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RESUMO 

Genótipos de tomateiro com tolerância contrastante ao cádmio (Cd) e suas enxertias 

recíprocas: absorção e acúmulo de Cd, e avaliação de parâmetros bioquímicos, 

moleculares e fisiológicos 

O cádmio (Cd) é um metal pesado cuja concentração aumentou consideravelmente nas 
últimas décadas em vários países (devido a atividades antroprogênicas). Esse metal é 
potencialmente prejudicial à saúde humana e às plantas, sendo um dos contaminantes mais 
ameaçadores para o meio ambiente. No entanto, poucos são os estudos que abordam o 
desenvolvimento de estratégias de manejo para reduzir a contaminação por Cd em partes 
comestíveis de plantas, em consonância com o entendimento dos papéis desempenhados pela 
raiz e pela parte aérea no padrão de tolerância, além de enfocar em mecanismos endógenos 
relacionados. Embora o estudo de genótipos com tolerância ao Cd contrastante seja capaz de 
revelar contrastes importantes relacionados a mecanismos de tolerância, acúmulo e absorção 
do Cd, há precariedade de estudos focados em tomateiros enxertados reciprocamente em 
relação à tolerância ao Cd. Neste trabalho, nós realizamos um estudo sobre tomateiros 
enxertados utilizando genótipos com tolerância contrastante ao Cd. A enxertia recíproca entre 
um genótipo de tomateiro tolerante e outro sensível foi utilizada como uma ferramenta sem 
precedentes, a fim de fornecer uma primeira percepção sobre a contribuição órgão-tecido 
específica dos genótipos de tomateiro para os mecanismos de tolerância ao Cd, absorção e 
acúmulo em estágios iniciais de exposição ao metal pesado. Para tanto, nós estudamos a cinética 
de absorção de Cd. Avaliações de seis enzimas antioxidantes também foram realizadas, além 
do estudo do acúmulo de Cd, estresse oxidativo, fator de bioconcentração, síntese de 
fitoquelatina, expressão de genes codificantes para fitoquelatina sintases e transportadores de 
raiz, estado nutricional e avaliações de biomassa. Os resultados mostraram que, em comparação 
com as mudas enxertadas sobre a raiz sensível, as mudas enxertadas sobre a raiz tolerante 
apresentaram menor absorção e acúmulo de Cd e maior eficiência do sistema antioxidante 
enzimático em resposta à exposição ao Cd, bem como maior concentração de PCs em raízes. 
Por fim, avaliamos o teor de clorofila, proteoma e fosfoproteoma em folhas de tomateiros 
enxertados. Os resultados fornecem evidências pioneiras sobre a influência positiva do sistema 
radicular de uma cultivar tolerante ao proteoma de tomateiro exposto ao Cd, acoplado às 
respostas fosfoproteômicas induzidas pelo Cd em tomateiro enxertado, em um estágio inicial 
de exposição ao metal pesado. 

Palavras-chave: Metais pesados, Solanum lycopersicum, Antioxidantes, Cinética de absorção 
de cádmio, Enxertias recíprocas, Expressão gênica, Fitoquelatinas, 
Fosfoproteômica, Proteômica, Tolerância a estresses abióticos, Segurança 
alimentar 
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ABSTRACT 

Tomato genotypes with contrasting cadmium (Cd) tolerance and their reciprocal grafts: 

Cd uptake, accumulation, and evaluation of biochemical, molecular, and physiological 

parameters 

Cadmium (Cd) is a heavy metal whose concentration has increased considerably over 
the last few decades in several countries (due to anthropogenic activities). This metal is 
potentially harmful to human health and plants, and is one of the most threatening contaminants 
to the environment. However, there are few studies that deal with the development of 
management strategies to reduce the Cd contamination of edible parts of plants, in line with the 
understanding of the roles played by root and shoot in the tolerance pattern, as well as focusing 
on related endogenous mechanisms. Even though studying genotypes with contrasting Cd 
tolerance is able to reveal important contrasts related to Cd tolerance, accumulation and uptake, 
there is a lack of studies focused on reciprocally grafted tomato plants regarding Cd tolerance 
(that is, Cd-tolerant and Cd-sensitive genotypes grafted with each other as rootstock or scion). 
Here, we performed a study on grafted tomato plants using tomato genotypes with contrasting 
Cd tolerance. For the present work, reciprocal grafting between tolerant and sensitive tomato 
genotypes was used as a unprecedented tool, in order to provide a first insight into the organ-
tissue-specific contribution of the tomato genotypes to Cd tolerance mechanisms, uptake and 
accumulation at early stages of exposure to Cd.  We studied the Cd uptake kinetics of the tomato 
genotypes. Further, we studied enzymatic antioxidant responses in tomato plants. Evaluations 
of six antioxidant enzymes were performed in addition to the study of Cd accumulation, 
oxidative stress, bioconcentration factor, phytochelatin synthesis, expression of genes encoding 
phytochelatin synthases and root transporters, nutrient status and plant growth evaluations. The 
results showed that, compared with seedlings grafted onto the sensitive root, seedlings grafted 
onto the tolerant one showed lower Cd uptake, accumulation, and higher efficiency of the 
enzymatic antioxidant system in response to Cd exposure, in addition to higher concentrations 
of PCs in roots. Finally, we evaluated the chlorophyll content, proteome and phosphoproteome 
in leaves of grafted tomato plants. The results provide early evidence for the positive influence 
of the root system of a tolerant cultivar on the Cd-exposed tomato proteome coupled to Cd-
induced phosphoproteomic responses in grafted tomato at an early stage of plant exposure. 

