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RESUMO 

Uso de escaneamento laser aerotransportado para melhorar a colheita seletiva e para 

avaliar a distribuição de frequência e tamanho de clareiras florestais na Amazônia 

Brasileira 

O escaneamento laser aerotransportado (ALS) pode apoiar o manejo de florestas 

naturais complexas. A tese apresenta dois estudos, o primeiro engloba uma avaliação em 

pequena escala onde o ALS foi usado para qualificar árvores emergentes e para avaliar 

quantas árvores comerciais podem ser encontradas para melhorar os planos operacionais de 

manejo florestal. O segundo estudo demonstra a utilidade de uma amostragem em larga escala 

usando ALS para avaliar a distribuição de clareiras na região amazônica no Brasil. No 

primeiro estudo (capítulo 1) usando o modelo de dossel emergente do ALS-Lidar 66 

indivíduos foram classificados como tendo potencial para comércio, dos quais 58 indivíduos 

apresentaram as melhores qualidades de fuste para exploração, o que representou mais de sete 

árvores comerciais de alta qualidade por hectare. Os resultados permitiram propor que o 

planejamento operacional com dados ALS pode ser usado para direcionar de forma mais 

eficiente os trabalhos de campo sem a necessidade de um censo completo, o que reduziria o 

esforço em campo nos estágios iniciais de gestão. No capítulo 2, nós mapeamos a variação do 

coeficiente de escala (α) da função power-law, amplamente utilizada para descrever a 

distribuição de clareiras em diversas florestas. Observamos assim, um padrão de grande 

escala na variação dos α de Noroeste a Sudeste (maior proporção de grandes clareiras no 

Sudeste), o que se alinha com trabalhos recentes sobre taxas de mortalidade de árvores. 

Também explicamos a relação dessas clareiras do dossel com a estrutura da floresta e 

variáveis ambientais. A proporção de grandes clareiras no dossel florestal variou 

substancialmente na Amazônia brasileira como resultado da estrutura do dossel e das taxas de 

perturbação. Cenários de mudanças climáticas são um ponto de preocupação, pois o aumento 

de eventos climáticos extremos pode, portanto, aumentar a proporção de grandes clareiras em 

florestas atualmente intactas, fazendo com que elas se assemelhem a florestas modificadas 

pelo homem. 

Palavras-chave: Árvores emergentes, Clareiras, Colheita seletiva, Dinâmica florestal, 

Florestas tropicais, LiDAR, Manejo florestal sustentável 
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ABSTRACT 

Use of airborne laser scanning to improve selective logging and to assess size-frequency 

distribution of forest gaps in the Brazilian Amazon 

Airborne laser scanning (ALS) can support the management of complex natural 

forests. The thesis presents two studies, one focuses on a small scale ALS assessment that was 

used to qualify emergent trees and to assess how many commercial trees can be found in 

order to improve forest management operational plans. The second study demonstrates the 

usefulness of a large-scale ALS sampling assessment to evaluate the distribution of canopy 

gaps across the Amazonian region in Brazil. In the first study (chapter 1) by using the 

emergent canopy model from ALS-Lidar we classified 66 individuals as having potential for 

commerce, from which 58 individuals presented the best stem quality for logging, which 

represented more than seven high quality commercial trees per hectare. We propose that ALS 

operational planning can be used to more efficiently direct field surveys without the need for a 

full census that would reduce field work in the initial stages of management. In the chapter 2, 

we mapped the variation of the power-law scale coefficient (α) function, widely used to 

describe the gap size-frequency distribution in different forests around the world. We 

observed a large-scale Northwest to Southeast pattern in α (higher proportion of large gaps in 

the Southeast), which aligns with recent work on tree mortality rates. We also explained the 

relationship of these canopy gaps with forest structure and environmental variables. The 

proportion of large gaps in the forest canopy varied substantially over the Brazilian Amazon 

as a result of canopy structure and disturbance rates. Scenarios of climate change is a point of 

concern since increasing extreme weather events may therefore increase the proportion of 

large gaps in currently intact forests, causing them to resemble human modified forests. 

Keywords: Emergent crowns, Forest dynamic, Gap size distribution, LiDAR, Selective 

logging, Sustainable forest management, Tropical rainforest 
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1. INTRODUCTION 

Tropical forests host high biodiversity, comprised by many hotspots filled with 

endemic species. It also maintains a large aboveground carbon (AGC) stock (Baccini et al. 

2012, Saatchi et al. 2011), revealing an important role in the regulation of global climate 

system (Giardina et al. 2018, Malhi et al. 2008). More than half of all surviving tropical 

forests occurs in the Amazon Basin, which is being seriously altered by large-scale 

agriculture, industrial logging, proliferating roads, and oil and gas development (Laurance et 

al. 2011). 

Natural or anthropic disturbance processes, such as mortality, fire, and deforestation 

contribute to increasing carbon emissions (Baccini et al. 2012, Houghton, Byers, Nassikas 

2015, Sist et al. 2014). A large-scale deforestation and agricultural expansion in the Americas 

has been reported over the years showing significantly more vulnerability to climate and land-

use change than other tropical forests (Saatchi et al. 2021). Not only the CO2 emission is a 

source of concern, but the rapid loss and fragmentation of old-growth forests are among the 

greatest threats to tropical biodiversity (Laurance et al. 2011). Changes in climate conditions 

and the increase of human activities are changing the natural dynamics of the forests, such as 

gaps formation and species colonization. Many species in Amazonian forests are rare or 

patchily distributed and many of them may be absent from fragments not because their 

populations have vanished, but because they were simply not present at the time of fragment 

creation or gap colonization (Saatchi et al. 2021). 

High biodiversity, wood supply and reducing CO2 emission from deforestation and 

degradation (Saatchi et al. 2011, Medjibe, Putz 2012, Leitold et al. 2015, Longo et al. 2016) 

put rainforests in the global spotlight. Using the forest and still maintain its resources to the 

future generations is a topic that leads to a wide-range of discussion. Therefore, studies have 
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been conducted to understand how forest ecosystems respond to different anthropogenic 

activities. This knowledge enables to plan, manage and monitoring the forests aiming the 

sustainable development of tropical regions, such as the Brazilian Amazon (Costa et al. 2015). 

Sustainable forest management driven by selective logging is an important method to use the 

resources from natural forests and still keep its capacity to maintain biodiversity. Long-term 

analyses have shown that selective logging in areas with absence of other disturbances, such 

as fire and illegal logging, do not heavily affect biodiversity, and the effects on ecosystem 

processes are moderated (Costa et al. 2015). Conversely, illegal and/or conventional logging 

is a key point of concern, since it threatens biodiversity conservation by deforestation (Silva et 

al. 2014, Vidal et al. 2016). 

The Brazilian Amazon has an area around 5.2 x 10
6
 km

2
 (Martha Júnior, Contini, 

Navarro 2011). It is predominantly covered by dense, open and seasonal forests (Almeida et 

al. 2017), and also presents a large variation in soil, climate, and vegetation. To monitor this 

ecosystem, a wide network of inventory plots is an important source of information for 

biomass and carbon estimates (Longo et al. 2016), forest dynamic studies (Dalagnol et al. 

2021), sustainable forest management evaluation (Vidal et al. 2016), among other important 

researches that often are used to implement environmental policies or to show future scenarios 

(Saatchi et al. 2021) that should be globally discussed to minimize the effects of human 

actions on the forests and avoid irreversible situations in the future. 

Although the forest inventory should be performed on areas that contemplate all 

possible variations within the forest (Longo et al. 2016), measurements are time consuming 

and expensive, due to the plot size and area extent, turning it difficult to study the complete 

variation in large forests, such as in the Amazon (Goetz et al. 2015). Remote sensing data has 

been used to overcome this challenge by combining plot data with RS data. This technology 

makes possible the achievement of estimates on a large scale (Asner et al. 2005, Baccini et al. 
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2012, Longo et al. 2016, Saatchi et al. 2011). The airborne laser scanning (ALS) performed 

with a LiDAR sensor has excelled in comparison to other technologies on forest applications. 

LiDAR measures distances from target to the sensor (Næsset 1997, Lefsky et al. 

2002), and provides a 3D representation of returns from the terrain and objects above the 

terrain (Silva et al. 2015, Gorgens et al., 2016). Matching high penetrability and high spatial 

resolution, ALS-LiDAR generates detailed information even for layers under the canopy 

(Coops et al., 2007; Gorgens et al., 2016). Many returns relative to terrain are collected by the 

sensor allowing the construction of high-resolution terrain model (Andrade et al. 2018). 

Additionally, ALS metrics combined or calibrated with field plot variables, improve AGB 

estimates consistently because of the canopy heights precision (Asner, Mascaro 2014; 

Figueiredo et al. 2016, Longo et al. 2016, de Almeida et al. 2019). Many other studies have 

been conducted using ALS data to understand forest characteristics (de Almeida Papa et al. 

2020, Gorgens et al. 2016), gaps dynamics (Dalagnol et al. 2021), vegetation structure (de 

Almeida et. Al 2019, Wedeux and Coomes 2015), coarse woody debris (Lefsky et al. 1999), 

tree life stage (Bater et al. 2007), diameter distribution (Stark et al. 2015, Suárez et al. 2005), 

and others. 

In this thesis we used ALS data to basically create a canopy height model (CHM) to 

work in two different scales. In the first chapter we used the CHM to find emergent trees in 

the amazon forest using a sub product generated from the CHM – the emergent canopy model 

- in an area located in Manaus, Amazonas state. In this chapter we show and discuss the 

possibility of orientating field work aiming to qualify the emergent trees and see, within these 

emergent trees, how many commercial trees can be find in order to improve the forest 

management operational plan.  

The second chapter covered a large-scale objective and is a good example of how ALS 

data is suitable to understand large-scale patterns that are not comprised by even the extensive 
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field plot network we have available in the Brazilian Amazon. In this chapter we used the 

CHM from ALS to find openings in the 650 LiDAR transects over the Amazon. These 

openings, also known as canopy gaps, are a key aspect of forest structure and dynamics, 

marking the balance between disturbance and regeneration in dense tropical forests. This 

study provides a new understanding of the variation in canopy gaps across the Brazilian 

Amazon. 
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2. QUALIFYING THE INFORMATION DETECTED FROM AIRBORNE LASER 

SCANNING TO SUPPORT TROPICAL FOREST MANAGEMENT OPERATIONAL 

PLANNING
1
 

Resumo 

      Manejo florestal sustentável (MFS) é um método que visa antecipar o que ocorreria 

naturalmente nas florestas por meio do corte de árvores maduras, cuja queda poderia danificar 

as árvores circunvizinhas. A coleta de todas as informações necessárias para o planejamento 

da colheita na Amazônia Brasileira é, atualmente, uma tarefa difícil que demanda muito 

tempo e cara. As informações necessárias podem ser obtidas de forma mais rápida se produtos 

do escaneamento laser aerotransportado (ALS) são incluídos no planejamento operacional. 

Nuvem de pontos ALS foram processadas para isolar as copas emergentes das árvores a partir 

do modelo de altura do dossel. Na sequência, foi realizado trabalho de campo para validar a 

existências das árvores, cujas copas foram previamente isoladas, e para verificar quantas 

árvores comerciais (diâmetro ≥ 50 cm) foram possíveis de serem localizadas a partir do 

modelo de copas emergentes. Foram detectadas no modelo 184 (54.5%) árvores entre as 338 

árvores medidas nas 20 parcelas de campo (total de 8 ha). Das árvores detectadas, 66 

indivíduos foram classificados como potenciais para comercialização. Contudo, 58 indivíduos 

apresentaram as melhores qualidades de fuste exigidas para a colheita, o que representou mais 

de sete árvores comerciais por ha com elevada qualidade para o comércio. A regressão 

logística mostrou que os efeitos que afetam positivamente a formação de copas emergentes 

estão presentes nas árvores comerciais. O uso do ALS pode melhorar o planejamento do MFS 

por meio da redução do trabalho de campo nas etapas iniciais do planejamento. Portanto, nós 

propomos o adiamento do trabalho de campo para que seja realizado a partir dos resultados 

obtidos com o ALS no planejamento operacional e evitar a realização do censo. 

 

Palavras-Chave: LiDAR, colheita seletiva, copas emergentes, floresta tropical, manejo 

florestal sustentável. 

