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RESUMO 

     Eficiência hídrica e nutricional de Pinus caribaea var. hondurensis e Pinus taeda 

O objetivo geral deste estudo foi avaliar a eficiência no uso de água e de nutrientes 
de Pinus caribaea var. hondurensis e Pinus taeda. Para essa proposta, o presente estudo foi 
apresentado em três capítulos. Para os capítulos I e II, o estudo utilizou árvores de Pinus 
spp., aos 13 anos, provenientes de uma área experimental do Programa Cooperativo de 
Pesquisa em Pinus no Brasil (PPPIB), situada no município de Itatinga, São Paulo. Dados de 
inventário e mensurações de bandas dendrométricas foram utilizados para avaliar o 
crescimento das árvores de Pinus spp. cultivadas sob distintos regimes de fertilização 
(tratamentos fertilizado e controle). Ademais, quarenta e oito árvores foram selecionadas e 
quatro amostras por árvore foram coletadas à aproximadamente 1,3 m de altura. No 
Capítulo I, o crescimento arbóreo, as relações clima-crescimento e a eficiência intrínseca do 
uso da água (EIUA) foram avaliados através de uma análise combinada do incremento de 
área seccional transversal (AST), balanço hídrico e razão isotópica de carbono (δ13C). No 
Capítulo II, a densidade da madeira foi avaliada pela técnica não-destrutiva de densitometria 
de raios-X. Adicionalmente, foram delimitados os anéis anuais das árvores e realizada a 
datação cruzada entre as árvores. As cronologias de largura do anel de crescimento e 
densidade da madeira foram analisadas pelo método dendrocronológico e correlacionadas 
com  com dados de precipitação e temperatura. Para o Capítulo III, foi conduzido um 
experimento em casa de vegetação com mudas de Pinus caribaea var. hondurensis e Pinus 
taeda, com duração de três meses, sob duas condições hídricas (bem irrigado e com déficit 
hídrico) e dois níveis de K do solo (suficiente e alto). Foram obtidos dados de biomassa, 
estado nutricional, composição isotópica foliar (δ13C‰ δ15N‰), potencial hídrico foliar (Ψw) 
e fluorescência da clorofila. Diante do exposto, alguns dos principais resultados foram: 
Capítulo I- a adição de fertilizante às espécies de Pinus afetou a abundância natural de 13C, 
resultando em diferentes respostas de EIUA; Capítulo II- o regime de adubação aumentou a 
produção de madeira em Pinus caribaea var. hondurensis e aumentou a densidade da 
madeira em Pinus taeda; Capítulo III- o alto suprimento de K afetou negativamente a 
fisiologia das mudas de Pinus spp., e inibiu a fotossíntese e o crescimento.  

Palavras-chave: Manejo florestal, Dendrocronologia, Estresse hídrico, Abundância isotópica 
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ABSTRACT 

          Water and nutrient use efficiency of Pinus caribaea var. hondurensis and Pinus taeda 

The overarching purpose of this study was to evaluate the water and nutrient use 
effectiveness of Pinus caribaea var. hondurensis and Pinus taeda. To achieve this, the 
present study was presented in three chapters. For chapters I and II, the study used Pinus 
spp. trees, at 13 years, from the Cooperative Program on Pine Research in Brazil (PPPIB) 
experiment, situated in the municipality of Itatinga, São Paulo. Inventory data and 
measurements of dendrometer bands were used to assess tree growth of Pinus spp. field-
grown under distinct fertilized regimes (fertilized and control treatments). Additionally, 
forty-eight trees were selected, and four cores per tree at approximately 1.3 m height were 
collected. In Chapter I, the growth, climate-growth relationships, and intrinsic water use 
efficiency (WUEi) were assessed by a combined analysis of cross-sectional area increment 
(CSA), water balance and carbon stable isotope ratio (δ13C). In Chapter II, wood density was 
analyzed by the non-destructive technique of X-ray densitometry. Also, the annual tree-rings 
were delimitated and the crossdating between trees was performed. Tree ring width and 
wood density were analyzed by dendrochronological method and correlated with rainfall 
and temperature. For Chapter III, a greenhouse experiment was conducted with Pinus 
caribaea var. hondurensis and Pinus taeda seedlings for three months, under two water 
conditions (well-watered and water deficit) and two soil K levels (sufficient and high). Plant 
biomass, nutritional status, leaf isotopic composition (δ13C‰ δ15N‰), leaf water potential 
(Ψw) and chlorophyll fluorescence were measured. In light of the foregoing, some of the key 
results were: (Chapter I) fertilizer added to Pinus species affected the natural abundance of 
13C, resulting in different responses of WUEi; (Chapter II) the fertilization regime incresead 
the wood production in Pinus caribaea var. hondurensis and increased wood density in Pinus 
taeda; (Chapter III) the K supply negatively affected plant’s physiology, and inhibited 
photosynthesis and growth.  

