

(TIL)).  

 

Table 10. Description of the processes performed in the first step (STp1) and the second step (STp2); the simulated season, the 
sample size evaluated, soil cover type, number of repetitions (NR), and parameter range set (PRS), as described in Table 11 and 
section 3.2.6. 

Step Season Sample Size Treatments NR PRS 

STp 1 
Plant Cane1st 
Ratoon 

65, 129, 257, 513, 
1025, 2049, 4097 

Bare  10 
PRS 1 and 
PRS 2 

STp 2  
Plant Cane to 
3rd Ratoon 

2049 Bare and GCTB  1 
PRS 1 and 
PRS 2 

 

3.2.3. Sensitivity analysis 

3.2.4. Extended Fourier amplitude sensitivity test 

The eFAST is an algorithm that combines two GSA methods: the Fourier Amplitude Sensitivity Test 

(FAST) and the Sobol (Saltelli et al., 1999; Saltelli et al., 2010), which in turn, use the model output variance principle. 

While FAST can scan the entire parameter space and obtain quantitative sensitivity measures in terms of the main 

sensitivity index (𝑆𝑖) of each parameter to output variance, the Sobol calculates the total sensitivity index (𝑆𝑇𝑖) and 

provides an indication of the overall effect of a given parameter, considering all possible interactions of that 

parameter with others (Sobol, 2001). The method is based on the decomposition of the model's output variance, 

determining which fraction of the variance can be explained by the variation in each input parameter. This variation 

is quantified using the statistical notion of variance (analogous to ANOVA): 
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𝜎2 =∑
(𝑦𝑖 − 𝑦)²

(𝑁 − 1)

𝑁

𝑖=1

 (8) 

 

where N is number of models runs, 𝑦𝑖  is ith model output, and 𝑦 sample mean. Partitioning of variance in eFAST 

works by varying different parameters at different frequencies, encoding the identity of parameters in the frequency 

of their variation. In recent years, due to these advantageous properties, eFAST has become more popular in 

hydrological, ecological, and agronomy modeling (Li et al., 2019; Reusser et al., 2011; Varella et al., 2010b; Xing et al., 

2017). We implemented the SAMUCA model in the sensitivity R-package available at: https://cran.r-

project.org/web/packages/sensitivity/index.html for applied the method eFAST. 

The main sensitivity index (𝑆𝑖) of a given parameter (i) is calculated as the variance at a particular 

parameter’s unique frequency (and harmonics of that frequency) divided by total variance (𝑉𝐴𝑅𝑡). First, variance 

(𝑉𝐴𝑅𝑖) is calculated from the Fourier coefficients at the frequency of interest (j): 

𝑉𝐴𝑅𝑖 = 2(𝐴𝑗
2 + 𝐵𝑗

2) (9) 

𝐴𝑗 = ∫ 𝑓(𝑠) 𝑐𝑜𝑠 (𝑗𝑠) 𝑑𝑠
𝜋

−𝜋

 (10) 

𝐵𝑗 = ∫ 𝑓(𝑠) 𝑠𝑖𝑛 (𝑗𝑠) 𝑑𝑠
𝜋

−𝜋

 (11) 

 

where s is a scalar variable within the range −∞ < 𝑠 <  +∞; 𝐴𝑗 and 𝐵𝑗  are the Fourier coefficients (or Fourier a 

amplitude) over the domain of integer frequencies j ∈ {−∞,… ,−1,0,1, … ,∞}. Thus, the 𝑆𝑖 is calculated as a 

fraction 𝑉𝐴𝑅𝑡: 

𝑆𝑖 =
𝑉𝐴𝑅𝑖
𝑉𝐴𝑅𝑡

 (12) 

 

the 𝑆𝑖 represents the fraction of the output variance of the model explained by the input variation of a given 

parameter. The 𝑆𝑇𝑖  is calculated as the remaining variance after the complementary set contribution is removed. 

Thus, to estimate 𝑆𝑇𝑖  for the given parameter i, the eFAST algorithm first calculates the sensitivity indices except for 

parameter i using the identification frequencies. 

 

𝑆𝑇𝑖 =
𝑉𝐴𝑅𝑡 − 𝑉𝐴𝑅−𝑖

𝑉𝐴𝑅𝑡
 (13) 

where 𝑉𝐴𝑅−𝑖 is the sum of all the variance terms that do not include the parameters i. 

𝑆𝑖 and 𝑆𝑇𝑖  must vary between 0 and 1, where the effects are greater when the indices reach values to 1 

whereas values close to 0 indicate negligible effects. The 𝑆𝑇𝑖  considers both the 𝑆𝑖  and the interactions between the 

parameters, such interactions that can therefore be evaluated by the difference between the 𝑆𝑇𝑖  and the 𝑆𝑖 . The two 

sensitivity indices 𝑆𝑖 and 𝑆𝑇𝑖  are equal if the effect of the parameter i on the model output is independent of the 

values of the other parameters: in this case, there is no interaction between this parameter and the others, and the 

model is additive into parameter i. Only parameters that had 𝑆𝑖 >0.05 and 𝑆𝑇𝑖  > 0.1were considered significant and 

relevant in the GSA, as Dejonge et a., (2012) and Xing et al., (2017). 

 

https://cran.r-project.org/web/packages/sensitivity/index.html
https://cran.r-project.org/web/packages/sensitivity/index.html
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3.2.5. Sample size 

The sampling technique is a key factor to explore the domain of interest, being the sample size (SZ) 

defined as the number of evaluations of the model. In some cases, many evaluations of the model are required, and 

this can restrict the use of the method. Thus, the relationship between sample size and the convergence of the 

sensitivity measure is of utmost importance. In this sense, to investigate the dimension of the SZ in the convergence 

of the sensitivity indices, a sensitivity analysis was performed with different SZ. For this purpose, seven cases of SZ 

were used: 65, 129, 257, 513, 1025, 2049, and 4097. We performed 10 repetitions for each SZ considering 1st ratoon 

for the Bare and GCTB treatments. We adopted two criteria to define the most adequate sample size, the first was to 

calculate the sum of 𝑆𝑖 and observe if it converges to 1; if it did not meet this criterion, the sample size would be 

discarded. The second was to calculate the mean and standard deviation of 𝑆𝑖 based on the 10 repetitions. Thus, we 

determined the smallest sample size that was suitable, where the standard deviation of Si was small enough not to 

change the order of importance of the parameters. In this analysis, we consider two ranges of variation of 

parameters, such ranges are described in the following item (3.2.6).  

 

3.2.6. Parameters range set 

The GSA is affected by the uncertainty range of the parameters (Wang et al. 2013), so we investigated this 

factor in the SAMUCA model by constructing two ranges of genotype parameters. The first interval set (PRS1) was 

constructed based on the literature, containing the maximum and minimum values of each genotype parameter, 

regardless of the sugarcane cultivar. For the second set of range parameters (PRS2) we considered the studies of 

Wang et al., (2013), Zhen et al., (2019), and Jin et al., (2018), and concluded that the order of importance of the 

parameters converges to above 10% disturbance. Thus, in order not to use an excessively small disturbance that 

would cause inconsistency in the GSA results, and to avoid an excessively large disturbance to generate parameters 

values outside their genotype reality, we choose to cause a ±25% perturbation in the values calibrated by Vianna et 

al. (2020). In Table 11 we presented the description of the parameters, and the reference used to elaborate the PRS1. 

In sequence, the values of the range parameters meet in Table 12, with the respective coefficient of variation (CV). 
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Table 11. Description of parameters and reference of range parameters used for the PRS1 construction; the values of parameters are shown in Table 4.  

Parameters Description  Reference 

amax Assimilation rate at light saturation point (μmol. m-2. s-1) Sage et al., (2013) 

chudec Heat units for start of tiller abortion (°C. d) Liu et al., (1998) 

chumat Heat units for population establishment (°C. d) Zhou and Shoko, (2011)/Marin and Jones, (2014) 

chupeak Heat units for population peak (°C. d) Coelho et al., (2020); Marin et al., (2017) Nassif et al., 2012) 

chustk Heat units for start culm elongation (°C. d) Marin et al., (2017); /Singels and Bezuidenhout, (2002) 

eff Carboxylation efficiency (μmol. m-2. s-1/ μmol.m-2. s-1) Sage et al., (2013) 

end_tt_it_gro Thermal time for completion of internode growth (°C. d) Lingle, (1999) 

end_tt_lf_gro Thermal time for completion of leaf growth (°C. d) Smit and Singels, (2006) 

init_lf_area Initial leaf area of first appeared leaf (cm²) Zhou et al., (2003) 

max_ini_la Initial leaf area of leaves appeared after top parts formation (cm²) Zhou et al., (2003) 

max_it_dw Maximum dry biomass of internodes (g) Lingle, (1999) 

maxdgl Maximum number of developed green leaf a tiller can hold (# . tiller-1) Vianna et al., (2020) 

maxgl Maximum number of green leaf a tiller can hold (# . tiller-1) Marin et al., (2015) 

mid_tt_it_gro Thermal time where internodes can achieve half of its maximum biomass (°C. d) Lingle, (1999) 

mid_tt_lf_gro Thermal time where leaves can achieve half of its maximum biomass (°C. d) Smit and Singels, (2006) 

mla Maximum leaf area (cm²) Marin et al. (2014) 

n_lf_it_from Number of leaves appeared before internode formation (# . tiller-1) Vianna et al., (2020) 

n_lf_stk_em Number of leaves appeared before stalks emerges at soil surface (# . tiller-1) Vianna et al., (2020) 

phyllochron Phyllochron interval for leaf appearance (°C. d) Marin et al., (2015)/Inman-Bamber, 1994 

plastochron Thermal time required for the appearance of phytometer (°C. d) Marin et al., (2015)/Inman-Bamber, 1994 

popmat Number of tillers on maturation (tiller. m-²) Marin and Jones, (2014)  

poppeak Maximum number of tillers (tiller. m-²) Marin et al., (2015) 

sla Specific leaf area (cm2.g-1) Ehara et al., (1994)  

tillochron Thermal time required for emergence of new tiller (°C. d) Bezuidenhout, (2000); Zhou and Shoko, (2011) 
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Table 12. Calibrated values for genotype RB867515 (µ), first set of parameters (PRS1) based on literature and second set of 

parameters (PRS2) perturbation ± 25% in relation to µ; CV is the coefficient of variation with respect to µ. 

Parameters µ 
PRS1  PRS2 

Min Max CV (%) Min Max CV (%) 

amax 44.9 41.3 60.7 22% 33.7 56.1 25% 
chudec 1600 1200 1800 19% 1200 2000 25% 
chumat 1600 1500 2850 42% 1200 2000 25% 
chupeak 1400 404 1950 55% 1050 1750 25% 
chustk 650 400 1050 50% 488 813 25% 
eff 0.069 0.04 0.08 29% 0.05 0.09 25% 
end_tt_it_gro 1200 800 1400 25% 900 1500 25% 
end_tt_lf_gro 1300 1100 1500 15% 975 1625 25% 
init_lf_area 15 10 30 67% 11 19 25% 
max_ini_la 120 80 180 42% 90 150 25% 
max_it_dw 28 18 35 30% 21 35 25% 
maxdgl 6 6 12 50% 5 8 25% 
maxgl 11 10 12 9% 8 14 25% 
mid_tt_it_gro 400 380 600 28% 300 500 25% 
mid_tt_lf_gro 700 400 800 29% 525 875 25% 
mla 600 450 800 29% 450 750 25% 
n_lf_it_from 3 2 6 67% 2 4 25% 
n_lf_stk_em 4 3 8 63% 3 5 25% 
phyllochron 132 107 169 23% 99 165 25% 
plastochron 132 107 169 23% 99 165 25% 
popmat 9.5 8 12 21% 7 12 25% 
poppeak 27 17 30 24% 20 34 25% 
sla 120 100 121 9% 90 150 25% 
tillochron 69 48.1 134.8 63% 52 86 25% 
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3.3. Results 

3.3.1. Sample size 

The sample sizes of 65 and 127 showed relatively high variability, both in the sensitivity indices and in the 

order of the main parameters explaining the model variance (Figure 13 and 14). For the lower sample sizes (65 and 

127) evaluated, it was not possible to obtain sensitivity indices and so accurately quantify the order of importance of 

the parameters because the sum of the sensitivity indices, 𝑆𝑖 and 𝑆𝑇𝑖 , diverged from 1. In this case, for these sample 

sizes, the eFAST method was not able to quantify the sensitivity indices (Tables 13 and 14). For the sample size of 

257, however, the minimum sample size required varied as a function of the output variable and the set PRS1 and 

PRS2 used.  

