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RESUMO 

Estudo comparativo das respostas estruturais e bioquímicas de 

framboeseiras a ferrugem tardia da folha  

 
Rosaceae é uma família composta por culturas importantes como maçã, 

pêssego, morango e framboesa. Entre essas espécies, as framboesas vermelhas e 
pretas pertencem ao gênero Rubus e são culturas de alto valor com crescente 
demanda mundial. No entanto, essas plantas são acometidas por diversas doenças 
que impactam sua qualidade e produtividade. A ferrugem tardia da folha é uma doença 
fúngica em framboesas causada por Aculeastrum americanum (Farl.) M. Scholler & U. 
Braun (syn. Thekopsora americana (Farl.) Aime & McTaggart). Enquanto as 
framboesas vermelhas (Rubus idaeus L.) são suscetíveis, as framboesas pretas foram 
relatadas anteriormente como mais resistentes (R. occidentalis L.) e imunes (R. niveus 
Thunb.) a esse patógeno. Uma vez que a resistência genética é uma forma promissora 
de manejar esta doença, a hibridização de framboesas vermelhas e pretas pode 
fornecer características interessantes a novas cultivares. No entanto, é importante 
entender como as plantas respondem aos patógenos antes de desenvolver caros e 
longos programas de melhoramento. O objetivo desta tese foi investigar as respostas 
histopatológicas e bioquímicas de framboesas vermelhas e pretas e um híbrido entre 
elas à colonização por A. americanum. Observou-se que o patógeno germinou e 
colonizou todas as framboesas estudadas, entretanto, as framboesas pretas e o 
híbrido tiveram respostas distintas em comparação a R. idaeus. O mesofilo compacto, 
os compostos fenólicos pré e pós-formados, os compostos pécticos pós-formados e o 
colapso celular na área lesionada foram os principais mecanismos de defesa contra 
A. americanum. Adicionalmente aos estudos estruturais e bioquímicos das respostas 
de defesa da framboesa, foi realizada uma análise genômica comparativa para 
identificar as proteínas quinases dependentes de cálcio (CDPKs), com foco nos 
ortólogos CPK28 em framboesa preta (R. occidentalis) e morango (Fragaria vesca L.) 
como representante das Rosaceae. Ambos têm 26 CDPKs juntos. Os ortólogos 
FvCPK28 e RoCPK28 foram clonados e expressos em mutantes Nicotiana 
benthamiana e Arabidopsis cpk28. Foi encontrado que ambos os ortólogos CPK28 de 
Rosaceae são localizados na membrana plasmática e sua superexpressão amorteceu 
a explosão oxidativa após a elicitação. Esses resultados forneceram uma prova de 
conceito para investigar as semelhanças funcionais entre essas proteínas e 
Arabidopsis CPK28. 
 

Palavras-chave: CPK28, Mecanismos de defesa, Compostos fenólicos, Rubus 
idaeus, Rubus occidentalis, Rubus niveus 
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ABSTRACT 

A comparative study of raspberry structural and biochemical 
responses to late leaf rust 

Rosaceae is a family composed of important crops such as apple, peach, strawberry, 
and raspberry. Among these species, red and black raspberries belong to the genus 
Rubus and are high-value crops with increasing worldwide demand. However, these 
plants are affected by several diseases that impact their quality and productivity. Late 
leaf rust is a fungal disease in raspberries caused by Aculeastrum americanum (Farl.) 
M. Scholler & U. Braun (syn. Thekopsora americana (Farl.) Aime & McTaggart). While 
red raspberries (Rubus idaeus L.) are susceptible, black raspberries were previously 
reported as more resistant (R. occidentalis L.) and immune (R. niveus Thunb.) to this 
pathogen. Since genetic resistance is a promising way to manage this disease, 
hybridizing red and black raspberries can provide new cultivars with interesting traits. 
However, it is important to understand how plants respond to pathogens before 
developing expensive and long breeding programs. The aim of this thesis was to 
investigate the histopathological and biochemical responses of red and black 
raspberries and a hybrid between them to A. americanum colonization. It was observed 
that the pathogen germinated and colonized all studied raspberries, however, black 
raspberries and the hybrid had distinctive responses compared to R. idaeus. The 
compact mesophyll, the pre- and post-formed phenolic compounds, post-formed pectic 
compounds, and cell collapse in the lesioned area were the main defense mechanisms 
against A. americanum. Additionally, to structural and biochemical studies of 
raspberries defense responses, it was performed a comparative genomics analysis to 
identify the calcium-dependent protein kinases (CDPKs), focusing on the CPK28 
orthologs in black raspberry (R. occidentalis) and strawberry (Fragaria vesca L.) as 
representative of Rosaceae. Both have 26 CDPKs together. The orthologs FvCPK28 
and RoCPK28 were cloned and expressed in Nicotiana benthamiana and Arabidopsis 
cpk28 mutants. It was found that both Rosaceae CPK28 orthologs are plasma-
membrane localized, and their overexpression dampened the oxidative burst upon 
elicitation. These results provided a proof-of-concept to investigate the functional 
similarities between these proteins and Arabidopsis CPK28. 