Keywords: Forest managmement, Dendrochronology, Water stress, Isotopic abundance 
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1. INTRODUCTION 

In Brazil, Pinus is among the most economically important genus, occupying 1.6 

million hectares of planted forests, the equivalent to 28% of total area (IBA, 2020). Brazilian 

pine forests display some of the world's highest growth rates, with an average productivity 

of 30 m3. ha-1. year-1 in about 18-year rotation cycles (IBÁ, 2020). Although more extensive 

plantations are concentrated in South and Southeast regions, the introduction of different 

species coming from a wide range of ecological conditions in their original distribution has 

contributed to the expansion of forests planted with pine in other regions of the country 

(Chaves and Corrêa, 2003). Pine wood has potential for several uses such as production of 

cellulose, industrial laminated products, plywood for civil construction, furniture 

manufacturing and resin extraction.  

Loblolly pine (Pinus taeda), species originated from United States, is the most 

planted species among pine in Brazil (Oliveira et al., 2018). P. taeda plantations are mostly 

managed by large-scale forest companies to supply raw material for pulp, paper, and wood-

based composite industries (Oliveira et al., 2018). The highlands of South and Southern 

regions present most favorable growth conditions for that species, with mild temperatures 

associated with no water deficit (Campoe et al., 2016a; Dobner et al., 2019). Notably, under 

favorable conditions, P. taeda can reaches growth rates higher than 50 m3. ha-1. yr-1, at 

ages of 16-18 years (Elesbão and Schneider, 2011; Leite et al., 2006), more than twice as 

much as in its natural United States forests (Albaugh et al., 2018).   

Pinus caribaea, native to the Central America, is known by its varieties caribaea, 

bahamensis and hondurensis, and has been cultivated in Brazil for over 30 years. As a 

tropical specie, Pinus caribaea has a broad adaptation in Brazilian territory, extending to 

Southeast and Central-west regions (Campoe et al., 2016b; Araújo et al., 2012; Pirovani et 

al., 2018) and some areas of the North and Northeast regions (Lima et al., 2022; de Oliveira 

et al., 2018). P. caribaea var. hondurensis is the most commonly planted variety in Brazil, and 

its timber has favorable quality for manifold uses (Shimizu & Medrado, 2005). Honduran 

provenance climates are very variable, range from 700 mm mean annual rainfall with 6 -7 

months dry season, to over 3000 mm mean annual rainfall, and 2-3 months dry season 

(Robbins & Hughes, 1983). Typically, Pinus caribaea has excellent productivity and reaches 

higher growth rates than the Pinus taeda (Campoe et al., 2016b).  
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Much of the Pinus representativeness is associated to the genus' tolerance and 

rusticity, which makes possible its adaptation to low fertility soils, involving low input costs 

(Dobner Jr., 2013; Oliveira, 2013). However, although Pinus forests have low nutritional 

demand, studies have pointed to the importance of fertilization practices for the purpose of 

improving the productivity and to maintain the long-term sustainability of forests (Moro et 

al., 2014; Samuelson et al., 2008). Additionally, despite the economic importance of Pinus 

plantations in Brazil, not much is known about the management of these on response to the 

factors such as climate, site, and resources availability, leading to the belief that its potential 

has not been well explored.  

Considering this, further studies directed to the understanding of how the 

productivity of the main pine species (tropical and subtropical) respond to climate, 

silvicultural and management practices have been required. This subject is directed towards 

the interests of the forest managers to create management strategies aimed at increasing 

productivity and improving competitiveness of Pinus forests. The main objective of this study 

is to evaluate the water and nutrient use effectiveness of Pinus taeda and Pinus caribaea 

var. hondurensis. Thus, three chapters were developed to achieve the present goal. 

1. Climate-growth relationships and isotopic Δ13carbon responses of field-grown 

Pinus spp. to nutrient availability. This chapter characterizes the development of Pinus 

caribaea var. hondurensis and Pinus taeda trees grown in an experimental site located in 

Itatinga Municipality, São Paulo state, Brazil, from a factorial design with two level of 

management, considering fertilization regime. Biomass variations were monthly analyzed 

over a 7-year period and correlated to local climate variables. Intra-annual δ13C analysis was 

applied jointly with biomass and climate data for the in-depth assessing of water use 

effectiveness of Pinus caribaea var. hondurensis and Pinus taeda trees.  

