• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
https://doi.org/10.11606/D.11.2018.tde-02012018-135852
Documento
Autor
Nome completo
Leonardo Felipe Maldaner
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Piracicaba, 2017
Orientador
Banca examinadora
Molin, Jose Paulo (Presidente)
Beauclair, Edgar Gomes Ferreira de
Gimenez, Leandro Maria
Spekken, Mark
 
Título em português
Processamento de dados de monitores de produtividade de cana-de-açúcar
Palavras-chave em português
Agricultura de precisão
Dados errôneos
Processamento de dados espacial
Variabilidade espacial
Resumo em português
Na cultura da cana-de-açúcar, a colheita é realizada por uma colhedora que efetua o corte e processamento do produto colhido ao longo de uma (ou duas) fileira (s) da cultura estabelecida. Neste processo, dados obtidos por monitor de produtividade, quando existentes, fornecem informações com diferentes utilidades. Métodos existentes para o processamento de dados de produtividade utlizados atualmente foram desenvolvidos para conjuntos de dados de produtividade de grãos e quando aplicados a um conjunto de dados de produtividade de cana-de-açúcar podem eliminar dados com variações reais de produtividade dentro da fileira. O objetivo deste trabalho é desenvolver métodos que busquem identificar e remover dados errôneos, em pós-processamento, do conjunto de dados gerados por monitor de produtividade para caracterização das pequenas variações de produtividade dentro de uma fileira de cana-de-açúcar. A identificação de dados discrepantes do conjunto de dados utilizando método estatístico por quartis e uma filtragem comparando valores de produtividade usando somente dados de uma única passada da colhedora foi proposto. Foram utlizados quatro conjunto de dados de produtividade gerados por dois monitores. O monitor de produtividade 1 registrou os dados a uma frequência de 0,5 Hz e o monitor de produtividade 2 a uma frequência de 1 Hz. Foram encontrados dados errôneos gerados devido ao tempo de sincronização entre a colhedora e o conjunto transbordo durante as manobras de cabeceira e durante a troca do conjunto de transbordo. Também foram encontrados dados durante a manobras da colhedora, onde o monitor registrou dados com produtividade zero e nulas. Foram simuladas diferentes frequência de registro de dados com objetivo de verificar se a densidade de dados fornecida pelo monitor influência na caracterização de pequenas variações nos valores de produtividade dentro da passada. Os conjuntos de dados de produtividade gerados por diferentes tipos de monitores demostraram a necessidade de pós-processamento para remoção devalores de produtividades discrepantes. A metodologia desenvolvida neste trabalho foi capaz de identificar e eliminar os dados errôneos dos conjuntos de dados analisados. A metodologia de filtragem de dados considerando somente dados dentro de uma única passada da colhedora de cana-de-açúcar proporcionou a caracterização da variação de valores de produtividade em pequenas distâncias.
 
Título em inglês
Processing of data from sugarcane yield monitors
Palavras-chave em inglês
Erroneous data
Precision agriculture
Spatial data processing
Spatial variability
Resumo em inglês
In the sugarcane crop, a harvest is performed by a harvester who cuts and processes the product harvested along one (or two) row (s) of the established crop. In this process, data from yield monitor, when applicable, provide information with different utilities. Existing methods for processing yield data currently used have been developed for datasets of yield grain and when applied to a sugarcane yield dataset can eliminate data with actual variations of yield within the row. The objective of this work is to develop methods that seek to identify and remove erroneous data, in post-processing, from the data set generated by yield monitor to characterize the small variations of yield within a row of sugarcane. The identification of outliers from the data set using statistical method for comparing quartiles and filtering yield values using only data from a single past the harvester has been proposed. Assay were utilized four yield dataset generated by two monitors. The yield monitor 1 recorded data at a frequency of 0.5 Hz and the yield monitor 2 at a frequency of 1 Hz. Erroneous data were found in the data set generated due to the time of synchronization between the sugarcane harvester and the transportation of chopped sugarcane during the headland turns and during the exchange of the transportation of chopped sugarcane during harvest. Were also found during the headland turns of the sugarcane harvester, where the yield monitor recorded data with values of yield zero and void. It was simulated different frequency of recording data with the objective of verifying if density of data provided by the monitor influences in the characterization of small variations in the yield values within the path. The yield data sets generated by different types of displays have demonstrated the need for post-processing to remove outliers in the yield dataset. The methodology developed in this study was able to identify and eliminate erroneous data sets analyzed data. Data filtering methodology considering only data within a single pass of the sugarcane harvester provided to characterize the variation in yield values over short distances.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-01-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.