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RESUMO 
 

Zonas de manejo e predição espaço-temporal da variabilidade da produção de soja: 
Técnicas de machine learning aplicadas a parâmetros de qualidade física do solo  

 
Os métodos e ferramentas da agricultura de precisão são chave para garantir o aumento 

da produção de soja. Para isso, conhecer as variabilidades intra-campo é a chave para auxiliar na 
tomada de decisão do produtor agrícola. Embora os métodos de modelagem para estimativa da 
produção sejam baseados em condições regionais e/ou modelos agroecossistêmicos que não 
representam escalas locais, esta tese tem como objetivo utilizar técnicas de aprendizado de 
máquina em busca de melhorar a qualidade de dados para previsão de produtividade a nível de 
zonas de manejo. Sendo assim, esta pesquisa foi dividida em três capítulos que utilizam técnicas e 
métodos com foco em agricultura de precisão para validar a necessidade de garantir um maior 
suporte ao produtor agrícola a nível local. O primeiro capítulo teve como objetivo utilizar 
machine learning para melhorar a qualidade de dados oriundos do mapeamento de produtividade 
e informações de sensores de alta resolução na geração de zonas de manejo (MZs) além de 
validar as diferenças entre e intra MZs sob os aspectos relacionados as variáveis de solo. A 
hipótese deste primeiro capítulo esteve centrada na necessidade de utilizar a técnica de análise 
multivariada de componentes principais (PCA) para melhorar a qualidade de predição das MZs a 
partir dos dados originais. O segundo capítulo teve como objetivo estimar a produtividade de 
soja em cada MZs para múltiplos anos, em função de mapas de água no solo e do 
desenvolvimento das culturas. Como hipóteses para o capítulo se avaliou a necessidade de 
comprovar a existência de variabilidade da produtividade intra-regiões. Uma segunda hipótese 
focou em testar a qualidade de superfícies de refletância no infravermelho próximo (NIR) para 
representar o desenvolvimento da cultura em comparação ao uso de índice de vegetação por 
diferença normalizada (NDVI). A terceira hipótese foi de que a técnica de machine learning 
Random Forest (RF) apresenta uma maior qualidade de predição da produtividade devido sua 
eficiência em trabalhar com dados desbalanceadas em comparação ao método convencional de 
análise de regressão múltipla (MLR). O objetivo do terceiro capítulo foi entender a sensibilidade 
de modelos de cultura (Aquacrop e CROPGRO) na estimativa da produtividade de soja a níveis 
de zona de manejo em função de fatores de solo. A hipótese deste capítulo verificou a capacidade 
de modelos de cultura em apresentar variabilidade reduzida para estimar a produtividade em 
função da variação desses fatores, principalmente água no solo.  Os resultados do capítulo 1 
evidenciaram que a técnica de PCA resulta em  maior qualidade de agrupamento em relação ao 
método convencional de normalização, além de garantir uma maior estabilidade na definição do 
número de MZs. As variáveis de solo foram fundamentais para validação das especificidades em 
cada região, o que foi demonstrado com a técnica de árvore de classificação. Os resultados do 
capítulo 2 mostraram as diferenças entre as superfícies de água no solo em função das MZs, 
evidenciando a importância do manejo diferenciado nas regiões, mesmo em nível local. A 
refletância NIR melhorou a qualidade da previsão da produtividade de soja nas regiões em 
comparação ao uso do NDVI. O método de RF apresentou desempenho superior nas estimativas 
em comparação ao método de MLR. Os resultados do capítulo 3 evidenciaram que os modelos 
de cultura Aquacrop e CROPGRO apresentaram desempenho variável na estimativa da 
produtividade de soja nas zonas em decorrência de anos predominantemente secos ou úmidos. 
Mais estudos devem ser realizados com modelos de cultura para previsão da produtividade de 
soja a nível local. Por fim, como resultado do trabalho foi possível evidenciar a importância da 
avaliação em escala local e do uso de métodos de machine learning e mapeamento digital como 
suporte à agricultura de precisão. Verificou-se que o uso de MZs é adequado para conhecer a 
variabilidade de fatores de solo e planta que podem influenciar no planejamento para uso 
localizado de insumos e impactar nos resultados de produtividade em um mesmo talhão. Como 
estudos futuros, sugere-se aqueles envolvendo o uso de sensores locais para monitorar a 
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variabilidade temporal do clima, solo e planta, como meios para elevar o desempenho de 
métodos de machine learning na agricultura.  

 
Palavras-chave: ACP, Agrupamentos, Random forest, Árvores de classificação, Aquacrop, 

CROPGRO, Soja  
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ABSTRACT 
 

Management zones and space-time prediction of soybean yield variability: machine learning 
techniques applied to soil physical quality parameters 

 
Methods and tools for precision agriculture are the key to ensuring increased soybean 

production. In this respect, knowledge of intra-field variability is the key to helping the 
agricultural producer in the decision-making process. Although methods for modelling 
production are based on regional conditions and/or agroecosystem models that do not represent 
local scales. The aim of this thesis is to use machine learning techniques to improve data quality 
for predicting yield at the management-zone level. The research was divided into three chapters 
that use techniques and methods focused on precision agriculture to validate the need to 
guarantee greater support to the farmer at the local level. The first chapter sought to use machine 
learning to improve the quality of data and the information from high-resolution sensors in 
generating management zones (MZs). In addition to validating the differences between and 
within MZs related to soil factors. The hypothesis of this first chapter was centred on the need to 
use principal component analysis (PCA) to improve the quality of MZ prediction based on 
observed data. The second chapter aimed to estimate soybean yield in each MZ over several years 
based on maps of soil water and crop development. One hypothesis for the chapter was the need 
to confirm the existence of the variability of intra-regional yield. The second hypothesis focused 
on testing the quality of near infrared reflectance (NIR) surfaces to represent crop development 
compared to using vegetation index (NDVI). The third hypothesis was that the machine learning 
technique Random Forest (RF) affords better quality yield prediction due to its efficiency in 
working with unbalanced data compared to the conventional method of multiple linear 
regression analysis (MLR). The aim of the third chapter was to understand the sensitivity of crop 
models (Aquacrop and CROPGRO) in estimating soybean yield at the management-zone level, 
especially as a function of available soil water. The hypothesis of this chapter was in the ability of 
crop models to show less variability when estimating yield based on the variations in soil water. 
The results of Chapter 1 showed that the PCA techniques afforded higher-quality clustering 
compared to the conventional method of normalisation, besides ensuring greater stability in 
defining the number of MZs. Soil variables were fundamental for validating the specific 
characteristics of each region using the classification tree technique. The results of Chapter 2 
showed the differences between digital soil water surfaces as a function of the MZs, 
demonstrating the importance of different management practices in each region, even at the local 
level. NIR reflectance improved quality predictions of soybean yield in each region compared to 
the use of NDVI. The RF method afforded higher-quality estimates compared to the MLR 
method. The results of Chapter 3 showed that the Aquacrop and CROPGRO models showed 
variable performance when estimating soybean yield in each zone in occurrence of wet and dry 
years. More studies should be carried out using crop models to predict soybean yield at local 
level. In this way, was possible to highlight the importance of evaluation on a local scale, with the 
use of machine learning methods and digital mapping to support precision agriculture. The use of 
MZs is the adequate to understanding the variability of soil and plant factors that will later 
influence planning for the localised use of inputs, impacting yield at same field. For future 
studies, the use of local sensors to continuously monitor variability of climate, soil and plant 
variability to improve precision of machine learning methods in agriculture. 

 
Keywords: PCA, Clusters, Random forest, Classification trees, Aquacrop, CROPGRO, Soybean 
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1. GENERAL INTRODUCTION 

The growing increase in soybean [Glycine max (L.) Merrill] production is one of the principal guarantees for 

meeting the global demand for food. In the 2023/24 season, Brazil will contribute with 38% of the world production 

of this oilseed (USDA, 2023). Soybean production in Brazil is estimated to reach 175 million tons, 16% higher than 

in 2022/23, with an increase of only 4% in planted area (USDA, 2023; CONAB, 2023). During the crop cycle, 

soybean development is mainly influenced by the soil and its intrinsic characteristics, which directly or indirectly 

impact the yield. The soil is the basis for successful soybean production under rainfed conditions, whose function is 

to support the system via a balance between physical-chemical and biological factors (HILLEL, 2007). A balanced 

soil is a guarantee of greater agricultural yield, especially the physical characteristics that are affected by 

anthropogenic management. Anthropogenic activity contributes to soil degradation, favoring on compaction process 

and reducing the water available to crops (FRANCHINI et al., 2017; MORAES et al., 2018a; MORAES et al., 

2018b).  

Understanding the dynamics of soil factors is one of the first steps in understanding the processes that are 

key to crop development (ROSSATO et al., 2017). Reichert et al. (2020) stated that the hydraulic properties of the 

soil are not continuous in an area, and vary depending on soil texture. Soil texture is one of the main natural factors 

that directly or indirectly affect other variables, such as soil water retention, bulk density, apparent electrical 

conductivity and organic matter. Soil texture is closely linked to water retention, which is lower in sandy soils than in 

clayey soils, a result of variations in the surface area of the particles, which can affect the water retention capacity 

(KIRKHAM, 2005). Under conditions where the soil physics is unsuitable, the chemical aspects (impediment to the 

absorption and availability of ideal amounts of nutrients for plants) and biological aspects (imbalance between the 

communities of microorganisms present in the soil) are also affected. At the field level, these factors can help boost 

an increase or decrease in soybean production, especially through interactions between the soil-plant system and the 

atmosphere. On the other hand, the main basis for decision-making by the farmer regarding soil fertility begins with 

the chemical properties of the soil, due to the time taken in collecting and measuring soil physics. Furthermore, even 

when using the chemical properties, agricultural areas can still be managed uniformly, not taking into account the 

spatial-temporal variability of the production system impacting production costs and the sustainable use of resources 

(PERRON et al., 2018; GAVIOLI et al., 2019). 

On the scale of field, the integration between soil factors, plant development and climate seasonality is 

essential to understanding crop responses to water deficit, often related to the physical production environment of 

the plant (VIANNA, 2018). The use of climate, plant and soil predictors for estimating local crop yields should be 

investigated, as this can be one way of evaluating the spatial-temporal variability of crops. Although several studies 

may evaluate the spatial and temporal distribution of water in the soil (VIEIRA et al., 2008; ZHANG et al., 2013), 

few effectively monitor the influence of this variability during the crop growth cycle (HUANG et al., 2019), 

exploring its relationship to yield using high-resolution information (BOENECKE et al., 2018; YOST et al., 2019). 

Soil water can limit crop production, affecting the environment, atmospheric and hydrological processes. The spatial 

and temporal distribution of water in the soil can be obtained through high resolution maps, and interacts with such 

control factors as the type of crop, soil parameters and terrain (Huang et al., 2019). The tensions that act on the soil 

through potentials, adsorption forces and capillarity, control the movement of water and its availability for 

metabolising the crop, so that, of all the water stored in the soil, only a part is actually available to the plants 

(REICHARDT et al. al., 1979; JURY and HORTON, 2004). The water balance must therefore be considered and 
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evaluated throughout the layer of soil covered by the plant roots (ROSSATO et al., 2004). At the field level, more 

researchs should be carried out in order to investigate the variation in soil water and its relationship with crop yield 

(VEREECKEN et al., 2016), especially in terms of management zones (MZs). 

To ensure increased soybean production in an area, several factors should be considered, with precision 

agriculture (PA) being the key to this increase (BREUNIG et al., 2020). These techniques make it possible to 

recognise which factors influence the crop cycle, helping to understand the stability of agricultural yield over the 

years. A knowledge of the variations that govern the delineation of MZs in agricultural areas can help minimise the 

differences within a region and maximise the differences between regions, ensuring greater profit and production 

quality, and reducing environmental impact (PERRON et al., 2018). MZs are, by definition, differentiated 

management units within the same area (MORAL et al., 2010). To generate the MZs, clustering techniques based on 

mathematical methods are used. Among the information used to create these different management areas are 

apparent electrical conductivity (ECa) surfaces, altitude and yield maps (MOLIN et al., 2008; BUTTAFUOCO et al., 

2010; BREUNIG et al., 2020). The ECa is widely used for large-scale measurements due to the ease of mapping in 

large areas over a short period (CORWIN and LESCH, 2005). According to the authors, ECa is influenced by the 

water content of the soil, bulk density, texture and organic matter. Bottega et al. (2022) used ECa surfaces as an 

alternative for determining MZs, obtaining a correlation with the clay content and reducing the need for soil 

sampling. As an aid in generating MZs, the first monitors of crop yield appeared during the 90s for mapping the 

variability of agricultural production in the field. Over the years, it has become possible to use the historic of harvest 

maps for decision-making in an attempt to understand patterns related to soil seasonality or climate conditions from 

harvest to harvest (LEROUX et al., 2018). For Blasch et al. (2020), the use of time series for crop yields based on 

machine data facilitates an understanding of the spatial-temporal variations in an agricultural area. On the other 

hand, there is a need to understand whether the use of machine learning (ML) can be an alternative in processing and 

mapping these patterns in large machine databases (LEUKEL et al., 2023). 

With the advancement in digital agriculture resulting from the transformation of data into information, 

machine learning techniques must be understood for more-assertive decision-making. In this respect, the possibility 

of predicting the yield of agricultural crops using digital data becomes the next challenge to be overcome. This 

advance will only be possible with the use of artificial intelligence combined with supervised and unsupervised 

machine learning techniques (LEUKEL et al., 2023). ML consists of a set of techniques that improve the 

performance of systems through computational learning, developing learning algorithms that are built from a 

database to create predictive or observation models (ZHOU, 2021). The fuzzy c-means method (FCM) (BEZDEK, 

1981) is widely used to understand clustering patterns in MZs using quantitative and/or qualitative agronomic 

variables (GAVIOLI et al., 2019; JENA et al., 2019). This technique of unsupervised learning allows the similarities 

between different soil and plant attributes to be understood. Li et al. (2008) determined MZs using FCM with ECa 

and yield maps, stating that the approach is suitable for delimiting the regions. Random forest (RF) is a supervised 

learning method combined with classification trees that searching for a correct combination will result in the final 

estimate. RF is highly accurate due to good outlier adjustment and is one of the most used methods in data mining 

(LIU et al., 2012). Another well-known method is the use of classification and regression trees (BREIMAN, 1984), 

which aim to predict the behaviour of a given factor as a function of predictor variables (LOH, 2011). Furthermore, 

according to the author, cutting conditions are defined starting from one root node, with the set repeatedly divided 

into internal nodes until the stopping point is reached, when the final classes of the predicted factor are determined. 

PCA (Principal Component Analysis) is a method that is widely used in agriculture, and consists in reducing the 
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dimensionality of large data sets. Use of the PCA technique can help reduce noise and increase the quality of the 

information from these large data sets, in addition to performing better than univariate methods of analysis (HASAN 

et al., 2021).  

Studies by Burdett and Wellen (2022) showed the importance of using RF and decision trees to estimate the 

yield of agricultural crops based on soil properties and terrain. The methods used in the study performed better than 

conventional methods such as multiple linear regression (MLR). Da Silva et al. (2020) used decision trees to predict 

soybean yield over two seasons as a function of different crop and ground vegetation indices, obtaining an estimate 

accuracy of 93%. According to the authors, indices that were related to the soil showed better predictive 

performance. Madarasz et al. (2021), worked with RF to predict the risk of soil erosion in agricultural areas. The 

authors showed that the method was suitable for predicting surface runoff and soil loss based on maize data. 

Metwally et al. (2019) classified MZs based on soil properties and PCA, with the first four components used to carry 

out the grouping and determine the regions. For the authors, the technique helped in reducing the dimensionality 

and variability of the properties under study, where the four PCs explaining 84% of the variance in the data. 

