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RESUMO 

     Potencial produtivo dos solos agrícolas brasileiros 

A principal questão para o bem mundial é a segurança alimentar. O Brasil desempenha 
um papel importante na agricultura global, podendo auxiliar o suprimento da demanda 
alimentar global no futuro. As propriedades químicas, físicas e biológicas do solo influenc iam 

diretamente a produção de plantas cultivadas. Compreender o potencial produtivo das terras 
agrícolas brasileiras é de grande importância. Portanto, o objetivo desse estudo é desenvolver 

uma estratégia para mapear e quantificar o potencial produtivo dos solos agrícolas brasile iros 
através de técnicas de mapeamento digital de solos. Foram utilizadas aproximadamente 70.000 
amostras de solo (0 - 1,0m) georreferenciadas com informações de propriedades químicas, 

físicas e biológicas de solos agrícolas brasileiros. Cada atributo do solo foi avaliado por meio 
de informações literárias. Em seguida foi desenvolvida uma equação de artifício ponderado 

através da análise de componentes principais das amostras de solo. Portanto, cada amostra de 
recebeu uma nota variado de 0 a 100 referente ao seu potencial do solo em produzir biomassa 
vegetal, ou seja, quanto maior é a nota, consequentemente maior é o seu potencial. As 

pontuações das amostras foram preditas via aprendizado de máquina. Foram mapeados 80% 
(205 milhões de hectares) das áreas agrícolas brasileiras, considerando áreas de plantas 

cultivadas e pastagens. Através da quantificação territorial do potencial produtivo dos solos, a 
possibilidade de enxergar as melhores e piores categorias de solos agrícolas em cada bioma 
brasileiro. Os melhores solos agrícolas do Brasil que pertencem às categorias de SoilPP “muito 

alto e alto”, foram encontrados nos biomas Mata Atlântica (11,8 Mha), Amazônia (7,6 Mha) e 
Cerrado (4,4 Mha). Por outro lado, os solos que variaram de potencial médio/alto a muito baixo 

foram encontrados nos biomas Cerrado (77,9 Mha), Caatinga (28,9 Mha) e Mata Atlântica (34,5 
Mha). Através da avaliação das terras agrícolas e de valores médios de produtividade, 
observamos que de 2304 municípios produtores de soja, 896 possuem capacidade para 

aumentar a produtividade média da soja até um determinado nível. Para a cana de açúcar, de 
2468 municípios avaliados, 1056 podem elevar sua produtividade média. Portanto, essa técnica 

pode auxiliar no desenvolvimento de políticas globais de segurança alimentar e do solo e ser 
replicada em outros países, regiões, municípios ou fazendas. O SoilPPmap para as áreas 
agrícolas brasileiras teve por principais limitações a representatividade espacial para todos os 

tipos de solos agrícolas do Brasil e também a baixa acurácia do modelo de predição, 
possivelmente relacionada a avaliação de atributos químicos do solo. Entretanto, a estratégia 

utilizada foi efetiva para mapear e quantificar o potencial produtivo dos solos agrícolas 
brasileiros. 

Palavras-chave: Atributos do solo, Mapeamento digital de solos, Aprendizado de máquinas, 

Monitoramento do solo 
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ABSTRACT 

Potential productive of Brazilian agricultural soils 

The main issue for the world's good is food security. Brazil plays an important 
role in global agriculture and can help meet global food demand in the future. The 
chemical, physical and biological properties of the soil directly influence the production 

of cultivated plants. Understanding the productive potential of Brazilian agricultural land 
is of great importance. Therefore, the objective of this study is to develop a strategy to 

map and quantify the productive potential of Brazilian agricultural soils through digita l 
soil mapping techniques. Approximately 70,000 soil samples (0 - 1.0m) georeferenced 
with information on chemical, physical and biological properties of Brazilian agricultura l 

soils were used. Each soil attribute was evaluated using literary information. Then, a 
weighted artifice equation was developed through the analysis of principal components 

