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RESUMO 

Sensoriamento orbital, aéreo e proximal aplicado ao monitoramento da variabilidade 

espacial de lavouras de café 

O Brasil é o maior produtor e exportador de café do mundo. Nos últimos anos cresceu a 
necessidade de modernização da produção agrícola, baseando-se na variabilidade espacial dos atributos 
do solo e das plantas, visando aumentar eficiência da lavoura e rentabilidade do produtor rural. Neste 
sentido, diferentes técnicas de sensoriamento (orbital, aéreo e proximal) têm sido testadas para mapear 
a variabilidade espacial de características de plantas e solo em diferentes sistemas de produção, 
permitindo obter alta frequência de dados com rapidez e baixo custo. No entanto, para a cultura do café 
os estudos que abordam essas técnicas em conjunto para gerar informações que subsidiem melhorias 
na gestão espacializada da lavoura de café são escassos. Por ser uma cultura perene, a produção de café 
é o resultado integrado dos diversos fatores envolvidos no manejo da cultura, solo, clima e da própria 
planta, como por exemplo o comportamento de bienalidade produtiva, com anos de alta e baixa 
produção. A criação de um sistema que permita obter essa informação de forma rápida e não invasiva 
é fundamental para uma gestão eficiente da lavoura. Nesse sentindo, este estudo buscou avaliar o 
potencial de uso de dados obtidos por diferentes sensores, buscando identificar atributos e feições da 
variabilidade presente nas lavouras de café que expressem relação direta com produtividade e 
consequentemente identifiquem a bienalidade produtiva (variabilidade temporal). Para tanto, o estudo 
foi dividido em cinco capítulos que abordam essas lacunas a partir de diferentes perspectivas. 
Inicialmente apresenta-se uma revisão breve sobre os principais trabalhos publicados na área, em 
seguida, no segundo capítulo buscou-se avaliar a qualidade dos dados obtidos por meio de um monitor 
de produtividade embarcado em uma colhedora de café. Os dados obtidos pelo monitor, de volume de 
café colhido, apresentaram alta correlação com dados obtidos com as células de carga, validando o 
método e permitindo mapear três safras consecutivas, que possibilitaram avançar na compreensão da 
variabilidade espacial e temporal da produtividade cafeeira em áreas comerciais. Visando explorar a 
potencialidade de mapear a variabilidade produtiva antes da colheita, os capítulos três, quatro e cinco, 
utilizaram técnicas de sensoriamento remoto para predizer e mapear a variabilidade espacial de uma 
lavoura comercial de café, com diferentes sensores e em três níveis de aquisição dos dados. No capítulo 
três foram explorados os sensores ópticos ativos (AOS) embarcados em um trator, em nível proximal. 
No quarto capítulo foi abordado o uso de imagens aéreas obtidas por aeronaves remotamente pilotadas 
(RPA) e no quinto capítulo foram utilizadas imagens orbitais de alta resolução espacial. De forma geral, 
os dados de sensores ópticos ativos apresentaram alta correlação com a produtividade, bem como 
permitiram monitorar temporalmente a variabilidade espacial da área de estudo, identificando regiões 
que apresentam inversão produtiva (bienalidade). Os resultados apresentados com o uso das imagens 
aéreas obtidas por RPA demonstraram o potencial das imagens na extração de parâmetros biofísicos 
dos cafeeiros. Também permitiram a individualização das plantas visando à extração de dados de altura 
e volume, permitindo observar a relação espaço-temporal das variáveis estudadas com dados de 
produtividade durante três safras consecutivas. As imagens orbitais de alta resolução espacial 
apresentaram a potencialidade em predizer a produtividade do café com alta assertividade um ano antes 
da colheita. De maneira geral os resultados encontrados nesse trabalho reforçam a importância em 
conhecer a variabilidade espacial produtiva nas áreas de café, pois esse tipo de informação auxilia na 
busca de possíveis causas dessa variabilidade para que a cultura possa ser manejada considerando essas 
diferenças espaciais e temporais. Este estudo apresentou as variações espaço-temporais dos dados de 
sensores orbitais, aéreos e terrestres em uma área comercial de café, bem como sua relação com mapas 
de produtividade gerados com alta densidade de dados, permitindo estimar a produtividade e identificar 
as variações produtivas ocasionadas pela bienalidade.  

Palavras-chave: Agricultura de precisão; Sensoriamento Remoto;  Geoprocessamento ;Colheita 
mecanizada  
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ABSTRACT 

Orbital, aerial, and proximal sensing applied to monitoring the spatial variability of coffee 

plantations 

Brazil is the largest coffee producer and exporter in the world. In recent years, the need to 
modernize agricultural production has grown, based on the spatial variability of soil and plant attributes, 
in order to increase crop efficiency and rural producer profitability. In this sense, different sensing 
techniques (orbital, aerial and proximal) have been tested to map the spatial variability of plant and soil 
characteristics in different production systems, allowing to obtain high frequency data quickly and at 
low cost. However, for the coffee culture, studies that approach these techniques together to generate 
information that subsidize improvements in the spatialized management of the coffee plantation are 
scarce. As it is a perennial crop, coffee production is the integrated result of the various factors involved 
in the management of the crop, soil, climate and the plant itself, such as the behavior of productive 
biennials, with years of high and low yields. The creation of a system that allows obtaining this 
information quickly and non-invasively is essential for an efficient management of the crop. In this 
sense, this study sought to evaluate the potential use of data obtained by different sensors, seeking to 
identify attributes and features of the variability present in coffee plantations that express a direct 
relationship with yield and, consequently, identify the biennial yield (temporal variability). To this end, 
the study was divided into five chapters that address these gaps from different perspectives. Initially, a 
brief review of the main works published in the area is presented, then, in the second chapter, we sought 
to evaluate the quality of the data obtained through a yield monitor embedded in a coffee harvester. The 
data obtained by the monitor, of the volume of coffee harvested, showed a high correlation with data 
obtained with the load cells, validating the method and allowing the mapping of three consecutive 
harvests, which made it possible to advance in the understanding of the spatial and temporal variability 
of coffee yield in commercial areas. Aiming to explore the potential of mapping production variability 
before harvest, chapters three, four and five used remote sensing techniques to predict and map the 
spatial variability of a commercial coffee crop, with different sensors and at three levels of data 
acquisition. In chapter three, active optical sensors (AOS) embedded in a tractor, at a proximal level, 
were explored. In the fourth chapter, the use of aerial images obtained by remotely piloted aircraft (RPA) 
was addressed and in the fifth chapter, high spatial resolution orbital images were used. In general, data 
from active optical sensors showed a high correlation with yield, as well as allowing the temporal 
monitoring of the spatial variability of the study area, identifying regions that present inversion of yield 
(biennial). The results presented with the use of aerial images obtained by RPA demonstrated the 
potential of images in the extraction of biophysical parameters from coffee trees. They also allowed the 
individualization of plants aiming at extracting height and volume data, allowing the observation of the 
space-time relationship of the variables studied with yield data during three consecutive seasons. High 
spatial resolution orbital images showed the potential to predict coffee yield with high assertiveness one 
year before harvest. In general, the results found in this work reinforce the importance of knowing the 
productive spatial variability in coffee areas, as this type of information helps in the search for possible 
causes of this variability so that the culture can be managed considering these spatial and temporal 
differences. This study presented the spatio-temporal variations of data from orbital, aerial and 
terrestrial sensors in a commercial coffee area, as well as their relationship with yield maps generated 
with high data density, allowing to estimate productivity and identify production variations caused by 
biennial. 

Keywords: Precision Agriculture; Remote Sensing; Geoprocessing;Mechanized Harvesting 
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1. GENERAL INTRODUCTION 

Coffee has high relevance in the Brazilian agricultural scenario. For many years it was the main local 

agricultural crop and, therefore, has an extremely relevant cultural and social role for the people involved in the 

production process. Currently, Brazil is the largest producer and exporter in the world and the second-largest consumer 

of beverages. The estimate for production is 53.4 million bags of coffee in the 2022 harvest (CONAB, 2022). 

As it is a perennial crop, coffee production is the integrated result of the various factors involved in the 

management of the crop, soil, climate, and the plant itself (SANTINATO, 2016). Morphologically and physiologically, 

the coffee tree has some particularities that influence the variability of its productivity, for example the flowering of 

the coffee tree (CAMARGO; CAMARGO et al., 2001), which originates the coffee tree fruits, generally does not 

present uniformity. This fact interferes with the yield variation, as well as fruit maturation at harvest time 

(SANTINATO; FERNANDES, 2012). In addition, the plant bears fruit and grows simultaneously, and the fruiting 

drain is sovereign over the growth drain, which means that in years of high yield, there is little vegetative growth and, 

consequently, lower yield in the following crop, this variation is called biennial effect (PEREIRA, et al., 2011; 

VALADARES et al., 2013). In this sense, knowing the high and low yield areas can bring benefits from the adoption 

of management strategies, guiding the appropriate regulations for the harvesting process, increasing operational 

efficiency and reducing costs. 

One approach to mapping spatial variability is through techniques from Precision Agriculture (PA) 

(MOLIN; AMARAL; COLAÇO, 2015). PA is one of the ways to face the demand in the increase of food production, 

since it helps the management of the area starting from the diagnosis of the causes of the variability until proposing 

solutions for the coexistence or correction of this variability, allowing the optimization of the use of resources available, 

increasing profitability and production sustainability (GEBBERS; ADAMCHUK, 2010). Researchers have sought to 

understand the spatial variability present in agricultural areas for more than a century (MERCER; HALL, 1911; 

WAYNICK; SHARP, 1919), but recently the in-depth study of techniques to map this variability with greater precision 

has been advancing. Among the main targets studied in agricultural areas, soil and plants stand out (KHOSLA et al., 

2010). 

Many research works have shown that in some cases soil attributes can be mapped through the use of 

sampling and geostatistics, allowing the identification of regions of high and low fertility.. Many of these studies 

involving spatial variability, especially in annual crops, are reported from the 1980s onwards, but in coffee crops there 

are reports from the 2000s onwards. Molin et al. (2002) observed significant yield variability in relatively small areas. 

These results indicated that the use of variable rate fertilizers in the studied areas was an important management option 

for the climate-plant-soil system. Silva et al. (2008) corroborated the results observed by Molin et al. (2002), 

emphasizing the need for differentiated and localized application of fertilizer. Soil sampling results indicated low range 

values of soil chemical attributes. The evaluation of the application of phosphorus and potassium at a variable rate in 

coffee was carried out in a field by Molin et al. (2010) and the results indicate savings of 23% in phosphorus and a 

13% increase in potassium consumption when compared to the application of fertilizers at a fixed rate. 

Regarding plant response, Silva, Lima and Queiroz (2011) and Silva, Lima and Bottega (2013) evaluated the 

spatial variability of the nutritional status of arabica coffee varieties using the content of foliar macro and 

micronutrients and relating them to the decrease in yield, bark percentage and crop yield. Silva, Lima and Bottega 
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(2013) observed nutritional imbalance related to the deficiency or excess of some nutrients (e.g., Ca, B and Zn) in plant 

tissue. The authors also point out that spatial analysis made it possible to evaluate the nutritional status of coffee plants 

considering the spatial variability existing in the field, providing information that allowed understanding the 

performance of the crop in the study area and generating information for future actions, aiming to avoid excess and 

deficiency of some nutrients that contributed to reduce the coffee yield. 

It is observed that the works that study the behavior of spatial variability in microscale in coffee plantations 

evaluate attributes from punctual samples and with low sampling density, often limiting the generation of reliable data 

to map the variability. The costs of obtaining high-density data and the time required to collect these samples often 

prevent their practical application (KHOSLA; ALLEY, 1999; KHOSLA et al., 2002), making an alternative approach 

to obtaining data on a large scale necessary. 

In the agricultural context, the application of remote sensing is based on the interaction of electromagnetic 

radiation (REM) with soil, vegetation and water (MULLA, 2013). The sensors can be embedded in different platforms, 

so their distance from the target can be classified according to the altitude levels, being orbital, aerial and proximal 

(FLORENZANO, 2002). In viticulture, researchers are using data from remote sensing at the orbital, aerial and 

proximal levels (ANASTASIOU et al., 2018; ANASTASIOU et al., 2019; BROOK et al., 2020) and the results 

demonstrate the achievement of these data with good precision, agility and affordable cost, even with a focus on nobler 

goals, such as product quality. 

In coffee farming, the use of remote sensing has already been studied. However, at the terrestrial level, 

limited number of studies were found using embedded proximal sensors for high-density data collection. Putra et al. 

(2018), in Indonesia, individually evaluated 40 coffee plants with an active optic sensor (AOS) CropSpec (Topcon, 

Japan) and correlated them with leaf nitrogen and chlorophyll contents, finding promising results. In Brazil,  Silva et 

al. (2015a) evaluated the use of the Normalized difference vegetation index (NDVI) using a AOS GreenSeeker  

(Trimble, USA) to observe the development of 30 coffee plants in southern Minas Gerais state. The authors point out 

that measurements using vegetation indices and AOS can be used to infer the physiological state of coffee trees. In 

another study, Silva et al. (2015b) related a time series of the Leaf Area Index (LAI) to the NDVI and found that the 

NDVI can be used to estimate the LAI, highlighting that measurements on the sides of the plants are more associated 

with LAI. Recently Oliveira et al. (2021) using AOS and artificial neural networks, managed to reasonably estimate the 

height and diameter of coffee trees using different indices in different parts of the plant. 

At the aerial level, pioneering works point to the potential of aerial photographs (AMARAL, 1964; 

AMARAL; CHIARINI, 1968; AMARAL; VERDADE, 1966), highlighting the first work using this type of information 

for coffee in Brazil. Amaral (1964) used a set of aerial photographs taken in June 1962 at an approximate scale of 

1:25000. In the work, the author sought to map the distribution and characteristics of the coffee culture in the 

municipality of Campinas, SP using photointerpretation techniques. In 1966, Amaral and Verdade (1966) sought to 

map the coffee growing situation in 13 municipalities in the northeast region of the state of São Paulo using aerial 

photographs. The work showed information regarding geographic distribution, number of plants, occupied area, age 

estimate, use of conservation practices and relationship with relief and soils. 

Over time, technologies for collecting images have evolved, opening space for the development of research 

more focused on local mapping of small areas with a high level of detail. Aiming to map the weed infestation in the 

coffee crop, Sartori, Galo and Imai (2009) used multispectral aerial images, obtained from a digital video camera 

onboard a conventional aircraft. 



11 
 

 
In recent years, the number of studies using Remotely Piloted Aircraft (RPA) for various applications in 

agriculture has grown (GÓMEZ-CANDÓN; DE CASTRO; LÓPEZ-GRANADOS, 2014; SANKARAN et al., 2015). 

Studies highlight several uses for sensors embedded in small aircraft, such as identifying the appropriate time to harvest 

grapes (JOHNSON; HERWITZ, 2003), estimating the canopy height of olive trees (DÍAZ-VARELA et al., 2015), 

monitor rice and barley crop growth (BARETH et al., 2015; BENDIG et al., 2013), variability of water stress in 

vineyards (SANTESTEBAN et al., 2017), and estimate of biomass production in maize crops (LI et al., 2016). For 

Bendig et al. (2015) data collection with RPA fills a gap in the observational scale in remote sensing, providing high 

spatial and temporal resolution data, which are necessary in monitoring crop growth. 

In the coffee culture, the work of Herwitz et al. (2004), using aerial images collected by an RPA with a 

wingspan of more than 35 m, mapping coffee areas south of Kauai, Hawaii, USA, found a positive correlation between 

a vegetation index (obtained with the RGB sensor) and the coffee maturation stage. Also noteworthy is the approach 

to crop management, indicating the use of images for locating invasive plants and monitoring irrigation. Another 

approach to aerial images is highlighted by Carrijo et al. (2017), who used Machine Learning techniques to classify the 

areas that had fruits on the tree. The flight was performed between the rows, obtaining images of the side of the plants. 

Recently, Cunha et al. (2019) used aerial images to model the crop canopy and extract plant volume information. The 

authors point out that the method is fast and allows obtaining information from large areas compared to the manual 

method. Barbosa et al. (2021) evaluated the potential of the practical application of RPA and RGB vegetation indices 

(VIs) in the monitoring of a coffee crop. The authors observed that the use of low-cost RPA and RGB cameras has 

potential for monitoring the coffee production cycle, providing producers with information in a more accurate, quick 

and simple way. 

On the other hand, remote sensing at the orbital level stands out for its high coverage rate, allowing the 

monitoring of large areas allied to a temporal database. Studies using satellite images with the aim of estimating the 

areas cultivated with coffee portray the difficulty in discriminating the areas of coffee plantations from the other targets. 

Studies using images from the Landsat-5-sensor TM (Thematic Mapper) satellite point out the difficulty in classifying 

areas with perennial crops (coffee and citrus), due to the low spatial resolution of these images (TARDIN; 

ASSUNÇÃO; SOARES, 1992). Studies using spectral and temporal analysis of TM sensor images highlight that band 

4 images (Near Infrared) showed better differentiation with the other targets. The authors identified high variability 

between crops, which can be attributed to the difference in age, spacing and cultivar (MOREIRA; ADAMI; 

RUDORFF, 2004; FERRAZ et al., 2012). 

However, in recent years, some authors have obtained good results using orbital images. Tsai and Chen 

(2017) analyzed satellite images of coffee growing regions at different times with different lighting and cultivation 

stages in Brazil, Africa, Vietnam and Hawaii, using a machine vision scheme to recognize the coffee plantation area. 

Tridawati et al., (2020) mapped the distribution of coffee plantations from Multi-Resolution, Multi-Temporam and 

Multi- Sensor data using a random forest algorithm. These authors used pan-sharpened orbital images from GeoEye-

1, multi-temporal Sentinel 2, and DEMNAS. 

