• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.11.2021.tde-21052021-084653
Document
Auteur
Nom complet
Natasha Valadares dos Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
Piracicaba, 2021
Directeur
Jury
Dematte, Jose Alexandre Melo (Président)
Bonfatti, Benito Roberto
Sentelhas, Paulo Cesar
Titre en anglais
Synergy between digital soil mapping and crop modeling: influence of soil data on sugarcane attainable yield
Mots-clés en anglais
DSSAT
Grid yield forecast
Soil data quality
Spatial soil variability
Resumé en anglais
Models of crop production play a key role in food security, predicting future agriculture challenges and supporting the establishment of public policies and sustainable management practices. However, due to the lack of reliable information, especially in developing countries, they have presented limited performance and restrictions for spatially explicit analyses. Thus, the objective of this study was to evaluate the DSM (Digital Soil Mapping) as an alternative to fill the gap of soil data. Our study site is in Southwest of Brazil in a 4,815 km2 area heterogeneous in geology and soil classes. The study were conducted with the following framework: (i) We used a soil survey data, containing 1,125 collected points with auger and 27 profiles and applied equal-spline equations to standardized the soil dataset into depth; (ii) A machine learning (ML) algorithm were used to predict soil attributes and their uncertainties (iii) Pedotransfer functions were performed to obtain soil hydrological properties (iv) DSSAT-Canegro was simulated in a 250m grid to sugarcane planted in October with harvest completing 12 months (v) We compared three levels of soil data source: a soil map (SM) (1:100,000 scale), SoilGrids (SG) and the map of attributes (MA) derived from our ML. Clay was the attribute that obtained the best performance to surface and subsurface (R2=0.70 and 0.59, RMSE= 88.87 and 141 g kg-1) and low uncertainty (40 and 110%). In depth the attributes were reduced in their content and increased uncertainty. Therefore, the MA to be the most reliable source of data, being the one that most resembles field data, presents the best index of agreement (d= 0.8) and confidence coefficient (c=0.74). In addition, a 250m grid allowed the evaluation of the spatial variability of the attainable yield of sugarcane at a regional level. Nitisols achieved higher productivity and shallow soils did not exceed 100 t ha-1 Thus, this work showed the applicability of digital mapping for application in crop modeling. This methodology can be replicated for decision-making at a regional level and also to improve management strategies for agriculture.
Titre en portugais
Sinergia entre mapeamento digital de solos e modelagem de culturas: influência dos dados do solo na produtividade atingível da cana-de-açúcar
Mots-clés en portugais
DSSAT
Previsão de produtividade em grade
Qualidade de dados de solo
Variabilidade espacial de solos
Resumé en portugais
Os modelos de produção agrícola desempenham um papel fundamental na segurança alimentar, prevendo futuros desafios agrícolas e apoiando o estabelecimento de políticas públicas e práticas de gestão sustentável. Entretanto, devido à falta de informações confiáveis, especialmente nos países em desenvolvimento, eles apresentaram desempenho limitado e restrições para análises espacialmente explícitas. Assim, o objetivo deste estudo foi avaliar o MDS (Mapeamento Digital de Solos) como uma alternativa para preencher a ausência de dados do solo. A região considerada nesse estudo está situada no sudeste do Brasil em uma área de 4.815 km2 que detém enorme heterogeneidade quanto a sua geologia e tipos de solo. Para a realização do estudo as seguintes etapas foram realizadas: (i) Foi usado um conjunto de dados de solo, obtidos a partir de 1.125 tradagens e 27 perfis que foram pradronizados em profundidades por meio de equações de interpolação; (ii) Um algoritmo de aprendizado de máquina (AM) foi usado para predição dos atributos de solo e suas incertezas (iii) Funções de pedotransferência foram realizadas para obter as propriedades hidrológicas do solo (iv) DSSAT/CANEGRO foi simulado em uma grade de 250 m para cana-de-açúcar, com plantio em outubro e colheita completando 12 meses (v) Três níveis de fonte de dados do solo foram comparados: um mapa de solo (MS) (escala 1:100.000), SoilGrids (SG) e o mapa de atributos (MA) derivado de nosso AM. A argila foi o atributo que obteve o melhor desempenho em superfície e subsuperfície (R2 =0,70 e 0,59, RMSE= 88,87 e 141 g kg-1) e baixa incerteza (40 e 110%). Em profundidade, os atributos obtiveram uma redução em seu teor e aumento da incerteza. Portanto, o MA foi a fonte de dados de solo mais confiável, sendo a que mais se assemelha aos dados de campo, apresentando o melhor índice de concordância (d= 0,8) e coeficiente de confiança (c=0,74). Além disso, uma grade de 250 m permitiu a avaliação da variabilidade espacial da produtividade atingível da cana-de-açúcar em nível regional. Os nitossolos alcançaram maior produtividade e os solos rasos não excederam 100 t ha-1. Sendo assim, este trabalho mostrou a aplicabilidade do mapeamento digital para uso na modelagem de culturas. Esta metodologia pode ser replicada no planejamento agrícola em nível regional e aplicações de manejo na agricultura.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-05-24
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.