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RESUMO 

Os solos brasileiros de uma biblioteca espectral: do fundamental às aplicações 

O solo é um recurso natural fundamental para o equilíbrio da vida no planeta e para 

o desenvolvimento econômico, no entanto a maior parte das áreas agrícolas do mundo não é 

totalmente conhecida, o conhecimento das propriedades físico-químicas do solo e sua 

variabilidade espacial constituem a essência para seu uso sustentável, planejamento e manejo 

adequado, visando maior produtividade e conservação. Nosso objetivo com esse trabalho foi 

montar uma Biblioteca Espectral de Solos do Brasil (BESB), avaliar a variabilidade, 

caracterizar e discriminar os solos a partir dos espectros, além de estudar como uma 

biblioteca espectral de solo podem auxiliar na rotina de laboratórios tradicionais de solo. 

Buscamos também, desenvolver um algoritmo que permita a predição de atributos de solos 

via espectros e a disponibilização esse algoritmo de predição na internet. As amostras de 

solo foram obtidas pela doação por pesquisadores e laboratórios de todo o Brasil, passaram 

por processo de determinação espectroscópica na faixa entre 350 a 2500 nm (vis-NIR-

SWIR) e algumas delas passaram por análise na faixa de 2500 a 25000nm (MIR) e 

fluorescência de raio X (XRF). A BESB permite extrair e associar a informação espectral 

inerente com as variáveis geográficas e ambientais. Com o desenvolvimento da BESB, foi 

possível: I) demonstrar o potencial de uma biblioteca espectral para o manejo de solos 

tropicais, e II) relacionar a refletância espectral do solo com as regiões e estados, biomas, 

geologia, classes de solos e vegetação. Esse estudou provou que as informações espectrais 

podem ser utilizadas para caracterizar o solo e sua variação e diversidade no solo brasileiro, 

além de termos conseguido montar um banco de dados com padrões de solos via espectro e 

modelos de predição de atributos do solo que pode ser acessado pela comunidade e com isso 

implementar a sua utilização em futuros levantamentos de solos. Foi possível também 

identificar como o uso de análises espectrais pode ser inserido na rotina dos laboratórios de 

análise de solo, mostrando o potencial dos laboratórios híbridos. 

 

Palavras-chave: Detecção espectral, Sensoriamento próximo, Espectroscopia, Pedometria 
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ABSTRACT 

The Brazilian soils from a spectral library: from fundamental to applications  

Soil is a fundamental natural resource for the balance of life on the planet and 

for economic development, however most agricultural areas in the world are not fully 

known, the knowledge of the physical-chemical properties of the soil and its spatial 

variability constitute the essence for its sustainable use, planning and adequate 

management, aiming at greater productivity and conservation. Our objective with this 

work was to set up a Brazilian Soil Spectral Library (BSSL), evaluate the variability, 

characterize and discriminate soils from the spectra, and study how a soil spectral 

library can help in the routine of traditional soil laboratories . We also seek to develop 

an algorithm that allows the prediction of soil attributes via spectra and the availability 

of this prediction algorithm on the internet. Soil samples were obtained by donation 

by researchers and laboratories throughout Brazil, underwent a spectroscopic 

determination process in the range between 350 and 2500 nm (vis-NIR-SWIR) and 

some of them underwent analysis in the range of 2500 to 25000 nm ( MIR) and X-ray 

fluorescence (XRF). BSSL allows extracting and associating inherent spectral 

information with geographic and environmental variables. With the development of 

BSSL, it was possible: I) to demonstrate the potential of a spectral library for the 

management of tropical soils, and II) to relate the spectral reflectance of the soil with 

regions and states, biomes, geology, soil classes and vegetation. This study proved that 

spectral information can be used to characterize the soil and its variation and diversity 

in the Brazilian soil, in addition to having managed to assemble a database with soil 

patterns via spectrum and soil attribute prediction models that can be accessed by the 

community and thus implement its use in future soil surveys. It was also possible to 

identify how the use of spectral analysis can be inserted into the routine of soil analysis 

laboratories, showing the potential of hybrid laboratories. 

Keywords: Spectral detection, Proximal sensing, Spectroscopy, Pedometrics 
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1. INITIAL CONSIDERATIONS 

Soil is a fundamental natural resource for human activities. The balance of life on the 

planet and world economic development depends on the quality of this basic resource 

(Demattê et al., 2019). Therefore, knowledge about their properties and their spatial 

variability are the first step to plan actions for sustainable use and adequate management 

(Wall and Nielsen, 2012). 

Only in Brazil there are about 66 million ha with strong agriculture activity and 

remains 11% possible to use (IBGE, 2019). Annually more than 600 million soil samples 

can be analyzed worldwide (Demattê et al., 2019). These analyzes are carried out by the 

traditional method of soil analysis that uses chemical products and takes a long time 

(Viscarra Rossel et al., 2016). Due to the negative impacts of these analyses, it is necessary 

to seek alternatives that require less time, are cheaper and have less environmental impact. 

In this context, the analysis of soils via spectroscopy is a viable alternative, since soils have 

been studied in terms of their spectral behavior, with proven efficiency (Zheng and Schreier, 

1988; Ben-Dor and Banin, 1995; Mulder et al., 2011; Luce et al., 2014). 

Spectroscopy is a proximal detection technique based on the detection of 

electromagnetic radiation reflected by the ground. To study the spectral behavior of soils, 

the spectral range that corresponds to 400 - 700 nm (visible - Vis), 700 - 1100 nm (near 

infrared - NIR) and 1100-2500 nm (short waves near infrared - SWIR) is commonly used 

can be obtained by proximal sensors in the field or laboratory. 

Electromagnetic radiation reflected from the ground has been studied since Bower 

and Hanks (1965). Since then, detection data have shown a strong relationship with several 

soil attributes, such as organic matter, texture, mineral composition, heavy metal content and 

others (Nocita et al., 2014). The technique allows the simultaneous characterization of soil 

attributes with the advantage of being a non-destructive method and allowing in situ soil 

observation (Viscarra Rossel et al., 2006). 

Researchers around the world have been looking for a global communication system 

based on the so-called Soil Spectral Libraries. (SSLs). The first publication using a SSL with 

global samples was presented by Stoner and Baugarnder (1981), followed by Brown et al. 

(2006), and Viscarra Rossel et al. (2016), with participation of 92 countries. Other regionals 

initiatives came along such as the ICRAF-ISRIC Soil VNIR Spectral Library (Garrity and 

Bindraban, 2004), the LUCAS framework (Land Use/Cover Area Frame Survey; 

http://eusoils.jrc.ec.europa.eu/projects/Lucas) (Orgiazzi et al., 2018) with  data from 23 

countries in Europe (Stevens et al., 2013), and the GEOCRADLE with samples from nine 

http://eusoils.jrc.ec.europa.eu/projects/Lucas
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countries in Balkan, Middle East, North  and central Africa (Tziolas et al., 2019; Shepherd 

and Walsh, 2002; Summerauer et al., 2021).  In addition, numerous countries have also 

developed local SSLs, such as the Brazilian Soil Spectral Library (BSSL) (Demattê et. al., 

2018, Bellinaso et al., 2010), and those from the Czech Republic (Brodsky et al., 2011), 

France (Gogé et al., 2012), Denmark (Knadel et al., 2012),  Mozambique (Cambule et al., 

2012), Spain (Bas et al., 2013), Australia (Viscarra Rossel and Webster, 2011), China (Shi 

et al., 2014; Ji et al., 2016; Liu et al., 2018), USA (Condit, 1970; Wijewardane et al., 2018), 

New Zealand (Baldock et al., 2019), and Tajikistan (Hergarten et al. 2013). 

We expect the Brazilian Soil Spectral Library (BSSL) to demonstrate relationships 

between inherent spectral information and geographic and environmental variables. This 

dataset can lead to new approaches in soil detection using near and remote sensing. Thus, 

the aim of this study is to present the BSSL and its relationship with soil properties and other 

characteristics that cover most Brazilian soils. In addition to the development of models that 

allow the prediction of soil attributes via spectra and availability of this prediction algorithm 

on the internet. 

One of our goals was also to bring spectroscopy closer to soil analysis laboratories, 

disseminating the technique and understanding how the technique can help in the routine of 

laboratories, reducing the time and cost of soil analysis, in addition to understanding the 

limitations of the use of spectroscopy. 

 

1.1.THESIS DEVELOPMENT 

Samples from all over Brazil were used, aiming to obtain the largest possible number 

of samples and representativeness within the states. For the preparation of the Spectral 

Library, the soil samples used in the study were analyzed for physical and chemical 

determination using traditional methods. 

 

1.1.1. Obtaining samples 

Samples and spectral data were obtained in different ways and sources, as follows: 

a) Existing spectral data obtained by the Remote Sensing laboratory of the 

Department of Soil Science, ESALQ-USP. At the beginning of the project, in February 2017, 

it was a bank with approximately ten thousand samples; 

b) Analysis of new samples obtained by the laboratory. About ten thousand new 

samples were analyzed; 
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c) Donor data. These are researchers and professors from the most diverse regions of 

the country who have provided their data to be part of the library; 

d) Samples received from soil analysis laboratories participating in the ProBASE 

(Brazilian Soil Analysis Program via Spectroscopy), created in 2018. We received around 

7200 samples from 36 laboratories. 

All material was organized and evaluated for results and methodologies. A screening 

was performed to select the main results. The spectral data were associated with the 

respective existing soil analyzes (chemical, granulometric, and others). 

 

1.1.2. Soil spectroscopy analysis 

For the vis-NIR-SWIR analysis, the soil samples were dried at 45 °C for 48 hours, 

ground, sieved with 2 mm mesh, and homogeneously distributed in petri dishes prior the 

measurement of the spectra in the 380-2500 nm range. The spectral data were acquired using 

the Fieldspec 3 spectroradiometer (Analytical Spectral Devices, ASD, Boulder, CO). The 

sampling interval was 1 nm, reporting 2151 channels. The light source was provided by two 

external 50-W halogen lamps. These lamps were positioned at 35 cm from the sample (non-

collimated rays and a zenithal angle of 30°) with an angle of 90° between them. The sensor 

is calibrated using a white Spectralon plate, representing a 100% reflectance standard 

(reflectance factor 1.0).  

For spectral analysis in the mid-infrared (MIR), the soil samples were ground and 

passed through 100 mesh. Reflectance spectra were obtained with the Alpha Sample 

Compartment RT-DLaTGS ZnSe (Bruker Optik GmbH) equipped with an accessory for 

acquiring diffuse reflectance (DRIFT). The sensor has a HeNe laser positioned inside the 

equipment and a calibration pattern for each wavelength. It has a KBr beam, allowing a high 

amplitude of the incident radiance to penetrate the sample. Spectra were acquired between 

(4000 and 600 cm−1; 2,500 – 20,000 nm), with a spectral resolution of 5 cm−1 and 32 scans 

per minute per spectra. A gold reference plate was used as standard, and the sensor was 

calibrated every four measurements.  

The X-ray fluorescence (XRF) analysis was carried out in a portable X-ray 

fluorescence spectrometer (pXRF) Olympus Delta Professional (Olympus Corporation, 

Waltham, MA, USA), with two excitation modes (EM). The first EM employed 40 keV, 

91.1 μA, and is equipped with a 2 mm aluminum filter, which is most suitable to quantify 

the following elements: vanadium, chromium, iron, cobalt, nickel, copper, zinc, tungsten, 

mercury, arsenic, lead, bismuth, rubidium, uranium, strontium, zirconium, yttrium, aurum, 
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thorium, niobium and, molybdenum and secondarily: titanium and manganese. The second 

EM employed 10 keV and 80.5 μA, that improves the signal of light elements (mainly 

magnesium, aluminum, and silicon) and quantifies the following elements: magnesium, 

aluminum, silicon, phosphorus, sulfur, chlorine, calcium, titanium, and manganese. About 

5-15 g of sample was placed in a polyethylene bag (4 µm of thickness and 5 cm of width) 

and submitted to analysis in a platform with protection for X-ray’s emission. The pXRF 

Delta Professional is furnished with a 50 keV silver X-ray anode and a silicon drift detector, 

with 2048 channels.  
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2. THE BRAZILIAN SOIL SPECTRAL LIBRARY (BSSL): A GENERAL VIEW, 

APPLICATION AND CHALLENGES 

ABSTRACT 

 

The present study was developed in a joint partnership with the Brazilian pedometrics 

community to standardize and evaluate spectra within the 350-2500 nm range of Brazilian 

soils. The Brazilian Soil Spectral Library (BSSL) began in 1995, creating a protocol to gather 

soil samples from different locations in Brazil. The BSSL reached 39,284 soil samples from 

65 contributors representing 41 institutions from all 26 states. Through the BSSL spectra 

database, it was possible to estimate important soil attributes, such as clay, sand, soil organic 

carbon, cation exchange capacity, pH and base saturation, resulting in differences among the 

multi-scale models taking Brazil (overall), regional and state scale. Statistical analyses 

showed that six basic patterns of spectral signatures represent the Brazilian soils types and 

that environmental conditions explain the differences in spectra. This study demonstrates 

that spectroscopy analyses along with the establishment of soil spectral libraries are a 

powerful technique for providing information on a national and regional levels. We also 

developed an interactive online platform showing soil sample locations and their 

contributors: ´a put together community system´. As soil spectroscopy is considered a fast, 

simple, accurate and nondestructive analytical procedure, its application may be integrated 

with wet analysis as an alternative to support the sustainable management of soils. 

 

Key words: spectral sensing; proximal sensing; Vis-NIR-SWIR spectroscopy; pedometrics. 

 

2.1. INTRODUCTION 

Soil is a fundamental natural resource for sustaining life in the planet and economic 

development, since it provides several ecosystem services and is the basic resource for many 

human activities (Adhikari and Hartemink, 2016; Jónsson and Davíðsdóttir, 2016). Thus, the 

knowledge about soil physical and chemical properties and their spatial variabilities are the 

essence for their sustainable use, planning and adequate management, aiming for greater 

productivity and conservation (Wall and Nielsen, 2012). 

Earth has about 150 million km² of land and most of it is not totally known in terms of 

soil surface composition, which is usually made by traditional wet analysis. Since this 

technique has been used for more than 100 years, it is considered the most relevant to 

characterize soil properties. However, this approach suffer from the usage of chemical 

reagents and time consuming (Viscarra Rossel et al., 2016). Besides, there are still 

uncertainties and discussion of current methods and its results, which frequently lead to 

difficulties in the interpretation and misleading communication. These issues took research 
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to seek for other strategies on to optimize and/or assist these previous and important wet 

methods.   

Proximal sensing research community has applied spectroscopy techniques 

systematically on the last 40 years to reach soil properties with important results (Nocita et 

al., 2014). The spectral range commonly used to study spectral pattern of soils corresponds 

to 400 - 700 nm (visible - Vis), 700 - 1,100 nm (near infrared - NIR) and 1,100 - 2,500 nm 

(shortwave infrared - SWIR) which can be obtained by sensors in the field or laboratory and 

has been the baseline for optical aerial/satellite remote sensing (reflectance spectroscopy, 

imaging spectroscopy). In this case, from the surface reflectance of the samples measured in 

laboratory, it is possible to develop models relating the spectral pattern to some soil 

characteristics which can be extrapolate to satellite spectral data, making possible to map 

large areas (Demattê, 2016). Since Bowers and Hanks (1965), soil reflectance has been 

studied and reached a strong background on its interpretation. During this period, sensing 

data has showed a strong relationship with several soil attributes, i.e., soil organic carbon 

(Stevens et al., 2008), texture (Brodský at al., 2010), mineral composition (Viscarra Rossel 

et al., 2006), and others (Nocita et al., 2014). The technique allows the simultaneous 

characterization of soil attributes with the advantage of being a non-destructive method of 

in situ observation (Viscarra Rossel et al., 2006).  

To make spectral information useful for the soil science community, it is imperative 

to have reference patterns in a database (Viscarra Rossel and Behrens, 2010), commonly 

named spectral libraries. A diverse database is fundamental to understand soils spectral 

behavior and reach its attributes prediction from spectra (Shepherd and Walsh, 2002). After 

this study, others came along such as Brown et al. (2006) and Viscarra Rossel and 

McBratney (2008). The ICRAF-ISRIC world soil spectral library (Garrity and Bindraban, 

2004), for example, is composed of 785 soil profiles from 58 countries from Africa, Europe, 

Asia, and the Americas. Viscarra Rossel and Webster (2012) described a large spectral 

library with ~4,000 soil profiles covering the Australian continent. A spectral library 

covering the United States (US) has been setting on the Rapid Carbon Assessment (RaCA) 

project (Soil Survey Staff, 2014) with 144,833 Vis-NIR spectral curves from 32,084 soil 

profiles. The European spectral library called LUCAS consists of about 20,000 topsoil 

samples, collected from 23 countries in the European continent, and measured for 13 soil 

properties in a single laboratory (Stevens et al., 2013). Another important example of soil 

spectral library (SSL) was the ASTER spectral library (Baldridge et al., 2009), a compilation 
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of 2,400 spectra of soils, rocks, minerals and other related materials. SSL initiatives in other 

countries include: Brazil (Bellinaso et al., 2010), Czech Republic (Brodský et al., 2011), 

France (Gogé et al., 2012), Denmark (Knadel et al., 2012), Mozambique (Cambule et al., 

2012),and China (Ji et al., 2016; Shi et al., 2014). Finally, a world soil spectral library was 

constructed for soil organic carbon, soil texture, iron, CaCO3, CEC, and pH with 90 

participating countries (Viscarra Rossel et al., 2016). Such collaborative initiatives open 

many doors for its applicability.  

Brazil is the largest country in South America, with an area of ~ 851 million ha, and is 

the fifth largest in the world. It has ~ 152.5 million ha in agricultural land (18% of total). 

Soil mapping and pedologic properties characterization with conventional survey and 

laboratory methods is enormous challenge. An example of this effort is the PronaSolos 

(Polidoro et al., 2016), a forthcoming national program that aims to provide more detailed 

mapping of soils in Brazil. Thus, soil sensing and the fusion of spectral data are promising 

to allow quick acquisition of information for surveying large areas of soils (Grunwald et al., 

2015). The State of São Paulo had its first soil spectral Atlas performed by Epiphanio et al. 

(1992), which was published afterwards by Formaggio et al. (1996). Bellinaso et al. (2010) 

and Terra et al. (2015) created soil spectral libraries from states of the South Central of 

Brazil. However, the country still does not have a standardized SSL to integrate the soil 

research community and support different applications for studying soil resources. 

The objective of this study was to present the first integrated SSL and its relationship 

with soil attributes and other environmental characteristics covering most of the Brazilian 

soils. The Brazilian Soil Spectral Library (BSSL) allows the exploration of new approaches 

on proximal and remote spectral sensing. We hypothesize that spectral data relate to 

geographical and environmental variables. 

 

2.2. MATERIAL AND METHODS  

2.2.1. The collaborating system  

The BSSL started in 1995 with a collection of soil samples from the Department of 

Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-

USP), where spectral reflectance was measured and inserted into the database. The 

collaboration system of the BSSL is shown in Fig. 1a and the flowchart with data description 

is in Fig. 1b. A dynamic and interactive online platform showing the Brazilian map with all 

BSSL data was also created. This online platform facilitates the communication between any 
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user who wants to contact the researchers and use their soil spectra dataset. The interactive 

map can be accessed at <https://bibliotecaespectral.wixsite.com/esalq>. 

 
Fig. 1. Methodological sequence for the development of the Brazilian Soil Spectral Library 

(BSSL) development (a) and flowchart representing the statistical analyses of BSSL(b). 
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2.2.2. Description of the spectral database  

The current spectral library contains 39,284 soil samples from 65 contributors 

representing 41 institutions. The Brazilian spectral database was constructed combining all 

the soil samples from the collaborators. Figure 2 shows the maps of Brazil with the region, 

state, geology, biome, soil class, and sample points. The Brazilian regions are North (N), 

Northeast (NE), Midwest (MW), Southeast (SE), and South (S) (Fig. 2a). The Brazilian 

states are Acre (AC), Alagoas (AL), Amapá (AP), Amazonas (AM), Bahia (BA), Ceará 

(CE), Distrito Federal (DF), Espírito Santo (ES), Goiás (GO), Maranhão (MA), Mato Grosso 

(MT), Mato Grosso do Sul (MS), Minas Gerais (MG), Pará (PA), Paraíba (PB), Paraná (PR), 

Pernambuco (PE), Piauí (PI), Rio de Janeiro (RJ), Rio Grande do Norte (RN), Rio Grande 

do Sul (RS), Rondônia (RO), Roraima (RR), Santa Catarina (SC), São Paulo (SP), Sergipe 

(SE), and Tocantins (TO) (Fig. 2b). The geology is represented by igneous, metamorphic, 

and sedimentary rocks (Fig. 2c). The biomes are Amazon, Caatinga, Cerrado, Atlantic 

Forest, Pampa, and Pantanal (Fig. 2d). Only the most representative soil classes are presented 

in the Brazilian map, which are Lixisols, Ferralsols, and Arenosols (Fig. 2e). The geographic 

locations of the soil samples are shown in Fig. 2f. When the information provided by the 

contributors had no geographical coordinates, the points were allocated at the nearest city. 

Most of the samples that compose the database came from the SE and MW regions, 

with 19,429 and 9,391 samples, 50% and 24% of the samples, respectively (Fig. 3a). São 

Paulo (SP), Mato Grosso do Sul (MS) and Goiás (GO) states (26,474 samples total) 

correspond to 68% of all samples (Fig. 3b). Samples are from soils formed mainly in three 

lithologic groups, igneous and sedimentary with 10,621 and 10,409 samples, respectively 

21,030 in total) (Fig. 3c). The most represented biomes are the Atlantic Forest and Cerrado, 

with 19,248 (53%) and 12,468 (34%), respectively (Fig. 3d). The soil class with most 

samples is the Ferralsols (22,674 samples, equivalent to 63% of all samples) located mainly 

in the SE and MW regions (Fig. 3e). Other soil classes represented in the BSSL are 

Arenosols. Ferralsols and Lixisols represent the two most important soil classes in Brazil, 

covering about 31.5 and 26.8% of the Brazilian territory, respectively (Santos et al., 2011). 

These two classes represent 86% of all samples in the database (31,551 samples) (Fig. 3e). 

Considering the total database, 79% of the samples present A (0-20 cm), B (40-60 cm), C 

(80-100 cm), and D (100-120 cm) layers (Fig. 3f). Approximately 43% of all samples have 

soil organic carbon (SOC), 85% have granulometry, 35% have cation exchange capacity 

(CEC), 67% have values of pH in water and 72% have base saturation (BS) (BS = [Ca + Mg 

+ K + Na]/CEC x 100) (Donagemma et al., 2011) measurements.  
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Fig. 2. Maps representing the Brazilian regions (a), states (b), geology (c), biomes (d), main 

soil classes (e), and sampling locations of the Brazilian Soil Spectral Library (f).
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Fig. 3. Distribution of soil samples according to Brazilian regions (a); states (b); geology (c); biomes (d); soil classes (considering layers A and B) 

(e); soil layers (f); and soil attributes (g). The number of samples vary for each group depending on the available information. Soil classes were 

defined according to World Reference Base (International Union of Soil Science Working Group WRB, 2015). Soil layers corresponded to A (0-

20 cm), B (40-60 cm), C (80-100 cm), and D (100-120 cm). 
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2.2.3. Spectral data, preprocessing and transformations 

All soil samples from the database were previously dried at 45 °C, ground and sieved 

with 2 mm mesh and then homogeneously distributed in Petri dishes prior the measurement of 

the spectra. The spectral data were acquired by the Geotechnologies in Soil Science group 

(GeoCis), São Paulo, Brazil, using the Fieldspec 3 spectroradiometer (Analytical Spectral 

Devices, ASD, Boulder, CO), which has a spectral range from visible to shortwave infrared 

(350 – 2,500 nm) and spectral resolution of 1 nm from 350 to 700 nm, 3 nm from 700 to 1,400 

nm, and 10 nm from 1,400 to 2,500 nm. The sampling interval of data output is 1 nm reporting 

2,151 channels. One of the strengths of the database is that all spectral analyses followed the 

standardized spectral library analysis protocol. 

The spectral sensor, which was used to capture light through a fiber-optic cable, was 

allocated at 8 cm from the sample surface. The sensor scanned an area of approximately 2 cm2, 

and a light source was provided by two external 50-W halogen lamps. These lamps were 

positioned at a distance of 35 cm from the sample (non-collimated rays and a zenithal angle of 

30°) with an angle of 90° between them. A Spectralon standard white plate was scanned every 

20 minutes during scanning. Two replicates (one involving a 180° turn of the petri dish) were 

obtained for each sample. Each spectrum was averaged from 100 readings over 10 s. The mean 

values of two replicates were used for each sample. Ninety-eight percent (98%) of soil spectra 

were measured in GeoCis Lab, following the protocol proposed by Ben-Dor et al. (2015). 

Although the other 2% were not measured by the same equipment, protocols for spectra 

acquirement were strictly followed. Considering that practically all the spectral library was built 

with the same protocol, performing a calibration transfer function would demand time and 

resources, while the improvements would most likely be fairly small.  

The spectral reflectance was transformed to continuum removal (CR) (Clark and Roush, 

1984). This preprocessing removes the continuous features of spectra and is often used to isolate 

specific absorption features. The CR creates a continuum or hull similar to fitting a rubber band 

over the original spectrum. The spectrum is normalized by setting the value of the hull to 100% 

reflection, where the first and last values of the continuum-removed spectrum equal 1. We 

applied CR preprocessing because of its strength and ability to enhance absorption depths by 

correcting apparent shifts from wavelength-dependent scattering, highlighting specific 

absorption bands of a reflectance spectrum(Mutanga et al., 2005).Besides that, the CR 

preprocessing is capable of providing calibration models with high accuracy. 

We used heuristically testing to optimize the clustering procedure, which involved 

grouping the samples by their reflectance spectra. The reflectance intensity provides important 
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information in the spectral characterization of soils, but in our case, it did not provide good 

results. Initially, we had clustered the samples based on the reflectance spectra, but the fuzzy 

performance indicators were not satisfactory. On the other hand, when employing the CR 

spectra, we not only produced reasonable performance indices but also had results similar to 

other studies (e.g. Demattê et al., 2016; Terra, Demattê, & Viscarra Rossel, 2018). Although 

the reflectance intensity corresponds to a large share of spectral variance, there are other 

information in the spectrum which are extremely important to soils discrimination (e.g. 

features related to clay minerals at around 1,200, 1,900 and 2,200 nm). The potential of such 

information should not be underestimated. 

 

2.2.4. Principal component analysis 

The CR spectra were analyzed by principal component analysis (PCA) to reduce 

dimensionality and improve computational efficiency. The data was not standardized to make 

easier the interpretation of absorption features in continuum spectra. We used both the scores 

and eigenvectors of PCA to assist in the interpretation of BSSL data. 

Geographical and environmental characteristics were associated with the spectral data 

and the Brazilian spectral samples were separated according to 5 regions, 26 states, 3 geologies, 

6 biomes, 11 soil classes and 4 soil depths (Fig. 3). The PCA was used to investigate the 

associations between groups and spectral data. The PCA correlates the average soil spectral 

reflectances with regions, states, geology, biomes, soil classes, and layers. Soil classes in the 

Brazilian Soil Classification System were correlated with the WRB classification (IUSS 

Working Group WRB, 2015). The BSSL presents a large variation of samples considering 

layers, surface and subsurface horizons, and complete soil profiles. However, only soil samples 

that had the following depths were selected for PCA with layers’ data: A (0-20 cm), B (40-60 

cm), C (80-100 cm), and D (100-120 cm). Considering all samples from the spectral database, 

84% were taken collected with auger, 12% from complete profiles and 4% only from the surface 

layer (0-20 cm). 

 

2.2.5. Spectroscopic modeling of soil attributes 

The soil attributes selected for predictive modeling were sand, clay, SOC, pH, CEC, and 

BS. Several strategies of modeling were performed to predict these attributes. First, national, 

regional and state models were developed for each attribute, where the national model included 

the complete database. The datasets for each soil attribute were separated into training and 

independent validation by a 70:30 split. This separation was carried out using random division, 
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which was able to separate the groups homogeneously. The cubist method (Quinlan, 1992)was 

applied to train the spectroscopic models. Cubist applies the M5 (Model Tree approach) to grow 

categorical decision trees to handle continuous classes by placing a multivariate linear model 

at each leaf. The model building and estimation process were achieved by the caret package 

(Kuhn, 2017) in R (R Core Team, 2018). This package has a set of functions that attempt to 

streamline the process for creating predictive models. The calibration function was applied to 

adjust the best fitted model using optimal tuning parameters as follows: cross-validation 

resampling, committees, and neighbors.  