We observed that the convergence of the sensitivity index varied according to the output variable in 

function of the sample size available, and for the variables TIL and SDM, PRS1 and PRS2 influenced the sample size 

(Tables 13 and 14). In the case of PRS1, for TIL, the minimum required sample size was 257 and for SDM, it was 

1025, what were smaller than the 513 and 2049 obtained in PRS2 for TIL and SDM, respectively (Table 13 and 14; 

Figure 5 and 6). For POL and LAI, the order of importance of parameters is no longer affected after 513 onwards 

for PRS1 (Table 13). However, in PRS2, for POL, the order of importance of the parameters was not changed after 

the sample size of 513 onwards. For LAI, however, the order of importance only stabilized at the sample size of 

2049 and 4097 (Table 14). The SDM and SFM variables required larger sample sizes, and regardless of the parameter 

range, the most appropriate minimum sample size for the application of eFAST was 2049 for the variables 

considered in this analysis. 

 

 

Figure 5. Evolution of sensitivity index of the most important parameter (MIP) with increasing sample size for variables leaf area 
index (A), mass stalk dry (B) and fresh (C), sucrose content (D), and tillering (E) for PRS1; red line is the average of the 10 

simulations for each sample size and blue represents the max and min 𝑆𝑖  of each sample size. 
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Figure 6. Evolution of sensitivity index of the most important parameter (MIP) with increasing sample size for variables leaf area 
index (A), mass stalk dry (B) and fresh (C), sucrose content (D), and tillering (E) for PRS2. red line is the average of the 10 

simulations for each sample size and blue represents the max and min 𝑆𝑖  of each sample size. 
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Table 13. The order of importance of the genotype parameters for the PRS1 interval, considering the main sensitivity index (𝑆𝑖) and treatment Bare. 

Variable Rank 
Sample Size 

65 129 257 513 1025 2049 4097 

SDM 

1 - - - - plastochron plastochron plastochron 

2 - - - - max_it_dw max_it_dw max_it_dw 

3 - - - - n_lf_it_from n_lf_it_from n_lf_it_from 

4 - - - - eff eff eff 

5 - - - - popmat popmat popmat 

6 - - - - n_lf_stk_em n_lf_stk_em n_lf_stk_em 

SFM 

1 - - - - plastochron plastochron plastochron 

2 - - - - mid_tt_it_gro mid_tt_it_gro mid_tt_it_gro 

3 - - - - max_it_dw max_it_dw max_it_dw 

4 - - - - end_tt_it_gro end_tt_it_gro end_tt_it_gro 

5 - - - - eff eff eff 

6 - - - - n_lf_it_from n_lf_it_from n_lf_it_from 

POL 
1 - - - mid_tt_it_gro mid_tt_it_gro mid_tt_it_gro mid_tt_it_gro 

2 - - - end_tt_it_gro end_tt_it_gro end_tt_it_gro end_tt_it_gro 

TIL 1 - - popmat popmat popmat popmat popmat 

LAI 
1 - - - popmat popmat popmat popmat 

2 - - - mla mla mla mla 
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Table 14. The order of importance of the genotype parameters for the PRS2 interval, considering the main sensitivity index (𝑆𝑖) and treatment Bare. 

Variable Rank 
Sample Size 

65 129 257 513 1025 2049 4097 

SDM 

1 - - - - - popmat popmat 

2 - - - - - plastochron plastochron 

3 - - - - - max_it_dw max_it_dw 

4 - - - - - eff eff 

SFM 

1 - - - - popmat popmat popmat 

2 - - - - plastochron plastochron plastochron 

3 - - - - max_it_dw max_it_dw max_it_dw 

4 - - - - mid_tt_it_gro mid_tt_it_gro mid_tt_it_gro 

5 - - - - eff eff eff 

6 - - - - end_tt_it_gro end_tt_it_gro end_tt_it_gro 

POL 
1 - - - mid_tt_it_gro mid_tt_it_gro mid_tt_it_gro mid_tt_it_gro 

2 - - - end_tt_it_gro end_tt_it_gro end_tt_it_gro end_tt_it_gro 

TIL 1 - - - popmat popmat popmat popmat 

LAI 

1 - - - maxgl maxgl maxgl maxgl 

2 - - - popmat popmat popmat popmat 

3 - - - mid_tt_lf_gro mid_tt_lf_gro mid_tt_lf_gro mid_tt_lf_gro 
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3.3.2. Crop features 

We consider two key points to evaluate; (i) the order of importance of the parameters and (ii) the values 

of  𝑆𝑖 and 𝑆𝑇𝑖 in both parameter ranges (PRS1 and PRS2). We noticed that GCTB only affects the order of the 

main parameter only in PRS2, while 𝑆𝑖 and  𝑆𝑇𝑖 values were slightly affected between GCTB and Bare treatments. 

In PRS1, the results between Bare and GCTB were similar since the main parameter for all variables was 

maintained regardless of the presence or absence of GCTB (Figure 7). For example, the main parameter for SDM 

and SFM was the plastochron, and it was responsible for explaining 29% and 31.6% of the variance in the Bare and 

GCTB treatments, respectively; for SFM the explained variance was 27.9% and 30.4% for Bare and GCTB, 

respectively (Table 15 and 16). The GCTB only influenced the order of importance of the parameters of the variable 

SDM, which in the Bare treatment the parameter n_lf_stk_em was the 6th parameter (explaining 5.4% of the variance) 

and in the treatment with GCTB it was the 3rd (explaining 12.7% of the variance) (Table 15 and 16). Furthermore, in 

the SFM variable, the plastochron parameter appears to have greater relevance in the presence of GCTB compared to 

Bare, as the percentage explained only by it increased, decreasing the values of the parameters mid_tt_it_gro and 

max_it_dw (Tables 15 and 16).  

In PRS2, the presence of GCTB affected the results in relation to the analysis for the variables SDM, 

SFM and LAI, while for TIL and POL there was no influence of GCTB (Figure 7). In relation to LAI, the presence 

of GCTB implied the inclusion of the parameter mla between the significant parameters, that is, going from 3 

parameters in Bare (maxgl, popmat and mid_tt_lf_gro) to 4 parameters in treatment GCTB (maxgl, popmat, mid_tt_lf_gro 

and mla) (Table 15 and 16). The SDM main parameter in the Bare treatment was the popmat (explaining 33.9% of the 

variance), while in the GCTB treatment the main parameter was the plastochron (explaining 29.0% of the variance) 

(Table 15 and 16). Thus, like in SFM variable, where the main parameter was popmat in bare treatment (26.6% of the 

variance) and plastochron in GCTB treatment (30.5% of the variance). 
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Figure 7. Main sensitivity index (𝑆𝑖) and total sensitivity index (𝑆𝑇𝑖 ) for PRS1 and PRS2 for the sample size of 2049 and bare and GCTB treatments; the sensitivity analysis was calculated for the end-
of-season value of each output variable. 
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3.3.3. Effect of range parameters 

For SDM, considering the sample size of 2049, we observed a reduction in the number of significant 

parameters between PRS1 and PRS2. In PRS1 there were 6 significant parameters (plastochron, max_it_dw, n_lf_it_from, 

eff, popmat, and n_lf_ stk_em), which together were responsible for explaining 81.6% (Table 15) and 82.2% (Table 16) 

of the variance in the bare and GCTB treatments, respectively. In the case of PRS2, only 4 parameters (popmat, 

plastochron, max_it_dw, and eff) were significant, responsible for explaining 70% (Table 15) and 70.1% (Table 16) of 

the variance in the bare and GCTB treatments, respectively.  

Among the output variables analyzed, SFM was the one with the highest number of significant 

parameters, from 6 to 7 parameters (Table 15 and 16). In PRS1 there were 6 significant parameters in the bare 

treatment (plastochron, mid_tt_it_gro, max_it_dw, end_tt_it_gro, eff, and n_lf_it_form), which explained 96.8% (Table 15) of 

the variance, while in the GCTB treatment there were 7 parameters (plastochron, max_it_dw, mid_tt_it_gro, n_lf_stk_em , 

end_tt_it_gro, eff, and n_lf_it_from), which explain 93.3% of the variance (Table 16). In the case of PRS2, there were 6 

significant parameters in both treatments, responsible for explaining around 93.1% (Table 15) and 95% (Table 16) of 

the variance in the bare and GCTB treatment, respectively. In the bare treatment, two results should be highlighted: 

(i) popmat was not a significant parameter in PRS1, while in PRS2 it was the most important parameter (Table 15). On 

the other hand, in the GCTB treatment, popmat remained irrelevant in PRS1 and was the second most important 

parameter in PRS2; the most important parameter was plastochron (Table 16). 

The variable LAI in PRS1 presented only two significant parameters (parameters had 𝑆𝑖> 0.05) regardless 

of treatment (Bare or GCTB); the two main parameters were popmat and mla (Tables 15 and 16). However, in PRS2 

the number of significant parameters increased, to 3 (maxgl, popmat, and mid_tt_lf_growth; Table 15) in bare and to 4 

(maxgl, popmat, mid_tt_lf_growth, and mla; Table 16). The biggest discrepancy is in the variance explained by the 

significant parameters, where in PRS1 they were 33.9% (Table 15) and 34.6% (Table 16), and in PRS2 they were 

55.2% (Table 15) and 60% (Table 16). 

For variables TIL and POL there was no difference in the order of importance of the parameters in 

relation to PRS1 and PRS2. For the TIL variable, there was no difference between PRS1 and PRS2, being popmat 

responsible for explaining 99.8% of the variance regardless of treatment. In the case of the POL, there was no 

change in the group of significant parameters or in their order, with the parameters mid_tt_it_growth and 

end_tt_it_growth being the only significant ones, regardless of the treatment and the PRS1 and PRS2 set (Tables 15 

and 16). However, we noticed that mid_tt_it_growth in PRS1 explained 65.8% (Table 15) and 64.2% (Table 16) of the 

variance, while in PRS2 it was 39.2% (Table 15 and 16). 
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Table 15. Relative value of the model output variance ( 𝜎2) explained individually by each parameter, and the variance sum ( 

∑𝜎2 ) of the parameters; we only considered the parameters that presented 𝑆𝑖 >0.05 and sample size of 2049 in treatment Bare. 

Variable 

PRS1 PRS2 

Parameters 𝜎2 Rank ∑𝜎2 Parameters 𝜎2 Rank ∑𝜎2 

SDM 

plastochron 29.0% 1° 29.0% popmat 33.9% 1° 33.9% 
max_it_dw 17.2% 2° 46.2% plastochron 16.7% 2° 50.6% 
n_lf_it_from 10.6% 3° 56.8% max_it_dw 9.8% 3° 60.4% 
eff 10.5% 4° 67.3% eff 9.6% 4° 70.0% 
popmat 8.9% 5° 76.2% - - - - 

n_lf_stk_em 5.4% 6° 81.6% - - - - 

SFM 

plastochron 27.9% 1° 27.9% popmat 26.6% 1° 26.6% 

mid_tt_it_gro 21.1% 2° 49.0% plastochron 21.3% 2° 47.9% 

max_it_dw 18.9% 3° 67.9% max_it_dw 14.2% 3° 62.1% 

end_tt_it_gro 12.7% 4° 80.6% mid_tt_it_gro 11.9% 4° 74.0% 

eff 9.0% 5° 89.6% eff 10.6% 5° 84.6% 

n_lf_it_from 7.1% 6° 96.8% end_tt_it_gro 8.5% 6° 93.1% 

POL 
mid_tt_it_gro 65.8% 1° 65.8% mid_tt_it_gro 39.2% 1° 39.2% 

end_tt_it_gro 20.1% 2° 85.9% end_tt_it_gro 29.8% 2° 69.1% 

TIL popmat 99.8% 1° 99.8% popmat 99.8% 1° 99.8% 

LAI 

popmat 18.8% 1° 18.8% maxgl 28.3% 1° 28.3% 

mla 15.1% 2° 33.9% popmat 17.5% 2° 45.8% 

- - - - mid_tt_lf_gro 9.4% 3° 55.2% 

PRS1 and PRS2 are the different sets of tested parameter ranges 
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Table 16. Relative value of the model output variance ( 𝜎2) explained individually by each parameter, and the variance sum ( 

∑𝜎2 ) of the parameters; we only considered the parameters that presented 𝑆𝑖 >0.05 and sample size of 2049 in treatment 

GCTB.  

