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RESUMO 

 

Aplicações do sensoriamento remoto no monitoramento florestal e mitigação das 

mudanças climáticas 

 

Nos últimos anos, as tecnologias de sensoriamento remoto têm experimentado avanços 

significativos, impulsionados pela introdução de novos sensores e técnicas avançadas de 

processamento de dados. Esses avanços têm permitido uma observação das florestas de 

maneiras antes inacessíveis. Com isso, surgem grandes expectativas em relação a essas 

tecnologias no enfrentamento dos desafios impostos pelas mudanças climáticas. Esta 

dissertação consiste em dois capítulos, sendo o primeiro focado no uso de imagens orbitais 

multiespectrais de alta resolução e técnicas avançadas de manipulação de dados para o 

monitoramento e classificação de diferentes tipos de cobertura florestal. O objetivo é fornecer 

suporte a programas de restauração florestal em paisagens. O segundo capítulo aborda a 

utilização de dados LiDAR para o monitoramento local da degradação em projetos REDD+, 

visando investigar as aplicações dessa tecnologia na conservação e monitoramento florestal. 

Nossos resultados evidenciaram o grande potencial das tecnologias de sensoriamento remoto 

para abordar questões relacionadas à mitigação das mudanças climáticas, tanto em termos de 

restauração quanto de conservação florestal. No entanto, é necessário realizar trabalhos 

subsequentes para desenvolver metodologias robustas e replicáveis, a fim de permitir que as 

tecnologias de sensoriamento remoto desempenhem um papel fundamental na superação dos 

desafios impostos pelas mudanças climáticas. 

 

Palavras-chave: Imagem orbital multiespectral, Tipologias florestais, LiDAR, Degradação 

florestal 
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ABSTRACT 

 

Remote sensing application in forest monitoring and climate changes 

 

Remote sensing technologies have made significant advancements in recent decades, with the 

introduction of new sensors and data manipulation techniques that allow us to observe forests 

in previously inaccessible ways. With these advancements, there are high expectations for 

these technologies to address the challenges posed by climate change. This master's thesis 

consists of two chapters, one using a passive sensor and the other using an active sensor. The 

first chapter investigates the potential of high-resolution multispectral satellite imagery and 

different data manipulation techniques for monitoring forest landscapes and classifying 

different forest types, with the aim of supporting landscape forest restoration programs. The 

second chapter focuses on the use of LiDAR data for monitoring degradation in REDD+ 

projects at a local level, aiming to explore the applications of this technology in forest 

monitoring and conservation. Our results have shown the great potential of remote sensing 

technologies in addressing various issues related to climate change mitigation, both for forest 

restoration and conservation. However, further work needs to be done to develop robust and 

replicable methodologies that allow remote sensing technologies to play a key role in 

overcoming the significant challenges posed by climate change. 

 

Keywords: Multispectral orbital images, Forest types, LiDAR, Forest degradation 
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1. INTRODUCTION 

This master's dissertation aims to evaluate the potential of different remote sensing 

techniques for forest monitoring, focusing on methodologies that can be applied to real-world 

problems. Remote sensing technologies have made significant advancements in recent 

decades, with the introduction of new sensors and data manipulation techniques that allow us 

to observe forests in previously inaccessible ways. With these advancements, there are high 

expectations for these technologies to address the challenges related to forest restoration and 

conservation. Therefore, continuous development of research is necessary to fully harness 

their potential and create new methodologies to reduce their impacts. 

Previously, forest monitoring relied mostly on field assessments to evaluate forest 

characteristics and conditions. But this process is usually high costly and time-consuming, 

which makes the monitoring of extensive landscapes ineffective. Remote sensing technologies 

have the potential to improve forest monitoring in all sorts of levels. The use of satellite 

imagery enhances the forest monitoring in a landscape levels, as it allows the observation of 

thousands of hectares. Furthermore, the high spatial and spectral resolution satellite images 

allow complex forest studies, for example, the distinction of different types of forests. On the 

other side, the use of active sensors on board UAV`s (e.g., LiDAR sensor) allow the 

characterization of the forest structure in a more detailed way, which allows the identification 

of disturbance in a local level. 

This master's dissertation consists of two chapters focused on the use of remote 

sensing for forest monitoring. The first chapter involves the already published scientific 

article titled "Forest Landscape Restoration: Spectral behavior and diversity of tropical tree 

cover classes". This work utilizes high-resolution (5-meter) multispectral satellite images 

from the VENμS satellite, along with different geospatial data manipulation techniques and 

the Random Forest machine learning algorithm, to perform supervised classification of 

different forest typologies commonly found in landscape restoration programs. Locating and 

understanding the distribution of different forest typologies in the landscape is the first step in 

assessing and quantifying biodiversity and ecosystem services. Once these typologies are 

mapped, subsequent approaches such as field surveys and LiDAR flights can be conducted to 

verify their benefits for nature and people, enhancing the scale and efficiency of forest 

landscape restoration efforts. 

The second chapter is titled "Second 'D' of REDD+ Projects: Applications of UAV-

LiDAR for local degradation monitoring." The objective of this second work was to evaluate 

the use of LiDAR data for local monitoring of forest degradation in REDD+ projects and 
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assess its impact on forest structure. Forest degradation, due to its challenging detection, often 

receives limited attention in forest monitoring programs. LiDAR technology has great 

potential to fill this gap by enabling detailed characterization of the forest and identification of 

structural changes. However, as a relatively new technology, REDD+ projects lack an 

established methodology by the certifying body for the use of LiDAR data in local 

degradation monitoring. Hence, this work aims to develop a methodology for assessing the 

degree of local degradation in forests within REDD+ projects. We employed a statistical 

modeling approach to relate forest structural characteristics with the distance from potential 

degradation sources (anthropized areas). Our results showed how forest structure is impacted 

by adjacent opened areas, and that the edge effect infiltrated only the first 50 meters of the 

forests, suggesting a high level of conservation within the REDD+ project areas. 
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2. FOREST LANDSCAPE RESTORATION: SPECTRAL BEHAVIOR AND 

DIVERSITY OF TROPICAL TREE COVER CLASSES 

 

Abstract 

Forest landscape restoration (FLR) commitments have been established in the past years to 

restore over 200 million hectares, mostly through the implementation of several different 

restorative practices in degraded lands, ranging from commercial tree monocultures to 

restoration plantings. The potential of such contrasting restorative practices to support 

biodiversity conservation and ecosystem services provision vary greatly over space and time, 

making the monitoring of FLR programs an emerging challenge.  Remote sensing techniques, 

together with new technologies for data acquisition, treatment, and analysis have proven to be 

strategic for planning and monitoring FLR, yet there are still important unresolved questions. 

Here, we evaluated the potential of multispectral orbital images of the high spatial and 

spectral resolution VENµS sensor to classify the spectral behavior and diversity of tree cover 

classes commonly found in FLR programs. We assessed how six tree cover classes (savanna 

woodlands, old- and second-growth semi-deciduous forests, young restoration plantings, and 

eucalyptus and pine tree monocultures) located in a study landscape in southeastern Brazil 

differ according to their spectral response (winter and summer bands, and vegetation indices), 

canopy variability (textural features), seasonal behavior (delta layers - difference between 

summer and winter vegetation indexes), and spectral diversity. We used the Random Forest 

algorithm to generate the models and evaluate how the tree cover classes differ in the 

classification and how the metrics performed. We achieved high values of global accuracy 

(91.9%) and “F1 score” (above 0.8) for all tree cover classes, in which second-growth forest 

presented the lowest accuracy. The textural layers, delta layers, and the spectral diversity 

layers were the most important attributes to discriminate among tree cover classes. We 

demonstrate here the potential of using VENµS or similar sensor images together with 

different image processing and machine learning algorithms to monitor FLR programs and 

advance with the qualification of tree cover gains resulting from these initiatives. 

 

Keywords 

Remote sensing, forest restoration, tropical forest, forest types, multiespectral images, high 

resolution, random forest 

 

2.1. Introduction 

Forest landscape restoration (FLR) has been promoted at an unprecedented scale, with 

more than 60 nations pledging the recovery of ecological functionality of over 200 million 

hectares of degraded and deforested landscapes as part of the Bonn Challenge. Different tree 

cover restoration approaches have been adopted in FLR programs, including mixed native 

species plantations, assisted natural regeneration, agroforestry, and commercial tree 

monocultures, which vary greatly in species composition, structure, and functionality (Lamb, 
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2018; Stanturf et al., 2019; Temperton et al., 2019). The proportion of each of these 

approaches in FLR programs has been widely debated - and criticized -, as a large share of the 

commitments have been based on large-scale monocultures of exotic trees (Lewis et al., 

2019), which provides lower levels of ecological benefits than native forests (Hua et al., 

2022). Thus, FLR benefits to people and nature will heavily rely on the “blend” of restoration 

approaches used in each program, being the monitoring of the diversity, structure and 

dynamics of different tree cover classes over space and time, an emerging challenge for 

research. The complex, heterogeneous landscapes to be established by FLR programs makes 

monitoring difficult. Restoration monitoring has been mostly done through field surveys 

(Chaves et al., 2015; Wortley et al., 2013), making it costly, time consuming and, in many 

cases, operationally inviable. In this regard, remote sensing techniques together with new 

technologies for collecting, processing, and analyzing images has proved to be a strategic tool 

for planning and monitoring FLR, allowing the analysis of previously inaccessible 

information and enabling more in-depth and broad-scale assessments (Almeida et al., 2020; 

Houet al., 2010), yet there are still important unresolved questions regarding the distinction of 

different tree cover classes. 