For each soil attribute the performance of the models were assessed by comparing the 

predicted and observed values based on the independent validation data set. The coefficient of 

determination (R2) (Eq. 1), root mean squared error (RMSE) (Eq. 2), and ratio of performance 

to interquartile distance (RPIQ) (Eq. 3) were assessed to quantify the inaccuracy of the 

estimates.  

 

R2 =  
∑ (ŷi − ȳi)

2n
i=1

∑ (yi − ȳi)2n
i=1

                                                                                                                     (1) 

RMSE =  √
1

n
∑(ŷi − yi)2

n

i=1

                                                                                                           (2) 

RPIQ =
(Q3 − Q1)

RMSE
                                                                                                                         (3) 

where ŷ is the predicted value, ȳ is the mean of the observed value, y is the observed values, n 

is the number of samples with i equal to 1, 2, … n, IQ is the difference between the third and 

first quartiles (Q3 - Q1). 

 

The textural triangle was developed using the reference values for clay, sand and silt, 

called observed, and using the predicted values for clay and sand obtained by each model, i.e., 

the predicted values used in the triangle of BSSL were originated from the national model, and 

the predicted values of S region were originated from the S model. The silt content was 

calculated by the difference of clay plus sand content. The textural triangle was carried out in 

R using the soiltexture package (Moeys, 2016). 

2.2.6. Spectral patterns classification 

The classification of spectral patterns was performed aiming to represent Brazilian soils. 

The reflectance was transformed to CR, which was used to classify spectra into general groups. 
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The question was: How many classes of spectra were necessary to represent the Brazilian soils? 

To answer that, we classified the spectra by clustering via similarity measurements. The first 

three principal component scores were classified by the fuzzy c-means algorithm (Bezdek et 

al., 1984). This approach produces two methods of classification: crisp and fuzzy membership 

degrees. The first produces the crisp or hard (no-fuzzy) membership degrees of the objects in 

order to place them into only one discrete cluster. The fuzzy c-means technique assigns a fuzzy 

membership degree to each data point based on its distances to the cluster centers. The fuzzy 

approach is based on the distance between various input data points (PCA scores). This 

algorithm assigns a fuzzy membership degree to each data point based on its distances to the 

cluster centers. The farther from the center of the cluster the smaller the probability of the point 

being classified in the respective class. The fuzzy membership degrees are continuous and range 

from 0 to 1. Each sample has a membership in every cluster, where close to 1 indicates a high 

degree of similarity between the sample and a cluster, while close to 0 implies a low similarity 

(Bezdek et al., 1984).  

Fuzzy clustering requires the user to predefine the number of clusters (c), but it is not 

always possible to know this number in advance. To obtain the ideal number of c-means cluster 

two validation functions were performed. The two most important validity index functions to 

determine the optimal number of clusters are as follow: (a) partition coefficient (pC) and(b) 

partition entropy (pE) (Bezdek et al., 1984). The best performance is achieved when the pC 

achieves its maximum value or pE obtains its minimum. All analyses and statistical procedures 

described above were performed by the R programming (R Core Team, 2018). The crisp and 

fuzzy c-means clustering was carried out using the ppclust package (Cebeci et al., 2018). 

The SSL was clustered by fuzzy c-means and crisp fuzzy techniques to evaluate the 

potential of spectral data in the discrimination of soil types. By testing the SSL with two 

different clustering methods, we intended to evaluate if the soil spectral groups were robust and 

capable of being replicated by different clustering methods. The inter-comparison between c-

means and crisp methods was done using Sankey diagram (Schmidt, 2008), which assesses the 

relative associations between memberships. The diagram represents the relationship between 

groups by linking the clusters from the c-means technique with the ones from crisp fuzzy 

analysis. Higher associations between two groups are represented by proportionally larger links, 

while poor relation between a pair of clusters is represented by thin links. 
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2.2.7. Correspondence analysis 

The associations between geological and environmental characteristics with soil spectral 

classes defined by cluster analysis were identified through correspondence analysis (CA). This 

technique is designed specifically for the analysis of categorical variables, and its primary goal 

is to illustrate the most important relationships among the variables’ response categories using 

a graphical representation (Benzécri, 1992). The concept is similar to PCA but applies to 

categorical rather than continuous data. It summarizes the associations between the spectral soil 

classes and the variables (regions, states, geology, biomes, soil classes, and layers) in two-

dimensional graphical forms. The CA plots are derived from a table where the rows are the 

characteristics (e.g. states of Brazil, biome, etc.) and the columns are the six spectral classes. 

The CA was applied using the FactoMineR package (Lê et al., 2008).  

 

2.3. RESULTS AND DISCUSSION 

2.3.1. Soil reflectance spectra vs physiographic and soil characteristics 

The higher sand content in NE region caused an increase in reflectance compared to other 

regions (Fig. 4a). On the average, the sand content of NE region is 651 g kg-1, while the average 

of S region, for example, is 264 g kg-1. Soils from the S region of Brazil, where predominantly 

formed under the influence of basalt or related to igneous rocks (Fig. 2c), which presented low 

reflectance values due to iron oxides and opaque minerals (Fig. 4a). This region also has 

specific temperate climate, which favors the preservation of SOC, and this agree with its lower 

spectra. In general, in relation to the geology, spectral signatures from igneous rocks are usually 

rich in calcium and iron and had low reflectance (Fig. 4c), while soils formed in metamorphic 

parent material showed high reflectance values. In these soils, reflectance features were mainly 

linked to orthoclase, quartz and plagioclase minerals. The low reflectance values found in soils 

formed in igneous rocks, such as basalt and diabase with high amounts of iron, were correlated 

with high clay contents and consequently higher influence of scattering. The soils from the 

Cerrado biome revealed the lowest spectral reflectances (Fig. 4d). The Atlantic Forest also 

presented a low reflectance curve. The higher reflectance was found in Caatinga biome (Fig. 

4d), which can be explained by the predominance of sandy particles in soils, besides the high 

temperatures that have accelerate the decomposition of soil organic matter resulting on 

relatively low SOC. The representation of the spectral curves of each biome is a generalization, 

because within each of them there is a great complexity of soil types. For instance, the Atlantic 

Forest biome extends from southern to northern Brazil with different soil types. Among the soil 

classes, the spectral curve of the Nitisols showed the lowest reflectances (Fig. 4e). This soil 
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originated mainly from mafic rocks such as basalt and diabase, present high amounts of clay, 

iron oxide and opaque minerals (IUSS Working Group WRB, 2015). The spectral curve of the 

Histosols presented low reflectance in the visible spectral region due to the high content of 

SOC. Contrarily, the Podzols had the highest reflectances, followed by the Cambisols rich in 

quartz (Fig. 4e). The Arenosols, for example, showed greater reflectances in the A layer due to 

higher sand content in relation to subsurface (Fig. 4f). The average reflectance curves of the 

four layers (soil depths) (Fig. 4f) indicate the differences in SOC content: from 550 to 900 nm 

the reflectance increases while SOC decreases. The spectral range from 1,500 to 2,500 nm was 

influenced by quartz, due to the high reflectance values in all four soil layers. The B and C 

layers were identical, which is attributed to low variation in mineralogy and texture. 
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Fig. 4. Soil reflectance spectra averaged according to each region (a); state (b); geology (c); 

biome (d); soil class (considering layers A and B) (e); and layer (f). The number of samples 

considered in each group are shown in Fig. 3. 

 

The PCA revealed that the first principal component (PC1) accounts explained 85% of 

the variance in the data (Fig. 5). The PCA of spectra averaged by region (Fig. 5a) was able to 

detect that the N, NE and S regions presented different soil spectral patterns. However, soil 

spectra from the MW and SE were grouped together, showing nearly the same spectral pattern 

in these regions. Among soils from 26 Brazilian states some showed similar factor loadings 

(Fig. 5b). For example, the average soil spectra from MT and GO states as well as for AP and 
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AC; MS and RS; PR, and SC; BA, RN, and ES; MA, and SP; AL, and PA; RJ, and PB grouped 

together. Soil spectra from AM, PE, PI, TO, SE, and RO states showed different patterns and 

were not grouped. For the three geological classes, the PCA discriminated them by showing 

separated data distributions (Fig. 5c). The PCA result for the biomes indicated that Caatinga 

and Amazon present distinct spectral curves (Fig. 5d). Indeed, these are two important and very 

distinct environments (Amazon = tropical humid soils; Caatinga = semiarid soils). This finding 

is corroborated by the result in Fig. 4d, where the Caatinga showed a spectral curve with high 

reflectances and the Amazon presented higher intensity reflectance in the visible region. This 

interpretation agrees with spectra by regions (Fig. 5a). However, soils from Pantanal and Pampa 

presented small differences in spectral pattern similar to the Atlantic Forest and Cerrado (Fig. 

5d). The principal component scores discriminated well among Podzols, Plinthosols, Histosols, 

and Lixisols, using only B layer (40 - 60 cm depth) (Fig. 5e). Conversely, Nitisols, Cambisols, 

and Ferralsols were grouped relatively close together suggesting similarities spectral pattern. 

The same arrangement was found among Planosols, Gleysols, and Vertisols, which are soils 

formed under the influence of hydromorphic conditions with more prolonged water saturation 

typically exhibiting the Fe3+reduction and high SOC. In contrast Podzols, Plinthosols, Histosols 

and Lixisols show large differences in the content of SOC, iron oxides and texture. For instance, 

Podzols have SOC mainly associated with a sandy texture, dominantly quartz, and associated 

with complexes of Al and Fe. Plinthosols are characterized by high iron oxides and low 

crystallinity degree in the form of nodules and low content of SOC. Histosols have high content 

of SOC, and low Fe content. Lixisols have kaolinite dominance, variable texture and low SOC 

content. Another group is represented by soils without texture gradient such as Nitisols, 

Cambisols, and Ferralsols. On the other hand, Lixisols with textural gradient or Histosols, with 

very high SOC were discriminated by principal component scores. The PCA for layers detected 

that A (surface) and D (subsurface) layers were separated suggesting distinct spectral pattern in 

these two layers (Fig. 5f). The B and C layer were placed in proximity in the PCA graphs 

indicating that they were similar in relation to the soil spectra (Fig. 5f). 
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Fig. 5. Principal component scores 1 (PC1) and 2 (PC2) calculated from the average reflectance 

spectra of each region (a), state (b), geology (c), biome (d), soil class (e), and layer (f). 

 

2.3.2. National, regional, and state prediction of soil attributes 

The national model produced R2 of 0.78 and RMSE of 6.89 g kg-1 for SOC prediction 

in validation model (Table 1). For SOC prediction in validation model, the regional models 
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showed R2 ranging from 0.58 to 0.84 and RMSE from 2.28 to 9.97 g kg-1. The MW region 

presented the best results, while the N region the worse. The state that presented the best results 

was MT with R2 of 0.89 and RMSE of 1.65 g kg-1. From the 18 states with SOC prediction 

models, 8 showed a R2 above 0.80 and only two showed R2 below 0.32 (AP and RR). The worst 

R2 were associated either with a small number of samples or a high variability in SOC. 

Among all the soil variables predicted, clay showed the highest coefficient of 

determination in validation mode at national level with 0.88 and RMSE of 75.93 g kg-1 (Table 

2). At the regional level, all clay validation models had R2 higher than 0.71 and the SE and MW 

regions had R2 higher than 0.91 and RMSE lesser than 60 g kg-1. At the state level, the best 

result was found for GO with R2 of 0.96, RMSE of 52.15 g kg-1 and RPIQ of 8.99. From the 21 

states with clay prediction, 13 showed R2 higher than 0.80 and only 3 had R2 below 0.50. 

For sand predictions in validation mode at the national level showed R2 of 0.87 and RMSE 

of 103.03 g kg-1 (Table 3). At regional scale, the MW region showed the best performing 

validation sand model with R2 of 0.94 and the S region the worse, but still with moderate well 

predictions (R2 = 0.77 and RMSE = 114.95 g kg-1). At the state level, 20 sand models were 

generated with GO showing the best results (R2 = 0.97 and RMSE = 53.94 g kg-1). In 14 states 

the R2 were higher than 0.80 and only PE had R2 below 0.50 for predictive modeling of sand. 

At the national level, the validation of the model generated for pH prediction showed a 

R2 of 0.54 and RMSE of 0.39 (Table 4). In general, the national pH model was better than the 

regional ones. Only the NE region presented a higher R2 (0.65) in validation mode, while the S 

region showed the smallest R2 (0.34). The good result for the NE region is related to the well-

performing pH models generated for the CE and PE states that belong to this region and had 

the highest R2, both with 0.97. From the 16 analyzed states, 9 pH prediction models had poor 

results with R2 below 0.50. 

The prediction validation of CEC at the national level reached a R2 of 0.68 and RMSE of 

24.02 cmolc kg-1 (Table 5). At the regional level, NE showed the best validation results (R2 = 

0.89 and RMSE = 27.68 cmolc kg-1) and the S region the worst (R2 = 0.64 and RMSE = 3.81 

cmolc kg-1). At the state level, MT, RN and SE showed a R2 above 0.93, and three states showed 

a R2 below 0.30 (AL, PA and PE). 

Of all soil attributes analyzed in this article, BS presented the poorest result at the national 

level with R2 = 0.49 and RMSE = 17.01% in validation mode (Table 6). However, at the 

regional level only the SE region showed a R2 below 0.50 (R2 = 0.49 and RMSE = 16.28%) and 

the NE showed the best performing BS model (R2 of 0.79 and RMSE = 13.42%). At the state 
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level, 16 models were generated, of which 14 showed R2 above 0.65 and AM and GO states 

showed higher R2 (0.70 and 0.69, respectively). 

Higher errors in the calibration models than in validation are definitely odd, especially 

when the modeling process uses a machine learning algorithm. In our case, this is related to a 

limited number of samples for modeling at the state level. The SOC model predictions at the 

state of AL (Table 1), for example, there were only 32 samples available for calibration and 19 

for validation, which resulted in a R2 of 0.29 (calibration) and 0.43 (validation). Conversely, 

prediction models for SP state had a total of 8,185 samples, 5,729 for calibration and 2,456 for 

validation. In this case, the R2 for calibration and validation were practically the same (0.66). 

Representative and comprehensive datasets are essential for a robust calibration, because 

otherwise the errors may be high and results incoherent. The BSSL has been constantly 

populated with new samples, therefore we believe that soon it will be possible to calibrate good 

prediction models for all states and regions. 

 

2.3.3. Synthesis of soil attributes prediction 

In summary, we computed the best model performances (i.e., highest model fits and 

lowest errors) by down scaling results (i.e., from national to state levels). For example, for SOC 

validation models the R2 were 0.78 - 0.84 - 0.93 (Table 1), for clay 0.88 - 0.94 - 0.96 (Table 2), 

and for sand 0.87 - 0.94 - 0.95 for national and best performing regional and state models, 

respectively (Table 3). However, the performance of state-specific soil models differed widely 

due to multiple factors including sample size, soil variance, and soil-forming factor differences. 

The model performance for the same soil attribute in different states differed widely (e.g., R2 

of clay varied from 0.42 to 0.96), hindered detailed discussion on several factors which still 

need further studies. The variability in statistical metrics of soil attributes assessments are not 

new. Nocita et al. (2014) found several discrepancies in regard to R2 for the same soil attribute, 

i.e., SOC, pH, and others. Zeng et al. (2016) indicated that local predictions can be better 

modeled by understanding the soil development, i.e., parent material, biome and land use. 

Shepherd and Walsh (2002), obtained R2 for CEC from 0.6 (national model) to 0.8 (local 

models). Grunwald et al. (2018) found that upscaled SOC spectral models performed better in 

terms of R2 and RPIQ, whereas the downscaled models showed less bias and smaller RMSE in 

Florida, USA. This study found no universal trend that could explain the scalability of the 

models, such as spectral variance, soil attribute variance, methods, and environmental 

characteristics or diversity.  
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Overall, SOC models with high model fit (R2 > 0.85 in regions CE, MG, MT and SC) 

coincided with relatively high mean SOC of > 12 g kg-1irrespective of SOC variabilities that 

were very large (e.g., 55.7 g kg-1 standard deviation, SD, in CE) or low (e.g., only 5.0 g kg-1SC 

in MT). Similar trends were discovered for soil texture models. For example, clay models with 

high model fit (R2 > 0.85 in regions ES, GO, MG, MS, RO, RS, SC and SP) corresponded with 

high mean clay content of > 210 g kg-1, though almost all of these models covered a wide range 

in clay contents with SD values ranging from 130 to 253 g kg-1). Trends among pH, CEC, and 

BS models were less clear among regions in terms of underlying factors to explain model 

performance. The model performance in this study showed comparable results with other 

spectral library studies (Viscarra Rossel et al., 2016) This suggest that soil spectral models for 

key indicators on Brazilian soils could be developed with similar quality as documented in other 

soil spectral studies. 

Samples from certain states showed high pedological variation (factors and processes of 

soil formation). States with pedological complexity and/or less sample size may have 

contributed to lower model fits and higher errors than more homogeneous and/or more densely 

sampled states. Though high sample size may not necessarily mean better model performance 

as indicated by models in SP, which performed excellent for clay, sand, and CEC, moderately 

for SOC, and less well for pH and BS. 

In order to confirm the effectiveness of the spectroscopic method to determine clay and 

sand contents, the textural triangle was produced showing simultaneously the observed values 

derived from traditional laboratory analysis and the predicted ones by the spectroscopic method 

(Fig. 6). The textural triangle of the entire BSSL (Fig. 6a) showed that most soil samples were 

placed in the soil texture classes of sand, loamy sand, sandy loam, sandy clay loam, sandy clay, 

and clay. The SE region showed similar trends in soil texture when compared to the whole 

BSSL database because the SE region contributed 52% of the total samples with textural data 

(Fig. 6b). However, the samples of SE showed lower silt content than the entire BSSL 

collection. The predicted soil textures for the S region (Fig. 6c) N region (Fig. 6e), and NE 

region (Fig. 6f) showed more scatter than the MW region (Fig. 6d). In the S region, most soils 

belong to clay textural class followed by silt clay and clay loam mainly due to the parent 

material predominantly formed by igneous rocks (Fig. 2c). The samples with the highest silt 

contents belong to the S region. This is related to the low temperature in this region on soil 

formation. In the MW region, the prediction model for clay and sand was the most accurate and 

this is reflected in the predicted samples, which presented the same trend as the observed ones 

(Fig. 6d). The vast majority of samples present a soil textural class varying from sand to clay. 
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The percentage of silt in these soils is low. In general, the MW region presents more weathered-

leached soils such as Ferralsols, derived from sedimentary and igneous rocks forming loamy 

sand and clayey soils. Soils from the N region showed a large variation in texture (Fig. 6e) 

corroborating the lower prediction performance of clay (Table 2) and sand content (Table 3) 

compared to other models. The NE region present a large amount of sandy soils and for this 

reason the predicted model had good performance (Fig. 6f). In the NE region, the majority of 

the soils in this study is formed from sedimentary materials, which is showed by the textural 

classes with high sand content (Fig. 6f).  

The textural variations found in the triangles of each region are due to differences in the 

geology, climate, and relief. Each region presents textural diversity as there is also a great 

variation of types of soils (Fig. 2e). It is important to emphasize that the predicted samples had 

the same tendency of the observed ones. This is a great finding considering the world demand 

for soil analyses with more than 600 million soil samples processed every year which represents 

a consumption of about 840 thousand kg of dichromate and ammonium ferrous sulfate and 3 

million L of sulfuric acid, just for SOC analysis (Demattê et al., 2019). The effectiveness of soil 

spectroscopic analysis is justified by the fact that it is fast, simple, accurate, cheap, and most 

importantly non-polluting method. The possibility of predicting several attributes with just one 

spectral reading, the easy and rapid data acquisition of large amounts of samples without using 

environmentally hazardous chemicals are the major advantages of the Vis-NIR-SWIR 

spectroscopy technique for soil analysis (Minasny and McBratney, 2008; Viscarra Rossel and 

Behrens, 2010). 
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Fig. 6. Soil texture triangle calculated from the entire database (a) and for Brazilian regions, (b) 

Southeast (SE), (c) South (S), (d) Midwest (MW), (e) North (N), and (f) Northeast (NE) regions. 

Cl: clay; SiCl: silty clay; SaCl: sandy clay; ClLo: clay loam; SiClLo: silty clay loam; SaClLo: 

sandy clay loam; Lo: loam; SiLo: silty loam; SaLo: sandy loam; Si: silt; LoSa: loamy sand; and 

Sa: sand. 
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Table 1. Cubist model parameters, descriptive statistics, and results of prediction models of 

Soil Organic Carbon (SOC). 

  

SOC 

(g kg-1) Descriptive analysis Observations Training set Validation set 
 Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

National 8.9 11.9 0.0 431.1 18076 12653 5423 0.82 5.07 1.38 0.78 6.89 0.94 

Regions South 12.0 15.1 0.0 141.4 1833 1283 550 0.82 6.66 2.69 0.71 8.12 2.05 

Southeast 8.0 5.2 0.0 54.9 9252 6476 2776 0.72 2.82 2.06 0.74 2.75 2.11 

Midwest 8.6 5.3 0.6 57.0 3104 2173 931 0.84 2.10 3.04 0.84 2.28 2.55 

Northeast 13.4 35.2 0.0 431.1 1309 916 393 0.87 14.64 0.69 0.79 9.97 1.15 
 North 8.2 6.7 0.0 105.6 2578 1805 773 0.64 4.20 1.66 0.58 4.41 1.80 

States AC - - - - - - - - - - - - - 

AL 1.5 1.0 0.7 4.1 32 19 13 0.29 0.92 1.49 0.43 0.76 1.22 

AM 8.0 8.1 0.1 105.6 435 304 131 0.78 3.20 1.64 0.72 5.92 1.15 

AP 12.4 6.6 2.0 56.0 817 571 246 0.21 5.70 1.31 0.32 6.09 1.64 

BA 1.8 1.7 0.3 20.2 242 169 73 0.87 0.75 1.64 0.84 0.39 2.31 

CE 40.5 55.7 0.5 310.8 105 73 32 0.98 6.55 5.54 0.93 25.93 0.91 

ES - - - - - - - - - - - - - 

GO 11.5 6.7 1.7 66.0 618 432 186 0.84 2.70 3.66 0.83 2.73 2.98 

MA 1.5 0.8 0.2 4.0 74 51 23 0.14 0.77 1.25 0.40 0.75 0.96 

MG 11.8 7.6 0.0 59.9 1065 745 320 0.88 2.74 3.81 0.89 2.45 3.85 

MS 7.5 4.3 0.6 32.6 2269 1588 681 0.85 1.73 2.68 0.85 1.72 2.71 

MT 12.8 5.0 4.1 25.6 217 151 66 0.90 1.57 5.38 0.89 1.65 5.11 

PA 6.3 5.3 0.1 38.9 305 213 92 0.61 3.60 1.42 0.69 3.24 1.73 

PB - - - - - - - - - - - - - 

PE 10.8 8.7 0.0 70.0 773 541 232 0.84 3.45 2.32 0.84 4.02 2.10 

PI 8.5 7.9 0.1 33.3 67 34 33 0.46 5.88 1.13 0.41 6.57 1.70 

PR - - - - - - - - - - - - - 

RJ - - - - - - - - - - - - - 

RN - - - - - - - - - - - - - 

RO 7.7 4.3 1.2 20.9 642 449 193 0.66 2.51 1.85 0.65 2.51 1.62 

RR 1.7 0.9 0.0 8.0 379 265 114 0.17 0.87 1.09 0.24 0.73 1.32 

RS 8.2 15.2 0.0 141.4 1238 866 372 0.81 6.86 0.57 0.76 8.57 0.44 

SC 20.0 11.2 0.2 93.2 595 416 179 0.74 5.92 2.51 0.86 3.89 3.86 

SE - - - - - - - - - - - - - 

SP 7.5 4.6 0.0 48.0 8185 5729 2456 0.66 2.80 1.90 0.66 2.63 1.99 

TO - - - - - - - - - - - - - 
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Table 2. Cubist model parameters, descriptive statistics, and results of prediction models of 

clay. 

Clay 

(g kg-1) 

Descriptive 

analysis Observations Training set Validation set 

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

National 327.5 217.6 0.0 986.8 32350 22645 9705 0.88 77.00 4.35 0.88 75.93 4.36 

Regions South 448.6 197.4 0.0 880.0 4059 2841 1218 0.83 82.02 3.91 0.83 81.12 4.20 

Southeast 284.5 201.6 5.0 960.0 17448 12214 5234 0.91 59.89 3.76 0.92 58.82 3.71 

Midwest 352.5 242.4 0.0 910.0 7656 5359 2297 0.94 59.25 7.75 0.94 58.61 7.68 

Northeast 222.4 136.9 3.0 629.0 609 426 183 0.75 70.13 3.06 0.78 59.28 2.99 

North 378.6 190.8 10.0 986.8 2578 1805 773 0.71 102.67 2.62 0.74 96.85 2.48 

States AC - - - - - - - - - - - - - 

AL 130.9 76.7 30.0 300.0 32 22 10 0.72 45.38 2.20 0.71 38.71 2.07 

AM 315.8 224.0 10.0 986.8 550 385 165 0.85 86.37 2.83 0.80 101.50 2.18 

AP 469.8 172.4 80.0 920.0 432 302 130 0.57 112.74 2.31 0.61 109.45 2.54 

BA 230.2 136.0 11.0 626.0 402 281 121 0.83 56.45 3.60 0.84 52.85 4.01 

CE 256.8 144.4 20.0 534.0 23 16 7 0.49 105.19 1.96 0.42 107.84 1.77 

ES 209.9 130.7 10.0 600.0 100 70 30 0.92 37.60 3.99 0.92 38.53 5.97 

GO 311.6 253.0 20.0 890.0 2148 1504 644 0.97 47.24 9.97 0.96 52.15 8.99 

MA - - - - - - - - - - - - - 

MG 550.7 244.1 10.0 960.0 1729 1210 519 0.88 83.95 5.10 0.88 87.79 5.01 

MS 372.0 236.7 0.0 910.0 5350 3745 1605 0.94 55.81 7.84 0.93 61.27 7.41 

MT 245.3 182.5 20.0 840.0 158 111 47 0.81 88.04 1.14 0.83 53.89 1.00 

PA 341.4 205.0 15.8 931.4 296 207 89 0.63 124.26 1.93 0.69 116.23 2.38 

PB - - - - - - - - - - - - - 

PE 268.2 102.7 90.0 490.0 69 48 21 0.67 58.70 3.34 0.63 63.54 2.44 

PI 147.2 148.8 3.0 595.0 66 46 20 0.60 93.72 2.15 0.50 105.55 1.58 

PR 555.7 217.1 0.0 880.0 299 209 90 0.86 83.06 4.33 0.81 88.30 3.45 

RJ - - - - - - - - - - - - - 

RN 268.2 138.2 98.0 533.0 17 9 8 0.52 100.94 2.16 0.43 98.51 1.49 

RO 451.3 161.1 80.0 880.0 642 449 193 0.89 53.96 4.45 0.89 55.85 4.65 

RR 327.9 129.0 48.0 800.0 626 438 188 0.69 73.49 2.18 0.68 69.38 2.33 

RS 445.6 207.8 0.0 837.0 1642 1149 493 0.84 84.21 4.37 0.85 78.80 4.60 

SC 435.7 181.1 0.0 800.0 2118 1483 635 0.84 72.58 4.00 0.85 70.18 4.13 

SE - - - - - - - - - - - - - 

SP 255.5 173.2 5.0 910.0 15617 10932 4685 0.90 54.24 3.13 0.90 54.33 3.17 

TO 106.3 124.8 10.0 530.0 32 19 13 0.82 34.39 2.04 0.80 86.52 0.69 
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Table 3. Cubist model parameters, descriptive statistics, and results of prediction models of 

sand. 

