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RESUMO 
 

Uma abordagem sinérgica para a previsão de produtividade da cana-de-açúcar usando 
aprendizado de máquina, sensoriamento remoto e modelagem baseada em processos 

 
Previsões precisas e acuradas da produtividade de culturas agrícolas são fundamentais para 

agricultores e tomadores de decisão. Este estudo tem como objetivo avaliar uma abordagem híbrida 
que envolve dados de sensoriamento remoto, modelagem de culturas com modelos baseados em 
processos e algoritmos de aprendizado de máquina para melhorar as previsões de produtividade da 
cana-de-açúcar. Para isso, foi desenvolvido uma abordagem híbrida de previsão de produtividade 
que combina várias fontes de dados, incluindo variáveis simuladas de solo e da planta do modelo 
APSIM (um modelo de cultura baseado em processos), dados meteorológicos e índices de 
vegetação. Esses dados foram utilizados como entrada em modelos de aprendizado de máquina 
para prever a produtividade final da cana-de-açúcar. Neste estudo, foram avaliados 16 modelos de 
regressão para prever a produtividade da cana-de-açúcar no final da safra ao nível municipal, no 
estado de São Paulo, Brasil, durante o período 2010-2020. Os resultados indicaram que a 
abordagem híbrida desenvolvida utilizando o algoritmo K-Neighbors Regressor apresentou a 
melhor performance estatística, resultando no menor erro absoluto médio (MAE) de 3.26 t ha-1, 
com um erro percentual absoluto médio (MAPE) de 4.54%. As previsões de produtividade da 
cana-de-açúcar proporcionaram maior grau de precisão entre 1-2 meses antes da colheita. Além 
disso, determinou-se quais variáveis exerceram maior influência para a previsão da produtividade 
da cana-de-açúcar, excluindo parcialmente algumas variáveis do modelo de previsão. Os resultados 
mostraram que a adição de variáveis simuladas pelo modelo baseado em processos (APSIM) como 
variáveis de entrada para modelos de aprendizado de máquina, pode reduzir o erro quadrático 
médio (RMSE) da previsão de produtividade, variando entre 7,7 e 26,9%, enquanto que, os índices 
de vegetação tiveram o menor impacto nas previsões. A análise mostrou que os dados 
meteorológicos têm um impacto maior na previsão da produtividade quando fornecidos ao modelo 
baseado em processos do que quando usados diretamente em algoritmos de aprendizado de 
máquina. Esse resultado indica que as variáveis simuladas fornecidas pelo APSIM oferecem uma 
descrição biofísica mais completa da interação entre solo, planta e atmosfera. 

 
Palavras-chave: Modelagem híbrida, Predição de produtividade agrícola, Modelagem preditiva, 

APSIM-Sugar, Simulação de cana-de-açúcar, Algoritmos de aprendizado de 
máquina 
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ABSTRACT 
 

A synergistic approach to sugarcane yield forecasting using machine learning, remote 
sensing, and process-based modeling  

 
Accurate and precise crop yield forecasts are essential for farmers and decision-makers. 

This study aims to assess a hybrid approach involving remote sensing data, crop modeling with 
process-based models, and machine learning algorithms to improve sugarcane yield predictions. 
To achieve this, a hybrid yield forecasting approach was developed, combining various data 
sources, including simulated soil and plant variables from the APSIM model (a process-based crop 
model), meteorological data, and vegetation indices. These data were used as inputs in machine 
learning models to forecast end-season sugarcane yield. In this study, 16 regression models were 
evaluated to forecast sugarcane yield at the municipal level in the state of São Paulo, Brazil, during 
the period 2010-2020. The results indicated that the hybrid approach developed using the K-
Neighbors Regressor algorithm showed the best statistical performance, resulting in the lowest 
Mean Absolute Error (MAE) of 3.26 t ha-1, with a Mean Absolute Percentage Error (MAPE) of 
4.54%. Sugarcane yield predictions were most accurate 1-2 months before harvesting. Furthermore, 
the study determined which variables had the greatest influence on sugarcane productivity 
prediction by partially excluding some variables from the prediction model. The results showed 
that adding variables simulated by the process-based model (APSIM) as input variables for machine 
learning models could reduce the Root Mean Square Error (RMSE) of yield prediction, ranging 
from 7.7% to 26.9%, while vegetation indices had the least impact on predictions. The analysis 
revealed that meteorological data had a greater impact on yield prediction when provided to the 
process-based model than when directly used in machine learning algorithms. This result suggests 
that the simulated variables provided by APSIM offer a more comprehensive biophysical 
description of the interaction between soil, plant, and atmosphere. 

 
Keywords: Hybrid modeling, Agricultural yield prediction, Predictive modeling, APSIM-Sugar, 

Sugarcane simulation, Machine learning algorithms 
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1. INTRODUCTION 

The prediction of crop yield through data-driven or process-based approaches has 

certainly evolved in recent decades, resulting in a more comprehensive understanding of crop 

growth and development regarding environmental variability. The advances in the fields of 

machine learning and process-based crop modeling, coupled with the great evolution in data 

generation by digital agriculture, have led to the possibility of integrating crop models and data-

driven approaches, offering new opportunities to enhance yield prediction accuracy of agricultural 

crops (KEATING; THORBURN, 2018; FENG et al., 2020). While these technologies have 

already proven their unique capabilities and have advanced prediction performance, there is a 

growing interest in integrating them to further improve prediction accuracy (EVERINGHAM et 

al., 2016; CASADEBAIG; DEBAEKE; WALLACH, 2020; CORRALES et al., 2022; KHAN et 

al., 2022). However, in order to successfully combine these models, it is important to understand 

the real-world context in which they are applied. This understanding can be gained through 

observation and the development of models that accurately represent the essential features of the 

system being studied. In this sense, hybrid modeling leverages the strengths of both data-driven 

and process-based methods to gain a deeper understanding of the factors influencing crop yields, 

and can serve as a basis for creating new crop models and guide the integration of both approaches 

for more accurate predictions in agriculture (BATOOL et al., 2022; MAESTRINI et al., 2022). 

Crop yields are influenced by various factors, such as soil quality, weather conditions, 

plant genotype, crop management, biotic effects, and the interactions between them. These factors 

can cause significant variations in crop yields, both at large regional scales and even within small-

scale in-field conditions (OLIVER; ROBERTSON; WONG, 2010; WACHOWIAK et al., 2017). 

Adding to this, early forecasts, while desirable for planning, management, and decision-making, 

can add even more complexity and uncertainty in yield forecast due to unknown weather variability, 

pests, weeds and diseases outbreaks, as well as climate changes (HATFIELD et al., 2008; BROWN 

et al., 2018; CHALONER; GURR; BEBBER, 2021). This is particularly significant in semi-

perennial crops like sugarcane, as they remain in the field for over a year and are exposed to various 

weather conditions, as well as the impact of past inadequate management and biotic and abiotic 

stresses, which can affect subsequent yields (VITTI et al., 2007; RAMBURAN et al., 2013; 

DLAMINI; ZHOU, 2022). 

Brazil is the world's largest producer of sugarcane, in 2021 it produced 715 millions of 

tons that accounts for 40% of the global production, mainly in the state of São Paulo (IBGE, 2021; 

VANDENBERGHE et al., 2022). Sugarcane is a major source of sugar and biofuel, with Brazil 
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being the largest producer of sugarcane-based ethanol, corresponding to 30% of the world’s 

ethanol production (KARP et al., 2021). Given the importance of sugarcane, early and accurate 

crop yield forecasting is important for the sugarcane production chain, supporting food security 

policies, market stabilization, and planning in various scales. Producers can optimize agronomic 

management with timely forecasts, while the agri-food industry can optimize processing, storage, 

transport, and marketing (JOHNSON, 2014; CROCI et al., 2023; PRIYA et al., 2023). Thus, 

quantifying productive variability and developing sugarcane yield estimates contributes for 

sustainable agricultural development. In this sense, numerous studies have focused on develop 

yield forecasts based on different techniques such as data-driven, process-based and remote sensing 

techniques, by relating yield to the environment and crop management (SCHEPEN; 

EVERINGHAM; WANG, 2020; AKBARIAN et al., 2022; HAN; BISHOP; FILIPPI, 2022; 

VERMA et al., 2023). 

The process-based crop models simulates the process of plant growth and development 

and are used to predict yield, phenological stages, and water stress using management, crop cultivar 

traits, soil parameters and weather inputs (HE et al., 2017). In this way, the temporal variability of 

the input variables is incorporated by the models, which is one of its advantages over other 

productivity estimation approaches. These models are pre-trained using experimental data from 

various environments and are calibrated for accurate predictions. However, the variability over 

large regions, and also in-field, of input variables and other effects not currently simulated such as 

pests, weeds and diseases effects are the main constraints in process-based modeling yield 

prediction (BASSO et al., 2001; THORP et al., 2008; O’LEARY et al., 2016; DONATELLI et al., 

2017). In contrast, remote sensing-based approaches offer an advantage in capturing biomass 

variability by measuring spectral differences in crop canopies, which can indirectly relate to stress 

factors and overcome the limitations of process-based models (FRANKE; MENZ, 2007; JIANG 

et al., 2014; OLIVEIRA et al., 2018; BHATTARAI; SCHMID; MCCORNACK, 2019). In this 

sense, vegetation indices are well-known tools to monitor crop growth and development in high 

spatial resolution, and therefore can be combined with process-based models to improve crop yield 

estimates (HUANG et al., 2015; AZZARI; JAIN; LOBELL, 2017; FENG et al., 2020). More 

recently, data-driven approaches based on machine learning have emerged in agriculture. These 

methods use algorithms trained on data to predict outputs based on inputs, making them more 

easily applicable than process-based models. They do not require expert knowledge or user 

calibration skills, and they have lower runtimes and data storage requirements (SHAHHOSSEINI 

et al., 2021). Several studies have shown that machine learning algorithms can accurately predict 

various agricultural domains, including disease and pest forecasts, as well as predictions of soil 
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parameters, water content, and crop yield (CHLINGARYAN; SUKKARIEH; WHELAN, 2018; 

LIAKOS et al., 2018; YU et al., 2019; BERTALAN et al., 2022). Thus, the main objective of this 

study is to develop a hybrid approach that combine relevant features that impact crop yield, such 

as remote sensing and process-based modeling outputs, with machine learning, to improve the 

accuracy of sugarcane yield forecasts. 
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2. OBJECTIVES 

The objective of this study is to develop a hybrid approach that combines process-based 

modeling, remote sensing vegetation indices, and machine learning algorithms to improve crop 

yield prediction for the growing conditions of Southeastern Brazil. Thus, it can be subdivided into 

specific objectives, as follows: 

i) Determine if the hybrid approach, including process-based crop modeling + remote 

sensing data and machine learning algorithms, can result in better sugarcane yield predictions in 

the top cities producing sugarcane in São Paulo state, Brazil; 

ii) Identify which machine learning algorithms provide the most accurate predictions in 

the hybrid approach; 

iii) Establish which features from the crop modeling, weather data, or vegetation indices 

are most relevant for use by machine learning in predicting sugarcane yield; 

iv) Assess the extent to which sugarcane yield forecasts can be made earlier while 

maintaining a reasonable accuracy. 
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3. LITERATURE REVIEW 

3.1.  Crop yield forecasting overview 

Crop yield forecasting plays a crucial role in ensuring global food security. With the 

world's population projected to reach more than 9 billion by 2050 (FAO, 2019), it is essential to 

have an accurate understanding of crop yields in order to plan for and prevent potential food 

shortages (HASEGAWA et al., 2021). Forecasting yield of agricultural crops accurately before 

harvesting is one of the main challenges in agriculture, as it allows anticipate and optimize planning, 

crop management and decision making in a national, regional and local levels. At a local level, it 

allows farmers to make informed decisions about planting, harvesting, and pricing their crops, 

while at a regional and national levels, an accurately yield forecasting, can help policymakers to 

make informed decisions about trade policies and food aid distribution (HATFIELD et al., 2008; 

BROWN et al., 2018). Additionally, accurate crop yield forecasting can help mitigate the impact of 

extreme weather events, pests, and diseases on food production, which can ultimately benefit the 

global food supply chain. 

Seasonal yield forecast varies across temporal and spatial scales. Primarily, crop yields are 

affected by numerous complex factors, that includes landscapes, soil quality, genotype, pest 

infestations, water availability, weather conditions, management and harvest planning, and other 

interrelated factors (SINGELS, 2013). Additionally, the processes that determines the crop yield 

are time-specific and in essence they are nonlinear, adding to the complexity of the forecast process 

(LI et al., 2019). Various techniques exist for yield forecasting, including traditional methods where 

crop status is evaluated by experts, empirical and statistical models, time-series analysis, remote 

sensing, process-based crop models and machine learning algorithms. Traditional methods rely on 

expert’s knowledge and are conducted throughout the crop growing season, where observations 

and measurements are taken, such as tiller number, biomass production, number of plants per 

meter square, percentage of damage from pests and fungi, percentage of weeds infestation, among 

others. After that, regression methods or local expertise knowledge can be used to forecast the 

yield from the data collected (BASSO; LIU, 2019). Thompson (1969) conducted one of the earliest 

crop yield forecasts by using regression analysis to identify the correlation between average regional 

yields and weather patterns, revealing a general trend in crop yields in the United States corn belt 

region. The traditional method is on the basis of yield forecast of Brazilian National Supply 

Company (Conab) and the Institute of Geography and Statistics (IBGE). These two institutions 

are responsible for supplying information on the crop status during the season. Conab and IBGE 

conduct field surveys and provide annual yield forecasts on a state-level, as well as estimations on 
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a municipality-level (which is exclusively released by IBGE) after harvest (MONTEIRO et al., 

2013). 

Yield forecasting using traditional experts' knowledge and in situ surveys that evaluate crop 

status have some benefits. They are easily accessible and cost-effective, they provide real-time and 

accurate site-specific information on crop growth, development, and yield. Also, they provide 

valuable insights into the potential yield and enable farmers to make informed decisions about crop 

management practices. Traditional methods often incorporate local knowledge and expertise that 

cannot be obtained through remote sensing or other modern technologies (BASSO; LIU, 2019). 

Despite those benefits, they present some limitations, those traditional methods are time-

consuming and require manual labor, the accuracy of yield forecasting depends on the experience 

and expertise of the individual experts conducting the surveys. Besides that, yield forecasts may be 

limited to small areas, making it difficult to extrapolate the data to larger areas or regions. In situ 

surveys can be affected by weather conditions and other external factors that may influence the 

growth and development of crops, and ultimately, these methods may not be suitable for predicting 

long-term yield trends or changes in crop production systems (SCHAUBERGER; JÄGERMEYR; 

GORNOTT, 2020). However, even survey measurements based on ground measurements of the 

crops may present large errors (KOSMOWSKI et al., 2021). 

In the past, farmers relied on their experiences and historical information for crop yield 

prediction and made significant cultivation decisions based on these predictions. However, given 

the complexity of the forecast process and the multitude of factors involved, more sophisticated 

methods are required to accurately forecast crop yield and complement or substitute those 

traditional methods. Statistical methods have been widely used for decades to forecast crop yield. 

One common approach involves using agrometeorological data as inputs to a statistical regression 

model to generate a seasonal yield forecast (SCHWALBERT et al., 2020). These models are 

relatively simple to construct by using historical yield data and various agrometeorological 

parameters such as precipitation and temperature (ROBERTS et al., 2017). However, their 

simplicity is also their limitation, as they may not be able to accurately forecast yields beyond the 

boundaries of the observed data (BECKER-RESHEF et al., 2010). Moreover, these models are 

poor predictors when spatial variability in soils, stresses or management practices are present 

(LABUS et al., 2002). Also, the increase in climate variability and extreme events has rendered these 

models less effective in forecasting future yields (SCHMITT et al., 2022). 

Recent advances in sensor technologies and data acquisition have led to the development 

of more sophisticated statistical models that can extract insights from historical influences on past 

yields. However, these models still struggle to capture the dynamic interactions between climate, 



17 

 

soil, plants, and management practices (BASSO; CAMMARANO; CARFAGNA, 2013). Factors 

such as soil type and spatial and temporal variability are critical determinants of crop yield and need 

to be taken into account. While it may be challenging to include all influencing factors, integrating 

more comprehensive parameters in the models can improve their predictive power 

(SCHAUBERGER; JÄGERMEYR; GORNOTT, 2020). To further improve yield forecasting 

accuracy, it may be necessary to combine statistical methods with other forecasting techniques. In 

this scenario, the remote sensing technique played an important role to improve the yield forecast 

of agricultural crops, turning the process more rapid, scalable and accurate (GEIPEL et al., 2014). 

Remote sensing and vegetation indices have proven to be valuable tools in predicting 

agricultural crop yield. Indirectly, vegetation indices, obtained from satellite and aerial imagery, can 

give information about crop growth and health, soil moisture, and weather patterns, and thus, can 

be utilized in crop yield status monitoring and yield forecast (REMBOLD et al., 2013). Vegetation 

indices, such as the normalized difference vegetation index (NDVI) and Enhanced vegetation 

index (EVI), provide a measure of plant health and can be used to identify areas of stress or poor 

growth (LABUS et al., 2002). This information can then be used to make predictions about crop 

yield potential, allowing farmers to adjust their management practices accordingly. More recently, 

with the ease of access to satellite and unmanned aerial vehicles, the use of remote sensing data has 

been widely disseminated and it became a routine practice for assessing plant status variables and 

monitoring agricultural areas, with studies demonstrating a good correlation between estimated and 

observed yield (BECKER-RESHEF et al., 2010; ZHOU et al., 2017). In that way, it is undeniable 

how much remote sensing has contributed to understanding the productive variability of 

agricultural areas, and how these developments have provided a better understanding of the 

interactions between plants, soil, environment, and management practices over the years 

(ATZBERGER, 2013; LU et al., 2020). 

Remote sensing and vegetation indices offer several benefits, including the ability to cover 

large areas quickly and non-destructively, as well as the potential for real-time monitoring 

(SEGARRA et al., 2020). These tools also provide a more objective measure of crop health 

compared to traditional methods, which rely on visual inspections or expert opinions. However, 

there are some limitations to these methods, such as the need for local or over time calibration and 

validation, also this approach tends to be specific to each crop and region and is susceptible for 

errors due to cloud cover or sensor malfunctions (AZZARI; JAIN; LOBELL, 2017). Overall, 

remote sensing and vegetation indices are powerful tools for predicting crop yield and improving 

agricultural management practices.  
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All the previous mentioned yield forecasting methods does not model the dynamic 

processes and relations of plant soil and atmosphere variables that will impact crop yield at 

harvesting. This explains why these methods have limiting applications to other environments, 

leading to uncertainties in crop yield forecasting (BASSO et al., 2001). In this sense, one approach 

that can overcome these limitations for yield forecasting, and is widely accepted and used, are the 

Process-based crop models (PBM). PBM’s are computational algorithms that represents the 

process of plant growth and development, varying according to soil and climate conditions and 

management practices (HE et al., 2017). Crop models such as APSIM (KEATING et al., 2003) 

and DSSAT (JONES et al., 2003) require meteorological data on a daily scale, and thus, the 

temporal variability of the input variables is incorporated by the models, one of which is its 

advantages over other yield forecasting approaches. PBM can be used to simulate crop yield 

variability in space and time, however, the requirement to perform simulations with finer spatial 

resolution is that the model input variables needs to be measured at a higher resolution (BASSO et 

al., 2001; THORP et al., 2008).  

Yield forecasting methods have their benefits and limitations. To address the deficiencies 

of each approach, some techniques can be combined to provide a more accurate and 

comprehensive solution (SCHAUBERGER; JÄGERMEYR; GORNOTT, 2020). However, 

accurate yield predictions require input variables, and combining methods can lead to a substantial 

increase in data collection, depending on the desired temporal and spatial resolution. With the 

technological advancements in agriculture, opportunities for monitoring operations and yield 

forecasting have increased, resulting in a large volume of data generated from various sensors. 

Despite this, the amount of data can be overwhelming and beyond the capacity of human analysis, 

which has led to the adoption of emerging technologies such as machine learning (ML). ML 

algorithms can identify patterns in large datasets, and their application in agriculture has resulted in 

the monitoring of crop quality, the detection of diseases, pests, and weeds, and the prediction of 

crop yields (BEHMANN et al., 2015; ELAVARASAN et al., 2018; BEHERA; RATH; SETHY, 

2021; WALDAMICHAEL et al., 2022).  

To accurately predict the outcome of the target variable in different scenarios, machine 

learning requires sufficient training data to capture essential processes. The integration of data 

generated by remote sensing, variables simulated in PBM’s, data collected from machines, crop 

management and surveys of environmental variables in loco is particularly the case in which the data 

is not homogeneous, because they are generated by sensors with different spatial, temporal and 

spectral resolutions. Common statistical methods cannot be applied in such cases because they are 

based on statistical assumptions and data distributions (CHLINGARYAN; SUKKARIEH; 
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WHELAN, 2018). In addition, agricultural systems' non-linearity and complexity make simple and 

linear correlation analyses ineffective. Machine learning algorithms can capture non-linear 

dependencies between response and predictor variables (SAHOO et al., 2017) and are, therefore, 

ideal for estimating and predicting crop yield (GONZALEZ-SANCHEZ; FRAUSTO-SOLIS; 

OJEDA-BUSTAMANTE, 2014; PANTAZI et al., 2016; RAMOS et al., 2017). Studies have shown 

that the combination of remote sensing monitoring methods, simulation of plant variables, and 

machine learning algorithms can improve crop yield forecasting (LOBELL et al., 2015; 

SHAHHOSSEINI et al., 2021; CORRALES et al., 2022; REN et al., 2023). 

 

3.2. Advances of remote sensing in agriculture and crop yield forecasting 

Remote sensing is a technique used to obtain information about objects without direct 

contact with them by utilizing electromagnetic radiation waves of different wavelengths, ranging 

from visible light to microwave bands (ALI et al., 2022). The electromagnetic radiation is used to 

capture data about the target object or area of interest and this radiation can come from many 

sources, including the sun, ground-based sensors, or active sensors that emit their own radiation 

(ERDLE; MISTELE; SCHMIDHALTER, 2011; SHANMUGAPRIYA et al., 2019). This 

technique is employed in a variety of devices for agricultural applications, including field sensors, 

drones, aircraft, unmanned aerial vehicles (UAVs), LIDAR, and RADAR sensors, cameras, and 

orbiting satellites (WÓJTOWICZ; WÓJTOWICZ; PIEKARCZYK, 2016).  