of the soil samples. Therefore, each sample received a score ranging from 0 to 100 
referring to its soil potential to produce plant biomass, that is, the higher the score, the 
higher its potential. Sample scores were spatialized via machine learning. 80% (205 

million hectares) of Brazilian agricultural areas were mapped, considering areas of 
cultivated plants and pastures. Through the territorial quantification of the productive 

potential of soils, the possibility of seeing the best and worst categories of agricultura l 
soils in each Brazilian biome. The best agricultural soils in Brazil that belong to the “very 
high and high” SoilPP categories were found in the Atlantic Forest (11.8 Mha), Ama zon 

(7.6 Mha) and Cerrado (4.4 Mha) biomes. On the other hand, soils that varied from 
medium/high to very low potential were found in the Cerrado (77.9 Mha), Caatinga (28.9 

Mha) and Atlantic Forest (34.5 Mha) biomes. Through the evaluation of agricultural land 
and average productivity values, we observed that of 2304 soybean producing 
municipalities, 896 have the capacity to increase average soybean productivity to a certain 

level. For sugarcane, out of 2468 municipalities evaluated, 1056 can increase their  
average productivity. Therefore, this technique can assist in the development of global 

food and soil security policies and be replicated in other countries, regions, municipalit ies 
or farms. The SoilPPmap for Brazilian agricultural areas had as main limitations the 
spatial representativeness for all types of agricultural soils in Brazil and also the low 

accuracy of the prediction model, possibly related to the evaluation of soil chemica l 
attributes. However, the strategy used was effective in mapping and quantifying the 

productive potential of Brazilian agricultural soils. 

Keywords: Soil attributes, Digital soil mapping, Machine learning, Soil monitoring 
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1. INTRODUCTION 

The continuous increase in demand for food and fuel has put considerable pressure on 

agricultural areas around the world. Strategies to face these demands have led to improvements 

in food production by optimizing natural resources that are still available for agricultura l 

production (Ferreira and Férez, 2020; Fróna et al., 2019).  Brazil is one of the largest producers 

and exporters of agricultural products in the world (FAOSTAT, 2022), exploring about 30% of 

its territory (263 million hectares) with agricultural activities (MapBiomas, 2020). The 

expansion of soil tilling activities to new Brazilian areas is a unsustainable option to meet future 

food demands (Bordonal et al., 2018). Thus, new strategies should be developed to improve 

yields where crops are already cultivated, which will allow optimizing the use of current 

resources (Gerland et al., 2014; Runyan and Stehm, 2019), especially the soil, which is under 

constant anthropogenic pressure in the last decades (Montanarella et al., 2016). However, there 

are numerous challenges to proper evaluate and map agricultural areas when considering the 

large territorial extents within diverse biomes (Gomes et al., 2019; Guerra et al., 2020), climate 

types (Alvares et al., 2013) and soils (Santos et., 2018), such as the case of Brazil. 

Soil provides a wide range of ecosystem services that meet human needs (Adhikari 

and Hartemink, 2016; Dominati et al., 2014; Kopittke et al., 2019; Robinson et al., 2012; Tóth 

et al., 2013), including the provision of food, fiber, and fuel (FAO and ITPS, 2015; Johnston 

and Poulton, 2018). The chemical, physical and biological properties of a soil directly influence 

crop yields (Beerling et al., 2018; Bishopp and Lynch, 2015; Huang et al., 2021; Vogel et al., 

2019), and its productive potential is a result of biomass production capacity (Vogel et al., 2019; 

Yang et al., 2003). However, estimating the productive potential that for a given soil is a major 

question that remains in soil science (Greiner et al., 2017; Yang et al., 2003). Therefore, 

measuring the productive potential of an agricultural environment is an important step to find 

ways to increase production in a sustainable and efficient way.  