Sand (g kg-1) 
Descriptive analysis Observations Training set Validation set 

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

National 529.7 284.1 0.0 990.0 33481 23437 10044 0.87 102.06 5.17 0.87 103.03 5.08 

Regions South 242.9 213.9 10.0 990.0 4059 2841 1218 0.78 101.82 2.65 0.77 101.54 2.65 

Southeast 606.2 252.4 0.0 970.0 17687 12381 5306 0.90 80.67 4.34 0.90 80.02 4.35 

Midwest 567.8 278.9 0.0 966.0 7656 5359 2297 0.94 66.10 8.05 0.94 68.04 7.90 

Northeast 651.9 237.3 26.0 988.0 682 477 205 0.80 106.18 2.74 0.83 102.00 2.98 

North 363.0 244.2 0.0 980.0 3397 2378 1019 0.79 113.73 4.04 0.78 114.95 3.68 

States AC - - - - - - - - - - - - - 

AL 796.9 87.9 610.0 940.0 32 19 13 0.40 64.16 1.44 0.38 78.69 1.21 

AM 373.6 197.6 0.0 910.0 551 386 165 0.71 108.92 2.31 0.71 119.88 2.41 

AP 203.2 223.4 0.0 808.0 1250 875 375 0.84 90.47 3.54 0.83 93.95 3.30 

BA 734.6 150.7 96.0 988.0 402 281 121 0.78 69.31 3.13 0.80 71.66 2.51 

CE 434.1 280.9 26.0 977.0 95 67 29 0.88 107.93 5.22 0.90 87.27 5.43 

ES 747.4 136.1 360.0 950.0 100 70 30 0.86 46.28 3.35 0.87 57.95 4.23 

GO 626.9 294.5 36.9 951.0 2148 1504 644 0.96 55.65 10.26 0.97 53.94 10.31 

MA - - - - - - - - - - - - - 

MG 271.2 215.7 0.0 970.0 1729 1210 519 0.80 98.88 3.20 0.78 102.97 3.25 

MS 542.0 269.5 0.0 966.0 5350 3745 1605 0.94 64.73 8.03 0.95 61.89 8.11 

MT 638.6 237.0 20.0 960.0 158 111 47 0.87 81.81 1.92 0.83 110.60 1.81 

PA 474.8 260.8 13.0 945.0 296 207 89 0.67 152.30 2.83 0.73 134.56 3.09 

PB - - - - - - - - - - - - - 

PE 467.07 166.3 93.0 897.0 69 48 21 0.21 147.06 1.40 0.30 141.66 1.38 

PI 610.2 358.2 27.0 985.0 67 47 20 0.83 153.65 4.56 0.80 169.41 3.83 

PR 298.6 247.4 10.0 960.0 299 209 90 0.91 74.91 5.07 0.90 72.17 3.50 

RJ - - - - - - - - - - - - - 

RN - - - - - - - - - - - - - 

RO 508.2 162.9 100.0 900.0 642 449 193 0.88 54.50 4.40 0.88 59.80 4.52 

RR 446.1 177.7 6.0 910.0 626 438 188 0.55 121.23 1.90 0.58 117.05 1.95 

RS 241.7 229.5 10.0 928.0 1642 1149 493 0.78 111.46 2.39 0.81 99.93 2.43 

SC 235.9 194.2 10.0 990.0 2118 1483 635 0.82 82.92 3.27 0.82 83.12 3.01 

SE - - - - - - - - - - - - - 

SP 641.9 228.6 0.0 969.0 15856 11099 4757 0.89 76.13 2.89 0.89 75.58 3.02 

TO 846.6 164.9 290.0 980.0 32 22 10 0.91 48.14 1.77 0.88 73.29 1.50 
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Table 4. Cubist model parameters, descriptive statistics, and results of prediction models of 

pH. 

pH (H2O) 
Descriptive analysis Observations Training set Validation set 

Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

National 5.4 0.7 0.0 8.9 26163 18314 7849 0.53 0.40 1.70 0.54 0.39 1.66 

Regions South 4.7 0.5 3.8 6.5 328 229 99 0.35 0.44 1.42 0.34 0.47 1.19 

Southeast 5.5 0.6 0.6 8.7 17001 11900 5101 0.49 0.42 1.83 0.49 0.42 1.83 

Midwest 5.4 0.7 0.0 8.5 5947 4162 1785 0.51 0.45 1.82 0.52 0.43 1.84 

Northeast 5.5 1.0 2.8 8.9 732 512 220 0.60 0.69 2.26 0.65 0.63 2.01 

North 4.9 0.6 2.5 7.7 2155 1508 647 0.41 0.47 1.69 0.46 0.45 1.76 

States AC - - - - - - - - - - - - - 

AL 6.0 0.4 5.4 7.0 32 19 13 0.41 0.26 1.48 0.46 0.06 1.54 

AM 4.6 0.5 3.2 7.1 501 350 151 0.35 0.43 1.73 0.43 0.41 1.41 

AP - - - - - - - - - - - - - 

BA 5.2 0.8 3.6 8.4 403 282 121 0.57 0.53 1.58 0.58 0.50 1.61 

CE 5.7 1.2 3.0 8.3 33 19 14 0.73 0.62 1.23 0.97 0.45 1.31 

ES - - - - - - - - - - - - - 

GO 5.5 0.6 4.0 8.2 2050 1435 615 0.41 0.57 2.20 0.41 0.54 2.19 

MA - - - - - - - - - - - - - 

MG 5.1 0.7 3.0 8.3 1352 946 406 0.50 0.46 1.61 0.55 0.45 1.45 

MS 5.3 0.7 0.0 8.5 3730 2611 1119 0.53 0.42 1.80 0.58 0.42 1.74 

MT 5.6 0.6 3.8 7.4 167 116 51 0.31 0.72 1.69 0.45 0.66 1.79 

PA 4.7 0.7 2.5 7.7 308  93 0.59 0.45 1.42 0.50 0.40 1.88 

PB - - - - - - - - - - - - - 

PE 5.1 0.9 3.9 8.2 69 41 28 0.62 0.32 1.49 0.97 0.20 0.72 

PI 6.0 1.7 2.8 8.9 67 40 27 0.54 1.25 2.96 0.29 1.38 1.68 

PR - - - - - - - - - - - - - 

RJ - - - - - - - - - - - - - 

RN - - - - - - - - - - - - - 

RO 5.1 0.4 3.9 6.4 672 470 202 0.26 0.59 1.94 0.30 0.54 2.00 

RR 4.9 0.6 3.5 7.6 627 438 189 0.53 0.22 1.38 0.55 0.15 1.32 

RS 5.0 0.5 4.4 6.0 23 16 7 0.43 0.26 1.39 0.35 0.07 0.14 

SC 4.7 0.4 3.8 6.5 305 213 92 0.29 0.62 1.40 0.30 0.57 1.33 

SE - - - - - - - - - - - - - 

SP 5.5 0.6 0.6 8.1 15547 10882 4665 0.47 0.42 1.90 0.48 0.44 1.89 

TO - - - - - - - - - - - - - 

  



43 
 

 

Table 5. Cubist model parameters, descriptive statistics, and results of prediction models of 

Cation Exchange Capacity (CEC). 

CEC (cmolc kg-1) 
Descriptive analysis Observations Training set 

Validation 

set 
 Mean SD Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

National 47.7 41.9 0.0 958.0 17433 12203 5230 0.66 25.78 1.46 0.68 24.02 1.52 

Regions South 12.6 5.9 1.3 35.7 631 442 189 0.60 3.72 1.77 0.64 3.81 1.83 

Southeast 54.2 41.5 0.0 778.7 9896 6927 2969 0.75 21.64 1.63 0.79 20.02 1.73 

Midwest 49.9 32.9 0.0 528.4 3974 2782 1192 0.77 16.06 2.35 0.75 17.29 2.11 

Northeast 53.6 88.6 0.0 958.0 682 477 205 0.82 39.44 1.72 0.89 27.68 2.38 
 North 23.3 23.9 0.1 248.0 2250 1575 675 0.74 13.16 1.81 0.72 12.40 1.95 

States AC - - - - - - - - - - - - - 

AL 49.7 15.9 27.0 97.0 31 18 13 0.11 20.41 1.10 0.02 10.26 0.78 

AM 22.0 35.8 1.0 248.0 501 351 150 0.91 11.75 0.56 0.84 14.92 0.45 

AP 37.3 16.3 15.1 138.8 432 302 130 0.67 9.70 1.99 0.59 10.17 1.73 

BA 33.5 39.6 0.0 224.0 403 282 121 0.79 19.42 3.08 0.77 19.30 3.01 

CE 25.4 24.5 3.3 117.7 33 23 10 0.70 15.84 0.86 0.74 10.44 1.31 

ES 85.5 28.0 44.7 183.5 100 70 30 0.35 22.94 1.58 0.29 25.23 1.10 

GO 68.3 38.9 3.2 454.8 606 424 182 0.72 23.32 1.71 0.72 17.14 2.34 

MA - - - - - - - - - - - - - 

MG 66.9 45.1 0.5 778.7 1745 1222 524 0.68 26.71 1.92 0.67 24.77 1.81 

MS 49.0 30.2 10.1 528.4 3101 2171 930 0.79 13.99 2.50 0.76 14.85 2.32 

MT 18.5 19.3 0.0 75.0 267 187 80 0.97 3.16 12.04 0.93 5.39 6.82 

PA 15.6 22.7 1.4 183.2 302 211 91 0.45 20.01 0.50 0.26 17.87 0.50 

PB - - - - - - - - - - - - - 

PE 6.8 2.6 2.7 17.3 69 48 21 0.25 1.95 1.48 0.16 2.71 1.36 

PI 199.8 177.4 17.1 958.0 48 24 24 0.53 88.89 2.37 0.53 211.64 0.95 

PR - - - - - - - - - - - - - 

RJ 16.6 8.6 7.4 32.9 12 6 6 0.27 10.41 0.50 0.56 6.94 2.07 

RN 36.6 35.0 1.9 102.2 25 13 12 0.95 7.35 5.40 0.99 5.11 11.48 

RO 29.8 13.1 8.1 102.1 638 447 191 0.69 7.30 1.96 0.65 8.06 1.90 

RR 4.5 2.6 0.1 24.0 377 264 113 0.40 1.91 1.41 0.36 2.64 1.11 

RS 13.5 7.2 1.3 35.7 326 228 98 0.55 5.14 1.66 0.50 4.63 1.72 

SC 11.6 4.0 3.8 24.5 305 214 92 0.63 2.43 2.53 0.65 2.32 2.34 

SE 142.4 142.1 23.0 627.4 65 45 20 0.93 41.99 1.23 0.94 37.78 5.30 

SP 51.0 40.1 0.0 564.0 8039 5627 2412 0.82 18.67 1.50 0.79 17.65 1.50 

TO - - - - - - -   - - - - - 

 

  



44 
 

 

Table 6. Cubist model parameters, descriptive statistics, and results of prediction models of 

Base Saturation (BS). 
BS (%) Descriptive analysis Observations Training set Validation set 

 Mean SD Min Max Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

National 39.6 23.6 0.0 100.0 19915 8535 0.50 16.93 2.39 0.49 17.01 2.40 

Regions South 44.4 22.9 1.7 89.7 228 98 0.56 15.26 2.55 0.54 15.51 2.60 

Southeast 44.9 22.4 0.0 100.0 11887 5094 0.48 16.33 2.20 0.49 16.28 2.24 

Midwest 31.4 21.9 1.0 99.0 5183 2221 0.58 14.62 2.28 0.57 14.72 2.32 

Northeast 37.9 29.3 1.4 100.0 445 191 0.81 12.93 3.47 0.79 13.42 3.20 
 North 29.8 24.1 0.0 100.0 2172 931 0.70 13.42 2.72 0.69 13.93 2.70 

States AC - - - - - - - - - - - - 

AL 41.4 18.1 16.0 74.0 19 13 0.14 17.16 1.51 0.33 15.40 2.11 

AM 19.0 14.2 1.0 100.0 351 150 0.47 9.29 1.29 0.70 9.91 1.41 

AP 40.7 27.2 0.0 88.0 874 375 0.71 14.75 3.53 0.63 16.63 3.10 

BA 23.1 17.8 1.4 94.4 281 121 0.53 12.44 1.72 0.57 12.33 1.70 

CE 86.0 11.1 52.0 100.0 23 10 0.69 6.76 1.26 0.60 8.07 0.93 

ES - - - - - - - - - - - - 

GO 29.8 24.6 1.0 99.2 1492 640 0.70 13.65 3.01 0.69 13.40 2.87 

MA - - - - - - - - - - - - 

MG 30.2 23.3 0.0 100.0 1222 524 0.57 16.75 2.12 0.55 16.96 2.02 

MS 31.5 20.5 2.0 97.0 3585 1537 0.58 13.73 2.24 0.43 15.98 1.92 

MT 50.3 18.8 9.0 96.0 105 45 0.58 11.89 1.77 0.38 16.01 1.12 

PA 26.8 21.1 0.0 95.5 211 91 0.54 14.81 1.73 0.52 15.00 1.75 

PB - - - - - - - - - - - - 

PE 41.4 22.0 9.0 100.0 48 21 0.59 14.22 1.93 0.28 19.56 1.28 

PI 76.9 20.4 25.0 100.0 47 20 0.57 12.37 1.88 0.37 18.68 1.49 

PR - - - - - - - - - - - - 

RJ - - - - - - - - - - - - 

RN - - - - - - - - - - - - 

RO 15.0 8.6 2.0 63.0 449 193 0.46 6.76 1.63 0.45 6.25 1.28 

RR 38.1 22.8 1.1 100.0 264 113 0.55 16.13 2.10 0.39 17.88 2.07 

RS 44.4 22.9 1.7 89.7 228 98 0.69 13.13 3.02 0.35 18.61 2.11 

SC - - - - - - - - - - - - 

SE - - - - - - - - - - - - 

SP 46.8 21.6 0.0 99.8 10587 4537 0.52 15.36 2.22 0.33 17.69 1.97 

TO - - - - - - - - - - - - 

 

2.3.4. Spectral classification 

In order to categorize how many spectral patterns are required to represent Brazilian soils 

according to the shape of the 39,284 spectral signatures, the first three principal component 

scores (Fig. 7a) were used as variables in the cluster analysis (Terra et al., 2015). The 

eigenvectors of PC1 are dominated by positive loadings along the wavelengths, which captured 

64% of the total variance. The high positive loadings were found in the visible region that 

showed the characteristic absorptions for iron oxides (Fig. 7a). The eigenvector of the PC2 

(10%) showed high negative loadings near at wavelengths for the characteristic absorptions of 

2:1 clay mineral (illite and smectite) and possibly organic matter. The PC3 (7.6%) fluctuated 

between positive and negative loadings.  

In order to reduce the dimensionality of the data, the first three principal component 
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scores (Fig. 7a), were applied to determine the optimal number of clusters. We selected six 

clusters (classes) because, since the pE was maximized and the pC was minimized when six 

clusters were obtained (Table 7), which was then selected to represent the most satisfactory 

cluster for the data. In the crisp clustering, each observation receives membership values of 0 

or 1 for each cluster. In the scatter diagram it shows the distribution of all observations colored 

in the 6 crisp classes (Fig. 7b). 

 

 
Fig. 7. Principal components eigenvectors of PC 1, 2, and 3, (a) and crisp fuzzy-c-means 

classification, considering six groups (b). Principal components analysis was performed with 

the continuum removed spectra. Sampling points clustering was based on PC scores.   
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Table 7. Fuzzy validation indices for the optimum number of clusters, the partition entropy 

(pE), and the partition coefficient (pC). 

Number of clusters* pE pC 

3 0.57 0.68 

4 0.63 0.68 

5 0.71 0.65 

6 1.06 0.48 

7 0.86 0.61 

8 0.91 0.60 

9 0.97 0.58 

10 1.04 0.55 

11 1.11 0.53 

12 1.05 0.56 

* In bold is the optimal number of clusters. 

 

The average CR spectra of 6 classes is presented in Fig. 8. The average spectrum of 

classes 1, 4, and 5 (Fig. 8a, g, i) were characterized by absorptions representative of soils with 

abundant iron oxides (400 to 600 nm), while the classes 2, 3, and 6 (Fig. 8c, e, l) showed relevant 

absorptions in the NIR-SWIR regions. Although fairly similar, class 4 may be differentiated 

from 1 and 5 classes by the absorption features at 500 and 900 nm. The spectrum from class 4 

(Fig. 8g) presented features less pronounced than the other two (Fig. 8a, i). These features were 

related to the crystal field electronic effect of hematite mineral and consequently to the ferric 

ion (Fe+3) observed in such iron oxides. The interaction between electromagnetic energy and 

hematite results in electronic transitions, creating the absorption features centered at 530 and 

885 nm. Spectra from classes 1 and 5 can be distinguished from each other by the CR 

reflectance factor at the SWIR-1 range (1,000-1,800 nm), whereas class 5 presented a lower CR 

factor. Fuzzy class 2 can be distinguished from the others by the lower CR factor of features 



47 
 

 

centered at 1,200, 1,900 and 2,200 nm. Finally, class 3 spectrum has high CR factor between 

350-750 nm, which is related to low content of iron oxides in soils. 

In the fuzzy-c-means clustering, each data point can belong to more than one cluster. 

The probability of each soil sample being classified in the fuzzy membership class 1 is shown 

in Fig. 8b. In the center of the fuzzy membership class 1 are the samples with high probability 

of pertaining to this class (red color). The same analogy applies to the other five classes. These 

findings suggest that six types of spectra represent the whole population of Brazilian soils. The 

six classes of spectra were discriminated according to the spectral pattern of soils, which is 

directly linked to intrinsic heterogeneous characteristics, where by contents of SOC, iron 

oxides, mineralogy of the clay fraction, particle size distribution, and moisture, are the ones that 

most influence the spectral responses. 

Stoner and Baumgardner (1981) found five spectral classes in a large database of the 

U.S. and Brazil. The authors suggested that five soil spectral reflectance curves could be 

distinguished as sharing in common certain differentiating characteristics concerning mainly 

the organic matter and iron oxide contents. One of the classes was detected because it had its 

origin in Brazil (Paraná state). Formaggio et al. (1996) identified four patterns of spectral curves 

according to the shape and intensity of the parameters in one state (São Paulo) in Brazil. 

Viscarra Rossel et al. (2016), used a global spectral library to characterize the world's soil and 

found six classes of spectra. The authors also stated that grouping the spectra into more 

homogeneous spectral classes can improved the modeling by removing bias in the predictions. 

Terra et al. (2018) found 6 different patterns of soil spectra based on differences in reflectance 

intensity and absorption features caused by weathering intensification, which enabled to 

distinguish soil samples regarding similarity of particle size distribution, mineralogy, and some 

chemical properties. 
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Fig. 8. The average continuum removed spectrum of each fuzzy cluster (a, c, e, g, i, and l) and 

fuzzy membership values for the 6 clusters (b, d, f, h, j, and m). 

 

From the six classes defined by crisp fuzzy (Crisp-1 to Crisp-6), Crisp-4 presents the 

largest number of samples (9,893 samples), closely followed by Crisp-1 (9,530 samples) (Fig. 

9). Most of the samples in fuzzy c-means classes (FMD-1 to FMD-6) were correctly assigned 
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to the correspondent crisp classes. More than half of FMD-1 samples were classified as Crisp-

1 (Fig. 9), another part was misclassified as Crisp-4 and Crisp-5, while few ones were defined 

as Crisp-2, Crisp-3, and Crisp-6. This suggests that Crisp-1, 4, and 5 are related to each other, 

which is corroborated by the similarity in CR spectra of these classes (Fig. 8a, g, i). In FMD-2, 

the dominant misclassified classes were Crisp-3 and Crisp-6 (Fig. 9). Most of FMD-3 

individuals were correctly assigned as Crisp-3, with few samples misclassified as Crisp-2 and 

Crisp-6. FMD-4 showed higher misclassification with Crisp-1, followed by Crisp-6. As 

expected, FMD-5 was mostly misclassified as Crisp-1 and Crisp-4, confirming the correlation 

between their spectral pattern. Finally, FMD-6 was mainly misclassified as Crisp-4, 

demonstrating the similarity between the spectra of these classes (Fig. 8g, l). 

 

 
Fig. 9. Sankey diagram showing the relative associations between crisp and Fuzzy Membership 

Degree (FMD) for each class. 
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2.3.5. Correspondence Analysis 

The CA analysis showed that spectral classes 1 and 5 were correlated with the MW 

region, while class 4 was similar with region SE, class 6 with region S, class 2 with region N, 

and class 3 with region NE (Fig. 10a). The spectral classes 5, 1, 4, and 6 resemble MS, SP, PR, 

GO, MA, RS, RJ, MT, and PB states, that is the points are very close in the simultaneous plot 

of row and column coordinates (Fig. 10b). The spectral class 3 showed proximity with AL, RN, 

AM, ES, BA, and PE with most of them from regions N and NE. The spectral class 2 showed 

some similarity with AP, RO, RR, PA, and AC states. The sedimentary rocks were highly 

associated with spectral class 1, metamorphic rocks were correlated with classes 2 and 3, and 

igneous rocks with classes 5 and 6 (Fig. 10c). For the CA between spectral classes and biomes 

(Fig. 10d), the classes 1, 4, and 6 were related with Atlantic Forest biome, class 5 with Cerrado, 

class 3 with Pampa, Pantanal and Caatinga, and class 2 with Amazon. For the CA of spectral 

and soil classes only profile samples that have layer B collected were used. The Gleysols and 

Plinthosols classes were associated with spectral class 2, Ferralsol is highly associated to classes 

1 and 4 (Fig. 10e). Nitosols and Lixisols were associated with class 6, and Cambisols with class 

3. Histosols, Arenosols, Podzols, Planosols, and Vertisols were not associated with any 

particular spectral class but it is worth mentioning that they were closer to class 3. The CA of 

spectral classes and soil layers showed that classes 6 and 3 were correlated with A layer (Fig. 

10f). The B layer showed some association with spectral classes 2, 4, and 5 (Fig. 10f), which is 

corroborated by the fact that spectral classes 4 and 5 showed similarity in CR spectrum (Fig. 

8g, i). The C layer was strongly associated with class 1. It is also important to mention that the 

spectral class 4 was right in the middle of layers A and B, and spectral class 5 was in the middle 

of layers B and C. The D layer did not present direct associations with any of the spectral classes 

(Fig. 10f), indicating that the D layer presented contradictory spectral pattern considering the 6 

spectral classes.  
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Fig. 10. Ordination diagrams from the correspondence analysis (CA) between the 6 spectral 

classes and Brazilian regions (a), states (b), geology (c), biomes (d), soil classes (only profile 

samples that have layer B were used) (e), and layers (f). 

 

2.4. CONCLUSIONS 

The BSSL provided strong evidence to be a useful tool to estimate soil attributes such 

as clay, sand, SOC, CEC, pH, and BS, with variable results. There were differences among 
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models considering national (for all Brazil), regional and state scales. The results were coherent 

for clay, sand, SOC, and CEC. The attributes with low content in soils are more prone to show 

high inaccuracy and need further evaluations, such as chemical ones (Ca, K, P, others). Cluster 

analysis showed that Brazil has six classes of spectral signatures among the studied whole 

population and there were clear differences among spectra developed in different geographic 

(i.e., states) and environmental locations (i.e., geology). The results endorse the importance and 

relevance of spectral libraries for soil evaluation in support of the quantification of soil quality 

and classification. The large spectral database, will be enhanced at scales that meet the users' 

needs for soil mapping in Brazil. The use of sensors and geotechnologies, due to their rapid and 

low cost analysis, allows a higher sample throughput and denser sampling. Both can generate 

data for soil survey and mapping that will assist in the sustainable management of agriculture 

and forest systems. We believe that soil spectroscopy in Brazil is on the right track, because it 

is a fast, simple, accurate and most importantly non-pollutant method. In addition, a strong 

collaborative network and infrastructure has been formed that supports the expansion of soil 

spectral soil mapping. With the approval of Brazil's National Soils Program (PronaSolos), 

which is promising in relation to the mapping of Brazilian soils, we hope that techniques such 

as soil spectroscopy can be applied. 

Besides the importance of spectral standardization, spectral libraries such as the BSLL 

must be accompanied by chemical and physical characterization of soil attributes. Depending 

on the volume of soil samples, the standard procedures applied to spectral measurements can 

be complex and time-consuming. Despite the spectral variation can also be an issue to be faced, 

the incorporation of soil chemical and physical data is crucial. The spectral acquisition is no 

more an obstacle to the organization of spectral libraries but the collection of reliable and 

consistent soil chemical and physical data poses challenges. Soil spectral information is 

dependent on wet analysis. In some cases, the soil sample collection and wet chemistry and 

physical analyses were conceived before the BSSL initiative. Therefore, standardized collection 

and analyses of samples were not possible in all circumstances. We agreed that it can create a 

margin of error in both calibration and validation processes, but the novelty of this database and 

the difficulty to gather information must be taken into consideration. Furthermore, having a 

SSL that represent Brazilian soils is just as important as defining the degree of uncertainty. 

Therefore, in the first stage of the SSL’s development we decided to include samples from many 

wet chemistry and physical laboratories. 

The results are a first step towards the establishment of the BSSL. The database is being 

continuously increased with new information, consequently increasing its representativeness 
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along the Brazilian territory. Improvements in the frame-work have been conduced, including 

computational routines implementing sophisticated statistical procedures, which will reduce the 

uncertainties in the calibration procedure. Among them, data will be filtered and standardized 

with wavelets, which will help to account for the inconsistencies in sample preparation, 

different measurement protocols and instruments that were used. In parallel, different machine 

learning algorithms have been evaluated, aiming to define the most suitable data mining method 

for our dataset. These mining procedures account for local relationships in the data providing 

to the models a wide usability at different spatial scales (local, regional and national). We also 

developed an interactive online platform to disseminate the use of spectroscopy in soil science, 

and to interact with the database administrators. The soil dataset and their contributors can be 

accessed at <https://bibliotecaespectral.wixsite.com/esalq>. By increasing the number of users, 

the data available and knowledge will also increase and consequently the BSSL will be 

constantly improved to represent the variability of Brazilian soils. We have to keep in mind that 

the importance of spectra is not only concentrated on chemical agriculture information (i.e., Ca, 

Mg, K, others). From one measurement, we can achieve chemical, physical and mineralogical 

information, which all are important for soil mapping and agriculture as well. Finally, in our 

vision, wet analysis is an important method and now have the great opportunity to merge 

knowledge (and aggregate information) with proximal sensing, to evolve on soil analysis to a 

new generation and its benefits.  
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3. THE BRAZILIAN PROGRAM OF SOIL ANALYSIS VIA SPECTROSCOPY 

(PROBASE): BRINGING WET LABORATORIES TO UNDERSTAND NEW 

TECHNOLOGIES 

 

ABSTRACT 

Soil analysis by spectroscopy has been extensively studied. However, the applications, 

potential and limitations of the technique are still not well known by end-users, such as 

commercial laboratories. The present work deals with bringing together spectroscopy and the 

commercial community (wet laboratories) to perform practical dynamics and understand how 

spectroscopy works. A total of 35 laboratories sent soil samples for this study. They received a 

protocol with instructions and sent soil samples (200 per laboratory with a total of 7200-

ProBASE dataset) with their respective analysis to a centralized spectroscopy laboratory 

(University of São Paulo). Samples were measured for visible-Near-Short-wave-infrared, vis-

NIR-SWIR (400-2500 nm), Middle-infrared, MIR (3000-25000 nm) and X-ray fluorescence 

(XRF). We also used in this exercise the Brazilian Soil Spectral Library (BSSL) model (vis-

Nir-SWIR) constructed with 49753 samples (BSSL-dataset). We performed three strategies 

with vis-NIR-SWIR as follows: a) applied a model using the ProBASE-dataset in each 

laboratory dataset (200 samples per laboratory); b) applied a model using the entire ProBASE-

dataset (about 7200 samples); c) applied the BSSL-dataset model to the entire ProBASE-

dataset. Afterwards, we modelized using other spectral ranges for comparison. There was a 

great variation of results which can be summarized as follows: a) all techniques are 

environmentally friendly, b) vis-NIR-SWIR and XRF are the faster; c) XRF had the best 

quantification for calcium; d) MIR had the best performance for clay and sand contents; e) vis-

NIR-SWIR had for organic matter, Mg, base sum and CEC; f) the three spectral range had good 

performance for sand and clay; g) chemical elements (Ca, K, Mg, pH) models vary in 

accordance with the regional population used. In our case, the best models were first from the 

local population (laboratory samples), going to the ProBASE-dataset (regional) and after using 

a national model (BSSL). Results indicate that all spectral ranges are useful to be part of a wet 

laboratory dynamics, where each one has advantages and limitations, but can be 

complementary. This indicates that it is feasible to create a hybrid laboratory. The dynamics 

was very well received by the commercial community (95% responded positively for the 

initiative) which now understands the system and can make better decisions.  