Kinoshita et al. (2021) also used PCA to estimate the variability of maize yield as a function of climate seasonality. 

The authors obtained a variance of between 60%-78% explained by the first 2 PCs, and recommended the 

technique. Jiang et al. (2020) used different machine learning methods to predict the spatial yield of rice in 

agricultural areas, stating that the use of regression trees and RF (RMSE ~ 2.0, R2 ~ 0.60) gave better performance 

than the conventional MLR method (RMSE ~ 2.3 and R2 ~0.5). According to the authors, this type of approach 

combined with decision-making on the rational use of agricultural inputs may be key to understanding field patterns 

and correlating these with soil and climate variability.  

Another common approach for estimating the yield of agricultural crops are the crop models widely used 

around the world for predicting soybean development and yield. However, this prediction is often based on general 

or point conditions, in which mean yield values are considered for a given region and condition without considering 

spatial variability at the management-zone level. Models such as Aquacrop-FAO are used to estimate crop 

development and yield as a function of the soil water balance, whereas models from the DSSAT platform, such as 

CROPGRO-Soybean, consider the variation in photoperiod to estimate yield. For current and future studies, 

understanding the impact of using these crop models to predict soybean yield at a spatial level is an opportunity to 

support agricultural studies and decision-making by the farmer (SINGH et al., 2023). Several studies have used crop 

models to estimate soybean yield under different conditions, considering the water deficit (BATTISTI et al., 2017; 

GIMENEZ et al., 2017; MORALES-SANTOS et al., 2023), climate seasonality (EJAZ et al., 2022), cultivar 

calibration (AKUMAGA et al., 2023) and soil and crop indices (SALMERÓN and PURCELL, 2016; MULAZZANI 

et al., 2022), obtaining variations in the RMSE of 30 to 2500 kg ha-1.  

Other alternatives consist in the use of remote sensing to predict crop yields. According to Da Silva et al. 

(2020), yield can be predicted from NDVI surfaces, ensuring greater understanding of the management of 

agricultural areas. However, the authors state that the use of indices that consider aspects and characteristics related 

to the soil have a greater correlation with yield than does the NDVI. Kross et al. (2020), also using NDVI surfaces to 

predict grain yield, state that this information is essential to understanding different crop behaviours and local field 

conditions. Breunig et al. (2020), determining MZs using remote sensing, showed the importance of vegetation 

indices to predict the yield of commercial crops. According to the authors, NIR reflectance and the NDVI proved to 

be important predictors of crop biomass, providing useful results that can help to reduce the need for soil and plant 

analysis.  
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The use of learning and modelling methods that seek to improve the predictive ability and understanding of these 

processes on a spatial and temporal scale will help reduce the response time and aid in agricultural management 

practices (DORIGO et al., 2011). Among the justifications for developing this research are (i) the need to increase 

the amount of research at the field level that evaluates the performance of machine learning to support the 

advancement of precision agriculture; (ii) seek alternatives for the farmer to make decisions based on the use of a 

large set of machine data transformed into reliable information; (iii) combine the use of artificial intelligence methods 

with management information from production systems to predict yield in regions with different soil characteristics; 

(iv) understand the performance of consolidated crop models in predicting soybean yield at the management-zone 

level. The present thesis comprises three chapters, and aims to answer various questions concerning the prediction of 

soybean yield using management zones. The first chapter, entitled “Machine learning to support management zones 

based on soil physics and soybean yield surfaces” aims to investigate the use of historical yield maps, electrical 

conductivity and altitude maps to define MZs using unsupervised (PCA and K-means) and understand soil relations 

trough supervised methods (classification tree). The second chapter, entitled “Multi-year simulation of soybean yield 

from the digital mapping of crops and soil water in management zones” aims to predict the spatial-temporal 

variability of soybean yield using a supervised technique (Random Forest) in three management zones based on 

digital soil water maps and vegetation indices from remote sensing. The third chapter, entitled “Performance of crop 

models to predict soybean yield on physical soil factors in management zones” aims to predict soybean yield based 

on variations in soil factors at the management-zone level using crop models (Aquacrop and CROPGRO), and its 

correlation with changes in the available soil water. At the end of the three chapters, final considerations were 

formulated in order to highlight the conclusions for continuing with the studies about themes addressed here.  
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2. MACHINE LEARNING TO SUPPORT MANAGEMENT ZONES BASED ON SOIL PHYSICS AND 

SOYBEAN YIELD SURFACES 

 

Abstract 

      Machine learning techniques are the next step to transform data into information in smart 
agriculture. The aim of this research was to investigate the use of historical soybean yield, electrical 
apparent conductivity (ECa), and altitude surfaces, to define Management Zones (MZs) using machine 
learning techniques. The hypothesis was that machine learning would provide greater stability in 
predicting MZs (Z1, Z2, Z3 and Z4) than the standard method. The study used as input surfaces of 
soybean yield from six crop seasons, altitude and ECa of a 10-hectare field. MZs were generated using 
the Fuzzy C-means employing two methods: Normalizing high-resolution data (N-M) and applying 
principal components analysis to choose inputs layers (PC-M). To evaluate the quality of clusters to 
N-M and PC-M were obtained the Fuzziness Performance Index, Normalized Classification Entropy, 
Fuzzy Silhouette Index, Gap index, Davies-Bouldin test and Pseudo F. The soil particle size and soil 
water content (9 points per hectares) were used to validate the MZs by decision trees. The results 
showed that PC-M was suitable for presenting greater stability in predicting clusters, which converged 
into either three (FPI = 0.035, NCE = 0.017, and FSI = 0.775) or four MZs (GI=1.092, DB = 0.762, 
and Pseudo F = 7893). The classification tree method proved to be suitable for validating the 
generated MZs, mainly due to particle size, with accuracy greater than 50% (test) and 88% (training). 
The use of machine learning techniques allowed validation of MZs generated with high-resolution 
data.  

Keywords: PCA, Fuzzy Clustering, Classification Tree, FC, PWP, Precision Agriculture 
 

2.1. Introduction 

Management operations in intensive grain production systems have been carried out without considering 

the spatial variability of soil and topographic factors, limiting the use of available technologies with economic and 

environmental consequences due to the pressure on natural resources (PERRON et al., 2018). On the other hand, 

the growing demand for food requires the rational use of water and soil resources.  An alternative for rationalization 

and decision-making for the management of agricultural areas is to obtain data from sensors in agricultural 

machinery, which can be useful in the definition of management zones (MZs). In this context, high-resolution data 

such as crop yield information, electrical conductivity and altitude can be used to improve MZs. 

The treatment of variable data obtained in high resolution scales can be done by means of geostatistical 

methods, which will subsidize the interpolation of data to define the MZs. The performance of kriging before the 

generation of MZs is extremely important to obtain more precise boundaries between regions with distinct 

characteristics. Other authors use the technique of interpolation of agricultural big data by kriging to generate 

surfaces with high resolution (SCUDIERO et al., 2018; ALI et al., 2022). Complementary approaches for the 

reduction and pre-selection of variables that contribute effectively to the definition of MZs tend to be increasingly 

used. These include data normalization and correlation techniques and more complex machine learning techniques 

(BLASCH et al., 2020). Methods for generating MZs with a focus on machine learning (ML) for use in agriculture 

have made considerable progress in recent decades (CHLINGARYAN et al., 2018; BLASCH et al. 2020). The 

precision agriculture makes it possible when combined with solutions that will allow better estimation and decision-
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making on factors related to production and the environment, which will also contribute to crop yield management.  

Blasch et al. (2020), created the method  MYPA (Multi-temporal Yield Pattern Analysis) for evaluating historical 

yield data used in MZs.  

The design of the MZs occurs from the identification of layers of input data, aiming to delimit regions 

that can be classified statistically homogeneous. The Fuzzy C-means (FCM) method is widely used to delineate MZs 

using very distinct input variables. Many authors recommend this approach for evaluating agricultural data 

(FRIDGEN et al., 2004; ALI et al., 2021), which is prominent in the identification of MZs. FCM is an effective 

multivariate approach and can be recommended with a focus on directing soil sampling and management of specific 

local regions. In this context, Ali et al. (2021) considers the method capable of generating an adequate number of 

MZs. The identification of the related variables in the definition of the patterns within and between the management 

units supports the rational use of available resources.  

Soil is the main factor that contributes to the definition of MZs, especially some soil factors whose spatial 

variability is temporally stable. Von Hebel et al. (2018) mapped the apparent electrical conductivity of soil (ECa) to 

investigate possible patterns regarding soil texture and depth variability. Jiang et al. (2020), used yield map data from  

4 season crops to delineate MZs and understand the variations that occurred as a function of soil particle size, 

subsidizing the prescription of variable rate application of seeds and fertilizers. Perron et al. (2018) stated that the use 

of MZs can increase the profitability and quality of production, as well as reduce the environmental impact on 

agricultural areas as excessive use and losses of inputs. The definition of MZs based on yield data  is an option for 

identifying patterns that are consistent across the area, even with different crops and climatic conditions.  

Among the hypotheses of this research, the use of PCA as a layer selection technique that can guarantee a 

better prediction quality of MZs compared to just normalizing and clustering the input layers. Due to the slowness of 

the evaluation and collection of soil physical factors, the use of big data from yield maps combined with soil sensing 

can help define MZs. Finally, the classification tree technique combined with soil physical factors can help to validate 

this hypothesis. Tittonel et al. (2008) argue that the classification tree statistical technique is useful for predictions 

related to heterogeneous crop and soil management, as well as being a more accurate approach to know the 

limitations related to agricultural production. Thus, the objective of this research was to investigate the use of high-

resolution big data and ML techniques to generate MZs and validate their relationship with soil physical factors in an 

agricultural field in southern Brazil. 

 

2.2. Materials and Methods 

2.2.1. Study site 

The study was carried out in an agricultural unit of soybean production located in the Northwest region 

of the state of Paraná (Fig. 1), southern Brazil (23° 24 'S, 52° 15'W;492 m.a.s.l). The production unit (10 hectares) 

presented a time series of  soybean yield data  from 6 seasons (2016-2021). The soil is classified as a eutrophic Red 

Oxisol (LVe) (USDA, 2014);  however, some distinct patterns were found presenting possible transitions to Entisol 

(RL). The soil particle size  ranges from clay-sandy to very clayey with variations between 30 - 85% of clay (Fig. 1). 
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Figure 1. Spatial location of region, field, and soil characteristics (A); distribution of soil layer (0–0.60 m) particle size fractions in 
São Jorge do Ivaí, Paraná state, south of Brazil (Soil Survey Staff, USDA, 2014) (B). 

 

The soybean crop cycle occurs between October and March, followed by the corn second season, which 

is seeded from March to July (Fig. 2). The region's climate is classified as humid subtropical with hot summers 

(ALVARES et al., 2013), concentrated rainfall in summer, and low occurrence of frosts (Fig. 2). The average annual 

temperature is 21°C, with a maximum of 27°C and minimum of 16°C. The average annual rainfall is around 1600 

mm.  

 

 

Figure 2. Variations of the daily rainfall (mm); daily mean, maximum and minimum air temperature (Tm, T max, T min - °C). 

 

The soil chemical factors were determined for the characterization of the area (TEIXEIRA et al., 2017). A 

descriptive analysis of the data is presented in Table 1.  

 

Table 1. Descriptive statistics of soil chemical factors (0-20 cm) in study site (N=20).  

Descriptive  
Statistics  

1pH  2OM 3P 4SSO2
-4 5H + Al 6K 7Ca2+ 8Mg2+ 9EB 10CTC 11V 

(CaCl2) g dm-3 mg dm-3 mmolc dm-3 % 

Mean 5 25 34 6 37 5 47 11 62 99 61 

Standard 
deviation  

1 5 14 7 6 2 19 4 24 25 9 

Min 4 14 21 0 26 0 22 5 27 63 43 

Max 6 30 78 26 45 9 85 19 107 146 74 

CV (%) 10 19 41 131 15 51 41 34 38 25 15 

1Active Acidity in water; 2Organic Matter; 3Phosphorus; 4Oxide sulfur; 5Hidrogen + Aluminium; 6Potassium; 7Calcium; 8Magnesium; 
9Echangeable bases; 10Cation Exchange Capability; 11Base saturation. 
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2.2.2. Management Zones (MZs) 

Determination of MZs were based on historical maps of soybean yield, electrical conductivity (ECa) and 

altitude maps. To determine the MZs, yield maps from 6 harvests were used. Due to the low quality of yield data 

during the 2015/16 crop season, data from the 2016/17, 2017/18, 2018/19, 2019/20, and 2020/21 harvests were 

considered (Table 2). The yield monitor used was an AgLeader® PF 3000 model, coupled to a combine with a 

nominal power of 186 kW and a grain storage capacity of 7,050® L. The land altitude was model obtained from the 

combine's positioning data and used as an input layer for MZs estimation. 

ECa mapping was performed on September 13, 2020, after the second crop yield. The Veris 3100 

equipment, which measures ECa through six electrodes arranged to allow the simultaneous characterization of two 

layers (0 - 30 cm and 0 - 90 cm), was used. Data were collected continuously throughout the plot, with a spacing of 

15 meters between strides and a frequency of 1 Hz. Sampling points were georeferenced using a Garmin GNSS 

(Global Navigation Satellite System) receiver with an accuracy of 3 to 5 m. 

 

Table 2. Descriptive statistics of the historical of yield maps (t ha-1), soil electrical conductivity (uS m-1) and altitude (m) in study 

site. 

Variable N Mean 
Standard 
Deviation 

Median Min. Max. Amplitude Skewness Kurtosis  

Soy2016/17 (t ha-1) 5097 3,85 0,53 3,98 0,93 5,50 4,57 -1,50 5,90 

Soy 2017/18 (t ha-1) 5097 2,90 0,35 2,95 1,00 4,44 3,44 -0.76 4,00 

Soy 2018/19 (t ha-1) 5097 2,79 0,46 2,89 0,55 3,73 3,18 -1,30 4,70 

Soy 2019/20 (t ha-1) 5097 2,18 0,34 2,24 0,73 3,00 2,27 -1,50 6,00 

Soy 2020/21 (t ha-1) 5097 1,81 0,33 1,83 0,19 3,01 2,82 -0,58 4,30 

EC0-30 (uS m-1) 5097 5,02 1,72 5,10 1,98 8,60 6,62 -0,064 1,80 

EC0-90 (uS m-1) 5097 3,98 3,33 3,16 0,00 15,85 15,85 2,30 8,10 

Altitude (m) 5097 474 13,12 475 446 495 49,00 -0,25 1,90 

 

The yield and ECa data were filtered using the Mapfilter® software (SPEKKEN, ANSELMI and 

MOLIN, 2013) and normalized by the amplitude of variation method according to equation 1. 

 

𝑧 =
𝑋 − min(𝑥)

max(𝑥) − min(𝑥)
 

(1) 

 

where X corresponds to the sampling point, min (x) is the smallest value of the sample and max (x) is the 

largest value of the sample. The variation between the values will be from 0 to 1.  

Vector layers were produced by interpolating each variable with the use of block kriging, using the Vesper 

1.62® software, configured for use of local variogram, generating a surface with a resolution of 25 m² (5 m x 5 m). 