We can observe some ways to measure the yield potential of an agricultural soil. Vogel 

et al. (2019) presented methods used in Germany to assess the potential of soils for wheat 

biomass production through water availability and soil texture. Huang et al. (2021) evaluated 

the effect of texture and soil organic carbon (SOC) amounts on yield responses of seven major 

crops in the United States of America from 1958 to 2019 and found that crop yields were higher 

in soils with fine texture and higher SOC concentration, due to increased available water, 

improved soil structure and nutrient retention (Huang et al., 2021). The Production 

Environment System (PES) was developed after some empirical studies initiated by 

Coopersucar (1994) and ratified by (Landell et al., 2003), which observed the strong 
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relationship between soil types and sugarcane productivity. The PES can be defined as the 

junction of one or more soil mapping units with similar production capacity, expressed in Tons 

of Cane per Hectare (TCH) and classified in seven different classes of sugar cane yield 

(Demattê and Demattê, 2009). However, this involves high complexity and requires time and 

resources to map in detail large territories such as the case of Brazil.  

Digital Soil Mapping (DSM) is an indispensable tool for environmental studies, 

making it possible to estimate soil information at multiple scales (Demattê et al., 2020; 

McBratney et al., 2003). Assessing and quantifying the intrinsic potential of Brazilian 

agricultural soils for biomass production (Vogel et al., 2019), through scoring methods 

(Cherubin et al., 2016; Kumar et al., 2019; Lehmann et al, 2020) based on soil chemica l, 

physical and biological indices, associated with digital soil mapping techniques (Demattê et al., 

2020, 2018; McBratney et al., 2003; Safanelli et al., 2021, 2020), can be a good strategy to 

produce information for large geographical extents as Brazil.  

These measures can assist in increasing food security for the rapidly growing global 

population under a changing climate (Huang et al., 2021; McBratney et al., 2014). Obtaining 

soil and terrain information is necessary for policy formulation ("Computing the Iowa Corn 

Suitability Rating for Your Farm | Ag Decision Maker," 2013), agricultural resource 

management, and soil security (Lehmann et al., 2020b; McBratney et al., 2014; Mulder et al., 

2011). It can also assist the prediction of provisioning services (direct or indirect food for 

humans, timber, fiber, and fuel) and supporting services (nutrient cycling and production) 

(Adhikari and Hartemink, 2016; Dominati et al., 2014; Kopittke et al., 2019; Robinson et al., 

2012; Tóth et al., 2013). On another hand, land use requires the formulation of data-driven 

policy and management strategies, which is hampered by the high cost and time-consuming 

characteristics of soil data acquisition (McBratney et al., 2014).  

Thus, there is a need for the development of methods that can monitor soil over large 

areas with a good level of detail, assisting agricultural decision making to sustain food security 

for the population, and helping in the process of public policy making. It is expected that the 

creation of a weighted index by principal component analysis (PCA) to evaluate the chemica l, 

physical and biological attributes of the soil associated with digital soil mapping techniques can 

represent the productive potential of agricultural lands in the Brazil, i.e, the best and worst 

Brazilian agricultural lands. In this sense, the objective of this study is to develop a new method 

for mapping the productive potential of Brazilian soils at 30m spatial resolution from 

agricultural areas using remote sensed data coupled with scoring functions and machine 

learning algorithm. 
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2. METHODOLOGY 

This study has five main steps (Fig. 1). First, a database with approximately 70,000 

soil samples was organized with information on the geographic coordinates, chemical, physical 

and biological properties of Brazilian agricultural soils for layers A (0-20cm), B (40-60cm) and 

C (80-100cm) (Step 1). Subsequently, soil properties were integrated using scoring functions 

with values ranging from 0 to 100, that is, the higher the score, the greater the productive 

potential of the soil (Step 2). Principal component analysis (PCA) made it possible to create a 

weighted index (SoilPPI) to score all soil samples in the range from 0 to 100 (Step 3) for each 

layer.  

 

Fig. 1: Methodological flowchart. SySI: Synthetic Soil Image. TA: Terrain Attributes.  

