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RESUMO 

Caracterização funcional do APC5 em Arabidopsis thaliana 

Como organismos multicelulares, as plantas têm seu crescimento e desen-
volvimento diretamente dependentes da divisão celular. Esse processo reúne deze-
nas de reações moleculares que garantem a proliferação celular nos mais variados 
tecidos vegetais. Nas quatro fases sequenciais que compõem o ciclo celular (S, G1, 
M e G2), a presença e/ou ausência de diferentes componentes moleculares do pro-
grama de divisão celular, como ciclinas, CDKs e securinas, garantem a progressão 
unidirecional do processo, de forma irreversível. O sistema ubiquitina-proteassoma 
(UPS) é uma cascata multi-enzimática que direciona substratos específicos para de-
gradação por meio do proteassoma 26S. O Complexo Promotor da Anáfa-
se/Ciclossomo (APC/C) é uma das enzimas responsáveis pelo reconhecimento do 
substrato a ser ubiquitinado pelo UPS. Em Arabidopsis thaliana, o APC/C possui 14 
subunidades. Vários estudos relataram que perturbações nos níveis de expressão 
de algumas subunidades podem levar a alterações no fenótipo da planta, e com-
prometer processos como a gametogênese. O processo de divisão celular ocorre em 
sincronia com os outros processos metabólicos da célula, bem como de toda a plan-
ta. Alterações nos nutrientes ou mesmo nas demandas intracelulares podem levar a 
mudanças na concentração de metabólitos e em suas taxas de conversão, alterando 
os processos biológicos do organismo. Mudanças metabólicas ocorrem em uma taxa 
suficientemente rápida para escapar da regulação transcricional, obrigando a célula 
a usar outras maneiras de regular suas reações para lidar com essas mudanças, 
como a ação de metabólitos como reguladores. Dessa forma, este projeto tem como 
objetivo caracterizar funcionalmente o gene APC5 de A. thaliana, bem como investi-
gar as alterações no metabolismo da planta devido a alterações nos níveis de ex-
pressão do APC5, possivelmente correlacionando as mudanças com processos já 
conhecidos que impulsionam o crescimento das plantas. Os resultados mostram 
que, embora diferenças metabólicas não tenham sido detectadas, a superexpressão 
do gene APC5 foi capaz de alterar a área total das rosetas de Arabidopsis, tornando-
as menores em linhagens transgênicas quando comparadas ao tipo selvagem. Além 
disso, pode-se detectar que o promotor do gene está ativo nos meristemas apicais 
da planta, assim como no meristema das raízes laterais. Ensaios com a proteína 
APC5 fundida ao GFP mostram que ela está localizada no núcleo e no citoplasma. 

Palavras-chave: APC/C, Ciclo celular, APC5, Desenvolvimento e crescimento vegetal 
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ABSTRACT 

Functional characterization of APC5 in Arabidopsis thaliana 

As a multicellular organism, plants have their growth and development directly 
dependent on the cell division. This process brings together dozens of molecular re-
actions, which ensures cell proliferation in the most varied plant tissues. The four se-
quential phases that make up the cell cycle (S, G1, M and G2) have the presence 
and absence of different molecular components of the cell division program, such as 
cyclins, CDKs and securins, acting together in order to guarantee the unidirectional 
progression of the process, in an irreversible way . The ubiquitin-proteasome system 
(UPS) is a multi-enzymatic cascade that target specific substrates for degradation 
through 26S proteasome. The Anaphase Promoting Complex/Cyclosome (APC/C) is 
one of the enzymatic machines responsible for recognizing the substrate to be ubiq-
uitinated by the UPS. In Arabidopsis thaliana, the APC/C has 14 subunits. Several 
studies have reported that perturbations in the expression levels of some subunits 
can lead to changes in the plant phenotype, and compromise process such as game-
togenesis. The cell division process occurs in synchrony with the other metabolic 
processes of the cell, as well as of the entire plant. Changes in nutrients or even in 
intracellular demands can lead to changes in metabolites concentration and their 
conversion rates, altering the biological processes of the organism. Metabolic chang-
es occur at a rate fast enough to escape transcriptional regulation, forcing the cell to 
use other ways to regulate its reactions to deal with these changes, such as the ac-
tion of metabolites as regulators. In this way, this project aims to functionally charac-
terize the APC5 gene from Arabidopsis thaliana, as well as to investigate the chang-
es in the plant metabolism due to alterations in the expression levels of the APC5, 
possibly correlating the changes with already known process that drive plant growth. 
The results show that, although metabolic differences could not be detected, overex-
pression of the APC5 gene was able to change the total area of Arabidopsis rosettes, 
making them smaller in transgenic strains when compared to wild type. Furthermore, 
it can be detected that the promoter of the gene is active in the apical merisms of the 
plant, as well as in the meristem of the lateral roots. Assays with the APC5 protein 
fused to GFP show that it is located in the nucleus and cytoplasm. 

