• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.11.2021.tde-12042022-143612
Document
Author
Full name
Evandro Henríque Figueiredo Moura da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Piracicaba, 2021
Supervisor
Committee
Marin, Fábio Ricardo (President)
Vianna, Murilo dos Santos
Pilau, Felipe Gustavo
Silva, Thieres George Freire da
Title in English
Crop modeling for understanding yield-gap causes and the potential for sustainable intensification of soybean in Brazil
Keywords in English
Glycine max L.
Crop modeling
Crop yield potential
N-fertilization
Water use
Yield gap
Abstract in English
In the next decades, the population is expected to rise by more than two billion people, and food demand projections point to the need to substantially increase soybean (Glycine max L.) supply for food, livestock feed, and biofuel. Soybean is the most important food protein source, and Brazil accounts for 37% (based on the 2020/2021 harvest) of the worlds soybean. The country is the largest soybean producer and exporter, with 60% and 40% of its soybean production is in tropical and subtropical environments. It is expected that the intensification of agricultural management will allow substantial increases in food production on existing agricultural lands, with lowest possible global environmental costs. This Ph.D. thesis explored the estimating of soybean potential yield under tropical and subtropical environments associated with agricultural water and nitrogen (N) management using field data analysis and crop modeling. In Chapter 1, we developed the conceptual framework for understanding the crop yield potential factors for soybean cropping systems in Brazil. We prospected water factors on Chapter 2, using field data and crop modeling to evaluate the soil water balance, evapotranspiration and soil water evaporation methods and crop water productivity. We also examined long-term scenarios to determine the impact of sustainable crop water management under different irrigation regimes, soil texture, and tillage practices on soybean growth and development. Chapter 3 focused on the effects of N-fertilization on soybean growth, crop yield, and protein and oil concentration using several doses of N under limited and non-limiting water conditions across thirteen soybean experiments in major soybean Brazilian producing regions. We also explored long-term scenarios to evaluate N management on soybean. The major findings in Chapters 2 and 3 were: (i) CROPGRO-Soybean model is a useful tool to analyze water and N management on soybean under tropical and subtropical environments; (ii) FAO- 56 Penman-Monteith evapotranspiration combined with Ritchie-Two-Stage soil water evaporation methods provided more accurate simulations; and (iii) N-fertilization provided substantially increases on seed protein concentration, despite that showed marginal or no response on soybean crop yield. Chapter 4 estimated the water-limited crop yield potential YP-W and crop yield potential (YP)using the cultivar calibration and model settings obtained in Chapter 2 and 3, and defined sixteen strategically selected agroclimatic zones (CZs) to represent Brazilian production. We also estimated the crop yield gap (YG), climate efficiency (EC), and agricultural efficiency (EA) for all CZs. We quantify an average YP-W of 4,684 kg ha-1, YP of 5,441 kg ha-1 , YG of 3,092 kg ha-1 EC of 78%, and EA of 50%. We also identified that 26% of soybean area in Brazil with EC < 95%, for this area improvements on root length density distribution with no-tillage practices can contribute to irrigated water savings by 20%. This Ph.D. thesis highlighted the importance of improving agricultural management across the soybean sowed in tropical and subtropical conditions to meet food security with environmental sustainability.
Title in Portuguese
O uso da modelagem agrícola para o entendimento das causas da lacuna de produtividade e quantificação do potencial de intensificação sustentável da soja no Brasil
Keywords in Portuguese
Glycine max L.
Fertilização nitrogenada
Lacuna de produtividade
Modelagem agrícola
Produtividade potencial
Uso agrícola da água
Abstract in Portuguese
As projeções de demanda de alimentos apontam para a necessidade de aumento substancial na oferta de soja (Glycine max L.). A soja é a principal fonte de proteína alimentar, e o Brasil corresponde a 37% (com base na safra 2020/2021) da produção mundial; sendo o maior produtor e exportador da cultura. A produção brasileira de soja é distribuída em ambientes tropicais (60%) e subtropicais (40%). Espera-se que a intensificação agrícola propicie aumentos substanciais na produção de alimentos nas áreas produtivas já existentes, com os menores custos ambientais globais possíveis. Esta tese de doutorado estimou a produtividade potencial da soja em ambientes tropicais e subtropicais associados ao manejo de água e nitrogênio (N), usando análise de dados de campo e modelagem agrícola. No Capítulo 1, uma estrutura conceitual foi desenvolvida para compreender os fatores de produtividade potencial da cultura para os sistemas de cultivo de soja no Brasil. Prospectou-se os fatores hídricos no Capítulo 2, usando dados de campo e modelagem agrícola para avaliar o balanço hídrico do solo, métodos de evapotranspiração e evaporação da água do solo e produtividade da água. Cenários de longo prazo foram simulados para determinar o impacto do manejo sustentável da água, sob diferentes regimes de irrigação, textura do solo e práticas de cultivo no desenvolvimento da soja. O Capítulo 3 focou nos efeitos da fertilização nitrogenada no crescimento da soja, produtividade de grão e concentração de proteína e óleo usando doses de nitrogênio (N) em condições de escassez e com pleno suprimento hídrico, em treze experimentos conduzidos em importantes regiões produtoras do Brasil. Também foi explorado cenários de longo prazo para avaliar o manejo de N na soja. As principais descobertas nos Capítulos 2 e 3 foram: (i) o modelo CROPGRO-Soybean foi uma ferramenta útil para analisar o manejo da água e do N na soja em ambientes tropicais e subtropicais; (ii) o método de evapotranspiração de FAO- 56 Penman-Monteith (PM) combinado com o método de Ritchie de evaporação da água do solo em dois estágios forneceram simulações mais acuradas; e (iii) a fertilização com N proporcionou aumentos substanciais na concentração de proteína da semente, apesar de ter apresentado resposta marginal ou nula em relação a produtividade. No Capítulo 4 estimou-se a produtividade potencial limitada por água YP-W e a produtividade potencial (YP) usando a calibração de cultivares e as configurações do modelo obtidas nos Capítulos 2 e 3; definindo-se dezesseis zonas agroclimáticas (CZs) estrategicamente selecionadas para representar a produção brasileira de soja. Também se estimou a lacuna de produtividade (YG), eficiência climática (EC) e eficiência agrícola (EA) para todos os CZs. Quantificou-se um YP-W médio de 4.684 kg ha-1, YP de 5.441 kg ha-1 , YG de 3.092 kg ha-1, EC de 78% e EA de 50%. Em 26% da área de soja no Brasil a EC < 95%, para esta área, melhorias na distribuição da densidade do comprimento da raiz e práticas de plantio direto podem contribuir para a redução média de 20% no consumo de água irrigada. Esta tese destacou a importância de melhorar o manejo agrícola da soja em condições tropicais e subtropicais para atender à segurança alimentar com sustentabilidade ambiental.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2022-04-12
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.