• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Luís Henrique Damasceno Serezino
Knowledge Area
Date of Defense
Piracicaba, 2020
Figueira, Antonio Vargas de Oliveira (President)
Di, Rong
Lam, Eric
Lima, Joni Esrom
Title in English
Regulation of the nitrate uptake process in grass species
Keywords in English
Abstract in English
Due to the negative environmental and economic consequences of excessive and indiscriminate use of N fertilizer, there is an increasing need for developing more efficient crops for N uptake. As nitrate is the main inorganic N source available in most soils, there has been a notable research effort to understand the nitrate uptake process, a key factor in the improvement of Nitrogen Use Efficiency (NUE), and the molecular factors that modulate it. Thus, the knowledge acquired in model plants about the molecular factors and regulatory mechanisms of genes encoding Nitrate Transporters (NRTs) responsible for nitrate uptake could be used to improve NUE in crops. The improvement of NUE is a challenge to allow environmentally friendly agriculture to support the growth of the human population and the consequent food demand, since the intensive use of N fertilizers threat both crop sustainability and food security. The physiological and molecular characterization of the nitrate acquisition process in Brachypodium distachyon, a grass model plant, could help to improve non-model crops with higher biological complexity such as sugarcane. 15N-ammonium and 15N-nitrate influx analyses in B. distachyon upon N-replete and N-deficient conditions revealed that ammonium is the preferential inorganic N source. A negative feedback regulation of nitrate uptake process by ammonium in Brachypodium plants under N provision and N resupply was observed. BdNRT2.1and BdNRT2.2 expression analyses suggest that both proteins are the main B. distachyon NRT2 transporters responsible for nitrate acquisition. Both identified BdNRT3 members were co-expressed with BdNRT2.1 and BdNRT2.2. So, the 15N-nitrate influx analysis and transcript accumulation of members of the two-component complex (NRT2/ NRT3) after ammonium chloride provision and ammonium nitrate resupply treatments suggest the transcriptional regulation of HATS in B. distachyon. Conversely, studies with sorghum and sugarcane revealed distinct regulation of HATS nitrate uptake process under nitrate resupply. 15N-nitrate influx assays showed high nitrate uptake by sorghum 'BTX623' cultivar and the sugarcane 'IAC87-3396' genotype. Expression analysis of genes encoding NRT2 and NRT3, HATS complex components, exhibit distinct transcriptional regulation among sugarcane genotypes. The lack of correlation between the accumulation of NRT2.1 and NRT3.1 proteins with the 15N-nitrate influx suggest the presence of a mechanism controlling nitrate transport in sorghum and sugarcane roots at post-translational level. This putative allosteric regulation of the HATS complex would be the major player on nitrate uptake in roots of sorghum and sugarcane. A better understanding of the mechanisms and molecules involved in the post-translational regulation of the nitrate uptake process and, therefore, in the signaling pathway of this N source in grasses would bring about the development of crops with higher NUE.
Title in Portuguese
Regulação do processo de absorção de nitrato em espécies gramíneas
Keywords in Portuguese
Abstract in Portuguese
Devido às consequências ambientais e econômicas negativas do uso indiscriminado e excessivo de fertilizantes nitrogenados, há uma necessidade crescente de se desenvolver culturas mais eficientes para absorção de nitrogênio (N). Sendo o nitrato a principal fonte de N inorgânico disponível no solo, há um esforço notável para entender o processo de absorção de nitrato pelas plantas, um fator-chave na melhoria da eficiência no uso de N (NUE - Nitrogen Use Efficiency), e os fatores moleculares que a modulam. Assim, o conhecimento adquirido em plantas-modelo sobre os fatores moleculares e os mecanismos reguladores dos genes codificadores de transportadores de nitrato (NRTs) responsáveis pela absorção de nitrato poderia ser usado para melhorar a NUE das culturas. Surge, portanto, como um desafio para permitir que uma agricultura ambientalmente mais amigável que permita sustentar o crescimento da população humana e a consequente demanda por alimentos, uma vez que o uso intensivo de fertilizantes nitrogenados ameaça a sustentabilidade das culturas e a segurança alimentar. A caracterização fisiológica e molecular do processo de aquisição de nitrato em Brachypodium distachyon, uma planta modelo de gramíneas, poderia ajudar a melhorar as culturas não modelo, com maiores complexidades biológicas como a cana-de-açúcar. Análises de influxo de 15N-amônio e 15N-nitrato em condições de suficiência e deficiência em N revelaram que o amônio é a fonte inorgânica preferencial de N de B. distachyon. Foi observada uma regulação por feedback negativo do processo de absorção de nitrato exercido por amônio nas plantas sob tratamento de provisão e ressuplementação de N. Análises de expressão dos genes codificantes para os transportadores NRT2.1 e NRT2.2 em Brachypodium sugerem ambas proteínas como os principais transportadores NRT2 responsáveis pela aquisição de nitrato nesta espécie. Ambos os membros da família gênica BdNRT3 foram coexpressos com os genes BdNRT2.1 e BdNRT2.2. Assim, a análise do influxo de nitrogênio 15N e o acúmulo de transcritos de membros do complexo de dois componentes (NRT2 / NRT3) após os tratamentos de provisão de cloreto de amônio e de ressuplementação de nitrato de amônio sugerem a ocorrência de uma regulação transcricional do HATS (High Affinity Transport System) em B. distachyon. Por outro lado, estudos utilizando sorgo e cana-de-açúcar revelaram uma regulação distinta do processo de absorção de nitrato na faixa HATS em ambas as espécies sob reabastecimento de nitrato. O influxo de nitrato marcado mostrou alta absorção de nitrato pela cultivar de sorgo 'BTX623' e pelo híbrido de cana-de-açúcar 'IAC87-3396'. Análises de expressão de genes que codificam NRT2 e NRT3 exibiram regulação transcricional distinta entre os genótipos da cana-de-açúcar. A falta de correlação entre o acúmulo de proteínas NRT2.1 e NRT3.1 com o influxo de 15N-nitrato sugere a presença de mecanismo de controle do transporte de nitrato nas raízes de sorgo e cana-de-açúcar em nível pós-traducional. Essa presumível regulação alostérica do complexo HATS seria o principal mecanismo regulador da absorção de nitrato nas raízes de sorgo e cana-de-açúcar. Melhor compreensão dos mecanismos e moléculas envolvidas na regulação pós-traducional do processo de absorção de nitrato e, portanto, na via de sinalização desta fonte de N em gramíneas traria o desenvolvimento de culturas com maior NUE.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.