2. Effects of fertilization management on stand development and radial wood 

density variability of Pinus caribaea var. hondurensis and Pinus taeda. In this chapter, non-

destructive X-ray densitometry analysis was applied to assess wood density variability of 13- 

year-old Pinus caribaea var. hondurensis trees, considering fertilized and unfertilized 

treatments. Interrelations of tree-ring width, microdensity and biomass were also assessed 

and correlated to local climate data.  

3. Effect of high potassium supply and soil water regime on the early growth of 

Pinus caribaea var. hondurensis and Pinus taeda. Here, the objective was to evaluate the 
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effects of drought stress and K-fertilization on morphological and physiological responses of 

Pinus caribaea var. hondurensis and Pinus taeda seedlings. To achieve the proposed 

objectives a greenhouse experiment was conducted for three months. Measurements 

include growth, plant chemical composition,  chlorophyll fluorescence, leaf water potential, 

and isotopic composition (δ13C e δ15N).  
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2. CLIMATE-GROWTH RELATIONSHIPS AND ISOTOPIC Δ13CARBON RESPONSES OF FIELD-

GROWN PINUS SPP. TO NUTRIENT AVAILABILITY 

2.1. Introduction  

 

Brazilian pine plantations have one of the highest productivity rates in the world, 

with an average of 30 m3 ha-1 year-1 (IBA, 2020), and consists predominantly of subtropical 

species as opposed to tropical species. Loblolly pine (Pinus taeda), native to North America, 

is the most planted species. The good performance of Pinus spp. plantations is to be largely 

attributed to the more favorable soil and climatic conditions (Sass et al., 2020) as well as the 

selection of more adapted and productive genotypes (Aspinwall et al., 2011). However, pine 

forests show wide regional variation in productivity, ranging from 15 to 50 m3 ha-1 year-1 

(IPEF, 2016), which is ascribable mainly to differences in silvicultural practices management. 

That is because due to genetic and environmental factors and silvicultural treatments 

interacts on the capacity of Pinus spp. production is still unclear.  

Diversified responses of Pinus species to climate-edaphic variability are directly 

connected to phenotypic plasticity and to local adaptation (Corcuera et al., 2010; Richter et 

al., 2012; Taïbi et al., 2015; Valladares et al., 2007) and therefore are the basis for adoption 

of best management practices aimed at increasing pine productivity and to maintain the 

long-term sustainability of forests. Pinus Caribaea var. hondurensis, a tropical pine, has been 

drawing some attention among forest managers because it is assumed to be relatively 

drought resistant (Barret; Golfari, 1962) and able to adapt to various climate conditions and 

soil types (Chaves and Corrêa, 2003; Shimizu, 2006). In contrast, as a subtropical species, 

Pinus taeda is well established in regions with mild temperatures, where the annual water 

deficit is less than 50mm (Pirovani et al., 2018).  

Most Brazilian pine plantations are on low-fertility and sandy soils where moisture is 

frequently limiting (Sass et al., 2020). Despite the genus' tolerance and rusticity (Dobner Jr., 

2013; Sixel et al., 2015), soil nutrient availability in pine stands is considered one of the most 

important factors affecting forest yield (Allen et al., 2005; Fox et al., 2007; Maggard et al., 

2016). Fertilization increases pine productivity mainly through increases in leaf area index 

and intercepted radiation (Albaugh et al., 2016). Furthermore, it is known that there are 

interactive effects of nutrient availability and water stress on the physiological processes and 
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tree growth (Maggard et al., 2016; Ward et al., 2015). In this sense, it has been suggested 

that the fertilization may be beneficial in Pinus spp. plantations experiencing reduced water 

availability (Faustino et al., 2013; Samuelson et al., 2018; Wightman et al., 2016). 