Keywords: CPK28, Defense mechanisms, Phenolic compounds, Rubus idaeus, 
Rubus occidentalis, Rubus niveus 
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1. GENERAL INTRODUCTION 

Raspberries belong to the genus Rubus L. and occur naturally in all continents 

except Antarctica (Martin et al. 2018; Funt and Hall 2013). They are included within the 

family Rosaceae, along with blackberries, apples, pears, strawberries and several 

other species (Martin et al. 2018; Jung et al. 2019). Raspberries have been cultivated 

for centuries because of their nutritious fruit (druplets), as well as their herbal raw 

material rich in bioactive compounds (Oszmiański et al. 2015; Chwil and Kostryco 

2021). Indeed, the global production of red and black raspberries has increased during 

the last couple of years to reach 822,000 tonnes in 2021 (Foster et al. 2019; Klewicka 

et al. 2020; FAO 2021). For this reason, local and global agricultural economies are 

highly dependent on maintaining production quality.  

Rubus can be affected by a wide variety of diseases caused by viruses, fungi, 

and bacteria. More than 30 viruses and phytoplasmas affecting Rubus have been 

characterized in the last few years, and many others have not yet been identified (Funt 

2013; Martin et al. 2018). Fungal diseases such as rusts are common in cane, fruits 

and leaves, and have the potential to cause severe yield loss (Hall et al. 2009; Funt 

2013; Dolan et al. 2018).  

Late leaf rust is a disease caused by Aculeastrum americanum (Farl.) M. 

Scholler & U. Braun (syn. Thekopsora americana (Farl.) Aime & McTaggart), an 

heteroecious and macrocyclic rust. Besides producing telia and uredinia in raspberries, 

white spruce (Picea glauca [Moench.] Voss) hosts the spermogonial and aecial stages 

of the A. americanum life cycle (Martin et al. 2018; Scholler et al. 2022). Although late 

leaf rust was once considered a minor concern, outbreaks have been reported in many 

locations of raspberry cultivation (Martin et al. 2018; Delisle-Houde et al. 2020; Oliveira 

2021). The urediniospore stage is the only rust spore that causes reinfection, which 

may occur within a few days after sporulation and reach the same tissue or the 

neighbour plants (Aime et al. 2018; Duplessis et al. 2021).  Due to this, they are 

persistent while finding optimal environmental conditions and are harder to control. Not 

surprisingly, late leaf rust has been found in raspberries in regions far from the white 

spruce occurrence, apparently overwintering on raspberries' aerial tissues (Martin et 

al. 2018). 

Red raspberries (Rubus idaeus L.) are susceptible to late leaf rust, while black 

raspberries are considered immune (Luffman and Buszard 1989; Nelson 2011; Martin 

et al. 2018). It has been demonstrated that susceptibility varies among cultivars of R. 
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idaeus (Luffman and Buszard 1989; Hall et al. 2009). Even the black raspberry R. 

niveus is considered immune to A. americanum further studies are necessary to 

confirm this information. Moreover, based on the literature, the black raspberry R. 

occidentalis L. appears to have a contradictory host status. Even classified as black 

raspberry by Bushakra et al. (2012) and Foster et al. (2019) and immune to A. 

americanum by Dodge (1923), the occurrence of late leaf rust was previously observed 

(Martin et al. 2018).  

Histopathological studies have helped clarify several mechanisms plants use 

during interaction with microbes (Braga et al. 2019; Navarro et al. 2019; Rasera et al. 