Multispectral orbital sensors with high spatial and spectral resolution allow accessing 

more detailed information about the land cover, indicating how each target behaves 

concerning the reflectance of electromagnetic radiation. The multispectral images of the 

VENµS satellite sensor are a good example of new data acquisition technology, providing 

data with high spatial (5 meters), temporal (2 days), and spectral (12 bands) resolution. The 

VENµS spectral bands includes narrow bands located in the “red-edge” region (4 bands from 

667 to 782 nm) that allow further studies on vegetation, as this is the region of the 

electromagnetic spectrum where measured reflectance is more sensitive to photosynthetic 

chlorophyll pigments (Herscovitz and Barnett, 2007). Simultaneously, technological progress 

with data storage and processing makes it possible to manipulate large volumes of 

information, enabling more robust and complex analyses. Image processing techniques allow 

computing a variety of variables that can be used to improve tree cover class classification, 

such as texture metrics that indicate the variation of pixel values along the surface and 

multitemporal data computation that helps the characterization of forests through their 

seasonal phenology (Kim et al., 2009; Tottrup, 2004; Zhu and Liu, 2014). Machine learning 

algorithms have also proved to be a useful tool for different types of study, the Random 

Forest' algorithm stands out for its high accuracy, fast processing, and applicability to data 

from geographic information systems, as it is one of the most popular algorithms used for 



13 
 

works in this area (Belgiu and Drăguţ, 2016; Gislason et al., 2006). All these factors 

combined contribute to make satellite remote sensing a powerful tool for forest monitoring 

and landscape restoration, but more studies must be carried out to explore the full potential of 

the method. 

Here, we evaluated the potential of multispectral orbital images of the high spatial and 

spectral resolution VENµS sensor to classify the spectral behavior and diversity of tree cover 

classes commonly found in FLR programs. We employed novel analytical approaches based 

on the use of images collected at different seasons of the year and image processing 

algorithms that enhance the spectral diversity of tree cover classes, going beyond the 

traditional focus on static spectral characteristics. More specifically, we (i) characterized tree 

cover classes based on spectral diversity and behavior, (ii) evaluated the classification of tree 

cover classes using the Random Forest algorithm, (iii) evaluate the effect of adding textural 

and spectral diversity metrics to the model’s accuracy, and (iv) generated a thematic map of 

tree cover classes for the entire forest landscape under study. 

 

2.2. Material and Methods 

2.2.1. Study area and tree cover classes 

We conducted the study at the Itatinga Experimental Station of Forest Sciences 

(48°38' S, 23°2' W; Itatinga-SP, southeastern Brazil), of the University of São Paulo (Figure 

1). Over the last 15 years, the annual mean precipitation was 1,360 mm and the average 

temperature was 19.3°C (Battie-Laclau et al., 2014). The station (2,170 hectares) is located in 

a transition area between the Cerrado (Brazilian savanna) and Atlantic Forest 

phytogeographic domains, with native ecosystems comprised of seasonal semideciduous 

forests, riparian forests, and savannas (de Oliveira Santos et al., 2019). The station is covered 

by a very heterogeneous mosaic of tree cover classes, resulting from decades of development 

of new genetic materials and technology for commercial forestry and new approaches for 

restoring native ecosystems. The studied region also contains large areas of monocultures of 

different species of Eucalyptus sp. (E. grandis, E. urograndis, E. robusta, E. urophylla, E. 

dunnii, E. cloeziana, and hybrids, among others), pine trees (P. elliottii, P. taeda, P. 

tecunumanii, among others), and other exotic species (Figure 1). 

We selected the main tree cover classes found at the station, based on the composition, 

structure, and management purpose of the ecosystems: “Eucalyptus monoculture” 

(EucaMono), “Pine trees monoculture” (PineMono), “Old-growth semidecidual forest” 

(OGFor), “Second-growth semidecidual forest” (SGFor), “Second-growth savanna woodland” 

https://sciwheel.com/work/citation?ids=2928219,2776869&pre=&pre=&suf=&suf=&sa=0,0


14 
 

(SGSav), “Young restoration planting” (YRest) and “Bare soil” (BSoil) (Table 1). Polygons 

(hereafter “sampling polygons”) were delimited within each tree cover class, using an existing 

land use map available for the station and confirmed with in situ visits.  

 

 
Figure 1. Location of the Itatinga Experimental Station-SP, with the sample polygons of each tree cover class 

used to generate the classification model, on a colored composition (R = B7, G = B4, B = B2) of the image 

VENµS on August 17, 2019. Classes are: “Eucalyptus monoculture” (EucaMono), “Pine trees monoculture” 

(PineMono), “Old-growth semidecidual forest” (OGFor), “Second-growth semidecidual forest” (SGFor), 

“Second-growth savanna woodland” (SGSav), “Young restoration planting” (YRest) and “Bare soil” (BSoil). 
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Table 1. Description of the tree cover classes included in the study: structural characteristics, and illustrative pictures with capture angles of 0°, 45°, and 90°. 

Tree 

Cover Classes 

Description 0° 45° 90° 

Eucalyptus 

monoculture 

(“EucaMono”) 

- Monocultural plantations 

of several Eucalyptus sp. 

- 2-20 years old 

- Broadleafed trees 

- Tall trees 

- Closed canopy 

- Absence of native species 

regeneration in the understory 

- High density of individuals 

- Low species diversity 

 

 

   

Pine trees 

monoculture 

(“PineMono”) 

- Monocultural plantations 

of several Pinus sp. 

- 20-30 years old 

- Needled trees 

- Tall trees 

- Closed canopy 

-Absence of native species 

regeneration in the understory 

- High density of individuals 

- Low species diversity 

 

   

Old-growth 

semidecidual 

forest 

(“OGFor”) 

- Remaining conserved 

forest 

- +80 years old 

- Broadleafed trees 

- Tall trees 

- Closed canopy 

- Dense understory of native 
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species 

- High density of individuals 

- High species diversity 

 

Second-growth 

semidecidual 

forest 

(“SGFor”) 

- Secondary forests 

established by spontaneous 

regeneration 

- ~50 years old 

- Broadleaved trees 

- Tall trees 

- Closed canopy 

- Presence of understory 

- High density of individuals 

- High species diversity 

   

Second-growth 

savanna 

woodland 

(“SGSav”) 

- Native vegetation 

established from natural regeneration 

- ~25 years old 

- Broadleaved trees 

- Small trees 

- Open canopy 

- Low density of individuals 

- High species diversity 

   

Young 

restoration 

planting 

(“YRest”) 

- Restoration plantings 

established through nucleation 

approach 

- ~2 years old 

- Broadleaved trees 

- Small trees 

- Open canopy 

- High species diversity 

   

Bare soil 

(“BSoil”) 

- Bare ground areas - - - 
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2.2.2. Satellite images 

In this study, we used VENµS satellite images. The VENµS mission is a product of 

the partnership between the Israel Space Agency and the CNES (French Space Agency) and 

has the main goal of providing data to support scientific studies related to the analysis, 

monitoring, and modeling of land cover dynamics, helping in monitoring natural resources 

and climate change mitigation. Four of the bands are found in the “red edge” region, located 

in the transition zone between the visible and near infrared spectrum, where leaf reflectance is 

sensitive to photosynthetic pigments (Dedieu et al. al., 2006; Herscovitz and Barnett, 2007). 

Of special interest are two narrow bands centered at 742 and 782 nm, which have a width of 

16 nm, allowing the detection of subtle variations in the spectral response of vegetation in this 

red-edge region. Only 50 sites of interest around the world were chosen for the acquisition of 

VENµS satellite images, which present different vegetation and land uses. Itatinga station was 

selected as one of these acquisition sites. The images have a spatial resolution of 5.3 meters, a 

temporal resolution of 2 days, and a spectral resolution with 12 narrow bands, but we 

excluded band 1 from the analysis due to the high number of pixels without information 

(Table S1). We obtained the images from the Theia Land Data Centre (CNES). The images 

were already processed (geometric and radiometric corrections including atmospheric 

correction, cloud and cloud shadow mask) and ready to use. More information about the 

VENµS satellite can be found at Theia (CNES) website. 

In order to obtain a better characterization of the classes, we used two images, from 

17/August/2019 and 06/March/2020, representing the main seasons of the year, winter (dry 

season, deciduous trees without leaves) and summer (rainy season) respectively (Figure S1). 

We extracted the values of each band of the multispectral images of the two seasons 

according to each class and compared the spectral response from different tree cover classes 

and different seasons (Figs. 5 and 6). 

 

2.2.3. Model attributes 

To generate the classification model, we used the reflectance values of each band of 

the satellite images as independent variables. In addition, we also generated new layers 

totaling 66 independent variables (Table 2). The methodology for each variable generated is 

described in the following sections. 

 

 

 

https://venus.cnes.fr/en/VENUS/index.htm
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Table 2. Number of variables used to generate the model. 

Layer Number of variables 

Winter bands 11 

Summer bands 11 

Winter vegetation indices 6 

Summer vegetation indices 6 

Delta layers 6 

Textural features 18 

Winter alpha diversity 1 

Summer alpha diversity 1 

Winter PCA components 3 

Summer PCA components 3 

 

2.2.3.1. Vegetation indices and Delta layers 

We calculated six vegetation indices using the reflectance values of the VENµS 

satellite bands (Table 3), using the R software (R Core Team, 2022). We preferentially 

selected indices that use bands located in the “red edge” region or associate high absorption 

bands (red spectral band) with high reflectance bands (infrared spectral band). These indices 

are related to the physical-chemical properties of the vegetation cover and can contribute to 

differentiate the tree cover classes in the classification model. These vegetation indices were 

generated for both seasons of the year and identified with the name of the index and the 

suffixes “_winter” and “_summer” (e.g. “NDVI_winter”). 

We calculated the Delta layers from the subtraction between the layers of the summer 

vegetation indices and the winter vegetation indices, using the “Raster Calculator” tool of the 

ArcGIS software (ArcGIS, 2021) and being identified with the name of the index and the 

suffix “_delta” (e.g. “NDVI_delta”). We generated these vegetation indices seasonal changes 

because they could differentiate tree cover classes in the classification model. Thus, classes 

that undergo changes in the dry season, such as leaf fall (e.g. semideciduous seasonal forest), 

have higher Delta values. 
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Table 3. Description of the vegetation indices used in the study, with their respective names, bands (labeled as ρ and the spectral band center), formulas used, and 

bibliographic references. 