Keywords: APC/C, Cell cycle, APC5, Plant growth and development 
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1. INTRODUCTION 

Plant growth is an important subject for agriculture and plant physiology, as it is directly asso-

ciated with crop yield. In the history of plant science, several research groups around the world have 

focused their studies based on plant growth and development. Unlike most animals, plants have inde-

terminate growth, making it possible for them to keep growing even after their full mature phase. This 

characteristic is due to the maintenance of undifferentiated cells in the so-called meristems, which are 

in constant division and differentiation, giving rise to new tissues that will be incorporated into the plant 

body (Shi and Zhang, 2016). Growth in plants is defined as the irreversible increase in biomass, cell 

number, and plant volume resulting from the processes of cell division and expansion (Hilty et al., 

2020). 

The cell cycle is responsible for adding new cells to the growing organs. In plants, as well as 

in all eukaryotes, the cell cycle reunites the processes of cell division made up of the preparatory 

phases G1, S (DNA replication phase), and G2; and the proper cell division phases of mitosis (M 

phase) and cytokinesis. Cell division needs a myriad of reactions temporally and spatially coordinated 

to take place at exact phases of the cycle (Eloy et al., 2012; Tyson et al., 2002). This coordination is 

orchestrated at multiple levels and involves the activation of a special class of serine/threonine-

specific protein kinases named cyclin-dependents kinases (CDKs), whose activity is dependent on a 

regulatory protein known as cyclin (Besson et al., 2008; Morgan, 1995). The different cyclin-CDK 

complexes formed in distinct phases of the cell cycle promote the phosphorylation of a variety of sub-

strates, ultimately triggering processes such as DNA replication and mitosis. The phosphorylation 

complex recognizes the substrate through the exchangeable regulatory cyclin subunit, while the cata-

lytic CDK recognizes the phosphorylation site in the substrate (Ser/Thr-Pro) (de Veylder et al., 2007; 

Lim and Kaldis, 2013). Even though higher eukaryotes have conserved CDKs, they also have several 

additional CDKs playing roles at different checkpoints during the cell cycle. Some of these CDKs are 

not conserved between animals and plants and show variations in amino acid sequences in the cyclin-

binding domain (Joubès et al., 2000). Cyclin levels in cells are regulated both by transcriptional con-

trols and proteolysis, consequently regulating the activity of the CDK-cyclin complex through the dif-

ferent phases of the cell cycle. The proteolysis  of target proteins ensures that cell cycle progression 

occurs unidirectionally and irreversibly  (Capron, 2003 ;Pan and Gao, 2023).  

One of the main proteolysis pathways in the eukaryotic cell is the ubiquitin-proteosome sys-

tem (UPS), which plays a major role in the protein fate. The UPS is a three-step process that results in 

the ubiquitination of a target protein, making it specifically degraded by the 26S proteasome. Each 

step of the UPS is performed by a specific enzyme: the E1-activating enzyme activates the ubiquitin 

molecule in an ATP-dependent way, the E2-ubiquitin conjugating enzyme conjugates the activated 

ubiquitin molecule to the substrate to be degraded, and the E3-ubiquitin ligase specifically recognizes 

this substrate. The relevance of this degradation pathway can be inferred from the number of genes in 

the Arabidopsis thaliana genome (approximately 6%) involved in the UPS. (Hua and Vierstra, 2011). 

Different species of eukaryotes displays a huge number of genes for E3 ligases, showing the im-

portance of the ubiquitin system (Kulkarni, 2008). Two well-characterized E3-ligases are most inti-
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mately dedicated to basic cell cycle control, namely the S-PHASE KINASE-ASSOCIATED PROTEIN 1 

(SKP1)-CUL1-F-box (SCF)-related complex and the ANAPHASE-PROMOTING COM-

PLEX/CYCLOSOME (APC/C) (de Oliveira et al., 2022). 

The primary function of APC/C, as the name suggests, is to promote anaphase, triggering 

the segregation of sister chromatids and by creating the metabolic environment for cycle progression. 