Keywords: Heavy metals, Solanum lycopersicum, Antioxidants, Cadmium uptake kinetics, 
Reciprocal grafting, Gene expression, Phytochelatins, Phosphoproteomics, 
Proteomics, Abiotic stresse tolerance, Food security 
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1. INTRODUCTION 

Cadmium (Cd) is a persistent environmental pollutant and heavy metal that is able to 

affect several metabolic processes in living organisms, including those related to physiological 

processes in plants (Marques et al. 2019, 2021). The increase in Cd concentrations in the 

environment over the last few decades is due to anthropogenic activities (e.g., production of 

mineral fertilizers, pesticides, intensive mining, waste disposal, and foundries). Cd is extremely 

toxic to biological systems, in part due to its high solubility in physiological conditions, and 

accumulation in living organisms (Kabata-Pendias, 2011).  

Due to its high phytoaccumulation index, low soil adsorption coefficient, and high 

soil–plant mobility, Cd can be readily taken up by plants and accumulates in different edible 

plant parts, through which it enters the food chain (Sarwar et al. 2010; Shahid et al. 2017). Thus, 

besides affecting plant metabolism and physiology, Cd accumulation in crop plants poses a high 

risk to human health (Zhang et al. 2020). Furthermore, Cd exposure is able to impair functions 

of biological molecules and can induce fast and wide-ranging side effects on plant development, 

even at low concentrations in the growth media (Piotto et al. 2018). More studies using Cd-

exposed crops are needed, as most of the studies that focused on Cd-induced plant responses 

have used non-crop species. Understanding the mechanisms of plant uptake, response, and 

tolerance to Cd stress in crop species is important to develop efficient strategies for mitigating 

the impacts of Cd contamination on crop yield and food safety, including through the generation 

of Cd-tolerant and Cd-excluding crop cultivars. 

Tomato (Solanum lycopersicum) is one of the most cultivated and consumed fruits 

worldwide, besides serving as a model organism for fleshy-fruited plants: it is a very important 

crop from nutritional and economic points of view (Rodríguez-Celma et al. 2010). Among 

economically important commercial crops, tomato is considered a model organism due to 

several aspects, including its sequenced and small genome (Piotto et al. 2018). Moreover, a 

large number of tomato plants is grown in greenhouses, frequently using special substrates, 

fertilization techniques and reutilization of water. Thus, these plants are frequently subjected to 

an increased risk of heavy metal contamination by the use of Cd-contaminated water 

(Rodriguez-Celma et al. 2010; Borges et al. 2018), which explains the relevance of studies 

focused on the accumulation of Cd and patterns of plant response and tolerance to this heavy 

metal using tomato. 

Grafting has been exploited extensively in fruit crops to reduce the negative influences 

of soil pathogens (Lee, 1994; Bletsos and Olympios, 2008). Since then, several other works 
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have explored the use of grafting systems to separate the contribution of the root and shoot 

regarding the modulation of stress tolerance. In this context, a reciprocal grafting technique has 

been used from various plant species in response to different abiotic stresses, such as drought 

(Sánchez-Rodríguez et al. 2012; Han et al. 2013; Zhang et al. 2019) and Cd toxicity in the 

potential (Cd)-hyperaccumulator Solanum photeinocarpum (Huang et al. 2020a). 

Intraspecific grafts mean rootstock and scion belong to the same botanical species, 

while interspecific grafts mean rootstock and scion belong to different species of the same genus 

(Goldschmidt, 2014). Previous studies used grafted tomato plants exposed to Cd toxicity by 

using microtom (Gratão et al. 2015; Alves et al. 2017) and intra or interspecific grats (Kumar 

et al. 2015a,b; Yuan et al. 2019; He et al. 2020; Liang et al. 2020; Xie et al. 2020).  