  

Abstract 
      Background: Forests throughout the world are managed to fulfil a range of commercial 

and ecosystem services. The same applies to managed areas of the Amazon forest. We 

explore a method of sustainable forest management (SFM) which anticipates the result of 

processes of natural mortality of large, mature trees that could fall and damage their 

neighbors. Collecting all the information required for planning logging in the Brazilian 

Amazon is, currently, a hard, time-consuming and expensive task. Methods: This information 

can be obtained more quickly, accurately and objectively by including airborne laser scanning 

(ALS) products in the operational plan. We used ALS point clouds to isolate emergent crowns 

from the canopy height model. Then, we performed field work to validate the existence of 

these trees, and to understand how many commercial trees (tree diameter ≥ 50 cm) we 

identified by orienting the trees search through the emergent canopy model. Results: We 

                                                      
1 Reis, C.R.; Gorgens, E.B; de Almeida, D.R.A.; Celes, C.H.S.; F.; Rosette, J.; Lima, A.; Higuchi, N.; 

Ometto, J.; Santana, R.C.; Rodriguez, L.C.E. Qualifying the information detected from airborne laser 

scanning to support tropical forest management operational planning. Forests 2021, 12, 1724. 

http://doi.org/10.3390/f12121724”. 
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were able to detect 184 (54.4%) trees from 338 field-recorded individuals in 20 plots (totaling 

8 ha). Of the detected trees, 66 individuals were classified as having potential for commerce. 

Furthermore, 58 individuals presented the best stem quality for logging, which represents 

more than seven high quality commercial trees per hectare. The logistic regression showed 

that the effects that positively influence the emergent crown formation are strongly presented 

in the commercial species. Conclusions: Using airborne laser scanning can improve the SFM 

planning in a structurally complex, dense and mixed composition tropical forest by reducing 

field work in the initial stages of management. Therefore, we propose that ALS operational 

planning can be used to more efficiently direct field surveys without the need for a full 

census. 

 

Keywords: LiDAR; tropical rainforest; sustainable forest management; selective logging; 

emergent crowns. 

 

2.1 Introduction 

Forest management planning demands several types of information related to the 

forest resources and their context. From the perspective of the forest resources, these comprise 

extent, quantity, composition, and resource condition [1]. Regarding the context, information 

on logging equipment characteristics, road layout, growing stock, silvicultural activities, 

terrain description, streamflow network is required. Forest management effectiveness depends 

on spatially explicit, accurate, and time-effective information. 

Sustainable forest management (SFM) demands: (i) delineating relatively homogenous 

units based on characteristics such as tree species composition and stand structure [2], (ii) 

determining the best route to logging extraction to minimize soil and forest impacts [3] and 

(iii) reaching the easily derived indicators to monitor forest management activities [4,5]. SFM 

organizes actions that allow the ordering of production, implementing the selective logging 

practices [6,7]. In addition, an SFM plan must guarantee the forest production’s continuity, 

avoid waste of wood, and certify the forest products resulting from the exploitation [8,9]. The 

accuracy and level of detail of the information has special limitations when forest 

management plans are implemented in areas that are not easily accessible [3]. 
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Currently, an SFM plan relies on extensive and laborious forest inventory procedures, 

which contributes to increasing the business risk and cost [3,10]. The Brazilian law, for 

example, demands an extensive field data collection before any authorization is granted to cut 

a tree. Two main data collections are necessary. First, the forest inventory based on sample 

plots is implemented to support information to propose the SFM plan. After the approval of 

the SFM, it is necessary to get, annually, the approval to implement the operational activities. 

For that, a second field data collection is performed, recording all the trees (commercial and 

non-commercial) with diameter at breast height (DBH) greater than 50 cm presented in the 

annual production unit (also known as census). The census is the most important step for the 

operational planning since it not only quantifies the volume but also geolocates the trees, 

quantifies the commercial trees and records additional information such as stem quality, 

natural direction for tree falls, occurrence of stream flows, existence of gaps, presence of 

vines, and slope variation, among others. 

Long-term analyses have shown that selective logging in areas with absence of other 

disturbances, such as fire and illegal logging, do not heavily affect biodiversity, and the 

effects on ecosystem processes are moderated [11]. Conversely, illegal and/or conventional 

logging is a key point of concern, since it threatens biodiversity conservation by deforestation 

[9,12]. Thus, individual tree information, including location and characterization, is 

fundamental to supporting the implementation of any SFM plan. Mapping those trees based 

on field work is a hard task in forests with large extent and sometimes under extreme 

conditions found in tropical forests (e.g., humidity, temperature, mosquitoes, etc.) [13]. 

To overcome those difficulties, a sequence of recent studies [3,10,14–16] has shown 

that high-resolution products provided by airborne LiDAR (a.k.a. Airborne Laser Scanning - 

ALS) could be used to improve the SFM and operational planning. ALS generates data sets 

on large scales [17,18], from which it is possible to detect and segment trees [19,20]. For 
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instance, the linkage between spatial resolution (pixel size) and the concomitant objects that 

can be characterized (trees, stands) is well understood, with high spatial resolution data 

enabling single tree detection and analysis, and lower-spatial-resolution data sources enabling 

coarser stand-level (or broader) analyses [19,21]. Some individual tree detection and 

segmentation algorithms give the estimated position, size and shape of crowns [21]. This 

method preferentially detects trees that reach or grow above the mean forest canopy, i.e., the 

emergent crowns [19,22]. However, an important limitation to ALS consolidation as a 

resource for tropical forest planning is the qualitative comprehension of what ALS is capable 

of seeing regarding the forest. 

Rather than supplanting existing approaches, ALS data can be integrated into current 

forest management processes [23] by providing information about the vertical structure that 

can be linked with the horizontal structure from field plots [19,24]. Studies have shown that 

ALS data can already provide information about the terrain characteristics [25], drainage 

network [26], forest characteristics [24,27], gaps dynamics [28,29], vegetation structure [30–

32], coarse woody debris [33], tree life stage [34], diameter distribution [35,36], and others. 

However, ALS can only provide limited information related to forest composition, i.e., tree 

species [37]. 

In this paper, we used single tree locations detected by processing the ALS data, to run 

an inventory aiming to find and characterize the trees quantitatively and qualitatively in the 

field. To our knowledge, this is the first attempt to first qualify the information extracted by 

ALS data from a tropical forest. 

Three goals are defined for this paper: (1) quantify and qualify (e.g., species, 

commercial interest, crown luminosity, stem quality and size) the detected/non-detected trees 

based on ALS processing; (2) from the detected trees, quantify the percentage of trees that 
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match legal criteria for logging; (3) identify characteristics that influence detection/non-

detection of the individual trees’ characteristics. 

 

2.2 Development 

2.2.1 Methodology 

The study was conducted at the Experimental Station for Tropical Silviculture (ZF2, 

Figure 1), at the National Institute of Amazon Research (INPA), located in Manaus (AM, 

Brazil). The area is located between the coordinates 02°33’43” S to 02°40’23” S and 

60°07’15” W to 60°13’31” W and is composed of dense tropical forest of “terra-firme” with 

two main toposequences: valleys and plateaus [38]. The plateau is formed mainly of Yellow 

Oxisols, while valleys are formed by Hydromorphic Sandy [39]. The elevation above sea 

level ranges from 44 to 112 m (Figure 1A). The climate is classified as Af, according to 

Köppen, and is characterized by high temperature, precipitation and humidity year-round 

[40]. Temperatures vary between 23 °C and 31 °C and mean annual precipitation can reach 

2078 mm [39]. The site where the study was conducted has mean canopy height of 30 m, and 

the emergent trees can grow over 44 m tall [39] (Figure 1B). 
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Figure 1. Study area is located at Experimental Station for Tropical Silviculture (ZF2), in 

Manaus, Amazonas State. (A) Digital terrain model (DTM) overlapped with the 20 field plots 

measured during the field work. (B) 20 x 200 m field plot and the canopy height model 

(CHM). 
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We launched 20 field plots (20 x 200 m²) in areas covered by four airborne laser 

scanning transects collected by the “Improving Biomass Estimation Methods for the 

Amazon” project [41] between 2016 and 2018. Within the area mapped by the transects, as 

criteria we selected four experimental sites, accessible by internal road and having previously 

been surveyed. Inside each site, the plots were randomly selected. The ALS campaign 

produced a point cloud using the LiDAR Harrier 68i sensor parameterized to allow a 

minimum density of 4 points.m
-2

. The horizontal and vertical accuracy was ± 1.0 m and ± 0.5, 

respectively. Each transect covers 375 ha (12.5 x 0.3 km²) [42–45]. 

The ALS data were processed in the FUSION software version 3.80 [46] by removing 

outliers, homogenizing point cloud density, classifying the ground returns, creating the digital 

terrain model, normalizing the cloud, producing the canopy height model, and filtering the 

emergent canopy (>35 m). The outliers were removed by applying a search window of 20 m 

and considering as outliers all points outside the mean elevation ± 3 standard deviation of 

returns within the window. Points were then classified as ground by the Kraus and Pfeifer 

algorithm [47,48] considering a window size of 8 m [25] and the standard parameter of 

FUSION [46]. We interpolated the ground points to create a digital terrain model (DTM) with 

1-m pixel resolution. The canopy height model was created by interpolating the highest above 

ground points which are normalized with respect to the DTM [49]. The emergent canopy 

model was produced by applying a lower threshold of 35 m to the CHM. Then, we used the 

raster to vector function from QGIS to automatically create the crown polygons. Finally, to 

support the field campaign, we uploaded the vectorized crowns into the GNSS receiver. 

During the field campaign we measured all trees with DBH ≥ 50 cm in the 20 plots of 

20 m x 200 m. The DBH was defined based on the threshold imposed by the Brazilian law on 

a SFM plan as the minimum allowable diameter size for logging [50]. For each tree, we 

recorded the following attributes: DBH, species, stem quality, canopy illumination, 
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geographic coordinates, commercial interest and the correspondence to an ALS crown 

polygon. We identified the species based on previous botanical works developed in 

neighboring areas, and using the expertise of staff at INPA ZF-2 [51–53]. The commercial 

interest was based on the list provided by the Brazilian Forest Service (available in 

http://snif.florestal.gov.br/pt-br/especies-florestais, accessed on 22 May 2019). Stem quality is 

divided into three levels according to percentage of commercial volume potential 

(straightness, defects, and bifurcations) [54]. The canopy illumination was defined visually as 

follows: if the canopy reached the highest layer in the forest and receives direct sunlight, it 

was classified as illuminated; the canopies presented in the mean canopy layer but with 

incidence of sunlight, they were classified as partially illuminated; lastly, trees under the mean 

canopy height were classified as shaded [54]. 

We used a regular navigation GNSS (Garmim 76Cx), which is commonly used by the 

Brazilian foresters. The intention behind this decision is to see how common devices currently 

used to support forest management are able to detect the ALS extracted information. The 

GNSS collected coordinates combining two satellite systems (GPS and GLONASS) to reduce 

the geolocation error [55,56]. We also classified the DTM by applying the Hill-Climbing 

clustering algorithm with two clusters to split the data into valleys (floodplain) and plateaus 

[57]. 

We defined the trees’ sociological position according to [58], from which the author 

classified the species into 10 different groups. From these 10 groups, one represents the 

pioneer species (group 7), one represents the emergent/climax species (group 8), and the 

remaining groups comprised the intermediary species. The field plots were processed to 

obtain the frequency and dominance, stem density and the importance value for each species 
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(IVI = frequency, density and dominance combined). The field data were processed using the 

forestmangr package, developed for R [59]. 

Based on the correspondence to ALS-derived crown polygon (actual class) and to the 

crown illumination from the field emergent trees (detected class), we built a confusion matrix 

considering: class II- when a tree stem location matched an emergent canopy polygon (inside 

polygon) and had its canopy classified as totally or partially illuminated; class IS - when a tree 

stem matched an emergent canopy polygon (inside polygon) and had its canopy classified as 

shaded; class OI - when a tree did not match any emergent canopy polygon (outside polygon) 

and had its canopy classified as totally or partially illuminated; class OS - when a tree did not 

match any emergent canopy polygon (outside polygon) and had its canopy classified as 

shaded. The process steps are described in Figure 2. 
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Figure 2. Methodological flowchart describing the methodology steps. 

 

Considering the confusion matrix, we calculated for each plot the detection rate 

(recall, r, Equation (1)) and the correct detection of the trees (precision, p, Equation (2)). 

These two indices were used to obtain the F-score (Equation (3)), which is the overall 

accuracy taking into account both commission and omission errors [60]. 

𝑟 =  
𝐼𝐼

(𝐼𝐼+𝐼𝑆)
                    (1)                             

𝑝 =  
𝐼𝐼

(𝐼𝐼+𝑂𝐼)
                (2) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑟 𝑥 𝑝

(𝑟+𝑝)
            (3) 
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To qualify what has been detected from ALS, we analyzed the characteristics that 

influence tree detection. The binomial logistic regression (Equation (4)) was used to evaluate 

the significance of factors in the detection performance by the ALS. We created a binary 

variable considering the detected and non-detected trees as 0 and 1, respectively. In sequence, 

we fitted a generalized linear model with a logistic link using the binary variables as a 

function of tree characteristics (stem quality - cif, commercial - com, and sociological position 

- sp) and toposequence (topo). We chose the model based on the significance of the 

parameters (p-valor ≤ 0.05) and the Akaike Information Criteria (AIC). 