The proteolysis of Securin, an APC/C target, stops the inhibition of Separase, the enzyme responsible 

for breaking down the cohesion complex that holds the chromatids together, marking the beginning of 

the anaphase (Castro et al., 2005; de Lange et al., 2015; Jonak et al., 2017). However, before these 

events, the cell environment must be directed towards a specific composition of active and inactivated 

molecules, ensured by the targeting of cyclin A and B for degradation, which happens at 

prometaphase and at anaphase transition, respectively (Sullivan and Morgan, 2007). The APC/C activ-

ity also is present during the early-to-mid mitosis progression, through the same target-specific recog-

nition, provided by the destruction (D) and KEN boxes present in the substrate sequences (Inzé and 

de Veylder, 2006; Eloy et al.,2012). Since its discovery 25 years ago, many aspects of APC/C regula-

tion and roles in cell metabolism were uncovered, but our understanding of this cell machinery re-

mains far from complete (Yamato, 2019). APC/C was reported to play roles in cellular differentiation, 

gametophytic development, shoot branching, and embryogenesis (de Oliveira et al., 2022). These 

findings have driven research interest in understanding what other roles the complex may play in 

plants (Eloy et al., 2011; Lima et al., 2010; Schwedersky et al., 2015).  

This work aimed to characterize the gene encoding the subunit 5 of the APC/C (APC5) in Ar-

abidopsis thaliana. For this, transgenic lines with higher APC5 expression levels were phenotypically 

and metabolically characterized. In addition, molecular tools were used to identify APC5 gene and 

protein localization.  
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2. THEORETICAL FRAMEWORK 

2.1. Plant growth and development 

Plants are sexually reproducing multicellular organisms, and, like animals, their life cycle 

starts as a single cell, the zygote. This cell undergoes different rounds of divisions and differentiation 

until reaching the mature form of the embryo. However, different from animals, the end of embryogen-

esis does not result in a downsized body architecture of the adult organism in most land plants. The 

organization of plant body (root, stem, and leaves) is established in embryogenesis, but its final form is 

determined during post-embryonic development, as the reproductive organs, for example, which in 

most animals are stablished already in the embryogenesis  (Radoeva and Vaddepalli; 2019). Most 

animals, except species undergoing metamorphosis, complete their ontogenetic development during 

embryogenesis. In contrast, plants do not have an endpoint for ontogenetic development (Drost et al., 

2017; Hariharan et al., 2016). Most of the true tissues and organs, including flowers, roots, stems, and 

vascular systems, develop after seed germination. They are sequentially added in the post-embryonic 

developmental program via functional units called phytomers by the action of meristems and through-

out the plant life cycle (Javelle et al., 2011; McMaster, 2005; Perianez-Rodriguez et al., 2014) (Fig. 1).  

 

 

Meristems are formed by undifferentiated pluripotent cells able to continuously divide and 

give rise to new cells (Gaillochet, 2015; Müller-Xing and Xing, 2022). The main meristems, shoot api-

cal and root apical meristems (SAM and RAM, respectively), are established during embryogenesis. In 

Figure 1.  Comparation between animal and plant development.  

In most animals, the embryonic stage comprises the main step of the development, in a way that 
the structures reach their final forms but in smaller proportions when compared with an adult 
organism. In plant embryogenesis, however, the embryo develops initial structures that will be 
replaced by the final structures in the mature plant during the post-embryonic development. 
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eudicots, like Arabidopsis, the SAM is centrally established between the two cotyledons. During post-

embryonic development, SAM will be responsible for adding aerial organs together with the post-

formed axillary meristems (AMs), while RAM contributes to underground architecture. In the reproduc-

tive phase, SAM forms the inflorescence meristem (IM), which then generates the floral meristem (FM) 

that will produce the reproductive organs of the angiosperms (Brutnell and Langdale, 1998; Takeda 

and Aida, 2011; Xue et al., 2020). The maintenance of the meristematic regions is guaranteed by the 

asymmetric division of the meristematic cells. Of the two daughter cells formed, only one will enter the 

differentiation program, following successive divisions until it becomes a specific cell type. The other 

daughter cell will maintain its steam cell characteristics, ensuring that new cells can be constantly 

added to the plant (Fig. 2). 

 

 

The process of adding new cells has a big impact on the plant's body and results in its 

growth. Normally, plant growth is defined as the irreversible increase in biomass, volume and number 

of cells. Structural growth (number) is usually accompanied by expansive growth (volume), so that 

each daughter cell matches the mother cell volume. Thus, the term "cell proliferation" is used to de-

scribe the process of simultaneously increasing the number and size of cells, causing growth. Expan-

sion rates are not always balanced with the rate of cell production, causing an overall increase in tis-

sue, but a decrease in cell size (Hilty et al., 2021). DNA replication can also happen without cell divi-

sion, in a process called “endoreduplication”, which generally results in larger cells with high ploidy 

level. As a result, the plant has an increase in tissue size, but not a proportional increase in cell num-

ber. These examples illustrate that the increase in size, biomass, and volume reflect events that go 

beyond the number of cells. Most of these events are ultimately under the control of the cell cycle. The 

Figure 2. Schematic representation of the cell division by meristems. 