In addition, the estimation of coffee yield from orbital images can be made using vegetation indices. The 

study by Nogueira et al. (2018) reports the use of vegetation indices obtained with images from the Landsat-8 satellite 

- OLI sensor (Operational Land Imager). The authors point out that the best phases to determine coffee yield were 

the phenological phases of dormancy and flowering.  
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Hunt et al. (2020), conducting a literature review, highlighted the variety of employed approaches and 

sensors that specific researchers have previously to accurately map coffee. However, they do not identify any routine 

methods that consistently produced accurate results, thus making a challenging method recommendation. They also 

found significant gaps in the literature, including mapping coffee using other sensor types, such as synthetic aperture 

radar (SAR), studies differentiating between multiple production systems. Silva et al. (2021) evaluated the correlation 

of different phenological stages spectral responses of coffee in center pivot, under distinct apparent brightness 

conditions, with the yield sampled in field. They observed that coffee yield could be predicted from the first month of 

its production phase. Crusiol et al. (2021) investigated the potential of using high spatial resolution daily NDVI-time-

series from Planet CubeSat images for crop monitoring. 

However, it is still a challenge to integrate the existing knowledge of the use of each of these sensing 

techniques to jointly understand the spatial variability present in the field and to correlate it with coffee yield. As 

surveys are generally conducted with punctual sampling and with low sampling density, an alternative for collecting 

yield data with high density and for large areas is to use yield monitors built into the harvesters. Sartori et al. (2002) 

proposed a yield monitor, which became commercially available a few years ago, allowing the evaluation of coffee yield 

through a sensor system that measures the volume of harvested fruits. 

In view of the above, it is highlighted that the motivations for carrying out this research were: i) the need 

for practical methods, using data from the harvester and remote sensors at their different levels of collection to enable 

the collection of high density data on variability spatial yield in coffee area; ii) the lack of research that validates the 

performance of datasets obtained by remote sensing at differente levels of collection and correlate with high-density 

yield data in commercial coffee plantations. 

The thesis consists of five capters addressing these gaps from different perspectives. The (i) first chapter 

presents a brief introduction on the research topic studied. The (ii) second chapter of this thesis, entitled “Obtaining 

and validating high-density coffee yield data”, aims to evaluate the quality of the data obtained through a yield monitor 

built into a coffee harvester and generate yield maps to express and advance the understanding of the spatial and 

temporal variability of coffee yield in commercial areas. This chapter was published in the scientific journal 

Horticulturae (Martello, M.; Molin, J.P.; Bazame, H.C. 2022. doi.org/10.3390/horticulturae8050421). The (iii) third 

chapter, entitled "Use of active optical sensor in coffee for monitoring crop yield" aimed to evaluate the potential of 

AOS to map the spatial and temporal variability of coffee crop yields, as well as to establish guidelines for the 

acquisition of AOS data for sensing the side of coffee plant, allowing the evaluation of large commercial fields. The 

(iv) fourth chapter, entitled “Assessing temporal and spatial variability of coffee plants using RPA-based RGB 

imaging”, aimed to explore the use of RGB aerial images to obtain 3D information of coffee crop, deriving plant 

height and volume information together with yield data. The (v) fifth and final chapter of this thesis is entitled “Coffee 

yield estimation using high resolution orbital imaging and machine learning”. The objective of this study was to adjust 

yield prediction models based on a time series of satellite image data (spectral bands and vegetation indices - VIs) and 

high density data collected using random forest and multiple linear regression, indicating the appropriate phenological 

stage of coffee crop to obtain satellite image data. After these chapters, Final Considerations are made, presenting a 

summary of the results found and perceptive for future work. 
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2. OBTAINING AND VALIDATING HIGH-DENSITY COFFEE YIELD DATA  

 

ABSTRACT 

Coffee producers are ever more interested in understanding the dynamics of coffee’s spatial 
and temporal variability. However, it is necessary to obtain high-density yield data for deci-sion-making. 
The objective of this study is to evaluate the quality of yield data obtained through a yield monitor 
onboard a coffee harvester, as well as to evaluate the potential of the data col-lected over three harvests. 
The yield monitor validation data showed a high correlation (above R2 0.968) when compared with the 
data obtained by a wagon instrumented with load cells. It was also possible to obtain yield maps for 
three consecutive seasons, allowing the identification of their internal variability, as well as classifying 
regions that show alternating yield patterns be-tween years as the expression of the biennial yield 
behavior manifested inside and along the field, in addition to the spatial variability. This result indicates 
that, in addition to knowing the spatial yield variability, the biennial variance information must also be 
considered in the strat-egies for site-specific management. Regions that presented high yield variance 
should be alter-nated according to the productive year (high and low yield) and not only in consideration 
of their yield variability as on the regions with more stable yield behavior over time. The use of yield 
data can help the producer make more assertive decisions for crop and farm management. 

Keywords: Precision agriculture; Coffee yield monitor; Yield map validation; Mechanical harvesting; 
Coffee biennial cycle 

 

2.1. INTRODUCTION 

Brazil is among the world’s leading producers of Coffea arabica L., second-largest consumer, and leader in 

world exports (CONAB, 2021). The expected area cultivated with coffee in Brazil for the year 2022 is 1.82 million 

hectares, with 78% of the Arabica variety and 22% of the Conilon (or Robusta) variety (CONAB, 2022). 

As a perennial crop, coffee yield is the integrated result of various factors involved in the crop management, 

soil, climate, and the plant itself (SANTINATO, 2016). The coffee crop has particulari-ties that contribute to high 

spatial variability of yield, and one of them is its biennial na-ture (DE CARMARGO; DE CARMARGO, 2001). Due 

to the physiological characteristics of the plant, the crop alternates between years of high and low yield and this biennial 

period has a marked effect on the coffee yield variability (RENA; MAESTRI, 1985). The previous knowledge of high 

and low yield areas has its benefits, for example, the adoption of management strategies that consider the potential for 

yield and profitability. In addition, a broad knowledge of high-quality coffee production techniques is indispensable 

for modern coffee farming and, for that, modern management tools, such as precision agriculture (PA), must be used 

(MOLIN et al., 2010).  

PA techniques offer solutions for the differentiated management of areas, in which inputs are applied 

according to demands where and when they are needed. The main ob-jective of PA is to provide economic and 

environmental benefits (LOWENBERG; ERICKSON 2019). Thus, agricultural practices with greater precision can 

maximize the potential of each portion of the field, making the crop more profitable, favoring cost reduction and 

minimizing environmental impacts (MURUNGAN; GARG; SINGH 2017). 
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For some crops, such as grains, techniques for monitoring the spatial variability of yield are already relatively 

consolidated and available on the market, unlike perennial crops such as coffee (MOLIN; FAULIN, 2013; COLAÇO 

et al., 2020). The yield map is considered the most complete and true in-formation to visualize the crop variability, as 

it shows the actual response of the crop to the conditions presented during the season and, thereby, affected by the 

different produc-tion factors (MOLIN; AMARAL; COLAÇO 2015). In mechanized harvesting, this information can 

be obtained throughout the harvest with the georeferenced measurement of the product flow in the harvester. 

In Brazil, with the increasing reduction of labor availability for agriculture, the coffee plantations, 

traditionally cultivated in sloped areas, have migrated to flatter areas, signif-icantly expanding mechanized harvesting 

(ROSA et al., 2010). This technological advance was made possible by the development of the first coffee harvester in 

1979 (SILVA et al., 2008). 

According to Silva et al. (2008), this technological development in mechanization has been favorable for 

the coffee sector, but when it comes to yield mapping, most of the scien-tific approaches that aim to identify spatial 

variability and yield map of coffee plants, use manual collected point sampling techniques with low density, in the 

order of 2.2 to 4.6 points ha−1 (FERRAZ et al., 2012; CARVALHO et al., 2017; FERRAZ et al., 2017). Pioneering 

investigations for coffee yield mapping with mechanized harvesting were carried out by Balastreire et al. (2002), 

measuring the weight of stripped coffee, and by Sartori et al. (2002), Molin et al. (2010), and Angnes et al. (2021), 

measuring the harvested volume and which became commercial for some time. Both obtained consistent results 

quantifying the spatial variability of coffee yield. However, in addition to the raw data obtained during the harvesting, 

Sartori et al. (2002) and Molin et al. (2010) used a Conversion Factor (CF) to transform field data obtained by the 

harvester into processed coffee yield data. Traditionally, producers already sample known volumes of coffee that are 

then dried, peeled, and weighed to obtain the CF (FAULIN; MOLIN; STANISLAVSKI 2014). In addition to the CF, 

the samples can also be classified according to the degree of maturation to quantify the classes of harvested fruits, such 

as unripe, ripe, and overripe fruits (BAZAME et al., 2021). 

Recently, Santana et al. (2021) compiled academic research on PA in Brazilian coffee production in the 

period from 2000 to 2021 and observed that remote sensing and the investigation of soil and climate spatial variability, 

along with yield data sampled with aid of geostatistics, predominated with few studies focusing on yield maps from 

harvesters. In addition, Molin et al. (2010) and Angnes et al. (2021) showed that the observation of areas with different 

productive potential within the stands, and the possibility of site-specific treatment indicates the potential of using PA 

concepts for the management of coffee areas. 

In this sense, the objectives of this study were to evaluate the quality of coffee volume data obtained using 

a yield monitor embedded in a coffee harvester. The other objective was to generate yield maps along production 

cycles to advance the understanding of the spatial and temporal variability of coffee yields in commercial areas. The 

spatialized production information in the form of yield maps is fundamental for understanding the behavior of the 

variability of a crop.  

2.2. MATERIALS AND METHODS 

The study was conducted in commercial coffee areas in the municipality of Patos de Minas, Minas Gerais 

state, Brazil (reference coordinates: Latitude 18°32′28.55″ S, Longitude 46°3′51.17″ W, coordinates reference system 

WGS 84; altitude greater than 1000 m). The climate of the study areas is classified as AW, tropical with dry winter and 

rainy summer, according to the Köppen climate classification (ALVARES et al., 2013). The monthly normals 
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temperature (1991–2020) range from 18.9 °C in the coldest month (June) to 23.4 °C in the warmest month (October) 

with average annual temperature around 21.6 °C (INMET 2022). 

The yield data were collected for the crop harvests of 2019, 2020, and 2021, with a single pass of the 

harvester. The experimental area of 10.24 ha is characterized by a flat to a slightly corrugated surface and equipped 

with drip irrigation. The area was cultivated with the species Coffea arabica L., IAC Catuaí 144 variety, planted in 2006 

and had its first harvest in 2009. 

Data were obtained using a harvester K3 Millennium (Jacto, Pompeia, Brazil), equipped with a yield monitor 

(SARTORI et al., 2002). In the coffee harvester, two systems of vibrating rods detach the fruits from the branches on 

both sides of the coffee plants. The fruits are collected below the plants, transported by horizontal belts, and driven 

by two elevators, one on each side of the plants. When the fruits get to the top of the machine, they are blown to 

remove light impurities and then fall into a small reservoir that feeds the paddle conveyor. The paddle conveyor then 

takes the fruits to a container that moves parallel to the harvester (Figure 1—green flow). On top of the temporary 

reservoir, there is an ultrasonic sensor which monitors the presence or absence of fruits and governs the hydraulic 

motor (Figure 1c) trigger of the paddle conveyor, ensuring its 2.791 L volume compartments are full. The datalogger 

collected data (number of full cells in a given period) at a frequency of 0.05 Hz, with the geographic coordinates 

obtained by the GNSS receiver. The work speed is obtained by the displacement sensor installed on a non-drive wheel 

of the harvester. 

 

 

Figure 1. Flow of coffee fruits in the harvester and details of the components of the yield monitor, temporary reservoir, and 
ultrasonic sensor (a); paddle conveyor (b); hydraulic motor (c); data logger (d); GNSS receiver (e); coffee wagon (f). 

 

At the same time, an experiment was carried out to compare the data obtained with the yield monitor with 

the simultaneous weighing using a coffee wagon instrumented with load cells (Figure 2). The measurement of harvester 
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yield data was carried out using a big-bag fixed to a metal structure supported on four load cells with individual reading 

capacity of up to 1000 kg and with an accuracy of 10 g, on a coffee wagon, similar to the work performed by 

(BALASTREIRE et al., 2002). The load cells were calibrated and connected to a data logger responsible for sending 

the data at a frequency of 5 Hz to a notebook that performed the integration with the positioning data obtained by a 

GNSS SMART6-L™ (NovAtel Inc., Calgary, AB, Canada) with TerraStar-C correction that results in an accuracy of 

±0.09 m (MALDANER et al., 2021a) (Figure 2e).  

The evaluation of the quality of the data generated by the monitor was carried out in two crop rows, one 

with low and the other with high yield of coffee fruits of the Catuaí 144 variety, with a spacing between lines of 4.0 m 

and 0.5 m between plants, with an approximate population of 5000 plants ha−1. In the low yield line, therefore, with 

low grain flow, data were collected in an extension of approximately 250 m and, in the high flow area, in an extension 

of approximately 87 m. 

 

Figure 2.  Details of the coffee wagon instrumentation used to measure the harvester’s yield data, loading (a); big-bag (b); load 

cells (c); data logger (d); GNSS receiver (e); unloading (f).  

In order to compare the data obtained by the harvester and the load cells, it was necessary to standardize 

the frequency between the data obtained using the distance traveled as an adjustment factor. The data were analyzed 

with the addition of a standard offset according to the delay distance between the harvester and the instrumented 

wagon and the data without the offset. To compare the yield estimates performed by the yield monitor versus the load 

cells, a linear model was adjusted, and its coefficient of determination (R2) calculated. 

To obtain the weight values of processed coffee (peeled and dried grains), it was necessary to obtain the 

CF. For this, 23, 44, and 31 samples were collected during the 2019, 2020, and 2021 harvests, respectively, at each 

coffee wagon, so random samples were collected throughout the area (Figure 3). 
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Each sample consists of one liter of raw coffee that was weighed and sent to dry until it reached 

approximately 12% moisture and then peeled and weighed again to obtain the CF. The final weight of the processed 

coffee was determined using Equation (1): 

X=((10000 ∗
𝑉𝑖

𝐷𝑖∗𝑊
) ∗ 𝐶𝐹) /1000                            (1)  

where X is the yield of processed coffee (Mg ha−1); 𝑉𝑖= volume accumulated over a time interval (L); 𝐷𝑖 is 

the distance traveled in the same time interval (m), W is the width of the coffee line (4 m), and CF is (kg L−1). 

 

 

Figure 3. Collection flow and processes for obtaining the CF. 

Yield data was filtered, eliminating headland maneuver data. Data close to roads that divide and cross the 

area and the discrepant data were filtered using the MapFilter 2.0 software using global filtering with a threshold of 

100%, based on the methodology proposed by Maldaner and Molin (2020).  

Descriptive statistical and geostatistical analyses followed by visual assessment of yield maps were 

performed to identify patterns in spatial variability (COLAÇO et al., 2019). The variability expressed by the coefficient 

of variation (CV) was classified as low (CV < 12%), median (12% < CV < 62%), and high (CV > 62%), according to 

Warrick and Nielsen (1980). Spatial dependence index (SDI) was calculated from the semivariograms as C0/(C0 + 

C1), where C0 is the nugget variance (non-spatial variance), and C0 + C1 is the sill variance (spatially dependent 

variance). SDI was interpreted as strong (<0.25), moderate (between 0.25 and 0.75), or weak (>0.75), according to 

Cambardella et al. (1994). The model was determined based on the lowest root mean squared error (RMSE) value.  

Yield data were interpolated using the software Vesper 1.6 (MINASNY et al., 2005) using the ordinary 

kriging method with a spatial resolution of 3.0 × 3.0 m. For the temporal analysis of the data, the interpolated maps 

were normalized with values 0 to 1 from Equation (2): 

𝑥𝑛𝑖 =
𝑥𝑖−min(𝑥)

max(𝑥)−min(𝑥)
  (2) 

where xni is the normalized yield at point i of the grid, and xi is the yield at point i of the grid. 

The identification of the temporal patterns of yield in the study area was first performed through the 

punctual correlation between the yield of the high-yield years. For this, the adjusted Pearson correlation coefficient 

was calculated for a linear model. At the same time, the normalized difference in yield between the years was calculated 

from Equation (3): 

𝐷𝑖𝑓𝑡,𝑛 = (𝑥𝑛𝑖,𝑡1 − 𝑥𝑛𝑖,𝑡2)
2   (3) 

where 𝐷𝑖𝑓𝑡,𝑛 is the normalized difference between the evaluated years, 𝑥𝑛𝑖,𝑡1 is the normalized yield at 

point i of the grid in year 𝑡1, and 𝑥𝑛𝑖,𝑡2 is the normalized yield in grid point i in year 𝑡2. 
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To evaluate the temporal behavior and stability of yield between the years, the average temporal variance 

(Equation (4)) was calculated, following the methodology proposed by Blackmore et al. (2003). 

𝜎𝑖
2 =

∑ (𝑌𝑡.𝑖−�̅�𝑡)
219

21

3
  (4) 

where: 𝜎𝑖
2 is the temporal variance at grid point i, t is the time in years between 2019 and 2021, Y is the yield 

in years t at point i, and �̅�𝑡 is the mean of the yield for the whole field in years t. 

 

2.3. RESULTS AND DISCUSSION 

2.3.1. Quality of Yield Data 

In order to compare the data obtained by the yield monitor and the data obtained by the load cells, they 

were synchronized. This synchronization was necessary due to the path that the coffee fruits travel internally in the 

harvester. The harvest speed was approximately constant, and the displacement of the paddle conveyor was controlled 

by the ultrasound sensor, which depends on the amount of fruit being harvested. In this sense, it was necessary to 

adjust the distance between the beginning of the harvest and the begin-ning of the discharge to the coffee wagon. 