2019; Rincón-Barón et al. 2020; Marques et al. 2022). In addition, the plant basal 

defense activates a cascade of responses performed by robust cellular machinery in 

response to the recognition of ‘non-self’ molecules (DeFalco and Zipfel 2021; Dias et 

al. 2022). 

In order to control diseases, it is important to understand how plants respond to 

pathogens. In this context, the objective of this thesis was to uncover the structural and 

biochemical pre- and post-formed defense mechanisms of raspberries interacting with 

A. americanum (Chapters 2 and 3). In addition, calcium-dependent protein kinase 

CPK28 orthologs were identified and examined for their function in black raspberry and 

strawberry immunity (Chapter 4).  

Chapter 2: Investigating biochemical and histopathological responses between 

raspberries and Aculeastrum americanum 

Chapter 3:  A new hybrid between red and black raspberry and its response to late 

leaf rust from a histopathological view 

Chapter 4: Initial characterization of the calcium-dependent protein kinase CPK28 in 

black raspberry and strawberry  
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2. INVESTIGATING BIOCHEMICAL AND HISTOPATHOLOGICAL RESPONSES 

BETWEEN RASPBERRIES AND ACULEASTRUM AMERICANUM 

 
Abstract 

Late leaf rust is a fungal disease in raspberries caused by Aculeastrum 
americanum (Farl.) M. Scholler & U. Braun (syn. Thekopsora americana (Farl.) Aime 
& McTaggart) leading to early defoliation and yield losses. Red raspberries (Rubus 
idaeus L.) are susceptible to this pathogen, even though this susceptibility varies 
among cultivars. In contrast, black raspberries were previously reported as more 
resistant (Rubus occidentalis L.) and immune (Rubus niveus Thunb.) to this pathogen, 
raising their importance in plant breeding programs. However, what features make 
them respond differently to the same pathogen? In this study, we characterized pre- 
and post-formed structural and biochemical defense mechanisms of R. idaeus ‘Autumn 
Bliss’, R. occidentalis and R. niveus. Ultrastructural and histopathological analyses 
were employed to uncover the interactions between these raspberries and A. 
americanum. The ultrastructural results indicated that the pathogen germinates on 
both leaf surfaces but can form appressoria only on stomata. Although the three 
raspberry species were infected and colonized by A. americanum, a clear difference 
in susceptibility was observed between them. A compact mesophyll, pre and post 
formed phenolic compounds, and post formed pectic compounds were the main plant 
defense mechanisms against fungal colonization. These findings provide new 
information about raspberries' defense mechanisms in response to A. americanum and 
elucidate the interactions occurring on these pathosystems.  
 
Keywords: late leaf rust, Pucciniastrum americanum, Rubus idaeus, Rubus 
occidentalis, Rubus niveus. 

 
 
Introduction  
 

Late leaf rust, caused by Aculeastrum americanum (Farl.) M. Scholler & U. 

Braun (syn. Thekopsora americana (Farl.) Aime & McTaggart) affects red and purple 

raspberries (Martin et al. 2018; Scholler et al. 2022). The disease is hard to control and 

has caught attention after outbreaks in North American orchards (Martin et al. 2018; 

Delisle-Houde et al. 2020). It has also been reported as a concern in Argentina, Brazil, 

Chile, and Portugal (Figueiredo et al. 2003; Raseira et al. 2004; Lucero et al. 2008; Pio 

2014; Oliveira 2021). 

The main symptoms are powdery yellow spots, which correspond to 

reproductive structures called uredinia and are found in all aerial parts of infected 

plants (Dolan et al. 2018; Martin et al. 2018). Infected fruits become unfit for sale, and 

leaves may drop prematurely, causing severe yield loss (Hall et al. 2009; Funt 2013; 

Martin et al. 2018). Those are some outcomes of plant tissue colonization that lead to 
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structural and physiological responses during the plant-pathogen interaction. However, 

it is still unknown which defense mechanisms raspberries employ against the 

colonization process by A. americanum. 

Red raspberries (Rubus idaeus L.) are classified as susceptible to late leaf rust, 

even though this susceptibility varies among cultivars (Luffman and Buszard 1990; 

Nelson 2011). In contrast, black raspberries such as Rubus occidentalis L. and Rubus 

niveus Thunb. are immune to this pathogen (Martin et al. 2018). Nevertheless, late leaf 

rust has been documented in R. occidentalis (Dodge 1923; Darker 1929; Nickerson 

1991).  