 When a meristematic cell divides, one daughter cell maintains its undifferentiated 

meristematic characteristic and the stock of pluripotent cells. The other daughter cell will 

enter into the differentiation program, producing new differentiated cells. Figure made with 

BioRender®.  
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correct regulation and duration of the cycle are responsible for the constant size of cells in the meri-

stem, as well as for cell proliferation and differentiation (Tsukaya, 2013; Katagiri et al., 2016; Robinson 

et al., 2018; Hilty et al., 2021).  

 

2.2. Cell cycle 

 In multicellular organisms, growth and development are closely linked to the cell cycle. Cells 

undergoing cell division progress through a meticulously orchestrated sequence of events, including 

growth, DNA replication, and division, ultimately resulting in the formation of two genetically identical 

daughter cells (Ong, 2019). The cell cycle progression in eukaryotic cells is governed by a highly con-

served regulatory system. This system is responsible for synchronizing the different molecular events 

necessary for the occurrence and progression of the cycle, but also for establishing connections with 

extracellular signals capable of regulating cell proliferation (Duronio and Xiong, 2013). Mitosis (nuclear 

division) is the most dramatic stage of the cell cycle, corresponding to the separation of daughter 

chromosomes and usually ending with cell division (cytokinesis). However, mitosis and cytokinesis last 

only about an hour, so approximately 95% of the cell cycle is spent in interphase - the period between 

mitoses. During interphase, the chromosomes are decondensed and distributed throughout the nucle-

us, which appears morphologically uniform. At the molecular level, however, interphase is the time 

during which both cell growth and DNA replication occur in preparation for cell division. APC/C func-

tions essentially on the G2 to M transition. For example, to exit from M, mitotic cyclins must be de-

stroyed by the APC/C in all organisms (Morgan and Roberts, 2002; Marrocco et al., 2010). 

 

2.3. Ubiquitin-proteasome system 

The timely, spatially, and specifically protein degradation is one of the main pathways to reg-

ulate the cell cycle. The eukaryotic cells have different ways to perform proteolysis at the different cell 

compartments, like cytosol, membrane, endoplasmic reticulum, and lysosome (Ciechanover, 2005a, 

Ciechanover, 2005b). Most of the cytosolic protein degradation occurs via the multienzyme pathway of 

the ubiquitin-proteasome system (UPS) (Park, 2020). By the UPS, proteins are first covalently tagged 

to multimers of ubiquitin, a 76 amino acids evolutionary conserved protein, and are afterwards de-

graded by a huge cytosolic protease: the 26S proteasome (Park, 2020; Li, 2022).  

Three enzymes work sequentially to polyubiquitinate the target protein: the ubiquitin-

activating enzyme (E1), the ubiquitin-conjugating enzyme (E2), and the ubiquitin ligase enzyme (E3). 

The activity of those enzymes allows the 26S proteasome to specifically recognize and degrade the 

target protein (Willems and De Veylder, 2022). However, the specificity of the system goes beyond the 

ability of the proteasome to degrade polyubiquitinated proteins. The E3 ligases recognize its sub-

strates by degradation signals that contribute to the selectivity of the UPS, enabling the cell to regulate 

the dynamics of protein degradation (Nandi et al., 2006). 
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The importance of ubiquitination is exemplified by the fact that 6% of the Arabidopsis ge-

nome encodes UPS genes (Hua and Viestra, 2011). Genomic analysis of the different genes acting in 

the ubiquitination cascade in different species of eukaryotes shows that few genes encode E1, tens 

are encoding for E2, and hundreds of different E3 genes can be found (Kulkarni, 2008). In rice (Oryza 

sativa), six and 36 genes express ubiquitin-activating enzyme and ubiquitin-conjugating enzyme, re-

spectively, while more than 1100 genes exist for ubiquitin ligase enzymes (Al-Saharin et al., 2022). 

The first step of the UPS pathway, as mentioned before, is the ubiquitin activation by the E1 

enzyme that uses one ATP molecule for adenylating the ubiquitin C-terminus glycine, forming the in-

termediate ubiquitin-AMP and releasing PPi. Next, a thioesterification reaction links the ubiquitin to the 

E1 cysteine residue, forming a ubiquitin-E1 thioester and releasing the AMP molecule. The ubiquitin-

E1 thioester can be recognized by a myriad of E2, allowing the transference of the ubiquitin from E1 to 

E2 by another thioester linkage at an E2 cysteine residue (Yuan, 2021). In the following step, the in-

teraction between E2 and E3 enzymes is required and ensured by a conserved core in all E2 and by 

the terminal groups (Soss, 2011). The E2-E3 interaction allows the target protein, specifically recog-

nized by an E3 enzyme, to be covalently linked to the ubiquitin carried by the E2 via an isopeptide 

bond between the target protein lysin ε-amino and the ubiquitin C-terminal carboxyl group (Scaglione, 