The coffee wagon moved approximately 10 m until the first data was recorded by the harvester’s yield 

monitor. The behavior of the coffee fruit flow obtained in the high yield row (Figure 4a) shows that 519 L and 359 kg 

of coffee were harvested at a distance of ap-proximately 87 m, representing a fruit flow of 5.96 L m−1 and 4.12 kg m−1, 

respectively. For the low-yield row (Figure 4b), the data indicated a harvest of 435 L and 331 kg of coffee in 219 m, 

corresponding to a flow of 1.98 L m−1 and 1.51 kg m−1, respectively, approximately three times lower than in the high-

yield row. In addition, the distance lag between the beginning of the harvester’s data recording and the arrival of 

material on the instrumented wagon was approximately 36 m, a distance 3.6 times greater than in the high flow 

condition. In this case, higher variability in fruit flow was also observed. The first peak of variation was observed for 

both the load cells and by the yield monitor shortly after the arrival of the first fruits to the coffee wagon when the 

harvester was already in operation and the fruit flow suddenly increased. 

The high frequency of data collection obtained with the load cells on the wagon made it possible to clearly 

observe the variations in the flow of coffee fruits and, in some places, the offset between the data from the monitor 

and the load cells (Figure 4b). The fact that the measurement was made at different locations along with the coffee 

fruit flow most likely explains these differences. The ultrasonic sensor effectively controls the grain flow to en-sure 

that the paddle conveyor compartments remain full until unloading. The load cells measure the mass flow being 

unloaded at the end of the paddle conveyor. The flicker effect is caused by the lack of harvested coffee fruit to fill the 

cells, causing the paddle conveyor to not move. Consequently, small variations in the comparison of signals are 

expected, as the systems are not measuring the flow of fruits harvested at the same location and with the mechanical 

interference of the flow by the yield monitor. 

The results are also presented considering the addition of the offset in the distance between the harvester 

and instrumented wagon data. The offsets adopted were 10 m and 36 m for the high and low flow lines, respectively 

(Figure 4c, d). After correcting the load cells’ spatial offset, the data became more similar to those of the yield monitor, 

especially for the low flow line. Regardless, the yield monitor performed well in capturing the yield variability in the 

field. 
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Figure 4. Distribution of coffee fruit harvest data obtained by the yield monitor and by load cells in the (a) high- and (b) low-yield 
rows, and with the addition of offset in the distance to the load cells wagon in the (c) high- and (d) low-yield rows. 

 

The coffee fruit volume data obtained by the yield monitor and the fruit weight data obtained by the load 

cells on the wagon were initially correlated separately for each area without the addition of the offset. The fruit flow 

was regular for the high-yield row (Figure 5a), with no great variations in yield along the way, resulting in R2 of 0.995. 

In the low-yield row (Figure 5b), the R2 was 0.968. The joint analysis of the data referring to the two collections (Figure 

5c) resulted in an R2 of 0.975, indicating a high correlation between the data obtained at high frequency by weighing 

and those on fruit volume obtained by the yield monitor at relatively low frequency. 

As for the data considering the offset, the differences are small for the high-yield row (Figure 5d) when 

compared to those without the offset (R2 0.997), which can be explained by the constant and linear coffee fruit flow. 

For the low-yield row (Figure 5e), it is possible to notice a difference between the data that were not adjusted (Figure 

5b). As the area presented greater variation in the fruit flow, the adjustment between the fruits leaving the harvester 

and the fruits entering the instrumented wagon proved to be efficient to perform the comparison, obtaining an R2 of 

0.997. When the data from the two collections are grouped (Figure 5f), it is possible to observe a good fit, with R2 of 

0.994. 

The figures evidence the fact that the coffee mass data obtained from the load cells allowed greater detailing 

of the small flow changes during harvest. This behavior can be explained due to the low frequency in the collection of 

data from the yield monitor, as already observed by Maldaner et al. (2021b) when using an instrumented wagon to 

measure yield data in sugarcane harvesters. 
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Figure 5. Linear regression of coffee harvest data obtained by the yield monitor and by load cells for the (a,d) high-yield row, (b,e) 
low-yield row, (c,f) and all data together (a–c) before and (d–f) after correcting the offset. 

 

2.3.2. Temporal and Spatial Yield Variability 

The data referring to coffee fruit samples obtained in the field over the three harvests and the calculated 

CF are presented in Table 1. It was possible to observe that in the years 2019 and 2021, the area was harvested when 

more than 80% of the fruits were overripe or dry. On the other hand, the 2020 harvest happened when 49.1% and 

22.2% of the coffee fruits were classified as ripe and unripe, respectively. Analyzing the results, the 1.0 L of coffee 

samples convert to a higher mass of dried and peeled grains when the harvest pre-sented a higher percentage of 

overripe and dry coffee fruits, therefore, resulting in higher CF. 
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Table 1. Coffee fruit weight, maturity stage, and CF from samples collected over three consecutive harvests (2019 to 2021). 

 
Coffee Sample 

Weight (g) 

Dry Coffee 

Humidity (%) 

Processed Coffee 

Weight—CF (g L−1) 

Unripe Coffee 

Fruits (%) 

Ripe Coffee 

Fruits (%) 

Overripe Coffee 

Fruits (%) 

2019 (n = 23) 470.0 11.9 159.5 6.1 7.5 86.4 

SD 39.2 0.26 14.8 4.4 3.9 8.3 

CV (%) 8.3 2.2 9.3 72.2 51.7 9.4 

2020 (n = 44) 677.5 12.0 127.7 22.2 49.1 28.7 

SD 22.9 0.1 9.4 8.6 11.2 7.6 

CV (%) 3.4 1.2 7.4 39.0 22.9 26.5 

2021 (n = 31) 492.5 12.0 143.5 7.4 8.5 84.1 

SD 33.3 0.2 12.5 3.8 4.2 8.4 

CV (%) 6.8 1.5 8.7 51.8 48.7 10.1 

n: number of samples. SD: standard deviation. CV: coefficient of variation. 

 
As highlighted by Pezzopane et al. (2005), as coffee fruits ripen, natural water loss is expected. Therefore, 

in the years 2019 and 2021, the amount of overripe coffee was greater and with the driest fruits. According to Silva et 

al. (2021), unripe coffee has humidity between 60–70%, ripe coffee 45–55%, and overripe coffee 30–40%. In the 

harvest years of 2019 and 2021, the higher percentage of overripe fruits led to a coffee fruit density ranging between 

470.0 and 492.5 g L−1. On the other hand, for the 2020 harvest, most of the fruits were in the ripe and unripe stages, 

resulting in an average coffee fruit density of 677.5 g L−1. This variation in the maturation stage also influences the size 

of the fruit. The overripe coffee fruits are usually smaller than the unripe and ripe coffee fruits, therefore, due to the 

smaller volume, more fruits are sampled per liter, resulting in higher CF values after drying and processing. 

The need to obtain a CF from field samples to convert volume to yield data may be one of the factors 

limiting the adoption of yield monitors embedded in harvesters. As an alternative to this challenge, Bazame et al. (2021) 

proposed the use of images associated with artificial intelligence to classify the grains and determine the stage of 

maturation in high spatial resolution. 

During the 2019 harvest, data from some regions were not recorded by the yield monitor due to operational 

problems, resulting in a smaller amount of data when compared to the other years. However, even with this loss, the 

density of the filtered yield data ranged from 535 to 760 points ha−1. The density of data collection was still high when 

compared to scientific approaches that also aimed to identify spatial variability and map coffee yield. Ferraz et al. 

(2012), Carvalho et al. (2017), and Ferraz et al. (2017) used manually collected point sampling techniques, and data 

collection ranged from 2.2 to 4.6 points ha−1. 

Descriptive statistics of raw and filtered yield data are presented in Table 2. Data showed variations between 

years, with 2019 being the year with the lowest average yield (1.29 Mg ha−1). In the following year, the yield of processed 

coffee reached 2.03 Mg ha−1, and in 2021, it again decreased to 1.44 Mg ha−1. According to the classification of Warrick 

and Nielsen (1980), the values of coefficient of variation (CV) ranging from 43.43% to 49.04% indicate that there is 

median variability in yield in the area. Carvalho et al. (2017) highlighted that this may be a problem when only the 

average yield is considered for management decisions carried out for the entire area. 

 

Table 2. Descriptive statistics of yield data after filtering for the three evaluated crops. 
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Year Dataset n n ha−1 
Mean Min Max SD 

CV (%) 
 Mg ha−1   

2019 
Original 6398 624.8 1.90 0 303.88 4.96 260.88 

Filtered 5479 535.0 1.29 0.12 2.68 0.57 44.35 

2020 
Original 8242 804.8 2.20 0.00 164.63 3.90 176.94 

Filtered 7789 760.6 2.03 0.09 4.06 0.88 43.43 

2021 
Original 7748 756.6 1.54 0.00 7.18 0.89 57.90 

Filtered 6913 675.1 1.44 0.13 2.90 0.71 49.04 

n: number of samples. SD: standard deviation. CV: coefficient of variation. 

 

Observing the average annual yield data, it is possible to identify the behavior of the crop, going from a 

year of low yield in 2019, to a year of high yield in 2020, and again showing low yield values in the following harvest 

(2021). In general, the coffee yield has a biennial behavior, with an alternation between a year of high yield, followed 

by a year of low yield. This variation is explained by the morphophysiological behavior of the coffee plant (PEREIRA 

et al., 2011; VALADARES et al., 2013). 

In addition to the biennial variability, the yield data for the three years also show a large yield spatial 

variability in the area (Figure 6). Several factors can influence this variability, including the biennial characteristic 

(CAMARGO; CAMARGO 2001), the occurrence of diseases, pests and weeds (FIALHO et al., 2011; CARVALHO 

et al., 2012; LOPES et al., 2012), and soil fertility and foliar nutrition (WADT; DIAS 2012). The biennial participation 

is expressive in the variation of the coffee yield. Due to the physiological characteristics of the plant, it must have high 

vegetative activity during one year, so that the following year it can produce well (RENA; MAESTRI 1985). These 

high-density data (between 552.8 and 792.1 points ha−1) show this behavior of the crop with a high level of detail. 
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Figure 6.  Filtered processed coffee yield map data obtained by the yield monitor for the 2019 harvest; 2020 and 2021. 

The semivariograms of yield data (Table 3) fitted exponential models with RSME of 0.022 Mg ha−1 for the 

2019 harvest, with RSME of 0.011 Mg ha−1 for 2020 and 0.016 Mg ha−1 for 2021 using the Gaussian model. The spatial 

dependence index (SDI) was moderate, similar to the results found by Molin et al. (2010), in which the authors used 

yield data obtained by a yield monitor and found a moderate SDI value fitted to the spherical model. In contrast, 

Carvalho et al. (2017) collected point yield data samples, with a density of 4.5 points ha−1 at regular spacings and 

reported strong spatial dependence for yield in two seasons, with semivariograms fitted to a spherical model. Silva et 

al. (2008), who sampled fruits of four plants around the crossing points of a sampling grid of 25 m (11 points ha−1) to 

calculate the average yield per plant, also found a strong spatial dependence for the yield of two coffee plantations by 

adjusting spherical models. 

Table 3. Semivariogram model and variables used to interpolate coffee yield data. 

Year Model Range Sill 1 Nugget 2 RSME (Mg ha−1) SDI 

2019 Exponential 59.9 0.343 0.214 0.022 moderate 

2020 Gaussian 316.4 1.031 0.563 0.011 moderate 

2021 Gaussian 202.2 0.596 0.345 0.016 moderate 

1 Sill = maximum observed variability in data; 2 nugget = sources of error or variation at distances smaller than the sampling interval. 

After adjusting the semivariograms, it was possible to estimate the yield in unsampled locations by 

interpolation and to standardize the size of each pixel of the maps for further spatial and temporal analysis. 

The results of interpolation and normalization of yield data are shown in Figure 7. Regions with values close 

to 1 represent the maximum yield, while regions close to 0 represent the minimum yield for the year. A visual 

comparison shows some similarities between the years. The regions that had high yields in 2019 and 2021 were the 

same regions that had the lowest yields in 2020. Carvalho et al. (2017) also observed similar results. The explanation 

for this alternation may be related to fruiting. Plants that produced a lot in 2019 (regions with green coloring in Figure 

7) used their reserves for fruiting, negatively influencing the growth of branches and, consequently, reducing yield in 

2020 (regions with red coloring in Figure 7). According to Matiello et al. (2008), the coffee plant goes through a phase 

of low metabolism after high yields, and this behavior can cause this alternation of yield. It is important to point out 

that the biennial yield behavior is expressed inside and along the field, in addition to the spatial variability. 
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Figure 7. Normalized yield map for the harvest in 2019 (a), 2020 (b), and 2021(c). 

When the normalized yield data are individually compared among the years, it is possible to observe this 

yield alternation in the area. In consecutive years (Figure 8a,c) it is possible to notice the yield inversion pattern, 

presenting negative correlation values r of −0.53 when comparing between the harvests of 2019 and 2020, and r of 

−0.87 in the comparison between the harvests of 2020 and 2021. These results corroborate the results found by 

Carvalho et al. (2017), which evaluated coffee yield over two years and also found a negative correlation between 

sequential years, with an r of −0.69. When the data from the odd years (2019 and 2021) are compared (Figure 8b), the 

behavior is opposite, with a positive correlation of r of 0.75. This indicates that there is an alternation of yield within 

the same area during the years and that the alternation regions are repeated. 
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Figure 8. Correlation of normalized yield data between crops of 2019 and 2020 (a), 2019 and 2021 (b), and 2020 and 2021 (c). 

 

The maps of the normalized difference in yield are shown in Figure 9. Values close to 1 indicate that the 

region has a greater difference in yield between the years evaluated, whereas values close to 0 show a low difference in 

yield between the years. Likewise, in the correlation data, it was possible to notice the alternating behavior of yield 

between the sequential years 2019 and 2020 (Figure 9a) and 2020 and 2021 (Figure 9c). The map of the difference 

between the odd-numbered years (2019 and 2021) showed a result of low difference, indicating the similarity between 

the productive regions (Figure 9b). This yield difference between the years presents an additional degree of difficulty 

in managing the spatial variability of coffee plantations, since temporal variability influences and requires a longer 

sequence of data for a better understanding of the variability and for making decisions. 
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Figure 9.  Normalized difference map between yield data between crops 2019 and 2020 (a), 2019 and 2021 (b), and 2020 and 2021 
(c). 

Following the methodology proposed by Blackmore et al., (2003), Figure 10 shows the map with the 

temporal variance yield for the three years evaluated. The regions that have the greatest variance in yield data are 

highlighted in the red areas, and the regions that have the most stability in yield data over the three years are highlighted 

in the blue areas. The regions with the highest variance were also the regions that showed the greatest differences be-

tween sequential years (Figure 9a,c). This result may indicate that, in addition to knowing the production variability, 

the variance information must also be considered in the strategies for site-specific management. The regions that 

presented high yield variance should possibly be conducted differently, receiving localized treatments alternated 

according to the productive year (high and low yield) and not only in consideration of their yield variability. As for the 

regions with low variance in the yield data, it is assumed that they present a more stable yield behavior over time, so 

they could be conducted taking into account only the yield variability. 

 

 

Figure 10. Yield map temporal variance along the three harvests. 
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2.4. CONCLUSIONS 

The data obtained by the volumetric yield monitor embedded in a harvester showed a high correlation with 

those obtained with the load cells. This fact qualifies the yield data, allowing the identification of the fruit flow variation 

during harvest and the spatialization of these data to obtain reliable yield maps, with high data density. 

It was possible to obtain yield data in a commercial area during three consecutive seasons, allowing the 

identification of its internal variability, as well as classifying regions that present alternating yields between the years 

evaluated. This result indicates that, in addition to knowing the spatial yield variability, the biennial variance information 

must also be considered in the strategies for site-specific management. Regions that presented high yield variance 

should be conducted differently, being alternated according to the productive year (high and low yield) and not only 

in consideration of their yield variability. This type of information helps in the search for possible causes of this 

variability so that the crop can be managed considering these spatial and temporal differences. 

Future research aimed at estimating coffee yields should consider methods to identify fruits that were not 

measured on the monitor due to fruit drop before and/or during harvest, as well as methods to unify yield data for 

areas that perform more than one pass of the harvester during the same harvest. Moreover, it is necessary to develop 

faster and more assertive techniques to identify the degree of ripeness of the fruits, thus, in addition to the yield, it 

would be possible to obtain a new layer regarding the quality of the fruits, a subject that was not addressed in detail in 

this work and that is of great interest to coffee producers. 
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3. USE OF ACTIVE OPTICAL SENSOR IN COFFEE FOR MONITORING CROP YIELD  

ABSTRACT 

Monitoring the spatial variability of agricultural variables is one of the main steps for 
implementing PA techniques. The active optical sensors (AOS) can be compatible with its 
instrumentation directly on agricultural machines, which makes it possible to obtain data with high 
frequency. Studies have already been developed using AOS for annual crops, however there are few 
studies on perennial crops such as coffee. This study aimed to evaluate the potential of AOS to map the 
spatial and temporal variability of coffee crop yields, as well as to establish guidelines for the acquisition 
of AOS data for sensing the side of coffee plant, allowing the evaluation of large commercial fields. The 
study was conducted in a commercial coffee area of 10.24 ha, cultivated with the Catuaí 144 variety. 
Data collection was performed with six Crop Circle ACS 430 sensors (Holland Scientific, Lincoln, NE, 
USA) and two N-Sensor NG sensors (Yara International, Dülmen, Germany). Seven field expeditions 
were made for data collection with the optical sensors over the years 2019 to 2021, collecting data during 
the flowering, fruit filling, fruit maturation phases (pre-harvest) and post-harvest. The results showed 
that the different faces of the same plant present different correlations with its yield. The face with the 
highest exposure to solar radiation presented a slightly higher correlation with yield when compared 
with the face with less exposure. In adition, it was observed that the vegetation indices acquired in the 
post-harvest and flowering stages have positive correlations with the yield of that next year, while 
vegetation indices acquired during fruit filling and pre-harvest stages have negative correlations with 
coffee crop yields of that year. 