Variable Name Bands Formula Reference 

CLre Red Edge Chlorophyll Index 9, 11 (ρ865 / ρ742) - 1 (Roberts et al., 2016) 

EVI Enhanced Vegetation Index 2, 6, 11 2.5 * (ρ865 - ρ620) / ((ρ865 + (6 * ρ620) + ( 7.5 * ρ443)) + 1) (Roberts et al., 2016) 

NDVI Normalized Difference 

Vegetation Index 

6, 11 (ρ865 - ρ620) / (ρ865 + ρ620) (Bar-Massada and 

Sviri, 2020) 

NDVIre Red Edge Normalized 

Difference Vegetation Index 

9, 10 (ρ782 - ρ742) / (ρ782 + ρ742) (Bar-Massada and 

Sviri, 2020) 

REIP Red Edge Inflection Point 7, 8, 9, 

10 

702 + (40 * ((((ρ667 + ρ782) / 2) - ρ702) / (ρ742 - ρ702)))) (Bar-Massada and 

Sviri, 2020) 

SR Simple Ratio 6, 11 ρ865 / ρ620 (Roberts et al., 2016) 
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2.2.3.2. Texture layers 

We used the textural layers as independent variables for the model to indicate the 

spatial variation of the values of each vegetation index and delta layer. In the textural layers, 

we calculated the pixel values from the standard deviation of the pixels around them within a 

9x9 pixel moving window, using the “Focal Statistics” tool of the ArcGIS software. We 

performed tests with models composed of different window sizes with three vegetation 

indices (“REIP_winter”, “EVI_winter” and “NDVIre_winter”) to find out the lowest error 

rate, where the 9x9 window presented the best results (Figure S2). We generated these 

textural layers to characterize the canopy heterogeneity, to facilitate the differentiation 

between homogeneous plantations and heterogeneous forest formations. Their identifications 

were made with the name of the indices and the suffix “_win_tex” for winter (e.g. 

“NDVI_win_tex”) and “_sum_tex” for summer (e.g. “NDVI_sum_tex”), and “_delta_tex” for 

delta layers (e.g. “NDVI_delta_tex”). 

 

2.2.3.3. Spectral diversity layers 

We generated the spectral diversity layers in R software using the “biodivMapR” 

package (Féret and Boissieu, 2020). This package uses the spectral species concept (Féret and 

Asner, 2014) to generate alpha diversity maps and spectral composition maps, where a 

principal component analysis (PCA) is performed with the reflectance values of the bands, 

and clusters are created from their principal components and treated as species. Thus, a 

spectral species map is generated where each pixel belongs to a cluster/species. The alpha 

diversity map is a raster image where pixel values are calculated using the “Shannon” 

biodiversity index within a 9x9 pixel moving window. The spectral composition map is 

generated from an RGB composition where the bands come from the first three main 

components of the PCA. Moreover, for a better understanding of how the classes behave in 

relation to the PCA main components, we performed a second PCA with the three main 

components and plotted a biplot to visualize the classes distribution (Figure 4). More 

information about the “biodivMapR” package can be found at Féret et al. (2020). We 

extracted the values of each class from the alpha diversity maps and spectral composition 

maps and used them as attributes for the model. Such variables were identified with the prefix 

“alpha_” (e.g. “alpha_winter”) and “PCoA” (e.g. “PCoA.1_winter”, “PCoA.2_winter” and 

“PCoA.3_winter”). 

 

https://sciwheel.com/work/citation?ids=13124293&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4603684&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4603684&pre=&suf=&sa=0
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2.2.4. Data analysis  

For the classification, we used the supervised algorithm Random Forest (RF), through 

the “randomForest” package (Liaw and Wiener, 2002) in the R software. For the settings, all 

metaparameter were set to their default values. This classifier is one of the most used machine 

learning algorithms in remote sensing studies mostly because of its accurate classification 

with few metaparameters easy to tune, ability to handle high data dimensionality and multi-

collinearity of predictors, and its relative robustness against over-fitting (Belgiu and Drăguţ, 

2016; Gislason et al., 2006). The RF algorithm consists of a combination of many decision 

trees. Each decision tree is trained independently on a subset of the dataset and a subset of 

predictor variables. The classification results are determined by the majority of votes cast by 

all trees (Breiman, 2001; Mellor et al., 2010; Pal, 2005). 

To calibrate the model and assess the variability in classification accuracy, we trained 

and tested the model 30 times (iteration) using the 66 variables, in a database with 7,000 

observations (1,000 observations for each tree cover class randomly selected from the 

sampling polygons), randomly choosing 650 pixels for each tree cover class in each iteration. 

New training (70%) and test (30%) samples were used in each iteration, in which when a 

pixel from a given polygon was picked to the training set, no pixel from this polgygon goes to 

the test set. In other words, no polygon was into the training and testing samples at the same 

iteration. At each repetition, we calculated and stored the “F1 score” values for each class, the 

“Mean Decrease Accuracy” (MDA) value for each variable, and the classification confusion 

matrix. After the 30 repetitions, we calculated the mean overall accuracy and the mean 

confusion matrix, and plotted the boxplots for the “F1 score” and MDA values. 

The “F1 score” is the most used metric to assess a test’s accuracy. The MDA 

represents how much accuracy the model would lose if the variable were removed, that is, the 

higher its value, the greater the importance of the variable. The confusion matrix allows the 

analysis of the classification performance, showing the producer’s accuracy in percentage, in 

addition to specifying which classes were confused with each other.  

To evaluate the effect of adding textural and spectral diversity metrics to the model’s 

accuracy we also generated other models in 3 different combinations of variables to evaluate 

how the addition of new metrics would increase the model’s accuracy (Table 5). All these 

models were generated with the same methodology of the full model, with 30 iterations and 

cross-validation. In the first case, we only used the summer bands and the vegetation indices. 

In the second, we added the summer textural features. In the third, we added the summer 

https://sciwheel.com/work/citation?ids=2928219,2776869&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=2928219,2776869&pre=&pre=&suf=&suf=&sa=0,0
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spectral diversity components. Finally, we compared them with the full model, which 

includes all attributes. 

 

2.2.5. Thematic map 

We generated a thematic map with all the tree cover classes as a product of the 

classification. For its elaboration, we trained a model with the 7,000 observations database. 

After training, this model was applied on all the pixels in the image to generate a pixel-scale 

classification map. Then, we performed four post-processing steps to eliminate spurious 

pixels, all in ArcGIS, using the “Raster Calculator”, “Majority Filter”, “Boundary Clean”, and 

“Nibble” tools. We filled the saturated pixels without information with the value of the 

majority of pixels around them, inside a 5x5 window, using the “Raster Calculator” tool. To 

eliminate isolated pixels and small groups of pixels, we used the “Majority Filter” tool 

considering a 3x3 window, where groups with less than 5 contiguous pixels were replaced by 

the value of most pixels around them. We used the “Boundary Clean” tool to smooth the 

boundaries between zones, prioritizing larger zones to expand over smaller zones. Finally, we 

used the “Nibble” tool to replace the values of groups that contained less than 350 contiguous 

pixels with the value of neighboring pixels, eliminating small groups of pixels. In this way, at 

the end of all the post-processing stages, we obtained a final smoothed thematic map with all 

the identified classes. 

 

2.3. Results 

2.3.1. Tree cover classes characterization 

2.3.1.1. Spectral diversity 

Alpha diversity and Spectral Composition maps created for both summer (Figure 2) 

and winter season (Figure S3) show which classes presented higher values of spectral 

diversity and the different compositions between classes. The classes “Old-growth 

semidecidual forest” and “Second-growth semidecidual forest” show the higher values of 

spectral diversity. In the winter, the “Eucalyptus monoculture” class presented higher values 

of diversity compared to summer, unlike the “Second-growth savanna woodland” class, which 

presented higher values in summer (Figure 3). The classes that presented the lowest spectral 

diversity values were “Bare soil” in winter and “Pine tree monoculture” in summer.  
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Figure 2. Summer alpha diversity map (A) and Spectral composition map (B) of the Itatinga station. 

 

 

 
Figure 3. Alpha spectral diversity values of each tree cover class in the winter (a) and summer (b). Classes are: 

“Eucalyptus monoculture” (EucaMono), “Pine trees monoculture” (PineMono), “Old-growth semidecidual 

forest” (OGFor), “Second-growth semidecidual forest” (SGFor), “Second-growth savanna woodland” (SGSav), 

“Young restoration planting” (YRest) and “Bare soil” (BSoil). 

 

The second PCA biplot graph shows the PCA main components composition used as 

variables to classify the tree cover classes, and allows to analyse which classes had similar 

composition in the summer and winter (Figure 4). In both seasons, the “Second-growth 

savanna woodland”, “Young restoration planting” and “Bare soil” classes showed a similar 

distribution and a low variance. The “Eucalyptus monoculture”, “Old-growth semidecidual 

forest” and “Second-growth semidecidual forest” classes showed a higher variance comparing 
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to the other classes. The “Old-growth semidecidual forest” and “Second-growth semidecidual 

forest” classes showed a similiar distribution between each other. The “Pine trees 

monoculture” presented a different composition in between seasons. 

 

 
Figure 4. Biplot of the second PCA performed with the main components of the spectral composition map 

(Figure 2b), with the distribution of each tree cover class in the winter (a) and summer (b). Classes are: 

“Eucalyptus monoculture” (EucaMono), “Pine trees monoculture” (PineMono), “Old-growth semidecidual 

forest” (OGFor), “Second-growth semidecidual forest” (SGFor), “Second-growth savanna woodland” (SGSav), 

“Young restoration planting” (YRest) and “Bare soil” (BSoil). 