2013; Zhen, 2014; Liu, 2020). The transfer of the ubiquitin from the E2 to the E3´s substrate occurs in 

two ways, according to the ubiquitin ligase enzyme involved. The E3 ligase can directly stimulate the 

nucleophilic attack of the substrate lysine on the E2 ubiquitin thioester linkage, leading to a direct co-

valent attachment of the ubiquitin C-terminus to the substrate lysine. Furthermore, the E3 can stimu-

late the transfer of ubiquitin from the E2 to its own cysteine active site, and then promote the ubiquitin 

attachment on a substrate lysin (Buetow and Huang, 2016). As mentioned before, most of the UPS 

genes in eukaryotes encodes E3 ligases, resulting in different enzymes that can recognize a variety of 

substrates. In plants, the E3 ligases can be grouped, according to their catalytic domain: U-Box, ho-

mology to E6-associated carboxyl terminus (HECT), and really interesting new gene (RING). U-Box 

and HECT are mostly monomeric. The RING domain can be found in monomeric enzymes, like RING 

ubiquitin ligase and RING between RING (RBR) ligase, and in multi-subunits E3 enzymes such as 

cullin RING ligases (CRLs) (de Oliveira et al., 2022). 

The ubiquitin molecule can be attached as a single moiety (monoubiquitylation) or as several 

ubiquitin molecules linked to each other (polyubiquitylation). Polyubiquitylation can happen between 

the ubiquitin N-terminus or one of the seven lysine residues of the protein (K6, K11, K27, K29, K33, 

K48, and K63) and the C-terminus of the following ubiquitin molecule. According to the residue in 

which the polymeric ubiquitin chain is formed, the chain achieves different topologies with different 

cellular functions (Morimoto et al., 2016). Chains linked via K63 play non-degradative roles in cell me-

tabolism, while polyubiquitin chains linked via K48 are the canonical signal for protein degradation 

(Manohar et al., 2019). 

The final step of the UPS is the protein degradation by the 26S proteasome, a compart-

mental protease of the AAA+ (ATPases associated with various cellular activities) family (Zhang, 2020; 

Khan, 2021). By hydrolyzing one ATP molecule, the proteasome 26S can disrupt the complex struc-

tures of its substrates, allowing the unfolded polypeptide to enter the degradation chamber for proteo-
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lytic cleavage (de la Peña, 2018; Bard, 2018). This sophisticated protease complex hydrolyses pro-

teins in the cytoplasm and nucleus and is approximately 2.5 MDa. The 26S proteasome structure can 

be divided into a 20S core catalytic particle (CP) and one or two 19S regulatory particles (RP) that can 

bind to one or both ends of the  20S, forming the enzymatically active complex (Thompson, 2008; 

Ehlinger, 2013; de la Peña, 2018). The CP is formed by two outer α-rings and two inner β-rings, which 

are made up of seven structurally similar α and β subunits, respectively. β1, β2, and β5 subunits con-

tain the catalytic threonine residues located in the N terminus and show an N-terminal nucleophile 

hydrolase activity. Two pairs of each of those β-type subunits form a degradation chamber, with the 

catalytic threonine residues on the surface and accessible only through narrow axial pores, excluding 

folded and even large unfolded polypeptides. Those pores are gated by the 19S particle, which un-

folds the substrate by ATPases activity and mechanically translocate it into the degradation chamber 

(Tanaka, 2009; Watanabe, 2022; Bard, 2018). 

The recognition of the substrate by the 26S proteosome relies on two characteristics of the 

substrate: a targeting signal at the polyubiquitin chain and an unstructured initiation region. The re-

cruitment of the substrate is mediated by ubiquitin receptors, which can be intrinsic or extrinsic. The 

intrinsic receptors are placed at the proteasome subunits that compose the RP particle, and at least 

three types of receptors can be found. The subunit Rpn10 recognizes the ubiquitin by a ubiquitin-

interacting motifs (UIM) domain and a single α-helix and are flexibly linked to an N-terminal von Wil-

lebrand factor A (VWA) domain docked tightly into the proteasome structure. The ubiquitin recognition 

by the Rpn13 is provided by a pleckstrin-like receptor for ubiquitin (PRU) domain, which is docked 

directly into the proteasome RP and interacts with ubiquitin through three loops. Finally, the Rpn1 uses 

two grooves flanked by α-helices in its toroid repeat region to make the recognition. The extrinsic re-

ceptors, in turn, can provide substrates through dynamic interactions with both the proteasome and 

ubiquitin chains, combining ubiquitin-chain recognition through ubiquitin-associated (UBA) domains 

with proteasome binding via a flexibly N-terminal ubiquitin-like (UBL) domain (Jiang et al., 2018; Bard 

et al., 2020). The flexible domain of the extrinsic receptors probably enables the accommodation of a 

wide variety of substrate conformations and ubiquitin modifications than the intrinsic receptors. Also, 

the extrinsic receptors can select substrates for degradation upstream to the ubiquitination, recogniz-

ing and binding disorientated regions on the substrate, and directly interacting with E3 ligases. Thus, 

proteins lacking the recognition signal (polyubiquitination and the disordered region) that would not be 

recognized by the intrinsic ubiquitin receptors still can be directed to proteolysis by the 26S pro-

teasome (Bard et al., 2020). 
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2.4. The A. thaliana anaphase promoting complex/cyclosome 