Fractionations of stable carbon isotope (δ13C ‰) in tree rings of Pinus species in sub- 

and tropical (Brooks and Mitchell, 2011; Fichtler et al., 2010; Ibell et al., 2013; Krepkowski et 

al., 2013; van der Sleen et al., 2017) zones have been analyzed at inter- and intra-annual 

resolutions. Linking tree growth, carbon isotopic composition provides integrated measures 

of both environmental conditions and plant physiological processes, and is related to the 

plant water use efficiency (Farquhar et al., 1982; Mateus et al., 2019; 2022). Stomatal 

conductance for CO2 and the photosynthetic carbon assimilation are regulated by the partial 

pressure of CO2 in the leaf intercellular spaces (Farquhar et al., 1989). The CO2 diffusion 

through stomata and the carboxylation process mediated by Rubisco are the principal 

components of photosynthesis influencing carbon discrimination and 13C/12C isotopic ratio 

(O’Leary, 1988, 1993). The primary mechanism for inhibition of photosynthesis under water 

deficit is the decrease in intercellular CO2 concentration and a reduced CO2 supply to 

Rubisco (Marques et al., 1995). As the water availability cause variations of CO2plant / CO2atm 

mainly through their effects on stomatal conductance and photosynthetic activity, these 

effects are measurable as either changes in δ13C or carbon discrimination (Δ). Overall, water 

stress condition causes stomata closure, reduces stomatal conductance for CO2, and leads to 

increased water use efficiency. It is expected to be recorded in tree-rings as an increase of 

the ratio between 13C and 12C stable isotopes of carbon fixed in steam wood (McDowell et 

al., 2003).   

 The present work evaluated the climate-growth relationships of Pinus caribaea var. 

hondurensis and Pinus taeda stands grown under fertilized and unfertilized treatments, on 

an experimental area situated in the Southeast Brazil. These data were linked to the 

variation in δ 13C of annual rings to assess the water use efficiency of trees. The hypotheses 

are: (1) the fertilization regime would influence the tree cambial activity and wood 

production of the two studied Pinus species; (2) the natural abundance of 13C may be an 

effective tool for assessing the effects of fertilization regime on tree WUE (as indicated by 

wood δ13C) and tree growth. 
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2.2. Conclusions  

The tree growth of Pinus caribaea var. hondurensis and Pinus taeda showed 

significant relationships to meteorological variables and all tree size classes responded to 

multiple meteorological variables related to water availability and evapotranspiration.  

Considering the climate aptitude of studied Pinus species, the water balance analysis 

revealed that the tree growth performance was not significantly impacted by drought stress 

in most of the years of study. 

Differences between treatments were recorded in δ13C which showed that fertilized 

Pinus spp. trees displayed higher carbon isotope discrimination values. This indicates that 

the increased of nutrient availability improved the soil water absorption capacity, resulting 

in higher photosynthetic performance of Pinus spp. trees. Unfertilized trees of Pinus 

caribaea var. hondurensis presented lower wood productivity associated to higher WUEi. In 

return, fertilized trees of P. taeda showed higher WUEi in some drier periods, without 

significant changes in growth rates. In general, P. caribaea var. hondurensis has proved to be 

more water-use efficient than P. taeda, being able to use smaller amounts of water for a 

higher wood production.  
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3. EFFECTS OF FERTILIZATION MANAGEMENT ON STAND DEVELOPMENT AND RADIAL 

WOOD DENSITY VARIABILITY OF PINUS CARIBAEA VAR. HONDURENSIS AND PINUS 

TAEDA 

3.1. Introduction 

Understanding the mechanisms that control growth and wood formation of trees is 

critical for forecasting forest stands dynamics and to overview best management practices 

aimed at sustainable development and increased forestry productivity. Genetic and 

physiological components of plants are intrinsically related to their abilities to absorb and 

utilize nutrients under distinct environmental and ecological conditions. These traits interact 

with external factors such as soil moisture and temperature (Baligar et al., 2001), and how 

this dynamic affects the biomass production is related to the ability of crops to take up and 

utilize nutrients for maximum yields (Dijkstra et al., 2016; Toca et al., 2019).   

Pinus taeda, a subtropical species from southeast United States, is the most 

cultivated Pinus species in Brazil (IBÁ, 2020). Among species of tropical pines, Pinus caribaea 

var hondurensis has been increasingly cultivated in Brazil (de Lima et al., 2016; Gonçalez et 

al., 2018). In general, the Pinus genus is seen as exceptionally tolerant and rusticity, based on 

its satisfactory adaptation to low fertility soils (Kulmann et al., 2021; Pietrzykowski, 2014; 

Rocha et al., 2020). However, although Pinus forests have considerable low nutritional 

demand, studies have pointed to the importance of fertilization practices aiming to improve 

the productivity as well as to maintain the long-term sustainability of forest plantations 

(Campoe et al., 2016; Moro et al., 2014; Samuelson et al., 2008). Besides, despite the 

economic importance of Pinus plantations in Brazil, not much is known about the effects of 

fertilization management on the growth performance associated to the factors such as 

climate and wood properties, leading to the belief that the productivity potential of the 

Pinus spp. plantations has not been well explored.  