Variabl
e 

PRS1 PRS2 

Parameters 𝜎2 
Ran
k 

∑𝜎2 Parameters 𝜎2 
Ran
k 

∑𝜎2 

SDM 

plastochron 31.6% 1° 31.6% popmat 29.0% 1° 29.0% 

max_it_dw 14.0% 2° 45.5% plastochron 23.6% 2° 52.6% 

n_lf_stk_em 12.7% 3° 58.3% max_it_dw 9.5% 3° 62.1% 

n_lf_it_from 10.4% 4° 68.7% eff 8.0% 4° 70.1% 

eff 8.0% 5° 76.7% - - - - 

popmat 5.5% 6° 82.2% - - - - 

SFM 

plastochron 30.4% 1° 30.4% plastochron 30.5% 1° 30.5% 

max_it_dw 15.9% 2° 46.3% popmat 21.8% 2° 52.3% 

mid_tt_it_gro 15.9% 3° 62.2% max_it_dw  13.3% 3° 65.6% 

n_lf_stk_em 8.7% 4° 70.9% mid_tt_it_gro 12.3% 4° 77.9% 

end_tt_it_gro 8.2% 5° 79.1% end_tt_it_gro 8.8% 5° 86.7% 

eff 7.2% 6° 86.2% eff 8.3% 6° 95.0% 

n_lf_it_from 7.1% 7° 93.3% - - - - 

POL 
mid_tt_it_gro 64.2% 1° 64.2% mid_tt_it_gro 39.2% 1° 39.2% 

end_tt_it_gro 16.7% 2° 80.9% end_tt_it_gro 29.3% 2° 68.5% 

TIL popmat 99.8% 1° 99.8% popmat 99.8% 1° 99.8% 

LAI 

popmat 19.8% 1° 19.8% maxgl 29.6% 1° 29.6% 

mla 14.8% 2° 34.6% popmat 15.8% 2° 45.5% 

- - - - mid_tt_it_gro 9.5% 3° 55.0% 

- - - - mla 5.0% 4° 60.0% 

PRS1 and PRS2 are the different sets of tested parameter ranges 

 

3.3.4. Time-dependent effects on global sensitivity analysis 

Having defined the appropriate optimum sample size (2049), we performed an analysis considering a 

temporal variation in the different stages of the sugarcane crop cycle (plant cane to 3rd ratoon). We observed that the 

GSA over time provided two important results: (i) the sugarcane season did not affect the order of importance of 

parameters; (ii) at different times of sugarcane growth, there were different parameters responsible for explaining the 

greater variance of the model. The order of parameters was not changed compared to ratoons; for example, for 

SDM we noticed that the same parameters have the same degree of importance in all ratoons (Figure 8). The same 

pattern was repeated for all variables and their respective parameters. However, the growth period in which a 

sensitivity analysis was performed affected which parameter explained the greatest model variance.  

For the variable SDM, the order of parameters was not altered in relation to ratoons, regardless of the set 

of parameters (PRS1 and PRS2) and treatment (Bare and GCTB) (Figure 8). However, during the different growth 

phases, there was a change in the order of the main parameter. For example, during the crop establishment and 

development phase, the plastochron parameter was responsible for explaining more than 50% of the SDM variance, 

becoming the main parameter in this period when using the PRS2 set. On the other hand, at the end of the 

maturation phase, the plastochron was the second most important parameter, behind the popmat with the PRS2 set 

(Figure 8 - PRS2 Bare and GCTB). In PRS1, during the emergence phase until mid-establishment, the main 

parameter was n_lf_it_from, later the plastochron became the main parameter until the end of the growth phase (Figure 
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8 - PRS1 Bare and GCTB). Furthermore, in short periods and isolated in the growth phase, the parameters 

n_lf_it_from, end_tt_lf_gro and n_lf_ stk_em were significant using the PRS2 set (Figure 8 - PRS2 Bare and GCTB); 

these three parameters were not reported in Tables 15 and 16 as they were not significant at the end of the growth 

phase. This pattern was not observed in PRS1 (Figure 8 - PRS1 Bare and GCTB), that is, all significant parameters 

presented in Tables 15 and 16 appeared in the analysis throughout the growth phases.  

For SFM, plastochron had a greater impact on the simulation regardless of the parameter set (PRS1 and 

PRS2) or treatment (GCTB and Bare; Figure 9). Among the sets of parameters, PRS1 and PRS2, there was the 

inclusion of the popmat parameter in PRS1 in the Bare treatment; however, its influence was minimal (5%). For PRS2, 

the popmat remained relevant during most parts of the growth phase, but in our view not enough to have more 

impact on the SFM simulations. Finally, the end_tt_lf_gro parameter was significant at specific moments in PRS2, both 

in Bare and in GCTB, a situation not observed in PRS1 (Figure 9). 

The LAI variable, contrary to what was seen in sections 3.2 and 3.3, where the maximum number of 

significant parameters was 4 (Table 15 e 16), was influenced by fifteen parameters at different growth phases (Figure 

10). However, this large number of parameters is due to one-off events, because they did not present a pattern or a 

period of influence in sequence during the growth phase. In PRS1, we observed that tillochron, plastochron, mla and 

init_leaf_area parameters had greater relevance, as they explained, individually, more than 40% of the variance of LAI 

at different moments of emergence phase and of establishment phase (Figure 10; PRS1 Bare and GCTB). In the 

establishment and maturity stages, the variance of the LAI limited to the mla and popmat parameters with the PRS1 

set and, in our view, the mla parameter was the most important parameter as it was significant in all growth phases 

(Figure 10 - PRS1 Bare and GCTB). In PRS2, the emergence and establishment phases were dominated by plastochron 

and mla, and in the development and maturation phases, the parameters maxgl and mid_tt_lf_gro were responsible for 

explaining most of the variance (Figure 10 - PRS2 Bare and GCTB). In our view, considering the PRS2 set, the most 

important parameter was maxgl because it explained more than 30% of the variance in almost all growth phases. This 

result showed the uncertainty present in the range of the chosen parameters, since maxgl was not significant at 

growth phases in the PRS1 set (Figure 10 - PRS1 Bare and GCTB).  

For the variable POL, as in LAI, we had the inclusion of several parameters depending on the of the 

analyzed growth phase (Figure 11). In this case, in PRS1, in addition to mid_tt_it_gro and end_tt_it_gro, there was the 

inclusion of plastochron, n_lf_stk_em and n_lf_it_from (Figure 11; PRS1 Bare and GCTB). In PRS2, the parameters 

plastochron, n_lf_stk_em, n_lf_it_from and end_tt_lf_gro were included (Figure 11; PRS2 Bare and GCTB). For PRS1, the 

parameter end_tt_it_gro was not significant in the 1st ratoon (Figure 11; PRS1 Bare and GCTB), evidencing a 

combination of the range of parameters with the weather conditions for that season. Yet, for PRS2, end_tt_lf_gro was 

significant, while in PRS1 the same was not observed. 

The TIL variable had two main parameters, from the beginning to the middle of the cycle, that was 

tillochron and from the middle to the end of the cycle popmat (Figure 12). In the first half of the cycle, the tilochron 

influence was around 90%, while in the second half the popmat explained more than 90% of the variance. In the 

transition period between these two phases of the crop cycle, that takes place between the end of the establishment 

and half of the development of the crop, we observed that there was a punctual influence of some other parameters, 

such as mla and plastochron. However, during this transition, there were strong indications of the effect of climate on 

GSA, as these two parameters (mla and plastochron) were not in all ratoons. To corroborate this result, we did not 

observe relevant influences of the parameter range (PRS1 or PRS2) and the evaluated treatment (Bare or GCTB). 
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Figure 8.  The main sensitivity index (𝑆𝑖) and total sensitivity index (𝑆𝑇𝑖) calculated in PRS1 to Plant Cane (PC), 1st,2nd, and 3rd Ratoons for Stalk Dry Mass. 
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Figure 9. The main sensitivity index (𝑆𝑖) and total sensitivity index (𝑆𝑇𝑖) calculated in PRS1 to Plant Cane (PC), 1st,2nd, and 3rd Ratoons for Stalk Fresh Mass. 
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Figure 10. The main sensitivity index (𝑆𝑖) and total sensitivity index (𝑆𝑇𝑖) calculated in PRS1 to Plant Cane (PC), 1st,2nd, and 3rd Ratoons for Leaf Are Index 
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Figure 11. The main sensitivity index (𝑆𝑖) and total sensitivity index (𝑆𝑇𝑖) calculated in PRS1 to Plant Cane (PC), 1st,2nd, and 3rd Ratoons for Sucrose content. 
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Figure 12. The main sensitivity index (𝑆𝑖) and total sensitivity index (𝑆𝑇𝑖) calculated in PRS1 to Plant Cane (PC), 1st,2nd, and 3rd Ratoons for Tillering 
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3.4. Discussion 

We identified that the sample size of 2,049 was the most suitable for application of the eFAST method 

with the SAMUCA model, regardless of the variable of interest or the parameter sets (PRS1 or PRS2) (Tables 13 and 

14). This result agrees with that reported by Wang et al., (2012), where the sample size of 2,049 produced the most 

stable sensitivity indices. However, the sample size can be different depending on the variable of interest; for 

instance, POL required a minimum size of 513 to converge (Table 13 and 14), while SDM and SFM require a sample 

size of at least 2,049 (Table 5 and 6). Furthermore, for the TIL variable, we noticed that the sample size in PRS1 was 

257 and in PRS2 it was 513 (Tables 5 and 6). This difference implied that the computational time might be reduced 

depending on the output variable, thus, the high computational cost, one of the biggest limitations of the GSA 

(Gilardelli et al., 2018; Jeuffroy et al., 2006; Marino et al., 2008), can be optimized if previous studies that explore the 

sample size are carried out.  

As far as we know, Wang et al., (2013) was the only study using the eFAST method for a PBCM that 

evaluated different sample sizes and serves as the main reference source for other GSA studies. However, unlike our 

study, they determined the sample size based on a single output variable. In addition to the output variable, the 

sample size was also different depending on the set of parameters applied (PRS1 and PRS2; Tables 13 and 14). To 

our knowledge, there is no available studies on PBCM considering the relationship between the sample size in 

different analysis variables and the parameter range, and we can now state that sample size in GSA may vary as a 

function of: (i) the analyzed output variable and (ii) range parameters. 

As in many studies on the influence of the environment on sensitivity indices (Dejonge et al. 2012, Sexton 

et al. 2017, Zhang et al. 2020), there was an effect of GCTB on SAMUCA sensitivity indices, but it was not sufficient 

to change the order of importance of the parameters and it did not influence the parameter range (PRS1 and PRS2) 

(Figures 8, 9, 10, 11, and 12). For example, the SFM had the plastochron parameter as the main parameter in PRS1 in 

both treatments (bare and GCTB), and in PRS2, the main parameter was plastochorn in Bare treatment and popmat in 

GCTB treatment. To consider that a GCTB was sufficient to change the order of importance of the parameters, an 

alteration between the parameters should be observed in both sets of parameters (PRS1 and PRS2; Tables 15 and 

16). In the case of GCTB, it has a direct influence on the soil heat flux and on the soil water dynamics (Vianna et al., 

2020; Pereira et al., 2020), which would hypothetically refer to the lower effect of GCTB on GSA for the variables 

LAI, POL, SDM, SFM and TIL; if we would evaluate soil temperature or evapotranspiration, we would possibly 

have a greater impact of GCTB, as it is directly related to these variables. We assume this based on the results of 

DeJonge al. (2012), who identified that radiation use efficiency (RUE) as the most important parameter for yield, 

both for irrigated and rainfed treatments. However, for crop evapotranspiration (ETc), in the irrigated environment, 

the main parameters were related to the crop, while in the rainfed environment the main parameters were related to 

the soil (Dejong et al., 2012). Thus, the effect of management on the sensitivity analysis is dependent on the variable 

of interest and did not affect all simulations variables in our study. 