 

2.3.1.2. Spectral behavior 

The spectral curves make it possible to understand the spectral behavior of the 

different tree cover classes, by expressing the reflectance levels along the wavelengths, 

showing which classes have a similar behavior, which will have an influence in the 

classification (Figure 5). The “Second-growth savanna woodland” and “Young restoration 

planting” classes presented a similar behavior in all wavelengths and in both seasons. The 

“Eucalyptus monoculture”, “Pine tree monoculture”, “Old-growth semidecidual forest”, and 

“Second-growth semidecidual forest” classes showed similar behavior in the visible spectrum 

in both seasons, with low reflectance levels. However, these classes showed different 

behavior in the near infrared region (730 nm to 1000 nm). In general, all classes showed low 

variance in reflectance values in the visible region, except for the “Bare soil” class in summer. 

Regarding the infrared region, all classes showed a high variance in reflectance, where some 
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of the classes have overlapped. All vegetation classes showed a similar behavior in both 

seasons, with reflectance values slightly lower in the visible spectrum in summer. In the near-

infrared region, the tree cover classes showed a higher reflectance in the summer than in 

winter, except the classes “Eucalyptus monoculture” and “Pine tree monoculture” that showed 

the same behavior in both seasons (Figure 5c). The “Old-growth semidecidual forest” and 

“Second-growth semidecidual forest” classes presented a very similar spectral behavior in the 

two seasons across the entire spectrum, as well as the “Second-growth savanna woodland” 

and “Young restoration planting” classes. In addition, the “Bare soil” class showed the 

greatest differentiation in the infrared region when comparing the two seasons. 
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Figure 5. Average spectral curves and amplitude of variance of the different tree cover classes, from the 

multispectral images of the VENµS satellite in the winter (a) and summer (b). (c) Mean spectral curves during 

summer (continuous lines) and winter seasons (dotted lines) for each tree cover class. Classes are: “Eucalyptus 

monoculture” (EucaMono), “Pine trees monoculture” (PineMono), “Old-growth semidecidual forest” (OGFor), 

“Second-growth semidecidual forest” (SGFor), “Second-growth savanna woodland” (SGSav), “Young 

restoration planting” (YRest) and “Bare soil” (BSoil). 

 

2.3.2. Tree cover classes classification 

Considering the 30 iterations of the RF modeling, we reached a mean overall accuracy 

of 91.9% and average “F1 score” values above 0.8 for all tree cover classes (Figures 6 and 7). 

The confusion matrix shows which classes were more accurately classified, and which classes 

were confused. The “Second-growth semidecidual forest” class was the one with the lowest 

producer’s accuracy (74.4%), being confused with the “Pine tree monoculture” (0.4%), 

“Eucalyptus monoculture” (5.4%), and mainly “Old-growth semidecidual forest” (19.7%). 
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The “Old-growth semidecidual forest” class also showed lower producer’s accuracy (83.4%), 

being confused with the “Second-growth semidecidual forest” (16.6%). The “Second-growth 

savanna woodland” and “Young restoration planting” classes were confused with each other, 

even though they presented good producer’s accuracy values (95.2% and 96.4%). The “Bare 

soil” class was not confused with any class, presenting maximum producer’s accuracy 

(100%). The classes “Second-growth semidecidual forest” and “Old-growth semidecidual 

forest” were the most difficult to distinguish, with average “F1 score” values between 0.8 and 

0.85 and the highest variance. The rest of the classes presented average values of “F1 score” 

above 0.95 and low variance (Figure 7). 

 

 
Figure 6. Normalized average confusion matrix indicating producer accuracy (i.e., the probability that a value in 

a given class was classified correctly), generated from the 30 iterations of the RF models. Classes are: 

“Eucalyptus monoculture” (EucaMono), “Pine trees monoculture” (PineMono), “Old-growth semidecidual 

forest” (OGFor), “Second-growth semidecidual forest” (SGFor), “Second-growth savanna woodland” (SGSav), 

“Young restoration planting” (YRest) and “Bare soil” (BSoil). 
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Figure 7. “F1 score” values of each tree cover class, calculated from the 30 RF models. Classes are: “Eucalyptus 

monoculture” (EucaMono), “Pine trees monoculture” (PineMono), “Old-growth semidecidual forest” (OGFor), 

“Second-growth semidecidual forest” (SGFor), “Second-growth savanna woodland” (SGSav), “Young 

restoration planting” (YRest) and “Bare soil” (BSoil). 

 

After the 30 iterations of the RF model, we generated a ranking of the 66 variables 

used, based on their MDA values (Figure S4). The satellite bands that showed the greater 

MDA values were “B12_summer”, “B9_summer”, “B10_summer”, “B11_summer”, and 

“B12_winter”, the rest of the bands showed lower values (Figure S4). Vegetation indices did 

not play a major role in the model, the most important being “EVI_summer”, 

“NDVI_summer”, “SR_summer”, and “REIP_winter”. The variables referring to the spectral 

diversity showed great MDA values. The textural variables of vegetation indexes and delta 

layers, in general, also expressed great MDA values. Among the most important variables are 

the textural metrics and spectral diversity variables (the top 10 variable’s importance are 

presented in Table 4). 
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Table 4. Presentation of the 10 most important variables for classification: average values of “Mean Decrease 

Accuracy” (yellow bars) and relative importance for each class (scaled green cells), calculated from the 30 

iterations of the RF model. Classes are: “Eucalyptus monoculture” (EucaMono), “Pine trees monoculture” 

(PineMono), “Old-growth semidecidual forest” (OGFor), “Second-growth semidecidual forest” (SGFor), 

“Second-growth savanna woodland” (SGSav), “Young restoration planting” (YRest) and “Bare soil” (BSoil). 

 

 
 

After running the 3 other combinations of variables, we can notice that the addition of 

variables increases the model’s ability to distinguish the different tree cover classes (Table 5). 

When using only summer bands and vegetation indices, the overall accuracy of the model was 

77%. Adding the summer textural features increased the accuracy by 8.5%, and adding the 

spectral diversity attributes increased an additional 2.1%. Finally, when comparing “Comb. 1” 

with the “Full Model”, there was an addition of 14.9% on the model’s overall accuracy. 
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Table 5. Description of the three combinations with different attributes configuration and their overall accuracy. 

 

Layer Comb. 1 Comb. 2 Comb. 3 Full Model 

Winter bands (11)    X 

Summer bands (11) X X X X 

Winter vegetation indices (6)    X 

Summer vegetation indices (6) X X X X 

Delta layers (6)    X 

Winter textural features (6)    X 

Summer textural features (6)  X X X 

Delta textural features (6)    X 

Winter alpha diversity (1)    X 

Summer alpha diversity (1)   X X 

Winter PCA components (3)    X 

Summer PCA components (3)   X X 

OVERALL ACCURACY 77% 85.5% 87.6% 91.9% 

 

2.3.2.1. Thematic map 

In the final classified thematic map, produced from the RF model, the smoothing steps 

helped to produce a map with less noise, eliminating most of the misclassified pixels and 

smoothing the divisions between zones (Figures 8). Thus, at the end of the study, we obtained 

a smoothed final thematic map, where we can observe the location of each vegetation class 

according to the chosen class. 
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Figure 8. Thematic maps with classified tree cover classes, produced from the classification model, before (A) 

and after (B) the smoothing steps. Classes are: “Eucalyptus monoculture” (EucaMono), “Pine trees monoculture” 

(PineMono), “Old-growth semidecidual forest” (OGFor), “Second-growth semidecidual forest” (SGFor), 

“Second-growth savanna woodland” (SGSav), “Young restoration planting” (YRest) and “Bare soil” (BSoil). 

 

2.4. Discussion 

We aimed at evaluating the potential of high spatial and finer spectral resolution 

multispectral images from the VENµS satellite to perform supervised classification of 

contrasted tree cover classes, using the RF machine learning algorithm. To do so, tree cover 

class characterization was based on their spectral behavior and diversity, generating 

vegetation indices, delta layers, textural layers, and spectral diversity layers. We obtained 

high accuracy values (91.9%) and “F1 score” for all classes, which variables were most 

important for the accuracy of the classification, and finally a description of eventual confusion 

between tree cover classes.  

The “Eucalyptus monoculture”, “Old-growth semidecidual forest”, “Second-growth 

semidecidual forest”, and “Pine tree monoculture” classes showed similar spectral behavior 

(i.e. high absorption), within the visible spectrum range and distinct behavior in the near-

infrared region, but the high variance in this region made these classes overlap, preventing for 

using simple classification techniques only based on reflectance spectra. The similarity of the 

spectral response, mainly between the “Old-growth semidecidual forest” and “Second-growth 

semidecidual forest” classes, was probably due to their similar structure, with a closed canopy 

and high leaf density. Kalacska et. al. (2006) and Cao et. al. (2015) obtained similar results 

when carrying out studies in tropical dry forests at different stages of succession (initial, 
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intermediate, and late) using hyperspectral images, where both observed that forests in the 

intermediate and late stages of succession showed very similar spectral behavior in the visible 

and near-infrared region, but distinct in the short-wave infrared region, which is not 

contemplated in our study. The "Second-growth savanna woodland" and "Young restoration 

planting" classes also showed similar behavior, probably due to their low canopy height and 

low density of individuals, in addition to having a similar behavior to the "Bare soil" class in 

the near-infrared region, probably caused by their amount of exposed soil. As restoration 

plantings develop, we expect their spectral behavior will get similar to that of second-growth 

forests, as they have similar structure and species diversity (César et al., 2018).  