 

Then, we used the scores obtained for each soil sample and covariates to obtain the 

soil productive potential map (SoilPPmap) using the random forest machine learning algorithm 
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(Step 4). Finally, an evaluation was made of the crop productivity historical statistics of soybean 

(Glycine max) and sugarcane (Saccharum officinarum) in Brazilian municipalities, followed by 

a case study at the farm level (Step 5). We used the correspondence analysis to understand the 

categorical similarity between SoilPP and a traditional system adapted by Demattê and Demattê 

(2009) to assess sugarcane productivity through pedological classification, called production 

environments system (PES) (Step 6). 

 

2.1. Study area 

The study area comprises the entire agricultural areas from Brazil, distributed in about 

66.5 million hectares for crops, 68 million hectares for native pasture and 112 million hectare 

for planted pastures, totaling 246.5 million hectares (Embrapa Territorial, 2018). These data 

were collected through the Rural Environmental Registry (CAR), and the survey was carried 

out at the property level throughout the country (EMBRAPA Territorial, 2018). The 6.0 

collection provided by MapBiomas was used as a spatial mask for agricultural areas, totaling 

about 263,045,118 million hectares (MapBiomas, 2020), an increase of 6.28% in agricultura l 

areas compared to 2016. 

The Brazilian territorial extension contains an enormous biodiversity, with six biomes 

and different climatic conditions, mainly the tropical type (Gomes et al., 2019; Guerra et al., 

2020). The soils found in Brazil are mostly derived from sedimentary and igneous rocks, such 

as Latosols (Ferralsols) and Argisols (Acrisols) (Santos et al., 2018). The Amazon biome covers 

49.29% of Brazil, with a humid tropical climate (Af, Am and Aw). The Cerrado (Brazilian 

savannas) is the second largest biome, covering 22% of the territory, with a predominantly 

semi-humid climate (Aw). The Atlantic Forest biome, which extends to the east of Brazil, has 

the greatest diversity of environments and there are several types of climate (Cfb, Cfa, Cwb, 

Aw and As). The Caatinga biome is the driest, under a semi-arid climate (Bsh), with an average 

annual rainfall of 500 mm and an average annual temperature of 20 to 29 °C. The Pantanal 

biome is characterized by long periods of flooding, seasonal climate Aw. The pampa biome is 

located in southern Brazil, covered by temperate grasslands with a Cfa climate. Throughout the 

territory, Brazil has a large extension of protected natural areas, especially in the Amazon biome 

(Gomes et al., 2019). 

. 
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2.2. Soil sampling and laboratory analysis 

The georeferenced soil data were acquired from soil surveys carried out in agricultura l 

areas by the Geotechnologies in Soil Science group and collaborators (Demattê et al., 2019). 

These field data were obtained in transects (e.g., along toposequences) or grid schemes using 

global positioning systems. As a compilation of national soil data, soils were sampled over 

different periods of time during the last two decades by independent field campaigns. Soil 

samples (number of soil samples: layer A “22122”; layer B “21160”; layer C “25992”) had their 

physical and chemical soil attributes analyzed for the surface and subsurface layer of soil (A: 

0-20; B: 40-60; C: 80-100 cm). 

The physical-chemical analysis followed the Brazilian standards of soil analysis 

(Teixeira et al., 2017), gathering information on clay, silt and sand (g kg -1) contents; soil 

organic carbon (SOC, g kg -1); soil organic matter (SOM, g kg -1); pH determined in aqueous 

solution (pH in water); pH determined in KCl; cation exchange capacity (CEC pH7); Ca+2 

(mmolc kg -1); Mg+2 (mmolc kg -1); K+ (mmolc kg -1); Al+3 (mmolc kg -1); H+Al (mmolc kg -1) 

sum of bases (mmolc kg -1); base saturation (V%); and Aluminum saturation (m%). 