The sensors used to collect remote sensing data are typically classified into passive and 

active ones. Passive sensors include multi and hyperspectral technologies that collect optical data 

using natural illumination. On the other hand, active sensors like Radio Detection and Ranging 

(RADAR) and Light Detection and Ranging (LiDAR) use their own illumination sources, enabling 

them to operate at night and in shaded areas (KAHRAMAN; BACHER, 2021). RADAR 

technology uses radio waves to detect and measure the distance to objects on the ground, and it 

can penetrate clouds and vegetation, making it useful for crop monitoring in areas with frequent 

cloud cover or dense vegetation (SETIYONO et al., 2018). The main applications of RADAR data 

include estimating crop height, canopy cover, aboveground biomass, and detecting changes in soil 

moisture levels that can impact crop growth and yield prediction. Synthetic Aperture Radar (SAR) 

data, which is a type of radar data, provides high-resolution images with detailed information about 

the structure and composition of crops. Polarimetric Synthetic Aperture Radar (PolSAR) data, 

which measures the polarization of radio waves, can provide additional information about the 

physical properties of crops, such as their height and moisture content (SIVASANKAR et al., 
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2018). Hosseini et al. (2022) evaluated the use of satellite Sentinel-1 dual-polarimetric data for 

soybean yield forecasting one month before the harvest at field scales in central Argentina. The 

results showed that the SAR data from Sentinel-1 had a high potential for soybean yield forecast, 

with a coefficient of determination (R²) of 0.81, and mean absolute error (MAE) of 581.65 kg ha-1. 

Although RADAR systems have the ability to accurately predict yields and detect objects that are 

farther away, due to its wavelength, their lower resolution can be a limiting factor. 

In this sense, LiDAR is a remote sensing technology that uses infrared laser pulses to 

create highly accurate 3D information about the Earth's surface. This technology has a shorter 

range, compared to RADAR, but it offers higher precision measurements at close range due to its 

shorter wavelength. For example, it can distinguish elevated features such as buildings and plants, 

and provide high-accuracy structural data for land and forestry applications (KAHRAMAN; 

BACHER, 2021). In agriculture, it can describe the height and structure of vegetation, and thus, 

can be used to estimate plant height, canopy cover, and biomass, which can be used to predict 

yield. Eyre et al. (2021) evaluated within-field yield prediction in cereal crops using LiDAR-derived 

topographic attributes in Canada. Their findings demonstrated that these attributes were effective 

in explaining yield variation of several crops, with general coefficient of determination (R²) values 

of 0.80, 0.73 and 0.71 for corn, wheat and soybeans, respectively. This demonstrates the importance 

of LiDAR in precision agriculture for accurate yield estimation and optimized agricultural 

management. Other applications of LiDAR-derived features include Digital Surface Model, Digital 

Terrain Model, Canopy Height Models, and Ground Height Difference (KAHRAMAN; 

BACHER, 2021).  

Passive sensors such as optical data can be further divided into visible and non-visible 

wavelengths, which correspond to different parts of the electromagnetic spectrum. The most useful 

wavelengths in remote sensing include visible light (VIS), near infrared (NIR), shortwave infrared 

(SWIR), thermal infrared (TIR), and microwave bands. NIR wavelengths are particularly useful in 

agriculture because they are highly reflective of healthy vegetation, making them ideal for vegetation 

index calculations (WÓJTOWICZ; WÓJTOWICZ; PIEKARCZYK, 2016). A widely used 

technique in remote sensing is thermal imaging, which involves using thermal infrared (TIR) 

radiation to capture images of vegetation canopies. This technique measures differences in total 

radiant energy and allows for temperature calculations, therefore images can then be used to assess 

crop health, predict yield, and identify variations in crop temperature caused by differences in water 

availability, nutrient levels, or other environmental factors that can affect crop growth (ZHOU et 

al., 2021). 
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In addition to the type of data, the sensor used to capture the data is also an important 

consideration. Different sensors have different spatial and spectral resolutions, which affect the 

level of detail and accuracy of the data. For example, high-resolution sensors can capture detailed 

information about individual plants, while low-resolution sensors can provide broader coverage of 

large areas (LOBELL, 2013). Overall, understanding the different types of remote sensing data and 

sensors is crucial to understand their applicability in geology, forestry, environmental monitoring, 

agriculture and ultimately in crop yield forecasting (NAVALGUND; JAYARAMAN; ROY, 2007). 

By selecting the appropriate data and sensor, researchers and farmers can improve their ability to 

monitor and predict crop performance, leading to more effective management strategies and higher 

yields. 

The data acquired through remote sensing is crucial for the agriculture, with a wide range 

of applications. Some of the significant uses are the identification and monitoring of agricultural 

management practices (EDALAT; NADERI; EGAN, 2019), soil characteristics (SUN et al., 2012; 

KUNKEL; WELLS; HANCOCK, 2022), estimation of atmospheric variables such as solar 

radiation, temperature and rainfall (DINKU et al., 2018; HOOKER; DUVEILLER; CESCATTI, 

2018; PELOSI; CHIRICO, 2021), crop growth and canopy health status (WANG et al., 2016; 

HASSAN et al., 2019), and to predict crop yields as well (MA et al., 2001; MARESMA et al., 2020; 

SKAKUN et al., 2021).  

Remote sensing may have been limited in the past due to the high cost and limited 

availability of high-resolution data, however, this obstacle is rapidly diminishing. Additionally, 

remote sensing and satellite imagery data has become a feasible option due to the emergence of 

cloud platforms such as Google Earth Engine (GEE) (GORELICK et al., 2017) that offer easier 

access to vast amounts of satellite and weather data, and significantly boost processing capabilities 

with parallel computing resources (SCHWALBERT et al., 2020). Of all the remote sensing 

techniques, satellite imagery has become one of the most common, and widely used, data source 

for obtaining within-season information to generate crop yield forecasting (LOBELL, 2013). The 

most frequently employed public satellite imagers for this purpose include SPOT-Vegetation, 

Advanced Very High-Resolution Radiometer (AVHRR), Landsat, MODIS and Sentinel. Satellites 

provide bands with different wavelengths of the electromagnetic spectrum reflected by a surface, 

and in the case of a vegetated surface, this can be used as a valuable data for assessing crop health 

in agriculture. Spectral data from different bands, such as red and NIR, can be combined to 

calculate vegetation indices, which are more informative for crop biomass estimation than 

reflectance values from individual bands (BANNARI et al., 1995; BASSO; LIU, 2019).  
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The Normalized Difference Vegetation Index (NDVI) is the most widely used vegetation 

index (VI) in research and was first proposed by Rouse (1973), it is calculated as the ratio of the 

difference and sum of the reflectance values in the near-infrared (NIR) and red wavelengths. The 

sensors capture the differences reflected by the vegetation in the NIR region, because the green 

parts of plants reflect strongly due to scattering in the leaf mesophyll and absorb red and blue light 

via chlorophyll (PETTORELLI et al., 2005). Although the NDVI is the most commonly used 

vegetation index, there are other indices or satellite products that use different bands and 

wavelengths, such as the Soil Adjusted Vegetation Index (SAVI) (VENANCIO et al., 2019; NAGY 

et al., 2021), Enhanced Vegetation Index (EVI) (GUSSO et al., 2013; KOUADIO et al., 2014), 

normalized difference water index (NDWI), Green Normalized Difference Vegetation Index 

(GNDVI), the Burned Area Index (BAI)  and the biophysical parameters of LAI and fAPAR 

(LÓPEZ-LOZANO et al., 2015). SAVI is a VI developed to limit the influence of soil on remotely 

sensed vegetation data by adding a soil adjustment factor (L), and it was first proposed by Huete 

(1988). The EVI is another VI extensively used in agriculture, which was designed to incorporate 

reflectance in the blue portion of the spectrum, in addition to the red and NIR of the NDVI 

calculation (LIU; HUETE, 1995). As result, he EVI exhibits better sensitivity to high biomass 

areas, and has improved capability in monitoring vegetation. This is achieved by decoupling the 

canopy background signal and reducing the impact of atmospheric conditions (HUETE et al., 

1999; MATSUSHITA et al., 2007).  

The NDWI is an index which can be of great interest as a support to decision making. 

The NDWI was designed to estimate soil moisture and canopy water content by measuring the 

interaction of liquid water molecules in vegetation canopies with incoming solar radiation, it 

incorporates a short-wave infrared (SWIR) band in its calculation, which enhances its ability to 

detect liquid water (GAO, 1996). This index is particularly sensitive to changes in liquid water and 

is influenced by local climate and soil properties that regulate water availability (JACKSON et al., 

2004). Gitelson et al. (1996) proposed the GNDVI, which is another relevant VI in agriculture. 

Their study showed that using the green band is more effective in identifying nutritional status 

variations of plant canopies. They found that the GNDVI index is five times more sensitive to 

chlorophyll concentration than the NDVI. The index also estimates chlorophyll and leaf N content, 

indicating that the green band is a better option for this purpose. Another VI of interest is BAI, it 

is a spectral index specifically designed for discriminating burned land in the red-near-infrared 

spectral domain. It was tested on Landsat Thematic Mapper (TM) and NOAA Advanced Very 

High Resolution Radiometer (AVHRR) images, and it showed a higher discrimination ability 

among the indices tested, such as NDVI, SAVI, and GEMI (CHUVIECO; MARTÍN; 
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PALACIOS, 2002). BAI is important in agriculture as it can help identify burned areas and monitor 

post-fire vegetation recovery, which is crucial for land management and preventing future fires. 

The utility of vegetation indices varies depending on the constituent bands, wavelengths, and 

parameters utilized in their calculation. In summary, they can be effectively employed in diverse 

applications, including, but not limited to, mitigating soil background and atmosphere reflectance 

on spectral measurements, assessing plant water stress, identify burned area, mitigating vegetation 

saturation arising from high biomass among other uses.  

Many studies have investigated the use of various vegetation indices in relation to crop 

yield forecasts. The most basic method for estimating crop yields involves establishing a correlation 

between ground-based yield measures and vegetation indices (VI’s) measured on a single date or 

integrated over the growing season. Previous studies on wheat and maize showed that VI variations 

can account for more than 65% of the observed variations in crop yields within individual fields 

(SHANAHAN et al., 2001; VANNOPPEN; GOBIN, 2021) and at regional scale (MORIONDO; 

MASELLI; BINDI, 2007; BECKER-RESHEF et al., 2010; PANEK; GOZDOWSKI, 2020). 

Mkhabela et al. (2011) analyzed 10-day composite NDVI data and crop yield data for barley, canola, 

field peas, and spring wheat from 2000 to 2006. The results showed that MODIS-NDVI data can 

be effectively used to predict crop yield, with models developed for each crop, accounting for 32% 

to 90% of the grain yield variability. This enabled accurate yield forecasts to be made one to two 

months before harvest. 

Bolton and Friedl (2013) used MODIS and empirical models to predict maize and 

soybean yield in the Central United States and found that EVI2, the EVI without the blue band 

(JIANG et al., 2008), was the best index for predicting maize yield in non-semi-arid areas, while 

NDWI performed better in semi-arid areas. NDVI and EVI2 performed equally well in predicting 

soybean yield. The combination of EVI2 and NDWI had significant benefits for remote sensing-

based maize and soybean yield models. Recently, there has been a growing interest in combining 

remote sensing data with machine learning algorithms or process-based crop models to enhance 

the accuracy of crop yield predictions, and to overcome the limitations of each approach (AZZARI; 

JAIN; LOBELL, 2017; CROCI et al., 2023). Cheng et al. (2022) investigated the use of four 

machine learning algorithms, with multispectral and hyperspectral, to predict wheat yield in China 

and found that the Long Short-Term Memory (LSTM) model gave the best estimate, with a Root 

Mean Squared Error (RMSE) of 0.201 t ha-1, outperforming the other methods. The results also 

showed that hyperspectral data outperformed multispectral data in predicting crop yield, with an 

RMSE of 0.237 t ha-1 compared to 0.3017 t ha-1, respectively. However, when the multispectral 

data resolution of the Sentinel-2 data improved from 30 m to 10 m, the RMSE improved to 0.219 
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t ha-1. Additionally, the study found that the greenness vegetation index SR outperformed 

traditional vegetation indices, and the shortwave infrared bands have the potential to replace visible 

and near-infrared bands for predicting crop yields. In a more recent study, the researchers used 

machine learning algorithms to estimate wheat yield using meteorological variables, satellite-driven 

actual evapotranspiration (ETa), and vegetation indices. ETa was found to be particularly 

important in improving the accuracy of the model predictions. Both Random Forest (RF) and 

extreme gradient boosting algorithm (XGB) generated relatively accurate results, with a MAE 0.50 

t ha-1 and 0.39 t ha-1, respectively. However, both algorithms’ performances deteriorated in 

predicting the yield values beyond the range of the training dataset (NAGHDYZADEGAN 

JAHROMI et al., 2023). 

The integration of remote sensing and process-based crop models has advanced 

significantly in recent years, with some attempts to effectively combine these two methods to 

improve yield forecasts. Zhang et al. (2021) developed a process-based and remote sensing driven 

crop yield model (PRYM-Maize) for estimating regional maize yield in the Northeast China Plain. 

The study found that a development stage-based grain-filling algorithm coupled with remote 

sensing phenology and leaf area index, presented a correlation of 0.61 and a RMSE of 1.33 t ha-1, 

in regional maize yield estimate. In another approach, Azzari, Jain and Lobell (2017) aimed to test 

the performance of a new satellite-based crop yield mapping method called Scalable satellite-based 

Crop Yield Mapper (SCYM), which combines remote sensing imagery, crop models and weather 

data to generate yield estimates at a 30m resolution without ground calibration. The study 

compared SCYM with a simpler empirical approach (PEAKVI) using data from three regions with 

varying crops, field sizes, and landscape heterogeneity, with maize in the US corn belt, maize in 

Southern Zambia, and wheat in northern India. The results showed that SCYM outperformed 

PEAKVI in tracking temporal yield variations in the US due to its explicit consideration of weather. 

However, both methods failed to track temporal yield changes in India, possibly due to various 

reasons. In Zambia, PEAKVI applied to MODIS tracked yield variations better than any other 

yield estimate due to frequent cloud cover in this region. Overall, the study demonstrated successful 

approaches to yield estimation in each region and the importance of distinguishing between 

accuracy for spatial and temporal variation. 

Remote sensing has proven to be a valuable tool for farmers, researchers, and policy-

makers, providing critical information for decision-making related to crop management and food 

security. Remote sensing images provide timely and cost-efficient information about the Earth's 

surface and can be used to determine and monitor the features of the surface, making it a useful 

tool for agrometeorological, canopy, and soil investigations (WEISS; JACOB; DUVEILLER, 
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2020). Besides that, the detection of green vegetation has been significantly improved by the use 

of simple VIs combining visible and NIR bands. However, the characteristics of different 

environments vary, and thus, the choice of a specific VI should be made cautiously by 

comprehensively considering and analyzing the advantages and limitations of existing VI’s. 

Additionally, applications of remote sensing may be restricted to regions where intercropping is 

not prevalent, as it is challenging to evaluate yields in mixed-cropping systems. To advance this 

field, future research should focus on enhancing and validating algorithms for yield estimation, 

specifically for non-cereal and rainfed crops, as well as comparing and integrating remote sensing 

with experimental and simulation-based studies of yield gaps (LOBELL, 2013). The recent 

advancements in data generation, including enhanced temporal and spatial resolutions, greater 

computational power from cloud computing and machine learning algorithms, and integration with 

other technologies like process-based crop models, have the potential to enhance the scalability 

and robustness of yield forecast frameworks. 

 

3.3. Process-based crop models for yield forecasting 

3.3.1. Definition of process-based crop models 

Crop modeling has emerged as one of the most reliable approaches for estimating crop 

productivity. While empirical models are suitable for practical applications, mechanistic or process-

based crop models (PBM) are more complex and were designed to understanding the underlying 

processes (HE et al., 2017). PBM’s are designed to simulate the biophysical processes that occur 

between the plant and the environment by assimilating information from soil, plant, and 

meteorological variables, which influence the productive response of the agricultural crop 

(THORNLEY; JOHNSON, 2000). The main objective of a PBM is to understand how these 

different components interact with each other and influence plant growth. For this purpose, crop 

models employ a complex network of simple algorithms, with each algorithm describing a specific 

interaction between the components of the model. By understanding these interactions, PBM’s are 

capable of simulating crop processes such as the growth and development, biomass and nutrient 

allocation pathways, dynamics of nitrogen and water in the soil and plant, as well as the impact of 

management practices. This is achieved using algorithms and equations dependent on variables of 

the soil, plant and atmosphere data. Consequently, PBM’s differ from statistical models in that they 

do not rely on regression of end-of-season yield with within-season plant or environmental 

observations. Rather, they take into account the complex interactions between weather, soil, crop, 
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and management to simulate biomass and yield (BASSO; LIU, 2019). As a result, crop models can 

be employed as a reliable tool for simulating different management practices and evaluate 

production systems, forecast and monitor crops, and assess the impact of climate change 

(ASSENG et al., 2014).  

Despite PBM’s have been widely used to support practical management decisions, such 

as input of resources (e.g. water, fertilizer, pesticides), planning of processes (e.g. planting, 

harvesting) and simulation of the effects of different management scenarios on crop growth and 

yield, one of its key uses is to gather scientific research on crop modeling (PASLEY et al., 2023). 

PBM’s can integrate diverse knowledge on crop growth and development, including crop 

physiology, soil science, meteorology, and agronomy. Process-based crop models can also, be used 

to test different hypotheses regarding the effects of environmental factors and management 

practices on crop growth and yield in a quantitative manner (KASAMPALIS et al., 2018). The 

models can be calibrated and validated using field experiments, and then be used to simulate the 

effects of different scenarios, such as different weather conditions or irrigation regimes, on crop 

performance. The comprehension gained through plant modeling can inevitably lead researchers 

to identify knowledge gaps and uncertainties in our understanding of crop growth and development 

(CHAPAGAIN et al., 2022). By comparing the model simulations with experimental data, 

researchers can identify areas where the model performance is poor and guide future research 

efforts to improve the model. Finally, PBM’s can be used to extrapolate the effects of 

environmental factors beyond the range of conditions covered by field experiments. For example, 

crop models can be used to simulate the effects of future climate scenarios, such as increased 

temperature, changes in precipitation patterns, and elevated atmospheric CO2 on crop growth and 

yield (ASSENG et al., 2014). 

Crop simulation modeling started in the 1960s, where the initial associations between 

biomass growth and solar radiation were established (DE WIT, 1965; MONTEITH, 1965). In the 

1970s, the first crop models were published (LOOMIS; RABBINGE; NG, 1979). Further progress 

in crop modeling occurred in the 1980s, including the creation of the wheat models named 

ARCWHEAT1 (PORTER, 1984) and CERES-Wheat (RITCHIE; OTTER, 1985). As described 

by Asseng et al. (2014), later in the 1990s, crop models for various crops were merged into crop 

modeling platforms such as the Decision Support System for Agrotechnology Transfer (DSSAT) 

(JONES et al., 2003), Agricultural Production Systems Simulator (APSIM) (KEATING et al., 

2003), Environmental Policy Integrated Climate model (EPIC) (KINIRY et al., 1995) CropSyst 

(STÖCKLE; DONATELLI; NELSON, 2003), and Simulateur multidisciplinaire pour les Cultures 

Standard (STICS) (BRISSON et al., 2003). Initially, process-based crop models were designed to 
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model processes at plant scale, to comprehensively simulate plant functions, however, the 

increasing demand to simulate at field, regional and global scales, has led to the development of 

less complex and scalable models, which often incorporate a mixture of canopy processes and 

broader scale crop-climate relationships (VAN ITTERSUM; DONATELLI, 2003).  

The main components of a PBM are the key processes that drives the plant growth and 

development, they are generally synthesized in modules that interact with each other, self-regulate, 

and are limited in space and time, with well-defined variables as inputs and outputs. Although, 

these models are designed to represent the dynamics of the soil-plant-atmosphere system and 

interact with climate and crop management, they may not necessarily simulate all the processes of 

this system. In addition, the processes it simulates always will present different sources of model 

uncertainties such as in the model structure, model parameters and model inputs including climate, 

soil, and crop management practices (CHAPAGAIN et al., 2022). 

The aim of process-based crop models is to simulate real-world processes, which 

inevitably involves some simplification due to limitations in input variables and assumptions made 

to generalize model functions. While crop models use mathematical equations and functions to 

represent important physiological and physical processes, they are still simplified representations 

of the actual system processes. This simplification can lead to both known and unknown errors 

and biases, and the ability of process-based crop models to predict real-world outcomes is not well 

understood (ROBERTS et al., 2017). Sinclair and Seligman (2000) identified that a significant 

challenge in using these models is the need for calibration and validation through experimental 

field data. The input data for weather, soil, crop or genetic parameters and management practices 

are one of the main uncertainties on the simulation of processes including photosynthesis, 

respiration, biomass partitioning, nutrient and water uptake and yield formation. Also, another 

limitation to the PBM approach is the accuracy of sampling variables, i.e. collecting precise 

phenotypic information under the variety of alternative management practices and seasonal 

conditions required to estimate model parameters requires specialized training and facilities. 

Furthermore, it may be difficult or impractical to generate extensive training datasets for subtle 

variations in management practices to empirically optimize parameters of PBM’s (ERSOZ; 

MARTIN; STAPLETON, 2020). However, in addition to the heterogeneity of data and the range 

of factors influencing the model outputs, some of these inputs can be challenging to measure and 

may not be available at the desired location or for a sufficient time period (e.g. soil and weather 

data) (BELLOCCHI et al., 2010). Therefore, estimating these inputs may require statistical or 

geostatistical methods, which can introduce additional uncertainties. 
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To generate yield forecast in the middle of growing season, PBM’s require weather 

forecasting data to harvesting date, as input to run its processes and algorithms. As stated by Basso 

and Liu  (2019), to predict crop yield using crop simulation models, various methods have been 

employed by researchers. These methods include using historical weather scenarios, averaged 

historical weather, weather data generated by weather generators, climate model output and 

satellite-derived weather data to provide the necessary weather inputs for running crop simulation 

models and obtaining end-of-season crop yield. In the historical weather approaches, the weather 

input was constructed by combining real-time weather data up to the forecasting date and historical 

weather scenarios (e.g. good, normal and bad climatic years) from the forecasting date until 

maturity (WANG et al., 2009). On the averaged historical weather, researchers construct a mean 

historical weather input for crop simulation models by combining real-time weather data until the 

forecasting date and averaged historical weather data from the forecasting date to harvesting 

(DUMONT et al., 2014). The weather generators consist in the use of weather generators such as 

LARS, SIMMETEO or WGEN (SENTELHAS et al., 2001; SOLTANI; HOOGENBOOM, 

2007), which provide weather data for the remaining period after the forecasting date. The 

assembled weather input comprises real-time weather data until the forecasting date and the 

generated weather data from the weather generators (BANNAYAN; CROUT; HOOGENBOOM, 

2003). The climate forecast models approach involves combining real-time weather data up to the 

forecasting date with weather output obtained from climate forecast models (SINGH et al., 2017; 

TOGLIATTI et al., 2017). In the satellite-derived weather data method, the required weather input 

was obtained from satellites, such as METEOSAT (THORNTON et al., 1997).  