Radial growth of trees greatly depends on the interactions between environmental 

and competition dynamic (Piutti and Cescatti, 1997). Changing environmental conditions, do 

not only influence growth rates of the trees (and thus ring width), but can also affect the 

wood properties, as wood density. To comprehend the role of the fertilization regime on 

forest dynamics in the context of the nutritional efficiency is facilitated by understanding of 
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tree growth changes into a longer assessment period. Dendrochronological analysis provides 

tools to explore radial variability of wood stablishing relationships between tree-ring width, 

and climate data over time (tree age) (Aragão et al., 2019; Fritts, 1976). These relationships 

can be used in association with radial variation in wood density, for a in depth assessment of 

trees development (Gao et al., 2017; Jacquin et al., 2017; Tomazello et al., 2008). In this 

sense, annual tree-rings being a precise tool to assess long-term growth trends and to report 

accurately information about the effect of fertilization on stand development and their 

interaction with environmental conditions. 

The present work used the Cooperative Program on Pine Research in Brazil (PPPIB) 

experiment to determine how tree growth of Pinus taeda and Pinus Caribaea var. 

hondurensis differ in response to fertilization, and how these responses are associated to 

tree-ring microdensity variability and climate variables.   

 

3.2. Conclusions  

In particular for Pinus caribaea var. hondurensis, fertilized plots varied greatly from 

the control plots in relation to tree growth and biomass production. Significant changes in 

the P. caribaea var. hondurensis tree-volume trends were verified in all years by the 

fertilization regime, indicating a high level of responsiveness to both fertilizer application 

periods.  

The wood microdensitometry analysis associated to the study of annual rings 

provided accurate data to understand the impact of fertilization regime on Pinus spp. stands 

development over the years of study, regardless species and tree size class (large, medium, 

small). Although no significant effect was observed on tree stem volume increment of Pinus 

taeda trees, a small increase in wood density occurred in response to fertilization. 

Furthermore, the precipitation was a principal climate variable related to tree ring width 

(positive correlation) and wood density (negative correlation).  
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4. EFFECT OF HIGH POTASSIUM SUPPLY AND SOIL WATER REGIME ON THE EARLY GROWTH 

OF PINUS CARIBAEA VAR. HONDURENSIS AND PINUS TAEDA 

4.1. Introduction  

Globally, drought stress is one of the main abiotic factors that limits crop growth and its production 

(Ryan et al., 2010; Booth 2013; Anderegg and Hillerislambers 2016). It is a recognized fact that the water 

stress adversely impacts many aspects of the physiology of plants, especially photosynthetic 

capacity (Osakabe et al., 2014). Under water limited conditions, plants promote the closure 

of stomata to avoid water losses, and although this mechanism prevents the desiccation and 

xylem cavitation, it also restricts CO2 supply for photosynthesis, leading to a decrease in the 

tree productivity (Chaves et al., 2009; Sperry and Love 2015). In addition, due to drought, 

there is a significant reduction in photochemical efficiency (Mena-Petite et al., 2000; Yang et 

al., 2006) and different water relation parameters are affected (Cochard et al., 1996 Sergent; 

et al., 2020). In this sense, efforts to adapt forests to drought stress have been directed at 

assessment of impacts and genetic variation in traits that may be important for maintaining 

higher photosynthetic capacity in drought-tolerant plants. 

Potassium is essential for plant nutrition and plays a key role optimization of 

physiological and biochemical processes involved in water content of plants and CO2 use 

efficiency during drought periods (Christina et al., 2015; Battie-Laclau et al., 2016; Mateus et 

al., 2022). Drought tolerance of the plant as a function of K nutrition is based on the 

fundamental role of K in osmoregulation, enabling the maintenance of turgor and cell 

expansion necessary to promote root growth in conditions of water deficit (Leigh and Jones 

1984; Oddo et al., 2011). Furthermore, K must be intrinsically related to the water use 

efficiency of plants subjected to drought stress, since it controls stomatal closure, which is 

the most effective way to retain water in plant tissues (Egilla et al., 2005; Jordan-Meille et 

al., 2018). Based on this, K supply has been adopted as a nutritional management option to 

attenuate drought stress in tree species plantations as Eucalyptus spp. (Battie-Laclau et al., 

2016; Santos et al., 2021; Mateus et al., 2022). However, the results that have been reported 

about the effect of K in the attenuation of osmotic stress linked to photosynthetic process 

differ regarding species or genotype, which place high emphasis on genetic factor as source 

of variability. 