We derived the following soil attributes: slope (º); Soil density “SD” (g cm-3) was 

estimated using a pedotransfer function obtained by (Benites et al., 2007) using clay and SOC 

contents for Brazilian soils with R2 of 0.63 and a standard error of 0.11 g. cm-3. The ∆pH “pHKCl 

- pHH20”, weathering index (Ki) “SiO2/Al 2O3 x 1,7”; and clay activity were calculated 

according to (Prado et al., 2011). 

 

2.3. Soil potential productivity index (SoilPPI)  

2.3.1 Scoring soil attributes 

For this step, we used methods usually employed for assessing the soil quality 

(Cherubin et al., 2016; Lehmann et al., 2020). Each soil attribute was scored on a scale ranging 

from 0 to 100 using three types of functions: 'more is better' index (MBI), which means that 

higher values of the soil attribute indicate higher SoilPP; 'less is better' index (LBI), with lower 

values considers the highest SoilPP; and “optimal midpoint” (OMI), where an intermed ia te 

value indicates superior soil condition (Cherubin et al., 2016). Clay, Silt, SOC, SOM, Ca2+, 

Mg2+, K+, CECpH7, SB, V%, Ki and Clay activity were scored using MBI (Equation 1). Sand, 

BD, Al3+, H++Al3+, m%, ∆pH and Slope (º) were scored using LBI (Equation 2), while pH in 

water was scored using OMI (Equation 3). 
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𝑀𝐵𝐼 =  
𝑎

[1 + (
𝐵 − 𝑈𝐿
𝑥 − 𝑈𝐿)

𝑆

]

 
(1) 

𝐿𝐵𝐼 =
𝑎

[1 + (
𝐵 − 𝐿𝐿
𝑥 − 𝐿𝐿

)
𝑆

]

 (2) 

𝑂𝑀𝐼 =

𝑎

[100 − (
𝐵𝐿 − 𝑂
𝑥 − 𝑂

)
𝑆

]

𝑓𝑜𝑟 𝑥 < 𝑂

100 𝑓𝑜𝑟 𝑥 = 𝑂
𝑎

[100 − (
𝐵𝑈 − 𝑂
𝑥 − 𝑂

)
𝑆

]

𝑓𝑜𝑟  𝑥 > 𝑂

 

(3) 

 

where MBI(1), LBI(2) and OMI(3) are the 'more is better', 'less is better', 'optimal midpoint' scoring 

functions, respectively; ‘a’ is the maximum score value (100), ‘S’ is the slope of the equation, 

defined as -2.5; ‘B’ is the baseline value that has a score of 50% (median); ‘UL’ is the upper 

(maximum) limit of soil attribute values; ‘LL’ is the lower (minimum) limit of soil attribute 

values; ‘BL’ is the lower baseline of the 'ideal midpoint' curve, with a score of 50%; ‘BU’ is the 

upper baseline of the 'ideal midpoint' curve, with a score of 50%; ‘O’ is the optimal score value, 

equal to 100%; and ‘x’ is the real value of the soil attribute that is being scored (Table 1). 

The lower, middle and upper baselines values were determined as the 0.01, 0.5 and 0.99 

percentiles of soil data (Table 1). This approach was used to restrict the function parameters to 

the soil attributes variation obtained through soil analysis. The slope was used as an indirect 

parameter to assess the depth of the soil, i.e, the greater the slope, the shallower the soil, and 

the greater the risk of erosion (Santos et al., 2018). 
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Table 1. Parameters of the scoring functions of soil attributes. 