The E3 ligases are grouped according to the presence of a RING, U-box, or HECT domain, 

which leads to different ways of binding to a partner E2 conjugating enzyme (Yang, 2021). Among the 

E3 ligases found in eukaryotes, CRLs are the largest class, playing roles in protein ubiquitination as-

sociated with the cell cycle, transcription, signal transduction, and development (Bosu and Kipreos, 

2008). Those multisubunit enzymes are characterized by holding a CUL protein, which is responsible 

for bringing together the RING domain-containing protein and a variable adaptor that recruits the tar-

get protein. At the C-terminus region, the CUL protein recruits the RING BOX PROTEIN 1 (RBX1) and 

the E2 conjugating enzyme, while at the N-terminus region, the substrate binds to an adaptor (Zheng 

et al, 2002).  

In plants, the CRLs are the best characterized E3s as most of these enzymes are related to 

plant growth and development. According to the CUL present in the CRLs structure, four subtypes of 

CRLs are found in plants: CUL1, also called SCF (S-Phase Kinase-Associated Protein 1 (SKP1)-

CUL1-F-box, CUL3, CUL4, and the cullin-like protein APC2 (Ban and Estelle, 2018). The SCF and the 

Figure 2. The UPS 

Ubiquitin-Proteasome System (UPS). The proteolysis in the UPS happens by sequential reac-
tions catalyzed by three different enzymes. The process starts with the activation of the ubiq-
uitin by the ubiquitin-activating enzyme (E1), using one ATP molecule (1). Next, the activated 
ubiquitin is transferred to the ubiquitin-conjugating enzyme (E2), which interacts with the 
ubiquitin ligase (E3) and conjugates the ubiquitin to the substrate that is recognized by the E3 
(2). Plant genomes encode hundreds of E3 ligases (the main E3 ligases found in plants are 
represented in 3), that will target different substrates, making them recognizable by the pro-
teasome 26S, and leading to substrate degradation (5). 
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APC/C are the two best characterized E3s in the plant cell cycle, each of them interacting with a cer-

tain type of cyclins and acting on the cell cycle progression (Inzé and De Veylder, 2006).  

The APC/C is essential for the mitosis exit, since its main function, as the name suggests, is 

to promote anaphase onset. After being activated, the complex can specifically target securin for deg-

radation. Securin acts as an inhibitor of separase, which is responsible for breaking the bonds that 

hold the chromatids together in the kinetochore. Once the inhibition of this enzyme no longer occurs, 

its activity promotes the separation of chromatids and the beginning of anaphase (Castro et al., 2005; 

de Lange et al., 2015; Jonak et al., 2017; Kernan et al., 2018). Securins are highly spread among an-

imals and fungi genomes, however, these proteins have not been reported in plants. Recently, two 

proteins, PATRONUS 1 and PATRONUS 2 (PANS1 and PANS2), were shown to be essential for plant 

viability and also interact with separase, suggesting that they act like securins in plants. Moreover, for 

chromatid separation to occur, PANS1 needs to be selectively targeted by the APC/C for degradation 

(Cromer et al., 2019). 

From the ubiquitin ligases, the APC/C is one of the most complex, being composed of doz-

ens of subunits according to the species. In A. thaliana, the APC/C consists of 14 core subunits, 

APC1, APC2, APC3a, APC3b, APC4, APC5, APC6, APC7, APC8, APC10, APC11, APC13, APC15, 

and CDC26, resulting in a ≈1.2 MDa ubiquitination machine. Each subunit is encoded by a single 

gene, apart from APC3, which is encoded by two genes: APC3a/CDC27a and 

APC3b/CDC27b/HOBBIT (HBT) (Xu, 2019). The subunits can be grouped into four modules, accord-

ing to their functions in the complex. APC2 and APC11, with a CUL and a Zn+2-binding RING domain, 

respectively, are the catalytic subunits responsible for transferring the ubiquitin molecule to the sub-

strate. The tetrico-peptide repeats (TPR) domain subunits APC3, APC6, APC7, and APC8  modulate 

the interactions with the activators proteins. The APC13 and APC15 are known as TRP-accessory 

subunits by their interaction with the TRP subunits. APC1, which contains a proteasome-cyclosome 