Keywords:  Precision agriculture; Sensors; Spatial variability; Temporal variability 
 

3.1. INTRODUCTION 

Precision Agriculture (PA) approaches seek to understand the spatial and temporal variability present in 

agricultural variables within a production field. This knowledge allows for the localized management of inputs, aiming 

to increase production efficiency and, therefore, the profitability and sustainability of agricultural production 

(GEBBERS, ADAMCHUK, 2010). Monitoring the spatial variability of agricultural variables is one of the main steps 

for implementing PA techniques. This step routinely demands a high spatial density of data for the construction of 

reliable maps that characterize details of the crop. In addition, monitoring large-scale crops (e.g., hundreds of hectares) 

requires practical, inexpensive technologies that are compatible with the automation of the monitoring process. 

Remote sensing approaches are classic alternatives for monitoring agricultural variables on large extensions 

of land, allowing spatial resolution from a few meters (e.g., 2 - 30 m for satellite images) up to sub-metric values (e.g., 

remotely piloted aircraft images). On the other hand, proximal sensing using active optical sensors (AOS) can be 

compatible with its instrumentation directly on agricultural machines, which makes it possible to obtain data with high 

frequency (e.g., 5 Hz), practically more than one piece of information per plant. In addition, as they are active, they do 

not depend on external radiation sources. AOS is less affected by variability in lighting and shading, which is common 

in field data acquisition, e.g. the presence of clouds or variation in solar position, factors to consider when using orbital 

and aerial remote sensing approaches.  

In agriculture, AOS was initially developed to identify changes in the nitrogen (N) nutritional status and 

estimate its demand. This is possible because these sensors are closely related to photosynthetic activity and vegetative 
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vigor of plants, both factors related to N absorption in most crops (AULA et al., 2020). An advantage of these sensors 

is that they do not depend on post-processing steps, as imaging sensors do. This allows the synchronization of 

collection, diagnosis, prescription, and application in one single step, making real-time interventions possible 

(PALLOTTINO et al., 2019). Studies have already been developed using AOS for crops such as maize (KITCHEN 

et al., 2010; SCHMIDT et al., 2011; SOLARI et al., 2008; TEAL et al., 2006), wheat (BERNTSEN et al., 2006; GIRMA 

et al., 2006; GROHS et al., 2009; RAUN et al., 2001), rice (XUE et al., 2014), cotton (TREVISAN et al., 2018) and 

sugarcane (AMARAL et al., 2015; AMARAL et al., 2017; PORTZ et al., 2012). However, these approaches have not 

been explored in depth for coffee cultivation, with only a few scientific studies evaluating the performance of AOS to 

estimate biometric parameters of individual plants (PUTRA et al., 2018; OLIVEIRA et al., 2021), that is, which is not 

applicable for large scales such as in commercial areas. 

Unlike annual crops, AOS sensing for coffee should be performed with equipment turned to the side view 

of the plants since positioning the sensor at the top of the plant is unfeasible due to the height of the canopy. Although 

the lateral positioning of active sensors has already been adopted in some studies that monitored perennial crops 

(ANASTASIOU et al., 2018; DARRA et al., 2021; YU et al., 2021), there is still a need to establish an optimized 

protocol for the acquisition and processing of these data for coffee crop in order to evaluate its spatial variability over 

its biennial cycle. For example, in crops with planting lines oriented in an east-west direction, there is no consensus on 

using data from only one of the side faces (e.g., using only the face that does not receive direct sunlight) or if the best 

strategy is to use a methodology to calculate the average of both faces. This fact must be considered, as there is a 

consensus that the face that receives more solar radiation has a different behavior, resulting in different vegetative 

vigor if the same plant is evaluated from opposite faces/sides (SANTINI et al., 2019; CHAVES et al., 2012; 

DAMATTA, 2004; CANNELL, 1976; MONTOYA et al., 1961; CASTILLO; LOPEZ, 1966). Which of these faces 

best represents the productive potential of the crop? In addition, there is also no consensus on the height of the plant 

that best represents the yield variability; that is, which part of the coffee plants should be scanned? The lower, 

intermediate, or upper third of coffee plants? To evaluate spatio-temporal variability using AOS, these questions still 

need to be answered. Finally, it is important to mention that, to the best of our knowledge, there is no long-term 

research evaluating the response of AOS in the coffee crop over the biennial cycle typical of this crop. 

In this context, this study aims to evaluate the potential of AOS to map the spatial and temporal variability 

of coffee crop yields, as well as to establish guidelines for the acquisition of AOS data for sensing the side of the coffee 

plant, allowing the evaluation of large commercial fields. More specifically, this study aims to (i) evaluate and propose 

a strategy for acquiring AOS data aimed at the side of coffee plants; (ii) to assess the spatial relationship between data 

from different commercial AOS and coffee yield throughout its biennial cycle over three seasons. 

3.2. MATERIALS E METHODS 

3.2.1. Study area 

The study was conducted in a commercial coffee area of 10.24 ha, cultivated with the species Coffea arabica 

L., IAC Catuaí 144 variety. The coffee trees were spaced by 0.5 m between plants and 4.0 m between rows, resulting 

in a density of approximately 5,000 plants ha-1, with a drip irrigation system. The area (Figure 11) is located in the 

municipality of Patos de Minas, state of Minas Gerais, Brazil. The local climate is classified as Aw, according to the 

Köppen classification (ALVARES et al., 2013), characterized by a tropical environment with dry winters and rainy 
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summers. The coffee lines were planted in east-west direction so that one side of the plants receives direct solar 

radiation most of the year and the other side receive indirect radiation (Figure 11a). 

 

 

Figure 11. Map of the study area location; (a) detail for the face with an incidence of direct and indirect solar radiation and the 
predominance of annual solar incidence in the area. 

 

3.2.2. Tractor instrumentation with AOS 

Data collection was performed with six Crop Circle ACS 430 sensors (Holland Scientific, Lincoln, NE, 

USA) and two N-Sensor NG sensors (Yara International, Dülmen, Germany). The sensors were embedded in an 

agricultural tractor. Sensor specifications are shown in Table 4. The arrangement of sensors on the machine was 

previously defined in a 3D environment to avoid overlapping the lighting emitted by the active sensors (Figure 12a). 

Details of sensor positioning are shown in Figure 12. 

 The Crop Circle sensors were positioned at three different heights to simultaneously scan the lower (0 to 

0.8 m, designated as TI), middle (0.8 to 1.6 m, designated as TM) and upper (1.6 to 2.4 m, designated as TS) thirds of 

the coffee plants. The N-Sensor sensors were positioned to scan only the middle third of the coffee plants. Half of the 

sensors collected data from the right row with the tractor moving between the coffee rows and the other half from the 

left row. All equipment worked with a data acquisition frequency of 5 Hz, obtaining approximately 1 point on each 

side of the plant every 0.3 m (considering an average traveling speed of 1.5 m s-1). 
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The Crop Circle sensors were integrated with the GEOSCOUT GLS-420 mapping system (Holland 

Scientific, Lincoln, NE, USA) for data acquisition, and the NDVI (ROUSE et al., 1974) and NDRE (BARNES et al., 

2000) vegetation indices were calculated, being designated in this study as CC-NDVI and CC-NDRE, respectively. 

The N-Sensor data acquisition was made in Yara N-Sensor software running on Microsoft Windows operating system. 

The sensor provides a vegetation index (designated in this work as NS), which the company does not open its 

specifications. All data were georeferenced using a Global Navigation Satellite System (GNSS) receiver (SMART6-

L™, NovAtel Inc., Calgary, AB, Canada) with TerraStar-C (NovAtel Inc., Calgary, AB, Canada) correction that allows 

the accuracy of ±0.09 m (MALDANER et al., 2021a). 

Table 4. Technical specifications of sensors 

Specification Crop Circle ACS 430 N-Sensor NG 

Light source Polychromatic modulated LED LED (light-emitting diodes)  

 

Spectral Bands 

670 nm (RED) 

730 nm (RedEdge) 

780 nm (NIR) 

 

730 nm (RedEdge) 

770 nm (NIR) 

 

 

Figure 12.  Schematic layout of sensors coupled on the tractor; (a) position of each sensor together with the GNSS receiver, 
showing the field of view of the Crop Circle sensors in yellow and the field of view of the N-Sensor NG sensors in red; (b) 
position of the plant scanned by each piece of equipment, showing the collections carried out in the lower third (TI), middle 
third (TM) and upper third (TS) of the coffee plant; (c) N-Sensor sensor; (d) Crop Circle sensor; (e) Equipment data logger. 

 

3.2.3. Data acquisition with AOS and yield measurement 

Seven field expeditions (designated from C1 to C7) were made for data collection with the optical sensors 

over the years 2019 to 2021 (Figure 13), collecting data during the flowering, fruit filling, fruit maturation phases (pre-

harvest) and post-harvest. Harvests were carried out in 2019, 2020, and 2021 using a K3 Millennium harvester (Jacto, 

Pompeia, Brazil), equipped with a yield monitor that measures the volume of harvested grains converted to weight 
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using a conversion factor. More details of the yield monitor and the conversion from volumetric to gravimetric units 

are described by Martello et al. (2022). Yield data collected from maneuvers and roads were manually removed. 

Subsequently, the discrepant data were filtered using the software MapFilter 2.0 (MALDANER et al., 2022), using 

global filtering with a threshold of 100% (MALDANER; MOLIN, 2020). 

 

 

Figure 13. Flowchart of dates and coffee's phenological stages at data collection with optical sensors and yield measurement. 

 

3.2.4. Data analysis 

3.2.4.1. Optimizing AOS positioning on the side of coffee plant for inferring its 

yield 

Three data acquisition scenarios were evaluated: (i) using only data obtained on the face exposed to direct 

sunlight (A1); (ii) using only the data obtained on the face with indirect sun exposure (A2); and (iii) using the average 

of the two faces for the same plant (A3). To categorize the sensor data as a function of the face exposed to direct and 

indirect sunlight, an algorithm was developed that recognizes the direction of the tractor's displacement as a function 

of the azimuth of its coordinates. The points were classified according to the direction of the tractor displacement 

(Figure 14a) and, then, it was applied an offset of 2 m to reproject the position to the center of the row at 90º and 270º 

from the alignment (Figure 14b). This was necessary because the equipment positioned to the right and left of the 

tractor scan different faces as the direction of displacement is reversed. 

The optimization of sensor height was performed using the A3 scenario. These optimizations were 

performed using the sensors data obtained in the C1 stage that were compared with the yield data obtained in the Y1 

harvest. To ensure that the yield data obtained by the yield monitor were compared with the data obtained by the 

sensors, a polygon (measuring 3 m wide by 4 m long) was generated for each yield point (Figure 14e). Then, the average 

of the sensor data within this polygon was calculated, as shown in Figure 14e. The correlation between the crop yield 

and the sensors’ data of the different scenarios described above was evaluated in 5382 points. The optimizations 

regarding the sensor height and data acquisition scenarios were performed using the sensors’ raw data without spatial 

filters to avoid possible interference. The scenario that presented the best correlation with the yield data was used in 

the subsequent analyzes (described below). 
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Figure 14. Schematic of data processing: (a) calculation of the direction and azimuth of the sensors’ data points, blue and red points 
indicate the position where the data were obtained from the sensors before post-processing for the categorization of the plant 
side. In the red dots the sensors to the right of the tractor obtained information from the side with direct solar radiation, and 
to the left obtained information from the side with indirect solar radiation. In the blue points, the sensors on the right obtained 
information from the side with indirect solar radiation and the sensors on the left from the side with direct solar radiation; (b) 
applying the offset and direction to each point; (c) categorization of points according to plant side; (d) polygons created over 
the yield data point to sample the sensors data, obtaining the data of scenarios A1 (mean using only yellow points), A2 (mean 
using only black points), and A3 (mean using yellow and black points). 

 

3.2.4.2. Spatio-temporal relationship of AOS data with coffee crop yield 

 

Using the optimal scenarios of sensor height and data acquisition, the AOS data obtained from C1 to C7 

were filtered using the MapFilter software (MALDANER et al., 2022) and then interpolated using ordinary kriging and 

a 3x3 m grid (similar grid to the one used for the yield data, described in Section 3.2.4.1). The AOS data were filtered, 

using global filtering with a threshold of 100% and local filtering with a threshold of 10% and a radius of 10 m. The 

spatio-temporal relationship of AOS data with coffee crop yield was evaluated by comparing the AOS maps of C1, 

C2, C3, C4, and C5 with yield map of Y2, as well as comparing the yield map of Y3 with the AOS maps of C5, C6, 

and C7. These data were compared using Pearson's correlation coefficient and the ability of the AOS data to predict 

yield was verified using simple linear regressions (n = 11,859, for all datasets). These comparisons permit to evaluate 

the temporal relationship of the sensor data with the coffee yield, showing its temporal oscillation as a function of its 

biennial seasonality.  

The calibrations of the predictive models were validated with full cross-validation using as quality indicators 

the coefficient of determination (R²), the residual prediction deviation (RPD), and the root means square error (RMSE). 

The RPD was calculated as the ratio between the standard deviation of the measured yield and the RMSE obtained in 

the prediction. Four RPD classes adapted from Chang et al. (2001) were used to evaluate the quality of models: poor 
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models (RPD < 1.40), reasonable models (1.40 ≤ RPD < 2.00), good models (2.00 ≤ RPD < 3.00), and excellent 

models (RPD ≥ 3.00). 

3.3.  Results and Discussion 

3.3.1. Optimizing AOS positioning on the side of the coffee plant for yield inference 

 

Table 5 presents the correlation between the coffee yield data (in Y1) and the different scenarios of data 

acquisition (A1, A2 and A3) and sensor height (TI, TM, and TS). We observed that, in general, both commercial 

sensors showed better results in the A3 scenario (-0.34 ≤ r ≤ -0.21) in relation to the A1 (-0.34 ≤ r ≤ -0.17) and A2 (-

0.27 ≤ r ≤ -0.15) scenarios. The A3 scenario represents the average value of the vegetation index obtained on each 

face of the plant, which probably promotes a better characterization of the average vigor of the plant and, consequently, 

a better relationship with its yield. These results suggest that, when AOS sensors are used to infer about coffee crop 

yield, it is necessary to post-process its data in order to organize them so that a plant is represented by the average of 

the vegetation indices collected on each of its sides. This post-processing is necessary because when traveling in the 

inter-row, the sensors mounted on the right and left of the tractor collect data from different coffee rows. These results 

even allow suggesting to AOS manufacturers that this data post-processing algorithm may be included in the 

intelligence of sensors used on the side of perennial crops. This tool would benefit conducting further studies 

comparing the relationship of the different plant faces with the vigor and yield of these crops. 

When comparing only the A1 and A2 scenarios, the results showed that the different faces of the same 

plant present different correlations with its yield. The face with the highest exposure to solar radiation (A1) presented 

a slightly higher correlation with yield when compared with the face with less exposure (A2). This result may be linked 

to the fact that the face that receives the greatest amount of direct radiation tends to present a higher yield compared 

to the shaded face, with r oscillating from -0.34 to -0.17 for the A1 scenario and from -0.27 to -0.15 to A2 (Table 2). 

The higher yields on faces with greater sun exposure are explained by the fact that this face presents higher 

photosynthetically active radiation (CHAVES et al., 2012) and higher carbohydrate assimilation (DAMATTA, 2004), 

when compared with the face that receives less radiation. In addition, shaded faces form and fewer nodes per branch 

and fewer flower buds at existing nodes (MONTOYA et al., 1961; CASTILLO; LOPEZ, 1966).  

Regarding the vegetation index, the CC-NDVI was the one that presented the smallest correlations with 

the yield data. This behavior may be linked to the saturation of this index that has already been observed in other crops 

with intense vegetative growth, such as soybean (MORLIN et al., 2019), rice (LU et al., 2017) and vine (JUNGES et 

al., 2017). An alternative to avoid saturation is to use vegetation indices that use the red-edge region instead of the 

near-infrared, such as the NDRE index (TASKOS et al., 2014). Our results corroborate this, showing higher 

correlations of yield with NDRE than with NDVI in all data acquisition scenarios (Table 2). 

Regarding the optimization of sensor positioning, we observed that the data obtained in the TM of the 

plant showed a higher correlation with yield (r of -0.21 and -0.34 for NDVI and NDRE, respectively) in relation to 

those obtained in TI (r of -0.07 and -0.11 for NDVI and NDRE, respectively) and TS (r of -0.07 and -0.26 for NDVI 

and NDRE, respectively) (Table 2). The higher correlation between yield and TM is probably related to the fact that 

TM has a higher presence of vegetative structures and chlorophyll accumulation compared to TI and TS (SANTINI 
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et al., 2019). Additionally, TI has a predominance of older branches and TS of younger branches, which are naturally 

less productive. 

 

Table 5. Pearson's correlation between coffee yield data and AOS data obtained in different acquisition scenarios and positioning 
in relation to plant height. 