 

Key words: soil analysis, quantification, commercial spectroscopy, sensors 

 

3.1. INTRODUCTION 

Brazil has about 66 million ha with strong agriculture activity and more 11% possible 

to use (IBGE, 2019). These are numbers from a single country that gathers a large extension of 

the world’s agricultural soils. The optimization of the productivity requires enough soil data to 

support its  management, which exponentially increases the demand for soil analysis. It is 

estimated about 600.000 millions soil analyses around the world (Demattê et al., 2019). 

Molin and Tavares (2019) indicated that for mapping soil attributes would be at least 1 

sample per ha in precision agriculture. To perform all these soil analyses, we have the 

production of several pollutants residues. For example, for organic carbon determination by 
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wet-combustion, it is used about 0,196 g of ammonium sulphate (Cr2O7
2−), 1,2 g of 

hexahydrated iron and 5 ml of sulphuric acid (H2SO4) per sample (Demattê et al., 2019).  These 

will take us to a total of 840.000 kg of ammonium and iron dichromate and sulfate, 3.000.000 

of liters of sulfuric acid per year (Demattê et al., 2019). In the case of dry-combustion, there is 

no use of chemical reagents, but the costs for reaching the content by it is much higher. 

Generally, the methods employed by wet laboratories (that employ chemistry in the liquid phase 

for soil analyses) are non environmental friendly, expensive and time consuming (Soriano-

Disla, 2014; Nocita et al., 2015)  Thus, the question is if the traditional soil analysis is 

sustainable.  

Due to the indicated issues (costs, use of residues and crescent demand), new techniques 

have been extensively studied, such as proximal sensing (PS). In the past century, important 

results have been raised, but the technique has not evolved due to the lack of equipment and 

strong statistical packages. This restricted the number of researchers from around the world to 

study the subject. In 1995, Ben-dor and Banin published a pioneering study regarding NIRs 

(700–1100 nm) to quantify soil attributes. Thus, soil properties prediction increased 

exponentially as observed in a great review made by Soriano-Disla et al. (2014). The visible 

(400–700 nm), NIR (700-1100 nm), and SWIR (1100–2500 nm) spectral regions is the main 

range used, due to their response to numerous soil attributes and the fact that most of the 

commercial equipment operate in these spectral ranges. 

As the use of vis-NIR-SWIR grew (Angelopoulou et al., 2020), other spectral ranges 

began to be studied. The Middle-infrared (MIR) range  responses with higher sensibility to 

smaller changes in the soil condition due to fundamental vibrations and it improved the 

predictions for several soil attributes  (Hutengs et al., 2019). Several studies indicated that its 

results are better than vis-NIR-SWIR (Viscarra-Rossel et al., 2006; Soriano-Disla et al., 2014; 

Terra et al., 2015). An unfavorable point of MIR range is the time-consuming soil sample 

preparation for the spectral reading (Helfenstein et al., 2021). Also, in recent years studies have 

emerged in the X-ray range, by the use of X-ray fluorescence technique (XRF), with emphasis 

on portable instruments (pXRF) (Weindorf et al., 2014). The X-ray energy reaches the atoms 

of elements present in the soil sample and this interaction at the atomic level emits the 

fluorescence energy. (Weindorf et al., 2014)  This energy is specific for each element and 

proportional to its content, allowing a measurement of chemical composition of soil sample. 

(Weindorf et al., 2014)  This region has been used to estimate indirectly several soil attributes 

https://www.sciencedirect.com/science/article/abs/pii/S0016706119307372#!
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with accurate results (Stockmann et al., 2016; Zhang and Hartemink, 2019, Tavares et al., 

2020). 

Many studies have pointed to the use of PS as an alternative because it is a fast, low-

cost, environmentally friendly and allows the simultaneous analysis of several elements (Brown 

et al., 2006; Stenberg et al., 2010; Nocita et al., 2015). In the academic world, the use of 

spectroscopy applied to soils is already a well-established subject, but not clear on how to put 

it in practice for commercial approach. For example, what is the population of samples 

necessary to training the models? The dataset should be from a continent, a country, state, or 

farm? Regional or local? How can this technique be implemented in a commercial wet 

laboratory? As the results reached the community, wet laboratories started to be concerned with 

the technique. Would this technique substitute the wet soil analysis? Will it be the end of the 

traditional soil laboratories? 

A concern of laboratory managers is if spectroscopy makes traditional analyzes obsolete 

or substituted. On the other hand, Demattê et al. (2019) pointed out, spectroscopy is dependent 

on traditional methods and the low quality of wet chemistry analysis propagates the error to 

spectroscopy estimation. Demattê et al. (2019) indicated that the future of soil analysis is the 

denominated hybrid laboratory. This strategy shows that the sensors will be part of the system 

and will work in conjunction with wet chemistry. In 2017, FAO created the GLOSOLAN 

(Global Soil Laboratory Network), the global group of traditional soil laboratories, which have 

as objectives to stimulate and standardize the use of spectroscopy in soil analysis around the 

world. Although, there are still important issues to be considered on the communication 

between final customers (farmers), suppliers (sensor industry), and service providers (wet 

laboratories). If this communication does not be solved the technology will have difficulties to 

go forward, despite the advances in the research field. 

Thus, this work is an innovative initiative where we bring together several traditional 

wet soil laboratories to participate in a joint dynamic. Users should compare their wet laboratory 

analysis with a sensor modeling, while we indicate the advantages and limitations on the 

reached performance in the role of routine commercial work. We used three proximal sensors, 

i.e., vis-NIR-SWIR, MIR and pXRF. The process was called the ´Brazilian Program for Soil 

Analysis by Spectroscopy´ (ProBASE), which aims to give knowledge support to all parts 

evolved (users, labs, and spectral commercial companies), and indicate usefulness of PS in the 

traditional laboratory. We hope that laboratories will be able to understand and create their own 

data set and achieve important results in quantifying soil properties as to go forward on a hybrid 

laboratory construction. 
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3.2. MATERIALS AND METHODS 

3.2.1. The program and laboratorial analyses 

The ProBASE (https://esalqgeocis.wixsite.com/geocis/probase) started in 2018. We 

contacted 34 commercial laboratories from Brazil and 2 from Paraguay. All of them are in the 

soil analysis market, have an ISO document of excellence and market their services directly to 

farmers or agricultural consultants. The number of participating laboratories by Brazilian region 

were as follows: Minas Gerais (MG) with 12, São Paulo (SP) with 7, Paraná (PR) with 5, Goiás 

(GO) and Mato Grosso do Sul (MS) with 3, and Bahia (BA), Maranhão (MA), Mato Grosso 

(MT), Tocantins (TO) with one laboratory each.  

 The soil samples were analyzed by the participating laboratories using the traditional 

physical and chemical methods according to Teixeira et al. (2017) and Van Raij et al. 

(2001). They determined the soil particle size distribution (clay, silt and sand contents) 

(pipette or densimeter method), soil organic carbon (SOC) (Walkey-Black method with 

determination by colorimetry), pH in water and the following exchangeable/available 

elements (macronutrients and soil acidity): Ca2+, Mg2+ and Al3+ (KCl extraction), P and K+ 

(Mehlich-1 or anion exchange resin) and H++Al3+(NaOH extraction). Thus, the organic 

matter content (OM, Eq. 1), sum of bases (SB, Eq. 2), cation exchange capacity (CEC, Eq. 

3), base saturation (V%, Eq. 4) and Al saturation (m%, Eq. 5) were  calculated.  

OM= SOC*1.724   (1), 

SB=Ca2++Mg2++K+   (2), 

CEC=SB+H++Al3+  (3), 

V%=(SB÷CEC)x100  (4), 

 m%= (Al3+ ÷ (SB+Al3+))x100  (5). 

 

The following nutrients also were determined: Fe, Mn, Cu, Zn, S and B (DTPA 

extraction). 

Among these 36 laboratories, 35 sent samples that were used in this study. The 

laboratories were instructed to choose 200 soil samples, based on clay content, in order to obtain 

samples distributed in several soil texture classes,   from their dataset about 7,000 soil samples 

were selected and sent to the Luiz de Queiroz College of Agriculture, University of São Paulo 

(ESALQ/USP), in the Geotechnologies in Soil Science Group laboratory (Geocis, 

https://esalqgeocis.wixsite.com/english). However, the number of samples available for each 

https://esalqgeocis.wixsite.com/english
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attribute varied, because there were not all laboratory analyses available for all 7,000 samples. 

The flowchart with the data description is shown in figure 1. 

 

 

Figure 1. Flowchart of the exercise with wet laboratories. 

 

3.2.2. Spectral measurements 

The soil samples received in ESALQ/USP, were organized per laboratory, and 

cataloged. All the samples delivered by the 35 laboratories were analyzed in the vis-NIR-SWIR 

range. However in the MIR range and pXRF, only 50 samples from 8 laboratories were 

analyzed, in order to compare these three sensors. In this way, a total of 400 soil samples was 

chosen for pXRX and MIR analysis, maintaining the proportion between the textural classes. 

The commercial laboratories provided 50 g of soil samples passed through a 2 mm sieve 

and submitted  to spectral acquisition using a FieldSpec Pro 3 spectroradiometer (Analytical 

Spectral Devices, Boulder, Colo.) under laboratory conditions. This instrument has a spectral 

resolution of 1 nm from 350 to 1,000 nm,and of 10 nm from 1,000 to 2500 nm. After, the 

spectral data were resampled to 1nm by the equipment, totalizing 2151 bands.  The data 

acquisition and the geometry of the setup are described in Demattê et al. (2019). Approximately 

95 cm3 of soil samples were placed inside petri dishes and leveled to reduce surface roughness. 

Four measurements were obtained per sample by rotating the dish every 90° to obtain a better 

representativeness of surface area, and an average spectrum was calculated for each sample. A 

standard Spectralon® white plate was scanned every 20 minutes during calibration. 
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For MIR analysis, the samples were ground to obtain particles smaller than 100 mesh. 

Reflectance spectra were obtained with the Alpha Sample Compartment RT-DLaTGS ZnSe 

(Bruker Optik GmbH) equipped with an accessory for acquiring diffuse reflectance (DRIFT) 

according to Terra et al. (2015). The sensor has a HeNe laser positioned inside the equipment 

and a calibration pattern for each wavelength. It has a KBr beam, allowing a high amplitude of 

the incident radiance to penetrate the sample. Spectra were acquired between 4000 and 400 cm-

1 (2500 – 25000 nm), with a spectral resolution of 2 cm-1 and 32 scans to obtain an average 

spectra. The reflectance values from 500 to 400 cm-1 (20000–25000 nm) were removed due to 

the low signal to noise ratios. A gold reference plate was used as standard, and the sensor was 

calibrated every four measurements. 

The XRF analysis was carried out in a portable X-ray fluorescence spectrometer (pXRF) 

Olympus Delta Professional (Olympus Corporation, Waltham, MA, USA), with two excitation 

modes, according to Rosin et al. (2021). The first excitation mode employed 40 keV, 91.1 μA, 

and is equipped with a 2 mm aluminum filter and was used to quantify the following elements: 

vanadium, chromium, iron, cobalt, nickel, copper, zinc, tungsten, mercury, arsenic, lead, 

bismuth, rubidium, uranium, strontium, zirconium, yttrium, aurum, thorium, niobium The 

second excitation mode employed 10 keV and 80.5 μA, and was used to quantify the following 

elements: magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, calcium, titanium, and 

manganese. About 15 g of sample was placed in a polyethylene bag (20 µm of thickness) and 

submitted to analysis in a platform with protection for X-ray’s emission. The pXRF Delta 

Professional is furnished with a 50 keV silver X-ray anode and a silicon drift detector, with 

2048 channels. The elements were quantified by the factory calibration called Geochem mode.  

 

3.2.3. Modeling 

We first only evaluated the vis-NIR-SWIR range for attributes modelling. This 

quantification process took three strategies of population set as follows: a) an individual 

laboratory model to quantify each attribute (Lab dataset, about 200 samples); b) a model using 

samples of all ProBASE laboratories (ProBASE dataset, about 7,000 samples), c) using the 

Brazilian Soil Spectral Library database (Demattê et al., 2019), (BSSL database, 49,753 

samples). The BSSL details can be seen in Demattê et al. (2019). This strategy was to compare 

the differences between different populations in dimension and regional occurrence. 

Complementary, in order to compare the Vis-NIR MIR and XRF for soil attributes prediction,  

we developed models with these three sensors using only the dataset with 400 selected samples. 
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The statisticals procedures, such as data split and algorithms for quantification, were the same 

for all these approaches. 

The raw Vis-NIR and MIR spectra and the elemental content from XRF were used as 

input for the models. The elemental contents below the limit of detection were considered as 

zero. The data set for each soil attribute was divided into a training and validation set, defined 

by simple random sampling, where  70% of samples was used for calibration and 30% for 

validation of models. The Cubist algorithm (Quinlan, 1992) provided in Cubist R package 

(Kuhn and Quinlan, 2021) was chosen for soil attributes prediction,  based on previous tests 

(unpublished results) and literature background.  

The Cubist frequently showed better results than other algorithms for use in soil 

spectroscopy (Chen et al., 2021; Moura-Bueno et al., 2020; Silva et al., 2019). Cubist is a rule-

based algorithm that derives from Quinlan's M5 model (Quinlan, 1992). Cubist creates a tree 

structure with the provided data and collapses paths through the tree to create rules using 

boosting training (Khaledian and Miller, 2020). Then, differently from other decision trees 

models, the Cubist uses multiple linear regression models at each node instead of the average 

(Khaledian and Miller, 2020). The algorithm uses a boosting-like method called committees, 

which controls the number of model's trees that are sequentially created and the most k common 

neighbors or instances to build the trees (Silvero et al., 2021; Khaledian and Miller, 2020). We 

used the default configuration of the Cubist R package for hyperparameters selection. Thus, 

three possibilities of the number of committees (1, 10 and 20) and neighbors (0, 5, and 9) were 

tested. The root mean square error (RMSE) of the calibration dataset was used to select the best 

combination of hyperparameters. 

A total of 21 soil  attributes , as follows: sand, silt, clay, OM, pH in water, Ca2+, Mg2+ 

K+, Al3+, H++Al3+, SB, CEC, V%, m%, P, Fe, Mn, Cu, Zn, S and B.  The models were evaluated 

by the coefficient of determination (R2), root mean squared error (RMSE), and ratio of 

performance to interquartile distance (RPIQ). were evaluated to quantify the inaccuracy of the 

estimates and quantify the bias. Finally, we compared the results between regional and 

continental population and sensors efficiency. 

 

3.2.4. Empirical identification of the granulometric analysis through spectral data 

We compared the spectral signatures in Vis-NIR of the samples with two standard 

spectral signatures ( one sandy and one clayey), in order to verify if the use of spectroscopy can 

assist in the identification of errors in soil analysis. The qualitative evaluation of spectra were 
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performed according to Demattê et al. (2014) that considered the reflectance intense in the 

SWIR region a key to determine samples by texture. In this way, a sample considered as clayey 

or sandy by wet method and presented the spectral signature discrepant  from the standard of 

these textural classes were considered outlier and reanalyzed in a other wet laboratory for 

evaluation. 

 

3.2.5. Errors and hits by K and P content ranges 

Often the user does not need the exact content of an element but knowing the class that 

the soil fits in already helps in their activities. Thus we compared the K+ and P contents from 

wet laboratories with the contents predicted by Vis-NIR, MIR and XRF, using the selected 

dataset with 400 samples. 

The predicted the contents were divided into the following five ranges and compared 

with the traditional laboratory data also divided into the same ranges. The limits of ranges was 

defined according to the IAC (1996). In this way, for K, the ranges were divided as very low 

(0.0-0.7), low (0.8-1.5), medium (1.6-3.0), high (3.1-6.0), very high (>6.0 mmolc.dm3). For P, 

the ranges were divided as very low (0-6), low (7-15), medium (16-40), high (41-80), very high 

(>80 mg.dm3). 

3.2.6. Prediction models for clay testing and the outliers influence  

In order to verify the influence of outliers in clay prediction by Vis-NIR, the ProBASE 

dataset was used to develop models using: a) all dataset, including outliers found by qualitative 

analysis described in section 2.4 (6595 samples), (b) without the outliers detected (6408 

samples), (c) with the outliers checked and reanalysed (6595 samples), (d) using only the 

outliers (182 samples) and (e) a using only the that was identified as outlier, however after the 

reanalyze (182 samples). The influence of the outliers was availed by R2, RMSE and RPIQ. 

 

3.3. RESULTS 

3.3.1. Laboratories and soil analysis 

Regarding spectral models using the vis-NIR-SWIR range (Table 1), we found only 4 

laboratories that had R2 lower than 0.5 and RPIQ than 2 for clay prediction.  25 laboratories 

reached values of R2 equal to or greater than 0.70 for this property. 5 laboratories showed R2 

lower than 0.5 for sand prediction. For OM 12 laboratories reached R2 greater than 0.7 and 

RMSE lower than 8.1 g.kg-1.
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Table 1. Prediction models for clay, sand, and organic matter in general and by laboratory. 
  Clay g.kg-1   Sand g.kg-1   Organic matter g.kg-1 

  
Training set Validation set   Training set Validation set   Training set Validation set 

R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ 

General 0.8 82.2 3.9 0.7 110.1 3.0   0.8 89.6 3.9 0.7 110.1 3.0   0.7 7.9 1.9 0.6 9.5 1.6 

1 0.8 81.1 3.6 0.6 146.2 2.5   0.8 90.0 3.8 0.7 155.2 2.5   0.7 9.2 1.7 0.5 10.7 1.9 

2 0.9 64.5 5.1 0.7 119.6 3.0   0.9 69.1 5.8 0.6 147.4 2.5   0.8 3.7 3.2 0.4 5.0 1.9 

3 0.8 47.6 3.1 0.4 76.1 1.7   0.8 59.8 2.5 0.2 99.9 1.2   0.8 3.6 2.9 0.8 3.7 3.2 

4 0.9 46.8 7.5 0.7 87.1 3.3   0.9 57.0 6.1 0.8 87.0 3.7   0.9 2.8 4.1 0.5 4.4 2.2 

5 0.9 39.7 4.8 0.7 66.7 2.4   0.9 38.4 5.1 0.7 70.4 2.5   0.7 3.1 2.3 0.4 4.6 1.6 

6 0.8 38.9 3.2 0.6 60.4 2.2   0.8 43.7 2.9 0.6 68.2 2.2   0.6 6.1 1.3 0.1 9.5 0.8 

7 0.7 77.9 3.7 0.6 90.0 3.2   0.7 92.8 3.8 0.6 112.0 3.1   0.4 7.0 2.0 0.4 7.3 1.9 

8 1.0 27.6 4.8 0.9 33.4 3.7   1.0 30.4 4.5 0.9 42.2 4.2   0.9 3.0 4.0 0.7 5.4 2.3 

9 1.0 45.9 10.0 0.9 88.2 4.5   1.0 59.3 10.0 0.9 100.7 6.0   0.9 4.6 3.5 0.7 10.9 1.8 

10 0.7 55.4 2.6 0.7 83.0 2.3   0.8 61.9 3.3 0.6 90.6 1.9   0.7 3.8 2.7 0.4 5.4 1.7 

11 0.9 39.4 8.3 0.9 54.2 6.2   0.9 48.5 8.7 0.9 71.4 6.0   0.9 2.4 4.4 0.8 2.9 3.0 

12 0.9 43.3 6.4 0.8 78.1 4.2   0.9 58.9 6.1 0.8 101.9 4.1   0.8 3.7 3.7 0.7 5.3 2.9 

13 0.8 63.0 2.9 0.5 100.3 1.9   0.7 81.0 2.5 0.5 122.5 2.0   0.6 2.4 2.1 0.6 3.0 1.6 

14 0.9 49.8 4.5 0.7 96.7 2.1   0.9 65.9 3.8 0.7 114.5 2.4   0.8 5.2 1.8 0.1 6.5 1.6 

15 0.8 65.7 3.4 0.7 91.8 2.5   0.8 68.4 3.8 0.7 99.7 2.4   0.7 8.0 2.1 0.4 10.5 1.8 

16 0.9 59.6 5.4 0.7 96.2 3.3   0.9 77.0 6.9 0.7 132.9 3.7   0.5 5.9 1.9 0.3 7.4 1.5 

17 0.9 31.8 3.3 0.8 49.6 2.8   0.9 37.3 3.2 0.7 61.4 2.2   0.8 2.9 2.1 0.5 4.3 1.5 

18 1.0 27.2 21.3 0.8 108.8 4.7   1.0 31.4 23.4 0.9 103.8 6.2   1.0 2.2 8.5 0.7 5.0 2.8 

19 0.9 37.4 5.7 0.8 58.1 2.5   0.9 70.7 3.7 0.7 99.0 2.4   0.6 4.6 1.9 0.2 5.5 1.6 

20 1.0 41.4 9.9 0.9 69.6 6.6   1.0 49.9 10.0 0.9 83.6 6.1   0.9 3.3 5.6 0.8 5.5 3.4 

21 0.6 62.3 2.3 0.4 70.3 1.6   0.7 70.5 2.1 0.4 79.3 1.5   0.9 3.5 3.5 0.6 6.0 1.9 

22 0.9 42.5 7.6 0.9 59.4 5.3   0.9 68.8 6.5 0.9 91.5 5.4   0.8 3.8 3.0 0.7 4.8 3.0 

23 0.9 53.3 5.6 0.8 81.5 4.4   0.9 64.6 6.2 0.8 99.8 4.3   0.9 4.4 5.7 0.6 8.0 2.8 

24 0.8 78.1 3.1 0.7 111.3 2.4   0.8 122.4 1.9 0.5 174.9 1.9   0.6 13.4 1.4 0.6 13.7 1.1 

25 0.8 55.3 3.8 0.4 86.4 1.7   0.8 77.5 3.9 0.5 115.5 1.8   0.7 5.6 2.4 0.1 7.9 1.4 

26 1.0 59.3 7.9 0.8 120.5 3.7   0.9 69.3 7.4 0.8 119.8 4.3   0.9 4.3 4.3 0.7 8.1 2.1 

27 0.9 62.2 5.3 0.8 92.0 3.3   0.9 72.2 4.6 0.8 105.3 3.2   0.7 5.1 2.4 0.3 7.5 1.5 

28 0.8 77.8 3.1 0.6 102.0 2.4   0.9 115.7 5.2 0.6 166.6 3.5   0.8 5.1 3.4 0.5 6.8 2.0 

30 0.8 60.1 2.5 0.5 72.5 2.0   0.7 71.7 2.1 0.4 86.1 1.8   0.7 5.8 2.4 0.3 8.0 1.5 

31 0.9 49.3 6.1 0.8 65.0 2.9   0.9 80.8 4.8 0.8 107.9 3.0   0.4 8.9 1.7 0.3 10.9 1.5 

32 - - - - - -   - - - - - -   0.8 7.9 2.7 0.5 11.4 1.9 

33 - - - - - -   - - - - - -   0.8 0.5 2.2 0.3 0.9 1.5 

34 0.9 62.8 7.1 0.8 112.0 4.6   0.9 70.7 6.6 0.8 135.5 4.9   0.6 9.7 2.0 0.6 8.7 2.2 

35 1.0 33.6 8.8 0.9 47.6 6.7   0.9 58.0 6.6 0.9 65.8 5.9   0.5 4.4 1.9 0.7 4.3 2.6 

36 0.9 49.3 6.1 0.8 65.0 2.9   0.9 80.8 4.8 0.8 107.9 3.0   0.4 8.9 1.7 0.3 10.9 1.5 
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Table 2. Prediction models for pH, P and Al in general and by laboratory. 
  pH   P   Al mmolc.kg-1 

  
Training set Validation set   Training set Validation set   Training set Validation set 

R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ 

General 0.4 0.5 1.7 0.3 0.6 1.5   0.1 52.9 0.4 0.2 31.7 0.6   0.4 4.4 0.5 0.1 4.9 0.4 

1 0.6 0.4 1.7 0.4 0.5 1.2   0.8 25.1 2.9 0.2 62.9 0.8   0.8 1.9 0.5 0.2 3.1 0.3 

2 0.5 0.4 1.9 0.3 0.5 1.9   0.6 16.1 0.3 0.0 19.7 0.4   0.8 1.5 2.1 0.1 3.2 0.9 

3 0.8 0.3 2.4 0.4 0.6 1.4   0.9 9.8 0.4 0.0 36.1 0.2   0.8 3.1 4.5 0.6 4.9 3.1 

4 0.7 0.3 2.3 0.3 0.4 1.8   0.7 16.7 1.8 0.3 25.7 1.1   0.6 8.0 0.2 0.1 6.4 0.3 

5 0.5 0.4 2.2 0.0 0.4 1.2   0.4 25.5 1.1 0.2 22.6 1.5   0.8 1.4 0.2 0.0 1.1 0.3 

6 0.6 0.2 2.0 0.2 0.3 1.1   0.7 25.6 3.1 0.0 34.9 0.7   0.9 0.8 2.4 0.2 1.5 1.4 

7 0.5 0.4 1.7 0.3 0.5 1.3   0.6 24.4 1.3 0.3 28.3 1.0   0.5 1.6 0.0 0.1 1.5 0.0 

8 0.9 1.0 5.0 0.8 0.1 3.6   0.9 7.1 4.5 0.9 15.4 2.2   0.9 1.4 2.2 0.7 2.5 1.3 

9 0.2 0.4 1.6 0.0 1.0 0.7   0.0 45.0 0.3 0.0 37.5 0.4   0.9 3.2 1.7 0.2 5.8 0.9 

10 0.0 0.4 1.1 0.0 0.5 1.4   0.5 12.2 1.3 0.3 87.8 0.1   0.7 0.8 0.0 0.0 2.9 0.3 

11 0.9 0.2 6.8 0.7 0.3 3.5   0.9 7.6 1.2 0.4 7.8 1.2   0.9 1.1 5.2 0.6 2.4 2.6 

12 0.6 0.3 2.1 0.1 0.4 1.3   0.8 7.8 2.2 0.1 13.5 1.2   0.8 1.2 2.1 0.0 1.7 0.0 

13 0.4 0.4 1.7 0.4 0.5 1.8   0.9 26.4 0.6 0.1 55.3 0.3   0.6 3.1 1.0 0.1 3.6 1.1 

14 0.5 0.3 1.6 0.1 0.5 1.1   0.9 26.3 0.7 0.0 36.1 0.4   0.9 0.9 0.0 0.0 2.2 0.0 

15 0.6 0.3 2.1 0.2 0.7 1.6   0.8 10.4 1.2 0.1 16.3 1.1   0.1 2.1 0.9 0.2 14.0 0.2 