𝑙𝑜𝑔𝑒 [
𝑃

1−𝑃
] =  𝑙𝑜𝑔𝑖𝑡(𝑃)  =  𝛽0  +  𝛽1𝑐𝑖𝑓 + 𝛽2𝑐𝑜𝑚 + 𝛽4𝑠𝑝 + 𝛽5𝑡𝑜𝑝𝑜    (4) 

where logit (p) is the odds ratio, p is the probability of finding a tree, 𝛽0~𝛽5 are the logistic 

regression coefficients, cif is the stem quality, com is the commercial species, sp is the 

sociological position and topo is the toposequence. 

 

2.2.2 Results 

2.2.2.1. Qualification and quantification of inventory trees 

We recorded a total of 338 trees with DBH above 50 cm, distributed in 26 botanical 

families and 93 species. The most representative families were Fabaceae (67 individuals), 

Lecythidaceae (47 individuals), Sapotaceae (42 individuals), Apocynaceae (30 individuals) 

and Vochysiaceae (22 individuals). The most frequent species are Pouteria minima T.D.Penn. 

(26 individuals), Goupia glabra Aubl. (18 individuals), Aspidosperma marcgravianum 

Woodson (14 individuals), Piptadenia suaveolens Miq. (13 individuals), Qualea paraensis 

Ducke (13 individuals) and Geissospermum argenteum Woodson (10 individuals). The 

structural analysis showed that the species with highest importance values were: Pouteria 

minima (IVI = 6.52), Goupia glabra (5.15), Qualea paraensis (3.95), Piptadenia suaveolens 
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(3.90), and Aspidosperma marcgravianum (3.89). Additional information is provided in 

Supplementary Tables S1 and S2. 

The emergent crowns (height > 35 m) from the ALS canopy height model were linked 

to 54.44% of the trees greater than 50 cm of DBH, recorded in the field. Trees from the 

climax and intermediary groups were much more predominant among the emergent crowns 

than trees from the pioneer group: 74% of intermediary trees and 21% of climax trees were 

included in the emergent crowns, while only 3% were pioneer trees. The remaining 2% of 

emergent crowns were related to trees not included in any group (Table 1). 

 

2.2.2.2. Quantification of trees with potential for logging 

Of the 338 trees recorded in the field plots, 28% (94 individuals) are included in the 

commercial interest list (Table 2). Goupia glabra and Piptadenia suaveolens were the 

commercial species with a greater number of individuals (13 and 12 trees, respectively). Of 

the commercial trees, 70% (66 individuals within 17 species) were present in the ALS canopy 

height model. Of the detected trees with commercial interest, 88% had stems classified in the 

good (i.e., straight, cylindrical and undamaged) or medium quality (slightly tortuous) class 

(Table 2). 
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Table 1. Discrimination of each sociological position regarding the number of individuals by 

ecological group, presence in the emergent canopy and commercial interest. 

Ecological 

groups 

Detected 

trees 

Not 

detected 

trees 

Trees with 

commerci

al interest 

Main species 

 (# individuals) 

Clímax 39 22 24 Goupia glabra (18) 

Aspidosperma marcgravianum (14) 

Sacoglottis guianensis (6) 

Ladenbergia amazonensis (5) 

Cariniana micrantha (4) 

Hymenolobium sericeum (4) 

Intermediary 136 118 66 

  

Pouteria minima (26) 

Qualea paraensis (13) 

Piptadenia suaveolens (13) 

Geissospermum argenteum (11) 

Couratari stellata (9) 

Pioneer 5 9 1 Trattinnickia peruviana (8) 

Dipteryx magnifica (2) 

Inga gracilifolia (2) 

Eriotheca longipedicellata (1) 

Jacaranda copaia (1) 

Not classified 4 5 3 Maquira sclerophylla (2) 

Apeiba echinata (1) 

Chornelia tenuiflora (1) 

Glycydendron amazonicum (1) 

Lacmellea gracilis (1) 

Duckesia verrucosa (1) 

Vantanea parviflora (1) 

Vantanea sp. (1) 

Total 184 154 94   
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Table 2. Discrimination of the commercial trees recorded in the field plots. 

  Individuals Stem 

quality 

Canopy 

illumination 

Main species (# 

individuals) 

Detected 66 Good: 37 

Medium: 

21 

Low: 8 

Illuminated: 61 

Partially: 4 

Shaded: 1 

Goupia glabra (13) 

Piptadenia suaveolens (12) 

Qualea paraensis (8) 

Couratari stellata (6) 

Dinizia excelsa (5) 

Not 

detected 

28 Good: 10 

Medium: 9 

Low: 9 

Illuminated: 20 

Partially: 7 

Shaded: 1 

Goupia glabra (5) 

Qualea paraensis (5) 

Clarisia racemosa (3) 

Couratari stellata (3) 

Ocotea fragrantissima (3) 

 

2.2.2.3. Characteristics influencing the trees detection rate from ALS emergent crowns 

We observed a high detection rate in our study (r, Table 3), indicating that emergent 

ALS-derived crown polygons are commonly associated with trees having DBH above 50 cm. 

In all plots, the detection rate was above 80%. The precision values (p, Table 3) indicate the 

amount of trees having a DBH greater than 50 cm that are linked to an emergent crown 

polygon. We found precision rates ranging from 0.27 to 0.81, with 0.55 on average. 

Approximately half of trees with DBH above 50 cm in the forest were not associated with any 

emergent crowns. The f-score (f-sc) follows the higher variation observed in the p, ranging 

from 0.40 to 0.92, and an average of 0.70 (Table 3). 
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Table 3. Tree detection rate (r), precision (p) and accuracy (fsc) for each inventory plot. II = 

tree found inside ALS-derived polygon and the canopy partially or totally illuminated, OI = 

tree outside ALS polygon and canopy partially or totally illuminated and IS = tree inside ALS 

polygon and shaded canopy. 

 

Plots II OI IS r p f-sc 

1 6 6 0 1.00 0.46 0.63 

3 4 11 0 1.00 0.25 0.40 

7 11 2 0 1.00 0.85 0.92 

8 6 3 0 1.00 0.67 0.80 

10 10 6 0 1.00 0.63 0.77 

11 4 9 0 1.00 0.31 0.47 

14 13 4 1 0.93 0.76 0.84 

15 5 19 0 1.00 0.21 0.34 

16 16 1 2 0.89 0.94 0.91 

17 10 6 0 1.00 0.63 0.77 

18 11 7 0 1.00 0.61 0.76 

19 13 5 2 0.87 0.72 0.79 

23 6 12 0 1.00 0.33 0.50 

25 10 10 1 0.91 0.50 0.65 

26 10 7 0 1.00 0.59 0.74 

27 6 12 0 1.00 0.33 0.50 

28 13 3 0 1.00 0.81 0.90 

29 8 5 0 1.00 0.61 0.76 

30 9 6 1 0.90 0.60 0.72 

31 6 7 0 1.00 0.46 0.63 

General 177 143 7 0.96 0.55 0.70 

 

The full model (Equation (4) - AIC = 303.5) had the predictor variables sp and topo 

nonsignificant (p-value ≥ 0.05). Therefore, we ran the model only for the remaining 

significant variables (cif and com, AIC = 302.1), which had the coefficients with p-values < 

0.001 (***) for stem quality (cif) and <0.01 (**) for species with commercial interest (com). 

The bracket numbers in model 5 are the standard error. 

Probability of detecting trees = 1.1026(±0.3325))
∗∗∗  - 0.7107(±0.1751)

∗∗∗ 𝑐𝑖𝑓 + 1.0337(±0.3227)
∗∗ 𝑐𝑜𝑚       (5) 

A tree with stem quality classified as good (straight, cylindrical and undamaged) and 

with commercial interest had a greater probability of being identified in the emergent crown 

model. The sociological position and the toposequence (valleys and plateaus) did not 
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influence (p-value > 0.05) the odds of trees having a detectable emergent crown in the ALS-

CHM. 

 

2.2.3 Discussion 

Our results showed that in an area of 8 ha, 28% of the trees greater than 50 cm (in 

DBH) had commercial interest, and 70% of these were detected and could therefore be 

classified in the emergent ALS canopy height model. The number of commercial trees 

detected in the canopy height model correlated to more than seven trees per hectare, which is 

sufficient to build an SFM plan around [16]. In comparison, [5] analyzed an inventory in the 

100% (census) of 1253 ha and arrived at a density of 10.21 commercial trees per hectare with 

DBH ranging from 50 to 248 cm. 

Our study indicated some factors that influence the odds of a tree being part of the 

emergent canopy. Characteristics like stem quality and species with commercial interest 

positively increase the odds. The sociological position and the toposequence (valleys and 

plateaus) did not significantly influence emergent crowns detection. Desired characteristics 

for logging among commercial species (cylindrical stems, straight or with a slight tortuosity 

and undamaged) positively influence their possession of an emergent crown (and therefore 

potential for detection using ALS). Competition for the resources that permit growth is a key 

factor in allowing trees to emerge from the mean canopy [44]. Our results highlight that good-

quality stems reflect more highly competitive individuals which have crucial characteristics 

enabling them to surpass the others in height growth. 

Basing the operational planning on ALS data can reduce costs, accelerate evaluation 

and approval by the authorities, and increase transparency and governance. However, we 

clearly show that field data are still needed. Therefore, we propose the use of ALS detected 

emergent trees to more efficiently target the field work. Before the necessity of sending field 
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surveyors into the forest, using ALS, in addition to detecting the target trees, it would be 

possible to optimize the extraction route, avoid steep terrain and costly topographic regions 

[3,25,61]. Instead of doing a census to record all the trees greater than 50 cm DBH, the field 

collection will be oriented on the information extracted from ALS data. 

Other authors have shown ALS data to enable forest stratification which led to a 

reduction of 41% in the required sampling intensity [24]. This significant reduction in 

sampling units (from 46 to 27—1 ha plots) saved US $28,500.00 by reducing the field work, 

which paid for the ALS data collection (US $26,400.00) [24]. We believe that following the 

approach that reduces sampling intensity [24] with the approach proposed in this paper could 

be a future object of study. We also encourage similar studies to ours in different areas to 

enable the f-score comparison. 

The ALS data can support the operational plan with much more information than an 

operational plan based only on field data. Previous work has shown that ALS can be used to 

monitor logging impact activities [10,15,16,29] and to estimate biomass and carbon changes 

[18,62]. To avoid expensive multitemporal ALS to monitor and inspect how forests recover 

after being submitted to logging, this could be combined with a cheaper remote sensing 

system, such as 3D UAV photogrammetry [63]. Another product that has been widely used is 

the detection and segmentation of trees [22]; however, it still presents some difficulties, such 

as species identification [37] and individual crown isolation in dense tropical forests [22], 

which still makes field work mandatory to obtain this information. With the advances of 

remote sensing techniques, such as combining ALS with hyperspectral data can help to better 

segment and detect trees, and maybe enable species identification. 

 

2.3 Conclusion 

Using airborne laser scanning can improve SFM planning, reducing field work in the 

initial stages of planning and additionally adding value to later operational implementation 
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stages. There is no doubt that SFM could benefit from new technologies to make forest 

management more efficient and less costly, increasing its sustainability. In this paper, we 

showed that inclusion of emergent trees detected by ALS can be an alternative to the necessity 

of conducting a full census, resulting in a sufficient number of trees to integrate into an SFM 

plan, adding transparency, consistency and confidence. 
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Appendix 

Supplementary material 

Table S1. Family and species list recorded in the Experimental Station for Tropical 

Silviculture. 