The range of parameters was the main source of uncertainty for the sensitivity analysis, changing the 

order of parameters for the variables SDM, SFM, and LAI. Wang et al., (2020) and Li et. (2019) have already 

identified that parameter range affected the order and variance explained by each parameter. Many studies have 

applied parameter ranges with relative values from GSA studies in different PBCM (Jin et al., 2018; Li et al., 2019; 

Tan et al., 2016; Vazquez-Cruz et al., 2014), which in our view is a mistake, based on the influence of the parameter 

range. According to Santelli et al., (1999), the principle of the GSA is to quantify the model uncertainty based on 
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perturbations on the environmental variables. In this sense, the use of relative values in the parameter ranges without 

experimental foundations may not represent well the influence of the parameters of a PBCM. For example, for the 

variable LAI, mla and maxgl were observed as the main parameters in PRS1 and PRS2, respectively. The CV of these 

parameters was 29% (mla) and 9% (maxgl), in PRS1, and 25% for both parameters in PRS2; for this configuration of 

PRS1, maxgl was not significant, but it was the most important parameter in PRS2. Yet, this can be related to the 

correlation that exists between the parameters, neglected in many Bayesians and PBCM applications (Marin et al., 

2017; Pereira et al., 2021), which demonstrated that any uncertainty analysis using relative values seems to be 

inadequate. 

In sensitivity analysis, it is necessary to use a time interval for one evaluation, as changes in the order of 

importance of main parameters occurred during the growth of the crop. For example, considering our final SFM 

yield value, the parameters popmat and plastochron accounted for between 21.8% and 30.4% of the variation, 

respectively (Table 16). However, the popmat is less relevant than the plastochron, as the plastochron influenced a longer 

period of the cycle, being responsible for explaining up to 60% of the variance in the first 150 days of each ratoon in 

the PRS2 set (Figure 9, bare and GCTB). For the TIL variable, this was even more evident, having distinct 

parameters and explaining over 90% of the variation in different times. In addition, the occurrence of significant 

different parameters between ratoon years indicated a possible influence of climate variation (Figure 12). Several 

GSA studies showed the effect of the seasonality in sensitivity indices, independent of the method adopted (Attia et 

al., 2021; Loos and Lemaître, 2015; Li et al., 2019; Sexton et al., 2017; Tan et al., 2017; Tan et al., 2016; Vazquez-Cruz 

et al., 2014; Xing et al., 2017). In our study, we performed the GSA at a daily time step from plant cane to 3rd ratoon 

and identified that classification of the importance of parameters between ratoons did not change (Figure 8, 9, 10, 

11, and 12). However, there is evidence that the weather conditions interfered with the sensitivity index, as observed 

by Anderson et al., 2014; Attia et al., 2021; Gilardelli et al., 2018; Sexton et al., 2017. Thus, for sugarcane models, we 

must use time intervals to perform the GSA and consider that there is evidence of climate influence on the GSA. 

 

3.5. Conclusion 

The results showed that the sample size and parameter range were important for GSA, and that a sample 

size of at least 2049 was required was necessary for the sensitivity indices to converge regardless of the variable. 

However, some variables could do with smaller sizes, such as the case of TIL that predicted a sample size of 257. 

The range of parameters must be carefully investigated, and we demonstrate that the use of relative values without 

biophysical basis to determine the parameter ranges is inappropriate for the uncertainty analysis, and measured 

thresholds should always be used, even if from different genotypes, to determine the model's response across the full 

range of parameters. We did not identify the influence of GCTB and the different ratoons on the order of 

importance of the parameters, they only slightly affected the values (𝑆𝑖  and 𝑆𝑇𝑖) of the sensitivity indices. 
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4. GLOBAL SENSITIVITY ANALYSIS OF GENOTYPE AND SOIL PARAMETERS 

IN A SUGARCANE MODEL FOR CONTRASTING PRODUCTION 

ENVIRONMENTS ACROSS BRAZIL 

 

Abstract 

Due to climate change issues and the limitations for expanding agricultural areas, Brazilian farms are constantly 
pushed to increase production efficiency. The use of process-based models (PBCM) to test cultivars, management 
options and environmental evaluation are currently a reality. For model applications such as these, it is important to 
determine which parameters explain the greatest variation in simulations in different production environments. In 
this sense, our study determined which are the most important genotype parameters for the SAMUCA crop model in 
the main producing regions in Brazil, for irrigated and rainfed conditions, and the importance of soil parameters in 
those environments. We performed a global sensitivity analysis (GSA) and calculated two sensitivity indices: the 
extended Fourier Amplitude Sensitivity Test (eFAST) and Partial Rank Correlation Coefficient (PRCC). A total of 31 
parameters were analyzed, 24 of which genotype and 7 from the soil, and we concluded that only 13 parameters were 
significant, regardless of the output variable. Furthermore, we confirmed that the weather mainly affected the 
parameters plastochron and eff, which are important for fresh and dry stalk mass variables. In environments with 
well rainfall distribution the plastochron was the main parameter, while in environments subjected to greater water 
stress, the eff was the most important parameter. We noticed that any soil parameter was important for irrigated 
conditions, while for rainfed, the field capacity and the permanent wilting point were relevant in environments with 
poor rainfall distribution and shallow soils. Rainy places with deep soils showed no sensitivity to soil parameters as 
well.  
 
Keywords: SAMUCA, PRCC, eFAST 

 

4.1. Introduction 

Sugarcane occupies 8.3 Mha in Brazil with an average yield of 70.3 Mg ha-1 (CONAB, 2022) in diverse 

areas in terms of climate, soil, management, and cultivars. The Brazilian sugarcane industry is in constant 

development, testing and releasing new cultivars and management practices to increase the yield. It is consensus that 

environment and genotypes control the sugarcane yield level (Leal et al., 2013; Vianna et al., 2020) and interacts with 

farming practices (Soares and Marin, 2021), interrow spacing (Gasparotto et al., 2020) and crop water responses 

(Inman-Bamber and Smith, 2005). Process-based crop models (PBCM) are able to assess cultivars performances in 

terms of yield (Inman-Bamber et al., 2012; Jeuffroy et al., 2006), the effect of green cane trash blanket (GCTB), 

interrow spacing and soil processes on crop growth (Vianna et al., 2020), and irrigation strategies (Coelho et al., 

2020) across distinct environments.  

The SAMUCA model (Marin & Jones, 2014; Marin et al., 2017; Vianna et al., 2020) was developed to 

consider important soil-plant-atmosphere processes to the crop farming system, and it was so far mainly tested for 

one of the most cultivated cultivar in Brazil, the RB867515 (RIDESA, 2018). It is well known that the development 

of new cultivars is a matter of time, motivated by different strategies such as greater resistance to water stress 

(Natarajan et al., 2020), pests and diseases (Cursi et al., 2022; Zhang et al., 2021), greater yield in irrigated areas (B 

Péné, 2019; Béhou and Péné, 2020) and for adaptation to the climate change (Marin et al., 2014; Zhao and Li, 2015). 

Yet, sugarcane crop has been expanded to new areas with different climates and soils in Brazil (Arruda et al., 2017). 

To implement new cultivars in PBCM, the determination of which soil and genotype parameters are important for 

assuring good model performance and highly relevant for model calibration.   
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Usually, sugarcane PBCM’s have many genotype parameters compared to other PBCM’s developed for 

annual crops such as maize and wheat. For instance, DSSAT/CASUPRO, DSSAT/CANEGRO, and SAMUCA are 

PCBM’s dedicated to sugarcane, respectively 33, 18, and 24 genotype parameters, while DSSAT/CERES-MAIZE 

and DSSAT/CERES-WHEAT only 6 and 7 parameters, respectively. PBCM’s also have many soil parameters, 

which also demand specific calibration based on field measurements. Calibrating these parameters requires complex 

experiments and much time, which increasingly motivates the use of statistical methods to optimize the calibration 

process (He et al., 2009; Marin et al., 2011; Maulidiani et al., 2018). However, it is interesting to reduce the number of 

parameters to be measured or estimated for including new cultivars or soil profiles into the PBCM. Parameters that 

are influential but are not easily measurable are ideal candidates for statistical calibration, while parameters that do 

not influence model outputs or do not vary greatly could remain fixed to default values (Sexton et al., 2017). 

Sensitivity analysis (SA) is a tool that can determine which parameters are most important to the model (Wallach et 

al., 2018). The SA can be divided into two groups: the local sensitivity analysis (LSA) and the global sensitivity 

analysis (GSA). The LSA consists of changing a single parameter at a time, while the remaining parameters are kept 

at their reference values; in other words, this method is based on the local derivatives of the model's output 

concerning the variation of a single parameter, which indicates how fast the output varies around the reference 

parameter values. The GSA is more robust and allows to evaluate the entire uncertainty range of parameters, 

considering changes in all parameters along with their range, as well as the interactions among parameters (Saltelli et 

al. 1999). The GSA methods can also be classified into three groups: screening, regression, and variance; all of these 

follow the Bayesian sampling principle. The most used screening method is the Morris method, which permits to 

define the most important model parameters and it is often considered a qualitative method (Dejonge et al., 2012; 

Morris, 1991). Regression methods, such as the Partial Rank Correlation Coefficient (PRCC), provide the correlation 

between the model's output and the selected parameters and they are mandatory when the parameter and the model 

have a monotonic relationship (Krishnan and Aggarwal, 2018; Marino et al., 2008). Finally, the methods based on the 

variance are the most commonly used, and the three main are: Sobol (Sobol, 2001a), Fourier Amplitude Sensitivity 

Test (FAST) (Cukier et al., 1978), and the extended Fourier Amplitude Sensitivity Test (eFAST) (Saltelli et al., 1999); 

they provide the parameters causing the greater variability for the model's output and usually have a high 

computational cost. 

Studies have shown that a GSA can be dependent on the method used (Marino et al., 2008), the range of 

parameters (Wang et al., 2013), the time-series for which the output variable is analyzed (Xing et al., 2017), climate 

(Sexton et al., 2017), soil (Varella et al., 2010) and management (Zhang et al., 2020; Zhao et al., 2014). Pereira et al. 

(2021) used the PRCC method to determine which parameters are more important for the SAMUCA model, 

concluding that green cane trash blanket (GCTB) did not influence the importance of parameters. However, Pereira 

et al. (2021) analysed only the cultivar RB867515 growing in one irrigated site in Brazil and did not consider the GSA 

throughout the crop cycle, being these two aspects demonstrably determinant for the GSA results (Jin et al., 2018; 

Silvestro et al., 2017). In Brazil there are different climates and soils in which sugarcane is produced under rainfed 

and irrigated conditions. To our knowledge, there are no studies evaluating the impact of soil and genotype 

parameters across different environments and what their real impacts are on the main output variables of a crop 

model. In this sense, our study aimed (i) to determine which are the most important soil and genotype parameters 

using a robust set of experiments conducted across different producing environments in Brazil for irrigated and 

rainfed environments, and (ii) to evaluate the importance of the soil parameters across different producing 

environments in Brazil. 
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4.2. Material and Methods 

4.2.1. The SAMUCA model 

The SAMUCA model creation was motivated by the argument of Sinclair and Seligman (1996) in which 

they highlighted the importance of developing the proper models for knowledge groups, allowing to deeply 

understand and represent the mechanisms involved in the simulation process and the uncertainties inherent to the 

given models. The SAMUCA is a mechanistic crop growth model tested and applied to the environmental conditions 

and management of sugarcane in Brazil. The most updated version of SAMUCA model was developed by Vianna et 

al. (2020), which was aimed to reduce the uncertainties around model structure, soil moisture, and heat flow in 

comparison with previous versions (Marin and Jones, 2014; Marin et al.,2017). Soil moisture is simulated by the 

widely tested “tipping bucket” method, whereas heat flow is solved numerically according to Kroes et al. (2009). 

Both processes can also be simulated under the effect of GCTB, which has recently emerged as an important 

operational practice for Brazilian farmers (Carvalho et al. 2017). Further improvements were also made to the 

subroutines dedicated to the simulation of carbon partitioning at phytomer level, layered-canopy photosynthesis, 

tillering and root growth (Laclau and Laclau, 2009; Bezuidenhout et al., 2003; O’Leary, 2000). This new version of 

the SAMUCA model is also included in the DSSAT platform v4.8. 