Because raspberries are economically relevant crops on almost all continents 

(Foster et al. 2019; FAO 2021) diseases affecting these plants can not be neglected.  

Histopathological and biochemical studies have allowed the understanding of 

important pathosystems (Braga et al. 2019; 2021; Primiano et al. 2019; Rasera et al. 

2019; Alves et al. 2021, Marques et al. 2022) and shed light on disease cycle and 

epidemiology studies (Nogueira Júnior et al. 2017; Boufleur et al. 2022; Dias et al. 

2022).  

Since no histopathological investigations have been performed yet on the 

infection and colonization processes of raspberries by A. americanum, this work seeks 

to elucidate whether there are differences in leaf anatomical and biochemical traits 

among red and black raspberries which may hinder/delay the infection of A. 

americanum in black raspberries leaves. This study focuses on uncovering pre- and 

post-formed defense mechanisms in red and black raspberries.  

 

Conclusion 

 In conclusion, a more compact mesophyll, pre and post formed phenolic 

compounds, and post formed pectic compounds are the main defense mechanisms 

found in raspberries that played a role against A. americanum. Although raspberries 

had both preformed and post formed defense mechanisms, they were not sufficient to 

totally contain an infection and colonization by A. americanum. Based on the results, 

we confirmed the susceptibility of R. idaeus ‘Autumn Bliss’ to A. americanum and 

showed the absence of immunity for R. occidentalis and R. niveus.  
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3. A NEW HYBRID BETWEEN RED AND BLACK RASPBERRY AND ITS 

RESPONSE TO LATE LEAF RUST FROM A HISTOPATHOLOGICAL VIEW  

Abstract 

Rubus idaeus ‘Heritage’ is a red raspberry cultivated worldwide for fresh or 
processed consumption. However, ‘Heritage’ is susceptible de late leaf rust, a disease 
caused by Aculeastrum americanum (Farl.) M. Scholler & U. Braun (syn. Thekopsora 
americana (Farl.) Aime & McTaggart). Genetic resistance is a promising way to 
manage this disease. Hybridization between red and black raspberries is commonly 
used for their genetic improvement. The wild black raspberry R. niveus is a reported 
as hight-value progenitor resistant to diseases. In fact, R. niveus exhibited remarkable 
histochemical responses to A. americanum. In this study, we characterized the leaf 
anatomy of a hybrid between R. niveus and R. idaeus ‘Heritage’ and its biochemical 
and histopathological responses to A. americanum. Our findings showed that the 
hybrid leaves inherited the morphology phenotype from R. idaeus and leaf anatomical 
traits from R. niveus. Only small pustules per leaf were observed 20 days after 
inoculation with A. americanum. In the lesioned area, the epidermal and mesophyll 
cells underwent collapses and exhibited phenol accumulation. This work sheds light 
on the histopathological interactions in the pathosystem A. americanum-raspberry and 
highlights traits that can help plant breeders target late leaf rust resistance in future 
cultivars. 
 
Keywords: Aculeastrum americanum, defense mechanisms, phenolic compounds, 
Pucciniastrum americanum, Rubus idaeus, Rubus niveus 
 
Introduction  

Raspberries belong to the genus Rubus, a member of the globally-important 

Rosaceae family (Graham et al. 2018; Chwil and Kostryco 2020). As a result of 

consumer demand and research into their bioactive compounds, global production of 

red and black raspberries has increased during the last couple of years to reach 

822,000 tonnes in 2021 (Bushakra et al. 2015; Foster et al. 2019; Klewicka et al. 2020; 

FAO 2021). 

Plant breeding programs around the world have developed new cultivars in 

order to meet this demand and ensure fruit quality. Raspberry breeding focus on 

several agronomic traits, including pest and disease resistance (Hall et al. 2009; 

Zasada and Moore 2014; Foster et al. 2019). Because red and black raspberries are 

in the same subgenus Idaeobatus they have been crossed to improve traits (Hall et al. 

2009; Martin et al. 2018; Foster et al. 2019). Successful hybridization has been 

reported between Rubus idaeus L. cultivars and the black raspberry R. occidentalis L. 