The next step of the process consisted of clustering data to generation of management zones (MZs), by the Fuzzy C-

means (FCM) method. To compare the effects of different processing methods on clustering, two approaches were 

employed. The first method (N-M) utilized normalized data for clustering, while the second method (PC-M) 

Principal Component Analysis (PCA) + normalization on standardized input data. The suitability of variables for 

generating principal components (PC) was determined using a sampling adequacy measures (MSA) test (KAISER, 

1974). The multivariate analysis was carried out using the MYPA method to transform the vectorized variables into a 
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multiband raster containing the information of each variable in each pixel. Once the PCA was performed, 

spatialization of the PCs was done. Linear regression analysis was carried out between each PC and the normalized 

variables, and the coefficient of determination (R2) was obtained. The FCM algorithm uses the Mahalanobis distance 

to determine the similarity between the variables.  

To perform the clustering of yield maps, ECa and altitude by PC-M and N-M, the Management Zone 

Analyst (MZA) software was used. To determine the optimal number of clusters, various combinations ranging from  

2 to 6 were tested. The quality and the number of groups was defined and evaluated from 6 different tests: Fuzziness 

Performance Index, Normalized Classification Entropy, Fuzzy Silhouette Index, Gap index, Davies-Bouldin test and 

Pseudo F explained in the sequence by two approaches used (N-M and PC-M). The FPI assesses the degree of 

separation between fuzzy partitions and classified data during clustering. The NCE measures the optimal quality of 

clusters (FRIDGEN et al., 2004). The FSI, measures how well are grouped the data within the cluster. The GI is a 

statistical test that compares the similarity between the set of observations of a single cluster with the set of 

observations from the difference in each cluster (SENTELLE et al., 2007). The DBi is determined by the 

relationship between the sum of the level of dispersion in a cluster in relation to the dispersion between clusters 

(PHAKIRA et al., 2004). The PF (CALINSKI and HARABAS, 1974) aims to validate the clustering, being given by 

the relationship of the variance between clusters with the variance within the cluster. The higher PF value, the higher 

the cluster density and the greater the dissimilarity between clusters.  

 

2.2.3. Sampling and analysis of soil factors 

To characterize the physical properties of the soil, soil samples were collected at 9 points per hectare in a 

non-uniform grid, across three depths (0-20 cm, 20-40 cm and 40-60 cm) (Fig. 1). The sampling was carried out 

before soybean sowing in the 2021/22 crop season. The samples were collected using an auger, and two types of 

samples were collected: those without preserved structure, to measure soil particle size, and those with preserved 

structure, to measure bulk density (ρd), following the method described by Grossman and Reinsch (2002). 

The -10 kPa matrix potential was set to determine the upper limit of available soil water or field capacity 

(FC) using a voltage table similar to that described by Ball and Hunter (1988). Water contents at -1 and -6 kPa were 

also determined as indicator parameters of soil water retention easily available to plants.  The soil water content in 

the permanent willing point (PWP) or the equivalent of the water content in the matrix potential of -1,500 kPa 

through the WP4-T psychrometer equipment was determined (MELO FILHO et al., 2015).  

Vector layers were produced by interpolating each variable with the use of block kriging, using the Vesper 

1.62® software with a resolution of 25 m² (5 m x 5 m). To evaluate the relationship between soil parameters and 

multitemporal soybean and ECa yield data, buffers with a radius of 15 m around the sampling points were 

determined and the averages of the data contained in the spatial regions were extracted through a geographic 

information system using the ArcMap software version 10.5 (ESRI,  Redlands, CA, USA, 2011). 
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Figure 3. Flowchart of steps to generate management zones (MZs) by Normal and Principal Component Method (N-M; PC-M) 
and the correlation between soil factors. 

 

Due to the ease of obtaining historical yield maps and soil sensing layers, soil texture and water retention 

data were used to evaluate the patterns of MZs trough classification tree analysis. The CART (Classification and 

Regression Tree) method aims to predict the response of a categorical variable as a function of predictor variables 

from machine learning supervised through rule-based recursive partitioning (BREIMAN et al., 1984). The test was 

performed using the Recursive Partitioning and Regression Trees (Rpart) package on the Rstudio (R Core Team, 

2020). The data were partitioned into 80% for training and 20% for testing, determining the accuracy rate of the 

predictive model for training and testing. The predicted data were georeferenced and compared to the initial 

establishment of the MZs.  

 

2.2.4. Statistical analysis 

The Kruskal-Wallis test (p<0.05) was used to analyze the variances of the input layers (Table 4) in both 

approaches (N-M and PC-M). After verifying heterogeneity, the Mann-Whitney Wilcoxon test (p<0.05) was 

performed to determine the significant difference between the samples. The choice of the optimal approach (N-M 

and PC-M) and the appropriate number of groups was based on cluster quality indices and significant differences in 

input data layers. With the definition of MZs, each group was renamed based on the significant differences of the 

multitemporal data of yield, ECa and altitude.   

The Spearman correlation test (ρ) was performed to verify the association between the input layers of the 

MZs with the parameters of soil particle size, bulk density and soil water retention. To verify the interactions of soil 

parameters with layers and MZs, Kruskal-Wallis and Mann-Whitney Wilcoxon tests were performed. All statistical 

tests were performed using the R software. 
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2.3. Results  

2.3.1. Definition, delimitation, and quality of MZs  

The high-resolution ECa, altitude, and yield layers used to delineate the MZs are presented in Fig. 4. A 

pattern in the historical average of soybean yield (Table 2) was observed as a function of 53% reduction of yield 

between 2017/18 (3.85 ± 0.53 t ha-1) and 2021/22 (1.81 ± 0.33 t ha-1), which is related 38% reduction in the 

accumulated rainfall series (Fig. 2,  R² = 82%) for same period.  The reduction in accumulated rainfall occurred 

mainly in the 2020/21 and 2021/22. The reduction in rainfall was more intense in the first 3 months of  2020/21 

and 2021/22 intensifying the relation to the historical average of rainfall for region (Sep = -86%, Oct = -64% and 

Nov = -60%). Certainly, the reduction in rainfall coincided with the reproductive phase of soybean and consequently 

provided a reduction in yield.  Observing the spatial variability of yield maps (Fig. 4 D-H), it was possible verify 

patterns mainly at the south of field. The ECa0-30cm showed higher values in south of field (6-8 uS m-1) and lower 

values at north (2-4 mS m-1). A similar pattern was observed for ECa0-90cm, except in a specific region with ECa < 4 

uS m-1. The region north of field has the highest altitude (484-495 m) while the southern portion with 446 and 460 

m. The input variables presented in Fig. 4 were normalized and used in the design of MZs by the direct method (N-

M, Fig. 3), preceding the FCM technique to multivariate method (PC-M).  

 

 

Figure 4. Spatial-temporal variability of altitude (A), electrical conductivity apparent: ECa0-30cm (B), ECa0-90cm (C)  and multiple 
year soybean yield (D-H) to Fuzzy C-means analysis by normal method (N-M) for MZs=1,2,3 and 4.  
 

The multivariate technique for selecting input layers, referred to as PC-M, was performed following the 

method described in Blasch et al. (2020) (Fig. 4). Initially, several data quality tests were performed. The Bartlett's 

sphericity test (p<0.05) was performed, which rejected the hypothesis of equal variances. Additionally, the MSA test 

was also performed, and all variables presented results higher than 60% of sample commonality. The result of the 

KMO test was 66% of mean sample commonality. The values of MSA and KMO must be greater than 50% to 

commonality to be suitable for the analysis (Kaiser, 1974). The percentage of variance explained by the PC1 + PC2 

layers was 62% (Fig. 5), which were used as inputs in the FCM analysis. As the variance explained 62% of the data, 

the technique was used after verifying the quality of the clusters by the accuracy indices (Table 3).  
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The surfaces that most contributed to PC1 were those related to soil. Altitude contributed with 30%, 

ECa0-30cm = 30% and ECa0-90cm  = 25%. For PC2, the surfaces that presented greatest contribution were those related 

to soybean yield, mainly in the agricultural years 2019 (30%), 2018 (24%) and 2020 (22%).  It is possible to visualize 

the same pattern of yield variation in the southern and northern regions (Fig. 4) with PC2 (Fig. 5). The same 

behavior observed to PC1 (Fig. 5) with ECa and altitude (Fig. 4). The analysis was able to capture in two multivariate 

layers significant variations in the MZs.  

 

 

Figure 5. Principal Component 1 (PC1, A) and Principal Component 2 (PC2, B) to Fuzzy C-means analysis (FCM) by method 
PC-M. 

 

In order to understand the quality of the clusters (k=2 to 6) as a function of the N-M and PC-M, accuracy 

indices were measured (Table 3). It was possible to observe a greater variation between the results of the quality 

indices and the number of clusters to N-M (k= 2 with NCE = 0.109, DBI = 0.723; k=3 ns; k=4 with FSI = 0.805; 

k=5 with GI = 1.501, PF = 10053 and k=6 with FPI = 0.165). On the other hand, PC-M presented a pattern in 

which the three quality indices were significant for the clustering of k=3 (FPI=0.035, NCE = 0.017 and FSI = 0.775) 

and three for k=4 (GI = 1.092, DBi = 0.762 and PF = 7893). Due to the greater stability to PC-M, it is possible to 

affirm that this multivariate method can be an alternative in relation to the standard method, obtaining clearer trends 

in relation to the number of ideal clusters. In order to obtain standards in relation to the number of clusters, k=4 was 

chosen as ideal since also in the N-M method it presented a significant quality index compared to k=3.  
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Table 3. Fuzzy C-Means quality indexes to defining the adequate number of yield zones for Normal (N-M) and PCA (PC-M) 
methods. 

k 
*Normal Method | N-M 

FPI NCE FSI GI DBi PF 

2 0.306 0.109 0.799 1.3 0.723 9180 

3 0.265 0.139 0.758 1.3 0.776 8887 

4 0.203 0.125 0.805 1.24 0.823 8440 

5 0.179 0.121 0.782 1.501 0.816 10053 

6 0.165 0.117 0.76 1.475 0.794 9421 

k 
*Principal Component Method | PC-M 

FPI NCE FSI GI DBi PF 

2 0.09 0.032 0.633 0.579 1.003 3511 

3 0.035 0.017 0.775 0.617 1.031 3721 

4 0.038 0.021 0.745 1.092 0.762 7893 

5 0.05 0.031 0.676 1.002 0.883 7297 

6 0.054 0.033 0.716 1.037 0.848 7776 

 

The Fig. 6 represents the results of the FCM grouping considering the PC-M treatment. Each MZs was 

classified according to statistically significant average patterns (p<0.05) of layers between MZs and between seasons. 

Z1 is characterized by a region of significant low yield (~1.6 t ha-1) and significant low ECa (~4 uS m-1) ; Z2 is 

characterized by a significant high-yield region (~3.2 t ha-1) but no significant ECa; Z3, a region of significant 

moderate ECa (~5 uS m-1) but no significant differences in yield; and Z4, was characterized being a region of 

significant moderate yield (~2.4 t ha-1), with significant high ECa (~10 uS m-1). Z4 have incidence of soil source 

material not yet weathered (gravel) in the depth layer.   

 

 

Figure 6. Management zones (MZs) derived from multiple year soybean maps (2017-2021), ECa (0-30 cm), ECa (0-90 cm) and 
altitude by principal component analysis method (PC-M). 
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2.3.2. Interactions between Management Zones and soil factors 

Fig. 7 shows the correlations between the soil variables used in the PC-M method for the establishment 

of MZs as soil particle size, water and ρs. Regarding the ECa surfaces, it was possible to observe a strong interaction 

with most soil factors. ECa0-30cm and ECa0-90cm were positively correlated with Clay (ρ = 0.7 and 0.4, respectively) and 

negatively with Sand (ρ = -0.8 and -0.4, respectively). ECa also correlated significantly with soil water retention 

factors. In both layers, there was a positive interaction between ECa and FC10kPa (ρ = 0.6 for ECa0-30cm and ρ = 

0.4 for ECa0-90cm), with positive interactions also with PWP for the ECa0-30cm. It was possible to observe 

correlations between the granulometry and the annual yields in the 2017 season (Sand: ρ = - 0.4; Silt: ρ = 0.5), 2018 

season (Clay: ρ = 0.4; Sand: ρ = - 0.4) and 2019 season (Silt: ρ = -0.5). The crop season of 2021/22 presented a 

different behavior from the other crops, presenting correlation with most of the variables (Clay: ρ = 0.6; Sand: ρ = -

0.6) and with field capacity and soil water indicators easily available (FCs: ρ = 0.4).  

 

 

Figure 7. Heatmap of Spearman correlation (ρ) between physical soil factors (Clay, Sand, Silt, FC, PWP, ρs and SRP) and layers 
(ECa, historical soybean yields and altitude) used to delineate Management zones (MZs). 

 

The results between differences in soil particle size (Clay, Silt and Sand) and soil water retention (FC and 

PWP) in soil depths of 0-20 cm, 20-40 cm and 40-60 cm and between MZs are presented in Table 4. The Mann-

Whitney Wilcoxon test (p<0.05) was used to verify if the variable differed significantly within each of the layers of 

each MZs and, subsequently, if there were significant differences between MZs regardless of the soil layer. Regarding 

clay content, significant differences are observed between all layers within each MZ, significantly highlighting the 0-

20 cm and 20-40 cm of soil depth. Increments in clay contents in the soil profile were also observed, independent of 

MZ. Z1 was a region that presented on average 44% less clay than Z3, which was characterized as the most clayey. 

The same pattern was observed for the silt contents, independent of the layer and MZ, which were mostly 

significant. The highest levels of silt were observed in the Z4, a region of transition to Entisol, being a region of 

shallow soil depth and high stoniness index. Regarding the sand contents, Z1 presented on average 53% more sand 

compared to Z3 and Z2 can be characterized as a transition region between Z1 and Z3. Z4, on the other hand, 

presents the presence of gravel (considerable level of stoniness) in some parts of the plot, with a variability distinct 

from the other regions. 

The differences between soil water retention within and between MZs was also distinct. It was possible to 

observe within each region, a reduction of FC with the reduction of the matrix potential, regardless of the depth. In 

relation to the depth layers, it was possible to observe an increase in FC from the superficial to the deeper layer, 

associated with the increase of clay in the soil. The Z1 presented FC on average 39% lower compared to Z4, which 

was the region with the highest FC levels. In Z2 it was also possible to observe a FC transition behavior between Z1 

and Z3, with an average FC reduction of 20% compared to Z3 and a 10% increase in relation to Z1. Similar behavior 
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was observed between the regions in relation to PWP.  This research evidenced differences on MZs since 

distinctions between  soil factors and variations of ECa0-30cm.  

 

Table 4. Soil variables interactions between and within Management zones (MZs) with soil particle size (Clay, Silt and Sand) and 
soil water retention (FC and PWP). 

MZ Soil depth Clay (%) Silt (%) Sand (%) FC1kPa FC6kPa FC10kPa PWP (%) 

Z1 

00-20 cm 39.53 **** 4.54 *** 55.93 **** 15.49 **** 14.36 **** 14.33 **** 11.82 **** 

20-40 cm 46.84 **** 4.43 **** 48.74 **** 16.66 ns 15.50 ns 15.13 **** 12.73 **** 

40-60 cm 50.39 **** 5.15 **** 44.46 **** 18.02 **** 16.96 **** 16.46 **** 14.93 **** 

Mean 45.59 **** 4.71 **** 49.71 **** 16.72 **** 15.60 **** 15.31 **** 13.16 **** 

Z2 

00-20 cm 52.18 **** 6.75 ns 41.07 **** 17.91 **** 16.85 **** 16.56 **** 13.26 **** 

20-40 cm 57.33 ns 7.70 **** 34.97 ** 18.80 ns 17.87 ** 17.51 *** 14.39 **** 

40-60 cm 62.80 **** 5.92 **** 31.28 **** 19.32 **** 18.27 **** 17.81 **** 14.61 **** 

Mean 57.44 ns 6.79 **** 35.77 **** 18.68 **** 17.66 **** 17.29 **** 14.09 **** 

Z3 

00-20 cm 60.16 **** 12.19 **** 27.64 **** 21.75 **** 20.47 **** 20.15 **** 15.43 **** 

20-40 cm 65.40 ns 12.53 **** 22.07 **** 22.56 ns 21.51 **** 21.51 **** 17.48 **** 

40-60 cm 71.21 **** 8.14 **** 20.65 **** 22.99 **** 21.57 **** 21.07 **** 17.93 **** 

Mean 65.59 **** 10.96 **** 23.46 **** 22.43 **** 21.19 **** 20.91 **** 16.95 **** 

Z4 

00-20 cm 53.17 **** 15.43 ** 31.40 **** 22.80 **** 20.56 **** 20.39 **** 16.34 **** 

20-40 cm 50.45 **** 23.87 **** 25.69 **** 22.98 **** 21.91 * 21.44 *** 15.48 **** 

40-60 cm 66.94 **** 8.85 **** 24.21 **** 23.81 **** 22.42 **** 21.82 **** 18.83 **** 

Mean 56.85 ns 16.05 **** 27.10 **** 23.20 **** 21.63 **** 21.22 **** 16.88 **** 

*Are significantly by Mann-Whitney Wilcoxon test (p<0.05). 