4.2.2. Soil covering and water treatment simulations 

To investigate the effect of weather, soil, and irrigation on the sensitivity analysis and consequently 

determine the most important parameters for each specific condition, we conducted an extensive literature review to 

simulate experiments in different sugarcane production environments in Brazil. We also obtained several studies that 

well described experiments in terms of climates, soils, and cultivars, from which we chose eight experiments across 8 

producing regions of Brazil (Figure 13), comprising different planting dates (Table 17), three different soils, and four 

different climates (Figure 14) according to the Köppen classification. To evaluate the effect of irrigation, we carried 

out simulations for all sites using irrigated and rainfed treatments, even though these conditions were not present in 

the field experiment conducted. In this way, we were able to determine which were the main soil parameters for the 

rainfed and irrigated conditions. We set up the model for automatic irrigation whenever the water content of the soil 

reached 80% of the total water availability (TAW). 

In our simulations, we considered only experiments with plant cane and because of this we adopted no 

GCTB as plant cane plots usually have bare soil. Yet, according to Pereira et al., (2021) soil covering did not affect 

the GSA in SAMUCA, with no change in the order of importance of the genotype parameters among plant cane and 

ratoons. 
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Figure 13. Geographic location, soil and climate of the locations considered for the global sensitivity analysis of the model 
SAMUCA. 

 

 

Figure 14. Monthly variation of mean maximum and minimum temperatures (Tmax and Tmin) and rainfall (Rain) of the eight 
simulated location 
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Table 17. Description of site, geography information, soil taxonomy, wise soil reference, depth, cultivar, planting and harvesting dates (PaH) 

Site Geographical Definition 
Soil 

Taxonomy 
Wise Reference Depth (cm) Cultivar PaH 

Ⴕ Coruripe, AL 
10º13'S / 36º17'W 

/ 016 m asl 
Utissol Haplic Acrisol 55 RB867515 09/16/2005 to 10/15/2006  

Ⴗ Capim, PB 
06º57'S / 35º08'W 

/ 59 m asl 
Quartzipsam

ment 
Ferralic Arenosol 70 RB867515 07/15/2007 to 07/15/2008 

Ⴛ Jataí, GO 
17º52'S / 51º43'W 

/ 731 m asl 
Oxisol Haplic Ferrasol 120 RB867515 07/26/2009 to 07/26/2010  

Ⴕ União, PI 
04º35'S / 42º51'W 

/ 52 m asl 
Plinthic 
Oxisol 

Humic Plinthosol 120 RB867515 09/29/2007 to 06/16/2008  

Ⴛ Piracicaba, SP 
22º52'S / 47º30'W 

/ 560 m asl 
Oxisol Haplic Ferrasol 120 RB867515 10/16/2021 to 10/15/2013  

Ⴟ Gurupi, TO 
11º43'S / 49º04'W 

/ 283 m asl 
Oxisol Haplic Ferrasol 120 RB832846 09/15/2015 to 09/15/2016  

Ⴞ Paranavaí, PR 
23º04'S / 52º25'W 

/ 446 m asl 
Oxisol Haplic Ferrasol 120 RB72454 07/15/2008 to 07/15/2009  

Ⴛ Petrolina, PE 
09º23'S / 40º30'W/ 376 

m asl 
Oxisol Haplic Ferrasol 120 RB867515 07/26/2009 to 07/26/2010  

Ⴕ Marin et al., 2015; Ⴗ Vianna and Sentelhas (2015); Ⴛ Vianna et al., (2020); Ⴞ de Souza et al., (2015); Ⴟ Barros et al., (2012); PaH is planting and harvest date. 
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4.2.3. Soil parameters range 

The definition of soil parameters was based on the information from experimental descriptions available 

in the literature (Table 18). However, to deal with the lack of information in some regions, as mentioned in Marin et 

al. (2015), we used the WISE database developed by the International Soil Reference and Information Center 

(ISRIC) (Batjes, 2009; Gijsman et al., 2007) for gap filling the soil profiles with missing data of representative soil 

class. For each soil profile, we calculated a variation rate for each soil layer in relation to the top soil layer (∆P) 

(Eq.14). We thus performed a non-parametric regression for each of the parameters as a function of depth (Figure 

15) for each soil profile considering the following parameters: wilting point (WPp), field capacity (FCp), saturation 

point (STp), saturated hydraulic conductivity (Ksat), clay content (Pclay), silt content (Psilt), sand content (Psand). 

We then considered a mean curve (black lines in Figure 15) and 95% confidence interval (colored area) to determine 

the mean, maximum and minimum values of the soil parameters in each layer (Appendix 1). Finally, we randomly 

sampled only the first layer of the soil profiles and used the regression equations for estimating the parameters of the 

deeper layers. 

𝑃𝑠(𝑛) = 𝑃𝑔 + ∆𝑃(𝑛) (14) 

where 𝑃𝑠(𝑛) is the value assigned to the soil parameter for layer n, based on the value generated for the first layer, 𝑃𝑔; 

∆𝑃(𝑛) is the variation rate between 𝑃𝑔 and layer n.  

 

Table 18. Soil parameters obtained experimentally (X) and estimated using pedotransfer functions (*).  

Site 
Field 

capacity 

Wilting 

point 

Saturation 

point 

Saturated hydraulic 

conductivity 

Content 

clay 

Content 

silt 

Content 

sand 

Ⴕ Coruripe, AL * * * * * * * 

Ⴗ Capim, PB X X X * X X X 

Ⴛ Jataí, GO * * * * * * * 

Ⴕ União, PI * * * * * * * 

Ⴛ Piracicaba, SP X X X X X X X 

Ⴟ Gurupi, TO * * * * X X X 

Ⴞ Paranavaí, PR X X * * X X X 

Ⴛ Petrolina, PE * * * * * * * 

Ⴕ Marin et al., 2015; Ⴗ Vianna and Sentelhas (2015); Ⴛ Vianna et al., (2020); Ⴞ de Souza et al., (2015); Ⴟ Barros et al., 

(2012); PaH is planting and harvest date. 
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Figure 15. The non-parametric regression for the soil parameters: wilting point (WPp), field capacity (FCp), saturation point 
(STp), saturated hydraulic conductivity (Ksat), clay content (Pclay), silt content (Psilt), sand content (Psand); dark line represents 

the mean value and the 95% confidence range and is represented by the colored area.  

 

4.2.4.  Genotype parameters range  

For GSA, one must respect the variation of parameters observed in the experiments and avoid creating 

ranges without biophysical foundations (Saltelli et al., 1999), as the parameter range is the greatest source of 

uncertainty in the GSA results (Wang et al., 2013). As the GSA technique aims at quantification of model 

uncertainty, the realistic variation of the parameters must be respected by using the measured values and not 

assumed relative variation ranges (Saltelli et al., 1999). We used the same range of parameters as reported by Pereira 

et al. (2021) because the set of parameters adopted (Table 19) was based on well-conducted experiments and 

intensive measurements.  

 

4.2.5.  Global sensitivity analyses methods 

According to Marino et al. (2008), different GSA methods may result in different outputs, and in this 

context we use two methods (the Extended Fourier Amplitude Sensitivity Test, eFAST, and the Partial Classification 

Correlation Coefficient, PRCC) because they have different types of research questions: eFAST answers which 

parameters cause the greatest variance in the output of the model, while PRCC indicates the degree of correlation 

between the parameter and the variable of interest. By combining these two methods, we can determine which 

parameters explain the highest variance and the correlation they have with the output variables. For both methods, 

we computed the GSA at a daily time step from planting date until harvest considering the output variables: leaf area 

index (LAI), stalk dry mass (SDM), stalk fresh mass (SFM), sucrose concentration in stalk fresh mass (POL), and 

tillering (TIL). 
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4.2.5.1. Extended Fourier Amplitude Sensitivity Test 

eFAST is an algorithm that combines two GSA methods: the Fourier Amplitude Sensitivity Test (FAST) 

and Sobol (Saltelli et al. 1999, 2010), which in turn, use the model output variance principle. While FAST scans the 

entire parameter space and obtain quantitative sensitivity measures in terms of the main sensitivity index (𝑆𝑖) of each 

parameter to output variance, the Sobol calculates the total sensitivity index (𝑆𝑇𝑖) and provides an indication of the 

overall effect of a given parameter, considering all possible interactions of that parameter with others (Sobol, 2001b). 

Therefore, by integrating the merits of FAST and Sobol’s algorithms, eFAST offers a method that has the 

characteristics of high efficiency and precision, as well as the ability to calculate the interaction effects between 

parameters. The method is based on the decomposition of the model's output variance, determining which fraction 

of the variance can be explained by the variation in each input parameter. In recent years, due to these advantageous 

properties, eFAST has become more popular in hydrological, ecological, and agronomy modeling (Li et al., 2019; 

Reusser et al., 2011; Varella et al., 2010b; Xing et al., 2017). In this study, we implemented the SAMUCA model in 

the sensitivity R-package available at: https://cran.r-project.org/web/packages/sensitivity/index.html to apply the 

method eFAST. 

Two sensitivity indices can be computed for each parameter 𝑆𝑖 (Eq. 15) and 𝑆𝑇𝑖  (Eq.16). The  𝑆𝑖 and 𝑆𝑇𝑖  

must vary between 0 and 1, where the effects are greater when the indices reach values close to 1 whereas values 

close to 0 indicate negligible effects. According to Dejong et al., (2012) and Xing et al., (2017) it is considered that 

the effect of the parameter can be negligible when 𝑆𝑖< 0.05 and 𝑆𝑇𝑖   < 0.1, that is, indicating that the variance 

explained by parameter i is less than 5% and the variance explained by parameter i plus their interaction with the 

other parameters is less than 10%. 

𝑆𝑖 =
𝑉𝐴𝑅𝑖
𝑉𝐴𝑅𝑡

 (15) 

𝑆𝑇𝑖 =
𝑉𝐴𝑅𝑡 − 𝑉𝐴𝑅−𝑖

𝑉𝐴𝑅𝑡
 (16) 

 

where 𝑆𝑖  represents the fraction of the output variance of the model explained by the input variation of a given 

parameter; 𝑉𝐴𝑅𝑖 is the estimated conditional variance of the i-th parameter. 𝑉𝐴𝑅𝑡 is the variance of the output of the 

variable and  𝑉𝐴𝑅−𝑖  is the estimated conditional variance, except for the i-th factor is the sum of all the variance 

terms that do not include the parameters i.   

The sensitivity indices obtained through FAST can be affected by the boundary conditions of the 

simulation, such as the presence of GCTB, and by the sample size. In this sense, we carried out a previous study to 

determine the required sample size and the effect of GCTB on the sensitivity indices obtained by the eFAST method 

for the SAMUCA model. We tested sample sizes of 65, 129, 257, 513, 1025, 2049, and 4097 for different variables 

and treatment bare and GCTB. We concluded that the size of 2049 was sufficient to apply eFAST, and the GCTB 

had minimal influence. The summary of the results is presented in appendix 2 and 3. 
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Table 19. Cultivar-specific parameters, descriptions, units, and range used for uniform distribution sampling and standard values assumed for initial simulations. 