(Bushakra et al. 2012; Foster et al. 2019). Despite this, further research using other 

species of black raspberries remains to be done. 
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 R. niveus Thunb. was previously classified as a high-value progenitor in North 

American breeding programs due to its cane and leaf disease resistance, among other 

agronomic and physiological characters (Finn et al. 2002; Zasada and Moore 2014). 

Indeed, R. niveus has displayed structural and biochemical distinctive responses to 

Aculeastrum americanum, the causal agent of late leaf rust in raspberries (Chapter 2). 

Although R. idaeus ‘Heritage’ is susceptible to late leaf rust, it is cultivated worldwide, 

performing high-yielding and good fruit quality (Luffman and Buszard 1990; Volk et al. 

2013; Chapter 2). Combining these traits could result in new cultivars that are more 

productive and resistance to diseases.  

Current work in an associated research group has performed classical breeding 

between different raspberry cultivars (Barbosa 2022) and species, including one 

between R. niveus as female parent and R. idaeus ‘Heritage’. In our study, we aim to 

characterize the leaf morphoanatomy of the F1 hybrid and to investigate its 

histopathological and biochemical responses to A. americanum. 

 
Conclusion 

NH, as a new raspberry cultivar, is still in its early stages since other agronomic 

traits need to be explored. Nevertheless, considering that resistance to disease is one 

target in plant breeding, our results documented novelties about ultrastructural, 

histopathological, and biochemical responses of a hybrid offspring between Rubus 

niveus x Rubus idaeus ‘Heritage’ with potential resistance to A. americanum. 
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4. INITIAL CHARACTERIZATION OF THE CALCIUM-DEPENDENT PROTEIN 

KINASE CPK28 IN BLACK RASPBERRY AND STRAWBERRY  

     Abstract  

Plant diseases are a threat to the maintenance of biodiversity and the production 
of food. Throughout their evolutionary history, plants have evolved several 
mechanisms for dealing with environmental and biotic stressors. When plants 
recognize microbes, it triggers signals and responses by different pathways, including 
those with Ca2+-dependent protein kinases (CDPKs). These kinases are evolutionarily 
conserved, however, only a few have been described in the Rosaceae family, which 
includes important species such as raspberry, and strawberry. In this work, we use 
comparative genomics to identify CDPK orthologs in black raspberry (Rubus 
occidentalis) and strawberry (Fragaria vesca L.) as representative of the globally 
important Rosaceae family. We found that R. occidentalis and F. vesca have together 
26 CDPKs. We focused subsequent analysis on those in subgroup group IV, due to 
their roles in plant immunity already described in other species such as rice, cotton and 
tobacco. To determine orthology with well-studied Arabidopsis subgroup IV CDPK, 
CPK28, we cloned and expressed FvCPK28 and RoCPK28 in Nicotiana benthamiana 
and Arabidopsis cpk28 mutants to assess genetic complementation. We found that 
both Rosaceae CPK28 orthologs are plasma-membrane localized and their 
overexpression dampened the oxidative burst upon elicitation. Further investigations 
must be conducted to ascertain the functional role of Rosaceae CPK28 orthologs. 
Nevertheless, this study provided a proof-of-concept to investigate the functional 
similarities between these proteins and Arabidopsis CPK28. 
 
Keywords: Arabidopsis, CDPK, Fragaria vesca, PAMP-triggered immunity, oxidative 
burst, Rubus occidentalis 

 

 

Introduction 

Raspberries and strawberries, both members of the Rosaceae family, are widely 

cultivated horticultural crops (Foster et al. 2019; Chebotar et al. 2022). Due to their 

relevance, healthy plants are essential to local and global agricultural economies. 

However, a variety of diseases can affect these plants, including viruses, fungi and 

bacteria (Silva et al. 2017; Martin et al. 2018). The black raspberry Rubus occidentalis 

L., for example, is seriously impacted by anthracnose (Elsinoë necator) and is reported 

as not immune to Aculeastrum americanum, the causal agent of late leaf rust (Martin 

et al. 2018; Chapter 2). Likewise, the woodland strawberry Fragaria vesca L. is 

vulnerable to diseases such as angular leaf spot and grey mold, caused by the 

pathogens Xanthomonas fragariae and Botrytis cinerea, respectively (Silva et al. 2017; 

Badmi et al. 2022). 