When comparing the spectral behavior of the tree cover classes in the two seasons, the 

“Eucalyptus monoculture” and “Pine tree monoculture” classes did not significantly change, 

problably because of the date of the images were not at the minimum leaf area index caused, 

by the delay between the climate conditions and fisiologic response. On the other hand, the 

other classes showed higher reflectance values in the infrared region in summer than in 

winter, possibly caused by the greater amount of leaves (Weishampel et. al., 1996; Lee et. al., 

2004). Regarding the spectral diversity profiles, the “Old-growth semidecidual forest” and 

“Second-growth semidecidual forest” classes presented the highest alpha diversity values and 

highest variance in the values of the principal components in the two seasons, which was 

expected because of their heterogeneous canopy and high species diversity. In the spectral 

composition maps (Figure 2B and S3B), we can observe that some Eucalyptus stands showed 

different compositions of principal components that might be caused by the different species, 

ages and managements, which explains the high variability in Figure 4. In addition, when 

observing the spectral diversity variables in the importance ranking (Table 4), the variables 

computed on the rainy season image (summer) showed more importance, probably due to the 

greater presence of leaves when compared to the dry season where some individuals shed 

their leaves. 

The textural, delta, and spectral diversity layers were relevant in the classification with 

the highest MDA values. The high MDA values of the texture layers indicate the importance 

of analyzing the canopy heterogeneity to better characterize the tree cover classes (Table 4). 

Kim et. al. (2009) showed the importance of using textural metrics when classifying tree 

cover classes in the state of North Carolina (USA) using the combination of several textural 

metrics, obtaining an overall accuracy of 83%. In our study, we used only one type of textural 

metric (standard deviation), which highlights the possibility of improving the classification by 

adding other textural metrics (e.g. mean, homogeneity, correlation, contrast). The presence of 
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variables from the two seasons shows the importance of using images from different moments 

of the year for the accuracy of the model, as it allows for characterizing the canopy in terms of 

structural and phenological changes. Table 5 shows the importance of adding textural, 

seasonal and spectral diversity features in the classification analysis, in which the full model 

showed a 14.9% higher accuracy when compared to the model with only bands and vegetation 

indices.  

Tottrup (2003), when classifying six tropical tree cover classes in the province of 

Nghe An (Vietnam), showed that the use of only two images at different times of the year 

allows for achieving an accuracy 10-20% greater than when using only one of them. Zhu and 

Liu (2014) also obtained greater accuracy when using five images (85.26%) instead of just 

one (63.13%) when classifying three tree cover classes in Ohio (USA). The MapBiomas 

initiative shows that it is possible to use multitemporal images of different moments, applying 

temporal filters to improve the classification of land use (Azevedo et al., 2019). At the same 

time, alpha diversity and spectral composition variables also presented high MDA values, 

showing their high capacity for characterizing tree cover classes. Gastauer et. al. (2022) also 

used the “biodivMapR” package to access the environmental quality of mining areas 

undergoing restoration in the Amazon using vegetation attributes related to structure, 

diversity, and ecological processes, reaching an overall accuracy of 83% and demonstrated 

how the information concerning spectral diversity can be useful in vegetation studies. 

Ultimately, we highlighted the great importance of data manipulation methods to generate 

new variables to compose the model, where only the use of band reflectance would not be 

enough to characterize the tree cover classes and reach such a degree of accuracy. 

In our study, the VENµS images performed well in the classification duo to their 

characteristics of high spatial and spectral resolution compared to other common satellites 

(e.g. Landsat, Sentinel), but it has the disadvantage of having only a few acquisition sites. 

Multitemporal images have the advantage of large area coverage and high temporal 

resolution, in addition to allowing the measurement of the spectral response and, 

consequently, the spectral diversity of tree cover classes, which were very useful in this study. 

However, optical data do not provide information about the structure of the forest like data 

from active sensors that measure the structure of vegetation in a three-dimensional way, such 

as Lidar and Radar data (Almeida et al., 2019; Drezet and Quegan, 2007; Kimball et al., 2004; 

Lausch et al., 2017; Smith et al., 2009; Torre-Tojal et al., 2022). Our study was restricted to 

the use of variables from the multispectral images of the VENµS satellite, but it is important 

to emphasize the possibility of merging data from different sources to improve the 

https://sciwheel.com/work/citation?ids=13399983,7146117,4493445,5037540,7429437,13399992&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
https://sciwheel.com/work/citation?ids=13399983,7146117,4493445,5037540,7429437,13399992&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
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classification. Several authors highlight the potential of optical data fusion (RGB, 

multispectral and hyperspectral images), Radar, and/or Lidar for studies related to land use 

classification and monitoring of structural attributes of forests, seeking to achieve the best 

characterization of the vegetation (Almeida et al., 2021; Erdody and Moskal, 2010; García et 

al., 2018; Luo et al., 2017; Qi et al., 2019; Sankey et al., 2017). Jin and Mountrakis (2022) 

performed the land use classification by testing different combinations of data sources, in 

addition to performing a literature review with 75 studies of land use and occupation carried 

out between 2000 and 2021 that used the fusion of multi-source data and different machine 

learning algorithms, where the greatest discriminative power was found with the fusion of 

Landsat 5/TM, SAR (ALOS-1/PALSAR) and Lidar (LVIS) images. 

Despite the good accuracy in distinguishing the classes, this study was restricted to the 

classification of generalist tree cover classes, without considering in-depth details regarding 

the composition, structure, age, position in the landscape and function of the forest fragments. 

Therefore, there is an opportunity to carry out future studies aimed at identifying tree cover 

classes using multispectral and multitemporal images, together with data from other sources, 

to achieve a greater degree of specificity, such as forests established from different restoration 

practices (e.g. natural regeneration, mixed restoration plantations, abandoned monocultures), 

different successional stages, and/or commercial plantations composed of different species 

and managements. Finally, our study showed that the combination of high spatial and finer 

spectral resolution multispectral images, different data manipulation techniques, and machine 

learning algorithms have great potential to assist the classification of tree cover classes across 

restored forest landscapes, which is expected to be the first step towards the assessment of 

biodiversity and ecosystem functions. Once the main tree cover classes of a FLR program are 

identified, further remote sensing approaches, like Lidar technology, and in-deep field 

assessments can be performed to advance evaluation of FLR benefits for nature and people. 

Ultimately, the fusion of all of these types of data, together with the use of innovative 

approaches to data processing, can result in novel ways to assess restoration performance and 

open new avenues to upscale monitoring, bridging the gap between FLR expectations and 

achieved goals. 

 

  

https://sciwheel.com/work/citation?ids=3966903,13399987,7546817,13399980,8905147,12234262&pre=&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0,0
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Supplementary Material 

 

Bands Center 

Wavelength 

(nm) 

Bandwidth 

(nm) 

B1 420 40 

B2 443 40 

B3 490 40 

B4 555 40 

B5 620 40 

B6 620 40 

B7 667 30 

B8 702 24 

B9 742 16 

B10 782 16 

B11 865 40 

B12 910 20 

 

Table S1. Bands of the multispectral images of the VENµS satellite, with their central wavelengths and width. 

 

 
Figure S1. The monthly climatological graph in the years 2019 and 2020, with data from the Itatinga’s 

Experimental Stations of Forest Sciences’ meteorological station, with mean temperature (red line), accumulated 

monthly precipitation (blue bars), and date of the image used in this study (vertical green lines). 
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Figure S2. Boxplot of the error rate values in 30 iterations, testing the influence of the textural layers’ moving 

window size on the model accuracy with three vegetation indexes (“REIP_winter”, “EVI_winter” and 

“NDVIre_winter”). 

 

 
Figura S3. Winter alpha diversity map (A) and Spectral composition map (B) produced using the “biodivMapR” 

package. 

 



41 
 

 
Figure S4. Boxplot of the “Mean Decrease Accuracy” values of all variables used in the study from the 30 RF 

models. 
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3. SECOND `D` OF REDD+ PROJECTS: APPLICATIONS OF UAV-LIDAR ON 

LOCAL DEGRADATION MONITORING 

 

Abstract 

Forest monitoring is an essential stage in the management and maintenance of carbon projects 

targeting the Reduction of Emissions from Deforestation and Forest Degradation (REDD+) 

and climate change mitigation. Detecting forest degradation proves challenging due to its 

subtle and gradual nature, requiring detailed and periodic local monitoring efforts. Innovative 

remote sensing technologies, such as Light Detection and Ranging (LiDAR), have shown 

great potential in addressing these deficiencies. Quantifying emissions from degradation is a 

crucial aspect of REDD+ projects on the carbon market, as it allows for the accurate 

estimation of carbon stock in the project area. Additionally, it promotes credibility, 

transparency, and accountability, ensuring that projects embrace rigorous standards and 

guidelines. Therefore, the objective of this study was to assess the potential of LiDAR remote 

sensing technology to identify and monitor different sources of degradation in REDD+ 

projects and understand their effect on forest structure and carbon storage potential. For this 

purpose, we employed a statistical modeling of forest structural characteristics in relation to 

the distance from potential degradation sources (anthropized areas). This study was conducted 

on three rural properties that are part of an ongoing REDD+ project, located in the state of 

Acre/BR, southwestern region of the Brazilian Legal Amazon. Our findings have 

demonstrated that the impact of open areas on forest structure extends up to 50 meters, 

showcasing the remarkable resilience of the forests examined in this study. These results 

underscore the importance of further research to fully unlock the potential and promote the 

widespread adoption of UAV-LiDAR systems in the monitoring of REDD+ projects. This 

study has revealed the significant potential of LiDAR remote sensing technology for 

monitoring local degradation in REDD+ projects. The methodology utilized allowed for a 

comprehensive and detailed assessment of forest structure, offering replicable and periodic 

monitoring capabilities that enhance its effectiveness. 

 

Keywords: 

Amazon forest, Edge effect, Forest canopy structure, Carbon stock, Leaf area index 
 

3.1. Introduction 

Forest monitoring is an essential stage in the management and maintenance of carbon 

projects targeting the Reduction of Emissions from Deforestation and Forest Degradation 

(REDD+) and climate change mitigation. These activity is typically conducted during the 

initial stages of project development to stablish a baseline assessment of the forest’s condition 

and identify potential threats, and is subsequently carried out periodically as part of the 

Measurement, Reporting, and Verification (MRV) process, where it enables the assessment of 

whether the project effectively prevents deforestation and forest degradation (De Sy et al., 

2012; Goetz et al., 2015). (De Sy et al., 2012; Goetz et al., 2015). Presently, deforestation 

indicators can be derived from satellite imagery, allowing for the identification of abrupt land 

use changes and facilitating frequent monitoring across various spatial scales (McCraken et 
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al., 1999; de Espindola et al., 2012; Diniz et al., 2015; Silva et al., 2022; Ferrari et al., 2023). 