Parameter Description Min  Max Reference 

amax Assimilation rate at light saturation point (μmol.m-2.s-1) 41.3 44.9 60.7 Sage et al., (2013) 

chudec Heat units for start of tiller abortion (°C.d) 1200 1600 1800 Liu et al., (1998) 

chumat Heat units for population establishment (°C.d) 1500 1600 2850 Zhou and Shoko, (2011)/Marin and Jones, 

(2014) chupeak Heat units for population peak (°C.d) 400 1400 1950 Coelho et al., (2020); Marin et al., (2017) 

Nassif et al., 2012) 

 

chustk Heat units for start culm elongation (°C.d ) 404 650 1050 Marin et al., (2017); /Singels and 

Bezuidenhout, (2002) eff Carboxylation efficiency (μmol.m-2
.s-1 / μmol.m-2

. s-1) 0.040 0.069 0.080 Sage et al., (2013) 

end_tt_it_gro Thermal time for completion of internode growth (°C.d ) 600 1200 1400 Lingle, (1999) 

end_tt_lf_gro Thermal time for completion of leaf growth (°C.d ) 1100 1300 1500 Smit and Singels, (2006) 

init_lf_area Initial leaf area of first appeared leaf (cm²) 15 10 30 Zhou et al., (2003) 

max_ini_la Initial leaf area of leaves appeared after top parts formation (cm²) 80 120 180 Zhou et al., (2003) 

max_it_dw Maximum dry biomass of internodes (g) 18 28 35 Lingle, (1999) 

maxdgl Maximum number of developed green leaf a tiller can hold (#/tiller) 6 6 12 Vianna et al., (2020) 

maxgl Maximum number of green leaf a tiller can hold (#/tiller) 10.0 12.0 12.0 Marin et al., (2015) 

mid_tt_it_gro Thermal time where internodes can achieve half of its maximum 

biomass 

380 400 700 Lingle, (1999) 

mid_tt_lf_gro Thermal time where leaves can achieve half of its maximum biomass 400 700 800 Smit and Singels, (2006) 

mla Maximum leaf area (cm²) 450 600 800 Marin et al. (2014) 

n_lf_it_form Number of leaves appeared before internode formation (#/tiller) 3 3 8 Vianna et al., (2020) 

n_lf_stk_em Number of leaves appeared before stalks emerges at soil surface 

(#/tiller) 

3 4 8 Vianna et al., (2020) 

phyllochron Phyllochron interval for leaf appearance (°C.d) 107 132 169 Marin et al., (2015)/Inman-Bamber, 1994 

plastochron Thermal time required for the appearance of phytometer (°C.d) 107 132 169 Marin et al., (2015)/Inman-Bamber, 1994 

popmat Number of tillers on maturation (tiller/m²) 8.0 9.5 12.0 Marin and Jones, (2014)  

poppeak Maximum number of tillers (tiller/m²) 17.0 22.0 30.0 Marin et al., (2015) 

sla Specific leaf area (cm2.g-1) 100.0 120.00 121.00 Ehara et al., (1994)  

tillochron Thermal time required for emergence of new tiller (°C.d) 48.1 69.0 134.8 Bezuidenhout, (2000); Zhou and Shoko, 

(2011)  is the value calibrated by Vianna et al. (2020) for cultivar RB867515; Max and Min value are range used for random parameters uniform distribution.  
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4.2.5.2. Partial Rank Correlation Coefficient (PRCC) 

We used PRCC because it serves as a complement to eFAST. While eFAST provides the parameters’ 

importance in explaining the largest variance in the model output, the PRCC indicates the correlation between 

parameter and output variables (Varella et al., 2010; Marino et al., 2008), in our case, for SDM, SFM, TIL, LAI and 

POL. Unlike Pearson’s correlation, when the association between parameter i and variable Y is obtained without the 

interference of another parameter j, PRCC measures this association taking into account other parameters influence 

in the output variance (Baba et al., 2004). The method consists of a massive sampling of parameters using the Monte 

Carlo approach to evaluate the correlation between each parameter and the model output. Therefore, we obtained 

the linear relationship between the genetic and soil parameters and the multiple model outputs with the PRCC 

method, where the positive values of PRCC represent direct linear relationship while the negative means an inverse 

linear relationship. The difference between PRCC and its advantage over Pearson's correlation coefficient is that the 

PRCC coefficient can be applied in non-linear models. Rank-based methods such as PRCC offer robust SA and easy 

implementation if the input-output relationship is monotonic (Saltelli et al., 1999). PRCC values range from -1 to 1, 

measuring the strength of a linear association between an input and an output. In our analysis, we considered only 

the genotype and soil parameters that were statistically significant at 1% for the components of the sugarcane output 

model (Marino et al., 2008). In addition, Mukaka (2012) presented different classes of interpretation for PRCC 

(Table 20) and based on the results obtained by Marino et al. (2008), we considered only the parameters with high 

and very high correlation (PRCC ≥ |0.7|), as the parameters with these values explain the high output variance. 

 

Table 20. Rules for interpreting the size of correlation coefficient (Mukaka,2012). 

Size of Correlation Interpretation 

0.90 to 1.00 ( -0.90 to -1.00) Very high positive (negative) correlation 

0.70 to 0.90 (-0.70 to -0.90) High positive (negative) correlation 

0.50 to 0.70 (-0.50 to -0.70) Moderate positive (negative) correlation 

0.30 to 0.50 (-0.30 to -0.50) Low positive (negative) correlation 

0.00 to 0.30 (-0.00 to -0.30) Negligible correlation 

 

4.3. Results 

4.3.1. Time-series sensitivity analysis 

4.3.1.1. Irrigated conditions 

The PRCC method identified the same genotype parameters in different locations and did not indicate a 

significant influence on soil parameters under irrigated conditions (Figure 16). For the TIL variable, two parameters 

were identified as the most important, and their importance was dependent on the evaluated sample time; the 

tillochron parameters were inversely related between 0 and 180 days after planting (DAP), while popmat showed a 

direct relationship between 180 and 360 DAP. (Figure 16). The most critical parameters for SFM and SDM were the 

plastochron, n_lf_when_stk_em, n_lf_it_form, and mid_tt_it_gro, which showed an inverse relation; eff had a direct relation 
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with SFM and SDM (Figure 16). Still, on SDM and SFM variables, the results showed that the importance of the 

plastochron is lower in the places where the eff becomes more important. This was observed for instance in the final 

third of the simulation in Capim, Coruripe, Gurupi, Petrolina, and Piracicaba (Figure 16). For POL, mid_tt_it_gro and 

end_tt_it_gro were the parameters that had a direct relationship during most parts of the cycle, having the same 

pattern in all places (Figure 16). Parameters related to LAI were those that most affected the simulations. Mainly mla 

and plastochron, where mla shows a positive relationship from 90 to 360 DAP, and plastochron negatively affecting from 

60 to 90 DAP and positively from 180 to 360 DAP (Figure 16). 

The results obtained by the PRCC method agreed with those obtained with the eFAST method, indicating 

the same pattern observed for genotype parameters and were not influenced by soil parameters (Figure 17). For the 

variable TIL, for example, more than 90% of the variance was explained by the tillochron (60 to 180 DAP) and popmat 

(180 to 360 DAP) for all locations; between 120 and 180 DAP there was an effect of other parameters in Piracicaba, 

such as mla and plastochron, but their effect did not exceed 15% (Figure 17). The parameters that explained most the 

variance of SDM and SFM were plastochron, n_lf_stk_emerg, n_lf_it_form, mid_tt_it_gro and eff. These five parameters 

were also observed with the PRCC method, whereas the parameter popmat was also influential according to the 

PRCC method (at the end of the cycle of SDM and SFM in Piracicaba; Figure 17). Overall, for SDM and SFM, more 

than 60% of the variance over the cycle was explained by eff or plastochron at all sites (Figure 17). For POL, the 

parameter mid_tt_it_gro explains more than 85% of the variance, starting from DAP 180 for all locations (Figure 17), 

and end_tt_it_gro explained most of the remaining variance (approximately 15%). The LAI was affected by up to 13 

genotype parameters, each part of the cycle being affected differently, such as init_leaf_init from 0 to 90 DAP 

(explaining more than 70% of the variance), plastochron from 60 to 120 DAP (explaining between 40 to 70 % of 

variance) and mla (explaining between 30 to 50% of the variance in the more part of cycle) (Figure 17). 

The 𝑆𝑇𝑖  (Figure 18) showed that the interaction of the sla, phyllochron, n_lf_it_form and maxgl parameters 

with the other genotype parameters made these parameters momentarily important close to the 70 DAP for the LAI 

variable in Paranavaí-PR and Petrolina-PE (Figure 18). However, the parameters that dominate the simulation 

process were the same as previously indicated by the values of 𝑆𝑖 . The POL was another variable that, in addition to 

the parameters already mentioned in the previous paragraph, had the momentary inclusion of the maxgl and 

max_it_dw parameters (Figure 18). Finally, for the variables SDM, SFM and TIL, we did not observe changes in 

comparison with the results obtained by the values of 𝑆𝑖 . 
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Figure 16. Partial Rank Correlation Coefficient (PRCC) results for time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and 

tillering (TIL) the treatment irrigation 
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Figure 17. The main sensitivity index (Si) results for time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and tillering (TIL) the 
treatment irrigation.  
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Figure 18. The total sensitivity index (STi) results for time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and tillering (TIL) the 
treatment irrigation 
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4.3.1.2. Rainfed conditions 

Under rainfed conditions, the PRCC method identified the same genotype parameters in different 

locations. In addition, it highlighted the importance of soil parameters, WPp and FCp, in environments with greater 

water restriction. First, the TIL and POL variables had a weak influence of soil parameters (Figure 19). The TIL was 

inversely related between 0 and 180 DAP to the tillochron parameter; later it was directly related to the popmat 

parameter (Figure 19). POL had the parameters mid_tt_it_gro and end_tt_it_gro as the two most influential, showing a 

direct relationship during most of the growing cycle and similar pattern in all locations (Figure 19). The most 

important parameters for SFM and SDM were plastochron, eff, n_lf_when_stk_em, n_lf_it_form and mid_tt_it_gro, which 

showed an inverse relationship; eff was directly related to SFM and SDM (Figure 19). Yet, for the SDM and SFM 

variables, the results showed that the importance of the plastochron is lower in places where eff becomes more 

important. This was observed, for example, in the final third of the simulation in Capim-PB, Coruripe-AL, Gurupi-

TO and Petrolina-PB (Figure 19), some of the hottest places in our data set. Furthermore, in Coruripe-PB and 

Capim-PB, the parameters FCp (directly linear to SDM and SFM) and WPp (inversely linear to SDM and SFM) were 

significant between 150 and 240 DAP (Figure 19). The parameters related to LAI were the ones that most affected 

the simulations, mainly mla and plastochron; mla stood out for having a positive relationship from 90 to 360 DAP, and 

plastochron for negatively affect it from 60 to 90 DAP and positively affect it from 180 to 360 DAP (Figure 19). 

Nevertheless, just as SDM and SFM, LAI was influenced by soil parameters FCp (directly linear), and WPp (inversely 

linear), between 120 and 150 DAP. 

The results obtained by the eFAST method converged with those obtained by the PRCC, showing the 

same pattern observed for the genotype and soil parameters in rainfed conditions (Figure 20). For the variable TIL, 

for example, more than 90% of the variance was explained by tillochron (60 to 180 DAP) and popmat (180 to 360 

DAP) for all locations. We observed an effect of other parameters in Piracicaba between 120 and 180 DAP, such as 

mla and plastochron, but their effect did not exceed 15% (Figure 20). In addition to the TIL, the POL was another 

variable that, under rainfed conditions, did not have any soil parameter explaining part of its variance; in fact, all of 

its variance was explained by the genotype parameters. For POL, the mid_tt_it_gro parameter explained more than 

85% of the variance, starting at DAP 180 for all locations (Figure 20), and end_tt_it_gro explained most of the 

remaining variance (approximately 15%). The parameters that most explained the variance of SDM and SFM were 

plastochron, n_lf_stk_emerg, n_lf_it_form, mid_tt_it_gro and eff. These five parameters were also observed with the PRCC 

method, and the only difference in the results was the inclusion of the popmat parameter (end of the SDM and SFM 

cycle in Piracicaba; Figure 20). Overall, for SDM and SFM, more than 60% of the variation across the cycle was 

explained by eff or plastochron at all sites (Figure 20). Furthermore, in Capim-PB and Coruripe-PE, the soil parameters 

(FCp and WPp) explained between 20 and 40% of the variance between 120 and 180 DAP (Figure 20). LAI was 

affected by up to 13 genotype parameters, each part of the cycle being affected differently, such as init_leaf_init from 

0 to 90 DAP (explaining more than 70% of the variance), plastochron from 60 to 120 DAP (explaining between 40 and 

70% of variance) and mla (explaining between 30 and 50% of the variance for most of the cycle) (Figure 20). In 

addition to genotype parameters, in Capim-PB and Coruripe-AL, soil parameters explained up to 70% of the 

variance between DAP 60 and 120 (Figure 20). 