23 
 

Although plants can succumb to disease, resistance is the rule rather than the 

exception (Staskawicz 2001; Ávila-Méndez and Romero 2017). Plants have evolved 

several pre and pos-formed structural, biochemical and molecular mechanisms for 

dealing with environmental and biotic stressors (Jones and Dangl 2006; DeFalco and 

Zipfel 2021; Chapter 2; Chapter 3). If these pre-formed defense mechanisms are not 

enough to stop a pathogen invasion, the plant-pathogen interaction is raised to another 

level (Jones and Dangl 2006; Kaur et al. 2022). When plants recognize a pathogen, a 

cascade of responses takes place, resulting in changes in biological processes that 

can confer resistance to the pathogen (Couto and Zipfel 2016; Bentham et al. 2020).  

The plant basal defense is activated by the recognition of pathogen-associated 

molecular patterns (PAMPs), which are perceived by pattern recognition receptors 

(PRRs), located on the plasma membrane surface (Hogenhout et al. 2009; Bentham 

et al. 2020; Defalco and Zipfel 2021). Upon recognition, PRRs form complexes with 

other proteins and/or receptor-like cytoplasmic kinases (RLCKs; Saijo et al. 2018, 

Bentham et al. 2020; Defalco and Zipfel 2021). The BOTRYTIS-INDUCED KINASE 1 

(BIK1) is an RLCK considered a key plant immune signalling protein since it mediates 

immune responses triggered by several PAMPs (Monaghan et al. 2014; Dias et al. 

2022). For this, BIK1 activity is fine-tuned through post-translational modifications such 

as phosphorylation (Dias et al. 2022). 

The Ca2+-dependent protein kinases (CDPKs or CPKs) are signal transducers 

that play a crucial role as regulators in biological processes in plants, such as innate 

immune responses (Bredow and Monaghan 2019; Crizel et al. 2020). Although these 

proteins were identified for several species, information for Rosaceae remains scarce 

(Cheng et al. 2002; Wang et al. 2018; Crizel et al. 2020).  

The CDPKs are divided into four main groups that are evolutionarily conserved 

in plants but not found in animals and fungi (Boudsocq et al. 2010; Monaghan et al. 

2014; Valmonte et al. 2014; Crizel et al. 2020). In group IV CDPKs, the CPK28 has 

been described as a negative regulator of PAMP-induced signalling and indicated as 

a hub in plant immunity responses (Bredow and Monaghan 2019; Delormel and 

Boudsocq 2019). Indeed, Arabidopsis plants CPK28 loss-of-function enhance the 

stress and immune response. Furthermore, previous studies have shown the 

possibility of dynamic regulation between CPK28 and BIK1, demonstrating that cellular 

homeostasis requires tight regulation (Monaghan et al. 2014; 2015; Wang et al. 2018; 

Wu et al. 2021). 
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Genome-wide comparisons between Rubus and Fragaria have supported high 

collinearity between these species (Bushakra et al. 2012; Foster et al. 2019; Wight et 

al. 2019). Since none of these mechanisms mentioned above are well understood in 

R. occidentalis and F. vesca, we aim to identify and analyze the CDPK family across 

these two Rosaceae species. Additionally, we seek to assess the conservation of 

group IV CDPKs using a transgenic approach to characterize and ascertain the 

functional role of the black raspberry and strawberry CPK28 orthologs. 

 

Concluding remarks and future directions 

This study has identified for the first time the CDPKs across R. occidentalis and 

F. vesca and encountered the CPK28 orthologs for these species. 

The subcellular localization of FvCPK28 and RoCPK28 in N. benthamiana was 

an efficient tool to indicate their presence at the plasma membrane. Additionally, the 

elicitor-triggered oxidative burst assay performed in tobacco tissues expressing CPK28 

orthologs was a proof of concept indicating that these proteins play the same biological 

role in different plants. Nevertheless, determining whether CPK28 orthologs can 

complement the immune phenotype of cpk28-1 mutants requires more investigation. 

Further studies must be conducted to ascertain the functional role of the 

Rosaceae CPK28 orthologs because the function of a protein can only be accurately 

explored by biochemical and structural investigations (Fang et al. 2010). For example, 

the orthology inferences can be integrated with gene expression patterns analysis and 

the CPK28 interactions with well-known partners in the same protein complex. 

In conclusion, this work shed light on the significance of CPK28 role in immune 

signaling for the studied Rosaceae species. 
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