• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.11.2020.tde-26112020-160942
Document
Auteur
Nom complet
Luís Henrique Damasceno Serezino
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
Piracicaba, 2020
Directeur
Jury
Figueira, Antonio Vargas de Oliveira (Président)
Di, Rong
Lam, Eric
Lima, Joni Esrom
Titre en anglais
Regulation of the nitrate uptake process in grass species
Mots-clés en anglais
Brachypodium
Saccharum
HATS
Nitrate
NUE
Sugarcane
Resumé en anglais
Due to the negative environmental and economic consequences of excessive and indiscriminate use of N fertilizer, there is an increasing need for developing more efficient crops for N uptake. As nitrate is the main inorganic N source available in most soils, there has been a notable research effort to understand the nitrate uptake process, a key factor in the improvement of Nitrogen Use Efficiency (NUE), and the molecular factors that modulate it. Thus, the knowledge acquired in model plants about the molecular factors and regulatory mechanisms of genes encoding Nitrate Transporters (NRTs) responsible for nitrate uptake could be used to improve NUE in crops. The improvement of NUE is a challenge to allow environmentally friendly agriculture to support the growth of the human population and the consequent food demand, since the intensive use of N fertilizers threat both crop sustainability and food security. The physiological and molecular characterization of the nitrate acquisition process in Brachypodium distachyon, a grass model plant, could help to improve non-model crops with higher biological complexity such as sugarcane. 15N-ammonium and 15N-nitrate influx analyses in B. distachyon upon N-replete and N-deficient conditions revealed that ammonium is the preferential inorganic N source. A negative feedback regulation of nitrate uptake process by ammonium in Brachypodium plants under N provision and N resupply was observed. BdNRT2.1and BdNRT2.2 expression analyses suggest that both proteins are the main B. distachyon NRT2 transporters responsible for nitrate acquisition. Both identified BdNRT3 members were co-expressed with BdNRT2.1 and BdNRT2.2. So, the 15N-nitrate influx analysis and transcript accumulation of members of the two-component complex (NRT2/ NRT3) after ammonium chloride provision and ammonium nitrate resupply treatments suggest the transcriptional regulation of HATS in B. distachyon. Conversely, studies with sorghum and sugarcane revealed distinct regulation of HATS nitrate uptake process under nitrate resupply. 15N-nitrate influx assays showed high nitrate uptake by sorghum 'BTX623' cultivar and the sugarcane 'IAC87-3396' genotype. Expression analysis of genes encoding NRT2 and NRT3, HATS complex components, exhibit distinct transcriptional regulation among sugarcane genotypes. The lack of correlation between the accumulation of NRT2.1 and NRT3.1 proteins with the 15N-nitrate influx suggest the presence of a mechanism controlling nitrate transport in sorghum and sugarcane roots at post-translational level. This putative allosteric regulation of the HATS complex would be the major player on nitrate uptake in roots of sorghum and sugarcane. A better understanding of the mechanisms and molecules involved in the post-translational regulation of the nitrate uptake process and, therefore, in the signaling pathway of this N source in grasses would bring about the development of crops with higher NUE.
Titre en portugais
Regulação do processo de absorção de nitrato em espécies gramíneas
Mots-clés en portugais
Brachypodium
Saccharum
Cana-de-açúcar
HATS
Nitrato
NUE
Resumé en portugais
Devido às consequências ambientais e econômicas negativas do uso indiscriminado e excessivo de fertilizantes nitrogenados, há uma necessidade crescente de se desenvolver culturas mais eficientes para absorção de nitrogênio (N). Sendo o nitrato a principal fonte de N inorgânico disponível no solo, há um esforço notável para entender o processo de absorção de nitrato pelas plantas, um fator-chave na melhoria da eficiência no uso de N (NUE - Nitrogen Use Efficiency), e os fatores moleculares que a modulam. Assim, o conhecimento adquirido em plantas-modelo sobre os fatores moleculares e os mecanismos reguladores dos genes codificadores de transportadores de nitrato (NRTs) responsáveis pela absorção de nitrato poderia ser usado para melhorar a NUE das culturas. Surge, portanto, como um desafio para permitir que uma agricultura ambientalmente mais amigável que permita sustentar o crescimento da população humana e a consequente demanda por alimentos, uma vez que o uso intensivo de fertilizantes nitrogenados ameaça a sustentabilidade das culturas e a segurança alimentar. A caracterização fisiológica e molecular do processo de aquisição de nitrato em Brachypodium distachyon, uma planta modelo de gramíneas, poderia ajudar a melhorar as culturas não modelo, com maiores complexidades biológicas como a cana-de-açúcar. Análises de influxo de 15N-amônio e 15N-nitrato em condições de suficiência e deficiência em N revelaram que o amônio é a fonte inorgânica preferencial de N de B. distachyon. Foi observada uma regulação por feedback negativo do processo de absorção de nitrato exercido por amônio nas plantas sob tratamento de provisão e ressuplementação de N. Análises de expressão dos genes codificantes para os transportadores NRT2.1 e NRT2.2 em Brachypodium sugerem ambas proteínas como os principais transportadores NRT2 responsáveis pela aquisição de nitrato nesta espécie. Ambos os membros da família gênica BdNRT3 foram coexpressos com os genes BdNRT2.1 e BdNRT2.2. Assim, a análise do influxo de nitrogênio 15N e o acúmulo de transcritos de membros do complexo de dois componentes (NRT2 / NRT3) após os tratamentos de provisão de cloreto de amônio e de ressuplementação de nitrato de amônio sugerem a ocorrência de uma regulação transcricional do HATS (High Affinity Transport System) em B. distachyon. Por outro lado, estudos utilizando sorgo e cana-de-açúcar revelaram uma regulação distinta do processo de absorção de nitrato na faixa HATS em ambas as espécies sob reabastecimento de nitrato. O influxo de nitrato marcado mostrou alta absorção de nitrato pela cultivar de sorgo 'BTX623' e pelo híbrido de cana-de-açúcar 'IAC87-3396'. Análises de expressão de genes que codificam NRT2 e NRT3 exibiram regulação transcricional distinta entre os genótipos da cana-de-açúcar. A falta de correlação entre o acúmulo de proteínas NRT2.1 e NRT3.1 com o influxo de 15N-nitrato sugere a presença de mecanismo de controle do transporte de nitrato nas raízes de sorgo e cana-de-açúcar em nível pós-traducional. Essa presumível regulação alostérica do complexo HATS seria o principal mecanismo regulador da absorção de nitrato nas raízes de sorgo e cana-de-açúcar. Melhor compreensão dos mecanismos e moléculas envolvidas na regulação pós-traducional do processo de absorção de nitrato e, portanto, na via de sinalização desta fonte de N em gramíneas traria o desenvolvimento de culturas com maior NUE.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-11-30
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.