Attribute Scoring function1 LL2 B3 UL4 BL
5 O6 BU

7 

Sand (g kg-1) LBI 9.00 747.00 974.00 - - - 

Silt (g kg-1) MBI 0.00 63.00 846.00 - - - 

Clay (g kg-1) MBI 5.00 180.00 960.00 - - - 

Bulk Density (g cm-3) LBI 0.85 1.42 1.55 - - - 

SOC (g kg-1) MBI 0.01 5.50 59.16 - - - 

SOM (g kg-1) MBI 1.00 9.40 102.00 - - - 

pH in water OMI 3.70 5.50 7.80 5.4 6.5 7.2 

Ca2+ (mmolckg-1) MBI 0.00 8.01 99.60 - - - 

Mg2+ (mmolckg-1) MBI 0.00 3.70 55.00 - - - 

K+ (mmolckg-1) MBI 0.00 0.70 20.00 - - - 

Al3+ (mmolckg-1) LBI 0.00 1.50 156.50 - - - 

H+ + Al3+ LBI 0.10 19.20 336.50 - - - 

CEC (mmolckg-1) MBI 3.29 35.40 349.50 - - - 

SB (mmolckg-1) MBI 0.00 13.10 159.80 - - - 

V % MBI 0.00 39.60 99.84 - - - 

m % LBI 0.00 10.58 100.00 - - - 

∆pH LBI -3.30 -0.8 2.48 - - - 

Ki MBI 0.69 1.62 3.73 - - - 

Clay activity MBI 0.72 18.39 1887.65 - - - 

Slope º LBI 0.00 3.09 38.36 - - - 
1LBI: “Less is better” index; MBI: “More is better” index; OMI: “optimum mid -point”. 2Lower limit. 3Baseline. 4Upper 

limit. 5Lower baseline. 6Optimum  7Upper baseline. Obs.: The parameters were determined by statistical reductions of 

the whole Brazilian territory. The minimum and maximum values were determined by the 0.01 and 0.99 percentiles .  

The baseline was determined by the median value (0.5 percentile). The lower baseline was  determined by the middle 

between the minimum (in parenthesis) and optimum values, while the upper baseline was determined by the optimum 

and maximum values (in parenthesis). 
 

2.3.2 Indexing the soil attributes into the SoilPPI 

The final index (SoilPPI) was obtained by a weighted sum of the soil attributes scored 

in the 2.3.1 section. Principal component analysis was adopted to determine the weights as 

described by Cherubin et al. (2016). Due to the different ranges of values and measurement 

units referring to the soil samples (BDGeoCis),  their normalization was performed to rescale 

the data to have an average of 0 and a standard deviation of 1. This standardization is called z-

score. A z score can be calculated with the following formula: 

 

𝒛 =  
𝒙 − 𝝁

𝛔
 (4) 
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where z is represented by the z score, x is the soil attribute value to be normalized, 𝝁 is the mean 

of the original data, σ is the standard deviation of the original data. Data points above the mean 

will result in a positive z-score, while data below the mean will get a negative z-score. The 

absolute value of the score indicates the number of standard deviations between the data points 

and the mean. Then, principal component analysis (PCA) was performed using the “factoextra”, 

“lifecycle” and “psych” packages in the R environment (R Core Team, 2020). 

Through PCA, each soil attribute was weighted according to its absolute loadings and 

the proportion of variance explained by each component (e.g., % of variation explained by each 

component divided by the total accumulated variation of all components selected for the study. 

The weighted values of attributes used in the calculation of the SoilPP are available in the 

supplementary material (Table A1 and Table A2). The amount of principal components selected 

to perform the SoilPPI calculation was based on the variance proportion above 80% and 

standard deviation (SD) value above 1 (Table A2). To calculate the SoilPP the following 

equation was used: 

𝑆𝑜𝑖𝑙𝑃𝑃𝐼 = [(∑ 𝐴𝑆 ∗ 𝑊𝐼) ∗ 𝑃𝐶𝑛]

𝑛

𝑖=1

 
(5) 

 

where 'n' is the number of soil attributes selected, 'AS' is the attribute scored obtained for each 

attribute in each soil sample, 'WI' weighted indicator value within each main component 

provided through PCA, 'PCn' is the proportion of variance of the principal component. Finally, 

all soil samples from each layer were scored on a scale from 0 to 100 using the SoilPPI equation 

(5). The closer the sample score is to 100, the greater the productive potential of the soil. 