 

The results of classification tree method for predicting MZs as a function of soil particle size and water 

retention are presented in Fig. 8. After cross-validation, the results obtained were georeferenced and spatialized. 

When evaluating the quality of training and test prediction, it was possible to observe high accuracy in the estimation 

of MZs by soil variables. The predictive validation of MZs as a function of soil particle size showed lower errors in 

Z1 (train = 97% and test = 88%) and Z3 (train = 90 and test = 94%). For the factors of soil water retention, the 

forecast in Z3 showed greater accuracy (train = 97% and test = 79%, as well as Z2 (train = 76% and test = 100%). 

For classification tree method, it was possible to observe the prediction of MZs generated from the PCA originated 

by ECa surfaces, altitude and historical yield as a function of the soil factors, presenting a direct relationship with the 

high-resolution information and with the soil factors measured. 
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Figure 8. Result of classification tree prediction and cross-validation from MZs (based on multiple years soybean maps and ECa) 
as a function of soil particle size factors (A) and soil water (B). 

 

2.4. Discussion 

2.4.1. The threshold between uniform management and spatial-temporal 

variability of agricultural fields  

The results showed that the field management disregarding the spatial variability of physical soil factors 

and soybean crop yield is not an adequate practice, because the spatio-temporal variability of soybean yield maps and 

ECa confirm the need to perform a management considering these variations. Several authors have verified the 

importance of conducting management practices from the design of MZs, either by yield maps or by soil factors 

(SCUDIERO et al., 2018; KOUTSOS et al., 2021; ALI et al., 2022). The use of yield machinery data to know the 

variability in agricultural fields is a strategy that can help farmers in decision making do the low cost of obtaining, 

requiring only statistical and agronomic knowledge for the generation of MZs and their interpretation (KOUTSOS et 

al., 2021).  

The use of not supervised machine learning algorithm by PC technique proved to be adequate for the 

detection and selection of variables and design of MZs. The PC-M technique was related to variations in soybean 

yield layers and apparent electrical conductivity, reaffirming the importance of having yield layers, soil factors and 

altitude to support the soil physical patterns found. PC1 was strongly influenced by the measured ECa and altitude, 

with was in accordance of Scudiero et al. (2018) in humid subtropical climate. This fact shows the importance of 

ECa as high-resolution information to find patterns in agricultural areas. ECa is influenced by soil texture and water, 

where the indirect use of this information can help detect soil variations in MZs. In this research, PC2 was strongly 

influenced by variation of the yield maps, which shows that the technique can quickly ensure the distinction between 

the patterns that will delineate MZs.  

The PC-M approach ensured greater stability among MZs, evidenced by the accuracy indexes, with high 

agreement to 3 or 4 regions as the ideal number of MZs. This is due to the convergence of classification of each 
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index in PC-M, where the division quality, similarity, and dispersion within and between MZs were evaluated. These 

results are similar to those of Ouazaa et al. (2022) also used PC-M to design MZs. Regarding the N-M, there was 

greater variability between the selection of the number of MZs suitable to quality indexes. Although N-M has not 

been considered the best method in this study, it is commonly used by other authors (SCHENATTO et al., 2017; 

BLASCH et al., 2020).  

The four MZs identified in the area coincided from the farmer observations due distinct behaviors in 

certain regions. During soil sampling, it was discovered that the northern region had sandy soil, which was confirmed 

by low ECa and low yield patterns. These findings are in line with Ali et al. (2021), who reported that sandy regions 

showed high MZs instability in terms of yield. The influence of dry and wet years on Z1 was noted, with low yield 

patterns due to grouping, but there were wet years with moderate yields compared to other regions. Z2 was classified 

as a high-yield region, regardless of the variation in ECa. Despite being clayey, Z4 had different gravel formations, 

historically making agricultural operations difficult as seeding quality and emergence of plants. The region was 

classified as having a moderate yield, despite the high ECa in the top layer. As noted by Cordoba et al. (2016), 

regions with shallow soils may have high ECa values due to the clay horizon being closer to the topsoil layer, which 

may explain the unique characteristics found in Z4, as it is in a region classified as RL. These findings highlight the 

importance of understanding the physical characteristics of the soil and their influence on MZs to make informed 

decisions for successful crop management.  

The delimitation of MZs is the basis to assist in decision making in areas of low yield, in the variation in 

seed population, reduction of downtime machine, reduction in the use of inputs, that is, intelligent rationalization of 

production costs, benefiting the greatest economic return to farmer (KOUTSOS, et al., 2021). Although the present 

research did not directly evaluate chemical and biological factors of the soil, the targeting of soil sampling from MZs 

helps in reducing large-scale collections and cost with analyses, making it possible to find the main characteristics 

inherent to the agricultural field and the evaluation of soil quality (OUAZAA et al., 2022). 

 

2.4.2. Knowing the soil factors helps support decision making and directed 

management 

In our study area, quantifying soil physical factors was a relevant step to increase the accuracy of the use 

of MZs. However, the uniform management of agricultural areas is a common practice, where the application of 

fertilizers and seeds is the same throughout the field, not considering the changes that are found in relation to the 

soil physical properties.  

The increases in ECa levels (0-30cm and 0-90cm) were mainly influenced by the increase in clay contents 

and reduction in sand contents. Due soil particles sizes, sandy regions have low ECa, silty regions have medium ECa 

and clay regions, high ECa (KWEON, 2012). Our research also found a relation between MZs design, ECa 

variability and soil particle size as a function of soil layer. On superficial soil depth there was a higher intensity in 

ECa variation compared to deep layers, also seen in MZs outlined in the studies of Scudieiro et al. (2018) and Lajili et 

al. (2021).  

Soil water retention was a factor that was positively correlated with ECa, especially in relation to FC and 

PWP, presenting variability between layers. From the design of the MZs it was possible to evidence such behavior, a 

result of soil water retention variability being higher at the surface, which makes the ECa0-30cm more sensitive to 
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changes related to water and the deep ECa more stable. Lajili et al. (2021), also showed a similar trend for a humid 

climate region. The mapping of ECa as an input layer for delineation of MZs was the basis of the evaluation of soil 

variability at field and support in the correlation with temporal layers of yields. Allied to the fact that it is necessary to 

consider hydraulic variables, due to their heterogeneous influence on soils (OUAZAA et al., 2020).  

The correlation between yield maps in wet and dry years with the soil factors showed the temporal 

variability of yield as a function of water deficit in field. The season 2020/21 and 2021/22 were considered drier 

years, directly influenced by changes in patterns with soil factors. In dry years, water stress is the main limiting factor 

for the crop, especially for sandy regions which is negatively correlated with yield, also evidenced in Scudiero et al. 

(2018). The behavior observed for wet years (2017, 2018 and 2019) was only due to soil particle size, also seen in Ali 

et al. (2021).  

The season 2020/21 was considered a year of transition, where the reduction of water availability began, 

which impacted the 2021/22. Our research was conducted in a humid subtropical climate, which may further 

intensify the variability of crop yield. The production system is located in a dryland area, depending exclusively on 

rainfall, which causes soil factors to directly impact water retention and availability for crops. The 2020/21 crop 

season was influenced by most soil factors, possibly due to the reduction in rainfall volume in the last two seasons.  

 

2.4.3. Machine learning tools as support for agricultural data analysis 

In this study, machine learning tools have been shown to be useful for field data assessments. PC-M, an 

unsupervised machine learning technique, helped in the selection and adjustments of high-resolution spatial-temporal 

soil and yield layers to predict MZs. This technique is commonly used for soil factors (OUAZZA et al., 2020). 

However, the differential of this research was the use of historical yield maps of five crop seasons (BLASCH et al., 

2020; KOUTSOS et al., 2021).  

The classification tree technique proved to be a useful tool in understanding the interactions between soil 

particle size, water and their impact on the variability of different MZs, enabling informed decision-making in 

agricultural production (TITTONEL et al., 2008). However, few studies have utilized the present approach to 

predict MZs based on soil  properties at the field scale. The use of predictive models based on soil properties can 

help to know more about the yield variation caused by these factors (CORDOBA et al., 2016). The soil particle size 

was the factor that presented the highest accuracy to differentiate the aspects related to the design of MZs, possibly 

because it is a stable factor over time. Although the region is predominantly clayey to medium clayey soils, sand 

content was the predictor of greater weight in the classification, being evidenced in other studies that did not use 

classification tree techniques (SCUDIERO et al., 2018).  

Regarding water retention, the model showed good levels of accuracy. The correlation between soil water 

retention and sand contents contributes to the process of soil water drainage, seen in other studies using 

classification trees (AMORIM et al., 2022). FC is a factor dependent on soil structural organization and is related to 

the size and disposition of soil pores (REICHERT el al., 2020), which may explain FC importance as a predictor in 

this study, based on the instability of variation between regions. Through cross-validation it was possible to verify 

distinctions between and within regions in relation to machine learning predictions, evidencing the importance of 

high-resolution data to help in the evaluation of variation in agricultural fields.  

The characterization of agricultural fields without prior data hinders decision-making and rationalization of resources 

(OUAZZA et al., 2022). Therefore, the present research is an ally in the use of high-resolution data as support for 
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characterization of agricultural fields and design MZs, in the direction of determination of soil factors as well as in 

the rational use of inputs. Although the design techniques of MZs with temporal yield layers are extremely relevant, 

from this research we suggest that more studies be done to understand the climatic variability of dry and wet years 

on the existing characteristics in MZs, as they can directly influence the seasonality of agricultural production due to 

water deficit.  Another alternative is the use of high-resolution space-time satellite images to replace gaps in the 

historical series or failures of yield maps. 

 

2.5. Conclusions 

The  results of this study demonstrated the effectiveness of using high-resolution yield data and soil 

apparent electrical conductivity to identify management zones and analyze their relationships with soil water 

retention and particle size. By employing machine learning techniques, the specialized principal component analysis 

method showed superiority in predicting MZs based on principal components compared to conventional methods. 

The classification tree analysis revealed the important correlation between MZs, soil particle size, and soil water 

retention. Future studies that utilize historical spatial-temporal yield data can further enhance our understanding of 

the observed patterns. Our findings also highlight the crucial role of apparent electrical conductivity surfaces in 

designing MZs. To gain insights into the temporal variability of MZs due to water deficit, future research should 

investigate the factors responsible for such variability during wet and dry years. This study contributes to the 

development of more precise and effective agricultural management practices, ultimately leading to improved yields 

and sustainability. 
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3. MULTI-YEAR SIMULATION OF SOYBEAN YIELD FROM THE DIGITAL MAPPING OF CROPS 

AND SOIL WATER IN MANAGEMENT ZONES 

Abstract 

Predicting the yield of annual crops is a promising approach to increasing agricultural 
efficiency per unit area. The aim of this study was to estimate soybean yield in three management 
zones based on the spatial and temporal soil water balance and growth of the vegetation. Deficits and 
surpluses in the sequential water balance were estimated using surface texture, bulk density, organic 
matter fractions, and climate data, carrying out high-resolution mapping (25 m²) of the water available 
in the profile (RMSE ≈ 4 mm; R2 ≈ 68%). The vegetation indexes (NIR and NDVI) were obtained 
from satellite images with a spatial resolution of 3 m and temporal resolution of one month. Two 
modelling techniques (Multiple Linear Regression - MLR and Random Forest - RF) were evaluated for 
predicting soybean yield (2020/21) in three management zones (Z1, Z2 and Z3). Three temporal 
arrangements were considered, namely, the monthly predictors of water and vegetation for one, two 
or three earlier seasons. The quality of the models was assessed by accuracy index (RMSE, MAE, and 
R2), using maps and observed yield data. From the results, it was found that the RF method was more 
accurate, being used to predict yield in Z1, Z2 and Z3 for a rainy year (2018/19), a dry year (2019/20), 
and from observed data (2021/22). A 19% reduction in MAE and 17% reduction in RMSE, with a 
64% increase in R2, were seen using RF compared to MLR. Including predictors from the three earlier 
seasons showed the greatest accuracy in Z1, Z2 and Z3 (MAE<0.21 kg.ha-1, RMSE<0.29 kg.ha-1, and 
R2>35%). The use of NIR (MAE≈0.19 kg.ha-1, RMSE≈0.25 kg.ha-1 and R2≈45%) instead of NDVI 
(MAE≈0.20 kg.ha-1, RMSE≈0.27 kg.ha-1 and R2≈36%) ensured greater reliability in the prediction 
model. The use of RF to predict soybean yield based on management zones proved to be applicable to 
precision agriculture, ensuring quick, early information for localized management in the field, 
replacing the conventional approach of homogeneous management. 

Keywords:  Available Soil Water, Remote sensing, Digital soil mapping, Temporal variability 

 

3.1. Introduction 

In the search for smarter farming, and with the transformation of data into information, understanding 

the use of remote sensing techniques, digital mapping and artificial intelligence is essential (SAGAN et al., 2021; 

SOUZA et al., 2022). In this respect, precision agriculture can help the producer decide on the rational management 

of agricultural practices for annual crops, especially in regions with similar characteristics. The use of management 

zones (MZs) consists in a grouping technique for precision agriculture that highlights heterogeneous characteristics 

between regions, and similarities within the same region (SCHWALBERT et al., 2018; SCUDIERO et al, 2018). 

Knowing the patterns in MZs can ensure rational decision-making by the farmer, aiming at saving resources by 

predicting the yield of commercial crops (BREUNIG et al., 2020; ALI et al., 2022). Modelling the production 

environments can help support digital decision agriculture by reducing the use of inputs, localized planning, and the 

conservation of environmental resources. Based on this need, good model development depends on intrinsic 

information of the soil, vegetation, and climate (MURUHANANTHAM et al., 2022).  

Available Soil Water (SAW) is one of the factors that influence crop yield under local conditions. The 

SAW is obtained from the relationship between the water content at the potential corresponding to field capacity 

(FC) and the permanent wilting point of the crop (PWP) (VEREECKEN et al., 2010), and is calculated by 

laboratory analyses that are generally time-consuming. One solution is digital mapping of the SAW by modelling 
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such primary soil data as textural fractions (AMIRIAM-CHAKAN et al., 2019; CAMPOS et al., 2021), organic 

matter and bulk density (CUEFF et al., 2021). Determining soil water storage together with climate data can help 

estimate the regional or local water balance (FUZZO et al., 2019; FERINA et al., 2021; AMIRI et al., 2022). The 

climate data can be estimated by remote sensing (TORSONI et al., 2023) using satellite images, such as those from 

the MERRA-2 satellite with a spatial resolution of 55 km (GMAO, 2015).  