Sensor VI 
 

Optimization of the 

acquisition scenario 
 

Optimization of sensor 

positioning 

 A1 A2 A3  TI TM TS 

Crop Circle 
CC-NDVI  -0.17 -0.15 -0.21  -0.07 -0.21 -0.07 

CC-NDRE  -0.33 -0.27 -0.34  -0.11 -0.34 -0.26 

N-Sensor NS  -0.34 -0.27 -0.34     

 

3.3.2. Spatio-temporal relationship of AOS data with coffee yield 

 
Table 6 shows the spatio-temporal relationship of the AOS data with the yield obtained in the 2020 (Y2) 

and 2021 (Y3) harvests. When analyzing the correlation of the sensor’s output with the coffee yield data, we observed 

that although the correlation remains strong (with r absolute greater than 0.70) throughout the cycle, its sign is inverted 

in the middle of the coffee development (between C3 and C4). In other words, direct relationships with positive 

correlation (0.73 ≤ r ≤ 0.91) are observed with C1 (pre-harvest regarding Y1), C2 (post-harvest regarding Y1), and C3 

(flowering) with the yield-Y2, and indirect relationships with negative correlation (-0.93 ≤ r ≤ -0.77) are seen with C4 

(fruit filling) and C5 (pre-harvest regarding Y2) with the yield-Y2 (Table 3). This behavior was confirmed when 

assessing the data of the subsequent season, where the OAS data of C5 (pre-harvest regarding Y2) and C6 (post-

harvest regarding Y2) presented positive correlations (0.72 ≤ r ≤ 0.90) with the yield-Y3 and the data acquired in C7 

(pre-harvest regarding Y3) had negative correlations (r = -0.71) with yield-Y3 (Table 6). The inversion of the 

relationship between OAS output and coffee yield occurred after the flowering, i.e., after the beginning of the rains in 

the Cerrado region, which occurs at the end of September. This moment of the coffee cycle is characterized by intense 

biomass production, both vetative and reproductive structures (CANNELL et al., 1976). This generates an increase of 

biomass in the plant, increasing the value of the vegetation index and, consequently inverting the relation of the index 

with the yield of that year. The increase in the vegetation index value in C4 (fruit filling) and C5 (pre-harvest regarding 

Y2) can be seen in Figure 15, which shows that this behavior both for the regions that will have higher yields and those 

that will have lower yields.  

Another interesting behavior observed in this study is the relationship of the AOS data of a specific 

collection (e.g., C1 and C5) with the yield of different seasons. The AOS data collected in C5, during the pre-harvest 

of 2020, showed a negative correlation (r = -0.81) with the yield of that same year (Y2), whereas it showed a positive 

correlation (r = 0.72) with the yield of the following season (Y3). The same behavior can be observed with C1 data, 

when compared with Y1 (Table 2) and Y2 (Table 3). This oscillation is an effect of the biennality of coffee production, 

in which a plant that showed high yield in one year, will show reduced yield in the next season (PEREIRA, et al., 2011; 

VALADARES et al., 2013). 
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Table 6. Temporal relationship of the AOS sensors data with the yield obtained in the 2020 (Y2) and 2021 (Y3) crop. The results 

show the performance of yield prediction (obtained in the full cross-validation) using simple linear regression models. 

  In comparinson with Y2   In comparinson with Y3 

 

Pre-

harvest Y1 

Post-

harvest Y1 

Flowering Fruit 

filling 

Pre-

harvest Y2 

 Pre-

harvest Y2 

Post-

harvest Y2 

Pre-harvest 

Y3 

  C1 C2 C3 C4 C5   C5 C6 C7 

  ---------------------------------------- Crop Circle (CC-NDRE) --------------------------------------- 

r 0.91 0.82 0.73 -0.77 -0.81  0.72 0.88 * 

R² 0.84 0.68 0.54 0.59 0.65  0.52 0.77 * 

RMSE 0.20 0.28 0.34 0.32 0.29  0.30 0.21 * 

RMSE% 9.96 13.96 16.78 15.74 14.50  20.38 13.99 * 

RPD 2.47 1.76 1.47 1.56 1.70  1.45 2.11 * 

 ----------------------------------------------  N-Sensor --------------------------------------------- 

r 0.88 0.87 0.89 -0.77 -0.93  0.90 0.85 -0.71 

R² 0.77 0.75 0.79 0.59 0.86  0.81 0.72 0.50 

RMSE 0.24 0.25 0.23 0.32 0.19  0.19 0.23 0.31 

RMSE% 11.68 12.20 11.38 15.78 9.19  12.93 15.45 20.84 

RPD 2.11 2.02 2.16 1.56 2.68   2.28 1.91 1.41 

* Data not acquired due to equipment problems during the field expedition. 

 

 

Figure 15.  Temporal behavior of the N-Sensor vegetation index (from C1 to C6) showing the boxplots of all field data (a), the 
boxplots of an area with high yield in 2019 and low yield in 2020 (b), and the boxplots of an area with low yield in 2019 and 
high yield in 2020 (c). For the graphs generated in (b) and (c), 16 polygons (the ones created over the yield data point specified 
in Figure 14d) with similar yields were evaluated. 

In summary, our results showed that during C2 (post-harvest) and C3 (flowering) the vegetation indices 

evaluated correlate positively with the yield of that year, so that sites with low and high biomass will respectively show 

low and high yields at the harvest of that respective year. On the other hand, during C4 (fruit filling) and C5 (pre-

harvest), the plant with higher vigor will have lower yields than the plant with lower vigor. This is because the 



44 
 
relationship between vegetation index (i.e., plant vigor) and coffee yield is inverse in phenological stages after flowering. 

It was also observed that the relationship between the yields of different seasons will invert the relationship with the 

vegetation indices observed at a specific time, i.e., if the index collected in the phenological stage “X” of 2020 shows 

a positive correlation with the 2020 yield, its correlation with the 2021 yield will be negative.  

The AOS performance for coffee yield prediction ranged from reasonable (1.40 ≤ RPD < 2.00) to good 

(2.00 ≤ RPD < 3.00) for both sensors over the entire coffee cycle. Despite the inverse correlation between vegetation 

indices and coffee yields in C4 and C5, the predictive potential of these stages does not change compared to the other 

stages, keeping RPD values with reasonable and good performances (1.56 ≤ RPD ≤ 2.68). In general, the performances 

obtained with the N-Sensor were superior to those obtained with the Crop Circle, with RPD varying between 1.41 and 

2.68 for the N-Sensor and between 1.45 and 2.47 for the Crop Circle. This difference between both sensors can be 

explained due to differences regarding internal calibrations and filtering, besides the difference in the spectral region 

of the indices.  

Regarding the AOS maps showed in Figure 16, it is possible to identify the regions that present low (red 

regions) and high vegetative vigor (regions in green). It is observed that throughout the coffee cycle (from C1 to C6) 

these regions are inverted, i.e., places in the field that showed low vigor, become more vigorous and vice-versa. This 

inversion is visually evident when we observe the maps obtained in C3 and C4 (Figure 16c, d, h, i). It is important to 

emphasize that the temporal behavior presented in Figure 15, is still occurring, i.e., we observe in the maps that the 

index values in C4 (e.g., CC-NDRE values oscillating between 0.39 and 0.44) are clearly higher than in C3 (e.g., CC-

NDRE values oscillating between 0.26 and 0.37). What occurs spatially, for the reversal of vigor in different regions, 

is that zones of higher vigor in C3 (e.g., that had CC-NDRE values around 0.36) have a subtle increase in vegetation 

index value in C4 (e.g., showing CC-NDRE values around 0.38), while regions of lower vigor in C3 (e.g., that had CC-

NDRE values around 0.31) have a greater increase in vegetation index value in C4 (e.g., showing CC-NDRE values 

around 0.41). 
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Figure 16. AOS data interpolated. (a) CC-NDRE obtained in C1; (b) NS obtained in C1; (c) CC-NDRE obtained in C2; (d) NS 
obtained in the C2; (e) CC-NDRE obtained in C3; (d) CC-NDRE obtained in C4; (e) CC-NDRE obtained in C3; (f) N-Sensor 
data obtained in C3; (g) CC-NDRE obtained in C4; (h) N-Sensor data obtained in C4; (i) CC-NDRE obtained in C5; (j) N-
Sensor data obtained in C5; (k) CC-NDRE obtained in C6; (l) N-Sensor data obtained in C6; (m) N-Sensor data obtained in 
C7. 

 

The spatio-temporal evaluation of coffee yield also showed that, in a single field, there can exist coffee 

plants with inverted bienniality (Figure 17 and 18). In other words, there are plants that have high yield potential in 

2019 that, consequently, will have low potential in 2020, but in this same field there are also plants with low yield 

potential in 2019 that will have high potential in 2020.  
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Figure 17. (a) Yield data obtained with yield monitor in Y2; (b) estimated yield with CC-NDRE in C1; (c) estimated yield with N-
Sensor in C1; (d) estimated yield with CC-NDRE in C2; (e) estimated yield with N-Sensor in C2; (f) estimated yield with CC-
NDRE in C3; (g) estimated yield with N-Sensor in C3; (h) estimated yield with CC-NDRE in C4; (i) estimated yield with N-
Sensor in C4; (j) estimated yield with CC-NDRE in C5; (k) estimated yield with N-Sensor in C5; 

 

 

Figure 18. Figura 18. (a) Yield data obtained with yield monitor in Y3; (b) estimated yield with CC-NDRE in C5; (c) estimated yield 
with N-Sensor in C5; (d) estimated yield with CC-NDRE in C6; (e) estimated yield with N-Sensor in C6; (f) estimated yield 
with N-Sensor in C7; 
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This behavior can be observed both in the maps of Figurese 17-18 and in Figure 15b, c. In the field 

expeditions, this behavior was also visualized along different coffee lines (Figure 19), where plants with different 

behavior compared to their neighbors were found. This finding shows that one of the causes of variation over short 

distances in coffee is the existence of different biennial patterns, which can cause variability from plant to plant. In this 

work, this type of variability was ignored since spatial filters and interpolation were performed to make the sensor 

information compatible with that of yield data, which had higher spatial resolution. However, this plant-to-plant spatial 

variability within the crop row can be identified and managed by using proximal sensor systems and should be explored 

in future studies.  

 

 

Figure 19. Photo indicating the presence of variability at short distances within a single row of coffee. 

 

The high resolution of the sensor data allowed the identification of spatial variations in the productive 

potential of coffee plants, as well as the identification that in the same plot there are plants with inverted biennial 

behavior. It is evident that AOS sensors have a great potential to be explored in coffee farming, and that the present 

study sought to provide an initial approach regarding the potential of using these sensors for PA management. Future 

studies may address the use in other scenarios (e.g., crops with different row orientation, mountain coffee, shaded 

coffee), as well as exploiting this information to create management strategies that optimize the management of inputs, 

as has been done for annual crops (ANASTASIOU et al., 2018; TREVISAN et al., 2018; PALLOTTINO et al., 2019; 

YU et al., 2021).  

3.4. CONCLUSIONS 

A procedure for acquiring and processing active optical sensors (AOS) data that are positioned on the side 

of coffee plants has been proposed and used for the spatio-temporal evaluation of coffee yield over its biennial cycle. 

The results of this study suggest that sensors should be positioned to collect data from the middle third of the coffee 

plants (scenario TM), as well as it should be averaged the AOS data obtained from both sides of the coffee plant 

(scenario A3) for a better correlation of vegetation indices with coffee yield.  

Regarding the temporal relationship of AOS data with yield, it was observed that the vegetation indices 

acquired in the post-harvest (C2) and flowering stages (C3) have positive correlations with the yield of that year, while 
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vegetation indices acquired during fruit filling (C4) and pre-harvest stages (C5) have negative correlations with coffee 

crop yields.  

Assessing the spatial variability of the coffee field with the tools used in this study (AOS equipment and 

yield monitors), it was observed that one of the causes of coffee variability present in the field is the existence of plants 

with different productive potential behaviors due to their uneven bienniality. This variation can be observed and, 

therefore, managed by using proximal sensors. This study presents the spatio-temporal variations of OAS data in large-

scale coffee plantations, as well as their relationship with the coffee crop yield. More studies are needed to go deeper 

into practical applications of these data in order to support optimized input management through precision agriculture 

practices in coffee crops.   
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4. ASSESSING TEMPORAL AND SPATIAL VARIABILITY OF COFFEE PLANTS USING 

RPA-BASED RGB IMAGING 

ABSTRACT 

The biophysical parameters of the coffee plants can provide important information to guide 
crop management. An alternative to traditional methods to obtain this type of information can be the 
3D modeling of the coffee canopy using aerial images from RGB cameras attached to remotely piloted 
aircraft (RPA). Studies have shown the potential of this technique for grains like maize, rice, barley, and 
perennial crops such as grapes and olive trees, but in coffee crop most studies have not addressed the 
use of this approach for temporal analysis and its relationship with crop yield data. This study aimed to 
explore the use of RGB aerial images to obtain 3D information of coffee crop, deriving plant height 
and volume information together with yield data during three growing seasons. The study was developed 
in a commercial production area of 10.24 ha, located in the cerrado biome, state of Minas Gerais. Seven 
data acquisition campaigns were conducted during the years 2019, 2020 and 2021. The flights were made 
at 70 m above ground level with lateral and longitudinal overlap of 75% and 80%, respectively. The 
images were processed obtaining canopy surface models (CSMs) derived into plant height and volume 
data for each campaign. To validate the plant height results, 120 sample points were used for reference 
ground measurements. The results showed that it is possible to extract plant height of coffee plants with 
R² 0.86 and RMSE 0.4 m. It was possible to monitor the temporal variability of coffee plant height and 
volume based on aerial images and correlate this information with yield data. The results of the modeling 
analysis demonstrated the possibility of using these variables to help understand the spatial variability 
of coffee yield within the field.  

Keywords:  Structure from motion; UAV; Crop surface model; Precision agriculture  
 

4.1. INTRODUCTION 

Remote sensing applications in agriculture have been trending over the last decades, providing rapid and 

efficient insights for crop scouting based on the study of spectral response of soil, water and vegetation (MULLA, 

2013). Sensors can be attached on different platforms, being classified as proximal, aerial and satellite-based according 

to their distance in relation to the target object (FLORENZANO, 2002). Reflecting recent technology advances, the 

use of remotely piloted aircraft system (RPA) gained significant attention in agriculture, being established as an effective 

tool for small-scale remote sensing (GÓMEZ-CANDÓN, DE CASTRO E LÓPEZ-GRANADOS, 2014; 

SANKARAN et al., 2015, COLOMINA E MOLINA, 2014). 

The use of RPA has been considered promising tool with easy data acquisition and higher operational 

flexibility in relation to classical platforms, providing reliable data (COLOMINA E MOLINA, 2014; SCHIRRMANN 

et al., 2016). The application of remote sensing analysis coupled with aerial platforms data provide an efficient, rapid 

and non-destructive assessment through the spectral response of plants and its relationship with various environmental 

factors (TILLY et al., 2014; POSSOCH et al., 2016), mainly because the spectral patterns of a crop vary due to several 

factors, such as development stage, vegetative vigor, and management practices (BERNI et al., 2009; BALLESTEROS 

et al., 2018). 

Several studies have explored the use of RPA with different on-board sensors for crop monitoring. The 

applications vary from identifying the appropriate time to harvest grapes (JOHNSON; HERWITZ, 2003), estimating 

the canopy height of olive trees (DÍAZ-VARELA et al, 2015), monitoring the growth of rice and barley crops 
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(BARETH et al., 2015; BENDIG et al., 2013), spatial variability of water stress assessments in vineyards 

(SANTESTEBAN et al., 2017), and estimation of biomass production of maize (LI et al., 2016).  

Some of these studies explore the use of consumer-grade red-green-blue (RGB) cameras for aerial imaging, 

in which centimeter spatial resolution images are obtained and processed to generate digital elevation models 

(VERHOEVEN, 2011; BENDIG, et al., 2014). Based on structure from motion (SfM) algorithms, RGB aerial images 

are processed exploring photogrammetric methods specifically developed for RPA imagery, resulting in 3D point 

clouds that can represent crop canopy height (BENDIG, et al., 2015). According to Hoffmeister et al. (2010), crop 

height information is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). As 

crop height information has been successfully used as an estimate of plant biomass in many crops, several studies have 

explored the use of CSM data derived from RGB imagery as a non-destructive method to assess crop biomass, with 

successful results for onion, barley, wheat and maize (SCHIRRMANN et al., 2016; BENDIG, et al., 2014; BENDIG, 

et al., 2015; LI et al., 2016; BALLESTEROS et al., 2018).  

In coffee production, the use of aerial imagery to explore spatial and temporal variability is highlighted in 

studies developed by Cunha et al. (2019), Santos et al. (2020) and Bento et al., (2022), in which biophysical variables 

of coffee plants were estimated using RGB imagery data. Cunha et al. (2019) sought to estimate the biophysical 

variables of coffee plants in order to improve pesticide application efficiency. Cunha et al. (2019) and Santos et al. 

(2020) highlighted that the height and volume of the canopy of coffee plants could be determined in a practical and 

precise way through digital processing of images captured by RPA, and that the determination of these variables is 

fundamental, since they can be related to coffee plant responses, such as biomass reduction, water stress, occurrence 

of pests and diseases, nutritional deficiencies, changes in chlorophyll content, and ultimately crop yield. Bento et al. 

(2022) characterized recently planted coffee cultivars using RPA-based vegetation indices. They also calculated height 

and diameter of the canopy of recently planted coffee plants in three developmental stages based on RPA imagery, 

achieving good correlations between plant height and volume from CSMs and field data. 

Although some studies have explored the use of RGB imagery to estimate plant height and volume for 

coffee crop, they were limited to point-wise sampling comparison within a single growing season. Therefore, the 

objective of this study was to analyze the potential of RGB imagery data acquired over three growing seasons to 

monitor the spatial and temporal variability of biophysical parameters of coffee crops and their relation with high-

density yield data. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Study area  

 
The area is located in the municipality of Patos de Minas, state of Minas Gerais, Brazil (Figura 20a). The 

local climate is classified as Aw, according to the Köppen classification (ALVARES et al., 2013), characterized by a 

tropical environment with dry winters and rainy summers. The study was conducted in a commercial coffee area of 

10.24 ha, cultivated with the species Coffea arabica L., IAC Catuaí 144 variety. The coffee trees were spaced by 0.5 m 
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between plants and 4.0 m between rows, resulting in a density of approximately 5,000 plants ha-1, with a drip irrigation 

system. In total, 35 rows of coffee with approximately 760 m in length each were evaluated. 

 

 

Figure 20. (a) general map of the study area; (b) map with details regarding the flight plan, ground control points and height 
validation points. 

 

4.2.2. RPA Flight and Image Acquisition 

 

Seven campaigns were carried out between 2019 and 2021 (Table 7) to capture aerial images, providing 

datasets at different growth stages throughout multiple growing seasons. All flights were conducted close to solar noon 

with sunny and calm wind weather conditions. 