Conversely, detecting forest degradation proves challenging due to its subtle and gradual 

nature, requiring detailed and periodic local monitoring efforts (Goetz et al., 2015; Gao et al., 

2020). Moreover, emissions from degraded forests can be substantial, equivalent to or even 

surpassing those resulting from deforestation, making their quantification indispensable  

(Aragão et al., 2014; Longo et al., 2016; Assis et al., 2020; Lapola et al., 2023). However, 

many REDD+ projects fail to include degradation as an emission source, resulting in its 

neglect and potentially underestimating overall emissions (Mertz et al., 2012; Silva Junior et 

al., 2021). The report issued by the United Nations Framework Convention on Climate 

Change (UNFCCC, 2014) in response to the Brazilian Forest Reference Emission Level 

(FREL) (MMA, 2014) also highlights the need for monitoring degradation to better 

understand its relationship with deforestation and its contribution to greenhouse gas emissions 

in the Amazon biome. Thus, heightened attention to forest degradation within REDD+ 

projects is warranted, accompanied by the development of comprehensive studies elucidating 

its impacts on forested areas, while encouraging the adoption of novel technologies and 

methodologies to enhance the efficiency and scalability of monitoring efforts. 

Forests are considered degraded when they exhibit anthropogenic alterations in their 

structure, dynamics, biodiversity, and/or ecosystem services that are expected from them 

(Thompson et al., 2013). Forest degradation can occur in various forms, with selective 

logging, anthropogenic fires, grazing within the forests, and fuelwood/charcoal collection 

being its main direct sources (Hosonuma et al., 2012). Indirect disturbances also exist, such as 

edge effects resulting from land use change and forest fragmentation, as well as droughts and 

fires induced by climate change (Lapola et al., 2023). Some of these factors are more 

amenable to periodic monitoring using satellite imagery, while others may be more 

challenging to detect, such as selective logging and edge effects, as they cause changes in 

forest structure that are difficult to capture with passive sensors. The different sources and 

intensities of disturbances affect forest structure in distinct ways. Understanding how different 

degradation sources impact the forest and its ecosystem services is crucial for monitoring 

REDD+ projects (Cochrane and Schulze, 1999; Gerwing, 2002; Haugaasen et al., 2003; 

Broadbent et al., 2008; Rappaport et al., 2018; Yang et al., 2018). In this study, as no other 

sources of degradation were identified in the project areas, our focus was on detecting the 

presence of selective logging and assessing degradation caused by edge effects.  

Unlike deforestation, which involves the clear-cutting of forests, selective logging 

refers to the extraction of specific commercial tree species. This practice causes damage to the 
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forest structure, altering its composition, biomass, and ecosystem services, while also 

increasing its vulnerability to droughts and fires (Asner et al., 2005; Asner et al., 2006; 

Broadbent et al., 2008). Therefore, the identification of this activity is crucial for REDD+ 

projects, as it has a direct impact on forest conservation and carbon stocks. Depending on the 

intensity of selective logging, its detection through satellite imagery becomes challenging, 

requiring the use of other sensors that allow for a more detailed observation of the changes in 

the forest structure (Rangel Pinagé et al., 2019). The document "VMD0015 - Methods for 

monitoring of GHG emissions and removals in REDD and CIW projects" (VCS, 2020), 

published by the leading certification body VERRA, presents a methodology for quantifying 

emissions resulting from degradation caused by selective logging through transect walks, 

searching for evidence of removed tree trunks. However, this field survey methodology is 

labor-intensive and low-yielding, being inefficient as it covers only a small portion of the 

project area and hampers periodic monitoring. Additionally, the lack of a comprehensive 

methodology that includes other sources of degradation, such as edge effects, may result in a 

potential underestimation of degradation emissions in REDD+ projects. 

Degradation caused by edge effects follows the process of land use and land cover 

change in the Amazon biome, where agricultural and pasture areas replace forested areas 

(Broadbent et al., 2008; Silva Junior et al., 2021). Once opened, these areas gradually modify 

the microclimate at the forest edge, with increased temperature, decreased air and soil 

humidity, and intensified winds, causing changes in forest structure and its carbon stocks 

(Camargo and Kapos, 1995; Mesquita et al., 1999). Furthermore, the extent of edge 

infiltration is directly related to the type of land use, forest characteristics, matrix habitat, 

regional climate, and fragmentation intensity (Wuyts et al., 2008; Aragão et al., 2014; Goetz 

et al., 2015). Moreover, as edge effects impact the forest structure, they also affect canopy gap 

dynamics through tree mortality, branch breakage, and growth of secondary individuals. This 

simultaneous process of gap creation followed by plant regeneration is referred to as gap 

dynamics. Understanding this dynamics is crucial for assessing the integrity and level of 

forest degradation in REDD+ projects (Asner et al., 2013; Silva et al., 2019). Therefore, the 

high variability of edge effects underscores the need for their local-level monitoring, assessing 

their consequences on forests and carbon stocks for each individual REDD+ project 

(Broadbent et al., 2008). 

Innovative remote sensing technologies, such as Light Detection and Ranging 

(LiDAR), have shown great potential in addressing these deficiencies. These technologies 

have modernized our way of observing forests, enabling the acquisition of previously 



46 
 

inaccessible information about forest structure and dynamics, as well as expanding our 

capacity to monitor them in various ways (Asner et al., 2013; Almeida et al., 2020). LiDAR is 

an active sensor that performs a laser scan of the forest, allowing for detailed characterization 

of its 3D structure, which is one of the main limitations of passive imaging sensors. This 

particularity of LiDAR enables the detection of changes in the vertical structure of the forest, 

enhancing forest monitoring and enabling more effective and detailed periodic monitoring. 

However, the document VMD0015 (VCS, 2020) does not present a specific methodology for 

the use of LiDAR data in degradation monitoring. Therefore, the objective of this study was 

to assess the potential of LiDAR remote sensing technology to identify and monitor different 

sources of degradation in REDD+ projects and understand their effect on forest structure and 

carbon storage potential. For this purpose, we employed two approaches: statistical modeling 

of forest structural characteristics in relation to the distance from potential degradation 

sources (anthropized areas) and gap analysis comparing the gap dynamics between forests 

near and far from anthropized areas. This study has practical implications related to the 

management of REDD+ projects, the ecology of land use change, and the use of innovative 

technologies for local degradation monitoring. Thus, we raised the following questions: 

 

(i) How to identify sources of degradation and quantify their emissions in REDD+ 

projects? 

We expect that the ability of LiDAR sensors to provide detailed characterization of the 

3D forest structure will facilitate the identification of degradation sources that are challenging 

to monitor with optical sensors, such as selective logging and edge effects, and assist in 

measuring its modifications and in quantifying the emissions caused by these sources (Rangel 

Pinagé et al., 2019; Almeida et al., 2019). These measurements can be used to identify areas 

affected by selective logging and edge effects, and quantify the extent and severity of such 

degradation, by examining the transition zones between intact forests and adjacent land use 

types, providing insights into the extent and impact on forest ecosystems. 

 

(ii) How do anthropogenic areas alter canopy structure and carbon stocks in 

adjacent forests? 

We expect that the LiDAR sensor will allow us to identify the changes caused by the 

edge effect. Our hypothesis is that anthropogenic areas cause some level of disturbance in 

adjacent forests, resulting in alterations in their structure and carbon storage potential, but that 

these changes are quickly mitigated in preserved forests (Blanchard et al., 2023). 
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(iii) What is the level of infiltration of degradation caused by anthropized areas? 

The infiltration of the edge effect in transition zones between anthropized and forested 

areas varies greatly depending on the intensity and duration of human activities, the proximity 

of the degraded areas to intact forests, the resilience of the ecosystem, and the attributes being 

assessed (Broadbent et al., 2008). We expect that in preserved forests, degradation will not 

infiltrate as intensely into the interior of the forest, altering the structure and carbon stocks of 

the forest only in the areas closest to the edge (Wuyts et al., 2008; Aragón et al., 2014; 

Almeida et al., 2019). 

 

3.2. Material and Methods 

3.2.1. Study Area 

This study was conducted on three rural properties that are part of an ongoing REDD+ 

project (accessed at https://registry.verra.org/app/projectDetail/VCS/2551), located in the 

state of Acre/BR, southwestern region of the Brazilian Legal Amazon (Figure 1). The 

occupation and opening of areas within these properties date back to the year 2008. The main 

vegetation type found is Open Ombrophilous Forest, which is considered a transitional 

vegetation with a relatively low and open canopy, presence of palm trees and bamboos, and 

occasional strong winds that can cause tree fall within the forest. Field walks were carried out, 

following the guidelines suggested in document MD0015 (VCS, 2020), along with aerial 

surveys using UAV-LiDAR in the zones adjacent to the open areas. 

 

https://registry.verra.org/app/projectDetail/VCS/2551


48 
 

 
Figure 1. Location map of the study areas; (A) Map of Brazilian Legal Amazon; (B) State of Acre indicating the 

rural properties; (C, D, E) Detailed maps of each property showing the areas surveyed with UAV-LiDAR and the 

allocation of sampling transects. 

 

3.2.2. LiDAR Data 

For LiDAR data collection, we utilized the DJI Zenmuse L1 sensor mounted on the 

DJI Matrice 300 unmanned aerial vehicle (UAV). The flight planning was conducted using 

the UgCS Enterprise software, where flight parameters were set at 120 meters altitude with a 

70% overlap between collection swaths. The flights were planned to cover areas of forests 

adjacent to the open areas (Figure 1). For geolocation correction of the data, we employed 

Post Processed Kinematic (PPK) processing, correcting the latitude, longitude, and altitude 

using the DJI D-RTK 2 GNSS Mobile Station as the reference base. The point clouds were 

preprocessed using DJI Terra software. From the point clouds, we generated normalized point 

clouds and canopy height models (CHM) with a 1-meter resolution using the lidR package 

(Roussel et al., 2020) in the R software (R Core Team, 2023). 