With crop growth and development, spatial and temporal monitoring is carried by means of indices, such 

as the NDVI (MERCANTE et al., 2010; ZENG et al., 2016; ALI et al., 2022), obtained through orbital sensing. 

Various studies have shown the importance of alternatives, such as reflectance at certain wavelengths (e.g. NIR), for 

the same purpose (LIU et al., 2014; ALABI et al., 2022). The use of vegetation indices by monitoring high-resolution 

spatial images from small satellite constellations (SKAKUN et al., 2021; RAO et al., 2021) is one way of improving 

the prediction quality of agroecosystem models, especially at the local level, such as management zones (MZs). 

The use of bigdata makes it possible to generate new agroecosystem models, at a local level, which when 

supported by machine learning techniques, can estimate the growth, development and/or yield of annual agricultural 

crops as a function of soil, plant, and climate predictors (FILGUEIRAS et al., 2020; SONG et al., 2022). A few 

established agroecosystem models have been conventionally used in agricultural research (da SILVA et al., 2022); 

however, they need to be calibrated and adjusted for tropical and subtropical climate conditions (ADEBOYE et al., 

2021). Alternatively, various studies have used machine learning techniques to predict, directly or indirectly, factors 

that influence agricultural yield (SZABÓ et al., 2019; FILGUEIRAS et al., 2020; AMORIM et al., 2022; TORSONI 

et al., 2023). Research should be carried out on a local scale, as one of the main challenges is increasing both the 

accuracy of these learning models and their applicability (MURUGANANTHAM et al., 2022).  

One of the hypotheses of this study, therefore, is that the digital mapping of soil water based on a 

prediction model is more accurate when carried out for MZs compared to estimating an entire area. This hypothesis 

is based on the importance of understanding the specific characteristics of each production area, and of not 

considering them homogeneous. The second hypothesis is that the use of NIR reflectance surfaces to simulate 

spatial and temporal development in the soybean is more representative compared to surfaces based on NDVI 

indices. The third hypothesis is that the use of machine learning techniques to estimate the spatial and temporal 

variability of soybean yield by MZs is more accurate than using the multiple linear regression method due to its 

ability to deal with unbalanced data. The aim of this research, therefore, was to estimate multi-year soybean yield 

based on the digital mapping of soil water and crop development at the level of management zones. 

 

3.2. Materials and Methods 

3.2.1. Study site and Management Zones (MZ)   

The study area is in the south of Brazil (23°24'S, 52°15'W, 492 m.a.s.l.), has a size of 10 hectares, and is 

intended for grain production (soybean and corn). The soil is classified as a Red Oxisol (LVe) in transition to an 

Entisol (USDA, 2014) (Fig. 1A). In outlining each MZ, layers of harvest maps from five consecutive soybean 

harvests (2017-2021) were used, together with the electrical conductivity at two depths, and an elevation map. The 

harvest maps were obtained using an AgLeader® model PF 3000 harvest monitor mounted on a combine harvester. 

The elevation was obtained from the positioning data of the harvester and was used as an additional layer. The 
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apparent electrical conductivity (ECa) was determined during September 2020 using the Veris 3100 mobile sensor. 

This equipment measures ECa at a frequency of 1 Hz in two layers (0-30 cm and 0-90 cm) at a spacing 15 m 

between passes. The data were filtered using the Mapfilter® software (SPEKKEN, ANSELMI and MOLIN, 2013) 

and normalized using amplitude variation. The layers were estimated by interpolation using block kriging, employing 

the Vesper 1.62® software with the local variogram at a resolution of 25 m². The layers were then merged using 

principal component (PC) multivariate geospatialisation, and the significant components grouped using the Fuzzy C-

means method (Fig. 1B). Four management zones were generated, classified by each significant layer as: Region Z1 

of low yield and low ECa (yield: ~1.6 t ha-1 and ECa: ~4 uS m-1); Z2 of high yield, but non-significant ECa (yield: 

~3.2 t ha-1); Z3 of moderate ECa and non-significant yield (ECa: ~5 uS m-1), and Z4 of moderate yield and high ECa 

(yield: ~2.4 t ha-1 and ECa: ~10 uS m-1). Z4 is a region that showed a high incidence of gravel and was not used for 

evaluation in the study (Fig. 1). 

 

 

Figure 1. Geographical region of the study area in southern Brazil (A), and management zones evaluated in the field (Z1: Low 

yield + Low ECa, Z2: High Yield, Z3: Moderate soil ECa, and Z4: Moderate yield + high soil ECa) (B). 

 

3.2.2. Weather and soil sampling  

Soybean season occurs during the summer, usually from October to March. Climate seasonality occurred 

during the seasons considered in this study (2017-2021), showing variation in relation to accumulated rainfall and 

average temperature (Fig. 2). Due to rainfall above and average temperatures below the historical average (2000-

2021), 2018 was considered a wet year. The other agricultural years (2017, 2019-2021) were considered dry years, 

with an accumulated rainfall below and temperatures above the historical average for most months. 
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Figure 2. Seasonality of the local average, maximum and minimum air temperature (°C), accumulated rainfall (mm) and Eto for 
dry and wet years during the soybean crop seasons (2017, 2018, 2019, 2020 and 2021) with the historical averages for rainfall (Rf) 
and temperature (Tm) from 2000 to 2021.*V1 – Emergence, R2 – Flowering, R5.1 – Filling, and R8 – Maturation 

 

Disturbed and undisturbed soil samples were collected before the start of the 2021/22 season. 

Undisturbed samples were collected from five points per hectare in three layers (0.00-0.20, 0.20-0.40 and 0.40-0.60 

m). The bulk density (ρs) was determined from the ratio between the dry weight and total known volume 

(TEIXEIRA et al., 2017). The water content at the PWP at a matrix potential of -1.5 Mpa was determined using the 

WP4-T Dewpoint potentiometer (Meter Group Inc.). The soil water content at a matrix potential of -10 kPa was also 

determined, and the upper limit of available water or field capacity (FC) was defined using a tension table similar to 

that described by Ball and Hunter (1988). The water content at -1 and -6 kPa was determined as indicator parameters 

of the retained soil water readily available to plants. Due to the shorter sampling time compared to the use of rings, 

disturbed samples were collected in the same three layers at a density of eight points per hectare to determine particle 

size (sand, silt and clay) employing sieving and chemical dispersion (ALMEIDA et al., 2012). 

Using the undisturbed samples, a particle-size fractionation of the soil organic matter (SOM) was carried 

out and the levels of particulate organic matter (MOP) and mineral-associated organic matter (MOM) were 

determined as per the method for particle separation proposed by Cambardella and Elliott (1992). For this, 

approximately 20g of soil and 60mL of sodium hexametaphosphate solution (5g L-1) were shaken for 15 hours in a 

horizontal shaker. The suspension was then passed through a 53µm sieve. The material retained on the sieve, 

considered as MOP, was oven-dried at 50°C. The material that passed through the sieve was considered the MOM 

fraction. To determine the C content of the MOP and MOM fractions, the individual fractions were ground in a 

porcelain mortar and later analysed by weight using the dry combustion method in a CN-2000® elemental analyser 

(Leco, St. Joseph, MI, USA). The total C content of the soil was obtained by summing the MOP and MOM 

fractions. 
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3.2.3. Procedure for predicting soybean yield by MZs based on water balance and 

vegetation indexes 

3.2.3.1. Spatial and temporal soil-water database 

A geostatistical analysis of the primary soil variables (sand, silt, clay, SOM, MOP, MOM, ρs, FC and 

PWP) was carried out using the kriging technique in the ArcMap software (ESRI, 2011), with the aim of obtaining 

25m² high-resolution surfaces at each depth (0.00-0.20, 0.20-0.40 and 0.40-0.60 m). Principal component analysis was 

carried out for each depth to understand the interactions between the soil attributes in Z1, Z2 and Z3. This analysis 

used the factoextra package (KASAMBARA and MUNDI, 2020) of the RStudio platform (R CORE TEAM, 2022).  

The estimated soil surfaces (sand, silt, clay, SOM, MOP, MOM and ρs) at the three depths were used to 

estimate SAW simulated by multiple linear regression (MLR) for Z1, Z2, Z3 and throughout the area (Fig. 3). 

Stepwise regression elimination was used to explain the weight of each of the predictor surfaces in the MLR (JAMES 

et al., 2014; BRUCE et al., 2017). The SAW measured surfaces were used to validate SAW simulated. The layer was 

calculated from SAW measured = [(FC-PWP) х ρs/ 10], where z corresponds to the soil layer. SAW measured was 

determined and validated for the different matrix potentials (-1, -6 and -10 kPa) for each MZs and for the entire area. 

Cross-validation was then carried out using the K-Fold method (LI, 1987), considering 10 subdivisions.  

Following validation and selection of the SAW simulated digital surface, temporal surfaces for water 

deficit (DEF) and water excess (EXC) were determined, resulting from calculating the sequential water balance (WB) 

as per the methodology proposed by Thornthwaite and Mather (1955). Climate data on rainfall and temperature were 

obtained from the Nasa Power platform, which provides daily data with a spatial resolution of 50 km and a temporal 

resolution of one day (STACKHOUSE et al. 2017). Data on the potential evapotranspiration (ETo) was calculated 

as per Thornthwaite and Mather (1955). The automatic method for localized determination of the water balance by 

Rolim et al. (1998) was adapted for use on a spatial scale. The spatial variation in the DEF and EXC surfaces 

occurred as a function of the spatial variation in water storage (ARM) in each of the MZs, i.e. when P-ETp > 0, then 

ARM = DSM of SAW. Thirty DEF and EXC surfaces were obtained for the months between November and March 

2016 to 2022 that correspond to the soybean cycle.   

 

3.2.3.2. Vegetation indexes (VIs) and boundary conditions 

To account for spatial and temporal variability on crop development, the vegetation index surfaces were 

calculated by normalized difference (NDVI) and near-infrared reflectance (RefNIR). The scenes were extracted from 

sensors of the PlanetScope satellite constellation (Planet, 2020) at a spatial resolution of 3 m and a temporal 

resolution of a month, with the data acquired in four spectral bands (blue: 0.485 m, green: 0.545 m, red: 0.630 m, 

and near-infrared: 0.820 m). The criteria for scene selection were the absence of clouds and the NDVI calculation 

(NIR-RED)/(NIR+RED) using the ArcMap GIS. Nineteen NDVI surfaces were obtained between November and 

March (2016 to 2022). To determine RefNIR, the raster’s were extracted and transformed, and the reflectance 

calculated for a total of 20 surfaces (November to March, 2016-2022) from the relationship between the digital 

numbers (DN) given by PlanetScope (Planet, 2020), where RefNIR = DN/10000.  
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In order to obtain the best representation of the prediction model, three temporal arrangements were considered. 

Determination accuracy was evaluated using Model 1: Yield2020/21 = f(ΔWB Monthly + IV Monthly)2020/21, i.e. 

soybean yield predicted as a function of the spatial and temporal variability of the predictors for the current season. 

Model 2: Yield2020/21 = f(ΔWB Monthly + IV Monthly)2020/21 + (ΔWB Monthly + IV Monthly)2019/20, i.e. yield 

predicted as a function of the spatial and temporal variability of the predictors for the current and previous season. 

Model 3: Yield2020/21 = f(ΔWB Monthly + IV Monthly)2020/21 + (ΔWB Monthly + IV Monthly)2019/20 + (ΔWB 

Monthly + IV Monthly)2018/19, i.e. soybean yield predicted as a function of the spatial and temporal variability of the 

predictors for the current and the two previous seasons. Where ΔWB represents the variation in soil water balance 

from the water deficits (DEF) and surpluses (EXC), and VI the indices that represent the quality of the vegetation, 

using either NDVI or RefNIR. 

 

3.2.4. Soybean yield prediction: methods and performance 

The behavior of the DEF, EXC, RefNIR and NDVI prediction surfaces in each of the management 

zones (Z1, Z2 and Z3) were evaluated using principal component analysis. Two methods were then used to predict 

the yield of the soybean crop (2020/21 season) by MZ. The first method employed the Random Forest supervised 

learning technique (RF). The premise of the RF is to increase the accuracy of the estimate and is able to deal with the 

reduced dimensionality of the data (FILGUEIRAS et al., 2020). The comparative method used was MLR, based on 

stepwise regressive elimination of the input variables. To evaluate the performance of the model, RF and MLR were 

cross-validated using the K-Fold method. In choosing the best prediction model, the RMSE (Root Mean Square 

Error), MAE (Mean Absolute Error), adj R2 (Adjusted Coefficient of Determination), R2 (Coefficient of 

Determination), MSE (Mean Standard Error), AIC (Akaike Criterion), BIC (Bayesian Information Criterion) and 

PRE (Percent Relative Error) were also determined. (Equation 1 to 8). 
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RMSE = √
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(
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(
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(

7) 

PER = 
(𝑦𝑖−�̂�𝑖)

𝑦𝑖
× 100 

(

8) 

 

Where n represents the number of observations in the simulation; k represents the number of estimated parameters; 

yi represents the observed value (harvest maps); y ̂i represents the estimated value (prediction models). 

 

After choosing the best prediction method for each MZs (Z1, Z2 and Z3), the last method was applied to 

predict soybean yield for both a wet year (2018/19 season) and a dry year (2019/20 season). The model was also 

used to estimate soybean yield during the 2021/22 season and validated using observed yield data. To do this, 

soybean plants were collected manually in plots of 2 m², using an irregular mesh with a density of 2.7 points per 

hectare in Z1, Z2 and Z3. Fig. 3 shows each development stage of the research. 

 

 

Figure 3. Analysis procedure to generate the spatial variability of soil water (Water Step) by management zone (Z1, Z2 and Z3) 
and selection of the temporal model of estimated yield (Yield Step) as a function of the water balance, and monthly NDVI and 
NIR indices. 
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3.3. Results  

3.3.1. Multivariate physical and chemical analysis of the soil in the MZs 

A biplot of the contribution of the soil variables in each of the layers to the PCs can be seen in Fig. 4. The 

variance explained by PC1 + PC2 was 86% for the 0 to 20 cm layer (Fig. 4A), 87% for 20 to 40 cm (Fig. 4B), 93% 

for 40 to 60 cm (Fig. 4C), and 83% for the entire profile (Fig. 4D). The soil variables with the greatest contribution 

to PC1 were related to FC and MOP. For PC2, the greatest contribution was from Sand (0-20 cm), while at the 

deeper layers the greatest contribution was from total organic carbon (MOS). In the soil profile (Fig. 4D), the 

contribution to PC1 showed the same pattern (FC + MOP) between layers, while for PC2, there were contributions 

from Sand, MOS and Silt. Of the regions, Z1 was considered to show the characteristics for low potential, Z2 for 

high potential, and Z3 for medium potential based on historical factors of yield and ECa. A group characterized by 

high values for MOS, MOP and ρs (Fig. 4D) was seen in Z1, while Z2 presented a group in the central region of the 

biplot that can be characterized as a region of transition from Z1 to Z3. Z3 showed grouping between quadrants 1 

and 4, classified with high values for FC, PWP, MOM, Clay and Silt.  

 

 

Figure 4. Principal component analysis of soil particle size (silt, sand and clay), carbon fractions (MOS, MOM and MOP) and soil 
density (ps) by management zone (Z1, Z2 and Z3) at different depths (0-20, 20-40 and 40-60 cm). 