When analyzing the 𝑆𝑇𝑖  (Figure 21), it was observed that the interaction among parameters became greater 

in the environments with higher water stress in the shallower soils. The number of parameters that explained more 

than 15% of the variance in TIL, SDM, SFM, and POL increased in Coruripe-AL and Capim-PB in relation to the 
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remaining sites. For example, for TIL, the tillochron and popmat parameters explained all variance in all locations with 

exception of Capim-PB and Coruripe-AL. Moreover, for these two locations, in addition to the soil parameters, FCp 

and WWp, the parameters end_tt_it_gro, init_leaf_area, plastochron, and n_lf_it_form were included. 
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Figure 19. Partial Rank Correlation Coefficient (PRCC) results for time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and tillering 
(TIL) the treatment rainfed. 
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Figure 20. The main sensitivity index (Si) results for time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and tillering (TIL) the 
treatment rainfed. 
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Figure 21. The total sensitivity index (STi) results for time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and tillering (TIL) the 
treatment rainfed 
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4.3.2. Rank of most important parameters 

To define the parameters that explain the greatest variance of the model, we performed an average over 

time for the 𝑆𝑖  index (Figure 22). It was done because we observed that, at different times in the crop cycle, the 

parameter responsible for explaining most of the variance could be different. In this way, we were able to identify the 

most important parameters for each variable in all environments and analyzed the effect of climate on the 

parameters responsible for explaining the highest output variance.  

For the variable LAI, in irrigated environments, the parameter responsible for explaining the highest 

variance was the mla, which on average accounted for 40% of the variance (Figure 22). On the other hand, under 

rainfed conditions, there was a disparity between the parameters responsible for explaining the higher variance. In 

Paranavaí-PR, Piraciaba-SP, and Jataí-GO, the mla was kept as the main parameter, explaining about 30% of the 

variance. In União-PI, Petrolina-PE, and Gurupi-TO, however, the max_ini_lai explained from 20% to 50% of the 

variance. The FCp parameter was the main one in the regions of Capim-PB and Coruripe-AL, explaining from 30 to 

35% of the variance. 

POL was the variable that is the least influenced variable among the environments, regarding climate, soil, 

irrigated and rainfed treatments (Figure 22). We verified that the variance explained by the parameters between the 

irrigated and rainfed treatments were close, with mid_tt_it_gro being the most important parameter, responsible for 

explaining on average 50% to 60% of the POL variance regardless of climate, soil and water treatment. It should be 

emphasized again that Coruripe-AL was the only place that indicated the importance of the soil parameter in the 

rainfed condition for POL; the WPp parameter was responsible for explaining on average 20% of the variance. 

The SDM showed to be sensitive to plastochron and eff parameters in rainfed and irrigated environments 

(Figure 22). In Capim-PB, Coruripe-AL, Gurupi-TO, and Petrolina-PE, the main parameter was the eff, and in Jataí-

GO, Paranavaí-PR, Piracicaba-SP, and União-PI the main parameter was the plastochron. The variance explained by eff 

varied from 20% (Gurupi-TO) to 45% (Coruripe-AL) in rainfed, and in conditions of irrigation between 35% 

(Gurupi-TO) and 50% (Capim-PB). The variance explained through plastochron ranged from 45%, in Piracicaba-SP, 

to 55%, in Paranavaí-PR for both rainfed and irrigation treatments.  

The main parameters for SFM were plastochron and eff, and as well as for SDM no influence was observed of 

conditions rainfed and irrigation about the main parameter (Figure 22). In Jataí-GO, Paranavaí-PR, Piracicaba-SP, 

and União-PI the main parameter was the plastochron, and in Capim-PB, Coruripe-AL, Gurupi-TO, and Petrolina-PE, 

the main parameter was eff. On irrigated conditions, the variance explained by plastochron varied between 28% 

(Piracicaba-SP) e 32% (Jataí-GO), and the eff varied between 15% (Gurupi-TO) and 70% (Coruripe-AL). Even in 

regions where eff was the most important parameter, we observed plastochron as the second most important. This was 

not observed in the regions where the plastochron was the most important, as in the case of Jataí-GO and Piracicaba-

SP, where the eff did not appear among the most significant parameters (Figure 22).  

The TIL variable was dominated almost in isolation by the tillochron and popmat parameters in all locations 

and treatments. Piracicaba also had the plastochron and mla parameters in both the irrigated and rainfed conditions; 

and Coruripe-AL and Capim-PB were affected by soil parameters, mainly by FCp, which explained less than 20% of 

the variation in Capim-PB and almost 40% of the variation in Coruripe-AL (Figure 22). 
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Figure 22. Average of main sensitivity index (Si) time-series in different site for leaf area index (LAI), sucrose concentration (POL) stalk dry (SDM) and fresh (SFM) mass and tillering the treatment 
irrigation and rainfed 
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Table 21. Mean values of temperature (TAR), solar radiation (SRAD), and rainfall (RAIN)during the cycle and the parameters responsible for explaining the largest variance in for the largest variance in 

for stalk fresh (SFM) and stalk dry mass (SDM), leaf area index (LAI), tillering (TIL), and sucrose content (POL).  

SITE 
TAR SRAD RAIN LAI POL SDM SFM TIL 

(°C) (MJ.m-2. d-1) (mm) irrigation rainfed irrigation rainfed irrigation rainfed irrigation rainfed irrigation rainfed 

Capim-PB 25.8 20.1 1440 mla fcp mid_tt_it_growth mid_tt_it_growth eff eff eff eff popmat popmat 

Coruripe-AL 25.9 22.3 947 mla fcp mid_tt_it_growth mid_tt_it_growth eff eff eff eff popmat popmat 

Gurupi-TO 29.9 20.9 887 mla max_ini_lai mid_tt_it_growth mid_tt_it_growth eff eff eff eff popmat popmat 

Jataí-GO 22.8 18.8 1437 mla mla mid_tt_it_growth mid_tt_it_growth plastochron plastochron plastochron plastochron popmat popmat 

Paranavaí-PR 22.4 18.0 1142 mla mla mid_tt_it_growth mid_tt_it_growth plastochron plastochron plastochron plastochron popmat popmat 

Petrolina-PE 27.0 20.4 420 mla max_ini_lai mid_tt_it_growth mid_tt_it_growth eff eff eff eff popmat popmat 

Piracicaba-SP 21.5 18.0 1450 mla mla mid_tt_it_growth mid_tt_it_growth plastochron plastochron plastochron plastochron popmat popmat 

União-PI 26.8 20.1 1530 mla mla mid_tt_it_growth mid_tt_it_growth plastochron plastochron plastochron plastochron popmat popmat 
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4.4. Discussion 

The results obtained by the two GSA methods were similar. In both cases, the main parameters were 

indicated by the two methods, as also observed by (Marino et al., 2008). The combination of these two methods 

made it possible to evaluate the model's variance throughout the simulation and to identify the correlation of the 

parameters on the target variables. In GSA studies, some studies pointed out the importance of using more than one 

method to validate their results (Marino et al., 2008; Wang and Solomatine, 2019). The combination of PRCC and 

eFAST methods provided a more robust analysis on the uncertainty of the SAMUCA model, and in that sense, it is 

more suitable to use different and not similar methods to evaluate uncertainties in a crop model. For example, FAST 

and Sobol are methods focused on obtaining the parameters responsible for explaining the highest variance of the 

model (Wei, 2013), i.e., applied together, they serve to validate their results and will not probably provide additional 

information. Moreover, eFAST requires more computational time than PRCC (Vazquez-Cruz et al., 2014; Xing et al., 

2017), which should be considered in future studies, since the results were similar for the SAMUCA. Until then, the 

survey by Marino et al., (2008) was the only one to compare PRCC and eFAST and, like our results, showed 

agreement between these two methods. The PRCC, on the other hand, was more operationally efficient because of 

the lower computational cost, but its results depend on the monotonicity relationship between the parameter and an 

output variable (Krishnan and Aggarwal, 2018; Pereira et al., 2021). Thus, the application of GSA in crop models 

should consider the limitations of each method, the objectives of the study, and especially the computational cost 

involved.  

Our results showed that the boundary conditions had some influence on the sensitivity indices, being as 

important to the results as the GSA method adopted (Sexton et al., 2017; Varella et al., 2010; Zhang et al., 2020; 

Zhao et al., 2014). Regarding soil parameters in irrigated environments, we did not identify any influence on the 

SAMUCA model output, similarly as reported by Pereira et al, (2021). Under rainfed conditions and in soils with 

more than 100 cm of depth, in the same way there was no influence of soil parameters. This low influence of soil 

parameters on plant growth and development variables had already been reported in other models under rainfed 

conditions, such as STICS (Varella et al., 2012), InfoCrop Wheat (Krishnan and Aggarwal, 2018), and DSSAT-

CERES (LI et al., 2019). However, Dejong et al., (2012) identified that soil hydraulic parameters, such as field 

capacity, permanent wilting point, hydraulic conductivity, and saturation point, were significantly important for other 

variables, such as transpiration, evaporation, and evapotranspiration for CERES-Maize, and should be considered in 

future studies on GSA to confirm our results in the SAMUCA model. Finally, soil depth appeared to be more 

relevant in rainfed conditions than the parameters of field capacity and permanent wilting point. This can be 

explained as such variables have a greater influence in determining the rooting depth and available water for the 

crop. The plastochron, which is the time interval between the appearance of two successive phytomers (leaf+node), 

and the eff, which is related to the CO2 assimilation rate, were the most important parameters for SDM and SFM; 

and both parameters had a direct linear relationship with these output variables. In environments without restricted 

water but adequate levels of temperature and solar radiation, the crop grows with minimum limitation and that was 

the reason for such parameters appear as relevant in such conditions (Inman-Bamber and Smith, 2005; Marin et al., 

2014; Stokes et al., 2016) (Table 21). Interestingly, even under irrigated conditions, in regions with high average 

temperature and high solar irradiance, combined with shallow soils, the eff was the main parameter, followed closely 

by plastochron (Figure 22). We hypothesize that in such conditions, together with transient water stress, the high crop 

growth rate made those parameters crucial for simulation (Inman-Bamber and Smith, 2005; Stokes et al., 2016). 
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Interesting to note that in União-PI, with high air temperatures and solar radiation, plastochron was the main 

parameter for SDM and SFM, instead of eff, and this could be explained as the deeper soil increases the water storage 

capacity for the crop. As a result, the frequency of soil irrigation was lower compared to that in Capim-PB, Coruripe-

TO, Gurupi-TO, and Petrolina-PE, indicating transient water stress in these sites. 

The LAI variable can be considered the variable with the greatest uncertainty due to the large number of 

influential parameters in both simulated water treatments (Figure 22). It is a consensus that the LAI variable is one of 

the most complex for simulation, constantly having the lowest statistical performance indexes between simulated 

data and observed data when compared to other model output variables (Marin et al., 2015b; O’Leary, 2000; Vianna 

et al., 2020). This could be because the PBCMs are not yet ready to account for all the processes shaping canopy 

formation, which is generally simplified to a per-area index (e.g., LAI) and fixed parameters (e.g., light extinction 

coefficient). Another reason is that PBCMs still not properly account for all reduction factors in yield simulations 

due to the high complexity in measuring the various biotic and abiotic interactions, which are usually accounted as a 

yield gap factor (Fattori Junior et al., 2022; Lobell et al., 2009; Van Ittersum et al., 2003). This latent empiricism may 

result in increased number of input parameters to compensate for these yield gaps, which in one hand is important 

to correct model simulations but, in most cases, end up increasing the uncertainty in the simulation (Gan et al., 2014; 

Varella et al., 2012). For example, in environments without water restriction, the mla was the parameter responsible 

for explaining the highest variance of LAI, but in places with high water restriction, the FCp parameter has explained 

the highest variance (Table 21). This shows that different parameters, mla a growth-related parameter, and FCp a soil 

parameter, can cause significant variations in the simulation. The importance of the plastochron parameter should also 

be highlighted. Even though this parameter did not explain the higher variance of the LAI output, it was the only 

one that alternated its response throughout the simulation (Figures 16 and 19). In both irrigated and rainfed 

treatments, the plastochron has an inverse linear relationship to LAI until the simulation reaches the maximum LAI 

values, with a direct linear relationship. Such results show that this variable is extremely complex, and its uncertainty 

should deserve further efforts in future studies. 