Process-based crop models are designed to be used in large homogeneous production 

areas. Thus, they do not consider the spatial variability of soil attributes, management, and 

environmental conditions, leading to uncertainties when simulating for large heterogeneous regions 

(HANSEN; JONES, 2000). To overcome this limitation, the simulation of plant growth in 

environments with great meteorological, management and soil variability requires high-resolution 

spatial measurements of input variables, which may pose cost and processing limitations. In this 

context, remote sensing is a widely employed technique to generate soil and weather data as input 

to crop models. Therefore, vegetation indices can be used to define spatially distinct zones in which 

the crop responds spectrally differently, and remote sensing products can be combined with crop 

growth models to improve their performance (BOUMAN, 1995; FANG et al., 2008; JIANG et al., 

2014; HUANG et al., 2015). Another current difficulty with plant models is their limitation in 

representing the effect of factors such as pest, disease and weed control problems and management 

practices (O’LEARY et al., 2016; DONATELLI et al., 2017), and these variables can be measured 
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indirectly by remote sensing (FRANKE; MENZ, 2007; OLIVEIRA et al., 2018; BHATTARAI; 

SCHMID; MCCORNACK, 2019). In this sense, remote sensing allows for simple acquisition of 

high-resolution spatial data to simulate variations observed in the field that impact crop yield, 

thereby eliminating the need for measuring soil parameters, meteorological, biotical stresses and 

other plant state variables in a large number of sampling points in the field. 

 

3.3.2. Assimilation of remote sensing data into process-based crop models 

Remote sensing data has been integrated into PBM’s through forcing method, direct use 

of remote sensing data, calibration of parameters or updating model simulations (INES et al., 2013; 

JIN et al., 2018; BASSO; LIU, 2019). In the first case the plant state variables simulated by the 

model are replaced by those obtained by remote sensing (e.g., biomass, leaf area index). A primary 

technique for integrating remote sensing data and PBM’s involves aligning the simulated leaf area 

index (LAI) with the LAI estimated by remote sensing (BASSO; CAMMARANO; CARFAGNA, 

2013). LAI is a significant agricultural parameter, as it is the primary site for gas exchange between 

plants and the atmosphere. Additionally, LAI is used to model crop evapotranspiration, biomass 

accumulation, and influences final yield (BRÉDA, 2008). The estimated LAI obtained from remote 

sensing data was commonly used as the true state variable and replaced the state variables from the  

process-based crop model (BOUMAN, 1995; THORP; HUNSAKER; FRENCH, 2010; YAO et 

al., 2015). In some studies, other state plant variables have been used to replace simulated values 

by remote sensed variables such as aboveground biomass, crop transpiration or yield to enhance 

the simulation results (JIN et al., 2018). Morel et al. (2012) used a forcing method for coupling 

remote sensing data to the MOSICAS model. The authors used the estimated interception 

efficiency index and FAPAR as input to estimate the yield of sugarcane. The study compared the 

use of satellite data with the raw simulation and two forcing methods, a partial and a complete 

forcing. The complete forcing approach showed the most significant improvement in yield 

estimation, with an estimation of the yield 8.3% superior to the observed yield. The partial forcing 

approach had minimal differences from the raw simulation, with a mean overestimation of 

respectively 34.7 and 35.4% from the observed yield. 

The most used technique is the direct use of remote sensing satellite products as inputs 

to PBM’s, such as rainfall, air temperature, solar radiation and evapotranspiration. Manatsa et al. 

(2011) used satellite-derived rainfall estimates in a crop water balance model to calculate the Water 

Requirement Satisfaction Index (WRSI) which was then regressed with historical yield data. The 

results showed that high skill yield forecasts can be made, even in areas with sparse or no ground 
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rainfall measurements. The study suggested that early estimations of maize yield are feasible using 

WRSI and can be useful for national and small-scale commercial farming sectors. 

The calibration method involves adjusting the initial parameters of crop models to achieve 

an optimal agreement between the remote sensing data and the simulated state variables of the 

model (JIN et al., 2018). The calibration methods can be manually or automatically run using a 

realistic scope of different parameter values to minimize the error of simulated and observed data, 

when run automatically some optimization algorithms may be used such as Least Squares Method 

(LSM), Maximum Likelihood Solution (MLS), Particle Swarm Optimization Algorithm (PSO), 

among others (JIN et al., 2018). Ren et al. (2010) evaluated the use of the Shuffled Complex 

Evolution method (SCE-UA) algorithm to integrate remotely sensed LAI data with the EPIC crop 

growth model to improve the accuracy of crop growth monitoring and yield estimation. The study 

focused on summer maize in Huanghuaihai Plain, and the results showed that the integration led 

to a relative error of 4.37% and RMSE of 0.44t/ha in estimating summer maize yield. The simulated 

sowing date, plant density, and net nitrogen fertilization application rate also had acceptable levels 

of accuracy, which could meet the need of crop monitoring at a regional scale. Overall, the study 

concluded that integrating remotely sensed LAI with EPIC model based on SCE-UA was feasible 

for simulating crop growth and yield. In another research, the calibration method was used to 

improve the accuracy of wheat yield predictions, the calibration consisted of optimizing the set of 

input parameters that included the sowing date, the soil wilting point and field capacity, in order to 

seek the optimal input parameters which minimized the difference between remote sensing LAI 

and CERES-Wheat model LAI. The method was tested in Southern Italy, and the results showed 

that the proposed method can effectively reduce the estimation errors of yield maps, with RMSE 

ranging from 360 kg ha-1 to 420 kg ha-1 (DENTE et al., 2008). 

The updating method includes continuously updating crop model simulation data. In 

summary, it is used an algorithm (e.g. Kalman Filter, 4DVar, etc.) to assimilate remote sensing data, 

such as LAI, into crop models by updating the system state in a sequential manner and reinitializing 

the model simulations based on the optimized estimates. This method can improve the accuracy 

of crop yield estimation by incorporating additional information from remote sensing data (JIN et 

al., 2018). Zhao, Chen and Shen (2013)  applied this technique in a study where they evaluated the 

performance of the process-based crop model PyWOFOST in simulating maize growth and yield 

in Northeastern China, using MODIS LAI as a coupling point. The authors used the Ensemble 

Kalman Filter (EnKF) to optimize the estimate of the system state by separately weighting the 

observational and modeling errors with the observed results. The updated system state led to the 

reinitialization that continued the forward integration until new observations came in. Results 
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showed that simulated maize yield significantly improved with assimilation compared to without 

assimilation, with errors varying from 12.71%-10.48% compared to 14.04%, respectively. 

Simulated LAI with assimilation agreed better with field observations than without assimilation. 

The study demonstrated that it is applicable to simulate crop growth using a PBM assimilated with 

remote sensing data based on Ensemble Kalman Filter, and it is significant to estimate the 

uncertainties in crop yield estimation. 

The different methods are valuable tools to assimilate remote sensing data to process-

based crop models. As described by Jin et al. (2018), the calibration method requires a lot of 

optimization iterations and more computing time, while the updating methods significantly reduces 

computation time as only the crop model is run, however, the minimization algorithms errors are 

brought into the crop model, requires the most expensive calculation and measurement uncertainty 

and the date of selected remote sensing images and phenological shifts can affect the efficiency of 

data assimilation. The use of forcing methods are easy to operate, it just replaces the values 

simulated by crop models by remote sensing data, and in some cases, they provide high precision 

state variables. The main drawback of this method is that they assume the remote sensing data is 

better than the crop model data, however, remote sensing data also include errors, and these errors 

are propagated into crop models (INES et al., 2013). The same can be considered in the direct use 

of remote sensing data as inputs of process-based crop models. Soil parameters and weather 

variables derived from satellite are estimates and has the potential to introduce uncertainties in 

PBM’s. 

 

3.3.3. Sugarcane process-based crop models  

For the sugarcane crop, the main simulation models in use worldwide are the DSSAT-

CANEGRO (INMAN-BAMBER, 1991), APSIM-Sugar (KEATING et al., 1999), SWAP-

WOFOST-Sugarcane (SUPIT; HOOIJER; VAN DIEPEN, 1994; VAN DAM et al., 1997), STICS-

Sugarcane (VALADE et al., 2014) and MOSICAS (MARTINÉ; SIBAND; BONHOMME, 1999; 

MARTINÉ, 2003). In these models, the accumulation of biomass is governed by two primary 

mechanisms, the first is the sugarcane canopy's growth and interception of solar radiation, and the 

second is the transformation of intercepted solar radiation into carbohydrates through 

photosynthesis. In conditions where there is no stress, the expansion of the canopy is driven by 

temperature, and the conversion of radiation each day is defined by the maximum possible 

radiation use efficiency (RUE) and air temperature, additionally, the APSIM-Sugar model accounts 

for carbohydrate availability from photosynthesis (JONES et al., 2021). 
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The Decision Support System for Agrotechnology Transfer, also known as DSSAT, is a 

widely used simulation platform globally. Among the models available for sugarcane in DSSAT, 

the CANEGRO model (INMAN-BAMBER, 1991) is based on the CERES-Maize model (JONES 

and KINIRY, 1986) and is designed to simulate the physiological processes of sugarcane and the 

production system used by the South African industry (INMAN-BAMBER, 1991). The MOSICAS 

sugarcane simulation model was developed by CIRAD in 1995, and it can calculate daily crop 

growth variables and environmental output variables such as total biomass, root, leaf, stem, and 

tiller biomass, stem height, and root depth. The model uses input parameters such as 

meteorological, soil, plant, and variety data, as well as crop and management data. It also 

incorporates a soil water balance calculation routine, which enables the simulation of irrigation by 

adding water to precipitation (MARTINÉ, 2003).  

Another PBM is the STICS model, an agronomical model that focuses on site-specific 

applications, providing detailed information on soil and crop processes associated with specific 

crop varieties and management practices. It can describe various crop species through specific 

parameterizations using common equations, making it a generic crop model (BRISSON et al., 

1998). It offers outputs on aboveground biomass, biomass nitrogen content, water and nitrogen 

content in soil, yield, and root density (BRISSON et al., 2003). The model has been validated for 

various cropping situations, including sugarcane (VALADE et al., 2014). The Sugarcane model 

SWAP-WOFOST-Sugarcane is derived from the SWAP hydrological model that can simulate 

water flow, heat, solute transport and the crop growth component SWAP (WOrld-FOod-Study). 

The combination of both models results in a versatile process-based crop model that incorporates 

various driving and controlling processes, such as light interception, CO2 assimilation, phenological 

development, respiration, dry matter formation, and assimilate partitioning. The model describes 

phenological development in terms of development stage, which includes vegetative and 

reproductive stages for many annual crops. However, when modeling sugarcane growth, only the 

vegetative stage is considered in SWAP-WOFOST-Sugarcane (SUPIT; HOOIJER; VAN 

DIEPEN, 1994; VAN DAM et al., 1997; HU et al., 2019).  

 

3.3.4. APSIM-Sugar model overview 

The APSIM platform is described in more details in the next session due to its direct 

utilization in the current thesis. The APSIM simulation platform is a comprehensive tool that 

incorporates some of the most widely used crop models in the world. The platform consists of 

modules that rely on algorithms and equations that take into account plant variables, soil, and 
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meteorological data. It enables users to simulate crop growth and development, assess management 

practices, and gain insights into nitrogen and water dynamics in the soil (KEATING et al., 2003). 

The APSIM-Sugar model enables the simulation of sugarcane's growth, development, stem yield, 

and Nitrogen accumulation on a per-unit-area and time basis. It requires daily meteorological data 

such as global solar radiation, maximum and minimum air temperature, and rainfall, as well as soil 

parameters and cultivar definition for its application. Fertilization, management, and irrigation 

information can also be included in the system for simulations. The key features of the sugarcane 

model in the APSIM platform are that the crop dry weight accumulation is simulated through 

radiation-use efficiency (RUE), which can be reduced by temperature, water, and Nitrogen 

limitations. Canopy expansion is determined by temperature and the same limitations mentioned 

above. Biomass partitioning is determined by phenological stage, and the model also simulates 

Nitrogen uptake and return to soil. Additionally, it simulates water content in addition to dry 

weight, and it can simulate differences between plant and ratoon crops based on physiological 

variations (KEATING et al., 1999). 

The APSIM model utilizes a generic plant model with genetic adaptations and may have 

varying genetic coefficients for different genotypes within a species. The phenology of APSIM-

Sugar is divided into phases, with each phase's duration defined by thermal time (°C d) based on 

lower (9°C), optimum temperature (32°C) and maximum temperature (45°C) basal temperatures. 

Leaf area is described by emergence, expansion, and senescence functions and solar radiation 

interception is determined by the leaf area index and radiation extinction coefficient of 0.38. 

Aboveground biomass potential is simulated based on global solar radiation use efficiency (1.8 g 

MJ-1 for plant crop and 1.65 g MJ-1 for ratoon crop) but limited by water availability (KEATING 

et al., 2003). Originally, the edaphoclimatic conditions, management and varieties described therein 

are different from those used in Brazil. Therefore, for the proper functioning of the model, it is 

necessary to calibrate it to local conditions (JAME; CUTFORTH, 1996). Model calibration consists 

of changing the genetic coefficients of the genotype and soil parameters to adapt the simulations 

to local cultivation conditions, and this could be done through field experiments. The calibration 

process involves monitoring the growth and development of crops, including phenology, leaf area, 

number of leaves, phyllochron, productivity, weather and soil conditions, and adjusting model 

parameters to ensure accurate simulation results (KEATING et al., 2003). Therefore, calibration 

of process-based crop models is critical for adequate modeling of crops under Brazilian cultivation 

conditions and genotypes. Some studies calibrated the APSIM-Sugar model for the Brazilian 

varieties and environmental conditions, such as the sugarcane variety SP80-1842 in São Paulo state 

by Costa et al. (2014), the varieties RB867515 and RB83594 with experimental data from Southeast 
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and Northeast regions from Brazil (MARIN et al., 2014) and the soil parameterization for 

sugarcane simulation in Espírito Santo state (OLIVEIRA et al., 2015). Although in the latter study, 

the authors simulated with the standard crop physiological parameters from the APSIM module 

for the Australian sugarcane variety Q117, as there were no Brazilian varieties parameterized in the 

model and insufficient physiological information on the sugarcane variety used in the experiment. 

More recently, the APSIM-Sugar model was calibrated for different varieties (RB867515, RB92579, 

RB931003, RB961003, RB98710 and SP94-3206) to optimize some parameters to account for high 

sugarcane yields in tropical environments (DIAS et al., 2019) and to simulate future climate 

scenarios in various main producer regions from Brazil (DIAS et al., 2021). 

In general, these models, and the ones specific for sugarcane, have become a valuable tool 

in agricultural research and are being integrated into agronomic decision support systems to 

evaluate production systems, simulate different management practices, forecast and monitor crops, 

and even predict the impacts of future climate change. With their ability to provide insights into 

crop performance and resource use, process-based crop models can play a crucial role in improving 

agricultural practices and supporting plant breeding programs (HEINEMANN; STONE; SILVA, 

2010; ROSENZWEIG et al., 2013). 

 

3.4. Machine learning as a strategy to integrate remote sensing and crop model variables 

to improve crop yield forecast 

3.4.1. Introduction to machine learning 

Machine learning (ML) is the subfield of computer science that enables machines to learn 

and improve their performance over time without being explicitly programmed (SAMUEL, 1959). 

This is achieved through a learning process that involves training data as examples, which are 

described by a set of attributes or features that can be nominal, binary, ordinal or numeric. In this 

way, ML algorithms aim to optimize the performance of a task by leveraging examples or past 

experience and thus, the more data used, the better the ML algorithm works (SHARMA et al., 

2021). The primary goal of ML is generalizability, that is, the ability to provide correct predictions 

when new data is presented based on learned rules from previous exposure to similar data. Data is 

described by a group of characteristics, or features, that form a feature vector used as input in the 

learning or training phase. During this phase, the machine learns from experience to perform the 

task, after that the developed model can then be used to classify, cluster, or predict the target 

variable based on unseen data from features. In summary, a computer is supplied with a dataset 
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and associated outputs,  and the ML algorithm learns to describes the relationship between the two 

(CHOI et al., 2020). The performance of a machine learning model is measured by a performance 

metric that is enhanced over time with more training data. To calculate the performance of machine 

learning models and algorithms, statistical and mathematical models are commonly used. Once the 

learning process is completed, the trained model can be used to predict, classify or cluster new data 

based on the experience obtained during the training phase (BENOS et al., 2021). 

In order to apply a machine learning method some crucial are involved, such as data 

collection, data preprocessing, feature selection and feature engineering, model selection, model 

training and evaluation, which involves hyperparameter tuning, and finally, deployment and 

monitoring of the machine learning model (JAMES et al., 2013). The first step is data collection, 

which is a crucial component of any machine learning project. However, researchers often 

encounter challenges such as a lack of data, unavailability of data in the required format, poor data 

quality, and data containing irrelevant features (MESHRAM et al., 2021). To prepare raw data for 

machine learning, pre-processing is required, which involves data cleaning to remove inconsistent 

or missing items and noise, data integration when there are many data sources, and data 

transformation, including normalization and discretization (BENOS et al., 2021). The next step is 

feature selection, which aims to identify the most informative subset of features for the learning 

model to be trained on. In some datasets, it may be necessary to reduce the number of features by 

using a dimensionality reduction algorithm. This is typically done as a preprocessing step before 

the actual machine learning task, such as classification or regression, and it can be useful in 

situations where the dataset has a large number of features or variables that are irrelevant or 

redundant. In these cases, dimensionality reduction can help to reduce the computational 

complexity of the task and prevent overfitting, where the model becomes highly accurate on the 

training data and performs poorly on unseen data (LIAKOS et al., 2018). However, it is important 

to note that dimensionality reduction can also lead to information loss, and the choice of algorithm 

and parameters should be carefully considered based on the specific dataset. Depending on the 

dataset, the features have to be converted to another format or some calculations are needed, in 

order to extract meaningful data to the learning algorithm, this process is the feature engineering 

(JAMES et al., 2013).  

The model selection is one of the main steps in the machine learning process. There is a 

wide list of algorithms, which can make it challenging to determine the most appropriate one for 

building a customized model. Researchers can select the best algorithm for the dataset after 

comparing results of multiple algorithms by their statistical performance. There is no one-size-fits-

all method in machine learning that can be applied to all datasets. A specific method may work well 
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on one dataset, but may not be the best choice for another dataset that is similar but different. 

Therefore, it is crucial to determine which method is most effective for a particular set of data. 

Choosing the appropriate approach can be one of the most difficult aspects of practical statistical 

learning (JAMES et al., 2013). After that, to build an accurate model, large amounts of data are 

needed for training, and testing and validation are crucial to ensure high model accuracy. However, 

building a model from scratch to achieve the desired outcome requires extensive training and 

testing, which can be time-consuming and resource-intensive  (MESHRAM et al., 2021). 

Additionally, overfitting and underfitting are common challenges in building models (JAMES et 

al., 2013). When a model is finalized, the deployment in platforms to the final user, and 

implementation as routine to predict on new data is a challenging task. The models need to be 

continuously monitored and updated to maintain its accuracy and performance over time. It is also 

important to test the model in a production-like environment before deployment to ensure that it 

works as expected and can handle real-world data (MESHRAM et al., 2021). 

Machine learning has been increasingly applied in various scientific fields such as 

bioinformatics, biochemistry, medicine, meteorology, economics, robotics, aquaculture, food 

security, and climatology. For example, in medicine, machine learning techniques are used to 

develop predictive models for disease diagnosis and prognosis, and to improve patient outcomes. 

Also, ML can enhanced comprehension of human health and diseases, by enabling comprehensive 

analysis of vast datasets of multi-modal data in precision medicine (MACEACHERN; FORKERT, 

2021). In meteorology, machine learning models are used to predict weather patterns and improve 

weather forecasting accuracy, as well as to asses weather forecast uncertainties (SCHER; 

MESSORI, 2018). In the climatology science field, machine learning techniques are used to analyze 

climate data and improve our understanding of climate change (HUNTINGFORD et al., 2019). 

In economics, machine learning algorithms are used in areas such as predicting energy prices (e.g. 

crude oil, natural gas), demand forecasting, trading strategies, risk management and analyzing 

macro/energy trends (GHODDUSI; CREAMER; RAFIZADEH, 2019). In robotics, machine 

learning techniques are used to develop intelligent robots that can learn and adapt to new situations 

(SEMERARO; GRIFFITHS; CANGELOSI, 2023). In food security, machine learning algorithms 

are used to monitor crop yields and predict food shortages (ZHOU et al., 2022). 

 

3.4.2. Types of machine learning algorithms 

Machine learning comprises four main learning methods that serve distinct purposes in 

solving various tasks. Which can be the supervised learning, unsupervised learning, semi-supervised 
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learning, and reinforcement learning (JAMES et al., 2013). Unsupervised learning is a type of 

machine learning that focuses on discovering patterns and relationships in data that is not labeled 

or pre-classified. This means that the algorithm is left to identify the underlying structure on its 

own without any explicit guidance. One of the key goals of unsupervised learning is to identify 

clusters of similar cases within a dataset, which can then be further analyzed or visualized, and for 

this reason, this task is often referred to as a clustering problem. Popular unsupervised machine 

learning models include principal component analysis, k-nearest-neighbors, and variational 

autoencoders, which is an unsupervised deep learning architecture. By using unsupervised learning 

techniques, researchers can gain insights into the hidden structure of complex datasets, which can 

be valuable for applications such as anomaly detection, clustering, and data visualization. 

Supervised machine learning is a technique used to identify patterns in multidimensional 

data with the help of labelled data. In this approach, a dataset with known ground truth labels is 

used to train a model. The model learns from the labelled data to predict labels for a new unseen 

data. This process is also known as classification or regression, depending on the type of problem 

being addressed (CHOI et al., 2020). One key advantage of supervised learning is that it allows for 

precise prediction of outcomes based on the input data. However, one major limitation is that it 

requires labelled data, which can be time-consuming and expensive to acquire (KUHN; 

JOHNSON, 2013). In summary, classification models in machine learning are utilized to categorize 

datasets, whereas regression models are commonly used to forecast continuous outcome scores. 