  Number of 

individuals 

Ecological 

group 

Mean 

DBH 

Anacardiaceae 

Anacardium spruceanum Benth ex Engl. 2 2 60.3 

Astronium sp. 1 2 97.0 

Apocynaceae 

Aspidosperma desmanthum Benth. ex Müll.Arg. 4 2 61.7 

Aspidosperma marcgravianum Woodson 14 1 68.0 

Geissospermum argenteum Woodson 11 2 59.0 

Lacmellea gracilis (Müll.Arg.) Markgr. 1 NA 52.5 

Bignoniaceae 

Jacaranda copaia (Aubl.) D.Don 1 3 48.5 

Tabebuia sp. 1 2 50.0 

Bombacaceae 

Eriotheca longipedicellata (Ducke) A. Robyns 1 3 66.0 

Burseraceae 

Trattinnickia peruviana Loes. 8 3 63.3 

Caryocaraceae 

Caryocar glabrum (Aubl.) Pers. 2 1 85.0 
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Caryocar villosum 5 2 86.8 

Chrysobalanaceae 

Licania micrantha Miq. subsp. Micrantha 3 2 61.3 

Licania sp. 3 2 46.3 

Combretaceae 

Buchenavia grandis Ducke 1 1 73.0 

Buchenavia sp. 6 2 62.0 

Duckeodendraceae 

Duckeodendron cestroides Kuhlm. 6 2 99.5 

Elaeocarpaceae 

Sloanea pubescens (Poepp.& Endl.) Benth. 2 2 57.5 

Euphorbiaceae 

Drypetes variabilis Uittien 1 2 65.0 

Glycydendron amazonicum Ducke 1 NA 52.5 

Micranda siphonoides Benth. 4 2 53.8 

Micrandropsis scleroxylon W.Rodr. 1 2 63.0 

Fabaceae 

Bowdichia nitida Spruce ex Benth. 2 1 73.0 

Dinizia excelsa Ducke 5 2 95.0 

Dipteryx magnifica (Ducke) Ducke 2 3 69.5 

Dipteryx polyphylla Huber 2 2 70.0 

Dipteryx sp. 1 2 74.0 

Enterolobium schomburgkii (Benth.) Benth. 1 2 57.0 
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Hymenaea courbaril L. var. stilbocarpa (Hayne) Lee et 

Lang 

3 2 68.8 

Hymenolobium sericeum Ducke 4 1 66.5 

Inga gracilifolia Ducke 2 3 82.5 

Inga sp. 3 2 61.8 

Parkia multijuga Benth. 1 2 60.0 

Parkia pendula (Willd.) Benth. ex Walp. 2 2 90.0 

Peltogyne excelsa Ducke 3 2 65.3 

Piptadenia suaveolens Miq. 13 2 64.2 

Pterocarpus rohrii Vahl 1 2 45.0 

Schizolobium amazonicum Huber ex Ducke 8 2 76.0 

Swartzia schomburgkii Benth. 2 2 65.0 

Tachigali myrmecophila Ducke 8 2 57.6 

Vatairea paraensis Ducke 1 1 52.0 

Vatairea sericea Ducke 1 1 50.0 

Zygia racemosa (Ducke) Barneby & J.W.Grimes 2 2 58.0 

Flacourtiaceae 

Laetia procera (Poepp.) Eichler 1 2 53.0 

Goupiaceae 

Goupia glabra Aubl. 18 1 66.8 

Humiriaceae 

Duckesia verrucosa (Ducke) Cuatrec. 1 NA 70.0 

Endopleura uchi (Huber) Cuatrec. 1 2 50.2 
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Sacoglottis guianensis Benth. 6 1 58.6 

Vantanea parviflora Lam. 1 NA 71.0 

Vantanea sp. 1 NA 64.0 

Lauraceae 

Aniba panurensis (Meisn.) Mez 3 2 64.0 

Ocotea argyrophylla Ducke 3 2 59.0 

Ocotea fragrantissima Ducke 7 2 63.7 

Sextonia rubra (Mez) van der Werff 1 1 80.0 

Lecythidaceae 

Cariniana micrantha Ducke 4 1 112.1 

Corythophora rimosa W.A.Rodrigues 2 2 57.0 

Couratari stellata A.C.Sm. 9 2 61.6 

Eschweilera atropetiolata S.A.Mori 1 2 71.0 

Eschweilera carinata S.A. Mor 5 2 55.7 

Eschweilera collina Eyma 4 2 54.6 

Eschweilera coriacea (DC.) S.A. Mori 3 2 57.3 

Eschweilera romeu-cardosoi S.A.Mori 8 2 61.0 

Eschweilera sp. 2 2 60.0 

Lecythis prancei S.A. Mor 3 2 59.8 

Lecythis zabucajo Aubl. 6 2 66.6 

Malvaceae 

Apeiba echinata Gaertn. 1 NA 66.0 

Scleronema micranthum (Ducke) Ducke 4 2 55.3 
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Sterculia excelsa Mart. 1 2 50.5 

Melastomataceae 

Mouriri callocarpa Ducke 1 2 64.0 

Moraceae 

Brosimum potabile Ducke 1 1 89.5 

Brosimum rubescens Taub. 5 2 59.7 

Clarisia racemosa Ruiz & Pav. 7 2 64.9 

Maquira sclerophylla (Ducke) C.C. Berg 2 NA 55.0 

Myristicaceae 

Virola sp. 4 2 72.3 

Olacaceae 

Minquartia guianensis Aubl. 3 2 65.7 

Rubiaceae 

Amaioua sp. 1 2 80.0 

Chornelia tenuiflora Benth. 1 NA 87.0 

Ladenbergia amazonensis Ducke 5 1 68.8 

Sapotaceae 

Ecclinusa guianensis Eyma 3 2 60.7 

Manilkara cavalcantei Pires & W.A.Rodrigues 1 2 59.0 

Micropholis guyanensis (A.DC.) Pierre spp. duckeana 

(Baehni) T.D.Penn. 

1 2 54.0 

Micropholis sp. 1 2 78.0 

Pouteria ambelaniifolia (Sandwith) T.D.Penn 1 2 53.0 
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Pouteria anomala (Pires) T.D.Penn. 2 2 60.0 

Pouteria caimito (Ruiz & Pav.) Radlk. 4 2 65.4 

Pouteria minima T.D.Penn. 26 2 59.6 

Pouteria oblanceolata Pires 1 2 58.5 

Pouteria venosa (Mart.) Baehni ssp. amazonica T.D. 

Penn. 

2 2 51.5 

Simaroubaceae 

Simarouba amara Aubl. 2 2 56.8 

Vochysiaceae 

Erisma bicolor Ducke 7 2 65.0 

Qualea acuminata Aubl. 1 2 59.0 

Qualea albiflora Warm 1 1 52.0 

Qualea paraensis Ducke 13 2 70.2 

Total 338     
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Table S2. Horizontal structural analysis performed for the species recorded in the 

Experimental Station for Tropical Silviculture. AF = absolute frequency, RF = relative 

frequency (%), AD = absolute density, RD = relative density (%), ADo = Absolute 

dominance, RDo = relative dominance (%), CVI = cover value index, IVI =  importance value 

index, com = commercial interest. 

 

Species AF RF AD DR ADo RDo IVC IVI com 

Pouteria minima 

T.D.Penn. 

80 5.654 3.25 7.692 0.937 6.223 6.958 6.523 No 

Goupia glabra Aubl. 65 4.594 2.25 5.325 0.834 5.54 5.433 5.153 Yes 

Qualea paraensis Ducke 50 3.534 1.625 3.846 0.675 4.484 4.165 3.955 Yes 

Piptadenia suaveolens 

Miq. 

60 4.24 1.625 3.846 0.544 3.611 3.728 3.899 Yes 

Aspidosperma 

marcgravianum Woodson 

45 3.18 1.75 4.142 0.655 4.346 4.244 3.889 No 

Geissospermum 

argenteum Woodson 

35 2.474 1.375 3.254 0.383 2.544 2.899 2.757 No 

Duckeodendron cestroides 

Kuhlm. 

30 2.12 0.75 1.775 0.6 3.986 2.881 2.627 No 

Schizolobium amazonicum 

Huber ex Ducke 

25 1.767 1 2.367 0.479 3.178 2.773 2.437 No 

Couratari stellata 

A.C.Sm. 

30 2.12 1.125 2.663 0.359 2.382 2.522 2.388 Yes 

Trattinnickia peruviana 

Loes. 

35 2.474 1 2.367 0.323 2.141 2.254 2.327 No 

Eschweilera romeu-

cardosoi S.A.Mori 

35 2.474 1 2.367 0.302 2.004 2.185 2.281 No 

Erisma bicolor Ducke 35 2.474 0.875 2.071 0.301 1.997 2.034 2.181 No 
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Ocotea fragrantissima 

Ducke 

35 2.474 0.875 2.071 0.294 1.953 2.012 2.166 Yes 

Tachigali myrmecophila 

Ducke 

30 2.12 1 2.367 0.262 1.737 2.052 2.075 No 

Clarisia racemosa Ruiz & 

Pav. 

30 2.12 0.875 2.071 0.294 1.95 2.011 2.047 Yes 

Cariniana micrantha 

Ducke 

20 1.413 0.5 1.183 0.507 3.364 2.274 1.987 No 

Dinizia excelsa Ducke 20 1.413 0.625 1.479 0.453 3.006 2.243 1.966 Yes 

Caryocar villosum 20 1.413 0.625 1.479 0.398 2.645 2.062 1.846 No 

Buchenavia sp. 30 2.12 0.75 1.775 0.229 1.519 1.647 1.805 No 

Lecythis zabucajo Aubl. 25 1.767 0.75 1.775 0.278 1.843 1.809 1.795 No 

Ladenbergia amazonensis 

Ducke 

25 1.767 0.625 1.479 0.248 1.647 1.563 1.631 No 

Sacoglottis guianensis 

Benth. 

20 1.413 0.75 1.775 0.21 1.396 1.586 1.528 No 

Eschweilera carinata S.A. 

Mor 

25 1.767 0.625 1.479 0.154 1.02 1.25 1.422 No 

Brosimum rubescens 

Taub. 

20 1.413 0.625 1.479 0.177 1.173 1.326 1.355 No 

Pouteria caimito (Ruiz & 

Pav.) Radlk. 

20 1.413 0.5 1.183 0.171 1.133 1.158 1.243 No 

Virola sp. 15 1.06 0.5 1.183 0.212 1.41 1.297 1.218 No 

Aspidosperma 

desmanthum Benth. ex 

Müll.Arg. 

20 1.413 0.5 1.183 0.15 0.998 1.09 1.198 No 

Eschweilera collina Eyma 20 1.413 0.5 1.183 0.119 0.788 0.986 1.128 No 

Hymenolobium sericeum 

Ducke 

10 0.707 0.5 1.183 0.181 1.199 1.191 1.03 No 

Scleronema micranthum 

(Ducke) Ducke 

15 1.06 0.5 1.183 0.121 0.803 0.993 1.015 No 
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Hymenaea courbaril L. 

var. stilbocarpa (Hayne) 

Lee et Lang 

15 1.06 0.375 0.888 0.149 0.987 0.938 0.978 Yes 

Minquartia guianensis 

Aubl. 

15 1.06 0.375 0.888 0.131 0.873 0.88 0.94 No 

Peltogyne excelsa Ducke 15 1.06 0.375 0.888 0.13 0.864 0.876 0.937 No 

Aniba panurensis (Meisn.) 

Mez 

15 1.06 0.375 0.888 0.122 0.808 0.848 0.918 No 

Ecclinusa guianensis 

Eyma 

15 1.06 0.375 0.888 0.109 0.726 0.807 0.891 No 

Micranda siphonoides 

Benth. 

10 0.707 0.5 1.183 0.115 0.765 0.974 0.885 No 

Ocotea argyrophylla 

Ducke 

15 1.06 0.375 0.888 0.106 0.704 0.796 0.884 No 

Eschweilera coriacea 

(DC.) S.A. Mori 

15 1.06 0.375 0.888 0.098 0.65 0.769 0.866 No 

Parkia pendula (Willd.) 

Benth. ex Walp. 

10 0.707 0.25 0.592 0.167 1.108 0.85 0.802 No 

Licania sp. 15 1.06 0.375 0.888 0.064 0.425 0.656 0.791 No 

Licania micrantha Miq. 

subsp. micrantha 

10 0.707 0.375 0.888 0.116 0.77 0.829 0.788 No 

Inga sp. 10 0.707 0.375 0.888 0.113 0.747 0.817 0.78 No 

Lecythis prancei S.A. Mor 10 0.707 0.375 0.888 0.105 0.7 0.794 0.765 No 

Caryocar glabrum (Aubl.) 

Pers. 

10 0.707 0.25 0.592 0.142 0.945 0.768 0.748 Yes 

Inga gracilifolia Ducke 10 0.707 0.25 0.592 0.134 0.888 0.74 0.729 No 

Bowdichia nitida Spruce 

ex Benth. 

10 0.707 0.25 0.592 0.106 0.701 0.646 0.666 Yes 

Dipteryx polyphylla Huber 10 0.707 0.25 0.592 0.104 0.691 0.641 0.663 No 
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Dipteryx polyphylla Huber 10 0.707 0.25 0.592 0.104 0.691 0.641 0.663 Yes 

Dipteryx magnifica 

(Ducke) Ducke 

10 0.707 0.25 0.592 0.097 0.644 0.618 0.647 No 

Swartzia schomburgkii 

Benth. 

10 0.707 0.25 0.592 0.087 0.58 0.586 0.626 No 

Anacardium spruceanum 

Benth ex Engl. 

10 0.707 0.25 0.592 0.073 0.486 0.539 0.595 No 

Eschweilera sp. 10 0.707 0.25 0.592 0.071 0.47 0.531 0.589 No 

Pouteria anomala (Pires) 

T.D.Penn. 