(PC) repeat important for APC/C stability, APC4, and APC5 form the scaffolding group. These proteins 

bridge the catalytic and TRP modules, probably acting in space optimization between the two regions 

to guarantee efficient catalysis. The TRP and scaffold modules, together, forms the backbone of the 

complex. The activators module includes the cell division cycle 20 (CDC20) and cell cycle switch 52 

(CCS52/CDH1), which contain a tryptophan-aspartate (WD) repeat domain, necessary for effective 

substrate ubiquitination, and the APC10/Doc1, an important coactivator of the APC/C due to its action 

in recognizing and recruiting D-box containing proteins (Zheng et al., 2011; Xu et al., 2019; Saleme et 

al., 2021; de Oliveira et al., 2022). Moreover, the APC/C coactivators can increase the affinity for the 

cognate E2 and its catalytic efficiency (Voorhis and Morgan, 2014). 

APC/C function relies on a spatiotemporal regulation performed by different polypeptides 

that can interact with the APC/C either to activate or inactivate the complex. As mentioned before, the 

coactivators CDC20 confer substrate specificity and catalytic activity. Moreover, those effects can also 

be provided by CCS52/CDH1, which is also intrinsically related to the complex structure. In A. thaliana 

genome, five genes putatively encode for CDC20 (CDC20.1 – CDC20.5). While CDC20.1 and 

CDC20.2 are functionally redundant during mitoses, but not in meiosis, the CDC20.3 – CDC20.5 

genes seem to be pseudogenes that have lost their function as canonical CDC20 genes. Regarding 
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the CCS52, two A types (CCS52A1 and CCS52A2) and one plant-specific B type (CCS52B) are found 

in Arabidopsis. In this species, as in other plants, the ULTRAVIOLET-B-INSENSITIVE 4 (UVI4) binds 

to the CCS52A1 co-activator, inhibiting the complex function, as well as the UVI4 homolog, named 

OMISSION OF SECOND DIVISION 1 (OSD1)/GIGAS CELL1 (GIG1), which interacts with activators 

like CDC20.1, CDC20.5, CCS52A1, CCS52A2, and CCS52B (McLean et al., 2011; Heyman and de 

Veylder, 2012; Saleme et al., 2021). 

In addition to the already known regulators, the APC/C of plants has another specific regula-

tor, whose function is still quite unclear. The small protein named SAMBA, first identified by tandem 

affinity purification (TAP) in Arabidopsis, can interact with the APC/C and regulate its function (Eloy et 

at., 2012). However, this regulation seems to be species-specific. While the knockout Arabidopsis 

plants displayed an enlarged meristem size, with larger seeds, leaves, and roots, the Samba 

CRISPR/Cas9 mutants in maize, produce plants with growth defects and reduced leaf size due to 

alterations in the rate of cell division and expansion (Eloy et al., 2012; Gong et al., 2022).  

How the substrate is recognized by APC/C is still not completely clear. The characterized 

recognition process so far is the one that occurs through the interaction of WD40 β-propeller domain 

of complex activators with regions known as degrons, present in the substrate sequence (He et al., 

2013). The most well-understood APC/C degrons in plants are the D- (RXXL) and KEN-box. Although 

some details are still not known, recognition of degrons seems to be an effective way to guarantee the 

specificity of the proteolytic process in the cell, since a great part of APC/C substrates have these 

sequences in their primary structure (Qin, 2016). 

 

2.5. APC/C in plant growth and development 

Plant development and growth are highly complex processes tightly regulated by various 

signaling pathways, gene expression networks, and environmental cues. APC/C most well-understood 

role is in the cell cycle control by mediating the degradation of specific cell cycle regulators proteins 

like cyclins (Petersen et al., 2000; Harper et al., 2002; Capron et al, 2003; Buschhorn and Peters, 

2006). However, APC/C has been implicated in several key aspects of plant development, such as cell 

differentiation, organ formation, hormone signaling, and embryogenesis (de Oliveira et al., 2022). It 

has also been shown that some APC/C substrates are related to stress tolerance. PATRONUS 

1/COPPER MODIFIED RESISTANCE1 (PANS1/CMR1), for example, is involved in pollen viability and 

female gametophyte development, but it is also required for Cu tolerance and survival under abiotic 

stresses, mainly salinity stress (Juraniec et al., 2014, 2016). 

Different works reported that the modulation of the APC/C subunits, or even of its activators 

and inhibitors in plants can change the phenotype. Some are the increased cell proliferation upon 

overexpression of APC3a/CDC27a, the dwarf phenotype caused by a mutation on APC3b/HOBBIT 

(Blilou, 2002), the increase of cell proliferation by APC10 overexpression (Eloy, 2011), and the smaller 

root meristem size in uvi4 mutants (Heyman et al., 2011). 