Some common supervised statistical and machine learning algorithms are support vector machine, 

random forests, linear models, and deep neural networks. In several cases, corresponding machine 

learning models are applicable to both classification and regression problems (MACEACHERN; 

FORKERT, 2021). 

Semi-supervised learning is a type of machine learning that deals with data that has both 

labeled and unlabeled data points. It is considered a hybrid of supervised and unsupervised learning 

because it uses labeled data to train a model and then applies that model to unlabeled data to make 

predictions. This approach is particularly useful when the cost of labeling data is high, or when 

there is a scarcity of labeled data available (CHOI et al., 2020). This technique has applications in 

various fields such as natural language processing, computer vision, and bioinformatics. For 

example, in computer vision, a small number of labeled images can be used to train a model that 

can then classify the rest of the images in a dataset. Hu, Thomasson and Bagavathiannan (2021) 

proposed a semi-supervised learning pipeline for site-specific weed detection, and the results 

showed that, without manual labels, the pipeline achieves precision close to supervised learning in 

detecting weeds by images. A semi-supervised learning can be used to analyze gene expression data 
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where the cost of labeling genes is prohibitive. Liu et al. (2020) evaluated a semi-supervised learning 

with local and global consistency method-based classifier, which was employed to predict the 

essential genes of 41 prokaryotes. The authors concluded that the proposed method can achieve 

acceptable prediction performance with limited labeled data. Overall, semi-supervised learning is a 

powerful tool that can improve the performance of machine learning models when labeled data is 

scarce or expensive to obtain. 

Reinforcement learning (RL) is a type of machine learning that trains an algorithm to 

perform a specific task, where no single answer is correct, but an overall outcome is desired (CHOI 

et al., 2020). This approach is similar to how humans learn from experience and trial-and-error, 

making it a powerful tool for solving complex problems. Reinforcement learning involves an agent, 

environment, and a reward signal, where the agent learns to take actions that maximize its reward 

within the environment (SUTTON; BARTO, 2018). The agent receives feedback from the 

environment in the form of rewards or penalties, allowing it to adjust its behavior to achieve the 

desired outcome (GAUTRON et al., 2022). Reinforcement learning has been applied to a variety 

of fields, such as robotics, game playing, finance and even agriculture, and has shown promising 

results in solving challenging problems. However, as stated by Sutton and Barto (2018), it requires 

careful consideration of the reward structure and exploration-exploitation trade-off, as well as 

robust techniques for handling high-dimensional and continuous state and action spaces. The 

attempts to use RL for crop management purposes are scarce or applications only considered 

simulated environments (GAUTRON et al., 2022). A demonstration of RL use in agriculture was 

proposed by Chen et al. (2021), in which the authors used a deep Q-learning (DQN) irrigation 

decision-making strategy based on short-term weather forecasts, with the main goal to conserve 

water in agriculture for paddy rice grown in Nanchang, China. The DQN irrigation strategy showed 

strong generalization ability and was able to make irrigation decisions using weather forecasts, 

resulting in irrigation water savings of 23 mm, reducing drainage by 21 mm and irrigation timing 

by 1.0 times on average, without significant yield reduction. Therefore, the proposed RL algorithm 

learned from past irrigation experiences and the uncertainties in weather forecasts and optimized 

the irrigation system. 

 

3.4.3. Advantages and disadvantages of machine learning algorithms 

Machine learning models offer several benefits, one of which is their ability to work with 

data without requiring strict assumptions about the data distribution, making it possible to combine 

multiple data sources with different formats, which can reduce the need for extensive data 
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preprocessing. This is especially helpful in agriculture, given that the data generated in modern 

agricultural operations is provided by a variety of different sensors, such as harvest machines, soil 

sensors, weather stations, satellite and UAV hyperspectral data (LIAKOS et al., 2018). Additionally, 

many machine learning methods use data regularization, which enables them to handle noisy data 

and large variances within the dataset, although outliers can still be a problem, there are various 

processes that can be used to mitigate their effects, such as removing outliers, transforming the 

data, or using robust estimators that are less sensitive to outliers (CHAKRAVARTY; 

DEMIRHAN; BASER, 2020). Another advantage is the availability of specialized models and 

architectures that can be trained on small datasets, even when the number of features significantly 

is higher than the number of observations (MACEACHERN; FORKERT, 2021). In biological 

systems, complex machine learning models can also identify non-linear patterns in the training data 

that may be difficult for human observers or simple linear models to detect (ALMEIDA, 2002). 

Machine learning methods also has some limitations. Although it excels at identifying 

complex, non-linear patterns in data, this often comes at the cost of reduced interpretability 

compared to simpler linear models. In addition, machine learning models require significant 

amounts of high-quality, well-labeled training data to perform well, which can be a challenge in the 

agriculture domain (CHLINGARYAN; SUKKARIEH; WHELAN, 2018). Furthermore, these 

models may struggle with handling rare events, as they have not encountered them before and may 

not have the ability to generalize effectively (MAESTRINI et al., 2022). Thus, a problem of 

overfitting is a common problem in machine learning, where the model performs particularly well 

on the training data, but has unsatisfactory performance on the test data. This happens when the 

model is too complex and adapts too well to the training data, resulting in decreased generalizability 

(JAMES et al., 2013; MACEACHERN; FORKERT, 2021). Finally, machine learning models can 

be computationally expensive to train and deploy, requiring substantial hardware resources and 

technical expertise to implement and maintain (MESHRAM et al., 2021). 

 

3.4.4. Applications of machine learning in agriculture 

3.4.4.1. Machine learning for estimation of soil properties, water and crop 

management 

Machine learning has become an important tool in agriculture, especially in the field of 

precision farming. Digital agriculture and its technologies have provided data-intensive approaches 

to better understand crop variability in the field. This enables farmers and growers to make more 



40 

 

informed decisions in crop management, ultimately increasing yields while minimizing the 

environmental impact of their operations (LIAKOS et al., 2018). Machine learning algorithms can 

analyze data collected from various sources such as sensors, drones, and satellites to provide 

insights into crop growth, soil conditions, and weather patterns. In agriculture, machine learning 

has a wide range of applications. These include research focused on crop management, water 

resources, soil management and enhancing livestock production. In crop management, machine 

learning techniques are being developed to improve detecting crop diseases, identifying and 

managing weeds, predicting crop yields, recognizing different crops (LIAKOS et al., 2018). The 

majority of studies have implemented machine learning methods to investigate different aspects 

related to yield prediction, disease detection, crop recognition, and yield quality of the main grain 

crops, with the top studied crops being maize, wheat, rice and soybean (BENOS et al., 2021). 

Accurately predicting soil properties is crucial for various agricultural activities, including 

crop selection, land preparation, seed selection, crop yield, and fertilizer selection. Soil properties 

are directly influenced by the geographical and climatic conditions of the land, and soil temperature 

and humidity variability are reflected in crop yield. Besides that, soil measurements are generally 

time-consuming and expensive, so a low cost and reliable solution for the accurate estimation of 

soil can be achieved with ML techniques. By accurately estimating soil conditions, farmers and 

growers can improve their soil management practices and ultimately enhance their agricultural 

productivity (SHARMA et al., 2021). The main soil properties of interest in prediction are related 

to soil nutrients (HENGL et al., 2017), soil organic matter and carbon (JOHN et al., 2020), soil 

temperature and soil moisture content, as well as the soil hydraulic characteristics such as soil 

permanent wilting point, saturation and field capacity (GHORBANI et al., 2017). A more detailed 

review on prediction of soil parameters by machine learning can be accessed in Diaz-Gonzalez et 

al. (2022) and Wadoux, Minasny and Mcbratney (2020). 

Effective water management is crucial for sustainable crop production, water quality 

improvement, and pollution reduction. Precision agriculture offers the potential for variable rate 

irrigation, where water is applied at rates that vary according to field variability. Therefore, 

monitoring soil water status, crop growth conditions, and weather conditions can help in irrigation 

programming and efficient water management. In this scenario, machine learning can combine 

weather data, remote sensing and soil properties to improve water management, particularly in arid 

areas where there is a greater limitation in water availability (BENOS et al., 2021). Seyedzadeh et 

al. (2020) employed machine learning algorithms to optimize the uniform emitter discharge rate of 

drip irrigation systems under varying pressure and temperature conditions. The authors used as 

operating pressure, water temperature, discharge coefficient, pressure exponent, and nominal 
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discharge as inputs, with the output being the ratio of emitter discharge to nominal discharge. Four 

different ML algorithms were explored, and simulation results showed that all the applied ML 

models presented an average mean absolute error (MAE) of 8.8%, thus, showing an acceptable 

accuracy for estimating the ratio of measured discharge to nominal discharge. ML techniques can 

also be a tool to asses groundwater quality, in substitution of the traditional methods that are 

expensive and laborious. In a recent study in Marocco, the authors used simple physical parameters 

of 520 samples from the Berrechid aquifer as features in ML models to forecast other water 

parameters qualities. The results showed that Adaboost and Random Forest algorithms have higher 

prediction performances than Artificial neural networks and Support Vector Regressor, and the 

developed models provided a low-cost and real-time forecast of groundwater quality, which can 

support the management of irrigation water strategies (EL BILALI; TALEB; BROUZIYNE, 

2021). 

In the crop management category, ML techniques are used to manage crops to achieve 

quantitative and qualitative targets by combining farming techniques to regulate the biological, 

chemical, and physical crop environment. The automatic recognition and classification of crops 

has gained attention in various scientific fields, and advancements were made through the 

employment of ML algorithms and remote sensing, which leveraged the automatic recognition and 

classification of crops (FENG et al., 2019; LOZANO-GARZON et al., 2022). Besides that, weed 

detection and management is a significant problem in agriculture as they are one of the most 

important threat to crop production (WANG; ZHANG; WEI, 2019). Accurate weed detection is 

crucial for sustainable agriculture as weeds are challenging to identify and distinguish from crops. 

ML algorithms combined with sensors can accurately detect and discriminate weeds, with low cost 

and no environmental side effects. Alam et al. (2020) developed a computer vision-based system 

for real-time weed/crop detection and variable-rate agrochemical spraying. The system used a 

Random Forest classifier trained with a custom dataset to detect and classify weeds/crops. 

Agrochemical spraying was done through a fluid flow control system guided by the vision-based 

feedback system. The machine learning approach showed effectiveness of the proposed system in 

real-time in field tests, reducing the time of image process and giving an accurate weed detection 

of 95%. In another study of weed detection, Tellaeche et al. (2011) presents an automatic computer 

vision system for identifying Avena sterilis, a weed seed that grows in cereal crops. The proposed 

system used a two-step approach involving image segmentation and decision-making using Support 

Vector Machines. The approach showed optimum performance in terms of computational 

complexity and memory requirements, using the ML algorithm. 
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Crop diseases are a major cause of productivity losses, as they can negatively impact 

agricultural production systems, leading to decreased yield and quality, as well as food insecurity 

on a global scale (BENOS et al., 2021). ML algorithms are widely applied to timely identify diseases 

and to allow efficient management of crops and reduce disease losses. In their study, Rumpf et al. 

(2010) suggested the use of a support vector machine with a radial basis function kernel as a model 

for detecting and classifying Cercospora leaf spot, leaf rust, and powdery mildew diseases in sugar 

beet leaves at an early stage. The accuracy of classification between diseased and non-diseased 

leaves was 97%, and the accuracy of identifying the three diseases was higher than 86%.  

In the crop diseases domain, the vast majority of studies applied deep learning algorithms 

to process images, such as convolutional neural networks (CNN). An artificial neural network 

(ANN) is a machine learning algorithm inspired by the way the brain works. It consists of 

interconnected nodes called neurons that process and transmit information. ANN’s can be trained 

to perform various tasks such as pattern recognition, classification, and prediction. A convolutional 

neural network (CNN) is a type of ANN that is particularly good at recognizing visual patterns 

such as images or videos. CNN can be viewed as a special case of ANN that preserves the spatial 

relationship between pixels in an image. It uses a specialized layer called a convolutional layer that 

applies a set of filters to the input data. These filters detect different features in the data, such as 

edges or corners, and pass this information on to the next layer (CHOI et al., 2020). Sethy et al. 

(2020), a hybrid CNN and SVM model was used to detect rice leaf disease. The model involved 

using a CNN to extract deep features from 5932 diseased rice leaf images, which were then fed 

into an SVM classifier. The resnet50 with SVM classification model was found to have the highest 

F1-score metric of 0.98 compared to other models. In another research, the authors proposed a 

new approach for identifying cucumber leaf diseases under field conditions using deep 

convolutional neural networks. The method involved a two-stage segmentation process to extract 

disease spots from the leaves and generate new training samples using generative adversarial 

networks. The proposed CNN achieved an average identification accuracy of 96.11% and 90.67%, 

when implemented on the datasets of lesion and raw field diseased leaf images, respectively. The 

results showed that the approach has the potential to be used in the agricultural Internet of things 

to recognize three different diseases anthracnose, downy mildew, and powdery mildew in field 

conditions. 
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3.4.4.2. Machine learning in crop yield forecasting 

Machine learning algorithms in agriculture are increasingly focusing on crop yield 

forecasting, as it is a crucial factor to consider before harvesting. Soil parameters, weather variables, 

crop genotype, crop management and biotic factors such as pests, diseases and weeds are 

responsible for the crop final yield. When machine learning models are applied to a system in a 

systematic manner, they can serve as a feedforward control mechanism. Accurate machine learning 

models can anticipate the above mentioned factors that may impact crop yield, allowing corrective 

action to be taken before any anomalies negatively affect production (SHARMA et al., 2021). 

In a machine learning approach that aimed to accurately estimate wheat yields across the 

Australian wheat belt, the authors found that ML can identify accurately yield gap hotspots 

(KAMIR; WALDNER; HOCHMAN, 2020). In their study, they used machine learning regression 

methods with climate data and satellite image time series, and found that, among 9 ML models, 

support vector regression (SVR) with radial basis function presented the best performance, 

achieving a yield estimate with an R² of 0.77 and an RMSE value of 0.55 t ha-1. Another conclusion 

was that climate variables, such as maximum temperatures and accumulated rainfall, significantly 

improved yield predictions, and observations from 75 fields were required for the best single model 

to reach an R² value of 0.7. Also, the study showed that machine learning regression methods can 

achieve reliable crop yield monitoring across years at both the pixel and country scale. 

A study evaluated the performance of Random Forests (RF), a machine learning method, 

in predicting crop yield responses to climate and biophysical variables at global and regional scales 

for wheat, maize, and potato. The RF model outperformed the multiple linear regression (MLR) 

benchmarks in all performance statistics, with RMSE ranging between 6 and 14% for RF models 

compared to 14% to 49% for MLR models. The study concludes that RF is highly capable of 

predicting crop yields. However, the authors suggested that  RF algorithms may result in a loss of 

accuracy when predicting the extreme ends or responses beyond the boundaries of the training 

data (JEONG et al., 2016). Kouadio et al. (2018) assessed the performance of 18 different Extreme 

Learning Machine (ELM) based models with various predictor variables for predicting coffee yield 

accurately. The ELM model constructed with soil organic matter, available potassium, boron, 

sulphur, zinc, phosphorus, nitrogen, exchangeable calcium, magnesium, and pH as predictor 

variables generated the most accurate coffee yield estimate. The ELM model presented 

RMSE of 496.35 kg ha-1 and MAE of 326.40 kg ha-1, which outperformed the Multiple Linear 

Regression (MLR), with RMSE of 1072.09 kg ha-1 and MAE value of 797.60 kg ha-1, and Random 

Forest (RF) models, that showed RMSE of 1087.35 kg ha-1 and MAE of 769.57 kg ha-1. The study 

suggests that the ELM model can be used as an improved class of artificial intelligence models for 
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coffee yield prediction in smallholder farms, and it can be coupled with biophysical-crop models 

in decision-support systems for precision agriculture. 

In recent years, given the deficiencies of single models in processing various patterns and 

relationships latent in data, hybrid models have emerged as promising techniques. Hybrid models 

refer to models that combine the strengths of different modeling approaches to produce more 

accurate and reliable predictions. This hybrid approach to predictions has emerged in various field 

domains such as of energy consumption, traffic flow, oil price and demand, gross domestic 

product, inflation, health sciences, meteorology, with rainfall and drought studies and also in 

agriculture, with crop production (HAJIRAHIMI; KHASHEI, 2019). 

In the context of agriculture and environmental sciences, hybrid models often refer to 

models that combine process-based crop models with machine learning models. By integrating 

process-based models with ML models, hybrid models can improve the accuracy of predictions, 

particularly in cases where the underlying processes are complex and poorly understood, and where 

the available data is limited (FENG et al., 2020). The reasoning for this approach to present great 

potential in combining the strengths of different models relies on that the process-based model 

establish causality between inputs and outputs based on biophysical laws, hence being directly 

interpretable, allowing them to predict the outcome beyond what has been observed in previous 

field data (REICHSTEIN et al., 2019). In order to successfully build a model, a representative 

training database must be established with the aid of biophysical constraints and domain 

knowledge. In the machine learning algorithms part, the models can identify patterns within the 

training data and build nonlinear relationships much faster than process-based methods, without 

requiring a biophysical foundation (DANNER et al., 2021). Also, ML models approaches are highly 

flexible in adapting to data and are responsive to finding unexpected data patterns (REICHSTEIN 

et al., 2019). 

Feng et al. (2020) developed a hybrid yield forecasting method for wheat crops using a 

combination of process-based crop models variables, vegetation indices from remote sensing and 

machine learning regression models. The study was conducted in the southeastern Australian wheat 

belt, and the results showed that the forecasting accuracy increased significantly from 2 months to 

1 month before harvest time, with correlation increasing from 0.62 to 0.85 and RMSE reducing 

from 1.01 to 0.7 t ha-1, respectively. In this study, the system based on random forest outperformed 

the system based on multiple linear regression. The authors concluded that the hybrid approach 

identified that drought events throughout the growing season were the main factor causing yield 

losses in the wheat belt during the past decade. Similarly, Pagani et al. (2017) incorporated outputs 

from the DSSAT-CANEGRO sugarcane model and agro-climatic indicators into multiple linear 
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regressions and found that the combined model improved prediction accuracy by approximately 

20% when compared to each individual model. In another hybrid modeling approach, Shahhosseini 

et al. (2021) evaluated whether combining crop modeling and machine learning could enhance corn 

yield predictions in the US Corn Belt. The research involved designing various ML models and 

found that integrating crop model variables can decrease yield prediction RMSE by up to 20%. Soil 

moisture related APSIM variables were found to be the most influential on ML predictions, as 

simulated APSIM average drought stress and average water table depth were identified as the most 

important inputs to ML models. The study concluded that ML models require more hydrological 

inputs to improve yield predictions. A reasonable explanation for hybrid approaches that involves 

process-based crop models in performing better than statistical methods is that PBM’s are a good 

tool to capture extreme years because responses to environmental predictors mainly rely on the 

crop physiology rather than historical information (CHIPANSHI et al., 2015). 

Everingham et al. (2016) utilized a machine learning technique with random forest 

algorithm, along with climate indicators and APSIM-simulated biomass as predictors, to develop a 

model for forecasting regional sugarcane yield in Tully, northeastern Australia. The authors 

evaluated the time of forecast, so models were generated on 1 September in the year before harvest, 

and then on 1 January and 1 March in the year of harvest. The R² of the random forest regression 

model gradually improved from 66.76%, in September of the year before harvest, to 79.21% in 

March of the same year of harvest. Also, it was possible to predict if the production would be 

above the median as early as September in the year before harvest with an accuracy of 86.36%. 

However, the authors did not incorporate remotely sensed vegetation indices as predictors, which 

could have potentially enhanced the prediction accuracy. 

  



46 

 

  



47 

 

4. METHODOLOGY 

4.1. Study site 

The study was conducted with public data of sugarcane production in the state of São 

Paulo, Brazil from the IBGE, which provides the total planted and harvested area and crop 

productivity by municipality, and not the geographic location of sugarcane fields in the municipality 

(IBGE, 2022). The study was carried out in 10 municipalities in São Paulo State, Brazil, during 10 

consecutive cropping seasons. To select the study locations, all municipalities in São Paulo State 

were ranked by their sugarcane total production between 2010 and 2020, and the top 10 cities with 

the highest production were chosen (Figure 1).  

 

Figure 1.  Selected municipalities and the sugarcane areas retrieved from the MapBiomas project, for the period of 2010-2020. 

 

To carry out this study and obtain the multispectral data of the sugarcane crop, the 

geographic location of the sugarcane producing areas was first defined, using the annual maps of 

coverage and land use mapping reports from the Mapbiomas project (https://mapbiomas.org/) 

(SOUZA et al., 2020). The top 10 municipalities, in the state of São Paulo, that had the highest 

sugarcane production records in IBGE, between the years 2010 and 2020 were included in this 

step. From this initial selection, maps of land cover and land use from the annual Mapbiomas were 

https://mapbiomas.org/
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used to extract the geographic location of areas planted with sugarcane within each producing 

municipality. In this way, all images with multispectral data, extraction of meteorological data by 

satellite and simulation of sugarcane in the APSIM-Sugar model were carried out specifically on 

the locations where there were sugarcane crops planted in that period, identified by this map of 

land cover and land use. The Mapbiomas collection of land cover and land use maps for the time 

series has an average accuracy of 89%, ranging from 73 to 95% depending on the region and biome 

of Brazil (SOUZA et al., 2020). 

After the planted sugarcane area maps were gathered, the methodology consisted in blend 

every Mapbiomas maps between 2010 and 2020, resulting in a final sugarcane area map that was 

used to derive all the subsequent remote sensing data. For each sugarcane field in the top 10 

sugarcane-producing municipalities in São Paulo, a single centroid point was extracted, thereby, the 

latitude and longitude of each centroid point were used to identify the sugarcane fields in each city. 

A total of 3,838 points were generated, and their location was utilized to extract the meteorological, 

multispectral and soil data by remote sensing. These data extraction methods will be described in 

detail in the following sections. 

 

4.2. Multi-source datasets 

4.2.1. Weather data 

Meteorological variables play a crucial role in crops productivity. However, public surface 

weather stations don't cover all the municipalities in the state of São Paulo, and there are often 

significant gaps in the data (SANTOS et al., 2022). To overcome the limitations posed by the lack 

of a network of public meteorological stations and the spatial variability of some variables, such as 

rainfall, it was necessary to use meteorological data from public satellites with higher spatial 

resolution than the state's network of weather stations. This decision was made due to the potential 

errors that can be introduced by the spatial interpolation of data, which can affect the simulations 

and interpretation of the results (PORCÙ; MILANI; PETRACCA, 2014).  