10 0.707 0.25 0.592 0.071 0.469 0.53 0.589 No 

Zygia racemosa (Ducke) 

Barneby & J.W.Grimes 

10 0.707 0.25 0.592 0.066 0.439 0.515 0.579 No 

Sloanea pubescens 

(Poepp.& Endl.) Benth. 

10 0.707 0.25 0.592 0.066 0.438 0.515 0.579 No 

Simarouba amara Aubl. 10 0.707 0.25 0.592 0.063 0.42 0.506 0.573 Yes 

Maquira sclerophylla 

(Ducke) C.C. Berg 

10 0.707 0.25 0.592 0.059 0.394 0.493 0.564 Yes 

Pouteria venosa (Mart.) 

Baehni ssp. amazonica 

T.D. Penn. 

10 0.707 0.25 0.592 0.053 0.353 0.472 0.55 No 

Corythophora rimosa 

W.A.Rodrigues 

5 0.353 0.25 0.592 0.064 0.425 0.508 0.457 No 

Astronium sp. 5 0.353 0.125 0.296 0.092 0.613 0.455 0.421 No 

Brosimum potabile Ducke 5 0.353 0.125 0.296 0.079 0.522 0.409 0.39 Yes 

Chornelia tenuiflora 

Benth. 

5 0.353 0.125 0.296 0.074 0.493 0.395 0.381 No 

Amaioua sp. 5 0.353 0.125 0.296 0.063 0.417 0.356 0.355 Yes 

Sextonia rubra (Mez) van 

der Werff 

5 0.353 0.125 0.296 0.063 0.417 0.356 0.355 No 

Micropholis sp. 5 0.353 0.125 0.296 0.06 0.397 0.346 0.349 No 
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Dipteryx sp. 5 0.353 0.125 0.296 0.054 0.357 0.326 0.335 Yes 

Buchenavia grandis 

Ducke 

5 0.353 0.125 0.296 0.052 0.347 0.322 0.332 Yes 

Eschweilera atropetiolata 

S.A.Mori 

5 0.353 0.125 0.296 0.049 0.329 0.312 0.326 Yes 

Vantanea parviflora Lam. 5 0.353 0.125 0.296 0.049 0.329 0.312 0.326 No 

Duckesia verrucosa 

(Ducke) Cuatrec. 

5 0.353 0.125 0.296 0.048 0.319 0.308 0.323 No 

Apeiba echinata Gaertn. 5 0.353 0.125 0.296 0.043 0.284 0.29 0.311 Yes 

Eriotheca longipedicellata 

(Ducke) A. Robyns 

5 0.353 0.125 0.296 0.043 0.284 0.29 0.311 Yes 

Drypetes variabilis Uittien 5 0.353 0.125 0.296 0.041 0.275 0.286 0.308 No 

Mouriri callocarpa Ducke 5 0.353 0.125 0.296 0.04 0.267 0.281 0.305 No 

Vantanea sp. 5 0.353 0.125 0.296 0.04 0.267 0.281 0.305 No 

Micrandropsis scleroxylon 

W.Rodr. 

5 0.353 0.125 0.296 0.039 0.259 0.277 0.303 No 

Parkia multijuga Benth. 5 0.353 0.125 0.296 0.035 0.235 0.265 0.295 Yes 

Manilkara cavalcantei 

Pires & W.A.Rodrigues 

5 0.353 0.125 0.296 0.034 0.227 0.261 0.292 No 

Qualea acuminata Aubl. 5 0.353 0.125 0.296 0.034 0.227 0.261 0.292 No 

Pouteria oblanceolata 

Pires 

5 0.353 0.125 0.296 0.034 0.223 0.259 0.291 No 

Enterolobium 

schomburgkii (Benth.) 

Benth. 

5 0.353 0.125 0.296 0.032 0.212 0.254 0.287 Yes 

Micropholis guyanensis 

(A.DC.) Pierre spp. 

duckeana (Baehni) 

T.D.Penn. 

5 0.353 0.125 0.296 0.029 0.19 0.243 0.28 No 
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Laetia procera (Poepp.) 

Eichler 

5 0.353 0.125 0.296 0.028 0.183 0.239 0.277 No 

Pouteria ambelaniifolia 

(Sandwith) T.D.Penn 

5 0.353 0.125 0.296 0.028 0.183 0.239 0.277 No 

Glycydendron 

amazonicum Ducke 

5 0.353 0.125 0.296 0.027 0.18 0.238 0.276 No 

Lacmellea gracilis 

(Müll.Arg.) Markgr. 

5 0.353 0.125 0.296 0.027 0.18 0.238 0.276 No 

Qualea albiflora Warm 5 0.353 0.125 0.296 0.027 0.176 0.236 0.275 No 

Vatairea paraensis Ducke 5 0.353 0.125 0.296 0.027 0.176 0.236 0.275 No 

Sterculia excelsa Mart. 5 0.353 0.125 0.296 0.025 0.166 0.231 0.272 No 

Endopleura uchi (Huber) 

Cuatrec. 

5 0.353 0.125 0.296 0.025 0.164 0.23 0.271 No 

Tabebuia sp. 5 0.353 0.125 0.296 0.025 0.163 0.229 0.271 No 

Vatairea sericea Ducke 5 0.353 0.125 0.296 0.025 0.163 0.229 0.271 No 

Jacaranda copaia (Aubl.) 

D.Don 

5 0.353 0.125 0.296 0.023 0.153 0.225 0.268 No 

Pterocarpus rohrii Vahl 5 0.353 0.125 0.296 0.02 0.132 0.214 0.26 Yes 
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3. FOREST STRUCTURE AND DEGRADATION DRIVE CANOPY GAP SIZES 

ACROSS THE BRAZILIAN AMAZON
2
 

Resumo 

      Clareiras são aberturas no dossel da floresta que ocorrem devido à queda de galhos e 

mortalidade das árvores. Com isso, a luz atinge as camadas inferiores da copa através dessas 

clareiras, permitindo que as árvores presentes no sub-bosque possam crescer e, 

consequentemente, manter a heterogeneidade e a biodiversidade em florestas tropicais. A 

distribuição do tamanho e frequência das clareiras segue a distribuição “power-law”, e a 

inclinação da reta da função “power-law” (α) é um indicador da estrutura e da dinâmica 

florestal. Neste trabalho foram detectadas clareiras a partir de um conjunto de dados LiDAR 

que consistem de 650 transectos aleatoriamente distribuídos pela Amazônia brasileira. Estes 

dados fornecem uma perspectiva sem precedentes sobre a variação estrutural em mais de 2500 

km² de floresta. Portanto, foi possível investigar como o coeficiente α da função “power-law” 

variou em relação à estrutura florestal, elevação, fertilidade do solo, déficit hídrico, 

velocidade do vento e intensidade de queda de raios. Os resultados mostraram que florestas 

sob algum tipo de efeito antropogênico apresentaram clareiras maiores que em florestas 

classificadas como intactas. Dentro das florestas intactas, foi observado um padrão de 

variação de α na direção Noroeste-Sudeste na Amazônia brasileira (clareiras maiores no 

Sudeste). Esse resultado está em concordância com taxas de mortalidade encontradas em 

estudos recentes. As variáveis mais importantes na explicação dessa variação foram a altura 

média do dossel e a altura das árvores maiores, com efeitos opostos na predição de α. 

Florestas com a altura do dossel maior contém menos e menores clareiras, por outro lado a 

presença de árvores muito grandes resultam em clareiras maiores. As variáveis ambientais 

com menos importância, mas significativas no modelo, mostraram que clareiras maiores 

ocorreram em florestas sob déficit hídrico acentuado e com solos mais férteis, sob rajadas de 

vento e maior intensidade de queda de raios. A distribuição de clareiras maiores no dossel 

variou substancialmente na Amazônia brasileira como um resultado da estrutura do dossel e 

taxas de mortalidade. Nós mapeamos essa variação e encontramos mais e maiores clareiras 

em florestas modificadas pelo homem, florestas sobre solos mais férteis e expostas a maior 

velocidade de vento, queda de raios e estresse hídrico. O aumento de eventos extremos no 

clima devido às mudanças climáticas pode, portanto, aumentar o número e a frequência na 

ocorrência de clareiras nas florestas que, atualmente, são consideradas intactas. 

 

Palavras-Chave: Altura da copa, dinâmica florestal, distribuição do tamanho de clareiras, 

ecologia de paisagem, floresta tropical, gradientes ambientais, modelagem, power-law. 

 

Abstract 
      Canopy gaps are openings in the forest canopy resulting from branch fall and tree 

mortality events. Light reaches the lower layers of the canopy through these gaps, enabling 

understory trees to grow and maintaining the high heterogeneity and biodiversity of tropical 

forests. The size distribution of canopy gaps follows a power-law distribution, and the slope 

of this power-law (α) is a key indicator of forest structure and dynamics. Low values of α 

(usually defined as α < 2) correspond to forests with a higher proportion of large gaps. We 

                                                      
2 Artigo submetido para a revista Journal of Ecology e disponível em: Reis, C.R.; Jackson, T.D.; 

Gorgens, E.B.; Dalagnol, R.; Jucker, T.; Nunes, M.H.; Ometto, J.P.; Aragão, L.E.O.C.; Rodriguez, L. 

C.E.; Coomes, D.A. Forest structure and degradation drive canopy gap sizes across the Brazilian 

Amazon. bioRxiv, the preprint server for biology 2021, https://doi.org/10.1101/2021.05.03.442416. 
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detected canopy gaps using a unique LiDAR data set consisting of 650 transects randomly 

distributed across the Brazilian Amazon Forest providing an unprecedented perspective on 

forest structural variation over 2500 km
2
 of forest. We found that human modified forests had 

a higher proportion of large gaps than intact forests. We observed a large-scale Northwest to 

Southeast pattern in α (higher proportion of large gaps in the Southeast), which aligns with 

recent work on tree mortality rates. Forests containing very tall trees were associated with a 

higher proportion of large gaps. We also found a higher proportion of large gaps occurring in 

drier forests, forests with high soil fertility, strong wind gust speeds, and high lightning 

intensity. Synthesis: The proportion of large gaps in the forest canopy varies substantially 

over the Brazilian Amazon as a result of canopy structure and disturbance rates. We mapped 

this variation and found a higher proportion of large gaps in human modified forests, forests 

on fertile soils and those exposed to higher wind, lightning and drought stress. Increasing 

extreme weather events due to climate change may therefore increase the proportion of large 

gaps in currently intact forests, causing them to resemble human modified forests. 

 

Keywords: Canopy height, environmental gradients, forest dynamic, gap size distribution, 

landscape ecology, modeling, power-law, tropical forest. 

 

3.1 Introduction 

Gaps in tropical forest canopies arise from tree mortality and play an important role 

in forest regeneration processes and forest biodiversity by creating habitat heterogeneity for 

forest dwelling organisms (Grubb 1977, Brokaw 1985, Yamamoto 1992, Muscolo et al. 

2014). Many understory plants survive in a low-light environment and depend upon these 

occasional gaps to capture light and grow (Marthews et al. 2008). Small gaps favour species 

which are shade-tolerant, while large gaps favour light-demanding pioneer species (Brokaw 

1985, Yamamoto 1992). Gap colonization is driven by the nature of soil, plants and animals 

in the surrounding forest (Grubb 1977). The size of gaps is also linked to the mode of death - 

with broken/uprooted trees leaving larger gaps than standing dead trees (Esquivel-Muelbert et 

al. 2020. In this study we map the size distributions of canopy gaps across the Brazilian 

Amazon and show how they are related to canopy height and environmental variables. 

Remote sensing technologies make it possible to map canopy gaps over large areas 

of tropical forests (Lobo & Dalling 2013, Asner et al. 2013, Espírito-Santo et al. 2014, Kent et 

al. 2015, Wedeux & Coomes 2015, Dalagnol et al. 2021). Several studies using airborne lidar 



61 
 

datasets have found that gap size distributions follow a simple power-law function (𝑓(𝑥) =

𝑐𝑥−𝛼) in which small gaps heavily outnumber large gaps in all forest environments (Kellner 

& Asner 2009, Asner et al. 2013, Lobo & Dalling 2013, Espírito-Santo 2014, Silva et al. 

2019). Identifying power-law distributions for ecological features such as canopy gaps 

provides insight into the nature of gap formation processes such as tree mortality (Goodbody 

et al. 2020). The power-law scaling coefficient α has been associated with the type and degree 

of disturbance in forested areas at the landscape and regional scales (Yamamoto 1992), and 

can vary from less intense disturbance events (lower proportion of large gaps) to mortality of 

large trees or damage at the stand level (higher proportion of large gaps) (Asner et al. 2013, 

Silva et al. 2019). Extremely large gaps are very rare and they are mainly caused by wind 

storms (Espírito-Santo et al. 2014, Negron-Juarez et al. 2018), fire and logging events 

(Broadbent et al. 2008). Conversely, canopy openings due to tree mortality and branch falls 

result in small gaps (<0.1 ha) and are far more common (Asner et al. 2013, Espírito-Santo et 

al. 2014), and account for an estimated 1.28 Pg of gross carbon losses per year over the entire 

Amazon region - a proportion of 98.6 % of the total carbon losses due to gap formation 

(Espírito-Santo et al. 2014). 