 

3.2.3. Statistical Modelling 

We employed statistical modeling to relate the forest's structural attributes to the 

distance from potential degradation sources (open areas/pastures). To accomplish this, we 
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mapped the open areas using Planet images and generated a raster that calculated the distance 

from each pixel to the nearest anthropized area. From the CHM, we generated 10-meter 

resolution raster layers related to the forest canopy's structural characteristics, including: 

Canopy Height, Canopy Roughness, Canopy Openness and Carbon Stock. The Canopy 

Height layer was calculated as the average height within a 10-square-meter area (10x10 grid 

cells), the Roughness layer was derived from the coefficient of variation of heights, the 

Openness layer represented the proportion of grid cells below 5 meters in height as a 

percentage, and the Carbon Stock layer was generated from Canopy Height layer using the 

equation by Longo et al. (2016) and validated through field inventories within the REDD+ 

project areas. Additionally, using the normalized point clouds and the LeafR package 

(Almeida et al., 2021), we generated Leaf Area Index (LAI) and Understory Leaf Area Index 

layers, with the latter representing the leaf area index below 5 meters in height. 

 
Figure 2. Representation of the structural attributes used in the statistical modeling (C), generated from the 

Canopy Height Models (CHM) (A), and from the 3D point cloud (B). 

 

We allocated 15 sampling polygons in the form of transects (100m x 200m) in the 

areas covered by UAV surveys in order to capture the distance gradient starting from the open 

areas. Next, we used the asymptotic exponential model (Equation 1) to relate the structural 

attributes with the distance. We chose this model structure to identify the distance at which it 
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stabilizes, indicating the level of infiltration of the edge effect on the forest structure. We 

estimated the models for each transect with transect-specific random effects using the JAGS 

("Just Another Gibbs Sampler") program through the "jagsUI" package in the software R 

(Kellner, 2015). 

 

Equation 1. Model used to relate the structural attributes and the distance from the 

open area. 

𝐴𝑡𝑟𝑔𝑟𝑖𝑑𝑐𝑒𝑙𝑙 =  𝛼 +  (𝛽 − 𝛼) ∗  𝑒𝑥𝑝(
−𝑑𝑖𝑠𝑡𝑔𝑟𝑖𝑑𝑐𝑒𝑙𝑙

𝛾
) 

Where: 

𝐴𝑡𝑟𝑔𝑟𝑖𝑑𝑐𝑒𝑙𝑙 = Structural attribute of each grid cell; 

𝑑𝑖𝑠𝑡𝑔𝑟𝑖𝑑𝑐𝑒𝑙𝑙 = Distance of each grid cell from the open area, m; 

 

The parameters α (alpha), β (beta), and γ (gamma) in the model allow us to directly 

interpret the structural condition of the forest. Alpha (α) represents the asymptote of the 

model, indicating the attribute value inside the forest. Beta (β) is the intercept of the model, 

representing the attribute value at the forest edge. Gamma (γ) is the factor related to the rate 

of change of the attribute value as one moves into the forest. After generating the models for 

each transect, we estimated an overall model for each attribute, generating a graph with a 

vertical line indicating the point where the model curve stabilizes. 

 

3.3. Results 

3.3.1. Statistical modelling 

The modeling of structural attributes allowed us to analyze the conditions at the forest 

edge compared to its interior, as well as indicate how far the edge effect infiltrates into the 

forest. After generating a model for each attribute for each transect (Figures S1 to S6), we 

created an overall model for each attribute, where the values of their coefficients alpha (α) and 

beta (β) represent the average attribute values at forest interior and edge (Figure 4). 

For the canopy height attribute, we observed low values at the forest edge, gradually 

increasing towards the forest interior and reaching an asymptote at 22.8 meters. At the forest 

edge, the forest height was 9.5 meters, which is 42% lower than the height in the interior. 

Regarding canopy roughness, we observed an inversely proportional relationship to the 

distance from the edge. In other words, the roughness decreases as you move further into the 

forest, with values of 0.23 in the forest interior and 0.64 at the edge, representing a difference 
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of 41%. For canopy openness, we also found an inversely proportional relationship, where we 

observed a value of 0.02 in the forest interior and 0.38 at the edge, representing a decrease of 

36%. Regarding carbon stock, we observed that the stock at the forest edge is considerably 

lower compared to the interior, with values of 434.8 Mg CO2e/ha in the interior and 110.6 

Mg CO2e/ha at the edge, representing a 25% lower stock. As for the attributes derived from 

the point clouds, the leaf area index showed an increasing trend as you move away from the 

edge, with values of 4.85 m²/m³ in the interior and 2.32 m²/m³ at the edge, representing a 

difference of 47%. On the other hand, the Understory Leaf Area Index did not show a 

significant difference between the interior and the edge, with values of 1.7 m²/m³ and 1.19 

m²/m³ respectively, indicating consistent values throughout the distance gradient. 

We drew an orange dashed line to indicate the point at which the curve of the models 

stabilizes. In other words, this line represents the level of infiltration of degradation caused by 

the anthropogenic areas under the forest structure. In our case, as we did not find evidence of 

selective logging, severe droughts, or wildfires, we consider that this degradation is caused 

exclusively by the edge effect. By observing the curves of the structural attributes, we can 

note that Canopy Height and Openness exhibited less infiltration of the edge effect, ranging 

between 20 and 30 meters. Whereas Canopy Roughness, Carbon Stock and LAI presented 

higher values, with their model curves stabilizing around 50 meters. LAI undestory showed a 

distinct behavior with consistent values along the distance gradiente, suggesting limited 

influence from the edge effect. 
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Figure 4. Overall model curves representing the relationship between forest structural characteristics and the 

distance from open areas. The points on the graph represent the values of the grid cells from all transects. The 

orange dashed line indicates the distance at which the model curve stabilizes, suggesting the infiltration level of 

the edge effect into the forest. 

 

3.4. Discussion 

Our results showed that anthropized areas had a subtle effect on the nearby forests, 

indicating a low level of degradation in the REDD+ project areas. Although subtle, the 

methodologies used in this work were able to identify this effect, highlighting the great 

potential of LiDAR technology for local degradation monitoring. By leveraging the 

capabilities of LiDAR data, REDD+ projects can improve their ability to identify specific 

degradation sources, monitor them over time, and estimate associated emissions more 
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accurately. This information is vital for effective management and conservation strategies, as 

well as for reporting and verification purposes within the framework of REDD+. 

 

Identifying Different Sources of Degradation on REDD+ Projects 

Assessing all potential sources of degradation is crucial for the success of forest 

conservation in REDD+ projects. By understanding the specific dynamics and potential 

disturbances in the forest structure, we can develop targeted management approaches to 

preserve the forest ecosystem and mitigate any potential threats. However, forest monitoring 

still relies mainly on fieldwork and satellite imagery, which substantially limits its 

effectiveness. In this study, the use of LiDAR data provided several advantages over satellite-

based monitoring systems, enabling a more detailed and efficient assessment of forest 

structure. Compared to transect walking methodology suggested by VERRA to measure 

emission from selective logging and illegal timber, the use of UAV-LiDAR system enabled us 

to cover a larger area of the project, expanding from a few tens to hundreds of hectares of 

monitored forest. Additionally, it provided inaccessible information in field surveys. 

Therefore, this methodology also allowed us to assess not only selective logging but also 

overall forest degradation by accessing the forest structure in detail. Moreover, by employing 

this methodology, it becomes possible to conduct periodic forest monitoring in REDD+ 

projects, where identifying discrepancies in forest behavior at a given time can indicate some 

source of degradation or even the forest's recovery from a degradation event. 

Our results showed no signs of selective logging in the project areas. Several studies 

have highlighted how this activity can alter forest structure (Asner et al., 2006; Dalagnol et 

al., 2019; Rangel Pinagé et al., 2019; d'Oliveira et al., 2021). In our study, since our results 

indicate that structural changes in the forest only occur within the first 50 meters (Figure 4), 

we can consider the absence of such activity, as we know that selective logging can extent 

hundreds of meters into the forest. These assumptions align with the field walks conducted in 

the areas, where no evidence of selective logging or illegal timber was identified. In case of 

selective logging were identified, subsequent procedures would be necessary, such as field 

visits for validation, estimation of the affected area, and estimation of its emissions. 

 Additionally, the statistical modeling approach proved to be highly efficient in 

identifying the presence of the edge effect and assessing its intensity. Evaluating the edge 

effect is crucial for understanding the level of forest conservation and the effectiveness of the 

REDD+ project in reducing emissions from degradation. The methodology used allowed us to 

assess how and to what extent the edge effect alters the forest structure in the project areas, 



54 
 

where UAV-LiDAR data provided detailed information on forest structure. Once the edge 

effect and its impact on carbon stocks have been identified, future procedures should be 

implemented to measure the extent of the REDD+ project area affected by the edge effect and 

estimate its emissions. This information is essential for accurate accounting of emissions and 

for designing targeted interventions to mitigate the edge effect and enhance the success of the 

REDD+ project in reducing emissions from forest degradation. 

 

Effects of Anthropized Areas on Forest Structure 

 Assessing the impact of the edge effect on forest structure and its extent of infiltration 

is crucial for monitoring the level of degradation in REDD+ projects. Here in this study, the 

approach allowed us to analyze the impacts of anthropized areas on forest structure, by 

modeling the forest structure as it moves away from the anthropized area. 