16 0.3 0.4 1.3 0.1 0.4 1.2   0.5 11.2 1.1 0.1 16.7 1.2   0.6 2.4 0.0 0.0 1.4 0.2 

17 0.9 0.2 3.5 0.5 0.4 2.3   0.0 6.6 1.1 0.0 2.1 1.2   0.7 2.3 2.6 0.6 3.4 1.8 

18 0.6 0.3 2.0 0.4 0.4 2.1   0.5 8.3 1.7 0.2 7.5 1.1   0.9 1.1 0.6 0.5 1.8 0.4 

19 0.4 0.4 2.0 0.1 0.6 1.4   0.5 4.6 1.1 0.0 4.6 1.2   0.6 2.2 1.3 0.1 2.4 1.5 

20 0.7 0.4 2.7 0.3 0.7 1.7   0.8 8.9 3.3 0.3 16.5 1.1   0.6 2.1 1.8 0.5 4.0 0.7 

21 0.4 0.5 1.6 0.1 0.6 1.2   0.0 49.2 0.4 0.0 40.8 0.3   0.5 2.7 2.0 0.0 4.3 1.1 

22 0.4 0.4 1.7 0.1 0.5 1.1   0.0 56.4 0.7 0.0 57.9 0.9   0.0 1.9 0.0 0.0 1.1 0.0 

23 0.5 0.3 1.8 0.1 0.5 1.3   0.2 28.9 0.9 0.0 26.9 1.0   0.5 1.1 0.4 0.1 1.7 0.5 

24 - - - - - -   0.9 214.6 0.0 0.0 32.4 0.1   0.3 12.6 0.9 0.2 24.3 0.4 

25 0.4 0.7 1.7 0.1 0.8 1.2   0.8 14.9 1.3 0.2 54.3 0.5   0.3 3.6 1.0 0.1 5.2 1.1 

26 0.6 0.3 2.1 0.5 0.3 1.5   0.7 17.8 1.5 0.1 24.8 1.0   0.9 0.9 0.0 0.3 1.4 0.0 

27 0.5 0.3 2.0 0.1 0.4 1.3   0.1 27.8 0.4 0.0 14.5 0.7   0.8 1.7 0.6 0.0 0.9 0.4 

28 0.7 0.4 2.7 0.4 0.6 1.6   0.8 43.3 1.2 0.2 52.7 0.6   0.6 1.4 0.7 0.1 3.1 0.3 

30 0.0 0.6 1.6 0.0 0.6 1.2   0.0 19.1 1.3 0.0 17.7 1.0   0.2 3.5 0.9 0.0 2.8 0.5 

31 - - - - - -   0.8 42.2 1.2 0.1 65.4 1.1   0.8 2.2 0.9 0.1 2.4 0.4 

32 - - - - - -   0.6 54.9 0.7 0.0 44.0 0.9   0.8 1.7 0.6 0.0 2.9 0.7 

33 0.0 0.5 1.2 0.0 0.6 1.3   0.0 55.5 0.3 0.0 23.0 0.7   0.9 4.7 0.5 0.0 7.0 0.6 

34 - - - - - -   0.0 38.3 0.5 0.0 31.4 0.6   0.7 1.8 1.1 0.0 1.9 1.0 

35 - - - - - -   0.0 32.5 0.4 0.0 58.5 0.2   0.5 2.4 1.3 0.1 2.9 1.0 

36 - - - - - -   0.8 42.2 1.2 0.1 65.4 1.1   0.6 4.5 0.4 0.0 9.0 0.3 
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Table 3. Prediction models for Ca, Mg and K in general and by laboratory. 
  Ca mmolc.kg-1   Mg mmolc.kg-1   K mmolc.kg-1 

  
Training set Validation set   Training set Validation set   Training set Validation set 

R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ 

General 0.8 21.8 1.2 0.7 32.4 0.8   0.8 6.6 1.2 0.4 11.9 0.7   0.4 1.9 1.3 0.2 2.3 1.0 

1 0.9 58.3 4.2 0.7 109.5 2.7   0.9 15.1 4.0 0.7 30.6 2.6   0.8 2.8 2.6 0.4 4.6 1.4 

2 0.7 13.4 1.8 0.2 16.4 1.0   0.8 2.3 3.1 0.3 4.0 2.0   0.8 0.6 2.8 0.3 1.1 1.8 

3 0.7 16.2 1.3 0.2 18.9 0.8   0.8 3.6 1.8 0.6 6.9 0.5   0.5 1.4 1.0 0.2 1.5 1.0 

4 0.5 8.6 1.7 0.1 10.5 1.1   0.5 3.2 1.8 0.1 4.5 1.0   0.1 1.3 1.5 0.0 1.2 1.2 

5 0.0 21.4 0.0 0.0 19.4 0.0   0.5 3.3 1.2 0.3 4.0 1.0   0.7 0.6 2.0 0.1 1.0 0.9 

6 0.7 4.9 2.1 0.4 7.7 1.6   0.7 3.0 2.4 0.3 4.2 1.5   0.4 1.0 1.0 0.1 1.3 1.5 

7 0.4 11.8 1.6 0.4 11.2 1.9   0.7 3.2 2.0 0.4 3.5 1.6   0.4 0.9 1.7 0.5 0.8 2.0 

8 0.7 4.7 2.1 0.3 5.8 1.2   0.6 2.3 1.3 0.3 2.6 1.3   0.6 0.5 1.7 0.2 0.8 1.4 

9 0.9 10.4 3.9 0.5 20.8 1.7   0.5 6.9 1.4 0.5 4.5 1.8   0.2 3.7 0.9 0.0 4.4 0.5 

10 0.7 4.6 2.4 0.3 7.2 1.8   0.6 2.3 2.2 0.2 2.8 1.4   0.0 1.1 1.4 0.0 2.3 0.9 

11 0.9 6.0 3.4 0.6 6.9 2.8   0.9 1.6 5.7 0.7 3.0 3.1   0.6 0.6 1.6 0.0 0.7 0.9 

12 0.8 5.2 1.9 0.3 8.0 1.5   0.8 1.8 2.2 0.3 2.6 1.7   0.5 0.4 1.6 0.2 0.6 1.0 

13 0.9 9.3 1.8 0.8 17.3 1.0   0.5 3.7 1.4 0.2 2.9 1.6   0.5 1.2 1.6 0.0 3.3 0.4 

14 0.5 18.9 1.4 0.5 23.8 1.6   0.0 5.6 1.1 0.2 6.9 1.8   0.5 1.6 1.6 0.3 1.9 1.5 

15 0.3 20.9 1.0 0.4 21.8 1.4   0.6 6.2 1.3 0.1 9.5 1.4   0.6 2.0 1.2 0.2 2.7 1.0 

16 0.6 5.8 2.1 0.3 6.2 1.8   0.7 3.1 2.4 0.3 4.3 1.6   0.5 1.1 1.7 0.1 1.3 1.4 

17 0.7 8.1 2.3 0.5 10.8 2.2   0.9 2.0 2.5 0.6 2.9 2.4   0.7 1.0 1.6 0.2 1.6 1.3 

18 0.8 8.2 2.6 0.4 13.6 1.8   0.8 2.1 2.7 0.4 3.3 1.7   0.6 1.7 1.7 0.3 1.8 0.5 

19 0.6 7.0 2.3 0.1 10.7 1.4   0.8 2.7 2.6 0.5 4.5 1.7   0.7 0.8 1.8 0.2 1.0 1.4 

20 0.8 14.4 2.9 0.7 16.1 3.0   0.7 2.0 1.7 0.4 3.2 1.7   0.8 1.1 2.8 0.5 1.8 1.8 

21 0.9 14.5 1.1 0.0 43.1 0.5   0.2 3.1 1.5 0.0 3.9 1.4   0.5 1.4 1.7 0.0 2.3 1.1 

22 0.6 11.0 1.8 0.3 16.7 1.8   0.4 3.8 1.6 0.4 4.9 1.7   0.5 1.6 1.7 0.0 3.5 1.1 

23 0.7 8.7 2.3 0.4 13.2 1.3   0.8 2.9 3.2 0.7 4.8 1.5   0.7 0.7 2.3 0.5 1.0 1.2 

24 0.9 15.5 1.2 0.3 31.7 0.6   0.9 5.7 1.3 0.6 9.4 0.9   0.3 1.5 1.0 0.0 5.5 0.3 

25 0.4 15.5 1.8 0.1 17.6 1.8   0.6 4.2 1.9 0.2 5.8 1.5   0.6 1.3 1.9 0.1 2.1 1.5 

26 0.8 11.2 4.2 0.7 18.3 2.7   0.8 4.3 2.4 0.6 4.5 2.5   0.8 1.2 3.2 0.5 1.9 1.9 

27 0.6 36.8 0.7 0.0 38.2 0.6   0.4 11.7 0.8 0.0 10.5 0.8   0.0 2.1 1.3 0.1 1.9 1.1 

28 0.6 28.9 1.7 0.1 59.6 0.8   0.9 5.9 4.1 0.6 10.2 1.6   0.8 1.4 4.2 0.6 2.1 1.9 

30 0.1 16.5 1.2 0.0 18.8 1.1   0.4 4.1 2.0 0.0 5.3 1.3   0.4 1.1 1.5 0.0 1.7 1.1 

31 0.4 4.7 1.5 0.0 14.2 0.5   0.2 3.2 1.3 0.0 4.6 0.7   0.6 1.0 1.0 0.1 1.2 0.7 

32 0.6 31.8 0.8 0.0 35.3 0.8   0.8 3.9 2.0 0.2 6.2 1.2   0.6 1.6 1.9 0.3 2.4 1.0 

33 0.5 9.6 1.9 0.3 11.3 1.8   0.2 4.6 1.5 0.0 5.1 1.4   0.8 0.2 2.3 0.3 0.3 1.6 

34 0.6 24.3 2.0 0.1 30.3 1.3   0.6 7.0 1.8 0.4 7.4 1.6   0.0 3.5 0.9 0.1 2.3 1.1 

35 0.3 13.9 1.3 0.1 32.3 0.5   0.3 7.7 1.2 0.1 13.6 0.7   0.1 1.2 1.1 0.1 1.5 0.9 

36 0.7 15.7 2.2 0.4 15.8 2.2   0.7 6.8 1.8 0.6 7.9 1.8   0.5 1.5 1.3 0.1 2.1 1.2 
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Table 4. Prediction models for CEC, base saturation, and Al saturation in general and by laboratory. 
  CEC mmolc.kg-1   Base saturation %   Al saturation % 

  
Training set Validation set   Training set Validation set   Training set Validation set 

R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ   R2 RMSE RPIQ R2 RMSE RPIQ 

General 0.8 28.4 1.2 0.8 37.9 0.8   0.5 15.0 1.9 0.3 17.8 1.6   0.5 13.0 0.6 0.2 16.5 0.5 

1 0.9 70.2 4.4 0.7 140.9 2.6   0.7 9.3 1.8 0.6 14.3 1.9   0.6 8.4 0.1 0.3 14.7 0.1 

2 0.6 20.3 1.4 0.2 19.9 1.1   0.6 15.2 2.4 0.2 23.3 1.9   0.7 9.9 2.3 0.2 17.9 1.0 

3 0.9 8.9 2.0 0.4 22.4 0.4   0.9 11.1 4.4 0.5 19.8 2.2   0.9 12.1 5.7 0.7 17.7 3.7 

4 0.5 11.3 1.6 0.4 11.2 1.4   0.7 11.3 2.4 0.3 14.1 1.5   0.9 29.0 0.2 0.0 42.2 0.2 

5 0.8 6.3 2.6 0.2 12.5 1.4   0.8 7.9 2.9 0.3 10.6 1.2   0.9 6.6 0.4 0.0 8.1 0.2 

6 0.6 8.3 1.9 0.4 8.3 1.4   0.7 8.2 2.1 0.3 13.6 1.6   0.8 3.8 0.0 0.2 7.9 1.1 

7 0.7 11.3 2.2 0.4 14.3 1.9   0.6 11.1 1.5 0.4 14.9 1.6   0.5 11.2 0.0 0.2 11.8 0.0 

8 0.8 6.1 2.0 0.5 7.4 1.3   0.7 6.0 2.7 0.6 7.5 1.9   0.8 5.1 1.6 0.6 7.2 1.2 

9 0.8 17.7 2.9 0.6 23.9 2.3   0.6 11.1 2.7 0.3 15.3 1.6   0.6 9.9 1.5 0.2 13.2 0.9 

10 0.5 7.9 1.8 0.3 9.9 1.5   0.1 10.4 1.4 0.0 15.7 1.1   0.8 3.1 0.0 0.0 12.3 0.4 

11 0.8 7.1 3.4 0.7 7.1 3.3   0.9 6.6 4.9 0.6 12.4 2.7   1.0 5.9 5.8 0.5 19.7 1.8 

12 0.8 6.0 2.2 0.3 9.7 1.6   0.6 10.4 1.7 0.0 14.2 1.1   0.9 6.8 1.3 0.0 10.2 0.0 

13 0.7 17.9 1.1 0.2 26.1 0.8   0.5 16.3 2.2 0.1 23.9 1.8   0.5 19.1 1.1 0.0 29.6 1.0 

14 0.5 21.5 1.7 0.5 29.1 1.8   0.3 14.8 1.4 0.2 16.6 1.9   0.5 9.6 0.0 0.0 11.3 0.0 

15 0.3 27.2 1.0 0.1 36.5 1.2   0.3 13.7 1.9 0.1 18.7 1.6   0.7 5.9 0.8 0.1 11.9 0.6 

16 0.7 7.4 2.6 0.4 9.1 1.9   - - - - - -   0.8 1.5 0.0 0.3 5.9 0.1 

17 0.7 9.2 2.0 0.5 11.8 1.9   0.8 6.0 3.8 0.5 10.3 2.2   0.9 3.9 2.8 0.6 6.8 1.7 

18 0.8 9.6 2.9 0.5 15.7 1.9   0.5 10.5 1.6 0.2 13.8 1.6   0.8 5.3 0.3 0.1 7.3 0.3 

19 0.8 7.7 2.5 0.5 12.0 1.8   0.3 13.5 2.0 0.1 18.1 1.5   0.4 12.8 1.0 0.2 9.7 1.1 

20 0.9 11.3 5.2 0.7 16.9 3.2   0.8 10.6 3.4 0.5 14.8 2.5   0.8 9.5 3.0 0.3 17.8 1.6 

21 0.6 16.7 1.1 0.0 14.7 1.7   0.3 18.3 1.8 0.0 23.5 1.5   0.3 17.2 1.9 0.1 23.3 1.2 

22 0.5 14.9 1.8 0.4 21.4 1.8   0.1 14.7 1.4 0.1 14.6 1.6   0.9 4.0 0.0 0.0 5.5 0.0 

23 0.8 10.4 2.9 0.5 17.5 1.5   0.4 11.2 1.6 0.0 15.7 1.5   0.0 7.7 0.2 0.0 11.0 0.3 

24 0.8 21.8 1.6 0.7 29.7 1.2   0.8 16.4 3.2 0.3 22.3 2.1   0.6 25.1 2.6 0.3 28.6 2.3 

25 0.6 16.3 1.8 0.2 19.1 1.3   0.3 17.9 1.6 0.2 20.7 1.7   0.0 13.5 0.7 0.1 18.0 1.2 

26 0.9 12.9 4.0 0.7 21.0 2.7   0.7 8.5 2.6 0.6 10.1 1.9   0.7 4.7 0.0 0.7 3.7 0.0 

27 0.7 60.3 0.6 0.0 51.2 0.7   0.0 15.2 1.3 0.0 14.2 1.1   0.7 5.6 0.4 0.0 3.0 0.1 

28 0.7 30.0 3.1 0.2 65.8 1.0   0.8 11.9 3.4 0.4 20.0 2.1   0.9 9.0 0.6 0.2 20.4 0.4 

30 0.4 16.0 1.5 0.1 21.0 1.2   0.3 16.7 1.8 0.0 20.3 1.1   0.3 11.9 0.9 0.0 12.9 0.3 

31 0.5 6.5 1.8 0.1 16.9 0.5   0.3 11.9 1.5 0.0 16.3 1.4   0.8 9.8 0.8 0.2 11.5 0.4 

32 0.7 30.7 1.2 0.1 33.7 1.1   0.4 17.0 1.8 0.0 21.7 1.4   0.8 8.3 0.7 0.0 14.3 0.8 

33 0.4 10.8 1.8 0.4 10.2 1.9   - - - - - -   0.8 10.6 0.5 0.0 15.6 0.5 

34 0.6 30.0 1.9 0.3 30.1 1.8   0.1 12.8 1.5 0.0 15.7 1.2   0.4 3.5 1.3 0.0 6.6 0.7 

35 0.6 17.1 1.7 0.2 42.0 0.7   0.1 16.4 1.4 0.0 18.6 1.1   0.6 13.2 1.2 0.1 13.0 1.1 

36 0.7 20.2 2.1 0.4 24.3 2.0   0.4 17.6 1.8 0.2 16.7 1.4   0.6 16.8 0.5 0.1 18.3 0.6 
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The pH prediction at vis-NIR-SWIR (Table 2) did not present satisfactory results. Only 

2 laboratories achieved R2 above 0.7 and RPIQ reached 3.5 in the validation model. The general 

pH model was better than the laboratory ones. For P (Table 2), only one laboratory reached R2 

of 0.9 and RPIQ of 2.2. Most of the laboratories and for the general model, the results were 

with R2 below 0.3. For Al, only one laboratory was able to reach R2 of 0.7, with the majority 

having R2 below 0.5. 

The general Ca model (Table 3) reached R2 of 0.7, with low RPIQ (0.8). In addition, 

three laboratories achieved R2 of 0.7 and RPIQ above 2.7. However, most laboratories (27) 

obtained R2 lower than 0.5. For Mg validation models (table 3) there were 3 laboratories that 

reached R2 greater than 0.7, while the general model was 0.4 and RPIQ of 0.7. For K (Table 3), 

no laboratory achieved R2 greater than 0.7, only one laboratory achieved R2 of 0.6 and RPIQ of 

1.9, while the general model also had R2 of 0.2. 

For CEC (Table 4) the general model had R2 of 0.8, but the RPIQ was only 0.8. Four 

laboratories achieved R2 greater than 0.7 and RPIQ greater than 2.6. For BS (table 4) the best 

results achieved were 4 laboratories with R2 of 0.6 and RPIQ from 1.9. However, most 

laboratories had R2 below 0.4. For Al saturation (table 4) 1 laboratory achieved R2 of 0.7 and 

RPIQ of 3.7, while most laboratories had R2 below 0.3. 

 

3.3.2. Soil analysis by different spectral ranges 

We analyzed soil properties using the vis-NIR-SWIR and MIR (Figure 2). General 

models usually reported better results for sand and clay using these three ranges. Results 

reached R2 between 0.7 and 0.9 and RPIQ between 2.9 and 4.9 (Figure 2). We obtained 

important validation results from the ProBASE vis-NIR-SWIR bank (Figure 2a, b) for sand, 

clay, Ca, base sum, and CEC, all with R2 above 0.7. For sand and clay the RPIQ was above 3.0. 

However, Ca, base sum and CEC presented low RPIQ. The other elements showed R2 below 

0.6, so they are not reliable. The validation values using the models generated with the BSSL 

database were slightly below the models using the ProBASE database (figure 2a, 2b). The 

difference for sand, clay, and CEC was only 0.1 less for the R2 values. 
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Figure 2. Comparison of ProBASE, BSSL, MIR and XRF models: a) R2 of the models 

calibrated with the ProBASE and BSSL database; b) RPIQ of models calibrated with the 

ProBASE and BSSL database; c) R2 of the models calibrated with the MIR and XRF database; 

b) RPIQ of models calibrated with the MIR and XRF database. 

 

3.3.3. Number of laboratories per R2 range 

We analyzed how many laboratories were in each R2 range for the models using each 

spectral range (Table 5). The models with the best results were sand and clay for the three 

spectral bands. For the validation set in the vis-NIR-SWIR range, most laboratories presented 

R2 between 0.5 and 0.8 for sand, silt, clay, and OM. For all other elements, R2 was below 0.5. 

On the training set, most laboratories had greater R2 than 0.8 (sand, clay, Cu, and Zn) and 

between 0.5 and 0.8 for all other elements. 

In the MIR range (Table 5), the elements that showed the best results for the training set 

were sand, silt, clay, and OM. For pH, CEC, and H + Al, most laboratories showed R2 between 

0.5 and 0.8, while for the other elements and laboratories presented R2 below 0.5. The validation 

set, in turn, only sand reached R2 greater than 0.8. Clay and CEC showed R2 between 0.5 and 

0.8, while the other elements were below 0.5.  

The XRF range in turn in the training set the elements most laboratories achieved R2 

greater than 0.8 for clay and CEC (Table 5). Most laboratories had R2 below 0.5 for OM, Ca, 

H, H + Al, while for pH and base saturation all laboratories had R2 below 0.5. For the validation 
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set, all laboratories had R2 below 0.5 for OM, K, Al, and H + Al. Most of them had R2 below 

0.5 for silt, pH, Ca, Mg, H, base sum, CEC, and base saturation. For clay, most laboratories 

reached R2 between 0.5 and 0.8, and only for sand had R2 above 0.8 (Table 5). 
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Table 5. Percentage of laboratories per R2 range. 

  vis-NIR-SWIR   MIR   XRF 

  Training set Validation set   Training set Validation set   Training set Validation set 

Element 

< 

0.5 

0.5 - 

0.8 

> 

0.8 

< 

0.5 

0.5 - 

0.8 

> 

0.8   

< 

0.5 

0.5 - 

0.8 

> 

0.8 

< 

0.5 

0.5 - 

0.8 

> 

0.8   

< 

0.5 0.5 - 0.8 

> 

0.8 

< 

0.5 

0.5 - 

0.8 

> 

0.8 

Sand 0 21 79 12 58 30   0 0 100 17 33 50   0 50 50 25 25 50 

Silt 15 45 39 42 48 9   0 17 83 33 67 0   25 75 0 75 25 0 

Clay 0 18 82 12 48 39   0 17 83 17 50 33   25 25 50 25 50 25 

OM 6 53 41 44 41 15   25 25 50 50 25 25   60 20 20 100 0 0 

pH 45 41 14 90 7 3   25 50 25 88 13 0   100 0 0 83 0 17 

Ca 29 51 20 77 23 0   50 38 13 75 25 0   50 33 17 83 0 17 

Mg 31 43 26 71 29 0   50 25 25 75 25 0   40 40 20 80 20 0 

K 43 49 9 94 6 0   63 38 0 100 0 0   50 50 0 100 0 0 

Al 20 43 37 86 14 0   86 14 0 100 0 0   0 100 0 100 0 0 

H 36 36 27 82 15 3   40 40 20 100 0 0   50 33 17 83 17 0 

H +Al 30 48 21 91 6 3   25 50 25 88 13 0   50 33 17 100 0 0 

SB 17 57 26 80 17 3   38 25 38 63 38 0   40 20 40 60 40 0 

CEC 11 66 23 80 20 0   13 50 38 38 50 13   0 33 67 67 17 17 

BS 52 39 9 79 21 0   50 25 25 100 0 0   100 0 0 83 17 0 

AS 23 46 31 86 14 0   - - - - - -   - - - - - - 

P 34 40 26 97 0 3   - - - - - -   - - - - - - 

Fe 29 42 29 77 23 0   - - - - - -   - - - - - - 

Mn 19 54 27 69 31 0   - - - - - -   - - - - - - 

Cu 13 26 61 61 39 0   - - - - - -   - - - - - - 

Zn 32 26 42 84 16 0   - - - - - -   - - - - - - 

S 42 46 12 88 12 0   - - - - - -   - - - - - - 

B 56 30 15 96 0 4   - - - - - -   - - - - - - 
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3.3.4. Spectroscopy on the evaluation of wet laboratory quality analysis 

Based on the ProBASE dataset, we found 185 soil samples with high RMSE. These 

were considered as outliers or suspect and could be: a) real information or b) laboratory wet 

analysis error.  For this, we first plotted the different texture patterns extracted from the basic 

dataset (Fig. 3 a). These spectra present the major spectral signature (reflectance intensity, 

shapes, and behavior), strongly studied in Brazil (Demattê et al., 2019). After we made the 

average of the spectra for clay content classes using the 185 samples (Fig. 3 b). Finally, the 185 

soil samples were remade in the wet analysis and then we plotted again the textures (Fig. 3 c). 

The comparison of the spectral pattern of the suspect samples was not consistent with the 

patterns. The spectral mean of the samples classified as sand were the only ones that presented 

a coherent result, as they showed greater reflectance. However, the clay samples showed high 

reflectance which agrees with the sandy spectra. The texture class that showed the lowest 

reflectance was the loamy sand, inconsistent with literature and to the patterns (Fig 3 a). In turn, 

the samples considered suspect outliers when reclassified according to the granulometric 

reanalysis (Fig 3 c) presented a gradual decrease corresponding to the increase in the clay 

content and decrease in the sand, confirming that the initial analyzes were wrong and the use 

of spectroscopy pointed out the issue. In the case of the average spectrum of the textural classes 

of the ProBASE data set, it is possible to verify that when the database is large, these errors are 

diluted (the ProBASE data set has 6595 granulometric analysis), so the 185 samples with 

incorrect granulometric analysis were not enough to alter the result of the medium spectra. 
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Figure 3. Average spectra by textural class. a) ProBASE data set, b) 185 outlier samples with 

original analysis, c) 185 outlier samples with reanalysis. 

 

Figure 4 shows four sample cases in which the spectral signature analysis allowed the 

identification of errors in the quantification of sand and clay. Sample (a) (Fig 4a) was classified 

as clayey (607 g.kg-1 of clay) by the laboratory wet analysis. However, analyzing the spectral 

signature, we observed high reflectance across the spectral range of vis-NIR-SWIR, which is 

characteristic of sandy soils. In the same graph spectral signatures patterns of sandy soil (in red) 

and clay soil (in green) are plotted with the evaluated spectra (in blue). As we observe, the 

specific sample has a signature typical of sandy soil. We reanalyzed the soil sample in a wet 

laboratory, and the new analysis showed that, indeed, it had 106 g.kg-1 confirming the visual 

analysis of the spectrum. 

The same happened with sample (b) (fig. 4b) where the initial analysis indicated a 

content of 673 g.kg-1 of clay, while the spectrum does not match with the pattern.  Reanalysis 
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determined a content of 213 g.kg-1 of clay, confirming that the initial analysis was wrong. In 

this way, we were able to confirm that the spectral analysis can assist in the identification of 

sand and clay quantification errors or be used as a quality method. 

In turn, samples c and d (fig 4c and 4d, respectively) show low reflectance across the 

spectral range of vis-NIR-SWIR, so it has characteristics of clay soil, but the initial analyzes 

determined clay contents of 92 g.kg-1 for sample c and 175 g.kg-1 for sample d. The results of 

the reanalysis coincided with the spectral characteristics of both samples, 625 g.kg-1 (sample c) 

and 569 g.kg-1 of clay (sample d). 

 

 
Figure 4. Four examples of case study indicating the detection of wet soil analysis error on clay 

content. Blue spectra are the original spectra of the soil sample. The green and red lines are the 

average patterns from the ProBASE dataset for clayey and sandy samples. Each figure 

compares the measurement with the patterns, as indicated by the previous analysis (detected as 

an outlier) with the reanalysis. 

3.3.5. Impact of quality analysis in spectroscopic models 

The model with only outlier-reanalysis (Table 6) was the one that presented the best 

results both the training (R2 of 0.96, RMSE of 39.4 and RPIQ of 7.1) and validation set (R2 of 

0.89, RMSE of 72.5 and RPIQ of 4.8). The worst result was presented by the model with the 

original outliers, which ratifies the laboratory´s first wet analysis as error. Thus, going back to 

the original models, without the outliers and with the outliers-reanalysis, both increased the 

results. 
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Table 6. Prediction models for clay testing the influence of outliers. 

Clay g.kg-1 
Descriptive Analysis Observations Training set Validation set 

Mean SV Min Max Total Train. Val. R2 RMSE RPIQ R2 RMSE RPIQ 

General model with outliers 394.3 195.2 2.0 950.0 6595 4616 1979 0.79 89.59 3.89 0.69 110.08 3.02 

General model without outliers 393.5 194.2 18.0 950.0 6408 4487 1921 0.82 82.20 3.78 0.76 76.07 3.43 

General model with reanalysis 394.7 194.5 18.0 950.0 6595 4616 1979 0.81 84.69 3.57 0.74 100.83 3.24 

Model with only outliers 423.7 226.6 2.0 925.0 182 127 55 0.45 178.19 2.26 0.01 217.87 1.42 

Model with outlier’s reanalysis 439.5 200.3 58.0 838.0 182 127 55 0.96 39.43 7.13 0.89 72.49 4.78 
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3.3.6. Application on fertilization 

We evaluated the application approach for fertilization. For K, the spectral range 

showed more correct hits for vis-NIR-SWIR, while for P, the XRF was better and very close to 

MIR (Table 7). Regarding the K contents, the range with medium contents presented more 

hights than wrongs in the three different spectral ranges studied. And the high range had more 

hits than wrongs only in the vis-NIR-SWIR range. For P, the low range had more hights than 

wrongs using the bands of vis-NIR-SWIR and XRF. While the range with more accuracy than 

wrongs in the MIR spectral range was the range with medium content. In general, samples that 

were not classified in the correct range of contents were in ranges close to below or just above 

the correct content. 

 

Table 7. Wrongs and hights by K and P content ranges, comparing the traditional soil analysis 

and the spectral model. 