The size distribution of canopy gaps is also related to the history of anthropogenic 

disturbance (Kent et al. 2015). Forest recovery after a disturbance event depends on the 

severity of disturbance, the time since it occurred, and local environmental factors (Kent et al. 

2015, Cole et al. 2014), as well as anthropogenic actions such as deforestation, logging and 

fires (Aragão et al. 2014). In Gola rainforest park in Sierra Leone, Kent et al. (2015) found a 

higher gap fraction in logged blocks (3 - 6.3%) than in old-growth forest blocks (1 - 2.3%). In 

a peat swamp forest in Indonesia Wedeux and Coomes (2015) showed that, even eight years 

after becoming protected for conservation, logged plots had a higher gap fraction and a higher 

proportion of large gaps (lower α) in comparison with an old-growth forest. Popatov et al. 
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(2008) provide a map of ‘intact forest landscapes’ across the Brazilian Amazon which we use 

in this study. They define intact forests as “an unbroken expanse of natural ecosystems within 

the zone of current forest extent, showing no signs of significant human activity, and large 

enough that all native biodiversity, including viable populations of wide-ranging species, 

could be maintained”. 

The scaling coefficient α will vary along environmental gradients, since forest 

dynamics is controlled by environmental variables (Phillips et al. 2004, Quesada, Phillips, 

Schwarz, et al. 2012). Dalagnol et al. (2021) found that gap fraction across the Brazilian 

Amazon was positively correlated with soil nutrients (r = 0.46), water deficit (r = 0.42), dry 

season length (r = 0.41), wind speed (r = 0.21), and floodplains fraction (r = 0.27); and 

negatively correlated with distance to the forest edge (r = -0.43) and precipitation (r = -0.38). 

Gap size distribution in primary forests has been linked to broad-scale patterns such as 

climate, topography and soils (Goulamoussène et al. 2017, Goodbody et al. 2020), as well as 

wind and lightning. Mortality and turnover rates in the Amazon mainly vary along an east-

west gradient coinciding with a soil fertility gradient, with higher tree mortality and turnover 

in the rich soils of western Amazon (Phillips et al. 2004, Quesada, Phillips, Schwarz, et al. 

2012, Esquivel-Muelbert et al. 2020). A large proportion of Amazonian forests have also 

experienced water stress by intense droughts (Marengo et al. 2018), which has increased rates 

of tree mortality and biomass loss (Phillips et al. 2009, Phillips et al. 2010). Wind has also 

been linked to higher tree mortality (Rifai et al. 2016, Negron-Juarez et al. 2018), with forests 

in the northwest Amazon more vulnerable to windthrows and higher tree mortality than 

central Amazonian forests (Negron-Juarez et al. 2018). Recent work has shown that large 

trees are more likely to be directly struck by lightning in tropical forests with strong 

influences on forest structure and dynamics (Gora, Muller-Landau, Burchfield et al. 2020). 
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Dalagnol et al. (2021) focused on scaling-up tree mortality estimates and did not explore the 

gap size distribution and its relationship with environmental factors. 

Local canopy height also influences the number and size distribution of canopy gaps 

(Wedeux & Coomes 2015). This relationship depends on the definition of a canopy gap, i.e. 

whether the cutoff height is defined as a relative number to local canopy height or as a fixed 

value (Dalagnol et al. 2021). Therefore, interpreting environmental effects on gap properties 

across heterogeneous forests can be challenging. For example, a treefall event creates a much 

smaller gap in a forest with a substantial understory layer, as compared to the same event in 

sparser forest (Leitold et al. 2018, Dalagnol et al. 2021). Furthermore, the time it takes for a 

gap to close depends on the surrounding canopy height (Grubb 1977, Muscolo et al. 2014) 

and the size of the gap (Dalagnol et al. 2019). Canopy height is related to environmental 

factors, and a recent study in the Brazilian Amazon showed that the presence of very large 

trees is explained by wind, soil, precipitation, temperature and light availability (Gorgens et 

al. 2020). Therefore, we expect both canopy height and environmental factors interacting to 

control the size distribution of canopy gaps, however little is known about these interactions 

in Amazonian forests. 

In this study, we use a large tropical forest LiDAR data set to explore the relationship 

between gap size distribution with environmental factors, anthropogenic disturbance and 

canopy height. This data set, which was collected by the “Improving Biomass Estimation 

Methods for the Amazon” project, provides an unprecedented perspective on forest structural 

variation over 2500 km2 of forest. We formulated four hypotheses: 

H1. Human modified forests contain a higher proportion of large gaps (lower α) than 

intact forest. 

H2. Forests with a higher maximum tree size will contain a higher proportion of 

large gaps (lower α in taller forests) because big trees produce large gaps when they die. 
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H3. Higher water availability and soil fertility will be associated with a lower 

proportion of large gaps because gaps will recover more quickly.  

H4. Higher wind speeds and lightning intensity will be associated with a higher 

proportion of large gaps (lower α) due to an increased rate of disturbance. Therefore, in a 

region with high disturbance rates may resemble human modified forests. 

 

3.2 Development 

3.2.1 Methodology 

3.2.1.1 LiDAR data collection and processing 

The “Improving Biomass Estimation Methods for the Amazon” project (Ometto et 

al. 2021) collected >650 LiDAR transects of 375 ha (12.5 x 0.3 km) each between 2016 and 

2018 (Almeida et al. 2019, Tejada et al. 2019). The transects were allocated in forested areas 

by using mask layers for primary (PRODES, Inpe, 2016) and secondary forests (TerraClass, 

Inpe, 2014). Within these classes the transects were randomly located, except for a small 

number of transects which intentionally overlapped with existing field plots.  The flights were 

performed at approximately 600 m height using a LiDAR Harrier 68i sensor. The survey 

produced a point cloud with a minimum density of 4 points.m-² (Andrade et al. 2018), based 

on a field of view of 45° and footprint diameter between 15 and 30 cm. The data had 

horizontal and vertical accuracy of ±1.0 m and ±0.5, respectively (Almeida et al. 2019, 

Gorgens et al. 2019, Tejada et al. 2019, Gorgens et al. 2020). 

We reclassified all LiDAR points into ground, vegetation and noise, excluding noise 

points from further analyses. The classification of the points in LiDAR data is important to 

provide reliable digital terrain models (DTM) and consequent height values used to estimate 

forest attributes, such as volume or biomass (Leitold et al. 2015; Longo et al. 2016). Points 

corresponding to terrain (ground points) were isolated and interpolated by the triangulation 
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irregular network method (TIN), generating a 1-m spatial resolution DTM. In addition, we 

subtracted the elevation for each vegetation point by its corresponding DTM to obtain the 

height (Popescu & Wynne 2004). Lastly, we applied the pit-free algorithm to create the 

canopy height model (CHM, Khosravipour et al. 2014) using the one highest return per grid 

cell and triangulated them in order to obtain a 1-m spatial resolution CHM (Figure 1). The 

LiDAR transects were processed using LAStools software (v. 190404, Isenburg 2019). 

 

3.2.1.2 Extracting gaps and characterizing their size distributions 

As in other studies, we defined canopy gaps as contiguous areas of low canopy 

height which meet a number of thresholds. The first threshold (A) is that the canopy height 

must be below a cutoff height. We chose to use a 10 m cutoff height following (Silva et al. 

2019) since this is commonly found in LiDAR data but low enough to be the result of a 

disturbance event. The second threshold (B) is that the area of low canopy height must be 

larger than 20 m², this is to focus on larger gaps which are more likely the results of 

disturbance events and to filter out noise and small gaps between tree crowns. The third 

threshold (C) was that the gap must be smaller than 10,000 m² (1 ha) to avoid permanent 

features, such as roads or rivers, being classified as gaps. We then filtered out erroneous gaps 

(D) which were usually found along the transect edges (Figure 1a). We achieved this by 

calculating topographic position index, which depends on the values of neighbouring pixels, 

and excluded all polygons with missing values (Figure 1b). We filtered out transects where 

the median canopy height (Hmed, see “Characterizing forest structure” section) was under 15 

m since we could not reliably detect gaps in these cases. This reduced the number of transects 

in our models to 487. 

These thresholds are somewhat arbitrary and different studies choose different values 

(Brokaw 1985, Marthews et al. 2008, Wedeux & Coomes 2015). We conducted a sensitivity 
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analysis and found that our results were not highly sensitive to the choices in B, C or D 

(Figures S3 and S4). Our results were sensitive to the choice of cutoff height (A) (Figure S2). 

We found that a cutoff height of 5 m or 10 m produced similar results, but that a 2 m cutoff 

height resulted in far fewer gaps, particularly the large gaps we are interested in here. We 

were also concerned that the 2 m cutoff height would be more sensitive to errors in the ground 

detection algorithm used to create the canopy height model. We therefore decided to use the 

10 m cutoff height for our analysis, but models for the 2 m and 5 m cutoff heights are 

provided in the supplementary materials (Figure S2). We used the ForestGapR package (Silva 

et al. 2019) to extract all polygons within the established parameters and the spatialEco 

package (Evans 2020) to calculate the topographical position index. 

Figure 1. Gap filters applied in the dataset: example of gap delineation in a transect with the 

lowest proportion of large gaps (α = 2.50) before (A) and after (B) applying the topographical 

position index filters. 

 

We calculated the area of each gap to have their size and then be able to fit a simple 

power-law function (Equation 1): 
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𝑓(𝑥) = 𝑐𝑥−𝛼                             (1) 

where c is a normalization term, x is the gap size (m²), and the scaling parameter α quantifies 

the disturbance level. As a rule of thumb, higher values of α (> 2) are found in forests 

dominated by small gaps and with less intense disturbance events, whereas lower α values (< 

2) indicate a higher proportion of large gaps (Asner et al. 2013, Silva et al. 2019). Deviation 

from the power-law pattern has also been reported at large gap sizes, but the interpretation of 

the scaling coefficient remains the same (Wedeux & Coomes 2015). Using the poweRlaw 

package (Gillespie 2015) we looked for the scaling coefficients (α) of each one of the 

transects. We set 20 m² as a minimum gap size (setXmin function) and then we estimated the 

power-law parameters. Finally, we plotted the α scaling coefficient to understand how α 

varies across the Brazilian Amazon biome. 

 

3.2.1.3 Characterizing forest structure 

Following previous studies (Feldpausch et al. 2011), we split the Amazon into four 

regions (North, West, South-East, Central-East). We tested for statistical differences among 

mean α’s by region, on which we applied the post hoc Tukey’s test at 95% of confidence 

level.  

To classify intact forests, we used the intact forest landscapes (IFL) map (Potapov et 

al. 2008), which delineates contiguous areas of natural ecosystems, showing no signs of 

significant human activity, and large enough that all native biodiversity could be maintained. 

The IFL map (scale 1:1,000,000) for 2016 was applied to divide the dataset into two 

categories of forests - intact and human modified forests. This product was created through 

expert-based visual mapping of fragmented and altered forest areas using medium spatial 

resolution images from Landsat TM circa year 1990 and ETM+ circa year 2000 as the 

primary data source for year 2000 IFL mapping. The IFL map updates, such as the one 



68 
 

 

 

available for 2016, were based on the same data sources and methodology as the year 2000 

mapping to ensure consistency (see details in https://intactforests.org/). We included IFL as a 

factor in our linear model to test whether land-use is related to gap size distribution (H1). 

We extracted median canopy height (Hmed) and 99th percentile of canopy height 

(Hmax) from the CHM. These canopy height metrics will soon be available at a global scale 

from the Global Ecosystem Dynamics Inventory project (Duncanson et al. 2020) which may 

allow future studies to extend our predictions. The Hmed was used to filter transects where 

the median height was below 15 m, to avoid the inclusion of erroneous gaps in the analysis. 

The Hmax variable was used as predictor variable to test the hypothesis H2. 

The elevation was computed based on the third version of the Shuttle Radar 

Topography Mission (SRTM in m) provided by NASA JPL with a spatial resolution of 30 m 

(Farr et al. 2007; Liu et al. 2014). The SRTM mission occurred in February 2000 and 

collected data during ten days of operations. The digital elevation model (DEM) is available 

from 60° north latitude and 56° south latitude, covering 80% of Earth’s land surface. SRTM 

mission employed two synthetic aperture radars: a C band system (5.6 cm wavelength) and an 

X band system (3.1 cm). 