For this study, the rainfall data were collected from the Google Earth Engine (GEE) 

platform, a cloud-based platform that allows access to a vast amount of free public satellite imagery 

and geospatial datasets, including data such as Landsat, Sentinel-2, and MODIS, as well as 

geophysical, weather, climate, and demographic data (GORELICK et al., 2017). The platform 

offers tools for processing and analyzing this data by two APIs, a JavaScript API and a Python 

API. The current study employed the earthengine-api client API module that is implemented in 
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the Python programming language, and has a structure similar to its JavaScript counterpart 

(GOMES; QUEIROZ; FERREIRA, 2020). The initial processing to obtain the multi-source 

datasets, was to use each of 3,838 sugarcane field centroids’ latitude and longitude to access the 

collection of weather and multispectral data and retrieving this information in a daily aggregation.  

The Rainfall data were obtained using the Climate Hazards Group InfraRed Precipitation 

with Station data (CHIRPS) GEE collection (FUNK et al., 2015). CHIRPS rainfall data is a 

collection of 0.05° high resolution, available on daily and monthly scales, covering the globe at 

latitudes between 50°S to 50°N. CHIRPS builds on approaches used in thermal infrared (TIR) 

precipitation products such as the National Oceanic and Atmospheric Administration's (NOAA's) 

precipitation estimate (RFE2) and the African rainfall climatology and weather series products 

TAMSAT, at the University of Reading (TARCAT). CHIRPS also rely on the rainfall product from 

the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TRMM) version 7, 

to calibrate global cold cloud rainfall (CCD) duration estimates. Furthermore, CHIRPS 

incorporates data from surface weather stations into its algorithm (FUNK et al., 2015). According 

to Costa et al. (2019), when performing a comparative analysis of rainfall data between surface 

meteorological stations and CHIRPS, the Southeast region of Brazil is the one with the highest 

correlation between observed and estimated data, with a coefficient of determination of 0.99 and 

significant by the t-student test (p<0.05). 

The other atmospheric variables, maximum and minimum temperature and daily global 

solar radiation were obtained from the ERA5-Land reanalysis collection, which was also acquired 

via the GEE platform. To adapt the air temperature and solar radiation products for APSIM 

simulations, the data were converted to a consistent unit of measurement. The air temperature, 

which has a temporal resolution of 1 hour, was aggregated to daily values and converted to degrees 

Celsius to obtain minimum and maximum values. Solar radiation, also with a resolution of 1 hour, 

was converted to MJ m² hour and summed to obtain daily values. ERA5-Land is an extensive 

collection of atmospheric variables from the globe, with detailed records since 1950, its data have 

a spatial resolution of 0.1°. The reanalysis combines data from physical models with observations 

from around the world into a globally complete and consistent dataset, in this way, ERA5-Land is 

generated by re-running the land component of the ERA5 in a higher resolution of its predecessor, 

thus ERA5-Land is, theoretically, an improved version of ERA5, and may provide insights over 

regions where observational data are unavailable (BAKER et al., 2021; MUÑOZ-SABATER et al., 

2021).  

The quality of solar radiation data from ERA5 was evaluated by Zuluaga et al. (2021), they 

compared the estimate of global solar radiation from 7 different data sources with observed data 
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from surface meteorological stations in Brazil, during the period of 1980 to 2016. The authors 

concluded that the best source of solar radiation data was the ERA5 reanalysis, with an annual bias 

ranging between ±20 W m-², and with no statistical difference for the data observed by surface 

meteorological stations. In another study, Zuluaga et al. (2023) evaluated the downward  shortwave 

radiation of various reanalysis data sources and compared to 3 ground weather stations. In the 

weather stations located in São Paulo state, the authors found a correlation ranging from 0.7 to 0.8, 

and an RMSE ranging from 55 to 71 w m-². Thus, the dataset proved to be an adequate alternative 

to estimate the components of the radiation balance in southeastern Brazil. Rainfall, minimum and 

maximum air temperatures and global solar radiation were used as input data in the APSIM-Sugar 

crop simulation model to simulate sugarcane growth and development. 

 

4.2.2. Soil data 

Soil physical properties, necessary for simulation in APSIM-Sugar, were obtained from 

the GeoInfo platform by Embrapa Solos, for the layers 0-5, 5-15, 15-30, 30-60, 60-100 and 100-

200 depths, with a spatial resolution of 90 m (VASQUES et al., 2021). The soil physical parameters 

obtained were clay, silt, and sand content, soil bulk density and organic carbon content. Although 

the conversion factor from soil organic carbon to organic matter can vary considerably from 1.4 

to 2.5, in this study it was used the common van Bemmelen factor of 1.724 to estimate soil organic 

matter (PRIBYL, 2010). 

The physical properties were then used to estimate the hydraulic properties of the soil by 

pedotransfer functions (MEDRADO; LIMA, 2014), with the objective of determining the soil 

references Field Capacity (θFC), Wilting Point (θWP) and Saturation (θS) (KIRKHAM, 2005). It was 

used the pedotransfer functions developed by Medrado and Lima (2014) to estimate soil-water 

retention in this study. These functions were chosen because they have been shown to outperform 

the pedotransfer function developed by Tomasella, Hodnett and Rossato (2000), which is widely 

considered a reference for Brazilian soils, especially for tropical soils. The parameters generated by 

the pedotransfer functions were then introduced in the Van Genuchten equation (Equation 1) to 

estimate the soil water retention curve points (VAN GENUCHTEN, 1980), θWP and θFC, at the 

matric potential of -1500 kPa and -10 kPa, respectively. The field capacity was defined as a mean 

value between a clayey and a sandy soil that represents Brazilian tropical soils, following the 

literature for Brazilian soils (SILVA et al., 2017). 

 



51 

 

𝜃 = 𝜃r +
𝜃s − 𝜃r

[1 + (𝛼ℎ)𝑛]−𝑚
 (1) 

 
where θ is the volume moisture content (cm3 cm-3), h is soil matrix potential, θr is residual water 

content (cm3 cm-3), θs is the saturated water content of the soil (cm3 cm-3), α (cm-1) and n are the 

fitting shape parameters of soil water retention curve, and m = 1-1/n, n > 1. 

 

The Wilting point (θWP) and field capacity (θFC) were used as the lower limit and drainage 

upper limit parameters in APSIM. Following the official documentation to construct soils in 

APSIM soil module, the first layer's air dry value was set to 50% of the lower limit. As the first 

layer was thinner (0-5 cm), it was applied the same rule of 50% of the lower limit to better simulate 

air dry to the second layer as well (5-15 cm). For the 15-30 cm layer, the air dry value used was 80% 

of the lower limit value. For all other layers, the air dry value were equal to the lower limit value 

defined previously (DALGLIESH et al., 2016). 

In conclusion, using the soil parameters obtained, specific soils were constructed for the 

3,838 sugarcane field areas. These different soils constructed with 90 m resolution data allowed for 

high-resolution simulations, with specific physical and hydraulic parameters adapted in the default 

soil textures of sand, clay, and loam in the APSIM soil module. 

 

4.2.3. Satellite vegetation indices  

The image source to retrieve the vegetation indices was obtained from the Moderate 

Resolution Imaging Spectroradiometer (MODIS), aboard in two NASA Earth Observing System 

(EOS) satellites that provides data on various environmental variables, such as land surface 

temperature, vegetation cover, and ocean color. The MODIS Surface Reflectance products were 

used, and it specifically estimate the surface spectral reflectance as it would be measured at ground 

level, corrected for atmospheric gases and aerosols. The MOD09GA version 6.1 was the product 

utilized, which provides daily gridded data for bands 1-7 in a sinusoidal projection, including 

reflectance values and, observation and geolocation statistics at a resolution of 500 m and 1 km 

respectively. The image data comprehending 2010 and 2020 for the sugarcane areas was filtered 

and processed to calculate vegetation indices from the MODIS surface reflectance bands on the 

GEE platform. The vegetation indices calculated were NDVI (Normalized Difference Vegetation 

Index, Equation 2) (ROUSE; HAAS; DEERING, 1973), SAVI (Soil-Adjusted Vegetation Index, 

Equation 3) (HUETE, 1988), EVI (Enhanced Vegetation Index, Equation 4) (LIU; HUETE, 
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1995), NDMI (Normalized Difference Moisture Index, Equation 5) (HARDISKY; KLEMAS; 

SMART, 1983), GNDVI (Green Normalized Difference Vegetation Index, Equation 6) 

(GITELSON; KAUFMAN; MERZLYAK, 1996) and BAI (Burned Area Index, Equation 7) 

(CHUVIECO; MARTÍN; PALACIOS, 2002). 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 ((2) 

𝑆𝐴𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿
 (1 + 𝐿) ((3) 

𝐸𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1 𝑅 − 𝐶2 𝐵 + 𝐿
 ((4) 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 ((5) 

𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 ((6) 

𝐵𝐴𝐼 =
1

(0.06 − 𝑁𝐼𝑅)2 +  (0.1 − 𝑅)2
 ((7) 

 

Where NIR represents the near-infrared spectrum band; R is the red band; B is the blue band; 

SWIR the short infrared band; L canopy background adjustment factor of 0.5; C1 and C2 are the 

coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band, values of 6 and 7.5, respectively; G is the green band. 

 

To remove pixels that were affected by complete or partial clouds over the time series in 

the MODIS data, a cloud mask was applied. This involved using the quality band (state_1km QA) 

to identify and remove those pixels that were affected by clouds (VERMOTE; VERMEULEN, 

1999). Next, the daily vegetation indices were combined with weather variables in a simple data 

table within the GEE platform for the entire period. This was the final step of data processing in 

the cloud environment, resulting in weather and calculated vegetation indices in a daily time step. 

The Python API was then used to retrieve the data table for each sugarcane area from 2010 to 

2021, which was then exported to a local computer. 

The cloudy pixels can significantly affect vegetation indices and lead to errors in the 

analysis of crop biomass reflectance (REN et al., 2008), and to address this issue, a cloud mask was 
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applied. However, the application of the cloud mask resulted in gaps in the time series of vegetation 

indices on some days. To overcome this limitation, the vegetation indices were temporal 

interpolated by linear interpolation and were submitted to the Savitzky-Golay (SG) filter method 

(SAVITZKY; GOLAY, 1964). The SG filter is a method used to reduce contamination in time-

series data, caused primarily by cloud contamination and atmospheric variability or lack of data. It 

is based on a simplified least-squares-fit convolution for smoothing and computing derivatives of 

a set of consecutive values. The main steps for smoothing a time-series using this filter include 

linear interpolation of cloudy values, fitting the long-term change trend, determining the weight for 

each point, generating a new time-series, and fitting it again (CHEN et al., 2004). The Savitzky-

Golay filter is described in Equation 8. 

 

𝑦∗ =
∑ Ci Yj+i

𝑖=𝑚
𝑖=−𝑚  

𝑁
 

((8) 

 
Where Y is the original NDVI value, Y* is the resultant NDVI value, Ci is the coefficient for the 

NDVI value of the filter (the smoothing window), N is the number of convoluting integers (equal 

to the smoothing window size), and j is the running index of the original ordinate data table. The 

smoothing array or filter size is composed of 2m+1 points, where m is the half-width of the 

smoothing window. 

 

Chen et al. (2004) stated that to apply the SG filter for NDVI time-series smoothing, two 

parameters need to be determined, m that is the half-width of the smoothing window, and d, which 

specifies the degree of the smoothing polynomial. For instance, a higher d value can reduce the 

filter bias but may give a noisier result by overfitting the data, and a smaller d value can produce 

smoother results but may introduce bias, thus d is typically set in a range from 2 to 4. On the other 

hand, for the m values, a larger value can produce smoother results but flatten sharp peak, 

conversely, the opposite is also true. Therefore, middle values of m in the range of 4 to 7 can be 

considered as appropriate parameters for generating the long-term change trend curve. In this 

study, it was used the SG filter with a smoothing window (m) of 61 observations and an 

intermediate smoothing polynomial of order 3. This is because Chen et al. (2004) evaluated a 10-

day NDVI timeseries from SPOT VGT product, while in the current study it was used a daily 

MODIS product. As a result, their 4-7 smoothing window for the 10-day composite is equivalent 

to a 40-70 day smoothing window in the present study. This method was applied to all vegetation 

indices derived from the MODIS and it helped to obtain a high-quality time-series that were more 

useful for the analysis. 
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Besides that, the MODIS NDVI data was also used to create another feature, a smoother 

NDVI data with a half-width window of 301 days. The purpose was to create the harvest dates of 

the sugarcane areas, by detecting the bottom values of the NDVI timeseries for each cropping 

season. To determine crop growing seasons, vegetation indices can be evaluated during the period. 

For example, the NDVI timeseries is characterized by a narrow peak followed by a decreasing 

plateau, which can help us obtain the beginning and end of a growing season, however smoothing 

techniques are required to remove noisy data (JÖNSSON; EKLUNDH, 2004). In this study, a 

smoothing technique was employed using a window range that is typical for a sugarcane season. 

To identify bottom values or inverted peaks, it was inverted the standard peak detection algorithm 

from the scipy python library's signal module. The general functioning of this module is that the 

algorithm searches for peaks (local maxima) by comparing neighboring samples and returns those 

peaks whose properties match specific conditions for their height, prominence, width, threshold, 

and distance from each other (VIRTANEN et al., 2018). The values utilized in the half-width 

smoothing window and the polynomial order of the Savitzky-Golay filter were 301 days and 3, 

respectively. Besides that, it was used a width of 150 days in the find peaks function of scipy Signal 

module, which is half of a sugarcane cropping season.  

A similar approach to detect maize and vineyard phenological stages, planting and 

harvesting dates by using the Savitzky-Golay filter was evaluated by Duarte et al. (2018), the authors 

found a median difference of -3 days, with an interquartile range of 10 days, between the observed 

dates of the end season and the estimated by the algorithm. Other studies have also determined 

harvesting dates at regional scales, utilizing satellite vegetation indices and smoothing algorithm 

approaches for rice fields (SAKAMOTO et al., 2005), wheat fields (CHU et al., 2014), sugarcane 

areas (WANG et al., 2020), forest and agriculture areas (PRIYADARSHI et al., 2018) and general 

summer and winter crops (PATEL; OZA, 2014). Also, the results of detecting the end of season 

was in concordance with the months that sugarcane is harvested Figure 2.   
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Figure 2. Number of sugarcane fields harvested per month and year detected by the inverted find peaks algorithm. The NDVI 

bottom values of each sugarcane cropping season defined the harvest dates. 

 

The date of the detected bottom values of the NDVI timeseries for each season were 

used as the harvest day, and thus used to initialize the planting and harvest days in APSIM-Sugar 

management module. A typical example extracted from one of the 3,838 points timeseries can be 

seen in Figure 3. The different vegetation indices were used to identify spatial variability in the 

sugarcane productive areas, which may be the result of pest infestation, diseases, planting failures, 

weeds, etc.  
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Figure 3. Sugarcane smoothed NDVI values for a single sugarcane field. Bottom values detected by the inverted find peaks 
algorithm to extract the sugarcane harvesting dates during the cropping seasons. A smoothing period of 301 days was used to 
estimate harvesting dates by detecting the bottom values of NDVI. A smoothing period of 61 days was used to minimize variability, 
replace missing values, and remove noisy data to construct a more reliable NDVI profile. 

 

4.3. Modeling methodology 

4.3.1. Sugarcane growth and development simulations on the APSIM-Sugar model 

In the present study, simulations of sugarcane growth and development were carried out 

using the APSIM-Sugar model (Agricultural Production System sIMulator) version 7.10. The 

APSIM-Sugar model includes simulation of canopy development, light interception, nitrogen and 

soil water dynamics in the biomass accumulation. The model is incorporated as a crop module in 

the APSIM platform and runs on a daily time-step, influenced by various factors such as genotype, 

climate, soil water, nitrogen, and crop residues (KEATING et al., 2003). The remote sensing 

weather variables described in section 4.2.1 and the soil parameters were used to configure the 

APSIM meteorological files and the soil module. The NDVI bottom values during the growing 

seasons was used as inputs of the planting and harvesting dates in the management module of 

APSIM.  

Some management practices also interfere with the development of the sugarcane crop, 

such as nitrogen fertilization, as the APSIM-Sugar model simulates the dynamics of this nutrient 

in the soil and in the plant. For this reason, nitrogen fertilization containing was included in the 

sugarcane simulations in APSIM, following the average fertilization recommendations for the state 

of São Paulo (SCHULTZ; REIS; URQUIAGA, 2015). Thus, the simulations were configured as 
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sugarcane rainfed systems, with stalk density of plants of 12 and 10, for sugarcane plant crop and 

ratoon, respectively. Fertilizing module was also applied, with mean annual nitrogen fertilizer 

applications of 30 kg ha-1 and 80 kg ha-1, for plant crop and ratoon respectively.  

The APSIM-Sugar model has already been calibrated and tested in different regions of 

the world, showing satisfactory simulation results for several sugarcane variables (BASNAYAKE 

et al., 2012; INMAN-BAMBER et al., 2016; GUNARATHNA et al., 2019). Also, the model has 

been tested and calibrated in various Brazilian soils and environments, including the Southeast and 

Northeast regions, which are the primary sugarcane producers in Brazil (COSTA et al., 2014; 

MARIN et al., 2014; OLIVEIRA et al., 2015; DIAS et al., 2019). However, there is no default 

Brazilian sugarcane variety in the current version 7.10 of APSIM. Therefore, in this study, the plant 

variety parameters described by previous researches, including Costa et al. (2014), Marin et al. 

(2014) and Dias et al. (2019), were collected and evaluated against the performance of the default 

sugarcane APSIM variety Q117. A total of 3,838 simulations were performed to evaluate the mean 

absolute error (MAE) between simulated and observed sugarcane yield in the top 10 sugarcane 

producer cities in the São Paulo State, from 2010 to 2020. The default Q117 variety resulted in a 

MAE of 14.3 t ha-1, and the best performance was achieved with the sugarcane variety parameters 

derived from Dias et al. (2019), which was derived from the leaf measurements of seven Brazilian 

varieties in an experiment carried out by Leal (2016), with a MAE of 12.4 t ha-1 between simulated 

and observed yield. The calibration of the APSIM model is necessary to estimate or reduce 

uncertainties of values, increasing the reliability of the modeling results, since the crop simulation 

models based on processes are imperfect representations of natural processes. Uncertainty in plant 

growth prediction is often due to the very structure of the models and their calibration (MURPHY 

et al., 2004). 

The variables described in the previous sections were inputs to APSIM-Sugar model, and 

were used to generate simulations of sugarcane variables such as biomass, plant height, leaf area 

index, accumulated crop evapotranspiration, accumulated water deficit, accumulated degree-days 

for each phenological stage, number of leaves during the cycle, accumulated water consumption 

per phenological stage, demand for Nitrogen in each phenological stage, average growth rate in 

each phenological stage, average soil and accumulated temperature. The simulations were 

performed in a daily time step and the output variables are described in the Appendix A. The 

objective of this step was to generate plant state variables at different times of the crop cycle, to 

later integrate these simulated variables with other variables through machine learning algorithms 

to forecast sugarcane yields in various months before harvest.  
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The use of variables simulated by process-based models, such as the APSIM-Sugar model, 

can provide a more complete biophysical description of the interaction between soil, plant and 

atmosphere. This is mainly because plant state variables represent the physiological response of 

crops to meteorological and soil variability. Therefore, using these variables directly in machine 

learning algorithms can be more suitable for estimating crop yield than using raw environmental 

data (PARK; HWANG; VLEK, 2005). The assumption is that using meteorological and soil 

variables as inputs to simulate plant growth processes is better for describing final sugarcane yield 

than using them directly in machine learning algorithms, as the APSIM-Sugar model biophysically 

describes the interaction processes of sugarcane with the environmental variables. 

 

4.3.2. Machine learning regression models 

ML algorithms involve a process of learning from data or variables that describe an 

outcome. From learning or training the ML algorithm, the resulting model can be used to classify 

or predict the result based on new data using the experience gained with the training data. Thus, in 

addition to the plant simulation stage with algorithms based on processes such as APSIM-Sugar, 

ML algorithms will be used to integrate the available variables and estimate the sugarcane 

productivity in advance. The algorithms that will be used belong to the supervised learning 

category, as they describe regression problems since the predicted variable will be sugarcane 

productivity (ALI et al., 2015; BEHMANN et al., 2015; LIAKOS et al., 2018).  

The input data for the machine learning algorithms are comprised of weather, vegetation 

indices and simulated variables by APSIM-Sugar model, described in the section 4.2 and 4.3.1, but 

with some preprocesses described in the subsequent sections. Based on the variability in variables 

units and their distributions, a data preprocess was conducted to prepare it for fitting machine 

learning models. Scaling the input data between 0 and 1 using min-max scaling (Equation 9) was 

the first pre-processing task to ensure similar ranges for some machine learning models, and other 

tasks included cumulative weather, vegetation indices, and APSIM feature construction during 

growing season, and feature selection. 

 

𝑋 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛
 ((9) 

where X is the new scaled data, x is the range of original data, while xmin and xmax are the lowest and 

highest values of the features. 
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The scaled data was split into two datasets, with 80% of the data used for model training 

using repeated k-fold cross-validation with 10 folds, thus, the training data was divided into 10 

groups to train the models. The 10-fold cross-validation technique helps evaluate machine learning 

models with a small sample of data and can reduce overfitting (KOHAVI, 1995). The cross-

validation is a wide applied technique in agriculture modeling forecast, which involves splitting a 

dataset into subsets for analysis and validation. In the preprocessing workflow, it was implemented 

the leave-one-out cross-validation method, where a single observation is used as the validation 

value and the rest as training data, and this process is repeated until each observation is used once 

as a validation point (QIAN et al., 2009). The remaining 20% of the data was completely separated 

from the training and remained as a test dataset, with the last two years of the dataset (2019 and 

2020) removed to verify prediction accuracy. This out-of-sample technique was used to prevent 

data leakage during the training process, because sugarcane yields can be influenced by previous 

sugarcane plant and ratoon deficient management practices, variety traits, soil fertility and plant 

conditions (MILLIGAN; GRAVOIS; MARTIN, 1996; VITTI et al., 2007; RAMBURAN et al., 

2013; XU et al., 2021). 