Element Range 
vis-NIR-SWIR MIR XRF 

Wrongs Hights Wrongs Hights Wrongs Hights 

K 

Very low 734 368 62 9 66 10 

Low 935 850 48 30 39 39 

Medium 759 1482 33 61 42 54 

High 743 747 50 24 53 22 

Very high 364 161 20 4 22 3 

P 

Very low 1382 584 52 14 44 21 

Low 888 1011 51 46 47 51 

Medium 798 772 22 49 34 41 

High 530 36 29 7 26 21 

Very high 292 5 19 11 19 11 

 

3.4. DISCUSSION 

3.4.1. Laboratories and soil analysis 

The BSSL models gave slightly better results than the general ProBASE data. The best 

results were from some specific laboratories (8, 11, 20, 22 and 35). These results are due to the 

quality of traditional laboratory analysis. A good laboratory analysis results in good spectral 

models. Demattê et al. (2019) indicates that the results of determination of attributes through 

chemical analyzes with low quality led to high errors in the spectral models. Therefore, high R2 

and RPIQ and low RMSE of these five laboratories may indicate high quality in their chemical 

analyzes. There is a lack of works that verify the impact of analyzes carried out by different 

laboratories in the construction of prediction models from soil spectra. The differences of results 
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between laboratories can be related with several factors such as, the quality of its analysis, the 

geology, climate, and biome. 

 Best results were for clay, sand, CEC, and OM, which agrees with literature. On the 

other hand, chemistry is mostly indicated as to reach low data, but we see good results for 

Aluminum. From the three great macro nutrients, we saw the sequence Ca, Mg, K where 

decrease the results. pH is repeating the poor results with literature. Thus, we see that, despite 

chemistry being difficult to reach, there is light to continue in these elements. Results indicate 

that their success is related to good soil analysis and the population and/or region. Also, it was 

observed that some laboratories presented great results for macro elements as others poor. This 

is also a clear indication regarding the importance of local model population and soil analysis 

quality that interfere in the model.  

 

3.4.2. Soil analysis by different spectral ranges 

Regarding the models using different spectral ranges for sand and clay prediction, the 

MIR range (fig. 2 c and d) presented slightly better results than the vis-NIR-SWIR and XRF in 

agreement with Gholizadeh et al. (2013). Terra et al. (2015) also modeled various soil elements 

using the bands of vis-NIR-SWIR and MIR and obtained the best modeling results for sand and 

clay (R2> 0.85 and RPIQ> 3.88), where this range was the best. This is due to the strong 

interaction between the MIR radiation and the mineral particles in the soil that make up the 

sand and clay fractions by the fundamental vibration process, producing more spectral 

characteristics when compared to vis-NIR-SWIR (Janik et al., 2007). 

For OM prediction, the vis-NIR-SWIR range showed the best results (Fig. 2a and b). In 

general, studies show that the MIR range presents better results for predicting OM (Janik et al., 

2007; Terra et al. 2015), as the absorption resources associated with various organic functional 

groups can be identified. The reasons why we achieved different results may be related to the 

size and variability of the dataset. The vis-NIR-SWIR model was built with 6962 samples, while 

the MIR was built with 340 samples. And for P prediction, the best results were obtained using 

the XRF range (fig. 2c and d) with R2 >0.8, results like that obtained by Kaniu et al. (2012) who 

obtained an R2 >0.9 for P analysis using an XRF spectrometer. In terms of practicality, vis-

NIR-SWIR is easier and quicker but fails in the best R2 for most elements. MIR is great due to 

the fundamental bands but fails on velocity and sample preparation. XRF is not so fast but gives 

the total element detailed peaks. In summary, we cannot say one is better than the other, but the 

choice is related to the user´s necessity or having all one can complement the information of 

the other.  

https://journals.sagepub.com/doi/10.1366/13-07288
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3.4.3. Detection of inconsistency on wet soil analysis by spectroscopy patterns 

The medium spectrum of the textural classes of the ProBASE dataset (Fig 3a) presented 

a gradual decrease as the content of clay increased and the sand decreased. This characteristic 

was well demonstrated by several qualitative analysis studies of the spectra (Sorensen and 

Dalsgaard, 2005; Demattê and Terra, 2014). When we plot the samples of the database sent by 

all laboratories, we observed that some spectra were not consistent with the clay content. The 

samples with greater error were taken out and compared with the ProBASE pattern. The 

qualitative spectral analysis showed a completely different pattern from the laboratory analysis. 

As the soil sample was reanalyzed, the value of clay changed and matched with spectral pattern. 

These findings show that many of the current works creating spectroscopy models can be 

compromised. It should have to have a controlling factor before going into the model. This can 

explain lots of low values in models or the great variances detected in reviews such as in Soriano 

Disla et al. (2014) and Nocita et al. (2015).  

 

3.4.4. Impact of quality analysis in spectroscopic models 

Using the whole population for clay estimation using the vis-NIR-SWIR, we reached a 

0.69 R2. The visual analysis plus the error indicated suspect samples which did not match with 

the pattern of the determined clay content. While we took out these outliers R2 went up to 0.76 

(what was expected!). Only using the outliers, we had 0.01. After we reanalyzed the clay 

content of these outliers and inserted again in the complete population and reached 0.89. This 

indicates that the first model was incorrect due to laboratory errors. Thus, it must be taken in 

consideration that results vary according to soil wet source. Indeed Cantarella et al. (2006) 

mentioned soil analysis variation in commercial laboratories.  In fact, even elements with worse 

R2 can have the same issue and must be addressed by future works.  

 

3.4.5. Application on fertilization 

Results for potassium and phosphorus classification vary. The best class reached by all 

sensors was the medium. All the others had about 50% wrongs and hights. These results indicate 

that not only the number of the spectral soil analysis is inadequate but also the class in which it 

reaches. For users in the field, the operational costs are extremely high with fertilizers and 

confidence is important. On the other hand, works such as Demattê et al. (2019) indicate that 4 

laboratories reached completely different results regarding some chemical analysis, i.e., for 

phosphorus and potassium. If results from laboratories lie on variances, can explain the poor 
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results in spectroscopy and thus on the classification of its content. The strategy to classify a 

given element inserting in a classification can led to wrongs and thus, caution is important. The 

main point is to reach the best fixed result and not try to insert into a simple class. These results 

agree with Jin et al. (2020), where the authors studied various treatments and processing and 

found pretty good results for quantification. On the other hand, they state that ´a trustworthy 

model that can be used across industries for NIR quantification is difficult to build´. For 

instance, this is possible in research in controlled situations, but not for a whole community.  

 

3.4.6. Users experience in the dynamics 

At the end of the modelling results were presented to participants, to see the results of 

their wet-laboratory and spectral readings. An example is shown in table 5. We observe the 

number of the laboratory and its result on R2 on the quantification of the indicated soil 

component. With this, users could see if their soil wet analysis were good or not. Results vary 

from lab to lab, but for certain elements they are all constant. For sand and clay almost, all 

laboratories remain over 0.7 of R2. Laboratories under 0.5 could need reanalysis and evaluate 

their results. 

Finally, users responded to topics regarding their feeling of the program dynamics 

(Figure 5). Observe that before the course, 47% have knowledge over note 5, and only 13% 

over 8. After the course, 62% reached over 8 and all participants over 5. In question 3, 93% 

considered it important to understand the dynamics of soil spectroscopy in a wet laboratory. 

These results indicate that the community is not well prepared to receive nor accept the use of 

the technique. This is only possible when users understand what they are using, advantages and 

limitations. Wet soil analysis laboratories are the strongest community that link with the 

agriculture users. Overcome this community and go direct to farmers is not a good strategy to 

put in practice spectroscopy. It is necessary to first, bring together this community, show how 

dynamics are with sensors and create the hybrid laboratory. This will go forward and pave the 

bridge until farmers. In the next step, sensor based commercial communities will have more 

strength to go by themselves and insert the technique.  
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Figure 5. Questionnaire regarding the program realized by the participants. The questions 

answered are the following: A) What was your level of knowledge about the use of a sensor in 

soil analysis?; B) How far do you think you have reached in understanding the topic?; C) How 

important is ProBASE for wet soil analysis laboratories to understand advantages and 

limitations in the use of sensors?  

 

3.5. CONCLUSION AND FINAL CONSIDERATION 

Models vary on quantification of soil properties regarding the population of samples. In 

general, local samples reached better results than general ones. The best and consistent results 

were for clay, sand, organic matter, and cation exchangeable capacity. For chemical elements 

the best was for calcium, magnesium and finally potassium. The results for these elements 

varied according to each laboratory going from great to poor results. Micronutrients had very 

poor results. The best ones were for Cu, Mn and Fe reaching about 30% of laboratories with R2 

between 0.5 to 0.8.  

Each wet laboratory has its dynamics in which errors are possible and impact directly 

on spectral analysis. Spectral patterns were able to identify wet laboratory errors regarding 

granulometric data. As this was corrected, models became better. This indicates the impact of 

the wet analysis quality on the spectral models. Thus, spectroscopy is not only indicated to 

quantify an element, but to evaluate a soil analysis. 

There is not the best spectral range. Vis-NIR-SWIR, MIR and XRF each have 

advantages and limitations, where the user is the one to choose which can solve its objective. 

Although, it is observed that all spectral ranges give important directions on soil analysis, and 

if possible, should be used together. 
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The application of models to reach fertilizer (potassium and phosphorus in this case) 

was not suitable and does not give confidence to deliver for users. More research should be 

addressed to make this for wider application.  

Models vary on results from better to lower on the sequence, local to regional to country. 

Spectroscopy method cannot substitute soil wet laboratory analysis, but can give important 

clues on the process, i.e., previous analysis and soil quality control. With this, the sample 

density can increase as the technique brings confidence to users. On the other hand, users still 

do not understand the technique, and thus it is important to create courses where they understand 

the advantages and limitations of the technique. This is the best path to put to work this great 

technique.  
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4. BRIDGING THE GAP BETWEEN SOIL SPECTROSCOPY AND TRADITIONAL 

LABORATORY: INSIGHTS FOR ROUTINE IMPLEMENTATION 

 

ABSTRACT 

We need innovative solutions to help laboratories to rapidly characterize the soils and adopt 

internal quality controls with lower costs and ecosystem impacts. Soil spectroscopy emerged 

as an alternative to wet chemistry. However, soil laboratories still do not widely use this 

technology in their routines, mainly due to the lack of: i) standards and protocols, ii) spectral 

libraries, iii) capacity in spectral methods, and iv) professionals with expertise in 

chemometrics. Therefore, we aimed to provide basic guidelines for the use of soil spectra in 

laboratory routines regarding internal quality control and samples selection for analysis and 

prediction. We used 350-2500nm spectra and unsupervised random forests to compute 

proximity matrices and cluster spectrally similar soil samples for outlier detection using an 

adjusted method for skewed distribution, which allowed us to establish an internal quality 

control. Then, we used the most important wavelengths from unsupervised random forest to 

order soil samples by laboratory and subset them into different set sizes for training and 

testing prediction models for clay, sand, organic matter cation exchange capacity and base 

saturation. Our results indicated that internal quality control based on soil spectra and 

unsupervised analysis can be implemented for laboratory routines. Spectra-based soil 

samples selection and attributes predictions can reduce the need for laboratory analysis by 

half. Soil spectroscopy can become an important alternative to improve traditional analytical 

results, save time, reduce costs, and mitigate environmental impact with acceptable accuracy. 

 

Keywords: Soil Science; Pedometrics; Unsupervised learning; Laboratory routines. 

 

4.1. INTRODUCTION 

The global soil resources, which produce 95% of all food, are under great stress (Amundson 

et al., 2015). They are essential to achieve land-related Sustainable Development Goals (SDG), 

including food (SDG 2), water (SDG 6), climate (SDG 13) and biodiversity (SDG 15) (Bouma, 

2020). Reaching these goals requires soil mapping and land use planning, which exponentially 

increases the number of soil analyses performed every year. However, limited funding or 

laboratory resources in many countries cause lack of soil data, resulting in poor modelling and 

significant uncertainty (Wadoux et al., 2021). This situation limits soil management and policy 

having a direct impact on the SDG.  

Traditional analytical methods, which provide valuable soil data over time, are costly, time-

consuming, and not environmentally friendly (Viscarra Rossel and McBratney, 1998). The 

quality of results from traditional laboratories is susceptible to systematic and random errors 

that frequently depend on themselves and/or the analytical techniques used, leading to outliers 

(Leeuwen et al., 2021). These errors were observed in a soil test conducted with 100 laboratories 

around the world using standard procedures (Hartmann and Suvannang, 2019), which showed 

a disturbing variation in the quality and consistency of measurement of soil attributes. 
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A soil attribute outlier is a value that is significantly distant (dissimilar) from the population 

of samples. Outliers of soil attributes may most often be due to measurement errors from 

classical analytical methods (Demattê et al., 2019)—where the extensive sequence of steps may 

introduce errors from different sources like subsampling, reagents, rounding off readings, 

instrumental, among others (Mountier et al., 1966). Therefore, repeated measurements on soil 

samples are required to quantify the error of the laboratory, as part of costly laboratory 

proficiency testing programs (Leeuwen et al., 2021). Now, we need innovative approaches to 

help laboratories to rapidly characterize the soil conditions and adopt internal quality controls 

with lower costs and ecosystem impacts. 

Soil spectroscopy is a fast, cost-effective and environmentally-friendly technique that 

emerged as an alternative to wet chemistry for estimating soil attributes (Nocita et al., 2015). 

The 350-2500 nm reflectance spectroscopy was the most studied spectral range for pedometrics 

due to its functionality and suitable results (Dematte et al., 2019; McBratney et al., 2019; 

Stevens et al., 2013; Viscarra Rossel et al., 2016). If spectroscopy has proven to be suitable for 

pedometrics, why do soil laboratories still not widely use this technology in their routines? 

Moreover, what would be the applications of spectroscopy in commercial soil laboratories? 

Could spectroscopy have any utility other than predicting soil attributes? Which and how many 

samples should be selected for analysis and prediction? What would be the guidelines for 

laboratory technicians? How could a breakthrough in soil analysis improve our understanding 

in soils? These are some of the questions that we tried to answer in this study. 

Recently, the Global Soil Laboratory Network—GLOSOLAN (FAO, 2021) launched its 

initiative on soil spectroscopy and recognized the potential of visible to infrared spectra for soil 

analysis, monitoring and mapping, due to the fact that spectral signatures respond to soil mineral 

and organic composition. GLOSOLAN also highlighted the constraints that still hamper the 

wider uptake of this technology were the lack of: i) standards and protocols, ii) spectral libraries, 

and iii) capacity of traditional soil laboratories in spectral methods. Souza et al. (2016) 

emphasized that data analysis requires professionals with expertise in chemometrics, and it also 

hinders the implementation of spectroscopy as a routine soil analysis technique. 

Despite GLOSOLAN's initiative, there are no currently global standard operating 

procedures for the use of spectra in laboratory routines. This was evidenced through a search 

with the keywords "soil spectroscopy" and "laboratory routine" in the Scopus database (Figure 

1), showing that almost all articles published between 1995 and 2020 did not address the 

implementation of the technique in the laboratory routine. However, soil spectroscopy received 

more attention for laboratory routines from 2020. 
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Figure 1. Number of publications searched in April 2021 from the Scopus database using 

the keywords "soil spectroscopy" and "laboratory routine". 

 

Unsupervised analysis, such as clustering and principal component analysis, have gained 

popularity for pedometrics (Dematte et al., 2019; McBratney et al., 2019; Stevens et al., 2013; 

Viscarra Rossel et al., 2016). The unsupervised random forest (Ciss, 2015a) is another analysis 

capable of discovering relevant patterns in the data (Breiman, 2001), which has been little used 

for pedometrics. Perhaps, one reason for this is the belief that random forests only perform 

supervised analysis (Afanador et al., 2016). Regarding variations in spectra, Romero et al. 

(2018) observed low differences between sensor measurements mainly caused by geometry and 

equipment variation. Aware of this, Ben Dor et al. (2015) determined a protocol to standardize 

measurements between sensors, taking soil spectroscopy a step ahead of traditional methods 

(Demattê et al., 2019). 

We assumed that: i) the soil spectra have a degree of association with soil attributes that is 

statistically significant to group samples into clusters with homogeneous soil attributes values; 

ii) the triplicate acquisition of soil spectra is less prone to measurement error than traditional 

analytical methods; iii) unsupervised analysis of soil spectra can be implemented for internal 

quality control in laboratories; iv) spectra can be used to select representative samples and 

reduce the need for traditional analysis. Therefore, we aimed to provide basic guidelines for the 

use of soil spectra in laboratory routines regarding internal quality control and samples selection 

for analysis and prediction. 

 

4.2. MATERIALS AND METHODS 

4.2.1. Soil samples acquisition 

The soil samples were collected with an auger at 0-20 cm depth by 36 commercial 

laboratories from Brazil and Paraguay that participated in the Brazilian Program of Soil 
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Analysis via Spectroscopy—ProBASE (https://esalqgeocis.wixsite.com/geocis/probase) at the 

University of São Paulo, Brazil. These laboratories regularly participate in Brazilian proficiency 

soil-testing program of the Agronomic Institute of Campinas (IAC) and Embrapa. ProBASE is 

a training course on fundamentals and applications of soil reflectance spectroscopy for students, 

researchers, consultants and company directors and officers. In the first edition of the training 

in 2019, each participating commercial laboratory sent us about 200 soil samples for this study, 

totaling nearly 7,200 samples. The tropical soils sampled were mainly used for sugarcane, 

soybean, and corn agriculture. 

 

4.2.2. Soil data acquisition 

4.2.2.1. Traditional soil laboratory analysis 

Each commercial soil laboratory air-dried, grounded and sieved to 2-mm mesh the soil 

samples for physical and chemical determination using traditional methods according to 

Teixeira et al. (2017). They determined the amount of clay and sand in g kg-1 by the densimeter 

method, organic matter (OM) in g kg-1 by the Colorimetric method, cation exchange capacity 

[CEC=Ca2++Mg2++K++H++Al3+] in mmolc kg-1 and base saturation 

[V%=((Ca2++Mg2++K+)x100)÷CEC] in percentage. 

 

4.2.2.2. Soil spectroscopy analysis 

The commercial laboratories provided 50 g of soil fractions smaller than 2 mm that were 

conditioned by us in Petri dishes to measure the 350-2500 nm spectra at 1 nm resolution in 

laboratory, using the Fieldspec 3 spectroradiometer (Analytical Spectral Devices, ASD, 

Boulder, CO). We obtained three spectra—each one averaged from 100 scans— by soil sample 

from different rotation positions and we averaged them to get the final spectrum. The 

equipments were arranged according to the long light geometry from Brazilian protocols 

(Romero et al., 2018), where a sensor placed perpendicularly 8 cm away from the sample 

surface captured the light reflected from 2 cm2. We corrected the splices of the final spectrum 

positioned at 1000 and 1800 nm by linear interpolation of 10 bands using the prospectr package 

(Stevens and Ramirez-Lopez, 2013) in the R software (R Core Team, 2018). 

 

4.2.2.3. Correlation analysis 

We performed a correlation analysis by laboratory using the Pearson’s coefficient to 

measure the relationship between the soil spectra and traditional soil attributes. The strength of 
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the correlation provided information about the ability of the spectra to produce statistically 

significant (p < 0.01) groups with relatively homogeneous soil attribute values.  

 

4.2.3. Quality assessment of physical-chemical analytical results 

4.2.3.1. Spectral clustering of soil samples 

To decrease computational time of this step, we resampled the spectra from a resolution of 

1 nm to 10 nm by simple interpolation using the prospectr package in R. After that, we used the 

resampled spectra and randomUniformForest (Ciss, 2015b) package in R for: i) unsupervised 

learning and computing proximity matrices, ii) dimension reduction, iii) clustering and iv) 

variable importance. We repeated (looped) all procedures separately for each commercial 

laboratory—we used the code (number) of the laboratory as a variable for stratification. 

For the first step we used the unsupervised mode of Random Uniform Forests (RUF) 

algorithms (Ciss, 2015a)—that follows the Breiman (2001) formulation—to find complex 

patterns in resampled spectra and provide proximities measures between the soil samples. 

Proximity was based on the frequency (number of times divided by number of trees) that pairs 

of soil samples were in the same terminal nodes (Ciss, 2015a). 

In the second step, we applied a classical (metric) multidimensional scaling (Gower, 1966) 

to the proximity matrices to reduce their dimensions to two principal coordinates that were 

enough to achieve the best possible separation between points. 

For the third step, we used the first two principal coordinates of the proximity distances to 

calculate the Euclidean (straight-line) distances (Pythagoras theorem) between points and find 

the nearest neighbor distance—since similar things are near to each other— to cluster the soil 

samples using the K-means algorithm (Ciss, 2015b). We adjusted the optimal number of 

clusters (limited to ten) by the gap statistic (Tibshirani et al., 2001). Therefore, we obtained 

spectral clusters of soil samples for each laboratory that we used for outlier detection in the next 

section. 

In the fourth step we converted the unsupervised RUF models into supervised ones—we 

obtained the clusters labels and sent them to the supervised RUF classifier for learning with the 

data— to compute global variable importance (Ciss, 2015b). The importance showed which 

wavelengths were influential for defining the RUF proximity measures. 
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4.2.4. Outlier detection 

We used the spectral clusters obtained in the previous step to identify—separately within 

each one— the outliers of the soil attributes that were determined using classical analytical 

methods by the commercial laboratories.  

Since the soil data were frequently not normally distributed within each group according 

to the Shapiro-Wilk's test, we used an adjusted method for skewed distribution proposed by 

Hubert and Vandervieren (2008) as part of the robustbase package for R, to detect outliers 

without making any assumption about the distribution of the data. 

The method used the interquartile range [IQR = Q3 – Q1] and the medcouple–MC, a robust 

measure of skewness introduced by Brys et al. (2004)— to calculate the lower [Q1 − 1.5 x e(−4 

x MC) x IQR] and upper [Q3 + 1.5 x e(3 x MC) x IQR] whiskers when MC ≥ 0 (right skewed), or 

the lower [Q1 – 1.5 x e(−3 x MC) x IQR] and upper [Q3 + 1.5 x e(4 x MC) x IQR] whiskers for MC 

< 0 (left skewed), as the boundaries of the data distribution. The Q1 and Q3 are the 1st (25%) 

and 3rd (75%) quartiles, and e is the exponential model used to define the whiskers. Any values 

that fell outside of these thresholds (far away from the rest of the data) were flagged as outliers. 

 

4.2.5. Samples selections for laboratorial analysis 

4.2.5.1. Selection of training and testing sets 

We split samples based on spectra into subsets with data distribution close to that of the 

full sample set of each laboratory to reduce the variance between them and improve prediction 

results (Chen et al., 2021; Khaledian and Miller, 2020). Firstly, we removed the outliers 

detected in the previous step and ordered the soil samples by the mean spectral reflectance from 

the most important wavelengths—global variable importance higher than 70%. Then, we split 

the whole data into test and train sets by (systematically) selecting the K-th sample of the 

sequence—e.g., we selected the first sample (50%) to train and the second one (50%) to test, or 

the first two samples (67%) to train and the third one (33%) to test the algorithm. Therefore, 

we used samples split into 50%-50%, 67%-33%, 75%-25%, 80%-20% and 87%-13% for 

training and testing the prediction algorithm and evaluating the effect of the set size on the 

model performance for each soil attribute and laboratory. This approach can indicate the ability 

of a given laboratory of soil analysis to reduce the number of samples and the associated costs 

required for traditional determinations. 
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4.2.5.2. Soil attributes modelling from spectra 

We selected Cubist algorithm (Quinlan, 1992) provided in Cubist R package (Kuhn and 

Quinlan, 2021) based on tests (unpublished results) and literature (Chen et al., 2021; Moura-

Bueno et al., 2020; Silva et al., 2019) that frequently showed better results for Cubist than other 

algorithms for soil spectral modeling. Therefore, we used Cubist—a machine learning 

algorithm that fits the final prediction by a linear regression—to train regression models—using 

100 committees for stable predictions and other default parameters—between raw spectra—

described in section 2.2.2— and soil attributes for each commercial laboratory. 

Then, we used the trained Cubist models to make prediction in the testing set and calculate 

the following metrics for each laboratory: i) root mean square error (RMSE) to assess how close 

the predicted values were to the observed ones; ii) relative RMSE [rRMSE (%) = (mean 

RMSE/(Y_max – Y_min))x100], where Y is the observed value, to compare RMSE with 

different units; iii) coefficient of determination (R2) to indicate the proportion of the variance 

in the target variable that the model explains; and iv) ratio of the performance to interquartile 

distance (RPIQ = IQR/RMSE) to evaluate the spread of the dataset to the models accuracy 

(Khaledian and Miller, 2020). Predictive models with higher performances usually have lower 

RMSE (or rRMSE) and higher R2 and RPIQ values. 
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Figure 2. Methodological flowchart and location of the soil samples acquired through 

the Brazilian Program of Soil Analysis via Spectroscopy (ProBASE) that were used in this 

study. 
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4.3. Results 

4.3.1. Relationship between soil spectra and traditional attributes 

We performed about 180 correlation analyses between 36 labs and 5 soil attributes, 

and for this reason we described and discussed only average values. The averaged 350-

2500 nm soil spectra (Figure 3) showed the presence of absorption features of iron oxides—

mainly hematite and goethite—, kaolinite, gibbsite and 2:1 clay mineral in the soil fractions 

smaller than 2 mm. These minerals are typical in the studied tropical soils—mainly 

Ferralsols— which developed in flattened or smoothed reliefs with good drainage 

conditions that facilitated their agricultural mechanization. 

The soil spectra (Figures 3, 4 and 5) had significant (p < 0.01) Pearson’s correlation 

with clay (–0.82 < r < –0.04), sand (–0.09 < r < 0.82), OM (–0.68 < r < 0.12), CEC (–0.69 

< r < 0.13) and V% (–0.56 < r < 0.31). Higher amounts of clay and OM in the soil—

normally associated with higher levels CEC and V%— produced higher absorption of the 

electromagnetic radiation and negative correlation values. Conversely, higher amounts of 

sand fractions increased the reflectance factor of the soil and caused positive correlation 

values.  
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Figure 3. Pearson correlation values of raw spectra with clay (top panel) and sand 

(bottom panel) contents displayed by laboratory. 
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Figure 4. Pearson correlation values of raw spectra with organic matter (top panel) and 

cation exchange capacity (bottom panel) levels displayed by laboratory.  
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Figure 5. Pearson correlation values of raw spectra with base saturation levels 

displayed by laboratory. 

 

4.3.2. Quality in analytical methods 

Overall, the variable importance based unsupervised RUF spectral classification 

(Figure 6) showed strong interaction effects between the variables (> 50% of variance 

explained per wavelength). The ranges near 500, 700, 1000–2100 and 2300 nm were the 

most important (> 70%) for proximity measures between soil samples. These influential 

wavelengths—matching the spectral ranges linearly correlated with the studied soil 

attributes (Figures 3–5)— guided the proximity measures—reduced to two principal 

coordinates— and, therefore, the formation of the spectral clusters (left panel in Figure 7). 

It suggested that soil samples were clustered into homogeneous groups with similar values 

of clay, sand, OM, CEC, and V%, allowing a more precise outlier analysis within each 

cluster for these soil attributes. Figure 7 (left panel) shows an example for the laboratory 
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number 35 with ten spectral clusters formed by grouping from 4 to 43 spectra with very 

close (similar) spectral patterns. 

 

 

Figure 6. Global variable importance measures (%) based on interactions computed 

for the unsupervised RUF spectral classification of soil samples. 

 

The outlier analysis used in this study (right panel in Figure 7) precisely adjusted the 

lower and upper thresholds for distribution of soil data within each spectral cluster and 

flagged values as outliers. Outlier detection was performed about 1,080 times—36 labs 

with 5 soil attributes and near 6 spectral clusters by lab. Figure 7 shows an example of how 

this method worked for clay contents determined by the laboratory number (code) 35, 

where values far away from the rest of the data were flagged as TRUE (outlier) and their 

respective spectra were marked in red color. Therefore, soil samples spectrally near to each 

other (Figure 7)—with spectra correlated with soil attributes data (Figures 3–5)— detected 

samples with possible error of measurement in classical soil analytical methods. 

Unfortunately, due to limited resources, we were unable to reanalyze the samples identified 

as outliers by soil analytical methods to confirm these results. 
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Figure 7. Outlier detection method performed for clay content determined by the 

laboratory number 35, displaying the spectral cluster (left panel) and boxplot adjusted for 

skewed distribution (right panel) with outliers highlighted in red color. n: number of spectra 

grouped within a specific cluster. 