A DJI Phantom 4 Advanced quadcopter (DJI, Shenzhen, Guangdong, China) was used during the 

campaigns to capture RGB images. The built-in camera has a spectral resolution within the visible spectrum (350~700 

nm - RGB), featuring a 12.8 x 9.6 mm CMOS sensor (Complementary Metal Oxide Semiconductor) controlled by a 

mechanical shutter, which produces images with up to 20 megapixels (4864 × 3648 pixels). The flight campaigns were 

planned using DroneDeploy mobile software (DroneDeploy Inc., San Francisco, CA, USA). All the flights were 

conducted at 70 m above ground level, with side and forward overlap of 75 and 80%, respectively. The aforementioned 

settings provided a ground sample distance (GSD) of around 0.02 m with over 400 images captured (Table 1) To 

ensure positional accuracy during the georeferencing procedures, 13 ground control points were previously located in 

the field with their coordinates measured by a pair of RTK GNSS receiver (Topcon GR-3, 0.01 m accuracy, Topcon 

Corporation, Tokyo, Japan). 
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Table 7. Details of each collection referring to date, phenological stages and amount of images obtained. 

Collection Stage Date Local Time Images 

C1 

C2 

C3 

Pre-harvest 

Post-harvest 

Flowering 

Jul 9th,2019 

Jul 13th,2019 

Sep 29th,2019 

11:57 

11:10 

11:02 

407 

406 

401 

C4 

C5 

Fruit filling 

Pre-harvest 

Mar 20th,2020 

May 29th,2020 

13:47 

13:15 

401 

402 

C6 

C7 

Post-harvest 

Pre-harvest 

Jun 3th,2020 

Jun 24th,2021 

12:15 

12:49 

404 

405 

 

 

4.2.3. Canopy Surface Model Generation 

To produce the digital elevation models (DEM), the RGB images obtained were processed using Agisoft 

PhotoScan software (Agisoft LLC, São Peterburgo, Russia), which features structure from motion algorithm (SfM) for 

3D digital reconstruction of scenes (MALAMBO et al., 2018). The workflow consists of importing the images into the 

software to perform image alignment, followed by the GCPs insertion to optimize the previous obtained image 

alignment. Furthermore, the dense cloud can be generated and derived into a mesh surface that represents the above 

surface structures (DSM). In order to obtain the digital terrain model (DTM), the dense cloud previously generated 

needs to be filtrated, maintaining only ground level points (BENDIG et al., 2013). To define appropriate parameters 

for the filtering process, an empirical approach was implemented, testing different combinations of maximum angle, 

maximum distance and cell size, observing the correspondence to the features overlayed on the orthomosaic. Thus, 

the following parameters were defined: maximum angle of 1.5°; maximum distance of 0.25 m; and cell size of 3 m. 

The selected points were then interpolated and derived into a smoothed mesh surface obtained with a 5-points 

threshold that represents the DTM. Both DSM and DTM were exported as TIFF file with a 0.03 m pixel-1 fixed spatial 

resolution. Figure 21 presents a flowchart of image processing.  

Using map algebra (Equation (5)) between the DSM and the DTM, the so-called crop surface model (CSM) 

was obtained, which represents the plant height information (BENDIG et al., 2013). 

 

CSM=DSM-DTM        (5) 

 

 

Figure 21. Flowchart of aerial image processing to obtain the DTM and DSM. 
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4.2.4. Extraction of plant height and plant volume information 

Before extracting plant height information from CSMs we first developed a process aiming to individualize 

each coffee tree using QGIS (QGIS Development Team, 2022) (Figure 22). The first step consisted of clipping 

portions of the CSM with values ≥ 0.2 m, generating a mask feature layer separating each coffee row. Furthermore, a 

transversal clip at every 0.5 m (assuming regular spacing between plants) was applied to the previous obtained mask 

layer in order to separate each coffee plant within the row. This way, each plant was individualized based on a polygon 

feature maintaining the variable width metrics of every tree. Based on the obtained mask feature, zonal statistics were 

obtaining, calculating the maximum plant height, average plant height and area within each polygon representing 

individual trees. By multiplying the average plant height by the area, the plant volume of each tree was then obtained. 

 

 

Figure 22. Flowchart of plant individualization processing and extraction of PH and PV metrics. 

 

4.2.5. Validation of plant height derived from CSMs 

The validation of plant height information, 20 sampling points were distributed across the field during C1 

(Figure 20b). At each sampling location, six plants were selected and had their maximum height measured using a 

topographic ruler, with the value being compared to the CSM-based plant height. Based on the results of the 120 

samples, a linear regression was obtained between ground based plant height and CSM-based plant height, with the 

accuracy evaluated based on root mean squared error (RMSE). 

4.2.6. Spatio-temporal relationship of Image data with coffee crop yield 

Yield data was obtained based on the yield monitor system installed on the K3 Millenium coffee harvester 

(Jacto, Pompeia, Brazil). The yield datasets were first filtered and then interpolated using ordinary kriging with a spatial 

resolution of 3 m according to the methodology described by Martello et al. (2022). The same methodology was applied 

to the PH and PV data derived from CSMs. Datasets obtained from C1 to C7 were filtered using the MapFilter software 

(MALDANER et al., 2022), employing a global filtering with a threshold of 100% and a local filtering with a threshold 

of 10% and a search radius of 10 m. The filtered datasets were then interpolated using ordinary kriging with a 3 m 

spatial resolution using the Vesper 1.6 software (MINASNY et al., 2005).  
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The spatio-temporal relationship of PH an PV data with coffee crop yield was evaluated comparing the PH 

an PV maps of C1 with yield map of Y1, the PH and PV maps of collections C1, C2, C3, C4 and C5 were also compared 

with the yield map of Y2, as well as comparing the yield map of Y3 with the PH an PV maps of C5, C6, and C7. These 

data were compared using Pearson's correlation coefficient and the ability of the PH an PV data to predict yield was 

verified using simple linear regressions (n = 11,859, for all datasets). These comparisons permit to evaluate the temporal 

relationship of the sensor data with the coffee yield. 

The calibrations of the predictive models were validated with full cross validation using as quality indicators 

the coefficient of determination (R²), the residual prediction deviation (RPD), and the root-mean-square error (RMSE). 

The RPD was calculated as the ratio between the standard deviation of the measured yield and the RMSE obtained in 

the prediction. Four RPD classes adapted from Chang et al. (2001) were used to evaluate the quality of models: poor 

models (RPD < 1.40), reasonable models (1.40 ≤ RPD < 2.00), good models (2.00 ≤ RPD < 3.00), and excellent 

models (RPD ≥ 3.00). 

4.3. RESULTS AND DISCUSSION 

4.3.1. Plant Height Validation 

The regression model between CSM-based plant height and reference measurements yielded an R² of 0.86, 

with RMSE = 0.41 m (Figure 23). Other studies that explored the use of SfM algorithms to derive plant height 

information from RPA-based imagery obtained similar results in terms of precision for maize (R² = 0.88) (LI et al., 

2016), black oat (R² = 0.68 – 0.92) (ACORSI et al., 2019), wheat (R² = 0.87 – 0.96) (SCHIRRMANN et al., 2016), and 

grassland (R² = 0.56-0.70) (GRÜNER et al., 2019).  

Some other studies that also employed RGB aerial images to assess plant height in coffee production 

achieved R² values between 0.52 and 0.87, and RMSE between 0.07 and 0.09 m (BARBOSA et al., 2021; BENTO et 

al., 2022; SANTOS et al., 2020). Although the higher residuals obtained in our study indicates a lower accuracy in 

relation to the aforementioned studies, the high precision achieved (R² = 0.86) demonstrates that the plant height 

measurements are mainly affected by a systematic error that can be easily corrected using an empirical line calibration 

model to achieve equivalent accuracy. 

 

Figure 23. Linear regression between plant height deviated from CSM (PHCSM) and manual height measurements (PHREF) 
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4.3.2. Exploratoy Analysis 

The descriptive statistics for PH and PV from all datasets are presented in Table 8. The original PV data 

presented a CV from 16.89 to 22.23%, while the CV for the PH data presented a variation of 8.52 to 13.47%. With 

the filtered datasets the CV was smaller, presenting values from 8.5 to 15.79% for PV and between 6.17 and 10.53% 

for PH. The reduction in the variation of values is a result of the filtering process, which aims to exclude discrepant 

values in order to improve the understanding of the real variability of the data. It is also noticeable that the filtering 

process removed more readings from PV than PH. Since the estimation of PV uses two variables (average height and 

plant area) the variations found in the original values were greater and consequently the filtering step eliminated more 

discrepant points.  

The average plant height increased over time, starting from an average of 2.67 m (C2 - year 2019) all the 

way to 2.99 m (C7 - year 2021). The average PV also showed variations during the evaluation period, but in this case, 

the volume of the plant suffered a negative impact after harvest. The average values of the volume before harvest, C1 

and C5 (2.31 m³ and 2.79 m³), are greater them the average values of the datasets after harvest, C2 and C6 (2.20 m³ 

and 2.75 m³), in which a decrease in the average volume of 0.11 and 0.04 m³ was observed. This negative variation can 

be explained by the impact that the coffee trees suffer during the mechanized harvest of the fruits. As observed by 

Santinato et al. (2014), during the harvest the plant is exposed to constant vibrations to detach the fruits. These 

vibrations combined with the traffic of machines in the area can cause damages to branches and loss of leaves, which 

can justify the decrease in the average volume of the plants. 

From the end of harvest until the first rains the plant remains in a vegetative resting stage and the change 

in plant volume is small (C2 to C3), but as soon as the rainy season begins (C3) the plant moves to an active vegetative 

stage (C4), and this behavior can be noticed when comparing the average volume of the C3 collection, that was 2.25 

m³, and changes to 2.80 in the C4 collection, an average increase of 0.55 m³. 

Table 8. Descriptive statistics of raw and filtered PH and PV data. 

Variable Unit 
 n Mean Min Max SD CV (%)  n Mean Min Max SD CV (%) 

 Raw Data  Filtered Data 

PV-C1 m³  51196 2.30 0.04 4.64 0.48 21.10  27329 2.31 1.44 3.42 0.31 13.50 

PV-C2 m³  51196 2.16 0.02 4.50 0.49 22.59  26205 2.20 1.29 3.23 0.32 14.59 

PV-C3 m³  51196 2.21 0.02 4.91 0.49 22.23  29441 2.25 1.19 3.29 0.36 15.79 

PV-C4 m³  51196 2.86 0.10 5.71 0.51 17.96  29099 2.80 1.75 3.86 0.30 10.86 

PV-C5 m³  51196 2.84 0.18 5.58 0.49 17.42  28143 2.79 1.81 3.67 0.26 9.31 

PV-C6 m³  51196 2.79 0.04 5.84 0.47 16.89  29002 2.75 1.91 3.63 0.23 8.50 

PV-C7 m³  51196 2.83 0.02 5.77 0.58 20.58  25495 2.81 1.69 3.97 0.36 12.92 

PH-C1 m  51196 2.66 0.44 3.66 0.32 12.13  42364 2.71 1.66 3.41 0.26 9.55 

PH-C2 m  51196 2.60 0.36 4.06 0.35 13.47  40196 2.67 1.52 3.37 0.28 10.53 

PH-C3 m  51196 2.66 0.32 3.70 0.33 12.52  43160 2.71 1.72 3.43 0.27 9.98 

PH-C4 m  51196 2.93 0.65 3.86 0.25 8.52  46971 2.95 2.00 3.59 0.20 6.78 

PH-C5 m  51196 2.82 0.48 3.75 0.24 8.54  45982 2.85 2.00 3.41 0.18 6.47 

PH-C6 m  51196 2.89 0.61 3.97 0.25 8.59  45703 2.93 2.09 3.54 0.18 6.17 

PH-C7 m  51196 2.94 0.33 3.90 0.33 11.29  42838 2.99 1.9 3.7 0.27 9.11 
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Figure 24 presents the correlation matrix between PH (Figure 24a) and PV (Figure 24b) over the seven 

campaigns. A positive correlation between the variables for all datasets can be observed, with r values ranging from 

0.53 to 0.94 for PH and 0.46 to 0.91 for PV. The lowest correlation values were found when comparing the data from 

C2 with those from C5 and C6, with r values of PH 0.53 and PV 0.46 respectively. This decrease in correlation can be 

explained by the physiological aspects of coffee plants, which needs two years to produce the fruit, being the first year 

a vegetative stage and the second year the reproductive stage. Therefore, when comparing the data with an interval of 

two years (C2 - C7) the results show a higher correlation between datasets, with r values of 0.88 PH and 0.78 PV.  

 
 

 
Figure 24. Correlation matrix, *** means p-value <0.001. (a) among the PH data; (b) among the PH data.     

 

4.3.3.  Spatio-temporal relationship of image data with coffee crop yield 

The interpolated maps of PH and PV from all campaigns (C1 to C7) are presented in Figure 25, in which 

the spatial behavior from all campaigns can be observed. The PV maps from C1, C2 and C3 present a similar spatial 

behavior, with the same regions of high (regions in green) and low plant volume (regions in red). After collection C3 

(Flowering) due to the beginning of the rainy season in the Cerrado region, plants present an increase in vegetative 

vigor (CANNELL, 1976), which may influence the behavior of plant height, specially during C4, where the spatial 

pattern of PH begins to display differences in relation to previous collections (C1, C2 and C3). These differences 

increase in C5 and C6, because the area was showing less variations in height, with a predominance of greener regions 

(Figure 25i,k) and with low CV 6.47 and 6.17% respectively (Table 8). During C7, once more the area presents a similar 

behavior to collections C1, C2 and C3, with regions of high and low plant height well defined. 

Comparing the PV and PH maps from the same campaign it is possible to observe that they have some 

differences in spatial behavior. The PV data present a greater definition of areas with high (regions in green) and low 

volume of plants (regions in red), consequently presenting higher CV values (Table 8) in comparison with the PH 

datasets. The behavior observed in the PH maps is repeated in the PV maps, starting with C4 it is possible to identify 

that the area presents a distinct behavior in comparison with collections C1, C2, C3 and C7, also presenting some 

isolated regions that previously presented low volume (regions in red) in collections C1, C2, C3 and C7. During C4, 

C5 and C6, the same regions presented inverse behavior with high volume (regions in green). This inversion may be 
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linked to the biennial behavior of the plant, which presents opposite behavior in years of high and low yield (PEREIRA 

et al., 2011; VALADARES et al., 2013). 

Another point that is important to highlight is the possibility that this PH and PV information can be used 

as a guide for the application of phytosanitary products that use plant volume and height as a factor for determining 

the application dose (GIL et al., 2007, SIEGFRIED et al., 2007). The results presented in Figure 25 generally present 

well-defined regions with PH and PV variation, indicating that it could be used to direct spraying at a variable rate. 

 
Figure 25. PH and PV interpolated data. (a) PH obtained in C1; (b) PV obtained in C1; (c) PH obtained in C2; (d) PV obtained in 

the C2; (e) PH obtained in C3; (f) PV obtained in the C3; (g) PH obtained in C4; (h) PV obtained in C4; (i) PH obtained in 
C5; (j) PV obtained in the C5; (k) PH obtained in C6; (l) PV obtained in the C6; (m) PH obtained in C7; (n) PV obtained in 
the C7. 

Table 9 presents the spatio-temporal relationship of the PH and PV together with yield data obtained from 

harvests of 2019 (Y1) 2020 (Y2) and 2021 (Y3). When analyzing the correlation of PH and PV data with yield, we 

observe that the correlation shows negative values for yield data Y1 and Y3, and direct correlation (positive) with yield 

data from Y2. This result may indicate that the volume and plant height have a more static behavior not following the 
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reversal of yield as shown in Figures 26, 27 and 28, and therefore, show direct correlation with a year and indirect 

correlation with the following year, when yield zones invert, as observed by Martello et al. (2022). 

Another interesting result observed in this study is the relationship of PH and PV data from a specific 

campaign (e.g. C1 and C5) with Y2 dataset. The PH and PV from C5, during the pre-harvest of 2020, showed low 

correlation (r = 0.43 and 0.28) with the yield of that same year (Y2), while it showed higher values when compared to 

the data from the C2 collection (one year earlier) with a direct correlation of r = 0.90 for PV and r= 0.92 for PH. The 

C5 and C6 datasets showed low values of correlation, both for Y2 and Y3 yield. This might indicate that for this area 

the best time to conduct flight campaigns aiming to predict crop yield, would be in the odd years, because when we 

observe the data of Y3 yield the highest values of correlation were found in collection C7 (pre-harvest 2021). Despite 

the inverse correlation, the predictive potential using the volume data from C7 showed reasonable performance (RPD 

= 1.56) in predicting Y3 yield. 

The performance of the models using PH and PV data for yield prediction showed distinct behavior, with 

best models found for C1 and C2 datasets when estimating the yield of Y2, with RPD greater than 2.00. According to 

the classification proposed by Chang et al. (2001), values of RPD between 2 and 3 indicates good models for prediction. 

The C3 dataset versus the yield of Y2 and the C7 dataset versus the yield of Y3 showed reasonable results (1.40 ≤ 

RPD < 2.00). In general, the performance of the PV data presented the lowest RMSE and RMSE% values for yield 

estimation in comparison with the PH data. 

 

Table 9. Temporal relationship of the PH and PV data with the yield obtained in the 2019 (Y1), 2020 (Y2), and 2021 (Y3) crop. 
The results show the performance of yield prediction (obtained in the full cross-validation) using simple linear regression 
models. 