 

3.3.2. Prediction and spatial variability of the SAW between MZs  

The performance of the SAW prediction for Z1, Z2, Z3, and for the entire area is shown in Table 1. In an 

effort to determine the variation in SAW for differing conditions of the available soil water, different potentials (-1, -

6 and -10 kPa) were evaluated (OTTONI FILHO et al., 2014). According to the performance indices, the SAW in 

region Z1 showed greater accuracy under a matric potential of -10kPa (RMSE: 2.8 mm, R2: 0.75, MAE: 2.19 mm, adj 

R2: 0.75, MSE: 2.7 mm, AIC: 5981 and BIC: 6073). While in Z2 and Z3, the performance of SAW was superior at a 

matric potential of -6kPa (Z2 = MSE: 5.53 mm and AIC: 11956; Z3 = MSE:4.09 mm, AIC: 9898 and BIC: 10018). 

The percent relative error (PRE) of the SAW in region Z2 was 43% higher than in Z1 and Z3, which shows that the 
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region can be characterized as transitioning, demonstrating the importance of using MZs in studying the water 

dynamics of agricultural areas. 

 

Table 1. Accuracy indices for predicting the available soil water (SAW) by multiple linear regression (MLR) using the backward 
stepwise method and cross-validation for different soil water potentials (-1, -6 and -10kPa). 

MZs  Predicted 
Cross Validation   Performance 

RMSE R2 MAE   adj R2 RSE AIC BIC PER p.value 

Z1 

SAW1 2.94 0.75 2.33   0.75 2.92 6109 6201 0.07 <0.001 

SAW6 2.88 0.71 2.27 
 

0.70 2.86 6058 6145 0.10 <0.001 

*SAW10 2.80 0.75 2.19   0.75* 2.77 5981 6073 0.11 <0.001 

Z2 

SAW1 5.62 0.63 4.09   0.63 5.62 12017 12117 0.11 <0.001 

*SAW6 5.54 0.63 4.02 
 

0.63 5.53 11956 12084 0.14 <0.001 

SAW10 5.53 0.61 4.01   0.61 5.54 11958 12052 0.15 <0.001 

Z3 

SAW1 4.25 0.71 3.30   0.71 4.23 10015 10124 0.07 <0.001 

*SAW6 4.10 0.65 3.15 
 

0.65 4.09 9898 10018 0.09 <0.001 

SAW10 4.23 0.70 3.29   0.70 4.21 10001 10105 0.10 <0.001 

All Field 

SAW1 5.69 0.71 4.39   0.71 5.69 33461 33605 0.11 <0.001 

*SAW6 5.48 0.70 4.20 
 

0.70 5.49 33069 33214 0.14 <0.001 

SAW10 5.67 0.68 4.37   0.69 5.66 33396 33541 0.15 <0.001 

* SAW 1, 6 and 10 represents soil water content w/ FC in -1, -6 and -10 kPa, respectively. RMSE is Root Mean Squared Error, R2 is 
determination coefficient, MAE is Mean Average Error, RSE is Residual Standard Error, AIC is Akaike criteria, BIC is Bayesian criteria, PER is 
Percentage Relative Error. Numbers in bold represent the best values according to the accuracy indexes. 

 

Region Z1 (SAW ~ 10-30 mm) presented lower SAW values than Z2 (SAW ~ 20-40 mm) or Z3 (SAW ~ 

20-50 mm) (Fig. 5A). The SAW simulated surface (Fig 5A) was seen to be smoother and more homogeneous 

compared to SAW measured (Fig. 5B). Regions Z1 and Z3 showed greater stability and a smaller range of variation 

compared to Z2, again showing Z2 as a region in transition between the first and third regions (Fig. 5C). It can also 

be inferred that the model was not able to estimate the observed SAW values more accurately above 50 mm, which 

may have influenced the spatial smoothing of the estimated surface.  

 

 

Figure 5. Spatial simulation of Soil Available Water predicted by RLM (A), Observed SAW by interpolation of measured points 
(B), and 1:1 curve by management zone (Z1, Z2 and Z3). 
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3.3.3. Multivariate analysis and predicting soybean yield as a function of WB, NIR 

and NDVI  

The result of the PCA of the predictors used to estimate soybean yield and the contributions of each 

variable can be seen in Fig. 6. The explained variance of the predictors as a function of the MZs for the first two PCs 

was 57%. Z1 showed a grouping between quadrants two and three, characterized by high values for DEF and EXC 

(Fig. 6A). Z3 showed grouping in quadrants one and four, characterized by variations in the vegetation indices, 

particularly in RefNIR. Z2 was characterized as a region in transition to Z3, with a larger grouping of VIs. Fig. 6B 

shows that PC1 was strongly influenced by contributions related to the soil water balance, and PC2 by contributions 

from the vegetation indices. Considering the temporal aspect of the contributing predictors, the contributions were 

greater between the flowering stage (R5) and the grain filling stage (R5.2).  

 

0 

Figure 6. Principal component analysis of the predictors (monthly vegetation indices - VI and soil water balance - HB) (A) and 
contributions of PC1 (B) and PC2 (C) used to estimate soybean yield. *Ref represents the temporal NIR. 

 
 

Regardless of the methods (RF or MLR), MZs (Z1, Z2 and Z3) or VIs (NIR and NDVI), the use of 

predictors from the three previous seasons helped reduce the RMSE and MAE and increase R2 (Table 2). The 

prediction quality for soybean yield using RefNIR as an input variable was superior to that obtained using NDVI. 

The use of RF as the prediction method showed superior performance to using MLR.   
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Table 2. Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Rsquared (R2) for predicting soybean production 
(2020/21) using three boundary conditions (M1, M2 and M3) based on multiple linear regression (MLR) and the Random Forest 

technique (RF). 

Model 
MAE    RMSE    R2  

Z1 Z2 Z3   Z1 Z2 Z3   Z1 Z2 Z3 

M1.RF: NDVI + HB 0.212 0.236 0.241  0.298 0.306 0.321  0.176 0.129 0.205 

M1.RF: NIR + HB 0.179 0.218 0.230  0.259 0.289 0.308  0.387 0.255 0.252 

M1.MLR: NDVI + HB 0.218 0.236 0.247  0.312 0.319 0.319  0.143 0.080 0.129 

M1.MLR: NIR + HB 0.221 0.240 0.243  0.306 0.317 0.318  0.096 0.072 0.161 

M2.RF: NDVI + HB 0.200 0.221 0.235  0.284 0.292 0.307  0.210 0.230 0.257 

M2.RF: NIR + HB 0.168 0.203 0.217  0.244 0.273 0.296  0.462 0.351 0.322 

M2.MLR: NDVI + HB 0.215 0.244 0.246  0.309 0.322 0.321  0.164 0.035 0.126 

M2.MLR: NIR + HB 0.221 0.239 0.247  0.310 0.320 0.325  0.081 0.060 0.105 

M3.RF: NDVI + HB 0.179 0.195 0.223  0.249 0.264 0.291  0.402 0.379 0.303 

¹M3.RF: NIR + HB *0.164 0.185 0.212  0.233 0.243 0.287  0.531 0.472 0.353 

M3.MLR: NDVI + HB 0.209 0.237 0.249  0.296 0.316 0.316  0.199 0.094 0.125 

M3.MLR: NIR + HB 0.210 0.234 0.243   0.288 0.316 0.315   0.217 0.094 0.163 

¹M3.RF:NIR+HB=”Yield2020/21=NIR(nov16+dec16+jan17+feb17+mar17+dec17+jan18+mar18+nov18+dec18+mar19+dec19+jan20+feb20+mar20+nov20+dec20+ja

n21+feb21+mar21)+WB[DEF(oct16+nov16+dec16+jan17+feb17+mar17+oct17+nov17+dec17+jan18+feb18+mar18+oct18+nov18+dec18+jan19+feb19+mar19+oct19+nov19+dec19

+jan20+feb20+mar20+oct20+nov20+dec20+jan21+feb21+mar21)+EXC(oct16+nov16+dec160+jan17+feb17+mar17+oct17+nov17+dec17+jan18+feb18+mar18+oct18+nov18+dec18+j

an19+feb19+mar19+oct19+nov19+dec19+jan20+feb20+mar20+oct20+nov20+dec20+jan21+feb21+mar21)]”.*black are the most accurate model. 
 

3.3.4. RF as an alternative for predicting soybean yield in wet or dry seasons  

The results of the RF method for estimating soybean yield in a dry year (2019/20 season) and a rainy year 

(2018/19 season), based on the DEF, EXC and RefNIR monthly predictors from the three previous seasons are 

shown in Fig 7. Z3 showed different behavior to Z1 and Z2, where there was a substantial reduction in RMSE and 

MAE during the rainy year (20% and 25%, respectively) compared to the dry year (9% and 15%, respectively). In 

regions Z1 and Z2, the performance of the yield prediction was lower for the rainy year compared to the dry year, 

which may be related to the lower water retention capacity in these regions compared to Z3.  
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Figure 7. Spatial and temporal variability of soybean yield by MZs as a function of soil the water balance and NIR reflectance for 
the 2019/20 and 2018/19 seasons. *RE = Relative Error. 

 

Fig. 8 shows the result of the prediction of soybean yield as a function of the MZs and the stability of the 

observed data. The simulated data showed a smaller range of variation than the observed data. One of the factors 

associated with this result may have been due to the drought intensifying over the previous three harvests (2019/20, 

2020/21 and 2021/22), which possibly affected the drop in yield in relation to the historical series, and even the 

performance of the model. The longer time taken for the collections and manual evaluations justifies the need to use 

harvest maps to carry out the study. On the other hand, the values for RMSE found in this study ranged from 0.15 

to 0.60 t ha-1, very similar to the estimates of soybean yield supported by agroecosystem models, such as Aquacrop 

0.27-0.35 t ha-1 (CAMPOS et al., 2018). The same was seen for MAE, with results ranging from 0.11 to 0.21 t ha-1, 

and in the literature, from 0.11 to 0.33 t ha-1 (da SILVA et al., 2017). 

 

 

 



47 
 

 

 

Public 

 

Figure 8. Boxplot of measured and simulated soybean yield (2021/22) in the management zones (Z1, Z2 and Z3) as a function 
of the soil water balance and variability in NIR reflectance. 

 

3.4. Discussion 

3.4.1. Performance of the digital mapping of soil water as a function of MZs versus 

the entire area 

Understanding the spatial variability of the SAW in each of the MZs made it possible to identify distinct 

patterns between and within regions. Under local field conditions, the accuracy of SAW estimated by MLR was 

considered high, corroborating other research under different climate conditions (VEREECKEN et al., 2010, Szabó 

et al., 2019). The use of digital soil mapping was a quick and effective alternative in this research, which ensured an 

understanding of the soil and its different behaviors in each management zone, similar to the studies of Cousin et al. 

(2022). It was possible to validate the first hypothesis of this study, in which the soil water balance in the MZs varies 

compared to the entire area, justifying the importance of the heterogeneous management of these regions.  

For the SAW prediction, the granulometric fraction, bulk density and organic matter surfaces were used, 

which favored an increase in estimation accuracy in our study. According to Dongli et al. (2017) and Amorim et al. 

(2022), the use of primary soil variables in models for estimating soil water can be an alternative method for reducing 

the number of analyses and collections necessary to determine the PWP and FC, which are considered time-

consuming.  

In region Z1, bulk density proved to be more important for the SAW, possibly as the region is sandier, 

with naturally higher densities (REINERT et al., 2008). The interactions of SAW with the carbon content of the soil 

may be associated with the predominance of the type of MOS fraction in each region. It’s important to note that the 

MOP and MOM affect both the structure and adsorption properties of the soil, and as a result, water retention. 

These MOS fractions are sensitive to changes that occur due to climate change and the changes in management 

practices that correspond to regions Z1, Z2 and Z3 defined in this study (DAMIAN et al., 2016). In Z3, the increase 

in MOM was more significant. MOM corresponds to a more stable fraction of the MOS and plays a fundamental 

role in the stability of microaggregates (CAMBARDELLA and ELLIOT, 1992). Z1 showed high levels of MOP, 

considered a labile fraction, and may be more sensitive to anthropogenic or natural variation (BAYER et al., 2002; 

ROSSI et al., 2012). Region Z2 appeared transitory in relation to the SAW and most of the soil predictors. 
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3.4.2. Machine learning as an alternative for predicting multi-year soybean yield by 

MZ 

Several studies have predicted soybean yield on a regional scale in tropical areas, considering vegetation 

and soil water indices (MERCANTE et al., 2010; GRZEGOZEWSKI et al., 2017; SONG et al., 2022). However, 

few studies have predicted soybean yield at the level of management zones. Machine learning and remote sensing 

tools may be able to speed up the efficient use of inputs on a local scale to ensure higher yield (LEO et al., 2023). 

Prediction accuracy using the RF method was superior to the MLR method, as seen in other studies (FILGUEIRAS 

et al., 2020; SONG et al., 2022). The use of ML is promising for predicting soybean yield as a function of MZs, 

validating our hypothesis. This is related to the ability of the RF method to reduce multicollinearity, which helps 

resolve sensitive interactions between the predictors and the simulated variables (BROKAMP et al., 2017). 

The temporal and spatial seasonality of water deficits, water surpluses, and the NIR increased the 

prediction accuracy of soybean yield in the management zones. This increase resulted from the addition of these 

temporal predictors from the three previous seasons. The estimate of soybean yield in the zone of low potential (Z1) 

was mainly influenced by variations in the water and carbon, a result of the multivariate analysis. The largest 

contributors seen in the region were related to the periods during which the crop was at stage R5, i.e. during the 

grain filling stage. An increase in water deficit during the grain filling phase drastically reduces crop yield (Neumaier 

et al., 2000). The low-potential zone is a sandier region, where the impact of drought on the crops is greater when 

there is inadequate protection of the soil or crop residue (SCUDIERO et al., 2018), coupled with the fact that with 

the increased water deficit, plants tend not to produce a large amount of photoassimilates. 

The regions of high and medium potential (Z2 and Z3, respectively) were classified as more clayey, with 

greater water retention and stable carbon, and were more dependent on crop-related factors. Due to these 

characteristics, the impact of drought on the soil may be less intense compared to the zone of low potential. Clay 

soils and a high carbon content contribute to the resilience of the soil to events of extreme water shortage. Lizumi 

and Wagai (2019) estimated that small increases in the organic carbon content of the soil in the 0–30 cm layer are 

sufficient to increase the drought tolerance of agricultural systems that operate in more than 70% of the global 

harvested area. On the other hand, a reduction in soybean yield was seen in the southern part of the zone with 

medium potential, possibly due to the transition from an Oxissol, a highly weathered soil, to an Entissol, a less 

developed soil that is stonier with shallower profiles.  

Using the NIR vegetation index resulted in higher performance than using NDVI, validating our 

hypothesis and justifying the potential use of reflectance surfaces as an aid to agriculture. NIR reflectance is 

characterized by the strong absorption of red light by chlorophyll and low absorption by green leaves, showing a 

correlation with the water balance in the plant (Liu et al., 2014). In this research, the use of reflectance, representing 

development of the canopy, contributed to the local prediction of soybean yield, possibly due to the correlation of 

the spectral range with such parameters as water and yield, as also seen in studies under controlled conditions 

(FILGUEIRAS et al., 2020). The use of high-resolution satellite data on a monthly scale was one of the factors that 

made this study possible. On the other hand, for estimating soybean yield, the characteristics derived from satellite 

sensors should vary at most by an interval of between two and three months (SKAKUN et al., 2021). In the case of 

this study, the temporal aspect of the predictors (one month) may have guaranteed an increase in prediction 

accuracy. 
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Spatial statistics make it possible to evaluate the variability of soybean production in different regions, 

together with spatial and temporal aspects made possible by geographic information systems, as seen in this and 

other studies (GRZEGOZEWSKI et al., 2017). On the other hand, validation on a temporal scale requires obtaining 

predictive surfaces over time and needs at least a monthly history. One of the main challenges of this study was to 

obtain historical data from reliable sources with representation on a local scale, as is the case of harvest maps. 