The weather, vegetation indices and APSIM variables were temporal aggregated for each 

sugarcane field and then, spatial aggregated by municipality, to be in the same scale as the 

municipality observed yield. The aggregation performed were a temporal mean and standard 

deviation for each sugarcane field, by expanding method. After that, a mean and standard deviation 

was performed in spatial scale by each municipality, which have led to a total of 158 variables. This 

great number of variables is due to the soil APSIM variables that have multi layers data for each 

sugarcane field, and the aggregations of each layer by mean and standard deviation results in many 

soil variables. However, in predicting yield, not all weather, vegetation indices and APSIM 

simulated variables are equally important. Some of the variables are redundant or less explanatory, 

thus, these features can lead to poor performance of machine learning algorithms. To improve 

accuracy, it is crucial to find important features and discard redundant ones. In this way, it was 

used a Principal Component Analysis (PCA) algorithm to reduce the number of variables, 

removing undesirable features and returning a compact data to simplify the prediction process 

(BRUNI; CARDINALI; VITULANO, 2022). In this study, an iterative process was implemented 

to determine the best proportion of variance in the PCA, which helped minimize yield prediction 

errors. The original dataset contained 158 variables, but a transformed dataset with fewer variables 

(principal components) was generated by applying PCA. Since the number of components is a 

hyperparameter that does not learn from data, it was determined through an iteration process, 

varying the hyperparameter proportion of variance from 60 to 98% by increments of 2%. The 
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proportion of variance that resulted in the lowest MAPE error for sugarcane yield predictions was 

selected. The PCA technique, developed by Pearson (1901), works by transforming a large set of 

variables into a smaller set of uncorrelated variables, called principal components. These 

components represent the underlying patterns in the data, with the first component explaining the 

largest amount of variability in the data, followed by the second component explaining the second 

largest amount, and so on. The reduction in the dimensionality space of data by PCA makes it 

easier to visualize and analyze large datasets, and in feature selection, can be used to identify which 

features have the most significant contribution to the target variable, allowing for the removal of 

less informative or redundant features, while retaining most of the important information 

(JOLLIFE; CADIMA, 2016).  

For precise prediction of sugarcane yield, comprehension of the relationship between 

yield and its influencing factors is crucial. Different machine learning models interpret features and 

their influence on the target feature in distinct ways. Therefore, there is no single model that can 

be universally be effective in every scenario, which makes the model selection of great importance 

(JAMES et al., 2013). In this sense, it was evaluated 16 different ML models, including linear and 

non-linear models such as tree-based in the Pycaret version 2.3 Python library, which is a wrapper 

around several machine learning libraries and frameworks such as the scikit-learn, CatBoost, 

LightGBM and many other machine learning libraries (PEDREGOSA et al., 2011; KE et al., 2017; 

PROKHORENKOVA et al., 2018; ALI, 2020). The models evaluated were the following 

regressors including the AdaBoost Regressor, Bayesian Ridge, Decision Tree Regressor, Elastic 

Net, Extra Trees Regressor, Gradient Boosting Regressor, Huber Regressor, K Neighbors 

Regressor, Lasso Regression, Least Angle Regression, Light Gradient Boosting Machine, Linear 

Regression, Orthogonal Matching Pursuit, Passive Aggressive Regressor, Random Forest 

Regressor and Ridge Regression.  

 

4.3.3. Modelling framework 

The APSIM-Sugar module divides sugarcane cultivation into six growth stages, including 

sowing, sprouting, emergence, begin cane, flowering, and end crop. Although the model structure 

includes flowering as a phenological stage, it is currently inactive until there is a more reliable 

physiological basis for prediction. These stages are continuous and dynamic, with sugarcane growth 

processes transitioning into the next stage once they complete the previous one (KEATING et al., 

2003). Since the long cropping season of sugarcane normally takes up from 11 to 14 months, 

forecasting final yield based on stages would involve too many months in some stages. To address 
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this issue, it was developed a forecasting approach that focuses on the months within the current 

harvesting year, specifically from January to November, which covers 11 different dates of 

forecasting. It was used the available data at the end of each month to forecast the final yield. The 

approach involved calculating the expanding mean and sum of variables during the cropping 

season, which was reinitialized at the start of each new crop season. For example, given a sugarcane 

field that was harvested in July of 2013, the total rainfall between the planting day in July of the last 

year and the end of January of 2013 was calculated using the expanding mean and sum in the 

current crop season, and the same process was repeated for the subsequent months until the final 

harvesting of that sugarcane field. Since the observed yield is at municipality level, it was developed 

a forecast based on calendar months, in this way, the difference between April forecast and May 

forecast is that in the first, there is sugarcane fields in different growth stages but a few have been 

harvested, while in May forecast, more fields have been harvested and there are still some fields 

not harvested that are now one month ahead in the growth stage. In summary, the variables in each 

sugarcane field are updated every month until the field is harvested. In the month it is harvested, 

the data from that field stops being updated. Then, every subsequent forecast will have more 

harvested fields with completed updated variables. Therefore, early forecasts will not have the 

completeness of all data, and as the months pass, more data will compound the individual sugarcane 

fields and the mean municipality forecast tends to be more accurate. 

The general flowchart of the processing steps for developing and evaluating an in-season 

sugarcane yield forecasting model is described in Figure 4. The predictors for the machine learning 

(ML) models were plant and soil variables simulated by APSIM, as well as climate data and remote 

sensing information. The forecasting model provided yield forecasts from January to November. 

The framework involved several steps. Firstly, APSIM simulations were set up using information 

from remote sensing and literature on weather, soil, and management practices. The simulations 

were dynamically run based on the known climate data up to the end of each forecast month. Then, 

at the completion of each month, a forecasting event was triggered, resulting in 11 forecasting data 

in total. The R statistical software was used to perform 3,838 simulation points, in which a script 

R ran the APSIM program and collected the output data using the apsimr package (STANFILL, 

2015; R CORE TEAM, 2022). Then, a Python script integrated all the APSIM variables, remote 

sensing and weather data to forecast the end-of-season sugarcane yield using the 16 models 

previously described (VANROSSUM, 1995; ALI, 2020). 
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Figure 4. Flowchart overview of the steps involved in data acquisition and processing, simulation of sugarcane, and integration of 
various variables in machine learning algorithms to estimate sugarcane yield.  

 

4.3.4. Model performance assessment 

To monitor and evaluate the performance of the models, performance evaluation metrics 

were employed. The statistical metrics used were mean absolute error (MAE, Equation 10), root 

mean squared error (RMSE, Equation 11), root mean square logarithmic error (RMSLE, Equation 

12) mean absolute percentage error (MAPE, Equation 13), coefficient of determination (R², 
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Equation 14) and coefficient of correlation (r, Equation 15). Besides that, RMSE was also used in 

the hyperparameter tuning of the models, in which the best hyperparameters were chosen for each 

model based on the lowest RMSE result of the cross-validation training step. The best model was 

selected as the one with the lowest RMSE, MAE, RMSLE and MAPE and the highest values of R² 

and r, in the test dataset, which comprehends data not used in the training process, from 2019 and 

2020. 
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Where �̂�𝑖 is the predicted value, 𝑦𝑖 is the observed value, �̅� is the mean, N is the total sample size. 

MAE, RMSE, RMSLE and MAPE indicate the average magnitude of the errors in a set of forecasts. 

R² measures the proportion of the variation in the dependent variable that can be explained by the 

independent variables. Correlation coefficient (r) measures the strength of the linear relationship 

between observations and forecasts.  
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5. RESULTS AND DISCUSSION 

5.1. Analysis of weather and soil data inputs 

Monthly weather conditions during the 2010 and 2021 are shown in Figure 5.  Monthly 

maximum air temperature averaged (Tmax) increased from July to January and has a natural 

decrease trend from February to June for all cities. Maximum average temperatures never exceeded 

40 °C and were mostly between 27-30 °C (Figure 5). Similarly, the monthly minimum air 

temperature averaged shows the minimum values between June and July and its maximum values 

in December 

The ERA5-Land reanalysis air temperature at 2 m and solar radiation have been reported 

to agree well with ground truth weather stations observed data worldwide.  Vanella et al. (2022) 

compared the performance of ERA5 single levels and ERA5-Land in representing 

agrometeorological data from 2008 to 2020 with observational data collected at 66 sites across 7 

irrigation districts in Italy. The researchers found that the air temperature estimates offered the 

most accurate reanalysis predictions, followed by the relative humidity, solar radiation, and wind 

speed variables, which still provided satisfactory results. Zou et al. (2022) evaluated ERA5-Land 

hourly air temperature against 1080 weather stations in China, and found that correlation is 

generally in good agreement with in situ measurements (r = 0.97), but there is an overall 

underestimate (a bias of −0.90 °C). Studies that compares ERA5-Land to ground observations are 

limited in Brazil and even in South America. Baker et al. (2021) evaluated the ERA5-Land soil 

moisture, precipitation, surface temperature, evapotranspiration and solar radiation with satellite 

data and two global climate models: the Brazilian Global Atmospheric Model version 1.2 (BAM-

1.2) and the U.K. Hadley Centre Global Environment Model version 3 (HadGEM3). The author 

found differences between products, with ERA5-Land, HadGEM3, and BAM-1.2 showing 

opposite interactions to satellites over parts of the Amazon and the Cerrado, and stronger land–

atmosphere coupling along the North Atlantic coast. However, due to lacking in ground truth 

observations, the comparisons between models and satellite radiation data should be interpreted 

with some caution.  
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Figure 5. Monthly average of minimum (Mint) and maximum (Maxt) air temperature, global solar radiation (Radn) and accumulated 

rainfall (Rainfall) during the evaluated years 2010-2021 for the selected 10 municipalities in São Paulo State, Brazil. 
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The ERA5-Land was also evaluated by  Brown et al. (2021), in a study that compared 

high-resolution global and regional meteorological datasets against flux tower observations at 11 

sites across Brazil to assess the quality of four global reanalysis products (ERA5-Land, GLDAS2.0, 

GLDAS2.1, and MSWEPv2.2) and one regional gridded dataset (Xavier). Results showed that 

ERA5-Land achieved the best ranking for most variables, while MSWEP performed best for 

precipitation at the daily scale and Xavier at the monthly scale. Thus, the authors recommended 

ERA5-Land variables including air temperature, wind speed, pressure, downward shortwave and 

longwave radiation, and specific humidity for forcing land-surface models in Brazil. Zuluaga et al. 

(2023) evaluated different high-resolution datasets to represent radiation balance components in 

the southeast region of Brazil. The datasets evaluated were able to represent the seasonality of the 

radiation balance components, with ERA5-Land being the most accurate in representing albedo, 

downwelling longwave radiation, and upwelling longwave radiation, while GLASS was the best for 

downwelling shortwave radiation estimation. Thus, ERA5-Land and GLASS were recommended 

for estimating radiation balance components in the region. In Pernambuco state, the ERA5-Land 

reanalysis mean air temperature was evaluated over 10 years in different cities. The data were 

compared to 12 weather stations and assessed by R² and RMSE, and the results showed that ERA5-

Land reanalysis has a high accuracy in estimating average air temperature in almost the entire state 

of Pernambuco, with the highest R² of 0.98 for the city of Ibimirim, while the lowest accuracy was 

measured in the city of Caruaru, R² of 0.57. The RMSE generated by ERA5-Land reanalysis was 

lower than 0.60°C in most of Pernambuco state (ARAÚJO et al., 2022). 

In a study that evaluated the performance of four precipitation databases, including 

MERGE, CHIRPS, ERA5, and ERA5-Land, in the SEALBA region of Brazil, where there is a lack 

of weather stations. The analysis is based on seven weather stations in the region from 2001 to 

2020, and the results showed that MERGE had the highest correlations and the lowest errors, with 

correlation of 0.96, followed by CHIRPS with 0.85, ERA5-Land with 0.83, and ERA5 with 0.70. 

The MERGE rainfall dataset, exhibited better performance with average MAE of 14.3 mm, 

followed by CHIRPS with 21.3 mm, ERA5-Land with 42.1 mm and ERA5 with 50.1 mm (SILVA 

et al., 2022). The ERA5-Land performed better than ERA5 due to its finer resolution, similarly the 

CHIRPS rainfall dataset increases even more the spatial resolution. 

The CHIRPS rainfall dataset was also compared to 31 weather stations in the central 

region of São Paulo state from 1981 to 2020 (SANTOS et al., 2022). They found that CHIRPS 

presented an overall R² value of 0.81 and RMSE values ranging from 36.4 mm to 49.3 mm. 

Although, the authors noted an abrupt tendency to underestimate precipitation values. The study 
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highlights the usefulness of CHIRPS for locations that lack rainfall data from public weather 

gauges. 

In the present study, the remote sensing and reanalysis data from ERA5-Land for air 

temperature and solar radiation, and CHIRPS for rainfall data was used due to the unavailability of 

public data for these weather variables with consistency and high resolution in multiple locations, 

which were necessary for the APSIM model simulation. For example, Santos et al. (2022) found 

that the data collection failure rate in some public rain gauges in São Paulo state reached 13.8%, 

during the 40 years period of their analyses. Besides that, instrumentation is costly and it only 

provides measurements that are applicable to small regions and cannot be extrapolated to larger 

scales, or if it is extrapolated, it certainly introduces further uncertainties by the interpolation 

method. In this way. to overcome these limitations and data gaps of public data, remote sensing 

and reanalysis techniques were considered. Reanalysis and remote sensing weather data have been 

shown to have high correlation with observed data across diverse environments. In addition, these 

data sources offer high consistency, temporal resolution, and measurements under all sky 

conditions (ZULUAGA et al., 2023). 

The soil parameters showed high variability across different cities, with Valparaíso 

exhibiting soil sand content mean values above all other cities, while also having the lowest mean 

values of clay content as expected (Figure 6). The soil's bulk density was also obtained from the 

GeoInfo Embrapa dataset and it was in agreement with the other soil variables, in which Valparaíso 

city showed the highest mean value for the entire soil layers. Bulk density is influenced by soil 

texture, mineral density, organic matter, and packing arrangement. Soils that are loose and rich in 

organic matter have lower bulk density, while sandy soils have relatively high bulk density due to 

less total pore space. Finer-textured soils with good structure have higher pore space and lower 

bulk density compared to sandy soils. 

The other estimated parameters by the pedotransfer functions followed the expected 

results, with Valparaíso city showing the minimum soil parameter values of air dry, drainage upper 

limit, and saturation. The city of Araraquara had the highest mean value of organic carbon and 

organic matter content, which were used as inputs for the APSIM soil module. Organic matter 

content tends to be higher in shallow soil layers, so its average value for the entire profile tends to 

decrease, which explains the low values presented in Figure 6. 
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Figure 6. Boxplot of mean soil parameters for all layers used as input in APSIM soil module for each sugarcane point inside 

municipalities extracted from for the selected 10 municipalities in São Paulo State, Brazil. 
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Guaíra also showed high variability for the bulk density data, with outliers presenting low 

values. The opposite occurred with the hydraulic parameter’s saturation, drainage upper limit and 

air dry values, which exhibited high variability but with outliers above the maximum of the boxplot. 

When soil bulk density decreases, it usually leads to an increase in total porosity and macroporosity. 

This results in improved soil water infiltration and air movement, which benefits soil hydraulic 

parameters such as the drainage upper limit, saturation, and air dry (DEC et al., 2008; INDORIA; 

SHARMA; REDDY, 2020), as can be observed as the presence of outlier values of these soil 

properties in the case of Guaíra city. Furthermore, these results demonstrate that the pedotransfer 

functions are producing outputs that are consistent with the physical characteristics observed in 

the soil. The data from certain cities, such as Guaíra, Piracicaba, and Araraquara, show a high 

degree of variability in soil properties. This suggests that using a single mean value for these 

properties in crop simulation models could lead to inaccurate results. 

 

5.2. General results of hybrid modeling 

The results of the hybrid model, i.e. machine learning with process-based APSIM 

variables and remote sensing vegetation index as inputs, showed high variability between machine 

learning algorithms. Figure 7 shows that K-Neighbors Regressor was the best model in statistical 

metrics, with the lowest MAE of 3.26 t ha-1 and RMSE of 4.48 t ha-1. Also, the RMSLE error was 

under 0.063 and the mean absolute error relative to the mean (MAPE) showed an error as low as 

4.54%. The independent variables explained more than 67% of the sugarcane yield variance and 

presented a correlation of 0.83 in the test dataset. In contrast, the worst performant model was the 

extra trees regressor algorithm, which presented the highest MAE, RMSE and RMSLE metrics of 

6.13 t ha-1, 8.09 t ha-1 and 0.111, respectively. The MAE error converted as relative to the mean 

sugarcane yield represent an MAPE of 8.5%, which is almost twice the error of the best model. 
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Figure 7. Machine learning model intercomparison in the test dataset for years 2019 and 2020. Predictions comprehend the data 
until July, 1 month before the majority of areas are harvested. Statistical metrics Mean Absolute Error (MAE), Root Mean Squared 
Error (RMSE), Coefficient of determination (R²) Correlation Coefficient (r), Root Mean Squared Logarithmic Error (RMSLE) and 
Mean Absolute Percentage Error (MAPE). 

 

The agreement of the metrics r and R² were negative for the worst model, this indicates 

that the feature variables were negatively related to the yield, for correlation, while the negative R² 

value of the extra trees regressor indicated that this models’ predictions are worse than taking the 

mean value as predictions. In a study by Hu et al. (2019), on sugarcane yield prediction in China, 

the SWAP-WOFOST process-based model achieved a standalone RMSE of 10.16 t ha-1 and an 

R² of 0.05. When remote sensing volumetric water content (SWC) and leaf area index (LAI) were 

individually introduced to the model, there was a slight improvement in yield prediction. However, 

the most significant performance increase was observed when both variables were included, 

resulting in a mean RMSE of 6.67 t ha-1 and an R² of 0.58. The authors evaluated the integration 

of remote sensing data in different water stress scenario, and concluded that less improvement was 

made when there was no water limitation factor, with the model that had no assimilation data 

leading to an RMSE of 7.97 t ha-1 and the model with both SWC and LAI data resulting in an 

RMSE of 6.63 t ha-1. In conditions of severe water stress, both SWC and LAI data are crucial for 

accurately estimating sugarcane yield. However, as the level of water stress decreases, LAI becomes 

a more significant factor compared to SWC. When there is adequate water supply in the soil, both 

LAI and SWC have limited value in yield estimation, but LAI data still plays a crucial role. Morel 
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et al. (2014) compared three methods of yield estimation based on remote sensing using a dataset 

of in-farm fields. The three methods were an empirical relationship method based on remote 

sensing data, including an empirical relationship method with a growing season-integrated NDVI, 

the Kumar-Monteith efficiency model, and the last method, a forced-coupling method with a 

sugarcane MOSICAS model and satellite derived fraction of absorbed photosynthetically active 

radiation. The study found that the linear empirical model produced the best results with an RMSE 

of 10.4 t ha-1. However, in the same study, the researchers found that the simulated sugarcane yield 

by MOSICAS coupled with remote sensing data performed better than the standalone model, with 

a RMSE improvement from 15.3 t ha-1 to 12.6 t ha-1, and an R² from 0.21 to 0.47.  

In Brazil, the main approaches of sugarcane estimation are the process-based crop models 

for site specific or experimental data or by remote sensing for in-field or large regional scales, but 

with no integration of the methodologies. Marin et al. (2015) utilized field data from sugarcane 

plant crop, from seven locations throughout Brazil, with two experiments having two water-

limitation treatments and the remaining five experiments grown under rainfed treatments, and five 

distinct soils types. The authors evaluated the APSIM-Sugar and DSSAT-CANEGRO for 

sugarcane yield prediction and found a RMSE of 20.09 t ha-1 and 18.27 t ha-1 and a correlation (r) 

of 0.94 and 0.95 for the models, respectively. In another research, Dias et al. (2019) implemented 

a new feature in APSIM-sugar to account for high sugarcane yields in tropical environments, with 

experimental data from Guadalupe in Piauí state, and the results showed a RMSE of 18.7 t ha-1 and 

a R² of 0.69 of the APSIM simulated stalk fresh yield compared to observed stalk fresh yield, in 

contrast with the default APSIM-Sugar model without the new feature, which had a RMSE of 

26.22 t ha-1 and a R² of 0.86. In a broader regional scale, another study was conducted to predict 

sugarcane crop yield using the FAO model, a process-based model, with simulations for a period 

between 1974 and 2003 for 178 locations in São Paulo state, using 10-day period weather data. The 

model performed with accuracy, as proved by the statistical coefficients R² value of 0.58 and RMSE 

was 5.0 t ha-1 (MONTEIRO; SENTELHAS, 2014). 

In general, remote sensing combined with machine learning methods tend to provide 

more accurate predictions at regional scales compared to process-based models, as they require less 

input data estimates. In a study that aimed to predict sugarcane yield in São Paulo State for 60 

municipalities, during 2003 and 2012, using metrics derived from NDVI time series from the 

MODIS sensor and an ensemble model of artificial neural networks (ANNs), presented an R² of 

0.61 and a RMSE of 5.7 t ha-1 (FERNANDES; EBECKEN; ESQUERDO, 2017). In another 

experiment, the authors evaluated three machine learning algorithms applied to data from multiple 

sugar mills in São Paulo, Brazil, and the models were compared to an independent data set. The 
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ML models had a RMSE ranging from 19.7 t ha-1 to 20.03 t ha-1, MAE from 14.8 to 15.3 t ha-1 and 

correlation coefficient ranging from 0.64 to 0.66, when compared to observed yields (HAMMER; 

SENTELHAS; MARIANO, 2020). They concluded that the ML models precision and accuracy, 

in the field block level of mills, are still lower than desirable for operational applications in a 

possible crop forecasting system. The authors also found that, in all ML models evaluated, the most 

important variable in sugarcane yield prediction was the number of cuts. This highlights that 

regional public yield estimates, which were used in the present research, lack of important input 

data for the models, and that obtaining this data at the field scale is crucial for improving forecasts 

at regional scales. Future research should focus on estimating this variable to improve yield 

predictions. 

Evaluating the results of the proposed method and based on the structure of the 

algorithms, it is possible to infer that the k-neighbors regressor performed the best because it is a 

non-parametric algorithm that relies on similarity measures to make predictions. This means that 

it is not limited by the assumptions of a parametric model and can capture the relationships between 

the features and the target variable (HAWORTH; CHENG, 2012). On the other hand, the linear 

algorithms performed intermediate because they are parametric models that make assumptions 

about the underlying relationship between the features and the target variable. If these assumptions 

are violated, the performance of the model can suffer (SCHMIDT; FINAN, 2018). Finally, the 

tree-based algorithms performed worse because they can suffer from overfitting due to their high 

variance. This means that they can fit the training data excessively, but not generalize well to unseen 

data (MIENYE; SUN; WANG, 2019). Besides that, it may also be possible to infer that the 

relationship between the predictor variables and the target variable is not very complex or 

nonlinear, which is why linear algorithms performed reasonably well. On the other hand, tree-based 

algorithms tend to perform better when the relationships between the variables are nonlinear or 

there are interactions between them (GARDNER; DORLING, 2000). A key important factor, that 

could have influenced the results, and can describe why the linear models performed reasonably 

well, was that linear algorithms are more likely to benefit from principal component analysis since 

they assume a linear relationship between the input variables and the output components. By 

reducing the number of input variables through PCA, the linear algorithm can become more 

efficient in identifying the underlying linear relationship in the data. Additionally, training classifiers 

on reduced dimension data leads to enhanced resilience of ML classifiers, since it reduces the 

weights of less informative and low-variance features (BHAGOJI et al., 2018). While tree-based 

algorithms, in contrast, are better suited to handle high-dimensional data and can handle 

interactions between variables without relying on feature reduction techniques such as PCA. 