 

After we detected and flagged outliers in wet chemistry data within the clusters for 

each laboratory, we found an increasing total number of outliers detected—sum of all 

laboratories— for sand (255 ≈ 3.64%) < V% (265 ≈ 3.79%) < CEC (303 ≈ 4.33%) < clay 

(320 ≈ 4.57%) < OM (324 ≈ 4.63%)—Figure 8. It suggested that sand had the lowest 

laboratory inaccuracies and OM the largest ones. The total number of outliers for a specific 

laboratory—sum of all soil attributes— varied from 21 (≈10.5% for lab 4) to 69 (≈34.5% 

for lab 35), suggesting that laboratory 35 had nearly three times more global inaccuracy 

than laboratory 4. The top six laboratories with the highest quality (lowest number of 

outliers or inaccuracy) for clay were the codes 8, 34, 21, 4, 1 and 36, for sand were the 

codes 28, 36, 31, 10, 8 and 16, for OM were the codes 4, 11, 26, 12, 10 and 28, for CEC 

were the codes 16, 8, 12, 6, 19 and 10 and for V% were the codes 16, 19, 24, 34, 20 and 9 

(Figure 8). The study laboratories used the same analytical methods and obtained different 

numbers of outliers for the same soil attributes. It means they had different levels of 

accuracy or laboratory measurement error. 
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Figure 8. Total number of outliers detected for each soil attribute determined using 

analytical methods grouped by laboratory. n: total number of outliers detected for a specific 

soil attribute. 

 

4.3.3. Sample selection for determination and prediction 

Systematic sampling of samples based on spectra by laboratory resulted in 900 training 

and 900 testing sets of different sizes—36 labs with 5 soil attributes and 5 set sizes— with 

soil attribute values equally distributed among the subsets. To save space, we selected as 

an example the clay content determined by laboratories for different training and testing set 

sizes and displayed its histograms in Figures 9 and 10. These histograms showed soil data 

with different distribution among laboratories, usually due to soil spatial variability 

between the different study locations (Figure 2). We emphasize that no soil attribute values 

were used to split the sample sets, and that our approach yielded promising results for 

spectral library applications. 

Therefore, the soil samples that a laboratory receives from its customer (users) could 

have their spectra acquired to support the selection of which samples will have their 

attribute values determined using wet chemistry, and which of them its values predicted 

using spectra-based models. The size of the training set will result from previous studies 

that the laboratory will need to perform using existing data from your laboratory. 
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Figure 9. Histogram of clay content determined by laboratories for different training 

(left panel) and testing (right panel) set sizes. 



109 
 

 

 

Figure 10. Histogram of clay content determined by laboratories for different training 

(left panel) and testing (right panel) set sizes. 

 

4.3.4. Soil predictions 

Since we trained and tested nearly 900 prediction models—36 labs with 5 soil attributes 

and 5 set sizes— using Cubist algorithm, only the mean results were described and discussed. 

Overall, we obtained highly variable performance results between laboratories for each soil 

attribute from the testing sets (Figures 11-13), with R2 values ranging from near 1 to 0 (Figure 

11), rRMSE from 28 to 2% (Figure 12) and RPIQ from 9 to 1 (Figure 13). The predictions in 

the validation sets showed mean values of i) R2 between 0.71 and 0.28 for clay > sand > CEC 

> OM > V%, ii) rRMSE between 12.76 and 19.65 for clay < sand < OM < CEC < V%, and iii) 

RPIQ between 3.61 and 1.69 for clay > sand > CEC > OM > V%. It means that clay and sand 

often had higher average performance levels than CEC, OM, and V%.  
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We found that smaller test sets (size = 13%), and therefore, larger training sets (size = 

87%), promoted moderately higher performances for only 30% of the laboratories (Figures 

11-13). We also observed an overall weak relationship of test set size with R2 (r ≈ –0.18), 

rRMSE (r ≈ 0.19), and RPIQ (r ≈ –0.13) for all labs. These results suggested that larger 

training sets did not always guarantee better model fit for our conditions. 

The laboratories that outperformed the average in soil predictions using 50% of the 

samples (for testing) comprised 27% for clay (R2 > 0.71, rMRSE < 12.76%, RPIQ > 3.61), 

30% for sand (R2 > 0.69, rMRSE < 12.67%, RPIQ > 3.47), 17% for OM (R2 > 0.53, rMRSE 

< 13.79%, RPIQ > 2.21), 33% for CEC (R2 > 0.54, rMRSE < 14.31%, RPIQ > 2.36), and 

21% for CEC (R2 > 0.28, rMRSE < 19.65%, RPIQ > 1.69). These levels of performance 

suggested that near 25% of the laboratories had a higher potential than others to reduce the 

number of soil samples for training by at least 50%, while reducing laboratory costs related 

to physical-chemical analytical methods.  

Conversely, about 31% of the laboratories had difficulties in predicting clay, sand, 

OM, and CEC, while 45% of them were almost unable to predict V% for all test set sizes. 

We found that R2 and RPIQ values from prediction models presented direct correlation 

with standard deviation (0.15 < r < 0.71) and indirect with kurtosis (–0.61 < r < –0.29) from 

observed soil attributes, but also slightly increased rRMSE (r ≈ 0.10). It suggested that 

lower prediction performances were related to the smaller standard deviations and larger 

effects of kurtosis within the training and testing sets from each laboratory—see the 

example of the distribution of clay data in Figures 9 and 10. However, when we analyzed 

the kurtosis within the spectral clusters from each laboratory, we found mean correlation 

values of kurtosis with R2 and RPIQ varying between –0.08 to 0.03, and it suggested no 

effect of kurtosis. For all cases, skewness had a stronger effect only for R2 (r ≈ –0.17) and 

rRMSE (r ≈ 0.42) from V% predictions. 

Finally, when we tried to model soil attributes within each spectral cluster, we obtained 

worse prediction performances (unpublished results) likely due to the limited number of 

samples remaining (after the splitting process) for training and testing the Cubist 

algorithms. For instance, considering that each laboratory had nearly 200 samples and an 

average of 6 spectral clusters, we had about 33 samples for splitting into training and testing 

sets. This low number of samples probably failed to correctly represent the soil variations 

and led to worse results than those we obtained using the full sample set from each 

laboratory. 
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Figure 11. Coefficient of determination (R2) of the soil attributes predicted by Cubist 

from different testing set sizes grouped by laboratory. OM: organic matter; CEC: cation 

exchange capacity; V%: base saturation. Dashed lines represent mean values for each test 

set size. 
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Figure 12. Relative root mean square error (rRMSE, %) of the soil attributes predicted 

by Cubist from different testing set sizes grouped by laboratory. OM: organic matter; CEC: 

cation exchange capacity; V%: base saturation. Dashed lines represent mean values for 

each test set size. 
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Figure 13. Ratio of the performance to interquartile distance (RPIQ) of the soil 

attributes predicted by Cubist from different testing set sizes grouped by laboratory. OM: 

organic matter; CEC: cation exchange capacity; V%: base saturation. Dashed lines 

represent mean values for each test set size. 
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4.4. Discussion 

4.4.1. Relationship between soil spectra and traditional attributes 

The mineralogical composition of the studied soils originated from their parent materials 

that were exposed for long-term to strong weathering conditions and resulted in intensive 

leaching of silica from soil fractions (Schaefer et al., 2008). The minerals with spectral 

responses from tropical soils (Figures 3–5) occur frequently in the clay fraction in the form of 

iron oxides–that reduces the reflectance near 500 and 900 nm due to electronic transitions—, 

kaolinite, gibbsite and 2:1 clay mineral—that lower the reflectance near 1400, 1900 and 2300 

nm due to molecular vibrations involving stretching and bending (Clark et al., 1990; Guimaraes 

et al., 2021). Highly reflective minerals as quartz are present in the sand fractions (Figures 3–

5) increasing the soil reflectance from near 1750 nm (Lacerda et al., 2016).  

The negative correlations of raw spectra with OM can be related to the absorption effect of 

organic compounds across 350-2500 nm range, where correlations near 500 and 700 nm are 

probably related to soil color (Demattê et al., 2003; Nawar et al., 2016). The minerals in the 

clay fraction and the OM—both with spectral response— usually generate electrical charges 

that retains ions in the soil—such as Ca2+, Mg2+, K+ and Al3+ without spectral response— 

causing and indirect correlation of soil spectra with CEC and V% (Santana et al., 2018). 

Nevertheless, the Pearson’s correlation values near to zero for some laboratories (Figures 3–5) 

can be caused by complex relationships—not always considered linear— between spectral data 

and soil attributes (Santana et al., 2018) or measurement error in wet chemistry soil data 

(Leeuwen et al., 2021). 

Similar descriptions between 350–2500 nm spectra and soil attributes (Figures 3–5) were 

reported by the Brazilian Soil Spectral Library (Dematte et al., 2019) for soils from Cerrado 

and Atlantic Forest biomes (Figure 2). The Soil spectral library of Piauí State in Brazil (Mendes 

et al., 2021) also reported similar relationships, where the soil clay and organic carbon contents 

had negative correlations and sand had positive correlation values with 350–2500 nm spectra. 

Moura-Bueno et al. (2020) found that the first principal component from 350–2500 nm soil 

spectra had inverse correlation with organic carbon (r = −0.75) and clay (r = −0.63) contents, 

and positive correlation with sand (r = 0.45) content from subtropical Brazilian soils. In 

addition, Stevens et al. (2013) reported principal components form 350–2500 nm spectra 

strongly correlated with clay (r = −0.45), CEC (r  = −0.5), organic carbon (r = −0.55) and weaker 

with sand (r = 0.17) content. 
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4.4.2. Quality in analytical methods 

Despite RUF is an important unsupervised method, a keywords search in Scopus 

database—TITLE-ABS-KEY("unsupervised random forest" OR "random uniform forest" 

AND  "chemometrics" OR "spectroscopy" )— revealed that it has been little applied to 

chemometrics in spectroscopy, possibly due to the belief that random forest can only be used 

for supervised analysis. In our study, the unsupervised RUF confidently classified similar soil 

samples as belonging to the same spectral class, resulting in high values of proximity 

compressed to lower dimensional space for clustering. That is because during the unsupervised 

RUF classification, spectrally similar soil samples followed the same routes along the different 

decision trees and ended up in the same terminal node (Afanador et al., 2016). 

Highly predictive wavelengths were the most important for proximity measures (Figure 6) 

because they explained more the variance between samples, and it helped to understand the 

structure of the spectral clusters (Ciss, 2015b). Similar influential wavelengths were also 

reported by Moura-Bueno et al. (2020), who reduced 350–2500 nm spectra to three principal 

components and found eigenvectors related to iron oxides (near 450, 600–800 nm), OM (near 

800–900 and 1850 nm), and clay minerals (near 1400 and 1900 nm). Mendes et al. (2021) 

reported that the 1000–2500 nm spectral range had high importance to estimate soil attributes 

such as pH, sand, clay, and organic carbon. The first the principal components from the 

Brazilian Soil Spectral Library (Dematte et al., 2019) were related to iron oxides and OM (near 

500 and 900 nm), kaolinite, gibbsite, quartz and 2:1 clay mineral (near 1000–2100 and 2300 

nm). Similar wavelengths—to those found in our study for soil clustering— at near 400–750, 

1000–1250 and 2300 nm were also important to predict soil clay, sand, organic carbon and CEC 

in the global spectral library (Viscarra Rossel et al., 2016) due to their intrinsic relationship 

with soil constituents.  

Ramirez-Lopez et al. (2013a) and Zeng et al. (2021) showed that the soil 350–2500 nm 

similarity is directly related to the soil compositional similarity for soil organic carbon, pH, 

CEC, clay, silt, and sand content. Similarly, Ramirez-Lopez et al. (2013b) used a regional 

(Brazilian) and global 350–2500 nm soil library to test a spectrum-based learner by: i) 

computing their principal components, ii) measuring the Mahalanobis distances between 

samples, and iii) training prediction models based on nearest neighbors (similarity). They 

reported accurate predictions for soil clay, organic carbon and Ca2+ contents attributed to the 

use of local models based on spectral distances calculated from principal components. That 

method is comparable to our approach, as we also performed a local analysis based on spectral 

distance measurements between samples, however, applied to outlier detection. Therefore, the 
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nearer the samples are spectrally between 350–2500 nm, the more similar they can be in their 

pedological composition. It means that for samples within a spectral cluster, the variability of 

a specific soil attribute (Figure 7) can be partly explained by the variability of the spectral 

similarity measures (Ramirez-Lopez et al., 2013a, 2013b; Zeng et al., 2021). Likewise, Araújo 

et al. (2014) divided a global soil dataset—nearly 7,000 samples— into spectrally 

(mineralogically) similar clusters and it improved the prediction performance of clay and OM 

contents.  

The performance of 50 commercial soil laboratories in Brazil was assessed by Agbenin 

and Cantarella (2011) using Z-scores—based on two-sided probability distribution— to detect 

outliers for each soil attribute where organic carbon (Walkley-Black method) had the largest 

outliers and Ca2+ and Mg2+ (Mehlich I method) the smallest ones, similar to our results. 

Nevertheless, Z-score is not robust enough for a skewed data distribution (Hubert and 

Vandervieren, 2008). Demattê et al. (2019) evaluated the analytical quality of soil attributes 

from Brazilian laboratories and observed the lowest number of penalized samples by 

laboratories (sum of all laboratories) for CEC, sand, and H++Al3+, like our findings. 

Souza et al. (2016) used 1000–2500 nm spectra to predict soil organic carbon (Walkey-

Black method) from 111 laboratories and detected about 10% outliers in the data using methods 

such as extreme leverage and unmodelled residuals. Santana et al. (2018) considered soil 

samples as outliers if the predicted values—using 350–2500 nm spectra— presented residues 

exceeding ±3×RMSE or if standard deviation was higher than a threshold for soil attributes. 

They excluded from the full samples set between 2.3 and 3.1% of outliers for OM < sum of 

bases (SB) < Sand < CEC—when modeled by random forest— and between 5.6 and 15.6% of 

outliers for Sand < Clay < SB < CEC < OM—when modeled by partial least squares. However, 

all these methods—to detect outliers— assume different statistical distributions and allow for 

different types of error. 

During the inter-laboratory comparison for Asia (Suvannang and Hartmann, 2019), the 16 

participating laboratories had on average 14% and 10% of outliers—detected by standard 

deviation thresholds— for organic carbon (Walkey-Black method) and K+ (Ammonium Acetate 

method), respectively. The inter-comparison of 16 Latin American laboratories (Guerrero and 

Bertsch, 2020) resulted in the lowest average outliers for Mg2+ (≈2%), followed by organic 

carbon (≈4%), Ca2+ (≈5%) and K+ (≈13%). Both studies related the occurrence of outliers 

possibly to i) the lack of quality control inside the laboratories, and ii) the lack of sufficient 

professional training and qualification of the staff for soil analysis. 
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The study of Anas et al. (2016) demonstrated that the quality of soil laboratories cannot be 

equivalent even when they used the same analytical method for soil attributes determination. 

Whenever a specific soil attribute is measured using multiple methods, each of them has its 

own bias (Leeuwen et al., 2021). The main factors causing measurement error are: i) sample or 

subsample handling and preparation methods, ii) the analyst, iii) changing laboratory 

conditions—e.g., humidity, temperature—, and iv) complex analytical methods (Libohova et 

al., 2019; Viscarra Rossel and McBratney, 1998). 

Therefore, to improve quality in general, an inter-laboratory study in analytical chemistry 

(Hund et al., 2000) recommend that laboratories should implement their own quality assurance 

systems—as the one proposed in this study, which is faster and cheaper— instead of trying to 

acquire expensive instrumentation that does not guarantee high quality results. These insights 

are relevant for initiatives such as Global Soil Laboratory Network—GLOSOLAN (FAO, 

2021). 

 

4.4.3. Sample selection for determination and prediction 

Our findings add to the few studies on soil spectral modelling that have examined distinct 

test set sizes from commercial laboratories. Other studies (Dematte et al., 2019; Gogé et al., 

2014; Moura-Bueno et al., 2020; Ramirez-Lopez et al., 2013a; Santana et al., 2018; Silva et al., 

2019; Stevens et al., 2013; Viscarra Rossel et al., 2016)— where they randomly divided the 

data set using only a single proportion (e.g., 70:30, 75:25)— also reported that the distribution 

of soil attributes (e.g., clay, sand, OM, SB, CEC) values were not normally distributed, mainly 

because many samples were collected from different soils. 

The effects of subsetting strategies on soil spectral modelling were assessed by 

Clingensmith et al. (2019), where the systematic sampling based on soil spectral data improved 

model performance—for clay, sand, organic carbon, total nitrogen, and Fe available— 

compared with other sampling strategies. The study also highlighted the importance of 

systematic sampling—from the full set of samples— using spectra for areas with i) greater 

spectral variation and spatial heterogeneity, ii) larger geographic extent, and iii) sub-optimally 

sampled data. Likewise, Nawar and Mouazen (2018) compared three sample selection methods 

and different subsetting sizes for soil organic carbon prediction using 350–2500 nm spectra, 

and found the systematic sampling—based on spectral similarity matrices— provided uniform 

distribution of data between subsets and improved accuracy and robustness of prediction 

models. Zeng et al. (2021) selected similar soil samples using spectral data and improved the 

predictive accuracy of soil organic carbon, pH, CEC, clay, silt, and sand content. Therefore, 
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data split based on spectra reduced the training set size, and, thus, the costs with soil analysis, 

while improving model performance.  

 

4.4.4. Soil predictions 

Our soil predictions from raw spectra yielded performance values similar to those obtained 

from soil spectral libraries (Dematte et al., 2019; Stevens et al., 2013; Viscarra Rossel et al., 

2016) for sand, clay, organic carbon, CEC, and V% using Cubist and several spectral modelling 

strategies—e.g., preprocessing, stratification, splitting and auxiliary predictors. We also had a 

high number of laboratories that outperformed the results from the soil spectral library of Piauí 

in Brazil (Mendes et al., 2021) and other studies on spectral modelling (Moura-Bueno et al., 

2020; Santana et al., 2018; Silva et al., 2019). The prediction of clay and sand content 

outperformed estimation of other soil attributes because they reflect the direct influence of soil 

mineralogy on soil spectral patterns within the 350–2500 nm range (Lacerda et al., 2016). 

Kuang and Mouazen (2011) and Wetterlind and Stenberg (2010) found the standard 

deviation and range of observed values of soil attributes—that explained the variability in sets 

from 70 to 205 samples— influenced the performance of prediction models for clay, silt, sand, 

organic carbon, and pH. The authors also described that a larger standard deviation and wider 

range of soil attributes resulted in larger R2 and RPD (ratio of performance to deviation) values, 

but also larger RMSE values. Larasati et al. (2018) reported that the effect of kurtosis level of 

the data significantly affected the performance of the artificial neural network predictive model. 

Such misestimation often occurs when soil samples are under-represented in the tails of the soil 

attribute data distribution (Stevens et al., 2013). Furthermore, the measurement error of 

laboratories—using traditional analytical methods— may have a larger impact on soil 

modelling than the acquisition and processing of spectral data (Horst-Heinen et al., 2021).  

Gogé et al. (2014) and Lucà et al. (2017) collected between 144 and 216 soil samples to 

assess the influence of calibration set size and found that soil predictions—for clay, organic 

carbon, CEC, iron and CaCO3 based on spectra— became accurate when at least 40–72 samples 

were used to train the algorithms, whereas Araújo et al. (2014) reported model improvements 

with smaller subsets when using a large dataset (≈7,000 samples). These studies support our 

choice of using the full set of samples (≈200) from each laboratory—instead of smaller sets 

(≈33) from spectral clusters— to model soil attributes. When the sample set is small, the model 

would perform better using all samples, while for large sample sets, clustering samples would 

improve model performance.  
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Therefore, studies on soil spectral modelling—as the present work— have potential to be 

used in laboratory routines, and may reach even more significant levels of applicability and 

robustness with their popularization (Souza et al., 2016). The application of proximal soil 

sensing as a cost-effective tool in routine analysis is hence essential for the adoption and 

implementation of precision agriculture (Nocita et al., 2015; Viscarra Rossel and McBratney, 

1998). 

 

4.4.5. Guidelines for the use of spectra in laboratory routines 

Most studies based on soil spectra do not focus on bridging the gap between soil 

spectroscopy and their real implementation in laborory routines. With the development of the 

present work, we attempted to provide guidelines about how spectroscopy could be 

implemented in the routine of soil laboratories. Therefore, users may use the following 

recommended guidelines. 

 

4.4.5.1. Internal quality control 

After spectra acquisition, the soil laboratory can perform a set of procedures for continuous 

monitoring of their internal quality in order to verify whether the analytical results are reliable 

enough to be released. The quality control can reach more significant levels of robustness as 

the spectral library grows daily. Steps: 

● Spectra acquisition from soil samples using standard protocols, e.g., Brazilian protocols 

(Romero et al., 2018), and splicing correction; 

● Clustering soil samples, collected from a plot or group of plots of a farm, based on their spectral 

proximity values. Laboratories could construct a reference library containing samples with soil 

attributes data and spectra determined with high confidence—e.g., using replicates. This (local 

or regional) library could be coupled with the samples for clustering, where the library could 

be used as reference for outlier detection within the spectral clusters in routine analysis. 

● Detection of outlying analytical results within each spectral cluster using a method (auto) 

adjusted to the data distribution; 

● Discard outlying values and resubmit soil sample for analytical determination; 

● Repeat clustering and outlier detection procedures until the desired levels of quality are 

obtained. 
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4.4.5.2. Samples selection for analysis and prediction 

When the soil samples arrive at the laboratory, the analyst does not know any information 

about the soils. Then, the specialist needs to determine which and how many samples should 

be submitted to analytical methods and which and how many to predict. Steps: 

● Spectra acquisition from soil samples using standard protocols, e.g., Brazilian protocols 

(Romero et al., 2018), and splicing correction; 

● Performing unsupervised spectral classification of soil samples using Random Uniform Forest 

and computing proximity matrices and wavelength importance; 

● Ordering soil samples based on the mean reflectance from the most important wavelengths or 

their spectral proximity values. 

● Systematic sampling of samples (after ordering) for splitting into training and testing sets. The 

optimal size of the subsets should be explored by the laboratory using their existing database 

for each region served (e.g., agricultural zone, municipality, or geographical region). 

● Submitting soil samples from the training set to analytical methods. 

● Obtaining the model performance of the training set (with analytical results) for each soil 

attribute. First, systematically split the whole training set in two smaller subsets for training and 

testing the prediction algorithms, and then, calculate the performance metrics for the model. It 

will provide a reference about the accuracy of the attribute predictions that will be made in the 

following steps using the whole testing set (for which there is no analytical results). 

● Predicting soil attributes for the testing set by applying the fitted prediction model. 

 

4.4.6. Future recommendations 

For future studies we recommend to: i) re-analyze samples detected as outliers using soil 

analytical methods, ii) study different soil attributes, iii) apply different spectral preprocessing 

methods, iv) investigate different methods for data stratification (e.g., environmental variables 

such as soil class, biomes, parent material, etc.), v) test the proposed approach using data 

obtained within the medium-infrared spectral range. 

 

4.5. CONCLUSIONS 

Internal quality control based on soil spectra and unsupervised analysis can be implemented 

for laboratory routines. Spectra-based soil samples selection and attributes predictions can 

reduce the need for laboratory analysis by half. More importantly, the use of spectra in 

laboratory routines can benefit countries even if they have limited—or great— funding or 

laboratory resources. Soil spectroscopy is complementary to traditional laboratory methods and 
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can become an important alternative to improve their results, save time, reduce costs, and 

mitigate environmental impact with acceptable accuracy. 
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5. THE BRAZILIAN SOIL SPECTRAL SERVICE (BRAZ3): AN EASY SYSTEM FOR 

WORLD WIDE COMMUNITY  

 

ABSTRACT 

We are in the Soil Spectral Libraries (SSLs) era but most of the soil information 

available to land users (farmers, researchers, and policy-makers) is still obtained by traditional 

soil analysis, which is becoming non-environmentally friendly and cannot go along with the 

world’s demand. However, soil scientists have been using spectroscopy techniques to obtain 

massive reliable soil data, their usage is still limited to the academic arena.  In order to provide 

fast and credible soil data, the online Brazilian Soil Spectral Service (Braz3) for estimating soil 

properties was developed using the Brazilian Soil Spectral Library (BSSL). BSSL has 49,753 

and 4,751 soil spectra from the Visible–Near–Short Wave Infrared (vis–NIR–SWIR; 350–

2,500 nm) and the Mid-Infrared (MIR; 2,500–20,000 nm), respectively. The platform provides 

an interactive way to find researchers and data, and to predict several soil properties at the 

Brazilian territory from which we focus on clay and Soil Organic Carbon (SOC) contents 

estimation. The system was tested by 500 Brazilian users as well as users invited from 65 

countries. The users accessed the online platform (besbbr.com.br) and followed the instructions, 

which basically consisted of uploading the soil spectra in a defined format. After a few minutes, 

they automatically received their results (predictions of SOC and clay content) by email. The 

Braz3 provided good results for the Brazilian users and variables for other countries. When 

overseas users made their Local Models (LMs, local dataset), the result was better. Clay content 

was the best predicted property in all cases with R2 > 0.5. MIR generally presented higher R2 

values than vis–NIR–SWIR for both soil properties. The online system showed to be a reliable 

service that works properly. Users experienced how spectra can easily deliver soil analysis in 

almost a real-time situation. Afterwards, different models were developed outside the system. 

We merged the BSSL with the soil spectra from other countries and generated a World Soil 

Spectral Library (WSSL) and a global model. We observed that LMs were the best followed by 

the WSSL and the BSSL. This trend suggests a need to keep expanding online SSLs, in 

particular a WSSL, but with a dynamic system in which users can choose the population to run 

the model and seek for the best local one (for their own purpose: level, scale). Receiving soil 

analysis as a service, without making and testing models, can improve the interest of end-users 

for this powerful technique. 

 

Keywords: Spectral service, soil analysis, spectral library, spectroscopy, environment, soil 

quality, precision agriculture. 

 

5.1. INTRODUCTION 

Soil is an important component of the environment as it offers crucial services such as 

food production, water cleaning, and carbon sequestration (Lal et al., 2021). To achieve 

sustainable use of soil resources, it is crucial that the world’s soil community interact and seek 

reliable methods for obtaining soil information. So far, traditional soil laboratory analysis has 

been the most common way to obtain soil data, but it is non-environmentally friendly and 

becomes expensive when large amounts of soil samples need to be analyzed (Viscarra Rossel 

and Mcbratney, 1998). This is especially important in developing countries, where farmers 
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either do not carry out soil analysis due to high costs or they are unaware of its importance and 

work in the 'darkness' related to soil management. Despite the disadvantages, the traditional 

laboratory analysis is, and will continue to be, the most suitable way to obtain soil data. 

However, alternatives approches such as soil spectroscopy have proved as a suitable way to 

optimize soil analysis and disseminate its use to all interested parties.  

The interaction of soil components with electromagnetic energy, which is the basis of 

soil spectroscopy, is well-documented in the literature (Viscarra Rossel et al., 2009, Soriano 

Disla et al., 2014, Nocita et al., 2013). Understanding of these interactions provided researchers 

with the tools to search for a global communication system based on the so-called Soil Spectral 

Libraries (SSLs). The first publication using a SSL with global samples was presented by Stoner 

and Baugarnder (1981), followed by Brown et al. (2006), and Viscarra Rossel et al. (2016), 

with participation of 92 countries. Other regionals initiatives came along such as the ICRAF-

ISRIC Soil VNIR Spectral Library (Garrity and Bindraban, 2004), the LUCAS framework 

(Land Use/Cover Area Frame Survey; http://eusoils.jrc.ec.europa.eu/projects/Lucas) (Orgiazzi 

et al., 2018) with  data from 23 countries in Europe (Stevens et al., 2013), and the 

GEOCRADLE with samples from nine countries in Balkan, Middle East, North  and central 

Africa (Tziolas et al., 2019; Shepherd and Walsh, 2002; Summerauer et al., 2021).  In addition, 

numerous countries have also developed local SSLs, such as the Brazilian Soil Spectral Library 

(BSSL) (Demattê et. al., 2018, Bellinaso et al., 2010), and those from the Czech Republic 

(Brodsky et al., 2011), France (Gogé et al., 2012), Denmark (Knadel et al., 2012),  Mozambique 

(Cambule et al., 2012), Spain (Bas et al., 2013), Australia (Viscarra Rossel and Webster, 2011), 

China (Shi et al., 2014; Ji et al., 2016; Liu et al., 2018), USA (Condit, 1970; Wijewardane et 

al., 2018), New Zealand (Baldock et al., 2019), and Tajikistan (Hergarten et al. 2013).  