Alternatives should become possible through research and development, supporting quick decision-making by the 

farmer, seeking to increase yield in any one area, and considering the economic and environmental aspects. This will 

only be possible with the practical application of modelling under actual field conditions, as is the case of our 

research. 

The use of agroecosystem models has the advantage of predicting environmental factors more efficiently 

and on a larger scale, which can assist in the expansion and agility of research and marketing decisions. More and 

more, machine models are being used to estimate and predict these factors, as shown in this research, advancing 

towards a new frontier with the use of AI in digital and precision agriculture. 

 

3.5. Conclusions 

This research combined digital soil mapping techniques incorporating the spatial and temporal variability 

of water and vegetation to map soybean yield. This was only possible through the use of remote sensing, machine 

learning techniques, and high-resolution machine data. The digital mapping of soil water based on management 

zones proved to be an adequate alternative compared to evaluating the entire area. The use of near-infrared 

reflectance surfaces to predict soybean development resulted in higher performance than when using NDVI. The 

Random Forest machine learning technique showed greater accuracy in estimating soybean yield in each region 

compared to the conventional method. The strategy presented in this study can help decision-making in agricultural 

management as it allows the most important characteristics that condition yield to be recognized in each 

management zone, and also based on the temporal conditions of the crop, climate and soil during each season. The 

current approach guarantees rapid results for management at the field level, allowing the use of inputs and 

differentiated management to be planned on a local scale, season by season. The present research corroborates 

traditional approaches that employ high-density, sporadic, or systematic sampling, where the use of MZs allows 

fewer samples to be collected, which are allotted based on the performance of the crop, and from which it is possible 

to observe a greater number of variables and establish more-significant relationships from an agronomic point of 

view. In particular, this study showed the relevance of including variables related to water availability among those 

used as inputs for the models. 
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4. PERFORMANCE OF CROP MODELS TO PREDICT SOYBEAN YIELD ON PHYSICAL SOIL 

FACTORS IN MANAGEMENT ZONES 

 

Abstract 

Crop models are widely used to estimate crop yield in uniform areas, considering constant 
levels of soil factors as water retention. On the other hand, the available soil water varies depending 
on different factors at the plot level. The aim of this chapter was to evaluate the performance of two 
models for estimating soybean yield in different established regions based on the physical factors of 
the soil. The Aquacrop-FAO and DSSAT-CROPGRO models were used, and 44 soil profiles (Z1 = 
8, Z2 = 18 and Z3 = 18) were simulated, considering texture, carbon and soil water as input for the 
crop models. The simulations were carried out over three consecutive seasons, including one wet year 
(2018/19) and two dry years (2019/20 and 2020/21). There were significant variations in available soil 
water (SAW) in the different regions. The more clayey region Z3 (44 mm) had a higher SAW than the 
sandier region Z1 (30 mm). The Aquacrop model performed better in estimating yield in the 
management zones for the wet year (2018/19: RMSE < 1172 kg ha-1, MAE < 1093 kg ha-1) and the 
CROPGRO for the dry years (2019/20: RMSE < 865 kg ha-1, MAE < 815 kg ha-1; 2020/21: RMSE < 
1137 kg ha-1, MAE < 997 kg ha-1). The Aquacrop model overestimated yield compared to 
CROPGRO. It can be concluded that changes in soil factors influence yield in regions within the same 
plot in both crop models. More studies should be carried out in order to understand the performance 
of yield prediction by crop models at a spatial and temporal scale. 

Keywords: Aquacrop, FAO, DSSAT, Management Zones, Soybean, SAW 

 

4.1. Introduction 

Understanding the spatial variability and temporal determinants of soybean yield is fundamental to 

decision-making. Crop growth models are widely used for estimating yield; on the other hand, understanding the 

sensitivity of such methods at the farm level are necessary as management alternatives in precision agriculture 

(AHMADPOUR et al., 2022; SINGH et al., 2023). The use of crop models to predict yield can help in the intelligent 

management of production environments (SINGH et al., 2023).  

Among the models, there are those that use the relationship between carbon and radiation to estimate 

yield and crop development, as is the case of DSSAT (Decision Support System for Agrotechnology) which uses the 

CSM-CROPGRO module (MULAZZANI et al., 2022; AKUMAGA et al., 2023; SINGH et al., 2023). DSSAT-

CSM-CROPGRO is one of the most used models for crop simulation, and employs soil, climate, management and 

cultivar information to predict crop yields (AKUMAGA et al., 2023). 

Singh et al. (2023) evaluated the use of the CROPGRO model to estimate soybean yield at a spatial 

resolution of 25 km in a humid subtropical climate, with a variation of between 8% and 24% compared to the 

observed results. The authors stated that the methodology was promising, but the time taken in preparing the input 

data was high. Akumaga et al. (2023), also in a humid subtropical climate, used remote sensing data and field 

observations as inputs to the DSSAT model to predict soybean yield, obtaining an RMSE of between 200 and 700 kg 

ha-1, and considered the predictions obtained by the model as reasonable.  



56 
 

 

Public 

Other research is based on models that include the relationship between available water and biomass 

development based on the concept of water yield (STEDUTO et al., 2007; ADEBOYE et al., 2019). The FAO 

(Food and Agriculture Organisation of the United Nations) created the Aquacrop model, which can predict the 

development and yield of agricultural crops based on water efficiency and availability. According to Adeboye et al. 

(2019), the model is relatively simple, with few input parameters and intuitive algorithms for obtaining the evaluated 

outputs. Battisti and Sentelhas (2015), using Aquacrop to evaluate drought-tolerant soybean cultivars, found 

prediction errors in soybean yield of less than 280 kg ha-1. Adeboye et al. (2017), evaluating the performance of 

Aquacrop in predicting soybean yield under rainfed conditions and different types of ground cover, obtained an 

RMSE of 30 kg ha-1. For the authors, the model proved to be suitable for determining yield. Gimenez et al. (2017) 

used Aquacrop to estimate soybean yield under rainfed conditions in the south of Brazil, obtaining variations of 

between 4% and 23% of the actual values. According to the same authors, in seasons of high water stress, the model 

did not respond well to the estimates. According to Adeboye et al. (2019), models that use processes related to water 

variation to estimate crop yield are better applied over space and time than models that are based on energy, due to 

the greater ease of normalising the processes using the dynamics of water evapotranspiration and gas exchange.  

To estimate water stress, DSSAT uses field capacity and permanent wilting point variables that have a 

direct or indirect relationship with root growth and plant development. Aquacrop also uses the variables to estimate 

crop yield by means of processes that influence the availability of water in the soil. Few studies use crop models to 

predict yield at the management-zone level, mainly considering the variation in such soil factors as available water, 

generally considered constant. Understanding the influence of these factors on crop models used to predict soybean 

yield is therefore important. This study sought to investigate the efficiency of estimating soybean yield using two 

crop models (Aquacrop and CROPGRO) and their correlation with the changes in available soil water. The aim of 

this study is to understand the importance of evaluating soil factors at the management-zone level (Z1, Z2 and Z3), 

and the ability of crop models to detect these variations on soybean yield. Given the relevance of temporal variability 

in crop models, three different growing seasons (2018/19, 2019/20 and 2020/21) were considered. 

 

4.2. Materials and Methods 

4.2.1. Study site and Management Zones (MZs)   

The study was carried out in a 10-hectare area of grain production in the district of São Jorge do Ivaí, 

Paraná, in the south of Brazil (23°24’S, 52°15’W, altitude 492). The soil is classified as a Red Oxisol transitioning to 

an Entisol (USDA, 2014). The mean historical annual rainfall is 1600 mm and the mean annual temperature is 21°C. 

The region is classified as humid subtropical with hot summers (ALVARES et al., 2013). The management zones 

were defined using the fuzzy c-means clustering technique, considering five soybean harvest maps (2017-2021), 

apparent electrical conductivity (Eca), soil maps referring to the 0 to 30 cm and 0 at 90 cm layers and an elevation 

map. The data were filtered using the Mapfilter® software (SPEKKEN, ANSELMI and MOLIN, 2013) and 

normalised by the range in variation. Spatial principal component analysis was used to define the input layers for 

clustering. Four management zones were defined, based on an evaluation of zoning quality, the fourth being 

disregarded in this study due to the presence of gravel, which might affect the physical analysis. The Vesper 1.62® 

software was used to interpolate by block kriging, considering a resolution of 25m2. Region Z1 was considered to 
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have low historical yields with a low ECa; Z2 to have high historical yields with a non-significant ECa, and Z3 to 

have a moderate ECa with non-significant yields. 

 

 
Figure 1. Spatial location of the study and management zones (A). Accumulated and monthly variation of rainfall (mm), 
maximum, average and minimum temperature for the 2028/19, 2019/20 and 2020/21 crops seasons (B).  

 

4.2.2. Soil and weather databases  

Soil samples were collected on an irregular grid at a density of 5 points per hectare at three depths (0-20, 

20-40 and 40-60 cm). The levels of clay, silt and organic carbon (MOS), field capacity (FC) and permanent wilting 

point (PWP) were determined for each management zone (Table 1). Particle size was determined by mechanical and 

chemical dispersion as per Teixeira et al. (2017). Field capacity at -6kPa was estimated according to Ball and Hunter 

(1988). The PWP was determined using the WP4-T potentiometer (Meter Group Inc.) at -1.5 MPa. The MOS 

content was obtained from the sum of the particle-size fractionation of the soil organic matter using mineral-

associated organic matter (MOM) and particulate organic matter (MOP), as per Cambardella and Elliot (1992). A 

geostatistical analysis of the soil variables was then carried out using the ArcMap software (ESRI, 2011) and kriging 

to determine high resolution surfaces (25m2) for the three layers. 

The soybean harvest is carried out in the summer, from October to March, therefore, daily meteorological 

data for the 2018/19, 2019/20 and 2020/21 seasons were considered. Rainfall, temperature, solar radiation, net 

radiation and wind-speed data were obtained from the Nasa Power platform (STACKHOUSE et al., 2017) at a 

spatial resolution of 50 km and temporal resolution of one day. Evapotranspiration data were calculated using the 

method of Thornthwaite and Mather (1955). 
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Table 1. Mean values for clay, silt, total organic carbon (MOS), field capacity (-6kPa) and permanent wilting point (-1.5 MPa) at 
different depths (0-20, 20-40 and 40-60 cm) for the management zones under consideration (Z1, Z2 and Z3). 

Soil Factor 
Clay Silt COT Field Capacity Wilting Point 

(%) 

0-0.20 cm 

Z1 36.8 5.9 5.1 14.3 11.7 

Z2 53.3 8.7 5.0 17.1 13.4 

Z3 61.7 12.1 4.8 20.8 15.9 

20 – 40 cm 

Z1 45.2 4.8 5.1 15.4 12.2 

Z2 59.6 7.2 4.9 18.0 14.7 

Z3 66.6 12.1 4.8 22.7 17.7 

40 – 60 cm 

Z1 48.7 7.0 5.1 17.0 15.2 

Z2 63.9 5.4 4.9 18.1 14.2 

Z3 72.8 8.4 4.7 21.8 18.3 

 

4.2.3. Crop models development 

To estimate soybean yield as a function of the management zones during the 2018/19, 2019/20 and 

2020/21 seasons, two crop models were considered: Aquacrop and DSSAT-CROPGRO (HOOGEBOOM et al., 

2015). Aquacrop is a platform with different crop models developed by the FAO that offers one approach to 

simulating growth and yield based on variations in soil and plant water using quality or stress coefficients, as per Raes 

et al. (2012). Climate, soil and crop data in the region were used as input for the model. The following were 

considered: sowing dates of 1 October 2018, 5 October 2019 and 20 October 2020, a cultivar with a cycle of 130 

days, and a density of 33 plants per m2. Forty-four virtual soil profiles were created in the 0-20, 20-40 and 40-60 cm 

layers considering values for soil texture, permanent wilting point and field capacity, both estimated and obtained in 

the field.  

DSSAT-CROPGRO is a platform with simulation models for crop growth and production that consider 

a uniform area as a function of the variations in climate, water, soil, nitrogen and carbon. For crop management, a 

cultivar from maturity group 6 was considered, as recommended for the south of Brazil. A plant population of 33 

plants per m2, row spacing of 50 cm and planting depth of 5 cm were used. Forty-four virtual profiles were generated 

(Z1 = 8, Z2 = 18 and Z3 = 18) considering the data on clay, silt, MOS, PWP, FC in the 0-20, 20-40 and 40-60 cm 

layers. The saturated water content was estimated based on the pedotransfer functions of the platform, as was the 

saturated hydraulic conductivity. Figure 2 describes the process, from generating the management zones to 

estimating the performance of the best model. 
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Figure 2. Flowchart of the development of the steps for the estimation of yield in the management zones (Z1, Z2 and Z3) as a 
function of two crop models (DSSAT-CROPGRO and Aquacrop) in three harvests (2018/19, 2019/20 and 2020/21).  

 

4.2.4. Data analysis 

The correlation between the surface-soil data and the observed data in each of the management zones was 

determined using the Spearman method. The homoscedasticity of soybean yield between the management zones was 

verified using the Kruskal-Wallis (p<0.05) and Man-Whitney-Wilcoxon (p<0.05) tests. The Spearman correlation 

and boxplots were also generated to compare the estimated behavior of soybean yield with the observed data. The 

performance of the methods for estimating soybean yield for the management zones in different seasons was 

evaluated based on the RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (Coefficient of 

Determination), as per equations (1-3) below. 

 

RMSE = √
∑ (𝑦𝑖−�̂�𝑖)²𝑛
𝑖=1

𝑛−𝑘
 (1) 

R² = 1 - 
∑ (𝑦𝑖−�̂�𝑖)²𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)²𝑛
𝑖=1

 (2) 

MAE = 
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛
𝑖=1  (3) 

 

where: n represents the number of observations, k the number of estimated parameters, yi the observed 

value, y ̂i the estimated value, and y ̅ is the sum of the observed values. 
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4.3. Results and Discussion 

4.3.1. Correlation between soil properties and yield in MZs 

The results of the correlations between the observed soil values and those of the surfaces in each of the 

regions can be seen in Table 2. In region Z1, the levels of clay (20-60 cm) and silt (20-40 cm) had the highest 

correlation with the observed data (>0.95). In Z2, significant correlations were also seen for the levels of clay (20-60 

cm), silt (20-40 cm) and PWP (20-40 cm). In Z3 there were also significant, high correlations (p>0.95) with clay (20-

60cm), silt (20-40 cm) and PWP (20-40cm). Regardless of the MZ, the MOS variables for some of the layers gave the 

worst performance. Zhang et al. (2010), comparing different kriging methods for estimating MOS, also found low 

correlation values for ordinary kriging (r = 0.38) due to lower sensitivity of the local variations and smoothing, which 

resulted in an overall representation of MOS that masked the local variations. Similar behavior was seen in our study. 

The use of soil data extracted from surfaces estimated by kriging is one alternative in the case of missing data or lost 

samples. In this study, it was possible to use these data and complete the database under evaluation. On the other 

hand, due to the quality of the kriging, the representativeness of the textural data was better than that of the MOS 

results. 

 
Table 2. Correlation between the observed soil data and the data extracted from the kriged surfaces for the layers (0-20, 20-40 
and 40-60 cm) and management zones (Z1, Z2 and Z3).  