In comparinson with Y1  In comparinson with Y2  In comparinson with Y3 

  C1  C1 C2 C3 C4 C5   C5 C6 C7 

 ----------------------------------------------  PHCSM --------------------------------------------- 

r -0.25  0.88 0.90 0.86 0.67 0.43  -0.15 -0.15 -0.65 

R² 0.06  0.77 0.81 0.75 0.45 0.18  0.02 0.02 0.42 

RMSE 0.28  0.24 0.22 0.25 0.37 0.45  0.43 0.43 0.33 

RMSE% 21.38  11.88 10.72 12.37 18.18 22.27  29.10 29.13 22.38 

RPD 1.03  2.07 2.30 1.99 1.35 1.11  1.01 1.01 1.32 

 ----------------------------------------------  PVCSM --------------------------------------------- 

r -0.32  0.90 0.92 0.86 0.69 0.28  -0.10 -0.07 -0.77 

R² 0.10  0.80 0.84 0.73 0.48 0.08  0.01 0.00 0.59 

RMSE 0.27  0.22 0.20 0.26 0.36 0.48  0.43 0.43 0.28 

RMSE% 20.92  10.93 9.77 12.75 17.77 23.62  29.30 29.38 18.84 

RPD 1.05  2.25 2.52 1.93 1.39 1.04   1.01 1.00 1.56 

 
Figure 26 shows the Y1 yield results, as well as the predicted yield maps obtained from the linear regression 

using PH and PV independent variables. The maps were generated using the same color scale, promoting a more 
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reliable comparison. Visually the estimated maps did not present spatial similarity with the measured yield data, which 

corroborates with the results found in Table 9. 

 
Figure 26. (a) Harvest yield data Y1 (Jul,2019); (b) yield estimated with PH - C1; (c) yield estimated with PV - C1. 

 

The predicted maps for yield Y2 are presented in Figure 27. These maps were obtained using datasets from 

C1 to C5, in which is possible to observe changes in the spatial behavior of the estimated data, with C1 and C2 

presenting great spatial similarity with the observed yield data, and after the collection C3 the maps began to present 

greater differences in comparison with Y2 due to lower accuracies for yield prediction. This behavior is in agreement 

with the analytical data presented in Table 9. In addition, the visual analysis indicates that the PV data presented 

smoother transitions between classes, unlike the PH results. 
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Figure 27. (a) Harvest yield data Y2 (Jun,2020); (b) yield estimated with PH - C1; (c) yield estimated with PV - C1; (d) yield estimated 

with PH – C2; (e) yield estimated with PV – C2; (f) yield estimated with PH – C3; (g) yield estimated with PV – C3; (h) yield 
estimated with PH – C4; (i) yield estimated with PV – C4; (j) yield estimated with PH – C5; (k) yield estimated with PV – C5. 

The yield data from Y3, along with the predicted yield results using datasets from C5, C6 and C7 are 

presented in Figure 28. Similar to the results discussed for the maps of Figure 26bc and Figure 27jk, the results from 

C5 and C6 presented low spatial similarity with the observed yield data, whereas the results from C7 presented a greater 

similarity with observed yield in comparison to other campaigns. The PV results found in C7 present greater similarity 

with Y3 in comparison with the PH data. Nonetheless, even with greater similarity the PV results still have limitations 

for yield prediction. 

 
Figure 28. (a) Harvest yield data Y3 (Jul,2021); (b) yield estimated with PH – C5; (c) yield estimated with PV – C5; (d) yield estimated 

with PH – C6; (e) yield estimated with PV – C6; (f) yield estimated with PH – C7; (g) yield estimated with PV – C7. 

 

Furthermore, the biophysical parameters extracted by the images in this work can also be used to help 

understand several limitations in coffee crop, as highlighted previously by Santos et al. (2020). As an example, we can 

mention water deficit (PELOSO et al., 2017), and the solar radiation interception dynamics (PILAU et al., 2016). 

Moreover, it can also serve as a guideline for site-specific management practices, especially for spraying activities using 

variable rate systems based on plant height and volume information (GIL et al., 2007, SIEGFRIED et al., 2007). 

Therefore, we emphasize the importance of further studies that allow validating these types of results as an information 

source for PA practices. 

 

4.4. CONCLUSIONS 

The results presented in this work demonstrated the potential of using aerial images to extract biophysical 

parameters of coffee plants, as well as allowing the observation of the spatio-temporal relationship of the studied 

variables with yield data during three consecutive growing seasons. 
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The data analysis suggests that additional variables are necessary to better understand the spatial variability, 

because the higher correlations obtained with yield data were observed only during odd years, indicating that plant 

height and volume alone are not sufficient to characterize the spatial variability from year to year. 

Further studies are still needed to evaluate the feasibility of this tool in other production systems, as well as 

the use of this information to implement site-specific management strategies towards the optimization of inputs.  
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5. COFFEE YIELD ESTIMATION USING HIGH RESOLUTION ORBITAL IMAGING 

AND MACHINE LEARNING 

ABSTRACT 

The objective of this study was to adjust yield prediction models based on a time series of 
satellite image data (spectral bands and vegetation indices - VIs) and high density data collected using 
random forest and multiple linear regression, and indicate the appropriate phenological stage of coffee 
crop to obtain satellite image data. The study was developed in a commercial production area of 10.24 
ha, located in the cerrado biome, state of Minas Gerais, Brazil. Data were obtained using a harvester 
equipped with a yield monitor that measures the volume of coffee harvested with a resolution of 
approximately 3.0 m. The data were collected during the 2019, 2020 and 2021 harvest and then 
converted to weight of processed coffee using a conversion factor. Satellite images from the PlanetScope 
(PS) platform were used. The data set was composed of high-sampling coffee yield, spectral bands (red, 
green, blue and NIR), normalized difference vegetation index NDVI and green normalized difference 
vegetation index GNDVI. RF regression and MLR were fitted to the different data sets composed of 
the temporal series (spectral bands and VIs) and the selected periods based on the indication of the 
most suitable period (VIs). The results showed that regardless the regression model used to fit predictive 
models, they all present similar data, allowing to reproduce yield maps, in general, with similar spatial 
patterns which can be used not only as method to estimate yield, but also to indicate the spatial variability 
with high and low yielding zones. In aditions, the more appropriate time to obtain satellite image data 
was dry season months, July and August. 

Keywords: Remote sensing; Precision agriculture; NDVI ; GNDVI 
 

5.1. INTRODUCTION 

Coffee crop is the interaction among several factors in the involved in the management of the culture, soil, 

climate and the plant itself, presenting particularities that contribute to having high spatial variability of yield 

(SANTANA et al., 2021; SANTINATO, 2016). In this sense, knowing the areas of high and low yield can bring 

benefits for farms from the adoption of management strategies (CHEMURA et al., 2018; PHAM et al., 2019; MARIN 

et al., 2021). However, knowledge about coffee yield before harvest is still a challenge for the coffee sector (BAZAME 

et al., 2021).  

Remote sensing (RS) is a potential source of data for monitoring agricultural areas. The RS (MULLA, 2013) 

at the orbital level stands out for its high coverage rate, allowing the monitoring of large areas combined with a temporal 

database. In particular, orbital imaging is commonly used in agriculture to identify spectral variations resulting from 

large-scale soil and crop characteristics (KAYAD et al., 2019; DAMIAN et al., 2020; SANTANA et al., 2021), 

supporting diagnostics for agronomic parameters of crops and helping farmers make better management decisions 

(EL-GHANY et al., 2020; FABBRI et al., 2020; KARTHIKEYAN et al., 2020; SARAIVA et al., 2020). However, 

some of the main limitations related to orbital images are the lack of field data helping as a source for the calibration 

of predictive models (LOBELL et al., 2015). Furthermore, empirical models for predicting agronomic parameters may 

have spatial and temporal constraints for application in different fields and seasons (COLAÇO; BRAMLEY, 2018; 

LUO et al., 2018; LAWES et al., 2019; PADARIAN et al., 2019). 
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For the coffee crop, the assessment of spatial variability is challenging due to the limited solutions adapted, 

mainly for yield mapping. Crop yield can be considered the most important data layer to start the investigation of 

spatial variability within the field (VEGA et al., 2019), to delimit management zones and enhance site-specific 

management strategies (BRAMLEY et al., 2019; JEFFREY et al., 2020; MOMIN et al., 2019). Currently, the coffee 

crop yield, by hand or machine harvesting, may be estimated from in-field samples (SILVA et al., 2008; FERRAZ et 

al., 2012; CARVALHO et al., 2017) or exclusively on mechanical harvesting, using a yield monitor (SARTORI et al., 

2002; MARTELLO et al., 2022). Sampling fruits infield is a destructive analysis process that is onerous and expensive, 

thus impractical for large areas (RAHNEMOONFAR; SHEPPARD, 2017). The yield monitor available on the market 

measures the volume of harvested fruits using a conveyor belt with cells of known volume (SARTORI et al., 2002; 

MOLIN et al., 2010; MARTELLO et al., 2022). This method is associated with a high investment cost and its use is 

exclusive to a single brand of coffee harvester, in addition to requiring calibration, accessibility of data processing for 

farmers or users and lack of knowledge to manage data from more than one harvester. 

Studies have reported the strength of the linear correlation between vegetation indices (VIs) using orbital 

images and coffee yield prediction. Bernardes et al. (2012) evaluated possible correlations between coffee yield and 

MODIS-derived vegetation indices in Brazil. Nogueira et al. (2018) reported the use of vegetation indices obtained 

with images from the Landsat-8 satellite - OLI sensor (Operational Land Imager) to estimate yield. Recently, Silva et 

al. (2021) evaluated the correlation of different phenological stages spectral responses of coffee in center pivot, under 

distinct apparent brightness conditions, and observed that coffee yield could be predicted. However, they used low-

density yield samples as ground truth data. 

An approach to be tested is similar to the solution proposed for sugarcane crops (CANATA et al., 2021), 

of using a method to estimate sugarcane yield based on satellite images and yield monitor data at high density. They 

also used machine learning (ML) techniques that can provide greater prediction accuracy compared to pattern statistics, 

as well as identify datasets (HUNT et al., 2019; JEONG et al., 2016; HOCHACHKA et al., 2007). 

Therefore, the objective of this work was: (a) to adjust yield prediction models based on a time series of 

satellite image data (spectral bands and vegetation indices – Vis) and high density data collected using random forest 

(RF) and multiple linear regression (MLR) algorithms and, (b) indicate the appropriate phenological stage of coffee 

crop to obtain satellite image data. 

 

5.2. MATERIALS AND METHODS 

The study was conducted in a commercial area located in the municipality of Patos de Minas, Minas Gerais 

state, Brazil, with central geographic coordinates at 18°32′28.55′′S latitude and 46°3′51.17″W longitude, coordinates 

reference system WGS 84 and altitude of 1025 m (Figure 29). The climate of the study areas is classified as AW, tropical 

with dry winter and rainy summer, according to the Köppen climate classification (ALVARES et al., 2013). The 

monthly normal temperatures (1991–2020) range from 18.9 °C in the coldest month (June) to 23.4 °C in the warmest 

month (October) with average annual temperature around 21.6 °C (INMET, 2022). The area of interest had 10.24 ha 

cultivated with the species Coffea arabica L. (IAC Catuaí 144 variety) planted in 2006 and had its first harvest in 2009, 

with drip irrigation system.  
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Figure 29. Location of coffee field study site in Brazil. (a) Historical data of monthly precipitation for the years 2018, 2019, 2020 
and 2021 and the line with the monthly climatological precipitation of 30 years (1981-2010) for the study area, (Source: 
CPTEC/INPE, INMET). (b) Study area, the red line represents the area boundary. 

5.2.1. Field data 

Data were obtained using a harvester K3 Millennium (Jacto, Pompeia, Brazil), equipped with a yield monitor 

that measures the volume of coffee harvested with a resolution of approximately 3.0 m. The data were collected during 

the 2019, 2020 and 2021 harvest and then converted to weight of processed coffee using a conversion factor 

(MARTELLO et al. 2022). Headland maneuver and data close to roads that divide and cross the area were firstly 

removed. Discrepant data inside the field were filtered using the MapFilter 2.0 software using global filtering with a 

threshold of 100%, based on the methodology proposed by Maldaner and Molin, 2020. Yield data were interpolated 

using the Vesper software 1.6 (MINASNY et al., 2006) using the ordinary kriging method with a spatial resolution of 

3.0 m × 3.0 m, and with the grid obtained from the central coordinates of the satellite image pixels. 

5.2.2. Orbital data 

In this study, satellite images from the PlanetScope (PS) (PLANET TEAM, 2017). All PS images had 3.0 

m spatial resolution, and each image included four spectral bands: blue (455–515 nm), green (500–590 nm), red (590–

670 nm), and near-infrared (780–860 nm). The images obtained were from the sensor Dove Classic – PS2, product 

Orto Scene - Analytic - Level 3B; these images underwent a series of processes by the vendor, including sensor and 

radiometric correction, atmospheric correction and conversion to top of atmosphere reflectance (TOA) and geometric 
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correction. This constellation can present daily temporal resolution, but only PS images that did not have clouds were 

selected, resulting in 33 selected images from 2018 to 2021 seasons; dates are shown in Table 10. 

Table 10. Table 1. Dates of the Planet Scope orbital images obtained. 

Harvest 1 Harvest 2 Harvest 3 

(2018-2019) (2019-2020) (2020-2021) 

07/30/18 07/28/19 07/27/20 

08/31/18 08/31/19 08/31/20 

09/29/18 09/22/19 09/28/20 

10/27/18 10/14/19 10/26/20 

12/21/18 12/31/19 12/18/20 

01/30/19 01/14/20 01/30/21 

02/25/19 02/21/20 02/01/21 

03/15/19 03/19/20 03/21/21 

04/27/19 04/25/20 04/28/21 

05/28/19 05/28/20 05/25/21 

06/30/19 06/28/20 06/28/21 

* No images found without cloud cover in the month of November for the three years. 

 

5.2.3. Statistical analysis 

The data set was composed of high-sampling coffee yield, spectral bands (red, green, blue and NIR), 

normalized difference vegetation index NDVI (ROUSE et al., 1974) and green normalized difference vegetation index 

GNDVI (GITELSON et al., 1996). 

Before fitting yield models, Pearson correlation coefficient (r) was calculated among variables (spectral 

bands x yield, NDVI x yield and GNDVI x yield) aiming to find those that present the highest linear correlation values 

with yield and indicate the most suitable periods to obtain satellite imagery data aware of the cloud-covered and 

temporal resolution limitations. To find the most suitable period it was chosen to use VIs since they can be considered 

as a dimensionality reduction method which might facilitate the interpretation of the data correlation.  

RF regression and MLR were fitted to the different data sets composed of the tempora series (spectral 

bands and VIs) and the selected periods based on the indication of the most suitable period (VIs). According to 

Breiman (2001), RF is a classification algorithm composed of several decision tree classifiers, where each tree depends 

on the values of a random vector sampled independently of the input vector with the identical distribution for all trees 

within the forest. In this study, RF regression was implemented in Rstudio (R Core Team, 2018) using the 

“randomForest” package (LIAW; WIENER, 2002). The coffee yield predicted value is the mean fitted response from 

all the individual trees that resulted from each bootstrapped sample. 

Yield predictive models were compared considering the coefficient of determination (R2), root mean 

squared error (RMSE – equation (6)) and mean absolute error (MAE – equation (7)). It was calculated these parameters 

for training (2/3), test (1/3) and entire dataset (3/3). Yield maps were generated using the geographic information 

system (GIS) Quantum GIS – QGIS (QGIS Development Team, 2018) 
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𝑅𝑀𝑆𝐸 =  {𝑛−1[∑(𝑦𝑖 − �̂�)2 +⋯+ (𝑦𝑛 −�̂�)2]}0.5    (6) 

 

where RMSE = root mean squared error, n = number of samples, y = observed variable response and y ̂= 

predicted variable response. 

 

𝑀𝐴𝐸 =  {𝑛−1[∑(|𝑦𝑖 −�̂�|) + ⋯ + (|𝑦𝑛 − �̂�|)]}     (7) 

 

where MAE = mean absolute error, n = number of samples, y = observed variable response and y ̂= 

predicted variable response.  

A flowchart corresponding to the coffee yield prediction and mapping procedure is shown in Figure 30. It 

presents the process through the stages of data collection using satellite imagery (including pre-processing and data 

selection), georeferenced coffee yield sampling, data merging (satellite imagery and coffee yield sampling data), data 

splitting (train and test data) and RF e MLR regression application. 

 

 

Figure 30. Coffee yield prediction and mapping flowchart 
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5.3. RESULTS E DISCUSSION 

Figure 31 shows the Pearson correlation values among spectral bands, VIs and yield from harvests 2019, 

2020 and 2021. It can be seen that highest correlation values with yield are found one year before the harvest (usually 

in june/july) regardless the season. July and August were the months that presented the highest correlation values with 

yield, fact related to the plant phenology and already reported by some authors since it can be inferred from this stage 

the vegetative vigor of the plant (BERNARDES et al., 2012; NOGUEIRA et al., 2018; SILVA et al., 2021). 

For harvest 2019, done in (Jun/2019), the highest values of r were 0.64 and 0.65 for NDVI and GNDVI 

on July and 0.67 for both NDVI and GNDVI for August. In harvest 2020 done in (Jul/2020), the highest r values 

were 0.89 and 0.85 for NDVI and GNDVI, respectively, on July and 0.85 for NDVI and 0.83 for GNDVI on August. 

Note that a similar behavior was found for harvest 2021 (Jun/2021), presenting r values of 0.8 and 0.78 for NDVI and 

GNDVI on July and 0.8 for both NDVI and GNDVI on August. 

July and August were also the best months indicated by Silva et al. (2021) to be used to predict coffee yield. 

These months are related to the phenological stage (dormancy bud phase) of the plant on which the potential 

production of the next year is already established due to flowering induction occurred in the previous months 

(OLIVEIRA et al., 2014). The coffee plant enters a mandatory dormancy stage during the period of water deficit 

(months of dry winter in Brazil) until the rainfall to break flower bud dormancy (CAMARGO; CAMARGO, 2001; 

LIMA et al., 2021). 