26 

Photosynthesis in plants greatly relies upon the photochemical processes including 

the chlorophyll fluorescence, an important indicator of the photosynthetic energy 

conversion during light reaction (Schreiber et al., 1994). Chlorophyll fluorescence has been 

widely used in studies of plant physiology (Murchie and Lawson 2013), and is a very 

promising method for providing quantitative and non-invasive information. Measuring 

chlorophyll fluorescence can be provide various information about the photosynthetic 

activities of plants. The energy dissipated via light-harvesting antenna pigments when 

excitation energy is not being transferred to the Photosystem II (PSII) reaction centers is 

termed F0 (Bresson et al., 2015). After reaching F0, the application of a brief saturating pulse 

induces a maximum value of chlorophyll, Fm, which is the level attained when maximal 

closure of PSII reaction centers is reached (Hsu 2007; Bresson et al., 2015). The difference 

between Fm and F0 is defined as the variable fluorescence, Fv. The ratio of Fv/Fm provides 

an estimate of the maximum quantum efficiency of PSII photochemistry (Butler, 1978), and 

it has been widely used to assess alterations in the photosynthetic systems induced by stress 

(Toscano et al. 2016, Marias et al., 2017; Remke et al., 2020; Kunert et al., 2021). In this 

context, differential δ13C and δ15N signatures have been also used to gain insights into the 

nutritional status and physiological response mechanisms to abiotic stress throughout its 

whole cycle (Cernusak et al. 2009, Serret et al., 2018; Mateus et al., 2021; 2022).   

Although Pinus species are widely distributed and most of them display relative 

drought tolerance (Koralewski et al., 2014; Móricz et al., 2018; Hanene et al., 2021), it has 

been recognized that the water stress greatly limits the growth efficiency and pine stand 

production (Albaugh et al., 2004; Fox et al., 2007). Pinus taeda and Pinus caribaea var. 

hondurensis are important components of Brazilian conifer forests, which represent about 

20% of total planted forest areas (IBA, 2019). Pinus Caribaea var. hondurensis, a tropical 

pine, is assumed to be relatively drought resistant (Barret and Golfari, 1962), while P. taeda, 

a subtropical species, has been well established in regions without dry season (Campoe et 

al., 2016; Pirovani et al., 2018). Studies describing the effect of water stress and how K can 

upregulate drought tolerance of different Pinus species are scarce. This information is also 

useful in choosing the strategic management of the species to fully exploit planted forests. 

The research evaluated the K-dynamic nutrition in Pinus caribaea var. hondurensis 

and Pinus taeda in response to different water availabilities in the soil and stablished 

relationships among the distinct treatments and nutritional and physiological responses, as 
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well as yield traits. For this, the study was carried out by the following hypotheses: (1) 

drought induced-stress affects the physiology and K-nutritional status when plants are 

supplied with K; (2) K supply has the potential to alleviate the drought-induced stress in 

Pinus by up-regulating growth, physiological and biochemical parameters. This research also 

aims to confirm the efficacy of the methods of natural isotopic abundance (δ13C ‰ and δ15N 

‰) and chlorophyll fluorescence as a reliable indicator of the effects of K-fertilization 

throughout plant metabolism cycle. 

 

4.2. Conclusions  

Pinus spp. plants showed a negative response to potassium supply, as the increase in 

K level affected directly the plant’s growth and physiology, impairing plant dry matter 

production and disturbing the photosynthetic activity (Fm, Fv/Fm NDVI, chlorophyll a and 

anthocyanin indexes). Although this negative effect has been verified for both water regimes, 

it was higher for Pinus seedlings maintained well-watered. In this sense, K supply decreased 

the plant biomass in well-watered regime and did not alleviate the drought-induced stress in 

Pinus spp. seedlings.  

Regardless of the K-fertilization regime, water deficit was related to substantial 

decrease in leaf water potential (Ψw) and increase in leaf carbon isotope value (δ13C ‰). 

Differences in discrimination against 15N between treatments indicated consistent relationship 

with N cycle processes, suggesting an antagonistic relationship between high K level and N-

uptake. The information presented in present study improves our understanding of the toxicity 

of high potassium for Pinus species in detriment of other essential elements and highlights the 

need for plantation planning to stablish a nutritional balance in order to achieve high nutrient 

use efficiency.  
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