The comparison of plants with contrasting or differential degrees of 

tolerance/sensitivity to a given stress is a strategy to effectively determine the contribution of 

different mechanisms in plant tolerance to abiotic stresses, including Cd toxicity (Marques et 

al. 2019a). The results of some investigations have indicated that modulation of Cd tolerance 

and sensitivity in tomato plants are not totally explained in terms of Cd accumulation. In fact, 

in addition to Cd accumulation itself, tomato sensitivity to Cd exposure may be influenced by 

events such as magnitude of oxidative stress and mineral profile imbalances (Piotto et al. 2018). 

For example, in some studies on Cd impact on the metabolism of tomato genotypes with 

contrasting Cd tolerance, the activities of antioxidant enzymes in response to Cd stress under 

short-term exposure were evaluated (Borges et al. 2018; Carvalho et al. 2019).  

The context presented above justifies scientific efforts to study biochemical, 

physiological, and molecular mechanisms of responses and tolerance coupled with the 

modulation of Cd accumulation and uptake in crops to cope with Cd toxicity. Cd uptake and 

accumulation by plants leads to oxidative burst signaling, which is usually considered an early 

biochemical response to Cd exposure (Marques et al. 2019a), together with other tolerance 

mechanisms that are activated even at early stages of Cd exposure. Thus, it is important to 

develop management strategies focusing on reducing the Cd uptake and Cd contamination of 

edible parts of tomato and crop plants in general, in line with the understanding about the role 

of root and shoot for the observed tolerance pattern, as well as on related endogenous tolerance 

mechanisms under short-term Cd exposure. 

We consider that the use of tomato genotypes that show contrasting Cd tolerance can 

reveal important contrasts related to Cd tolerance, accumulation and uptake. Nevertheless, there 

is a lack of studies focused on intraspecific reciprocally grafted tomato plants regarding Cd 

tolerance (that is, Cd-tolerant and Cd-sensitive genotypes grafted with each other as rootstock 
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or scion). The present study aimed to study Cd uptake and accumulation, as well as evaluating 

biochemical, molecular, and physiological parameters in tomato genotypes with contrasting 

cadmium (Cd) tolerance and their reciprocal grafts. Solanum lycopersicum cv. Calabash Rouge 

(CR) and Solanum lycopersicum cv. Pusa Ruby (PR) were previously characterized as Cd-

tolerant and Cd-sensitive genotypes under short-term Cd exposure, respectively (Piotto et al. 

2018). Here, also focusing on short Cd exposure, we performed a pioneering study on grafted 

tomato plants using these tomato genotypes with contrasting Cd tolerance. Thus, we provided 

a first insight into the organ-tissue-specific contribution of the tomato genotypes to Cd tolerance 

mechanisms, uptake and accumulation at early stages of exposure to Cd. 
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 6. CONCLUSIONS AND FINAL CONSIDERATIONS 

 

The data indicated that S/T presented a response pattern similar to T/T for most of the 

evaluated parameters. Thus, the presence of the tolerant root system is sufficient to couple the 

use of grafting to a lower Cd uptake over time, a better performance regarding chlorophyl 

content, reduced levels of MDA, and lower Cd uptake, translocation and accumulation 

compared to the self-grafted sensitive tomato genotype after short-term Cd exposure. At the 

early stage of plant exposure, the plants grafted onto the tolerant rootstock showed lower Cd-

induced losses in biomass, for which an efficient enzymatic-antioxidant system, regulation of 

the Mg uptake and accumulation, and PC synthesis are involved. The use of reciprocal grafting 

was a valuable approach to provide a first insight into the determination of the organ-tissue-

specific contribution of genotypes with contrasting Cd tolerance to modulation of Cd tolerance 

mechanisms, uptake and accumulation in tomato under short-term Cd exposure.  In addition, 

grafting the sensitive shoot onto the tolerant rootstock triggered a pronounced response to Cd 

in terms of DAPs and higher number of Cd tolerance-related key DAPs. Thus, we provided 

early evidence on the positive influence of the root system of the tolerant cultivar on the Cd 

proteomic response and modulation of Cd tolerance in a Cd-sensitive tomato, associated with 

the first insight into cadmium-induced phosphoproteomic responses of grafted tomato 

genotypes. Taken together, these data open the door to future biotechnological use of grafting 

to enhance Cd tolerance in tomato. Furthermore, this study contributes to future works focused 

on a higher number of tomato genotypes with differential Cd tolerance, accumulation and 

translocation under short and long-term exposure to this heavy metal. 
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