 

3.2.1.4 Environmental data 

To test our hypotheses (H3 and H4) we downloaded spatial data on water deficit, soil 

cation concentration, wind gust speed and lightning frequency for the entire Amazon. 

The water deficit (DEF in mm) was provided by the TerraClimate dataset, a global 

monthly climate and water balance for terrestrial surfaces spanning 1958–2015. With a spatial 

resolution of ~5 km, this layer combined high-spatial resolution climatological normals from 

WorldClim with Climate Research Unit (CRU) Ts4.0 and the Japanese 55-year Reanalysis 
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(JRA-55) data. DEF is a derived variable calculated from the difference between reference 

evapotranspiration and actual evapotranspiration. The reference evapotranspiration was 

calculated using the Penman-Monteith approach (Abatzoglou et al., 2018). 

The soil cation concentration (SCC in cmol(+).kg-1) is a result of compiling soil data 

and adding indicator species to derive soil information for locations that have been sampled 

for plants but not soils. This approach increased the number of points to be used in soil 

mapping. A raster map of estimated SCC values covering all Amazonia was obtained by 

inverse distance weighting interpolation at the spatial resolution of 6 arcmin (~11 km). The 

raster values are in log-transformed scale and represent the soil fertility gradient across the 

Amazon (Zuquim et al. 2019). 

We used the instantaneous 10m wind gust (WG in m.s-1), which represents the 

maximum wind gust averaged over 3 second intervals, at a height of 10 meters above the 

surface of the Earth. This layer has a spatial resolution of ~25 km. This variable came from 

the fifth major global reanalysis (ERA5) produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF). The reanalysis combined model data with observations 

from across the world into a globally complete and consistent dataset (Olauson 2018). 

The lightning frequency layer (LGT) was provided by the Lightning Imaging Sensor 

(LIS) with a spatial resolution of ~11 km. The sensor collected data onboard the Tropical 

Rainfall Measuring Mission provided by NASA Earth Observing System Data and 

Information System (EOSDIS) from January 1998 to December 2013. The lightning flash 

rates provided the basis to detect the distribution and variability of total lightning occurring in 

the Earth’s tropical and subtropical regions (Albrecht et al., 2016). 

We resampled all the layers above to a spatial resolution of 500 m applying the 

bilinear interpolation method, cropped them to the Amazon biome extension (Figure S5), and 

calculated the transects median values to correlate them with their respective level of 
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disturbance represented by α. We used the raster package (Hijmans & Etten 2012) to work 

with these layers. 

 

3.2.1.5 Statistical modeling 

During the exploratory analysis, we performed the Pearson correlation (r) among α 

and environmental variables and forest structure metrics. The resulting covariance matrix 

guided us during selection of predictor variables that should be included in the model, 

avoiding the strongly correlated metrics (Figure S6). The r among variables were below 0.6 

and we kept all variables in the models. 

We standardized all predictor variables rescaling them to have a mean of zero and a 

standard deviation of one. Thereafter, we fitted linear regression models to capture the 

variance explanation of environmental variables and forest structure metrics (Equation 3): 

𝛼𝑖𝑗 =  𝛽0 + 𝛽𝑗𝑋𝑖𝑗 + 𝜀𝑖𝑗                                                                                           (3) 

where αi is the power-law scaling coefficient for transect i, β0 is the intercept, βj is the 

regression coefficient for each predictor variable Xij, and εij is the residual error. Here, j is the 

index of the predictor variable. 

To assess the goodness of fit we performed a graphical analysis, calculated the 

Akaike Information Criterion (AIC) and the adjusted coefficient of determination (Adj. R²). 

We also evaluated the variance inflation factor (VIF) to see how strong was the collinearity 

among predictors. The final model was built with the variables that most contributed to 

understanding α variation across the Brazilian Amazon. 
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3.2.2 Results 

3.2.2.1 Gap distributions across the Brazilian Amazon biome 

We analyzed 487 transects of LiDAR data randomly distributed over the Brazilian 

Amazon to test whether the size distribution of canopy gaps varies systematically. Figure 2a 

shows patterns of gap size distributions across the Amazon from Northwest to Southeast. The 

South-east region had the highest proportion of large gaps (mean α ± 95% confidence 

interval: 1.9422±0.0223). The North (2.0066±0.0283) and West (2.0162±0.0361) regions 

contained a similar distribution of gaps while the Central-east (2.0928±0.0199) region had the 

lowest proportion of large gaps (Figure 2c).  

 

3.2.2.2 Human modified forests 

We tested whether human modified forests contained a higher proportion of large 

gaps (lower α) than intact forest (H1). The range of α values for human modified forest (1.75 - 

2.31, n = 119) was significantly lower than that found for intact forest (1.66 - 2.50, n = 368, 

Wilcoxon p-value < 0.001), although the two distributions overlapped. The mean α for intact 

forest areas of 2.04±0.0156 and 1.95±0.0231 for human modified forests. This result supports 

H1 that human modified forests contain a higher proportion of large gaps than intact forests 

(Figure 2b). This is also demonstrated by the fact that intact forests status significant 

increased predicted α in all our multiple linear regression models (Table 1). 
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Figure 2. Canopy gap size distribution across the Brazilian Amazon derived from airborne 

lidar transects (n = 487). (A) Each point represents a LiDAR transect and the size represents 

the estimated α for both intact forested areas and human modified forests. Dashed lines 

represent the regions’ division obtained from Feldpausch et al. (2011); (B) distribution of α 

for intact forests (green) and human modified forest (purple) (significantly different according 

to Wilcoxon test, p<0.001); (C) Boxplot showing the α values in each region considering 
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intact forests only. Letters show the results from post hoc Tukey’s tests comparing the mean α 

values among the different regions within the Amazon biome. 

 

3.2.2.3 Modelling the size distribution of canopy gaps 

We used multiple linear regression to understand how the environmental variables 

and canopy height jointly explain the observed variation in gap size distribution. We present 

three separate models, all of which contained intact forest status as a factor (Table 1). We also 

test the models with interaction terms but the results did not contribute much to explain the α 

variation (Table S7). The first model additionally contained maximum canopy height. The 

second model excluded maximum canopy height and contained all significant environmental 

variables (water deficit, soil cation content, wind gust speed and lightning intensity). The third 

model contained all significant variables.  

Our second hypothesis (H2) was that forests with taller trees will contain a higher 

proportion of large gaps because big trees produce large gaps when they die. We found that 

maximum tree height was negatively associated with α in both model 1 and model 3, meaning 

that the presence of very tall trees was associated with a higher proportion of large gaps 

(supporting H2).  

Our third hypothesis (H3) was that higher water availability and soil fertility will be 

associated with a lower proportion of large gaps because gaps will recover more quickly. We 

found that water deficit and soil cation content were negatively associated with α in both 

model 2 and 3. This means that a higher proportion of large gaps is associated with drier 

forests (contrary to H3) and those with more fertile soils (supporting H3). 

Our final hypothesis (H4) was that higher wind speeds and lightning intensity will be 

associated with a higher proportion of large gaps due to an increased rate of storm 

disturbance. Both model 2 and 3 found a significant negative effect of wind gust speed on α, 
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which supports H4. However, lightning intensity was insignificant in model 2 and marginally 

significant in model 3, providing weak support for this part of H4.   

 

Table 1. Power-law α coefficient fitted as function of environmental and ALS canopy height 

metric (H). Estimate = model's coefficients and Std error = standard error. The predictor 

variables were: IFL = intact forest landscapes used to split data into intact (1) and human 

modified forests (0); Hmax = 99
th

 percentile from ALS transects; DEF = water deficit (mm); 

SCC = soil cation concentration (cmol(+)/kg); WG = instantaneous 10m wind gust (m/s) and; 

LGT = Lightning density; Adj. R² =adjusted coefficient of determination; AIC = Akaike 

information criteria; VIF = variance inflation factor. 

 

Model 1 
 (𝞪 ~ H) 

Model 2  
(𝞪 ~  environment) 

Model 3 
(𝞪 ~  H + environment) 

Estimate Std error VIF Estimate Std error VIF Estimate Std error VIF 

Intercept 1.943 *** 0.012  1.981*** 0.012  1.978 *** 0.012  

IFL (1 / 0) 0.103 *** 0.015 1.003 0.057 *** 0.013 1.122 0.057 *** 0.013 1.158 

Hmax 
-0.051 

*** 
0.006 1.003 - - - 

-0.023 

*** 
0.006 1.388 

DEF - - - 
-0.042 

*** 
0.006 1.362 -0.038 ** 0.007 1.523 

SCC - - - 
-0.052 

*** 
0.006 1.142 

-0.045 

*** 
0.006 1.271 

WG - - - -0.019 ** 0.006 1.173 -0.019 ** 0.007 1.855 

LGT - -  - - - -0.014 * 0.007 1.594 

Adj. R² 0.185 0.374 0.392 

AIC -546 -673 -685 

 

3.2.3 Discussion 

3.2.3.1 Human modified forests contain a higher proportion of large gaps 

Our findings show that human modified forests are characterized by a higher 

proportion of large gaps with α values smaller than 2 in 85 transects out of 119 (71%). 
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Conversely, 58% of transects (215 out of 368) with α values larger than 2 were intact forests. 

The low α values we found in human modified forests likely indicates particularly high rates 

of disturbance in these areas. 

All our models saturated at approximately α = 2.23 (Figure 5), which represents the 

maximum value predicted by our model. This indicates that these intact forests with very low 

proportions of large gaps are difficult to distinguish from each other. We suggest further work 

to address this knowledge gap, perhaps focused on stem density, species composition or soil 

properties (ter Steege et al. 2006, Quesada, Lloyd, Schwarz et al. 2010, Quesada, Phillips, 

Schwarz, et al. 2012), for which we have particularly little data in this region. 

 

 3.2.3.2 Tall trees leave large canopy gaps when they fall 

We found that α was negatively correlated with the local maximum canopy height. 

This effect supports our hypothesis (H2) that forests containing the tallest trees also contain a 

higher proportion of large gaps. This is likely because large trees leave large canopy gaps 

when they fall, as hypothesized by Grubb (1977).  
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Figure 5. Goodness-of-fit of the final model: (A) predicted vs observed α values from the 

power-law function; (B) normal quantile-quantile plot for the standardized Pearson residuals; 

(C) scatter plot of residuals; and (D) the residuals distribution for all ALS transects across the 

Brazilian Amazon. 

 

3.2.3.3 Large gaps are more common in productive forests  

We hypothesized (H3) more productive forests with recover from disturbance more 

quickly, and therefore contain a lower proportion of large gaps. In support of this hypothesis, 

we found that drier forests were associated with a higher proportion of large gaps (lower α), 

particularly in the Southeast fringes with frequent prolonged moisture deficits (Phillips et al. 

2009). This follows similar regional patterns previously described for mortality rates (Phillips 

et al. 2004, Phillips et al. 2009, Quesada, Phillips, Schwarz, et al. 2012, Zuquim et al. 2019). 
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However, higher soil nutrient availability was associated with a higher proportion of 

large gaps. For example, Acre state has fertile soils (Quesada, Phillips, Schwarz, et al. 2012, 

Zuquim et al. 2019) and high productivity which results in high turnover rates (Phillips et al. 

2004) and a high proportion of large gaps. The Southeast region also contains fertile soils 

(Zuquim et al. 2019), which are strongly associated with a number of important forest 

attributes, particularly species occurrence (ter Steege et al. 2006, Figueiredo et al. 2018, 

Tuomisto et al. 2019). Conversely, the poor nutrient soils found in the centre of the biome, 

mostly Amazonas state (Figueiredo et al. 2018), was associated with a lower proportion of 

large gaps. This suggests that these areas of higher soil fertility have a high disturbance rate, 

and therefore a large number of gaps despite their presumably quicker recovery rates.  

These two results suggest a complex relationship between forest productivity, 

disturbance rates and recovery. Combining this with our findings on H2, that tall trees are 

associated with a higher proportion of large gaps, suggests that high disturbance rates are 

often found in highly productive forests. 

 

3.2.3.4 Wind and lightning are associated with a higher proportion of large gaps 

Increased wind gust speeds and lightning frequency were associated with a higher 

proportion of large canopy gaps (lower α) suggesting that these large gaps are caused by 

disturbance (H4).  

In extreme cases, wind disturbance can cause extensive damage (gaps >10 ha) to the 

forest canopy (Negron-Juarez et al. 2018, Espírito-Santo et al. 2014), but the frequency of 

smaller scale wind disturbance is more difficult to study. Wind may be the direct cause of 

death for some individual trees and will also cause damaged / dead trees to snap or uproot, 

increasing the size of canopy gaps (Esquivel-Muelbert et al. 2020). Individual trees acclimate 

to their local wind environment (Bonnesouer et al 2016) so when they are exposed to 
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increased wind loading, for example due the creation of a nearby canopy gap, they are more 

likely to be damaged (Mitchell et al. 2013, Aleixo et al. 2019, Kamimura et al. 2019). This 

leads to a gap ‘contagion’ effect where large gaps may grow over time (Wedeux & Coomes 

2015). 