74 

 

Additionally, the better performance of k-nearest neighbors regressor algorithm suggests 

that there may be a strong local structure in the data, where points that are closer together in the 

predictor variable space tend to have similar target variable values. This means that the k-NN 

regressor algorithm relies heavily on the structure and distribution of the data points in the 

immediate vicinity of a given data point to make predictions. If the data points are clustered or 

distributed unevenly, the algorithm may not perform well and could produce inaccurate 

predictions. In other words, the k-NN regressor algorithm is highly dependent on the locality of 

the data (ZHANG et al., 2017). 

 

5.3. Results of partial exclusion of variables 

This section investigates the effect of partial inclusion of APSIM variables, remote sensing 

variables vegetation indices and meteorological variables in the performance of ML models on the 

test years 2019 and 2020. The scenarios are (1) Full dataset without the removal of variables, i.e. 

dataset includes remote sensing vegetation indices, APSIM variables and meteorological variables; 

(2) All dataset except APSIM variables; (3) All dataset except remote sensing vegetation indices; (4) 

All dataset except meteorological variables; (5) Dataset excluding APSIM and meteorological 

variables; (6) Dataset excluding APSIM and remote sensing vegetation indices; (6) Dataset without 

meteorological variables and vegetation indices and (7) Dataset excluding APSIM variables and 

vegetation indices. The averaged statistical metrics of the 7 distinct scenarios of variables are 

represented in Table 1. The results suggest that the K Neighbors Regressor remains the top-

performing ML model, even with varying scenarios, indicating its robustness when features are 

scarce for predicting sugarcane yield. On average, the model achieved an R² of 0.54, a correlation 

of 0.78, and a MAE below 4 t ha-1, resulting in a mean MAPE of less than 5.4%. Conversely, the 

Decision Tree Regressor was the worst model to predict sugarcane yield in a variety of missing 

variables scenarios, which led to poor correlation of 0.32 and R² of only 6%, indicating that the 

yield prediction does not follow the observed yield trend. 
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Table 1. Averaged statistical metrics for 7 different removal variable scenarios for all machine learning models, in the test dataset 
for years 2019 and 2020. Predictions comprehend the data until July, 1 month before the majority of areas harvesting. Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), Coefficient of determination (R²), Root Mean Squared Logarithmic Error 
(RMSLE), Mean Absolute Percentage Error (MAPE) and Correlation Coefficient (r). 

Model 
MAE RMSE R² RMSLE MAPE r 

t ha-1 t ha-1   %  

K Neighbors Regressor 3.88 5.27 0.54 0.074 5.4 0.78 

Ridge Regression 4.55 5.83 0.44 0.081 6.2 0.74 

Bayesian Ridge 4.61 5.94 0.43 0.083 6.3 0.74 

Lasso Regression 4.52 5.98 0.42 0.082 6.1 0.66 

Least Angle Regression 4.51 5.99 0.41 0.082 6.0 0.65 

Linear Regression 4.51 5.99 0.41 0.082 6.0 0.65 

Passive Aggressive Regressor 4.38 6.12 0.39 0.085 6.0 0.66 

Elastic Net 4.84 6.22 0.37 0.087 6.7 0.75 

AdaBoost Regressor 4.79 6.45 0.31 0.089 6.7 0.67 

Orthogonal Matching Pursuit 4.79 6.57 0.29 0.092 6.8 0.72 

Huber Regressor 4.87 6.57 0.29 0.092 6.8 0.71 

Light Gradient Boosting Machine 5.10 6.66 0.27 0.092 7.0 0.64 

Gradient Boosting Regressor 5.14 6.70 0.26 0.091 7.0 0.65 

Extra Trees Regressor 5.20 6.80 0.23 0.094 7.2 0.58 

Random Forest Regressor 5.37 6.90 0.22 0.095 7.4 0.57 

Decision Tree Regressor 5.71 7.55 0.06 0.103 7.9 0.32 

 

Upon further analysis of the K Neighbors Regressor model and its variable removal 

scenarios, it is clear that the APSIM variables hold the most significance in sugarcane yield 

predictions. This is evident from the fact that scenarios involving the removal of APSIM variables 

yielded the worst statistical performance, as seen at the bottom of the Table 2.  

 

Table 2. K neighbors Regressor statistical metrics for 7 different removal variable scenarios, in the test dataset for years 2019 and 
2020. Predictions comprehend the data until July, 1 month before the majority of areas harvesting. Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), Coefficient of determination (R²), Root Mean Squared Logarithmic Error (RMSLE), Mean 
Absolute Percentage Error (MAPE) and Correlation Coefficient (r). 

Model Variable Removal Scenarios 
MAE RMSE R² RMSLE MAPE r 

t ha-1 t ha-1   %  

K 
Neighbors 
Regressor 

No removal (full dataset) (1) 3.26 4.48 0.67 0.063 4.5 0.83 

VEG_IND (3) 3.51 4.66 0.65 0.065 4.9 0.84 

MET (4) 3.77 5.17 0.56 0.073 5.3 0.81 

MET + VEG_IND (6) 3.79 4.98 0.60 0.070 5.3 0.82 

APSIM (2) 3.94 5.40 0.52 0.075 5.4 0.76 

APSIM + VEG_IND (7) 4.28 6.05 0.40 0.083 5.8 0.65 

APSIM + MET (5) 4.62 6.13 0.39 0.086 6.4 0.76 

The variable removal scenarios are (1) Full dataset without variables removal, i.e. includes remote sensing vegetation 
indices, APSIM variables and meteorological variables; (2) Full dataset except APSIM variables; (3) Full dataset except 
remote sensing vegetation indices; (4) Full dataset except meteorological variables; (5) Dataset excluding APSIM and 
meteorological variables; (6) Dataset excluding APSIM and remote sensing vegetation indices; (6) Dataset without 
meteorological variables and vegetation indices and (7) Dataset excluding APSIM variables and vegetation indices 
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The results suggest that adding APSIM simulation crop model variables as input features 

to ML models can decrease sugarcane yield prediction RMSE from 7.7% to as high as 26.9%. 

Shahhosseini et al. (2021) also found that the APSIM variables demonstrated great correlation and 

reduced maize yield predictions error (RMSE) from 7% to 20%. The inclusion of APSIM variables 

as input features in the ML models led to enhanced performance in almost all 16 models developed 

(see appendix B), thus, this highlights the importance of the APSIM variables to reduce the error 

in predictions. Everingham et al. (2016), evaluated three sugarcane yield forecast dates using climate 

indices, weather data and biomass accumulation from APSIM with random forest algorithm. The 

authors found that the earliest forecast date relied most heavily on the APSIM biomass index and 

El Niño–Southern Oscillation (ENSO) indices, in the year before harvest, which led to a RMSE 

of 8 t ha-1 and R² of 0.67. Conversely, the Southern Oscillation Index (SOI) in October was the 

most important variable for the forecast dates that were performed later, on the year of harvesting. 

Pagani et al. (2017) found similar results when studying multiple linear regressions to forecast 

sugarcane yield. The authors reported that the model with only agro-climatic indicators explained 

38% of inter-annual yield variability during growth phase of January to April, and explained 73% 

during the second half of the harvesting period of September and October. When sugarcane 

DSSAT-CANEGRO model outputs were added as inputs to the regressor model, the variability 

explained increased to 63% in the early forecast date, and to 90% after the second half of the 

harvesting period. The results of this study, along with the literature on hybrid modeling, highlight 

the effectiveness of this approach in forecasting yield. 

When excluding only the APSIM variables, results demonstrated the MAE and RMSE 

increases more than the exclusion of meteorological or vegetation indices data. This highlights that 

the simulation of APSIM, that uses the weather variables to simulate crop growth, are better than 

the standalone use of weather variables due to its simulation of the underlying biophysical 

processes. The removal of other variables such as vegetation indices and weather variables did not 

impact as much as the APSIM variables in model performance, which has led to another interesting 

finding, that the scenario where remote sensing vegetation indices were not included had the least 

impact on the yield predictions.  

For the scenarios with vegetation indices, comparing the scenario 6 to 4, the addition of 

remote sensing data led to an opposite effect, an increase in RMSE from 4.98 t ha-1 to 5.17 t ha-1 (-

3.8%). Comparing the scenarios 7 and 2, the incorporation of vegetation indices has led to a RMSE 

decrease from 6.05 to 5.40 (10.7%). While the scenarios that compares only the effect of vegetation 

indices in the full dataset, scenario 3 compared with 1, the RMSE has a small decrease of 4.66 to 
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4.48 (3.8%). Thus, depending on the data availability, remote sensing data are expected to have 

ambiguous effects, increasing or decreasing the error of RMSE in the range of -3.8% to 10.7%. 

Similar results were also found by Feng et al. (2020), when studying the hybrid modeling 

approach of combining APSIM simulated variables, NDVI and meteorological variables with 

machine learning, to forecast wheat yield. The authors concluded that NDVI was relatively 

unimportant, only being selected in the top feature importance at late wheat growth stages, and 

even then, NDVI was not highly ranked as an important feature for wheat yield forecasts. A 

possible explanation for these results can be the spatial resolution of the vegetation indices. The 

authors, and the present study, utilized the MODIS satellite, which has a resolution nearly 500 m. 

In this sense, the sugarcane areas can have vegetation indices pixels without sugarcane or with a 

mixture of crops, or even sugarcane but at distinct growth stages which could influence the NDVI 

values and hence reduce its importance in sugarcane yield forecast. 

Despite that, the partial exclusion of variables highlights some interesting results, generally 

speaking, the importance of remote sensing data in yield forecasting studies varies depending on 

the methodology employed. It was observed that when studies rely solely on remote sensing data, 

these variables are typically the most critical for yield forecasting. However, in studies that use a 

combination of remote sensing data and process-based crop models, the variables generated by the 

simulation models tend to be more important for accurate yield forecasting. 

 

5.4. Results of early forecast 

To further evaluate the forecast results of K-Neighbors regressor, scatter plots of ground 

truth yield against the predicted yield for the years of 2019 and 2020 are shown in Figures 8, 9 and 

10. As can be seen the figures depicts the scatter plots for the sugarcane yield forecasting before 

the harvest season started, months from January to March, the beginning of the harvesting season, 

from April (Figure 8) to May (Figure 9), and during the mid-harvest season, from June to August 

(Figure 9), and from the end harvest season from September to November (Figure 10). The 

sugarcane yield scatter plots indicate that the K neighbors regressor can successfully forecast yield 

months prior to harvesting. As can be seen that the model effectively captured the temporal 

changes in the observed sugarcane yield, and the precision of the predictions typically increased as 

sugarcane growth and time progressed. 
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Figure 8. Comparison of observed and model forecasted sugarcane yields at 4 forecasting dates (January, February, March and 
April) from the K Neighbors Regressor model. The forecasts include input data up to the last day of each month and the data 
comprehend the test dataset for years 2019 and 2020. Statistical metrics shown are Root Mean Squared Error (RMSE), Coefficient 
of determination (R²) and Correlation Coefficient (r). Dashed lines represent the identity lines and solid lines represent the data 

trendline. 

 

At the first forecasting month events, before the harvesting season begins, January, 

February and March, showed minor differences in sugarcane yield forecasts, with a RMSE nearly 

5.7 t ha-1, a R² value under 0.5 and a correlation ranging between 0.77 and 0.8.  At the start of 

growing season in April (Figure 8), the yield forecast slightly underperformed the previous months, 

as the input variables of remote sensing, APSIM variables and meteorological data were updated. 

These findings corroborate that sugarcane yield can be forecasted with a degree of accuracy and 

error as low as 6 t ha-1 in the beginning of year, months ahead the starting of harvesting season. 

Moreover, the accuracy achieved using a 3-month look-ahead to the beginning of harvest season, 

can have important implications for crop management decisions. Accurate yield predictions at 

different stages of crop growth can enable decision-makers to modify crop management practices 

and ensure that yield is optimized throughout the growth cycle. 
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In the May month forecast event, the predictions accuracy increased significantly, 

reducing the error to under 5 t ha-1, and achieving a R² of 0.63, and the best r value of 0.84. The 

months shown in Figure 9, May, June and July, are the best sugarcane yield forecasting dates. 

Besides that, it is in July, 1 month before the majority of areas were identified to have been 

harvested, was the best month to forecast yield. The performance of the K Neighbors Regressor 

with the full dataset showed an error of less than 4.5 t ha-1, the observed yield was captured by the 

predictors by a R² of 0.67, and the model presented a good correlation with the observed data, with 

a correlation of 0.83. As compared, in the section 5.2, the statistical metrics of the hybrid 

forecasting approach outperforms the yield predictions for sugarcane in the literature, that used 

one or another forecasting method individually. 

Everingham et al. (2016) found that the performance of their sugarcane yield forecasting 

approach explained sugarcane yield in 67%, on the first early forecast, and increased to 72% and 

79%. Also, it decreased the RMSE from 8.0 to 6.3 t ha-1, as the forecast date became later in the 

season. This study's data were collected from a sugarcane mill located in the Tully region of 

Australia, which receives an annual average rainfall of 4000 mm and so it is a completely distinct 

sugarcane growing environment from the present site study and the other cited literature. In 

another study in Australia, Han, Bishop and Filippi (2022) analyzed harvest data from two 

sugarcane properties in Queensland, a region with average annual rainfall of 900 mm, from 2007 

to 2018. The authors used Random Forest models to forecast yields at two management points, an 

early-season forecast, in December of previous year of harvest, and a late-season forecast, in June 

at the harvesting year. Using leave-one-season-out cross-validation, the models achieved a RMSE 

of 32.1 t ha-1 for early-season forecasts and 30.9 t ha-1 of RMSE for late-season forecasts.  
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Figure 9. Comparison of observed and model forecasted sugarcane yields at 4 forecasting dates (May, June, July and August) from 
the K Neighbors Regressor model. The forecasts include input data up to the last day of each month and the data comprehend the 
test dataset for years 2019 and 2020. Statistical metrics shown are Root Mean Squared Error (RMSE), Coefficient of determination 
(R²) and Correlation Coefficient (r). Dashed lines represent the identity lines and solid lines represent the data trendline. 

 

Besides the differences between the environments related to rainfall, the latter study did 

not use any process-based crop model to generate variables for input in the Random Forest models. 

In another study, the researchers evaluated machine learning algorithms and various predictor 

variables derived from satellite imagery at a field level block resolution. The authors achieved a R² 

of 0.39 and RMSE of 19.1 t ha-1 for sugarcane yield in January, which improved to 0.51 and 16.0 t 

ha-1 by May (SHENDRYK; DAVY; THORBURN, 2021). This study was conducted in a broader 

region that comprehends the Wet Tropics of Australia in northeast Queensland. The area has a 

tropical climate, and the study location ranges from Cairns with an average annual rainfall of 1988 

mm to Tully with more than 4000 mm. The authors also concluded that their modeling approach 

based on combined predictor variables systematically overestimated high values and 

underestimated low values of sugarcane yield, which was the opposite relationship observed in the 

present study results. In overall, the results showed that the low observed values were 
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overestimated by the model and the high observed yields were underestimated, as can be seen in 

Figures 8, 9 and 10. However, in the July month forecast, the results tended to reduce this 

systematic bias (Figure 9). 

In Brazil, the same pattern found in the present study was identified by Fernandes, 

Ebecken and Esquerdo (2017), as their model was overestimating low values and underestimating 

high values of sugarcane yield. The authors also concluded that the yield forecasts improve as the 

growing season progresses, they reported the 3-months before harvesting forecast with a RMSE 

of 7.2 and R² of 0.38. While at the end of harvest season, the results improved, leading to a R² of 

0.61 and a RMSE of 5.7 t ha-1. The authors used NDVI time series from the MODIS sensor and 

an ensemble model of artificial neural networks (ANNs) with sugarcane yield data from 60 

municipalities in São Paulo State between 2003 and 2012. The author did not use a process-based 

crop model and their results are similar to the present study findings without the APSIM variables. 

Pagani et al. (2017) developed a forecasting system for sugarcane yield using multiple linear 

regressions that relate agro-climatic indicators and outputs of the sugarcane model DSSAT-

CANEGRO to historical yield records at municipalities level in São Paulo. The model was created 

using the official stalk yields from the period of 2000 to 2013, and they developed forecasting 

systems in different stages of the sugarcane cycle. The agro-climatic indicators and DSSAT-

CANEGRO outputs combined explained the variability led to a R² of 0.63 for the boom growth 

phase and 0.9 after mid harvesting, with the best performances achieved while approaching the 

end of the harvesting window (i.e. at the beginning of October), with a R² of 0.93. The general 

trend is the same reported in the present study, the agreement increases between model and 

observed yield, and the prediction errors reduces, as the growing season progresses. However, the 

authors reported in their study the coefficient of determination (R²) of the cross validated data, 

which represents how well a model generalizes to a subset of training data in various different 

iterations and testing it on the remaining data, but still on training data. Thus, the R² value of the 

test data is typically considered the more important measure, as it reflects the model's ability to 

make accurate predictions on a complete unseen new data, which was considered in this study and 

on the other previous cited studies. 

The months of August (Figure 9) and September (Figure 10) had the highest sugarcane 

areas harvested, as seen in the remote sensing time-series where the NDVI decreased significantly 

(Figure 2). This led to an increase in RMSE, to values above 6 t ha-1, and an R² ranging from 0.35 

to 0.37. In these months, the predictions underperformed the previous 3 months, and also, these 

months generated sugarcane yield forecasts worse than the pre-harvesting months from January to 

March. A reason for this could be the data noise of the remote sensing data, as the data is updating 
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for each end of the month to compose the input data to the ML model, the changes in remote 

sensing data and weather data can add data noise which can lead to model uncertainties.  

 

Figure 10. Comparison of observed and model forecasted sugarcane yields at 3 forecasting dates (September, October and 
November) from the K Neighbors Regressor model. The forecasts include input data up to the last day of each month and the data 
comprehend the test dataset for years 2019 and 2020. Statistical metrics shown are Root Mean Squared Error (RMSE), Coefficient 
of determination (R²) and Correlation Coefficient (r). Dashed lines represent the identity lines and solid lines represent the data 

trendline. 

 

The same conclusions can be applied to the end-harvesting season of October and 

November, which presented the worst statistical metrics for sugarcane yield predictions, with a 

poor R² under 0.10, and the sugarcane pixels that are harvested late in the season introduced more 

uncertainties to the mean yield estimates (Figure 10). Again, the resolution of the MODIS, utilized 

in this study, can be hypothesized to explain the uncertainties introduced in yield forecasting in the 

end of harvesting season, as in São Paulo state, a lot of fields are partially harvested and the total 

area harvest can be at the end of the season, which could have dropped the vegetation indices and 

compromised the ML model performance. However, the yield forecasting before the harvesting 



83 

 

date, which was one of the objectives of this study, presented greater accuracy than the standalone 

use of each individual forecast approaches, as denoted by the statistical metrics. In this way, the 

hybrid approach aligns with the current trend of adopting new technologies in agriculture, as 

suggested by Keating and Thorburn (2018). This study represents the next step in crop modeling 

by integrating advanced statistical and mechanistic models in crop-environment research. This 

integration takes advantage of the increasing availability of data related to farming, climate, and 

remote sensing, which presents an opportunity to enhance regional yield forecasting and leverage 

the use of large amounts of agriculture data available. Additionally, it highlights the potential value 

of incorporating input features from other sources to improve yield forecasts and to apply this 

methodology for diverse agricultural crops and environments.  

However, some aspects need attention when different technologies are blended, as they 

introduce new concepts, limitations and advantages of each technologies must be well known and 

balanced. In the study of hybrid modeling for maize proposed by Shahhosseini et al. (2021), they 

used the APSIM simulations as inputs to ML model, and this simulations carried the full weather 

of each test year. They recognized that in real world applications, the weather would be unknown. 

In the current study, the proposed method does not allow unknown future data to be present in 

the training process due to the APSIM model variables, the weather variables and the remote 

sensed vegetation indices being limited to the available data at the corresponding end of month 

(i.e. data in January just have data generated until last day of January), which in theory avoids data 

leakage to the model forecast and test dataset. Data leakage is when unknown future data are 

present in training dataset, and this can result in a model highly accurate in the training dataset but 

it performs poorly in the test dataset, which was not the case in the current study. In this sense, to 

achieve the best results, it's crucial to take into account the limitations of the methodologies 

utilized. For instance, the various machine learning algorithms will provide different learning 

process of data and capture the variability of input variables differently, the impact of different 

remote sensing resolutions and how to address those limitations, as well as to delineate input 

variables that account for weather and soil impacts on crop growth and yield. As these blending or 

hybrid approaches involve multidisciplinary fields of study. 

 

5.5. Principal component analysis and variables contribution 

The principal component analysis (PCA) was applied in the 158 input variables to reduce 

its dimensionality and avoid autocorrelation between variables. However, when applying PCA to a 

dataset, the most significant challenge is selecting the ideal number of principal components. This 
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process can be defined as a common hyperparameter tuning of the PCA algorithm, where the 

optimal hyperparameter value is chosen. After implementing an iterative process to determine the 

percentage of variance to keep in the PCA, a proportion of 96% was discovered to be the best 

hyperparameter value that resulted in the lowest MAPE error for sugarcane yield predictions Table 

3. 

 

Table 3. K neighbors Regressor statistical metrics for different principal components percentage of variance, in the test dataset 
for years 2019 and 2020. Predictions comprehend the data until end of July, 1 month before the majority of areas harvesting. Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), Coefficient of determination (R²), Root Mean Squared Logarithmic 
Error (RMSLE), Mean Absolute Percentage Error (MAPE) and Correlation Coefficient (r). 