 They present intense vegetative growth during one year, allowing to produce grains more intensively 

(reproductive stage) in the next year (RENA & MAESTRI, 1985). During the dormancy phase, plagiotropic branches 

(productive branches) go into senescence. Due to the vegetative growth stage until the next reproductive stage, 

ortotropic branches (vegetative stage) receive more nutrients than the plagiotropic branches so it can form new 

branches and leaves (CAMARGO; CAMARGO, 2001; PEREIRA et al., 2011; GASPARI-PEZZOPANE et al., 2005). 

The alternation of r values (negative and positive) in the temporal sequence can be explained based on the phenological 

process of the culture where it can be found positive values right after the prior harvest season and negative values 

during the development of the crop. These results indicate that the dormancy phase (July and August) based on VIs 

can be an indicative of potential yield in qualitative terms to the next harvest. 

 



74 
 

 

Figure 31. Pearson correlation between spectral bands and vegetative indices with coffee yield at a significance level of 5%. Cross-
marks (X) mean that the variables were not significant. Nir: Near infrared, NDVI: Normalized Difference Vegetation Index, 
GNDVI: Green Normalized Difference Vegetation Index. (a) from the 2019 harvest; (b) from the 2020 harvest; (c) from the 
2021 harvest. 

 

Based on the results from NDVI and/or GNDVI, it can be inferred that yield modelling could be 

conducted using only two months (July and August) for linear models, in case of limited data from satellite imagery 

which brings benefits since these months comprehend the dry season, not limiting the availability of images due to 

cloud coverage on the desired scene. 

From the results of the linear correlation, yield predictive models were fit according to the different types 

of dataset: a) temporal series of spectral bands, NDVI, GNDVI and b) data from July and August for NDVI and 

GNDVI. It was selected the use of July and August because they presented the highest Pearson correlation with yield.  

Table 11 shows RMSE, R² and MAE results for training, test and entire data set applying RF and MLR to 

predict coffee yield based on different types of variables and months within seasons. Note that the highest R² are 

found in the models based on the RF regression regardless the data set, similarly found in Wei et al. (2020) and Canata 

et al. (2021). These results highlight that even if there are some linear correlation among yield and satellite imagery data 

(spectral bands or vegetation index), the RF in this context is likely to be used instead of MLR regression. 

Comparing the results relying on the temporal series (11 months) and only on the two best months (July 

and August), it can be noted that the fewer variables used, the lower the accuracy regardless the data set and regression 

model. 

Table 11. Root Mean Squared Error (RMSE), Coefficient of Determination (R2), Mean Absolute Error (MAE) results for training, 
test and entire data set applying Random Forest and Multiple Linear Regression to predict coffee yield based on different types 
of variables and months within harvests. 
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Variable Model Hs Mt 
Training Data Set (2/3) Test Data Set (1/3) Entire Data Set (3/3) 

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE 

Spectral Bands 

RF 

1 11a 0.04 0.99 0.03 0.09 0.91 0.07 0.06 0.96 0.04 

2 11a 0.05 0.99 0.04 0.13 0.93 0.10 0.09 0.97 0.06 

3 11a 0.05 0.99 0.03 0.12 0.93 0.09 0.08 0.97 0.05 

NDVI 

1 
11a 0.04 0.98 0.03 0.10 0.87 0.08 0.07 0.94 0.05 

2b 0.10 0.89 0.08 0.20 0.51 0.16 0.14 0.76 0.11 

2 
11a 0.06 0.99 0.05 0.15 0.91 0.11 0.10 0.96 0.07 

2b 0.10 0.96 0.08 0.21 0.81 0.16 0.15 0.91 0.11 

3 
11a 0.07 0.98 0.05 0.16 0.86 0.12 0.11 0.94 0.08 

 2b 0.12 0.93 0.09 0.25 0.68 0.19 0.17 0.84 0.13 

GNDVI 

1 
11a 0.05 0.97 0.04 0.12 0.83 0.09 0.08 0.93 0.05 

2b 0.10 0.90 0.08 0.19 0.53 0.16 0.14 0.77 0.11 

2 
11a 0.06 0.98 0.05 0.15 0.90 0.12 0.10 0.96 0.07 

2b 0.10 0.96 0.08 0.21 0.82 0.16 0.15 0.91 0.11 

3 
11a 0.07 0.97 0.06 0.17 0.84 0.14 0.12 0.93 0.08 

  2b 0.12 0.93 0.09 0.24 0.69 0.19 0.17 0.85 0.12 

Spectral Bands 

MLR 

1 11a 0.12 0.81 0.10 0.12 0.81 0.10 0.12 0.81 0.10 

2 11a 0.17 0.88 0.13 0.17 0.88 0.14 0.17 0.88 0.14 

3 11a 0.16 0.86 0.13 0.16 0.86 0.13 0.16 0.86 0.13 

NDVI 

1 
11a 0.14 0.77 0.11 0.14 0.77 0.11 0.14 0.77 0.11 

2b 0.20 0.49 0.17 0.20 0.50 0.16 0.20 0.50 0.17 

2 
11a 0.19 0.86 0.15 0.19 0.86 0.15 0.19 0.86 0.15 

2b 0.21 0.83 0.16 0.21 0.82 0.17 0.21 0.82 0.16 

3 
11a 0.21 0.77 0.17 0.21 0.76 0.16 0.21 0.76 0.17 

 2b 0.24 0.70 0.19 0.23 0.70 0.19 0.24 0.70 0.19 

GNDVI 

1 
11a 0.14 0.74 0.11 0.14 0.74 0.12 0.14 0.74 0.11 

2b 0.20 0.51 0.16 0.20 0.52 0.16 0.20 0.51 0.16 

2 
11a 0.18 0.87 0.14 0.19 0.86 0.15 0.18 0.86 0.15 

2b 0.21 0.82 0.17 0.21 0.82 0.17 0.21 0.82 0.17 

3 
11a 0.22 0.75 0.17 0.22 0.75 0.17 0.22 0.75 0.17 

2b 0.24 0.70 0.19 0.23 0.70 0.19 0.24 0.70 0.19 

Reg = regression; Hs = Harvest; Mt = Months; RF = Random forest regression; MLR = Multiple linear regression 
a it was considered satellite imagery data from January, February, March, April, May, June, July, August, September, October and December. 
b it was considered satellite imagery data from July and August. 
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Figures 32, 33 and 34 represent the yield maps from yield monitor and different yield predictive models. 

From Figures 32A, 33A and 34A it can be visualized the biennial bearing effect of coffee yield, a phenomena expected 

and largely reported in the literature (BERNARDES et al., 2012; CARVALHO et al., 2020) on which harvest 1 and 3 

could be considered as low yielding season and harvest 2 as high yielding season. However, usually the effect is reported 

in low spatial resolution, different from this work that shows results based on high-density data. Thus, from this results 

it can be inferred not only the variability between years, but also the variability within the field which can provide data 

for decisions makers to improve crop management (MOLIN et al. 2010; ANGNES et.al 2021; MARTELLO et al. 

2022). 

  

 

Figure 32.  Figure 5. Coffee yield (Mg ha-1) maps generate for harvest 1 (2018-2019) from (A) Coffe monitor data(B) RF regression 
model based on spectral bands, (C) RF regression based on Normalized Difference Vegetation Index (NDVI), (D) RF 
regression based on Green Normalized Vegetation, (E) MLR based on spectral bands, (F) MLR based on NDVI, (G) MLR 
based on GNDVI, (H) RF regression based on NDVI obtained from July(jul) and August(ago), (I) RF regression based on 
GNDVI obtained from July and August, (J) MLR based on NDVI obtained from July and August, Index (GNDVI) and (K) 
MLR based on GNDVI obtained from July and August.    
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Figure 33. Figure 6. Coffee yield (Mg ha-1) maps generate for harvest 2 (2019-2020) from (A) Coffe monitor data(B) RF regression 
model based on spectral bands, (C) RF regression based on Normalized Difference Vegetation Index (NDVI), (D) RF 
regression based on Green Normalized Vegetation, (E) MLR based on spectral bands, (F) MLR based on NDVI, (G) MLR 
based on GNDVI, (H) RF regression based on NDVI obtained from July(jul) and August(ago), (I) RF regression based on 
GNDVI obtained from July and August, (J) MLR based on NDVI obtained from July and August, Index (GNDVI) and (K) 
MLR based on GNDVI obtained from July and August. 
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Figure 34. Figure 7. Coffee yield (Mg ha-1) maps generate for harvest 3 (2020-2021) from (A) Coffee monitor data(B) RF regression 
model based on spectral bands, (C) RF regression based on Normalized Difference Vegetation Index (NDVI), (D) RF 
regression based on Green Normalized Vegetation, (E) MLR based on spectral bands, (F) MLR based on NDVI, (G) MLR 
based on GNDVI, (H) RF regression based on NDVI obtained from July(jul) and August(ago), (I) RF regression based on 
GNDVI obtained from July and August, (J) MLR based on NDVI obtained from July and August, Index (GNDVI) and (K) 
MLR based on GNDVI obtained from July and August. 

 

Looking at the maps from Figures 32, 33 and 34, it can be noted that RF regression models presented 

smoother results when compared to MLR, regardless the database on which the larger the number of available variables 

(spectral bands), the smoothers the results. The results from VIs and MLR are also interesting to be used, but aware 

of the computing power to process data, the use of spectral bands to fit coffee yield prediction models should be first 

accounted, as shown in other studies but for different crops: carrot (WEI et al., 2020) and sugarcane (CANATA et al., 

2021).  

In addition, it is highlighted that regardless the regression model used to fit predictive models, they all 

present similar data, allowing to reproduce yield maps, in general, with similar spatial patterns which can be used not 

only as method to estimate yield, but also to indicate the spatial variability with high and low yielding zones. 

The use of VIs in this work allowed to identify qualitatively potential management zones as they present 

strong linear correlation with yield (Figure 31) due to established importance for coffee physiology if the image is 

acquired in the ideal crop phenological phase. Thus, NDVI/GNDVI data collection after harvesting (dry season – July 

and August – dormancy phase) allow to improve management decisions regarding the crop to ensure it to express their 

yield potential as much as possible. It is also possible to infer qualitatively about high and low yielding zones one-year 

prior the harvest season, a valuable data to be used by the decision maker to enhance crop management considering 

the crop variability.  
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Note that the strategy described in this study, using NDVI/GNDVI data obtained during the dormancy 

phase of coffee plants that allow to identify the qualitative yield potential zones before the flowering occurs, can be 

critical to decision-making in coffee production systems. Irrigation planning can be developed based on this 

information to match the crucial moment that enhance coffee quality (RODRIGUES et al., 2017, MIRANDA et al., 

2020). Also, the optimal soil correctives and fertilizers application can be planned using the zones prediction, following 

the principles of PA (ISPA, 2022). The high spatial density in which the qualitative zones can be predicted using this 

strategy, before the blossoming and coffee fruits development, can guide the prescription of coffee management along 

the season. 

The dormancy phase is critical to the coffee plant as it is waiting for the first rains to bloom (DAMATTA 

et al., 2007). Aware that blossoming occurs uneven within the field and it is related to yield, efforts studying the 

application of site-specific irrigation based on the yield potential zones, which can be developed based on 

NDVI/GNDVI data obtained on the dry season) should be done.  

Several studies have been conducted evaluating the irrigation and coffee attributes qualitatively and 

quantitatively. For example, Rodrigues et al. (2017) found that better coffee quality is found in irrigated areas, but the 

watering time is crucial. In addition, several morphological structures are also enhanced which can also be expressed 

in more yield. Damatta et al. (2007) also found that irrigated areas may yield better coffee quality, but they highlighted 

that the timing to provide water can affect negatively the quality. Therefore, as already stated by the previous authors, 

that irrigation can improve the yield expression in terms of quality and quantity, as long as irrigation occurs at the 

correct time, an additional data layer (yield potential) could also be used to guarantee that yield expression following 

the principles of PA. 

Another management that can be guided by the yield map is the fertilization (MOLIN et al., 2010). 

Therefore, fertilizer application should be distributed unevenly according to their yield potential based on the 

NDVI/GNDVI map. 

In terms of quantitative data, it was demonstrated in this work that the use of field data (harvester yield 

data) with satellite images applying regression models are suitable for estimating coffee yield. Future approaches can 

explore the use of these models to extrapolate the yield estimate to nearby areas, as well as evaluate the potential of 

the technique for applying a model to the next year. 

 

 

5.4. CONCLUSIONS 

It was possible to observe with the set of Planet Scope orbital images and the yield data during three 

harvests, that there is a direct correlation between the NDVI and GNDVI indices with yield one year before harvest, 

especially in the months of July and August (post-harvest and the dormancy phase of the plant).  

Using regression models (RF and MLR) it was possible to estimate the coffee yield, and the RF regression 

models showed the highest R² values compared to the MLR. Comparing the results based on the time series (11 

months) and only on the two best months (July and August), it is noted that the fewer variables used, the lower the 

accuracy independent of the dataset and regression model. However, when it is not possible to obtain a set of annual 
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images, the results showed that it is possible to estimate productivity with images during the dormancy phase of the 

plant one year before harvest. 

In addition, it is noteworthy that regardless of the regression model used to adjust the predictive models, 

they all present similar data, allowing to reproduce yield maps, in general, with similar spatial patterns that can be used 

not only as a method to estimate yield, but also to indicate the spatial variability with zones of high and low productivity, 

observing the behavior of productive alternation in the area and indicating the presence of biennial yield. 
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6. FINAL CONSIDERATIONS 

Mapping the spatial variability of an agricultural area is not always a simple task, in this sense research is 

developed seeking to improve ways to identify these variations in the field, through the development of new 

techniques, sensors, and tools. Among the most diverse layers that can be mapped, the spatial variability of yield can 

be considered extremely important information, as it presents the results that the producer obtained in his last harvest, 

and serves as information for decision-making in the management of following seasons. However, obtaining yield data 

in sufficient density to map these variations remains a challenge for modern agriculture, especially in perennial crops 

such as coffee, that presents the extra challenge of bienual behaviour. 

Strategies using yield monitors embedded in harvesters can be a viable alternative in large-scale data 

collection with high data density. In this sense the results of the second chapter of this work showed that the data 

obtained by the volumetric yield monitor built into a coffee harvester have a high correlation with those obtained using 

load cells. This fact qualifies the yield data, allowing the identification of the fruit flow variation during harvest and the 

spatialization of this data to obtain reliable yield maps. In addition to this validation, yield maps were also obtained in 

a commercial area in the Cerrado Mineiro region during three consecutive seasons. With the yield maps, it was possible 

to identify productive variability with well-defined regions of high and low productive potential in an area of 

approximately 10.2 h that always received the same management by the producer. In addition to this finding, by 

analyzing the yield maps in the temporal scale, it was possible to classify regions that present alternating yields between 

the years evaluated. This result indicates that, in addition to knowing the spatial variability of yield, the biennial variance 

information must also be considered in site-specific management strategies. The regions that presented high yield 

variance should be conducted in a differentiated way, alternating according to the productive year (high and low yield) 

and not only considering their general yield variability. 

These results showed the potential to know the productive variability, but these maps can only be obtained 

at the time of harvest, and if there is a failure in the monitoring system, this information is lost. In addition, several 

activities related to the management of the area could be previously planned in case it was possible to estimate yield 

with some assertiveness before the actual harvest. In this sense, the results of chapters three, four, and five showed 

the potential of remote sensing to predict and map the spatial variability of a commercial coffee crop, with different 

sensors and at three levels of data acquisition (proximal, aerial, and orbital). 

The results of chapter 3 showed the potential to use data from active optical sensors (AOS) positioned on 

the side of the coffee plants, in this specific area in which the thesis was developed, the results suggest that the sensors 

should be positioned to collect data from the third average of the coffee plants, as well as the average of the AOS data 

obtained from both sides of the coffee plant, must be calculated for a better correlation of vegetation indices with 

coffee yield. It was also possible to observe that one year before harvest, the AOS data showed a positive correlation 

with yield, indicating the potential to obtain coffee yield predictions. In addition, the results also indicated that the 

AOS data were able to identify the alternation of productive behavior temporally. 

Another approach to monitoring and identifying yield variability in coffee areas is using aerial images. The 

results presented in chapter 4 demonstrated the potential of images in the extraction of biophysical parameters of 

coffee trees, as well as the individualization of plants aiming at extracting height and volume data, allowing the 

observation of the space-time relationship of the variables studied with yield data during three consecutive seasons, 



86 
 
but the results point to the need for additional variables to better understand the spatial variability, since the highest 

correlations obtained with yield data were observed only in odd-numbered years, indicating that plant height and 

volume alone do not are sufficient to temporally describe the spatial variability. In addition, obtaining aerial images 

with RPA is a laborious task and requires high computational power for image processing. In this sense, an alternative 

for monitoring coffee areas is to use high-resolution orbital images. The results of chapter 5 showed the potential of 

using orbital images with a high spatial resolution (3 m) to predict coffee yield with high assertiveness even one year 

before harvest, and also indicated that it is possible to estimate the yield of the next crop with images after the current 

harvest (July and August). 

In general, the results found in this work reinforce the importance of knowing the productive spatial 

variability in coffee areas, as this type of information helps in the search for possible causes of this variability so that 

the culture can be managed considering these spatial and temporal differences. This study presents the space-time 

variations of data from orbital, aerial, and terrestrial sensors in a commercial coffee area, as well as their relationship 

with yield maps generated with high data density. However, more studies are needed to deepen the practical 

applications of these data, to support the optimized management of inputs through precision agriculture practices in 

coffee plantations, as well as to evaluate the feasibility of these tools in other production systems (coffee mountain, 

rainfed coffee, non-mechanized areas, etc). Future research aimed at estimating coffee yield should also consider the 

fruits that fall to the ground and those that remain on the plant after harvest. In addition, it is necessary to develop 

faster and more assertive techniques to identify the degree of maturation of the fruits, issues that were not addressed 

in detail in this work and that are of great interest to coffee producers. Finally, future studies that seek to use techniques 

similar to those presented in this thesis must continually improve and optimize data acquisition and processing systems 

for their full applicability to farmers. 

 