We also found that increased lightning frequency was associated with a higher 

proportion of large gaps. Lightning is often underestimated as a driver of tree mortality, partly 

because it can take many years for a tree to die (Yanoviak et al 2020) and the proximate cause 

of death may be mislabeled (e.g. as wind damage). Recent studies show that a single lightning 

strike can kill multiple trees, that it predominantly affects taller trees, and that lightning could 

be responsible for approximately 40% of the mortality of tall trees in lowland tropical forests 

(Yanoviak et al 2020; Gora, Burchfield, Muller-Landau et al., 2020).  

 

 3.2.3.5 Large-scale trends in gap size distributions across the amazon 

Overall, we found a northwest to southeast pattern in α across the intact forests of the 

Brazilian Amazon. The Central-east Amazon, which is characterized by slower forest 

dynamics (Phillips et al. 2004, Esquivel-Muelbert et al. 2020), exhibited a lower proportion of 

large gaps. This contradicts our hypothesis (H3) that higher turnover leads to a lower 

proportion of large gaps due to faster recovery rates. However, the Northern region, which 

also has slow dynamics (Phillips et al. 2004, Esquivel-Muelbert et al. 2020), had a higher 

proportion of large gaps with a mean α statistically indistinguishable from that of the Western 

Amazon. Phillips et al. (2004) found that the Western and Southern regions had nearly double 

the turnover rate (median value 2.60 % yr-1) compared to the Eastern and Central regions 

(1.35 % yr-1). 
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In addition to turnover rates, canopy gaps are also related to tree mortality rates. Tree 

mortality rates vary across the Amazon with a higher mortality in Western and Southern 

regions than in the less-dynamic Northern and Central-east regions (Esquivel-Muelbert et al. 

2020). Johnson et al. (2016) found the lowest rate of stem mortality in the Central-east 

Amazon, followed by the Northern, Western and Southeastern regions using a network of 

field plots (Table 2). Dalagnol et al. (2021) predicted mortality rates using gap fraction and 

found a similar pattern, although with lower absolute values of mortality (Table 2). We found 

a higher proportion of large gaps in the Southeastern region (mean α ± 95% confidence 

interval: 1.9422±0.0223) which aligns with previous studies and supports the relationship 

between canopy gaps and tree mortality. However, we found a mean α for the North 

(2.0066±0.0283) with no statistical difference from the West (2.0162±0.0361) and 

substantially lower than the Central-east region (2.0928±0.0199). This is surprising because 

the Northern region has previously been shown to have lower mortality rates, similar to the 

Central-east. We therefore conclude that these large-scale observations present a complicated 

picture of the relationship between canopy gaps and both turnover rates and or mortality. 

 

Table 2. Mean α coefficients found in each Amazon region (Feldpausch et al. 2011) in 

comparison with mortality studies. 

 Central-east North West South-east 

Johnson et al. (2016) 

Mortality %yr
-1

 ± SE 

1.38 ± 0.08 1.66 ± 0.16 2.62 ± 0.12 3.19 ± 0.38 

Esquivel-Muelbert et al. 

(2020) 

Mortality %yr
-1

 (95% CI) 

1.4 (1.2–

1.6) 

1.3 (1.2–

1.4) 

2.2 (2.0–

2.3) 

2.8 (2.4–

3.4) 

Dalagnol et al. (2021) 

Mortality %yr
-1

 ± SD 

0.66 ± 0.28 0.65 ± 0.17 0.8 ± 0.28 0.89 ± 0.2 

This study 

α ± 95% CI 

2.058 ± 0.02 1.990 ± 0.03 1.998 ±  

0.04 

1.912 ± 

0.02 
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One important caveat in the comparisons between studies described above is that the 

regions used were designed to be allometrically distinct (Feldpausch et al. 2011), rather than 

being directly related to mortality. We use them to facilitate comparison with other studies 

(Johnson et al. 2016, Esquivel-Muelbert et al. 2020, Dalagnol et al. 2021) but our data set 

does not sample them evenly. In particular, the Northern and Western regions are not fully 

covered by our LiDAR data set (Figure 2a). Also, the North Brazilian Amazon contains a 

higher proportion of large gaps close to the savanna of Roraima, which display a different 

pattern of vegetation and canopy structure (Barbosa & Campos, 2007) from the rest of the 

Amazon. 

It is important to consider the different time-scales of the main processes determining 

α. Water and nutrient gradients have long-term effects on forest structure and species 

composition (ter Steege et al., 2006). The immediate effects of disturbance are short-lived in 

the tropics since canopy gaps will close after 3-6 years due to natural regeneration (Brokaw 

1985). Repeated disturbance can have long-term impacts on forest structure, but these are 

more difficult to predict and poorly represented by our wind layer. For instance, decades of 

high deforestation rates left behind a legacy of fragmentation, increased forest edges, and 

degraded forests (Aragão et al. 2014). The chronic effects of wind (Ennos 1997) and lightning 

(Gora, Burchfield, Muller-Landau et al., 2020) necessarily influence forest structure in the 

long term. For example, recent work found that low wind speeds were a key factor in 

determining the presence of ‘giant’ trees in the Amazon (Gorgens et al. 2020). This will have 

knock-on effects on the presence of large gaps as suggested by H2. 
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3.3 Conclusions 

Canopy gaps are a key aspect of forest structure and dynamics, marking the balance 

between disturbance and regeneration in dense tropical forests. This study provides a new 

understanding of the variation in canopy gap size distributions across the Brazilian Amazon.  

We found a Northwest to Southeast gradient in gaps size distributions, which aligns 

with recent mortality studies. As expected, human modified forests contained a higher 

proportion of large gaps than intact forests. The presence of very tall trees was also associated 

with a higher proportion of large gaps, presumably because large trees leave large gaps when 

they die. 

We also found that higher soil fertility, water deficit, wind speed, lightning intensity 

were associated with a higher proportion of large gaps. We suggest further work to address 

this knowledge gap, perhaps focused on stem density, species composition or soil properties. 

This suggests that disturbance events are more common in fertile soils and that stressors such 

as drought, wind and lightning significantly increase these disturbance rates. Together, these 

findings show that increasing extreme weather events may increase the proportion of large 

gaps in currently intact forests across the Brazilian amazon, causing them to resemble human 

modified forests. 
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Appendix 

Supplementary material 

Map of flightlines 

Figure S1. Map of the 650 airborne laser scanning transects collected between 2016 and 2018 

and initially used in our canopy gap analysis. 
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Sensitivity to gap definitions and filtering decisions 

We defined canopy gaps as contiguous areas of low canopy height which meet a 

number of thresholds. In this section we test the sensitivity of our results to our choice of 

thresholds. In particular, we test how the full multiple linear regression model would change 

if we changed the threshold, within reasonable limits. The first threshold (A) is that the 

canopy height must below a cutoff height, set as10 m in our analysis (Figure S2). 

Figure S2. Sensitivity of multiple linear regression model to choice of cutoff height. The 

model was run with all other thresholds set at the values used in the main text (i.e. minimum 

area = 20 m
2
, maximum area = 1 ha, erroneous gaps filtered out, only transects with median 

height > 15 m included). 
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The second threshold (B) is that the gap must be larger than 20 m
2
 to focus on larger 

gaps which are more likely the results of disturbance events, and to filter out noise and small 

gaps between tree crowns. We found the model to be relatively insensitive to this choice of 

threshold (Figure S3). 
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Figure S3 Sensitivity of multiple linear regression model to choice of minimum area 

threshold. The model was run with all other thresholds set at the values used in the main text 

(i.e. maximum area = 1 ha, cutoff height = 10 m, erroneous gaps filtered out, only transects 

with median height > 15 m included).  
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The third threshold (C) was that the gap must be smaller than 10,000 m
2
 (1 ha) to 

avoid permanent features, such as roads or rivers, being classified as gaps. We found the 

model to be relatively insensitive to this choice of threshold (Figure S4). 

Figure S4 Sensitivity of multiple linear regression model to choice of maximum area 

threshold. The model was run with all other thresholds set at the values used in the main text 

(i.e. minimum area = 20 m2, cutoff height = 10 m, erroneous gaps filtered out, only transects 

with median height > 15 m included).  
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Environmental layers used 

 

Figure S5. Environmental variables and modeled maximum height maps. (A) Soil 

concentration cation (cmol(+).kg
-1

) in log scale, (B) lightning intensity, (C) water deficit 

(mm), (D) instantaneous wind gust (m.s
-1

), and (E) Elevation above sea level (m). 
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Correlations of individual variables 

 

Figure S6. Pearson’s correlation (r) between LiDAR derived gap information (alpha) and 

independent variables for human modified forests. alpha = power-law scaling coefficient, def 

= water deficit (mm), scc = soil cation concentration (cmol(+)/kg), wg = instantaneous 10m 

wind gust (m/s), lgt = Lightning density rates, srtm = elevation above sea level (m), p99 = 

maximum height (m). 
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Multiple linear regression with interaction terms 

Table S7. Power-law α coefficient fitted as function of environmental and ALS canopy height 

metric (H) considering interaction terms. Estimate = model's coefficients and Std error = 

standard error. The predictor variables were: IFL = intact forest landscapes used to split data 

into intact (1) and human modified forests (0); Hmax = 99th percentile from ALS transects; 

DEF = water deficit (mm); SCC = soil cation concentration (cmol(+)/kg); WG = 

instantaneous 10m wind gust (m/s) and; LGT = Lightning density; SRTM: elevation (m); Adj. 

R² =adjusted coefficient of determination; AIC = Akaike information criteria; VIF = variance 

inflation factor. 

 

 
Estimate Std error p.value 

Intercept 1.981 0.012 0.00E+00 

IFL 0.054 0.013 4.85E-05 

Hmax -0.037 0.008 4.09E-06 

DEF -0.036 0.007 1.00E-06 

SCC -0.047 0.007 4.25E-11 

WG -0.029 0.008 1.58E-04 

LGT -0.013 0.007 5.07E-02 

SRTM 0.013 0.009 1.52E-01 

Hmax: SCC 0.020 0.008 9.96E-03 

Hmax : Wind gust speed 0.018 0.005 2.24E-04 

SCC : LGT -0.021 0.007 1.17E-03 

SRTM : DEF -0.034 0.009 1.06E-04 

SRTM : LGT 0.016 0.005 8.10E-04 

R2 0.451 
  

AIC -728 
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4. GENERAL CONCLUSION 

The thesis illustrates in two different ways how airborne laser scanning (ALS) can 

support the management of complex natural forests, like the Amazonian rainforest. In the first 

study, a small scale ALS assessment was used to qualify emergent trees and to assess how 

many commercial trees can be found in order to improve the forest management operational 

plan. In the second study we demonstrate the usefulness of a large-scale ALS sampling 

assessments to evaluate the distribution of canopy gaps across the Amazonian region in 

Brazil. 

The use of ALS as an auxiliary tool improves the quality of forest management 

operational plans by mapping the exact location of the tallest trees, and consequentially 

locating the most valuable. An ALS canopy height model (ALS-CHM) is the essential tool for 

that purpose. This procedure might reduce the time and costs of the current operation, which 

depends on a census of all trees in the area. The use of ALS proves to be of great importance 

to mitigate negative impacts on forests when selective logging is prescribed as a technique to 

promote sustainable forest management. 

ALS also proved successful to evaluate how natural and human disturbances processes 

affect important ecological parameters, such as gap formation. It helps on the understanding 

of the importance of avoiding deforestation to reduce carbon emission and, consequently, 

climate change. As demonstrated in the second study in this thesis, the proportion of large 

gaps in the forest canopy varies substantially over the Brazilian Amazon due to canopy 

structure and mortality rates. However, we showed in the second study that the higher 

proportion of large gaps we found were caused mainly by human intervention, by variation on 

soil fertility and by exposition to higher wind, lightning and drought stress. Therefore, 

increasing extreme weather events due to climate change may therefore increase the 

proportion of large gaps in currently intact forests, making them as damaging as the clear cuts 

found in human modified forests. 
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As future work we recommend studies following the approach that reduces sampling 

intensity in selective logging with the approach proposed in the first chapter. Also, similar 

studies, like the one presented in the first chapter, should be encouraged to make it possible to 

validate the proposed methodology in different areas enabling the f-score comparison. As 

recommendation to the second chapter, it is important to consider the different time-scales of 

the main processes determining α. We suggest further work to address this knowledge gap, 

perhaps focused on stem density, species composition or soil properties. Multitemporal ALS 

data could provide information to better understand the long-term effects and the immediate 

effects on forest structure and species composition. 