PCA percentage of 
variance threshold 

MAE RMSE R² RMSLE MAPE r 

t ha-1 t ha-1   %  

96% 3.26 4.48 0.67 0.06 4.56 0.83 

92% 3.26 4.66 0.65 0.07 4.57 0.82 

90% 3.35 4.72 0.64 0.07 4.64 0.82 

78% 3.47 4.84 0.62 0.07 4.82 0.80 

80% 3.47 4.84 0.62 0.07 4.82 0.80 

82% 3.72 5.07 0.58 0.07 5.13 0.78 

74% 3.83 5.16 0.57 0.07 5.38 0.77 

76% 3.83 5.16 0.57 0.07 5.38 0.77 

86% 3.55 5.17 0.56 0.07 5.04 0.83 

84% 3.63 5.21 0.56 0.07 5.14 0.82 

88% 3.69 5.29 0.54 0.07 5.15 0.78 

94% 3.50 5.30 0.54 0.07 4.94 0.79 

98% 3.92 5.54 0.50 0.08 5.52 0.80 

64% 4.71 6.70 0.27 0.09 6.73 0.81 

62% 4.71 6.70 0.27 0.09 6.73 0.81 

66% 4.71 6.70 0.27 0.09 6.73 0.81 

60% 4.45 6.77 0.25 0.09 6.30 0.59 

 

The PCA percentage of variance of 96%, that performed best in the K neighbors 

regressor reduced the dataset to 19 components. Which means that 19 components were used as 

inputs to the regressors. Figure 11 shows the explained variance percentage of individual 

components and the percentage of total variance captured by all principal components. The first 

three principal components were responsible for almost 55% of total variance captured in the 

dataset. The last five components represented less than 5% of total variance (Figure 11), however 

in the iteration process of finding the best PCA threshold for the number of components (Table 

3), including these 5 principal components reduced the regression errors of sugarcane yield forecast 

of the K Neighbors Regressor. 
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Figure 11. The percentage of total variance captured by the principal components. The input variables contained 158 features and 
the PCA yielded 19 principal components. 

 

The use of all variable (full dataset) in principal components analysis resulted in 19 

principal components. These components represent linear combinations of the original variables 

that capture the maximum amount of variation in the data, in this way, the main drawback of this 

technique is the interpretability of principal components, since that they are derived from the 

original variables and do not have a direct and intuitive meaning. Each principal component is a 

combination of the original variables, making it difficult to interpret them in terms of the original 

data. Nevertheless, to overcome the interpretability limitation of the principal components, it was 

extracted the scores of the features on the first three principal components and identified the top 

10 features with the highest absolute score for each component (Figure 12). 

The variables that were more important in the first component (PC1), which represents 

23.4% (Figure 11), were mean latitude and maximum air temperature variability by municipality 

that are more related to weather variables and the APSIM simulated variables related to soil 

temperature and soil water for different soil layers (Figure 12). In the second principal component 

(PC2), the variable that had the highest contribution was the mean longitude of the municipality, 

which had a positive score. The remaining nine variables had negative scores, and among them, 

the variables related to the standard deviation of aggregated variables in the municipality had a 

dominant influence (std suffix). These variables included simulated APSIM plant state variables 

such as rootgreenwt_std, senescedwt_std, lai_std, and height_std. Additionally, the sum of degree 
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days made a significant contribution in PC2, appearing in both the mean variable and standard 

deviation variables.  

 

Figure 12. Variables contribution to the sugarcane forecast in first three principal components responsible for almost 55% total 

variance captured by the principal components. 

 

The top 10 variables in PC3 were all related to the APSIM simulated variables representing 

the plant state variables, such as root and aboveground biomass that includes fresh and dry stalks, 

green leaves weight, and sucrose. As can be noted, the appearance of this variables in the same 

principal component, indicates that they had a high correlation with each other. The std suffix in 

variables represent the variability (standard deviation) of the variable in the municipality, therefore, 

higher variability can negatively affect the performance of the regression models in learning the 

patterns of the data. A more comprehensive description of variables can be seen in the Appendix 

section (Appendix A). In general, the decomposition of principal components results highlights 

the importance of geolocation and APSIM variables, as they are one of the most influential 

variables in the first three principal components. 
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6. CONCLUSION AND REMARKS 

In this study, it was successfully developed a hybrid model forecasting system for 

sugarcane yield by combining remote sensing weather data, process-based crop model outputs, and 

vegetation indices information. Also, it was tested the input data into 16 different machine learning 

regression models. The regional forecasted sugarcane yields showed low bias and good agreement 

with observed yield, providing one to two-month lead times, and a high degree of accuracy before 

the harvesting season. This approach can be implemented to monitor and forecast season harvest 

yield in the main sugarcane producer region and potentially in other similar dryland cropping 

systems around the world, due to its incorporation of process-based modeling approach. As the 

advances continues in internet of things (IoT), big data, cloud computing, remote sensing 

technology, and precision agriculture, it is expected that hybrid approaches can improve crop yield 

forecasts. This methodology can become increasingly important in providing information for 

regional planning of sugarcane supply and mitigating the detrimental effects of climate change on 

global food supply. 

Moreover, in this study it was investigated the impact of different source variables on 

forecasted yield, leading to a better understanding of sugarcane yield variability. Overall, the APSIM 

simulated variables showed the most positive impact on sugarcane yield forecast hybrid approach. 

While the remote sensing vegetation indices data presented the least contribution in yield forecasts. 

However, it may be worthwhile to explore finer spatial resolution in the future to determine 

whether it further benefits the ML algorithms and minimizes uncertainties. 

This approach focused on sugarcane in high-producing cities, but its hybrid modeling 

framework that combines remote sensing, process-based modeling, and machine learning makes it 

applicable to sugarcane in any region, indicating its readiness for scalability. While gathering more 

data could enhance the methodology's accuracy, this remains a potential extension for future work, 

which could also encompass additional crops and regions. Overall, this study aims to demonstrate 

the potential of hybrid models for yield prediction and highlights the strength of the approach and 

its results. 

One major limitation of this study was the restricted extent of the study area, which could 

be addressed by incorporating data from more years, cities, and other producing regions to add 

more variability and stress to the hybrid model approach. However, gathering more weather data 

is challenging due to the time required for processing and quality checking for use in crop models. 

Furthermore, when introducing more regions and years, cloud computing and data storage become 

crucial, depending on the temporal and spatial scales of process-based simulations. In this study, it 
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was used data from remote sensing and public databases, and the high spatial simulations could be 

optimized by reducing and identifying similar data points to simulate only highly different points 

and extrapolating the simulations with points that had minor differences between input variables, 

thus reducing processing time in all workflow steps. Future investigations could include applying 

this study in the field level of sugarcane mills in Brazil, which could improve the accuracy of the 

yield forecasts in management and operational applications of mills and producers. This hybrid 

approach developed is designed for all levels of spatial scales, and introducing more data variability 

could further test the hybrid model approach. 

Another suggestion could be the introduction of weather forecasts in the APSIM 

simulation model, which could improve the sugarcane yield forecasts before harvesting season. 

APSIM variables could produce simulations of crop to various weather projections, and the 

forecasts could incorporate weather uncertainties to forecast sugarcane yields as probabilities to 

fulfill a specific scenario, such as favorable, normal or unfavorable climatic year or it could include 

a yield forecasting interval. 
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APPENDICES 

Appendix A. Input variables used in the regression models. The variables were aggregated temporal for each sugarcane 
field and then, by municipality to be in the same scale as the observed yield. Note that soil APSIM variables have multi 
layers data for each sugarcane field. The aggregation performed were a temporal mean and standard deviation for each 
sugarcane field, by expanding method. After that, a mean and standard deviation was performed in spatial scale by 
each municipality, which have led to a total of 158 variables that were then reduced by Principal components technique 
to be used in the regression models.  

 

Variable Data source Description Units 

biomass APSIM Crop above-ground biomass (Green + Trash) g m-2 

green_biomass APSIM Total green crop above-ground biomass g m-2 

canefw APSIM Fresh cane weight t h-1 

lai APSIM Leaf area index of green leaves mm-2 mm-2 

cane_wt APSIM Weight of cane dry matter g m-2 

leafgreenwt APSIM Green leaf weight g m-2 

rootgreenwt APSIM Green root weight g m-2 

sucrose_wt APSIM Sucrose weight g m-2 

senescedwt APSIM Senesced biomass weight g m-2 

height APSIM Maximum canopy height mm 

sw_demand APSIM Daily demand for soil water mm 

esw APSIM Extractable Soil water in each soil layer mm 

nfact_photo APSIM Nitrogen stress factor for photosynthesis 0-1 

ep  APSIM Evapotranspiration (extraction) for each soil layer mm 

eo  APSIM Crop potential evapotranspiration  mm 

cep  APSIM Cumulative plant evapotranspiration mm 

swdef_expan APSIM Soil water stress factor for cell expansion 0-1 

swdef_pheno APSIM Soil water stress factor for phenology 0-1 

swdef_photo APSIM Soil water stress factor for photosynthesis 0-1 

swdef_stalk APSIM Soil water stress factor for stalks 0-1 

st  APSIM Soil temperature for each layer °C 

sws APSIM Soil water content for each layer cm-3 cm-3 

Rain CHIRPS Rainfall mm 

Radn 
ERA5-Land 

Global solar radiation 
MJ m-2 day-

1 

Maxt ERA5-Land Maximum air temperature °C  

Mint ERA5-Land Minimum air temperature °C  

Growing degree days  ERA5-Land Based on mean air temperature (base 16, ceiling 45) °C day 

NDVI MODIS Normalized difference vegetation index -1 to 1 

EVI MODIS Enhanced vegetation index -1 to 1 

SAVI MODIS Soil-adjusted vegetation index -1 to 1 

NDMI MODIS Normalized difference moisture index -1 to 1 

GNDVI MODIS Green normalized difference vegetation index -1 to 1 

BAI MODIS Burned area index 0-1 

Latitude Mapbiomas Latitude of each point - 

Longitude Mapbiomas Longitude of each point - 
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Appendix B. Statistical metrics for 7 different removal variable scenarios for all tested machine learning models, in the test dataset 

for years 2019 and 2020. Predictions comprehend the data until July, 1 month before the majority of areas harvesting. Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), Coefficient of determination (R²), Root Mean Squared Logarithmic Error 
(RMSLE), Mean Absolute Percentage Error (MAPE) and Correlation Coefficient (r). 

Model Variables Removal 
MAE RMSE R² RMSLE MAPE r 

t ha-1 t ha-1   %  

AdaBoost Regressor APSIM (2) 4.62 6.15 0.38 0.086 6.46 0.73 

AdaBoost Regressor APSIM + MET (5) 3.73 5.27 0.55 0.073 5.06 0.76 

AdaBoost Regressor APSIM + VEG_IND (7) 4.34 5.72 0.47 0.079 5.87 0.69 

AdaBoost Regressor MET (4) 4.77 6.44 0.32 0.090 6.62 0.64 

AdaBoost Regressor MET + VEG_IND (6) 5.03 6.78 0.25 0.095 7.08 0.80 

AdaBoost Regressor No removal (full dataset) (1) 5.74 7.71 0.03 0.106 8.04 0.37 

AdaBoost Regressor VEG_IND (3) 5.31 7.10 0.18 0.099 7.48 0.68 

Bayesian Ridge APSIM (2) 4.69 6.00 0.41 0.084 6.44 0.70 

Bayesian Ridge APSIM + MET (5) 4.69 6.12 0.39 0.086 6.53 0.72 

Bayesian Ridge APSIM + VEG_IND (7) 4.62 6.11 0.39 0.083 6.21 0.65 

Bayesian Ridge MET (4) 4.53 5.76 0.46 0.081 6.25 0.77 

Bayesian Ridge MET + VEG_IND (6) 4.56 5.87 0.44 0.082 6.3 0.80 

Bayesian Ridge No removal (full dataset) (1) 4.52 5.73 0.47 0.080 6.22 0.77 

Bayesian Ridge VEG_IND (3) 4.66 5.96 0.42 0.083 6.43 0.79 

Decision Tree Regressor APSIM (2) 5.34 6.62 0.29 0.092 7.38 0.58 

Decision Tree Regressor APSIM + MET (5) 5.11 6.30 0.35 0.086 6.93 0.63 

Decision Tree Regressor APSIM + VEG_IND (7) 6.97 8.87 -0.28 0.120 9.45 -0.04 

Decision Tree Regressor MET (4) 5.29 7.40 0.11 0.102 7.45 0.48 

Decision Tree Regressor MET + VEG_IND (6) 6.64 8.68 -0.23 0.118 9.11 -0.35 

Decision Tree Regressor No removal (full dataset) (1) 5.31 7.48 0.09 0.103 7.5 0.48 

Decision Tree Regressor VEG_IND (3) 5.33 7.53 0.08 0.104 7.54 0.48 

Elastic Net APSIM (2) 4.66 5.91 0.43 0.082 6.34 0.69 

Elastic Net APSIM + MET (5) 4.96 6.43 0.33 0.090 6.92 0.71 

Elastic Net APSIM + VEG_IND (7) 4.67 6.05 0.40 0.083 6.36 0.69 

Elastic Net MET (4) 4.81 6.17 0.38 0.086 6.69 0.79 

Elastic Net MET + VEG_IND (6) 5.19 6.78 0.25 0.094 7.22 0.80 

Elastic Net No removal (full dataset) (1) 4.64 5.90 0.43 0.083 6.42 0.78 

Elastic Net VEG_IND (3) 4.91 6.33 0.35 0.088 6.81 0.80 

Extra Trees Regressor APSIM (2) 4.47 5.74 0.46 0.080 6.14 0.74 

Extra Trees Regressor APSIM + MET (5) 4.37 5.78 0.46 0.081 6.03 0.76 

Extra Trees Regressor APSIM + VEG_IND (7) 4.45 5.35 0.53 0.073 6 0.75 

Extra Trees Regressor MET (4) 5.44 7.04 0.19 0.097 7.49 0.65 

Extra Trees Regressor MET + VEG_IND (6) 5.85 7.98 -0.04 0.110 8.24 0.64 

Extra Trees Regressor No removal (full dataset) (1) 6.13 8.09 -0.07 0.111 8.55 -0.11 

Extra Trees Regressor VEG_IND (3) 5.68 7.62 0.05 0.105 7.97 0.64 

Gradient Boosting Regressor APSIM (2) 5.77 7.26 0.14 0.100 7.95 0.78 

Gradient Boosting Regressor APSIM + MET (5) 4.08 5.43 0.52 0.071 5.29 0.73 

Gradient Boosting Regressor APSIM + VEG_IND (7) 5.06 6.70 0.27 0.089 6.77 0.59 

Gradient Boosting Regressor MET (4) 4.87 6.79 0.25 0.094 6.77 0.51 

Gradient Boosting Regressor MET + VEG_IND (6) 5.77 7.46 0.09 0.103 7.98 0.64 

Gradient Boosting Regressor No removal (full dataset) (1) 6.04 7.75 0.02 0.106 8.34 0.52 
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Gradient Boosting Regressor VEG_IND (3) 4.37 5.49 0.51 0.076 5.94 0.76 

Huber Regressor APSIM (2) 4.49 5.95 0.42 0.083 6.23 0.70 

Huber Regressor APSIM + MET (5) 4.50 6.00 0.41 0.084 6.28 0.71 

Huber Regressor APSIM + VEG_IND (7) 4.67 6.37 0.34 0.088 6.47 0.66 

Huber Regressor MET (4) 4.94 6.65 0.28 0.093 6.98 0.76 

Huber Regressor MET + VEG_IND (6) 5.58 7.52 0.08 0.104 7.89 0.72 

Huber Regressor No removal (full dataset) (1) 4.36 6.03 0.41 0.084 6.11 0.71 

Huber Regressor VEG_IND (3) 5.56 7.49 0.08 0.104 7.86 0.73 

K Neighbors Regressor APSIM (2) 3.94 5.40 0.52 0.075 5.41 0.76 

K Neighbors Regressor APSIM + MET (5) 4.62 6.13 0.39 0.086 6.44 0.76 

K Neighbors Regressor APSIM + VEG_IND (7) 4.28 6.05 0.40 0.083 5.84 0.65 

K Neighbors Regressor MET (4) 3.77 5.17 0.56 0.073 5.3 0.81 

K Neighbors Regressor MET + VEG_IND (6) 3.79 4.98 0.60 0.070 5.31 0.82 

K Neighbors Regressor No removal (full dataset) (1) 3.26 4.48 0.67 0.063 4.54 0.83 

K Neighbors Regressor VEG_IND (3) 3.51 4.66 0.65 0.065 4.86 0.84 

Lasso Regression APSIM (2) 4.86 6.07 0.40 0.083 6.46 0.66 

Lasso Regression APSIM + MET (5) 4.51 5.76 0.46 0.080 6.16 0.72 

Lasso Regression APSIM + VEG_IND (7) 4.48 5.99 0.41 0.081 5.98 0.65 

Lasso Regression MET (4) 4.67 6.30 0.35 0.086 6.25 0.60 

Lasso Regression MET + VEG_IND (6) 4.02 5.43 0.52 0.074 5.38 0.74 

Lasso Regression No removal (full dataset) (1) 4.71 6.37 0.34 0.087 6.37 0.58 

Lasso Regression VEG_IND (3) 4.39 5.93 0.43 0.081 5.88 0.67 

Least Angle Regression APSIM (2) 4.82 6.07 0.40 0.083 6.41 0.65 

Least Angle Regression APSIM + MET (5) 4.47 5.67 0.48 0.078 6.08 0.72 

Least Angle Regression APSIM + VEG_IND (7) 4.50 5.99 0.41 0.081 5.99 0.65 

Least Angle Regression MET (4) 4.69 6.41 0.33 0.087 6.24 0.59 

Least Angle Regression MET + VEG_IND (6) 4.07 5.46 0.51 0.074 5.4 0.73 

Least Angle Regression No removal (full dataset) (1) 4.67 6.41 0.33 0.088 6.29 0.58 

Least Angle Regression VEG_IND (3) 4.31 5.89 0.44 0.080 5.78 0.67 
Light Gradient Boosting 
Machine APSIM (2) 5.07 6.34 0.35 0.088 6.97 0.69 
Light Gradient Boosting 
Machine APSIM + MET (5) 4.65 6.17 0.38 0.084 6.37 0.62 
Light Gradient Boosting 
Machine APSIM + VEG_IND (7) 4.32 6.03 0.41 0.084 6.01 0.79 
Light Gradient Boosting 
Machine MET (4) 5.19 6.91 0.22 0.096 7.2 0.60 
Light Gradient Boosting 
Machine MET + VEG_IND (6) 6.10 7.86 -0.01 0.108 8.43 0.58 
Light Gradient Boosting 
Machine No removal (full dataset) (1) 5.50 7.35 0.12 0.102 7.68 0.52 
Light Gradient Boosting 
Machine VEG_IND (3) 4.85 5.95 0.42 0.081 6.51 0.65 

Linear Regression APSIM (2) 4.82 6.08 0.40 0.083 6.42 0.65 

Linear Regression APSIM + MET (5) 4.47 5.67 0.48 0.078 6.08 0.72 

Linear Regression APSIM + VEG_IND (7) 4.50 5.99 0.41 0.081 5.99 0.65 

Linear Regression MET (4) 4.69 6.42 0.33 0.087 6.25 0.59 

Linear Regression MET + VEG_IND (6) 4.07 5.46 0.51 0.074 5.4 0.73 

Linear Regression No removal (full dataset) (1) 4.67 6.42 0.33 0.088 6.29 0.58 

Linear Regression VEG_IND (3) 4.31 5.89 0.44 0.080 5.78 0.67 

Orthogonal Matching Pursuit APSIM (2) 4.95 6.62 0.29 0.092 6.96 0.67 
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Orthogonal Matching Pursuit APSIM + MET (5) 4.49 6.00 0.41 0.084 6.31 0.73 

Orthogonal Matching Pursuit APSIM + VEG_IND (7) 5.00 6.66 0.28 0.093 7 0.71 

Orthogonal Matching Pursuit MET (4) 4.40 6.09 0.40 0.085 6.23 0.77 

Orthogonal Matching Pursuit MET + VEG_IND (6) 4.46 6.13 0.39 0.086 6.29 0.78 

Orthogonal Matching Pursuit No removal (full dataset) (1) 5.07 7.18 0.16 0.100 7.24 0.70 

Orthogonal Matching Pursuit VEG_IND (3) 5.18 7.28 0.14 0.101 7.38 0.67 

Passive Aggressive Regressor APSIM (2) 4.35 5.68 0.47 0.079 5.9 0.70 

Passive Aggressive Regressor APSIM + MET (5) 4.46 5.92 0.43 0.083 6.2 0.71 

Passive Aggressive Regressor APSIM + VEG_IND (7) 4.43 6.09 0.40 0.084 6.06 0.65 

Passive Aggressive Regressor MET (4) 4.27 6.08 0.40 0.084 5.84 0.65 

Passive Aggressive Regressor MET + VEG_IND (6) 4.36 6.31 0.35 0.087 6.12 0.67 

Passive Aggressive Regressor No removal (full dataset) (1) 4.35 6.26 0.36 0.086 5.98 0.62 

Passive Aggressive Regressor VEG_IND (3) 4.43 6.50 0.31 0.090 6.24 0.65 

Random Forest Regressor APSIM (2) 5.47 6.92 0.22 0.095 7.5 0.61 

Random Forest Regressor APSIM + MET (5) 5.29 6.73 0.26 0.093 7.23 0.60 

Random Forest Regressor APSIM + VEG_IND (7) 5.51 6.62 0.29 0.090 7.44 0.56 

Random Forest Regressor MET (4) 5.46 6.84 0.24 0.094 7.48 0.66 

Random Forest Regressor MET + VEG_IND (6) 5.18 7.24 0.15 0.100 7.27 0.52 

Random Forest Regressor No removal (full dataset) (1) 5.98 7.82 0.00 0.108 8.33 0.26 

Random Forest Regressor VEG_IND (3) 4.70 6.15 0.38 0.086 6.49 0.77 

Ridge Regression APSIM (2) 4.68 5.97 0.42 0.083 6.4 0.69 

Ridge Regression APSIM + MET (5) 4.75 6.19 0.38 0.087 6.62 0.72 

Ridge Regression APSIM + VEG_IND (7) 4.76 6.18 0.38 0.085 6.52 0.70 

Ridge Regression MET (4) 4.40 5.58 0.49 0.078 6.02 0.75 

Ridge Regression MET + VEG_IND (6) 4.39 5.58 0.49 0.078 6.02 0.79 

Ridge Regression No removal (full dataset) (1) 4.40 5.60 0.49 0.078 6.02 0.75 

Ridge Regression VEG_IND (3) 4.49 5.71 0.47 0.079 6.14 0.77 

The variable removal scenarios are (1) Full dataset without variables removal, i.e. includes remote sensing vegetation 
indices, APSIM variables and meteorological variables; (2) Full dataset except APSIM variables; (3) Full dataset except 
remote sensing vegetation indices; (4) Full dataset except meteorological variables; (5) Dataset excluding APSIM and 
meteorological variables; (6) Dataset excluding APSIM and remote sensing vegetation indices; (6) Dataset without 
meteorological variables and vegetation indices and (7) Dataset excluding APSIM variables and vegetation indices 
 