Soil Layer (cm) 

Spearman Correlation 

COT Clay Silt   Field Capacity Wilting Point 

(kg kg-1)  (m3 m-3) 

Z1 

0-20 0.66 0.92 0.85  0.94 0.82 

20-40 0.85 0.96 0.99  0.85 0.94 

40-60 0.44 0.99 0.92  0.82 0.63 

 Z2 

0-20 0.44 0.83 0.30  0.86 0.80 

20-40 0.30 0.99 0.99  0.75 0.99 

40-60 0.59 0.99 0.79  0.61 0.57 

 Z3 

0-20 0.71 0.81 0.15  0.73 0.75 

20-40 0.45 0.99 0.99  0.66 0.99 
40-60 0.58 0.97 0.46   0.52 0.64 

 

The results of the mean, maximum and minimum variability, and standard deviation of available soil water 

in each of the management zones are shown in Table 3. For region Z1, there was an average SAW of 30 mm. In 

region Z2, the mean SAW did not differ significantly from Z1 or Z3, with a mean of 39 mm. Region Z3, on the 

other hand, had the highest mean SAW (43 mm), differing significantly from region Z1. It can be seen that region 

Z2 presented transition characteristics with a higher mean standard deviation compared to the other regions. 

According to Van Lier et al. (2022), SAW is related to soil texture, with sandier soils having a lower SAW, and more-

clayey soils a higher SAW. The results of the authors corroborate the present study, with a higher sand content in Z1 

compared to Z3. Table 3 shows the importance of considering variations in soil water in different regions of the 

same area, as they can significantly affect crop yield under rainfed conditions. 
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Table 3. Average, maximum, minimum and standard deviation values observed (2020/21) of available water in the soil (SAW) by 
management zones (Z1, Z2 and Z3).  

MZs 
Total SAW (mm) 

Average Maximum Minimum Standard Deviation 

Z1* 30.11 B 41.19 18.16 8.18 

Z2 39.06 AB 76.90 26.22 12.01 

Z3 43.46 A 56.94 29.30 7.66 

*Diferença entre letras são significativas pelo teste de Wilcoxcon (p<0.05).  

 

The results of SAW correlations (p) between the observed yield and estimated by the crop models can be 

seen in Table 4. For the observed data, regardless of the season, there was an increase in yield due to the increase in 

SAW, especially in region Z1 (p = 0.22 to 0.40). Less marked values were found for region Z3 (p = 0.05 to 0.27). For 

the Aquacrop model, the increase in yield was more marked, showing an increase in SAW in the less clayey regions: 

Z1 (p = 0.65 to 0.86) and Z2 (p = 0.53 to 0.60). According to van Lier et al. (2022), the Aquacrop model uses SAW 

values in calculating the water balance, these being widely used in modelling. On the other hand, the authors claim 

that it is necessary to adjust the input parameters using local measurement data, which allows the level of uncertainty 

to be reduced, corroborating the present study.  

For the DSSAT model, there was an increase in yield in the clayey Z3 region for the increase in SAW (p = 

0.27 to 0.50). In the sandier Z1 region, the yield showed a negative correlation with SAW (p = -0.49 to -0.44). 

Nogueira et al. (2001) used CROPGRO to predict the impact of changes in the soil water retention parameters when 

predicting simulated production in the soybean for different seasons. According to the authors, an increase in the 

values for water retention capacity in the model can reflect in increased performance when predicting yield. This may 

be related to the negative correlation between SAW and yield in Z1, which has lower values for CC and PWP 

compared to region Z3.  

The variation in SAW at the management-zone level influenced the yield prediction of the crop models. 

The degree of correlation between the linear relationship of SAW and yield also varied from one season to another, 

albeit showing no specific pattern. As seen in this study, calibrating the SAW using actual field data is extremely 

important to ensure lower prediction uncertainty. 

 

Table 4. Spearman's correlation between available soil water (SAW) and observed and estimated yields (CROPGRO) in each 
management zone (Z1, Z2 and Z3).  

Management 
Zones (MZ) 

Yield observed (Maps) Aquacrop CROPGRO/DSSAT 

2018/19 2019/20 2020/21 2018/19 2019/20 2020/21 2018/19 2019/20 2020/21 

Z1 0.64 0.40 0.22 0.65 0.81 0.86 -0.48 -0.49 -0.44 

Z2 0.02 -0.07 0.07 0.53 0.59 0.60 -0.02 0.04 -0.03 

Z3 0.10 0.27 0.05 -0.15 -0.09 -0.03 0.30 0.50 0.27 

 

4.3.2. Soybean yield correlation and variation in MZs  

Box-plots and statistical analyses for soybean yield in the MZs for the observed data and the crop models 

are shown in Figure 3. For the 2018/19 season, region Z2 had the highest values for observed yield (Z1 = 2773 kg 

ha-1, Z2 = 3141 kg kg ha-1 and Z3 = 2663 kg kg ha-1); for the same crop, soybean yield was overestimated by 

Aquacrop and underestimated by CROPGRO. Battisti et al. (2017), calibrating five crop models to estimate the 
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soybean in the south of Brazil using Aquacrop and CROPGRO, found that both overestimated yield (~3%). 

Morales-Santos et al. (2023) also found that the Aquacrop model overestimated soybean yield under rainfed 

conditions. This overestimation by Aquacrop is a result of the low sensitivity of the model when estimating the 

transpiration rate of plants, which is related to the basal crop coefficient that must be properly calibrated 

(ADEBOYE et al., 2019). With Aquacrop, there were no significant differences in yield as a function of the MZs for 

the 2019/20 season, whereas the yield estimated by the CROPGRO method showed significant differences between 

the MZs (Z2 = 2999 kg kg ha-1, Z3= 2632 kg kg ha-1 and Z1= 2546 kg kg ha-1). Ejaz et al. (2022) state that the 

CROPGRO model shows sensitivity in predicting soybean yield as a function of variations in temperature, rainfall 

and CO2, which may explain the significant sensitivity between MZs compared to Aquacrop for the dry year. 

Furthermore, according to the same method, for the 2020/21 season, soybean yield in Z2 and Z3 was markedly 

similar (Z2 = 1950 kg kg ha-1 and Z3 = 2032 kg kg ha-1), while in region Z1 the yield was low (Z1 = 1491 kg kg ha-1). 

For this season, unlike CROPGRO, the Aquacrop model showed the same significant differences seen in the 

observed yield. Gimenez et al. (2017), evaluating soybean yield estimated by Aquacrop for different seasons also 

found significant differences for ANOVA. The Aquacrop model overestimated yield compared to the other models 

regardless of the MZ.  

From the results, it can be seen that both models showed sensitivity in estimating soybean yield, affording 

significant differences between the MZs for the different seasons. Several factors should be considered when 

estimating yield, and each crop model has its own specific characteristics, with Aquacrop being more related to 

variations in the water, and CROPGRO to variations in the photoperiod. Mulazzani et al. (2022), evaluating the 

effect of soil compaction on the historical estimate of soybean yield by CROPGRO, stated that even using the 

model, interactions between the soil-plant system and the climate should be considered. According to the authors, 

although the model can be used to predict soybean yield, field experiments should be carried out to validate the 

estimates. This corroborates the present study and the importance of assessments at the management-zone level, 

which are still little used when employing crop models. 

 

 

 

 

 

 

 

 

 

 



63 
 

 

 

Public 

 

Figure 3. Box-plots of soybean yields estimated by Aquacrop and CROPGRO methods and observed by harvest maps for each 
of the management zones (Z1, Z2 and Z3). *Letters differ significantly between management zones by the Wilconxon test 
(p<0.05). ns There are no significant differences between management zones by the Wilcoxcon test (p<0.05).  

 

4.3.3. Crop models performance to predict soybean yield based on MZs 

O The performance (RMSE, MAE and R2) of Aquacrop and CROPGRO in estimating soybean yield 

based on the management zones are shown in Table 5. For the wet year (2018/19), Aquacrop showed superior 

performance (RMSE < 1172 kg kg ha-1, MAE < 1093 kg kg ha-1) to CROPGRO. For the dry years (2019/20 and 

2020/21), CROPGRO performed better in estimating soybean production in each of the management zones 

(2019/20: RMSE < 865 kg kg ha-1, MAE < 815 kg kg ha-1; 2020/21: RMSE < 1137 kg kg ha-1, MAE < 997 kg kg ha-

1). The values of R2, regardless of the model under evaluation, were mostly around 0.1. Battisti et al. (2017) also 

obtained similar errors for Aquacrop (RMSE= 536 to 2010 kg kg ha-1; MAE = 458 to 1824 kg kg ha-1) and 

CROPGRO (RMSE= 548 to 1397 kg kg ha-1; MAE = 444 to 1061 kg kg ha-1). According to the authors, the 

CROPGRO model performed better than Aquacrop. 

Gimenez et al. (2017), using Aquacrop to estimate soybean yield for different seasons, found high 

variability in the results with high deviations (RMSE = 1010 kg kg ha-1), corroborating the present study. According 

to the authors, the high level of error in the results are related to the high levels of water stress and low sensitivity of 

Aquacrop in representing transpiration. Morales-Santos et al. (2023) also stated that under rainfed conditions, the 

performance of Aquacrop was reduced due to the water limitations. For Battisti et al. (2017), crop models such as 

Aquacrop are limited in their predictions as the model does not consider the photoperiod, which can result in an 

increase in yield values, unlike models such as CROPGRO. The crop models are also sensitive to changes between 

MZs, even when the crop is not calibrated for actual field conditions.  

Battisti et al. (2017) state that the use of a single crop model may be less efficient than when they are 

combined, in addition to highlighting the importance of calibrating the soil-related coefficients that affect the rate of 

water absorption by the roots. In this study, the variables related to soil texture, carbon and water were used as input 
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for the crop models, which may have helped to achieve similar accuracy as in the studies by Battisti et al. (2017); 

Adeboye et al. (2019) and Gimenez et al. (2017). 

 

Table 5. Performance of soybean yield estimates by Aquacrop and CROPGRO methods for the three management zones (Z1, 
Z3 and Z3) in the different harvests considered (2018/19, 2019/20 and 2020/21).  

Year MZ 

Aquacrop DSSAT/CROPGRO 

RMSE  MAE 
R2 

RMSE MAE 
R2 

kg ha-1 kg ha-1 

2018/19 

Z1 437 425 0.6 1615 1589 0.1 

Z2 769 719 0.2 1846 1834 0.1 

Z3 1172 1093 0.1 1625 1553 0.1 

2019/20 

Z1 1956 1910 0.1 771 628 0.1 

Z2 2039 2019 0.1 864 815 0.1 

Z3 1959 1857 0.1 638 495 0.1 

2020/21 

Z1 1446 1331 0.1 1137 997 0.1 

Z2 1574 1542 0.1 722 646 0.1 

Z3 1246 1188 0.1 492 407 0.1 

 

4.4. Conclusions 

The present study sought to investigate the efficiency of the Aquacrop and CROPGRO models in 

estimating soybean yield at the management-zone level as a function of the available water and soil variables. The 

crop models showed sensitivity in estimating yield for the different regions. There were differences between the 

seasons for both models, Aquacrop overestimating the results compared to CROPGRO; there were also differences 

in the results between wet and dry years. As a suggestion, future studies should be carried out on the spatial and 

temporal prediction of soybean yield under field conditions and in high resolution. 
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5. FINAL CONSIDERATIONS 

One of the main challenges to increasing yield is predicting the factors that influence the production cycle. 

A gap in knowledge that led to this study was the prediction of soybean yield considering spatial variability. The 

water balance or water cycle of the soil-plant-atmosphere relationship was one of the fundamental pillars for the 

study, and at field level was only possible through the use of remote sensing and sensors-machine data. Machine 

learning was useful in analysing the data and allowed estimates close to the actual field results. Among the benefits of 

the results of this study are support for decision-making during the planning stages, ensuring inputs are rationalised 

and reducing environmental impact.  

As a result of the first chapter, it was seen that the management of agricultural areas should not be carried 

out homogeneously, given the influence of the spatial-temporal variability of the physical factors of the soil on 

soybean yield, as in the case of the sandiest region of the study area. The use of ECa surfaces and the historical yield-

map series ensured the MZs were generated, and the regions classified based on their most prominent characteristics. 

Defining the proper number of MZ groups was helped by the use of principal component analysis, ensuring that the 

accuracy indices converged for three or four regions. One of the main findings in this chapter was understanding the 

specific characteristics of each region together with the transitory aspects, which are due to textural factors and soil 

formation. As a practical result, specific management practices can be suggested based on the use of cover crops that 

have more-aggressive roots in regions of lower yield. This can be one way of increasing organic matter and thereby 

water storage capacity by reducing evaporation. Use of the classification tree helped to validate the differences 

between the MZs based on soil water retention and textural variation in each region. The use of digital maps of water 

retention and soil texture can be one alternative together with yield maps for generating MZs. Although methods for 

generating MZs are easily found in the literature, predicting soybean yield from these regions remains a challenge: the 

present study also sought to understand and address this need.  

As a result of Chapter 2, it was possible to demonstrate the challenges of digitally mapping soil water 

retention and especially its variability at the MZ level. This once again justified the importance of managing 

agricultural areas considering spatial-temporal variability. This chapter showed how soil water availability also varies 

depending on the texture of the soil, where the degree of water retention correlated differently in each region. In 

situations where information on field capacity and the permanent wilting point was not available, the impact of 

generating digital soil water retention maps based on primary soil data such as texture, apparent density and organic 

matter was evaluated in the different fractions and layers, highlighting the specific characteristics of each region, and 

of the factors that differed between the regions. The multivariate principal component analysis also demonstrated 

the relationship between the variability of the vegetation indices and the water balance in each MZ. The region 

characterised as having low productive potential showed greater correlation with the factors of water deficit and 

water surplus in the soil, while the other regions showed a correlation with the vegetation indices and crop 

development. The interactions seen in the MZs occurred mainly during certain phenological stages of the soybean 

and were different for wet and dry years.  

Use of the Random Forest method in this study resulted in high accuracy compared to the conventional 

MLR method. However, seasonality and the number of digital maps were essential for increased quality, requiring 

the use of three seasons of information to guarantee the quality of the predictions. Further studies are needed in 

order to use the technique, taking observed yield data into consideration. In this study, the sample yield database was 

small in relation to the resolution of the harvest maps. The learning performance of the model was therefore poor 



68 
 

 

Public 

due to yield being measured in the field; on the other hand, the results showed high stability. These results show the 

importance of the quality of the input data and of the available historical information. The end of the second chapter 

demonstrated the importance of vegetation indices for inferring plant development. The use of NIR reflectance 

surfaces proved to be an alternative to the use of NDVI, widely used in field evaluations. Further research should be 

developed to investigate the potential of this information.  

Chapter 3 explored the performance of the crop models in estimating soybean yield at the management-

zone level and as a function of the variations in soil water. The crop models showed different behavior for the 

different management zones and crops under evaluation. The performance of the Aquacrop model was higher for 

the wet year, while CROPGRO showed better performance for the dry years. Aquacrop tended to overestimate yield 

in the management zones, while with CROPGRO, yield was underestimated under the same conditions. The use of 

crop models with simulations of virtual soil profiles related to water, texture and carbon retention supported the 

importance of considering the differences between regions at the plot level.  

Finally, this study contributed to an understanding of the use of learning techniques and crop models at the 

field level, and recognition of how soil, plant and climate data might support decision-making. Another aspect is a 

combination of techniques such as digital mapping, clustering, and predictive models for crop yield as an alternative 

for generating actions and understanding specific characteristics at the local level. The joint use of this information is 

part of the digital transformation in agriculture and helps to increase yield by rationalising inputs based on the 

productive potential of each MZ. One suggestion for further studies is the possibility of understanding whether 

current predictive models of crop yield are superior to machine learning methods that use sensing data. From the 

point of view of process automation, it is suggested that future studies investigate the creation of software that 

combines all these techniques and that allows decision-making on the part of technicians or farmers.  

 

 