The specific features of the APC/C in plants suggest that its developmental function depends 

on gene structure and expression. This is evidenced by the distinctive way in which the plant APC/C 
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forms flexible subcomplexes potentially necessary for particular plant growth responses, and essential 

for adapting to shifting environmental conditions (Lima et al., 2010). 

 

2.6. Plant metabolism 

Cellular metabolism refers to all biochemical reactions that occur within the cell involving 

synthesis and degradation processes. Metabolites are highly diverse in terms of structure and physi-

cal/chemical properties when compared to proteins and transcripts, having a wide variation in in path-

ways of action and functions. In plant cells, metabolism is commonly subdivided into primary and sec-

ondary. Primary metabolism gathers the fundamental reactions for maintaining essential functions of 

the plant cell, and consequently the whole organism, such as respiration, photosynthesis, and protein 

synthesis. Primary metabolic processes use building blocks such as amino acids, sugars, and fatty 

acids. In contrast, secondary metabolism is responsible for “non-essential” reactions that benefit plant 

survival and reproduction in the environment, which may be present in some species and absent in 

others (Hatcher et al., 2020; Pichersky & Gang, 2000; Wink, 2008). 

The metabolome refers to the entire set of metabolites produced and modified by an organ-

ism. Metabolomics is the branch of science that focuses on quantifying (in relative or absolute 

amounts) and identifythe metabolites of an organism, in normal conditions or when biological systems 

are altered. This "-omics" technology provides us with a high technical/experimental power, as it allows 

us to detect small changes in the complex network of metabolites of an organism as a whole, or even 

at the level of systems, organs, and cells. Quantitative plant metabolomics based on mass spectome-

try (MS) has established itself as a powerful tool for addressing interesting biological questions related 

to the plant environment and agriculture. As plants are sessile organisms, they cannot escape fluctua-

tions in environmental conditions and/or plant-pathogen or plant-predator interactions, which negative-

ly affect their growth and development. Therefore, plant survival depends mainly on the initiation of 

complex adaptive responses that involve stress detection, signal transduction, the activation of a se-

ries of genes, and synthesis of metabolites related to stress. Central metabolism is involved in the 

regulation of the various developmental processes that allow plants to survive such environmental 

threats and the measurement of known primary metabolites (e.g., carbohydrates, amino acids, and 

organic acids) has contributed widely to elucidating how and to what extent plant metabolism readjusts 

to a changing environment. On the other hand, the measurement of specific secondary metabolites, 

such as phytohormones, which are key metabolites in signaling and communication between an or-

ganism and the abiotic/biotic environment, has contributed to improving our current understanding of 

the plant defense and growth system (Hirayama & Shinozaki, 2010; Jorge et al., 2016b; Lisec et al., 

2006; Obata & Fernie, 2012). 

Metabolomics plays a crucial role in gene characterization in plants by providing comprehen-

sive insights into the metabolic changes associated with gene expression and regulation. By analyzing 

the metabolite profiles of plant tissues or mutants with altered gene expression, metabolomics enables 

the identification of metabolic pathways influenced by specific genes. Metabolomics also facilitates the 

functional annotation of unknown genes or gene products by correlating metabolite changes with gene 
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expression patterns. Additionally, metabolomics helps unravel the regulatory networks that govern 

gene expression in plants, by identifying metabolites acting as signaling molecules or intermediates. 

Overall, metabolomics provides a valuable framework for understanding the metabolic consequences 

of gene expression changes, advancing our knowledge of gene function and their impact on plant 

phenotype and responses (Tohge, 2005; Saito, 2010; Pan et al., 2012; van der Hooft and Mohimani, 

2020). 
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3. CONCLUSIONS 

By the end of this work, it was shown that the APC5 could be overexpressed in Arabidopsis 

thaliana, and the increase in gene levels were able to negatively modulate the size of the two inde-

pendent overexpression lines, APC5OE3.1 an APC5OE4.1, resulting in smaller rosette area. Metabo-

lomic profiling could not detect significant differences in the metabolic composition of the overexpres-

sion lines when compared to the wild type. The subcellular localization of the gene product was identi-

fied by GFP imaging, and the APC5 protein was located at the cell nucleus and cytoplasm. By the 

GUS histochemical assay, it was showed that the gene promoter has a timely activity at the root meri-

stem, being more active at the beginning of the root development, specifically at the lateral roots. The 

western blot suggests that the putative degron present in the protein sequence may not be truly active, 

not leading the APC5 for 26S proteasome degradation. And finally, the essentiality of the gene was 

demonstrated through the SALK_024997 lineage since no homozygote for the T-DNA insertion in the 

APC5 sequence could be found. 
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