The utilization of the asymptotic exponential model provided valuable insights into 

the behavior of structural attributes of the forest as they extend further away from anthropized 

areas. Through the analysis of the models curves on the graphs, we observed that Canopy 

Height, Carbon Stock, and Leaf Area Index (LAI) demonstrated an increasing trend, 

indicating that as we moved further into the forest, the canopy became taller and denser. This 

suggests a progressive development of the forest's vertical structure and increased biomass. In 

contrast, Canopy Roughness and Openness exhibited a decreasing trend with increasing 

distance from the edge. This implies that as we penetrated deeper into the forest, the canopy 

became more homogeneous and closed. The understory Leaf Area Index (LAI understory) did 

not exhibit a significant change as distance from the edge increased. We believe this behavior 

can be attributed to the age of the openned area, where immediately after the disturbance, 

there was a rapid growth of understory plants due to plants regeneration. However, over time, 

these plants grew and reached heights exceeding 5 meters. A similar phenomenon has also 

been observed in two studies conducted in the Amazon Forest. Malcom (1994) found a high 

understory LAI at the forest edge shortly after the disturbance, but years later in the same 

area, Almeida et al. (2019) found that the densest vegetation was located in the midstory, 

which supports our findings.  

All the behaviors were expected considering the edge effect exerted by open areas on 

adjacent forests (Broadbent et al., 2008; Aragón et al., 2015; Vepakomma et al., 2018; 

Blachard et al., 2023). However, it is expected that forests with a high level of conservation 

can inhibit this effect, preventing degradation from infiltrating with high intensity and over 

long distances. In this study, the rapid stabilization of the curves within the first 50 meters 
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expressed the high level of forest conservation, highlighting the buffering effect of the forests 

in the project. If the distance at which the curve stabilizes exceeds the expected infiltration of 

the edge effect, further investigations should be conducted to identify the source of 

degradation. Similar results were obtained by Almeida et al. (2019) when evaluating the edge 

effect in forest fragments of different sizes using the same modelling approach used here, 

where the largest fragment (100 ha) reached a stabilization point of the curve at 33 meters 

from the edge. According to the literature review conducted by Broadbent et al. (2008), 

several studies have found an edge penetration mean distance of 100 meters. However, it is 

important to mention the different data sources used in these studies, as the use of field data 

and/or satellite images with different spatial resolutions, can lead to variations in the results 

due to their ability to detect and quantify changes in forest structure along the edge gradient. 

Additionally, the results founded in this literature review showed great variance, highlighting 

the great edge effects variation and the importance of assessing it locally for each REDD+ 

project.  

The variation in the extent of infiltration and intensity of disturbance caused by the 

edge effect on forest structure is linked to the forest's physiognomy, conservation level, and 

local microclimate factors. Although our results showed low infiltration in the study areas, 

around 50 meters, we believe that in landscapes with high fragmentation and adverse climatic 

conditions, this effect may be more pronounced due to the forest's limited regenerative 

capacity. Furthermore, another important factor that affects the intensity of the edge effect is 

the different land uses adjacent to the forest, such as pastures and various agricultural and 

forestry crops, as they directly affect the microclimate at the forest edge. These land uses can 

alter factors such as temperature, humidity, soil conditions, and wind patterns, which in turn 

impact the microenvironment and ecological processes within the forest edge. (Mesquita et 

al., 1999; Broadbent et al., 2008; Almeida et al., 2019). Therefore, the wide range of factors 

that influence the edge effect highlights the importance of assessing it locally for each 

REDD+ project. 

 

Quantifying Emissions from Degradation on REDD+ Projects 

Quantifying emissions from degradation is a crucial aspect of REDD+ projects on 

carbon market, as it allows for the accurate estimation of carbon stock on the project area. If 

ignored, there is a significant possibility that projects may be underestimating their emissions. 

Additionally, it promotes credibility, transparency and accountability, ensuring that projects 

embrace to rigorous standards and guidelines. Accounting for emissions from degradation is 
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essential for ensuring fairness in carbon credit generation, allowing project developers to 

demonstrate that their actions are effectively reducing emissions from degradation in the stage 

of measurement, reporting, and verification (MRV). Additionally, quantifying such emissions 

will penalize projects with low effectiveness in conserving their areas. This incentivizes 

project developers to implement robust conservation measures and actively monitor and 

address degradation processes. Projects that can effectively measure and reduce degradation 

emissions are more likely to attract buyers for their carbon credits, as they demonstrate 

tangible contributions to emission reduction targets. To ensure the effectiveness and 

replicability of degradation emission quantification, the development of standardized 

methodologies is crucial. These methodologies should be able to identify and measure various 

sources of degradation in different areas consistently. This requires a combination of field-

based data collection, remote sensing technologies, and modeling approaches that capture the 

specific characteristics and drivers of degradation in each project location. By establishing 

robust and efficient methodologies for quantifying degradation emissions, we can enhance the 

credibility and integrity of REDD+ projects. 

The methodology employed in this study has showcased the immense potential of 

LiDAR data in achieving this goal by analyzing forest structure in detail and identifying 

degraded areas. Once the degraded areas are identified, following procedures should be 

undertaken: measuring the extent of the area affected by degradation, estimating the carbon 

stock in this areas, estimating the carbon stock in reference areas (conserved area), and 

comparing these estimates to quantify the emissions resulting from degradation. Future 

studies should be conducted to develop a definitive methodology that encompasses all 

necessary aspects and provides standardized guidelines for quantifying emissions from 

degradation accurately. Such a methodology would greatly contribute to the effectiveness and 

credibility of REDD+ projects by ensuring consistent and reliable measurement, reporting, 

and verification (MRV) of emissions reductions. 

 

3.5. Conclusion 

This study has revealed the significant potential of LiDAR remote sensing technology 

for monitoring local degradation in REDD+ projects. The methodology utilized allowed for a 

comprehensive and detailed assessment of forest structure, offering replicable and periodic 

monitoring capabilities that enhance its effectiveness. Our findings have demonstrated that the 

impact of open areas on forest structure extends up to 50 meters, showcasing the remarkable 

resilience of the forests examined in this study. Additionally, the forests adjacent to open 
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areas exhibited minimal alterations in their structure compared to the interior, indicating a 

high level of conservation. These results underscore the importance of further research to 

fully unlock the potential and promote the widespread adoption of UAV-LiDAR systems in 

the monitoring of REDD+ projects. 
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Supplementary Material 

 
Figure S1. Model of each transect relating distance to canopy height. 

 

 
Figure S2. Model of each transect relating distance to canopy roughness. 
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Figure S3. Model of each transect relating distance to canopy openness. 

 

 
Figure S4. Model of each transect relating distance to carbon stock. 
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Figure S5. Model of each transect relating distance to leaf area index. 

 
Figure S6. Model of each transect relating distance to leaf area index of the understory. 
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4. FINAL CONSIDERATIONS 

In this master's dissertation, we investigate how different remote sensing technologies 

can enhance forest monitoring programs, increasing their scale and effectiveness without 

requiring extensive field access. The different forms of remote sensing (passive and active) 

have their advantages and disadvantages according to their characteristics, and consequently, 

each one has its best applications. Here, we evaluate different applications of remote sensing 

for forest monitoring using two different sources of data. 

In the first chapter we use passive sensor multispectral satellite imagery to monitor 

and classify land use of different tree cover classes. The large coverage area of satellite 

images and their ability to access the spectral behavior in detail, together with the use 

machine learning algorithm, allowed us to accurately distinguish and locate the different tree 

cover classes. We aimed at evaluating the potential of high spatial and finer spectral 

resolution multispectral images from the VENµS satellite to perform supervised classification 

of contrasted tree cover classes, using the RF machine learning algorithm. To do so, tree 

cover class characterization was based on their spectral behavior and diversity, generating 

vegetation indices, delta layers, textural layers, and spectral diversity layers. We obtained 

high accuracy values (91.9%) and “F1 score” for all classes, which variables were most 

important for the accuracy of the classification, and finally a description of eventual confusion 

between tree cover classes. Our study showed that the combination of high spatial and finer 

spectral resolution multispectral images, different data manipulation techniques, and machine 

learning algorithms have great potential to assist the classification of tree cover classes across 

restored forest landscapes, which is expected to be the first step towards the assessment of 

biodiversity and ecosystem functions. Once the main tree cover classes of a FLR program are 

identified, further remote sensing approaches, like Lidar technology, and in-deep field 

assessments can be performed to advance evaluation of FLR benefits for nature and people. 

Ultimately, the fusion of all these types of data, together with the use of innovative 

approaches to data processing, can result in novel ways to assess restoration performance and 

open new avenues to upscale monitoring, bridging the gap between FLR expectations and 

achieved goals. 

In the second chapter, we used LiDAR data (active sensor) along with statistical 

modeling techniques to access the structural characteristics of the forest and understand the 

impacts of occupation/opening of areas in REDD+ projects. The ability of this active sensor 

to access the forest structure allowed us to characterize the condition of the forest and its level 
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of degradation after a disturbance event, enhancing forest monitoring in REDD+ projects. 

This study has revealed the significant potential of LiDAR remote sensing technology for 

monitoring local degradation in REDD+ projects. The methodology utilized allowed for a 

comprehensive and detailed assessment of forest structure, offering replicable and periodic 

monitoring capabilities that enhance its effectiveness. Our findings have demonstrated that the 

impact of open areas on forest structure extends up to 50 meters, showcasing the remarkable 

resilience of the forests examined in this study. Additionally, the forests adjacent to open 

areas exhibited minimal alterations in their structure compared to the interior, indicating a 

high level of conservation. These results underscore the importance of further research to 

fully unlock the potential and promote the widespread adoption of UAV-LiDAR systems in 

the monitoring of REDD+ projects. 

Finally, the two chapters of this master's dissertation showed practical examples of 

how remote sensing technologies are key elements for the success of forest monitoring 

programs. With advanced techniques of data analysis and statistical modelling we can access 

valuable information about forest characteristics and status. For next steps, robust algorithms 

need to be developed to automatize the process of data processing and analysis, and standards 

procedures have to be created to scale up forest monitoring activities, with a combination of 

satellite imagery, drone surveying and field assessments. 

 

 