These SSLs are important initiatives but all of them were only available in scientific 

journals. Other initiatives made spectra available to users, but who are the spectra users? This 

basic data still needs complex processing, which is certainly accessible to researchers but not 

to the general public. To make an analogy, it would be like when satellite imagery was available 

for free for the first time. Most users were unable to use them due to pre-processing issues (e.g., 

atmospheric correction and georeferencing) (Bunting, 2017). This shortage was eliminated, 

when images were made available already pre-processed and georeferenced. Nowadays, we 

have an analogous situation, where many SSLs are available worldwide but end-users (farmers) 

cannot see their importance. As a first step on a learning curve, why not start delivering the 

product directly to users? This would not interrupt research on this topic, although rather will 

boost it.  

http://eusoils.jrc.ec.europa.eu/projects/Lucas
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Taking this into account, in this study, we present a free web-based online platform for 

soil properties prediction using Visible–Near–Short Wave Infrared (vis–NIR–SWIR) and Mid-

Infrared (MIR) spectral ranges, and as background the BSSL. The system was tested by users 

from Brazil and 65 other countries. After understanding the valuable use of an online system, 

we evaluated other modeling with locals and a world-wide dataset for comparison with the 

BSSL. 

We expected that the model works better for Brazil than for the other countries as the 

World Soil Spectral Library (WSSL) brings light to all cases, but local ones would be the best. 

Since this is the first initiative of this kind, the main idea is pedagogic, with the objective that 

users start to understand how soil spectra can assist their needs. This initiative is not free from 

uncertainties and has its limitations; however, we hope to bring to light a new and fast 

generation of online communication in soil analysis. 

 

5.2. MATERIAL AND METHODS 

5.2.1. The Brazilian Soil Spectral Service (Braz3) construction 

We developed an online platform denominated The Brazilian Soil Spectral Service 

(Braz3) with support of the Geotechnologies in Soil Science Group (GEOCIS, 

https://esalqgeocis.wixsite.com/english) Laboratory at the Luiz de Queiroz College of 

Agriculture (ESALQ), University of São Paulo (USP). Braz3 is divided into three 

complementary modules: data localization, soil data visualization, and soil processing and 

quantification (Figure 1a). In the data locations module, the user visualizes the number of 

samples by state and identifies the authors and partner institutions. The soil data visualization 

module shows soil spectra in the Vis, NIR, SWIR, and MIR bands filtered by classifications, 

orders, groups, layers, and textures.   

All spectra and models are kept inside the system and are not disclosed. Scripts for 

modeling are in the backend of the system so the user only needs to choose the desired 

properties to quantify. The web platform, which can be accessed in http://besbbr.com.br/, 

provides several services inserted in the results section. 

 This system was prepared only for the BSSL as an experimental phase. The predictive 

models were prepared in R software (R Development Core Team, Vienna, Austria, 2020) and 

then inserted into the web interface created in JavaScript. The baseline of the system 

functioning is illustrated in Figure 1. 

http://besbbr.com.br/
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Figure 1. (a) How the system functions; (b) how the system was tested. 

 

The web server was created using the Apache software (The Apache Software 

Foundation, Wakefield, MA, USA, 2021) and PHP programming language (Tasneem and 

Ammar, 2012). Apache is an open-source Hypertext Transfer Protocol (HTTP) server project 

with the goal of providing a secure, efficient, and extensible web server on HTTP standards. 

PHP is a fast and flexible scripting language, mainly used in web development (Mitchell, 2016). 

The predictive models were carried out in the form of a loadable module in Apache, 

allowing the server to interpret the R scripts. The prediction of the soil attributes is a task that 

requires high computational resources (Padarian et al., 2020) and to meet this requirement, we 

employed tools for organizing the spectral data sent by users in queues and distributing them 

with other computers. The First-In-First-Out (FIFO) (Manohar and Appaiah, 2017) model was 

selected and implemented on the server, allowing for a dynamic queue data structure that allows 

removal and insertion of processing on the server. A high-performance processing cluster was 

created and thus made it possible to distribute the processes with low-cost computers in the R 

environment. For the web server, a workstation was acquired with 2 XEON 5120T processor 

hardware with 14 cores each and a video card with 4000 GPUs, which are essential for the 

application of the predictive models. 
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5.2.2. Soil dataset construction 

As mentioned, the Braz3 is a service based on the soil dataset from the BSSL (Demattê 

et al., 2019). Using these data, we constructed the platform with vis–NIR–SWIR, resulting in 

49,753 soil samples donated by 81 collaborators, representing 69 institutions from all over the 

country (https://bibliotecaespectral.wixsite.com/english/lista-de-cedentes). The BSSL in the 

MIR range comprises 4,951 soil samples.  

The BSSL contains laboratory analysis for contents of sand, silt, clay, SOC, calcium, 

magnesium, potassium, phosphorus, pH, sodium, Fe2O3, TiO2, and MnO as well as respective 

spectra for vis–NIR–SWIR and MIR regions. In this paper, we focused on clay and SOC. For 

the vis–NIR–SWIR analysis, the soil samples were dried at 45 °C for 48 hours, ground, sieved 

with a 2 mm mesh, and homogeneously distributed in petri dishes prior the measurement of the 

spectra in the 400–2500 nm range (Demattê et al., 2019). The spectral data were acquired using 

the Fieldspec 3 spectroradiometer (Analytical Spectral Devices, ASD, Boulder, CO, USA). The 

sampling interval was 1 nm, reporting 2151 channels. The light source was provided by two 

external 50-W halogen lamps, which were positioned at 35 cm from the sample (non-collimated 

rays and a zenithal angle of 30°) with an angle of 90° between them. The sensor is calibrated 

using a white Spectralon plate (Lab-sphere, North Sutton, NH, USA) representing a 100% 

reflectance standard (reflectance factor 1.0).  

For spectral analysis in the MIR, the soil samples were ground and passed through 100 

mesh. Reflectance spectra were obtained with the Alpha Sample Compartment RT-DLaTGS 

ZnSe (Bruker Optik GmbH, Ettlingen, Germany) equipped with an accessory for acquiring 

Diffuse Reflectance Infrared Fourier Transform (DRIFT). The sensor has a HeNe laser 

positioned inside the equipment and a calibration pattern for each wavelength. It has a KBr 

beam allowing a high amplitude of the incident radiance to penetrate the sample. Spectra were 

acquired between 4000 to 600 cm−1 (2,500 – 20,000 nm) with a spectral resolution of 5 cm−1 and 

32 scans per minute per spectra. A gold reference plate was used as standard, and the sensor 

was calibrated every four measurements. 

 

5.2.3. Data pre-processing and modeling 

Different pre-processing methods were tested for the vis–NIR–SWIR range and those 

that presented the best results for each soil property were selected. The Standard Normal 

Variable (SNV) and Continuum Removal (CR) pre-processing techniques were used to pre-

process the spectra for modeling of clay and SOC, respectively. All calculations were 

performed using the prospectr package in R (Stevens and Ramirez-Lopes, 2020). In order to 



136 
 

 

minimize the influence of noise, the ranges from 350 to 420 nm and from 2480 to 2500 nm 

were removed, and we used the range from 420 to 2480 nm. Finally, we resampled the spectra 

at a resolution of 10 nm to reduce spectral multicollinearity and the processing time of the site, 

and to improve the modeling efficiency for this large dataset (Hong-Yan et al., 2009; Zhang et 

al., 2012; Zhang and Huang, 2019). For the MIR spectral range, the Savitzky-Golay first 

derivative (SGD) with a first-order polynomial and a window size of 9 nm and SNV were 

applied. 

The datasets for each soil property were randomly split into a calibration (training;70%) 

and an independent validation (testing; 30%) datasets. The complete BSSL dataset was used to 

calibrate spectroscopy models using the cubist machine learning algorithm (Quinlan, 1992). 

Cubist is a rules-based algorithm that applies the M5 (ModelTree) approach to create 

categorical decision trees to deal with continuous classes. The trees are produced by the 

algorithm through rules that use boost training. Reinforcement training is based on converting 

weak learners into strong learners, in addition to giving stronger learners more weight 

(Khaledian and Miller, 2020). The final model is regulated by a set of nodes along the tree and 

two hyperparameters (committees and neighbors), which improve the model’s performance. 

The model construction and estimation process were performed by the caret package in R 

(Kuhn, 2020), which has a set of functions that seek to simplify the process of creating 

predictive models. The criteria used to select the optimal models were Coefficient of 

Determination (R2), Ratio of Performance to InterQuartile distance (RPIQ), and Root Mean 

Square Error (RMSE). 

The online system was tested by users with their own spectra, as by 500 Brazilian (two 

spectra per user, total of 1000 spectra) for the vis–NIR–SWIR and 200 samples for MIR and 

received the soil analysis results. The real analysis coming from the pattern of the wet chemistry 

in the laboratory was later delivered to our team, which evaluated the observed and determined 

data. Users were also invited to make criticism regarding the system for a better improvement. 

 

5.2.4. Exploring other modeling with the dataset 

To go forward on possible future activities, we created new insights to evaluate our 

dataset. This part of the work was not inside the online system, but directly on a computer. We 

created four types of models for comparison: (a) the BSSL was tested using 28,255 soil samples 

for vis–NIR–SWIR from 65 countries and 3,488 samples from 4 countries for MIR (in the MIR 

range there were 8240 samples: 391 from Australia, 170 from Iran, and 2728 from the USA). 

We entered these spectra in the BSSL model and observed results, (b) we created for each of 
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the 65 countries Local Models (LMs) only with their spectral population and predicted the same 

soil properties (c) finally, we merged the BSSL with the spectra from the other 65 countries and 

generated a WSSL. The processing was the same as the one used for BSSL, as it performed by 

random data split of 70% for model calibration (training) and 30% for validation (testing) 

purposes and used the same processing as for the BSSL. Finally, we compared the results from 

the BSSL tested by other countries and compared with the developed LMs; BSSL and WSSL 

models compared with the same 65 countries. This made it possible to evaluate the differences 

between global, national, and local datasets on the quantification of soil properties. These 

dynamics are shown in Figure 2. 

 

 

Figure 2. World participants. Exploiting different populations and models to quantify soil 

properties (1) spectra from 65 countries were tested into the BSSL model, (2) Local model, (3) 

World Soil Spectral Model. 

 

5.3. RESULTS 

5.3.1. Online interaction experience 

The web site is available on “besbbr.com.br” and brings together spectral information 

in vis-NIR-SWIR and MIR ranges (Figure 3). This is a user-friendly interface in order to 

provide a great experience for users. The web is prepared for: a) end users who want the soil 

analysis, b) for researchers and employees who want to test and evaluate their models, c) for 

students interested to learn, d) for soil scientists, to test and have new insights, e) for pedologists 

and soil scientists in all levels to see the soil spectral signature (pattern). 

The web site presents the following sequence (Figure 3). Entering the system user makes 

his registration. Afterwards, he can go to the general information of how the Brazilian Soil 

Spectral Library was developed and or go directly to BSSL-applied services. The web offers 
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three services as follows (Figure 3): entering in align (2) the user can find the owners of spectral 

data and its personal information. With this, users can get in contact directly to the owner and 

ask for this dataset to initiate joint collaboration. Also, the user will see where to find 

background users on spectroscopy. This idea was performed to stimulate users that want to 

interact and create new groups. The interactive map of contributors allows one to search for 

specific institutions or researchers and to visualize in which Brazilian State each one has 

spectral data. This allows the interaction between researchers and encourages spectral data 

sharing and partnerships; In align (3) users can have several examples of soil types patterns. He 

can ask for a specific soil classification, for example a Ferralsol, and the system will show an 

average of all ferralsols in the dataset or from a specific state going on filtering. In addition to 

soil classification, users can see patterns of different soil depths and specific soil properties. For 

example, he can ask for samples in vis-NIR-SWIR of sandy soils at surface depth and in a 

specific state. The results of the search are the average spectra of samples. Depending on the 

number of soil spectra falling under specific criteria, the process may take some time. As an 

example, we selected the SP state, the vis-NIR-SWIR spectra, the sandy textural class from the 

first layer (A), with no indications for soil classification that takes about 3 minutes.  

 

Figure 3. General flux of the site and its usefulness for users: (1) enter the system, link; (2) 

service to find the researcher and spectral data; (3) observation of soil classification spectral 

patterns; (4) quantification of soil properties  
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Entering in align (4) we have the soil Braz3. The major idea is that the user has spectral 

data and wants to make a soil analysis in any part of the world. To have access to the prediction 

module, the user must register in the platform indicating his/her email address to receive the 

results. After that, the user must log into his/her account in the platform to: 1) download the 

template model that must be used to organize the soil spectra, 2) upload the file (csv format) 

with the soil spectra, 3) select the attributes to be predicted, and 4) send the data for processing 

in the platform. Thus, the user uploads the spectra (regarding on the same spectral wavelengths 

of the system which is indicated), chooses if by vis-NIR-SWIR or MIR spectral range, chooses 

the desired soil properties and runs the processing. The system has all scripts on the background 

which are not disclosed on the web but are presented in this paper. After about fifteen minutes, 

depending on the filtering and number of samples chosen, the user will receive a report by 

email. If the system does not respond it is because there is no data in the chosen filter. In the 

report, will appear all soil analysis of the specific spectra, the method, reference, and statistics. 

The user also has the option to give feedback online sending the wet soil analysis of his spectra 

so the system will be uploaded and recharged after an aderency evaluation. 

 

5.3.2. The Brazilian Soil Spectral Service quantification 

Figure 4 presents the differences between clay and SOC quantification in the vis-NIR-

SWIR using different population models such as the BSSL, the WSSL and the LM. For clay, 

the predicted content behavior of all models were very similar with observed distribution, with 

90% of the population ranging mainly from 150 to 400 g.kg-1. For SOC, the predicted values 

distribution for WSSL and LM were in accordance with observed values, with 90% of the 

population ranging mainly from 10 to 180 g.kg-1. On the other hand, the BSSL model 

underestimated the SOC predicted values. 



140 
 

 

 
Figure 4. Boxplot Clay and SOC vis-NIR-SWIR 

 

Differences between quantification in the MIR range using different population models, 

such as BSSL, WSSL and LM (Figure 5) for clay, the predicted content behavior of the WSSL 

and LM models was very similar to the observed distribution, with 90% of the population 

ranging mainly from 150 to 400 g.kg-1, but the BSSL model underestimated the contents, with 

most of the population ranging between 240 and 280 g.kg-1. For SOC, the distribution of 

predicted values for WSSL and LM agreed with the observed values, with 90% of the 

population ranging mainly from 2 to 20 g.kg-1. The BSSL model underestimated the predicted 

SOC values, but the difference was small. 
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Figure 5. Box plot using MIR dataset per country: (a) Clay and (b) SOC and R2 validation (c) 

Clay and (d) SOC by country. 

 

5.3.3. Predictions in function to the population 

Figures 6 and 7 presents the results of the vis-NIR-SWIR R2 model using the different 

populations per country for clay and SOC respectively, as Figure 8 indicates the RMSE. The 

local models showed better results, the world model came close behind and BSSL in general 

had the lowest results, the best result, as expected was for Brazil. In some cases, such as Jamaica 

and Japan, BSSL presented good results for both clay and SOC. 

In relation to RMSE for clay and SOC, BSSL presents the biggest errors, followed by 

global and LM presents the smallest errors for both elements. However, for SOC, some 

countries such as Czech Republic, Ireland and Italy stand out for presenting high RMSE for 

LM. 
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Figure 6. R2 for clay per country in the vis-NIR-SWIR 
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Figure 7. R2 for SOC per country in the vis-NIR-SWIR. 
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Figure 8. RMSE for clay and SOC per country in the vis-NIR-SWIR. 

 

The R2 results (Figure 9) for clay followed the pattern of the results obtained for vis-

NIR-SWIR, but for SOC they were higher even using BSSL. The RMSE (Figure 10) Global 

and LM were similar for all countries for both clay and SOC. While the BSSL was the largest 

among the three, but much smaller than the RMSE obtained by the vis-NIR-SWIR models. 
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Figure 9. R2 for clay and SOC per country in the MIR. 

 

 
Figure 10. RMSE for clay and SOC per country in the MIR. 

 

The use of a continental country such as Brazil has advantages due to its soil and biomes. 

Table 1 shows that using the BSSL model 24 countries reached over 0.5 of R2 for clay. When 

applied in African countries from 16, 7 had the same score. In fact, many countries from Africa 
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have very similar soils as Brazil. Asia has completely different soils and indeed from 11 only 3 

had better results. When we created the WSSL results increased. We had a total of 54 countries 

over 0.5 against 24 using BSSL. All results increased using WSSL. Going on the other side, 

when we tested the local models, results increased more where 59 countries were over 0.5. 

 

Table 1. Number of countries with variable R2 for clay using vis-NIR-SWIR. 

Model R2 Total Africa Asia Europe 

North 

America Oceania 

South 

America 

LM 

Clay 

0 - 0.3 1 0 0 1 0 0 0 

0.3 -0.5 3 0 0 3 0 0 0 

0.5 -0.7 8 3 1 2 1 0 1 

0.7 - 0.8 11 1 2 4 1 1 2 

> 0.8 40 11 9 13 3 1 3 

                

BSSL 

Clay 

0 - 0.3 14 3 3 6 1 0 1 

0.3 -0.5 25 6 5 8 2 2 2 

0.5 -0.7 12 4 1 5 0 0 2 

0.7 - 0.8 9 1 1 4 2 0 1 

> 0.8 3 2 1 0 0 0 0 

                  

WSSL 

Clay 

0 - 0.3 3 1 1 1 0 0 0 

0.3 -0.5 6 2 1 3 0 0 0 

0.5 -0.7 18 3 4 8 1 0 2 

0.7 - 0.8 18 5 3 4 3 1 2 

> 0.8 18 4 3 7 1 1 2 

 

For SOC results were worse when using BSSL (Table 2) but maintained the trend of 

better the WSSL and the best the local models. This is due to the great variability of SOC over 

all regions of the world and clay is more stable. 
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Table 2. Number of countries with variable R2 for SOC using vis-NIR-SWIR.  

Model R2 Total Africa Asia Europe 

North 

America Oceania 

South 

America 

LM 

SOC 

0 - 0.3 3 0 0 3 0 0 0 

0.3 -0.5 9 0 0 9 0 0 0 

0.5 -0.7 17 0 2 11 1 0 3 

0.7 - 0.8 9 4 1 0 4 0 0 

> 0.8 19 7 7 1 2 1 1 

                

BSSL 

SOC 

0 - 0.3 38 3 5 22 3 1 4 

0.3 -0.5 11 5 2 1 1 0 2 

0.5 -0.7 6 2 2 1 1 0 0 

0.7 - 0.8 1 0 0 1 0 0 0 

> 0.8 1 0 1 0 0 0 0 

                  

WSSL 

SOC 

0 - 0.3 17 4 5 4 1 1 2 

0.3 -0.5 14 2 1 6 2 0 3 

0.5 -0.7 22 3 3 13 2 0 1 

0.7 - 0.8 2 1 0 1 0 0 0 

> 0.8 2 1 1 0 0 0 0 

 

5.4. DISCUSSION 

5.4.1. The web service vantages and limitation 

Soil spectroscopy is a non friendly discipline for the major community and is mostly 

understood by researchers. In fact, this field has gathered hundreds of papers in the last 60 years 

(Nocita et al., 2015, Soriano Disla et al., 2014). Despite this strong background, the technique 

did not advance to end users. This impacted on that all soil analysis continues to be performed 

by wet chemistry in the last 130 years. There is no doubt regarding the importance of the wet 

method, but it is also a fact that the demand for soil analysis is increasing, and the use of 

chemistry is not sustainable (Tuğrul, 2019). Many papers until now already proved the 

efficiency of soil spectroscopy (Stenberg et al., 2010) but could not deliver a service to facilitate 

end users. This online platform makes the service simple. The main limitation for the user is 

still on how to make modeling. This work provides a service simple for any user. The user only 

inserts the spectra and receives the soil analysis. The great advantage of this system is that it is 

quick, environmentally friendly and provides the ability to find background users and thus, 

create new groups on spectral sensing. The system also brings papers and fundamental 

explanations so students and researchers can create new and better systems. 
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Results are encouraging but this was not the only matter of this paper, since literature 

already said this to us. We really intended to show the idea on how to put in practice a soil 

service. Otherwise, we will continue on publishing, and nothing reaches the community.  This 

dynamic of online processing permits a fast and interesting prediction of several soil attributes, 

serving as parameter for spectral analyses and encouraging the dissemination and use of spectral 

techniques. The platform also brings papers and explanations regarding the spectral ranges and 

its fundamentals.  

This service also indicated how to see spectral patterns from the laboratory. Soil spectral 

libraries can be applied for many purposes, including modeling of soil attributes, soil survey, 

classification and mapping, and monitoring, by extracting the baseline electromagnetic 

properties of soils, which can be compared with pattern samples. Soil spectra can also be used 

for communication among researchers (soil classification has several systems, but spectra are 

the same!), and development of field, aerial, and space sensors, among others. 

To understand the usefulness of soil SL, consider the following example: the interested 

parts (farmers or researchers) could send their soil samples to a central spectral library (e.g., a 

national or global) where they would be scanned and the spectral curves stored, or they could 

send already acquired soil spectral curves that compose their local spectral libraries. Local SL 

can be explored for personal interests (e.g., soil monitoring), and feed global SL, growing a 

global repository. Once having a global SL, spectral curves from a profile of an unknown type 

could be compared with other spectra from the global SL and a preliminary soil classification 

or the SOC or clay content, could be estimated. The ideal scale (global, continental, regional, 

local or farm) for a soil spectral library application has had much inquiry, and the general result 

is that the spatial scale of coverage and application depends. 

The main limitation we observed is that the dataset must be robust and normalized for 

spectra and for soil analysis. Quality is crucial for great results, but this is difficult to reach with 

old dataset. Thus, it is imperative to start using protocols on soil spectral acquisition and a link 

with soil wet analysis quality. The link between these two communities is the basis of the 

success of this task.  

 

5.4.2. Brazilian dataset and validation 

For the Brazilian vis-NIR-SWIR dataset, clay content presented good results using the 

platform, with R2 0.75. SOC was lower in the validation contrast than the model and reached 

0.45. SOC spectral estimation has been a challenge in Brazilian agricultural areas because of 

the low content. For MIR results were significantly better where for clay BSSL reached 0.8 and 
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0.7 for clay and SOC respectively and in agreement with Terra et al. (2015). Thus, the BSSL 

online platform can be used as an important service for soil analysis, taking in account the level 

of accuracy and the element that the user desires. 

 

5.4.3. Overseas Users for BSSL 

Still under the online platform, several countries inserted spectra to see if their Local 

samples would fit into a BSSL model. We observed that for clay, 3 countries from Africa should 

over 0.7 of R2, only two from Asia, 4 from Europe and 2 from North America. Despite that, in 

Europe there are still 5 countries in the R2 range of 0.5-0.7. For SOC results were much less 

expressive, which agrees that SOC is more dependent with other factors such as biomes, land 

use and others. In the case of clay, results indicate that the BSSL model does not have expressive 

results for all countries for good for some and moderate to others or very poor. It is a first 

indication that Local models are better, but the choice of the model can still be with the user, 

knowing the limitations.   

 

5.4.4. Exploiting new modeling with the dataset 

Spectral libraries can have several approaches and levels, a farm (Ramirez-Lopez et al., 

2019), a region (Rizzo et al., 2020), a country (Shi et al., 2014), a continent (Orgiazzi et al., 

2018) or the world (Viscarra Rossel et al., 2016).  The present paper played different approaches 

to understand the population of dataset and results around the world. This part of the manuscript 

was performed outside the platform.  

We observed that Local Population was clearly better at quantifying clay and SOC in 

almost all cases and continents. The users Local models preserved the main characteristics of 

their soils, parent materials, biomes and other information which spectra carries. This comes in 

agreement with Brown (2007) for whom from global to local, the second would be the best. 

This occurred for clay and SOC in all continents. We had only a few cases in Europe where 

results were pretty low (R2 range 0.3 to 0.5). When we use these datasets associated with the 

BSSL and reach a World Soil Spectral Library (WSSL), results were better than BSSL alone, 

but not greater than the LM. This indicates that LM in fact is better, and a worldwide approach 

is the best to reach more users and in agreement with Wetterlind and Stenberg (2010). A single 

country such as BSSL, should not be the best approach. On the other hand, it must be stated 

that the Spectral Libraries Era is already happening, and the user will be the one to choose 

which SL to use. This comes in agreement with findings of Debaene et al. (2014). The authors 

found little significant increase in prediction capacity of soil attributes with use of an entire data 
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set, watching an increase on the R2 of 0.63 to 0.72 for SOC and R² of 0.71 to 0.73 for clay. 

Thus, Continental SL can be improved to better quantify local situations. Indeed Araújo et al. 

(2014) when analysing spectra of 7,172 tropical soil samples. They found that separating the 

global dataset into more mineralogically uniform clusters improved predictive performance of 

clay content regardless of the geographical origin, showing that probably physically based, soil-

related stratification criteria in libraries offer better results.  

The WSSL of clay compared with the local, comes in agreement with Genot et al. 

(2011). These authors built a methodological framework for the use of NIR spectroscopy on a 

local and global scale by spectral treatment and regression methods. In addition, evaluated the 

ability of NIR spectroscopy to predict Total Organic Carbon (R2= 0.91 local and R2= 0.70 

global), and clay (R2 = 0.64 local and R2 = 0.61 global) above several soils’ conditions.  

When we analysed MIR, the same situation was observed on increasing R2 on the 

sequence LM - WSSSL - BSSL. This is directly related to the MIR fundamental spectral ranges 

bond specific which gives better results. 

 

5.5. CONCLUSION AND FINAL CONSIDERATION 

The online soil spectroscopy dynamics presented a great communication between 

worldwide users and delivered important information. The system can be applied for several 

approaches such as research, farming, wet laboratories, industries, create startups, teach 

students, pedologists, soil mapping, and others. The system is easy, and users do not have to do 

modeling and only insert the spectra and receive soil analysis with error and statistical 

information. Also, the user has the capacity to find the owners of spectra, get in contact and 

make partnerships as requested data. Directly on the platform, users can see the behavior of 

spectral patterns for soils with different textures, SOC, and many properties, despite soil depth 

and classification. Finally, the user inserted spectra in the web and received online in its e-mail 

the report with soil analysis.  

In the case of clay content, the BSSL model presented great results for the Brazilian 

community and can be used as a first measurement. SOC had a good model but lower validation. 

MIR presented better results than vis-NIR-SWIR. 

When other countries used the BSSL platform, results were variable. In conclusion, an 

overseas user can use the BSSL but be aware of the R2 and results under this paper.  

 After we played outside the platform with data and observed that Local Model libraries 

presented expressively greater results in all continents mainly for clay. A World Soil Spectral 

Library could purchase important information, but not better than the LM. A specific Country 
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spectral library, such as BSSL, was not able to support nor achieve the same results as previous 

models. On the other hand, some countries presented good data, which indicate that in future, 

the chosen spectral library service can be done by the user. 

Developing regional, continental, or global libraries does not exclude embracing a local 

or physically based library, and the user will decide according to their necessity. It is a matter 

of the objective of the user as he is aware of the errors inside the population he is using. Also, 

it will be a matter of the user's country structure. And if his country is not inside a global library 

but inside a nearby country? In the Era of spectral libraries, users can choose the service that 

best attends. 

We should mention our experience on what could be the issues on interference at 

modeling, as follows: (a) consistency of spectral acquisition of each user, (b) consistency of 

soil wet analysis, (c) Soil formation, mineralogy, and biome. These should be addressed in 

future works to achieve the best results  

We strongly advise the necessity to go forward and construct a worldwide system, but 

that inside, brings the option to the user to choose the population he wants to create the model 

and afterwards receive the result. 
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