Finally, our study analyzed the uncertainty of the SAMUCA model in different sugarcane production 

environments in Brazil. However, we did not consider the influence of long-term climate variability in the analysis. 

In addition, it would be interesting in future studies to evaluate soil parameters in rainfed environments about other 

output variables, such as evapotranspiration. We found this particularly important as our results indicated that the 

relevance of soil hydraulic parameters, such as FCp, WPp, Ksat, and STp, seemed to have less importance than the 

value attributed to soil depth. This information could be quite relevant since in practice we could focus on measuring 

only one piece of information in the field very accurately instead of several soil parameters altogether. In addition, 

these results may be linked to the empirical method of soil water balance. Like many PBCMs, SAMUCA uses the 

tipping bucket method to calculate the water balance in the soil, which can function well under monotonic drying 

conditions, but may not match the rates and patterns of water uptake by the crop during complex wetting and drying 

cycles in the field (Jarvis et al., 2022). 

 

4.5. Conclusion 

A total of 31 parameters were analyzed, 24 of which were genotype and 7 from the soil, and we concluded 

that only 13 parameters were significant, regardless of the output variable, climate, soil, and water treatment. They 

were, not necessarily in this order: mla, tillochron, max_ini_la, popmat, eff, max_it_dw, mid_tt_lf_gro, init_leaf_area, 
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n_lf_it_form, n_lf_when_stk_em, plastochron, FCp and WPp. Furthermore, we confirmed that the climate affected the 

main parameter only for the SDM and SFM variables, with the plastochron and eff parameters being the most 

important for these two variables. In environments with well-distributed rainfall, located in the Central part or in the 

Southern Brazil, the plastochron was the main parameter, while in hotter environments with lower soil water storage 

and so subject to higher water stress, the eff was the most important parameter. Regarding the soil parameters, we 

noticed that no soil parameter was important for the irrigated treatment, but in rainfed conditions the FCp and WPp 

were relevant in environments with poor rainfall distribution and shallow soils. Even in rainfed environments but 

with higher amounts and well-distributed rainfall and the deeper soils, soil parameters were less important for the 

SAMUCA model. Finally, soil depth may be the most important soil parameter for water dynamics, but we did not 

include it in the sensitivity analysis, and this is an important open question for future study. 
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APPENDICES 
 

APPENDIX A. Maximum (max), minimum (min), and average (avg) values of the soil physical parameters, obtained from the non-parametric regression as a function of depth. 

DEPTH 
(cm) 

WWp (m3 m-3) FCp (m3 m-3) STp (m3 m-3) Ksat (cm h-1) Pclay (g g-1) Psilt (g g) Psand (g g) 

min avg max min avg max min avg max min avg max min avg max min avg max min avg max 

Ferralic Arenosol 

5 0.048 0.071 0.093 0.162 0.192 0.222 0.407 0.426 0.445 9.183 10.311 11.439 0.094 0.109 0.124 0.073 0.130 0.188 0.708 0.761 0.813 
15 0.048 0.069 0.091 0.159 0.188 0.217 0.403 0.422 0.441 8.977 10.072 11.167 0.094 0.109 0.124 0.073 0.129 0.185 0.711 0.762 0.812 
25 0.047 0.068 0.089 0.156 0.185 0.213 0.399 0.418 0.436 8.772 9.833 10.895 0.095 0.109 0.124 0.074 0.128 0.182 0.714 0.763 0.812 
35 0.047 0.067 0.087 0.153 0.181 0.208 0.396 0.413 0.431 8.567 9.595 10.622 0.096 0.110 0.124 0.074 0.126 0.179 0.716 0.764 0.811 
45 0.046 0.066 0.085 0.151 0.177 0.203 0.392 0.409 0.426 8.361 9.356 10.350 0.096 0.110 0.124 0.074 0.125 0.176 0.719 0.765 0.811 
50 0.046 0.065 0.084 0.149 0.175 0.201 0.390 0.407 0.424 8.259 9.236 10.214 0.097 0.110 0.124 0.075 0.124 0.174 0.720 0.765 0.811 
60 0.045 0.064 0.083 0.146 0.171 0.196 0.387 0.403 0.419 8.053 8.998 9.942 0.098 0.110 0.123 0.075 0.123 0.171 0.723 0.766 0.810 
70 0.045 0.063 0.081 0.143 0.168 0.192 0.383 0.399 0.414 7.848 8.759 9.670 0.098 0.111 0.123 0.075 0.122 0.168 0.725 0.767 0.810 

  Haplic Acrisol 

5 0.030 0.064 0.097 0.162 0.206 0.250 0.415 0.434 0.452 8.215 10.856 13.498 0.112 0.166 0.219 0.092 0.134 0.176 0.623 0.701 0.778 
15 0.055 0.088 0.120 0.177 0.220 0.264 0.407 0.424 0.442 6.717 9.317 11.918 0.134 0.186 0.239 0.091 0.132 0.174 0.605 0.682 0.758 
25 0.079 0.111 0.144 0.192 0.235 0.277 0.398 0.415 0.433 5.219 7.778 10.337 0.155 0.207 0.258 0.090 0.131 0.172 0.587 0.663 0.738 
30 0.091 0.123 0.155 0.200 0.242 0.284 0.393 0.411 0.428 4.471 7.009 9.547 0.165 0.217 0.268 0.090 0.130 0.171 0.579 0.653 0.728 
35 0.103 0.135 0.167 0.207 0.249 0.291 0.389 0.406 0.423 3.722 6.239 8.757 0.176 0.227 0.278 0.089 0.130 0.170 0.570 0.644 0.718 
45 0.128 0.159 0.190 0.222 0.263 0.304 0.380 0.397 0.414 2.224 4.701 7.177 0.197 0.247 0.297 0.089 0.128 0.168 0.552 0.625 0.697 
50 0.140 0.171 0.202 0.229 0.270 0.311 0.375 0.392 0.409 1.475 3.931 6.387 0.208 0.257 0.307 0.088 0.127 0.167 0.543 0.615 0.687 
55 0.152 0.183 0.213 0.237 0.277 0.318 0.371 0.388 0.404 0.726 3.162 5.597 0.218 0.268 0.317 0.088 0.127 0.166 0.534 0.606 0.677 

  Haplic Ferrosol 

5 0.196 0.211 0.226 0.350 0.366 0.382 0.473 0.494 0.515 0.468 0.570 0.672 0.468 0.547 0.627 0.148 0.193 0.237 0.215 0.260 0.305 
15 0.197 0.212 0.226 0.349 0.365 0.380 0.472 0.493 0.513 0.468 0.569 0.670 0.473 0.551 0.630 0.149 0.193 0.237 0.211 0.255 0.300 
30 0.199 0.213 0.228 0.347 0.363 0.378 0.470 0.491 0.511 0.469 0.568 0.667 0.480 0.557 0.634 0.151 0.194 0.238 0.205 0.249 0.293 
45 0.200 0.215 0.229 0.346 0.361 0.376 0.469 0.488 0.508 0.469 0.566 0.663 0.487 0.562 0.638 0.153 0.195 0.238 0.199 0.242 0.285 
60 0.202 0.216 0.230 0.344 0.359 0.374 0.467 0.486 0.506 0.470 0.565 0.660 0.494 0.568 0.643 0.154 0.196 0.238 0.193 0.236 0.278 
75 0.204 0.218 0.231 0.343 0.357 0.372 0.465 0.484 0.503 0.470 0.564 0.657 0.501 0.574 0.647 0.156 0.197 0.238 0.188 0.229 0.271 
90 0.205 0.219 0.233 0.341 0.355 0.370 0.463 0.482 0.501 0.470 0.562 0.654 0.508 0.579 0.651 0.158 0.198 0.238 0.182 0.223 0.263 

120 0.209 0.222 0.235 0.338 0.352 0.366 0.460 0.478 0.496 0.471 0.560 0.648 0.522 0.591 0.660 0.161 0.200 0.239 0.170 0.209 0.249 
  Humic Plinthosol 

5 0.254 0.296 0.338 0.411 0.441 0.471 0.497 0.538 0.580 0.241 0.360 0.479 0.468 0.498 0.527 0.268 0.323 0.378 0.141 0.179 0.217 
15 0.247 0.290 0.333 0.404 0.434 0.465 0.492 0.535 0.577 0.257 0.378 0.500 0.474 0.505 0.535 0.258 0.314 0.370 0.142 0.181 0.220 
30 0.237 0.281 0.326 0.393 0.424 0.455 0.485 0.529 0.573 0.280 0.405 0.530 0.484 0.515 0.546 0.243 0.301 0.358 0.144 0.184 0.224 
45 0.227 0.273 0.318 0.382 0.414 0.446 0.478 0.523 0.568 0.303 0.432 0.561 0.493 0.525 0.557 0.228 0.287 0.347 0.146 0.188 0.229 
60 0.217 0.264 0.311 0.370 0.404 0.437 0.471 0.518 0.564 0.327 0.459 0.592 0.503 0.536 0.569 0.212 0.274 0.335 0.148 0.191 0.233 
75 0.207 0.256 0.304 0.359 0.393 0.427 0.464 0.512 0.560 0.350 0.486 0.622 0.512 0.546 0.580 0.197 0.260 0.323 0.150 0.194 0.238 
90 0.197 0.247 0.297 0.348 0.383 0.418 0.457 0.506 0.555 0.373 0.513 0.653 0.522 0.556 0.591 0.182 0.246 0.311 0.152 0.197 0.242 

120 0.177 0.230 0.282 0.326 0.363 0.400 0.443 0.495 0.547 0.419 0.567 0.714 0.541 0.577 0.614 0.151 0.219 0.287 0.156 0.204 0.251 

 



106 

APPENDIX B. Evolution of sensitivity index of the most important parameter (MIP) with increasing sample size for variables leaf area index (A), mass stalk dry (B) and fresh (C), sucrose 

content (D), and tillering (E) for bare; red line is the average of the 10 simulations for each sample size and in blue in blue we have the max and min 𝑆𝑖 of each sample size 
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APPENDIX C. Relative value of the model output variance ( 𝜎2) explained individually by each parameter, and the variance sum (∑𝜎2) of the parameters; we only considered the parameters that 

presented 𝑆𝑖 >0.05 and sample size of 2049 in treatment Bare and GCTB. 

Variable 

Bare GCTB 

Parameters 𝜎2 Rank ∑𝜎2 Parameters 𝜎2 Rank ∑𝜎2 

SD
M

 

plastochron 29.0% 1° 29.0% plastochron 31.6% 1° 31.6% 

max_it_dw 17.2% 2° 46.2% max_it_dw 14.0% 2° 45.5% 

n_lf_it_form 10.6% 3° 56.8% n_lf_when_stk_emerg 12.7% 3° 58.3% 

eff 10.5% 4° 67.3% n_lf_it_form 10.4% 4° 68.7% 

popmat 8.9% 5° 76.2% eff 8.0% 5° 76.7% 

n_lf_when_stk_emerg 5.4% 6° 81.6% popmat 5.5% 6° 82.2% 
SF

M
 

plastochron 27.9% 1° 27.9% plastochron 30.4% 1° 30.4% 

mid_tt_it_growth 21.1% 2° 49.0% max_it_dw 15.9% 2° 46.3% 

max_it_dw 18.9% 3° 67.9% mid_tt_it_growth 15.9% 3° 62.2% 

end_tt_it_growth 12.7% 4° 80.6% n_lf_when_stk_emerg 8.7% 4° 70.9% 

eff 9.0% 5° 89.6% end_tt_it_growth 8.2% 5° 79.1% 

n_lf_it_form 7.1% 6° 96.8% eff 7.2% 6° 86.2% 

P
O

L
 

mid_tt_it_growth 65.8% 1° 65.8% n_lf_it_form 7.1% 7° 93.3% 

end_tt_it_growth 20.1% 2° 85.9% mid_tt_it_growth 64.2% 1° 64.2% 

T
IL

 

popmat 99.8% 1° 99.8% end_tt_it_growth 16.7% 2° 80.9% 

L
A

I 

popmat 18.8% 1° 18.8% popmat 99.8% 1° 99.8% 

mla 15.1% 2° 33.9% popmat 19.8% 1° 19.8% 

    mla 14.8% 2° 34.6% 

 

 