 

2.4 Spatial Prediction of the SoilPPI (Random Forest) 

The Synthetic Soil Image (SySI) reflectance bands (Demattê et al., 2018) and terrain 

attributes in Google Earth Engine (TAGEE) (Safanelli et al., 2020) were used as environmental 

covariates to calibrate SoilPPmap prediction models for Brazilian agricultural areas. The 

covariates from SySI are composed of spectral bands: "Blue", "Red", "Green", "Nir", "SWIR 

1", and "SWIR 2". The TAGEE attributes used were: Eastness, Northness, Elevation, Shape 

Index, Vertical Curvature, and Slope. At each soil sampling site, the values of predictor 

covariates were intersected using the sampling method that considers the value pixels below 

the point sample with coordinates. A set of bootstrapped  and random regression trees  from 

Python's scikit-learn library was used as a machine learning algorithm (Pedregosa et al., 2011).  
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Instead of fitting simple regression trees, we emulated the Random Forest algorithm 

(Breiman, 2001) generating bootstrapping trees to aggregate them by the mean, using the 

methodology of Safanelli et al., (2021). The optimal number of bootstrap trees (forest size), 

number of covariates to be sampled in tree splits and terminal leaf size was defined with a 

hyperparameter grid search seeking to control overfitting during calibration. The range of 

values tested for forest size was 30, 60, 100, 200, 300 and 500 trees. The amount of 1, 2, 3, 5, 

8, 11 and 13 predictors were investigated to be used randomly in tree divisions. For the 

minimum number of observations on the leaves, which defined the size or individual depth of 

the tree, values of 10, 20, 30, 40, 50, 100, 200 and 500 observations were tested. 

The models were adjusted for each depth (H:0-20; B:40-60 and C:80-100cm). The 

optimal model for each depth of soil was determined by the Root Mean Square Error (RMSE) 

of the calibration set after testing all combinations of hyperparameters. The calibration set 

consisted of bootstrap observations, while the remaining observations that were not sampled 

were used for testing, resulting in an out-of-bootstrapped validation. The accuracy of the 

predictive model was assessed using the RMSE. The Coefficiene of Determination (R2) was 

calculated to assess the explained variance of the prediction models, and the Performance Ratio 

to Interquartile Range (RPIQ) was calculated to assess the consistency between the predicted 

values with the variability of the soil dataset. Final assessment metrics were calculated by 

averaging the statistics from the improvised samples (test observations), reporting the mean and 

standard deviation.  

After the SoilPPmap prediction for the soil layers (A:0-20; B:40-60 and C:80-100cm), 

the average of the three SoilPPmap layers was calculated as an aggregation alternative to 

represent the SoilPP up to one-meter depth. Areas with climate types Aw (Cerrado) and Bsh 

(Caatinga) were penalized due to the higher vapor pressure gradient, which causes an increase 

in the potential evapotranspiration of the plant (Alvares et al., 2013; Nyle Brady and Ray R. 

Weil, 2012). 

 

2.5 Assessment of croplands 

2.5.1 National extent 

The predicted SoilPPmap were intersected with mean crop yield data of soybean and 

sugarcane from the Brazilian municipalities between 2016 and 2020. SoilPPmap and the 

municipal average yield data for the respective crops were used to perform this assessment on 

a national scale. The municipality yield data were obtained as vector files from the Brazilian 

Institute of Geography and Statistics database (IBGE, https://sidra.ibge.gov.br/tabela/6957), 

https://sidra.ibge.gov.br/tabela/6957
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considering the average productivity for a five-year period, corresponding to the 2016 to 2020 

harvests. The municipalities that had average production above 35 tons ha-1 of sugarcane and 

1500 kg ha-1 of soy were considered in the analysis. The average productivity values of each 

municipality for soybean and sugarcane were categorized according to table 2. After the 

elaboration of the SoilPPmap, the average SoilPP of the agricultural areas that make up all 

Brazilian municipalities was performed, ie, the result is an average value of SoilPP for each 

municipality, which was categorized using the Class score ‘Cs’ (Table 2). The values of 

Brazilian municipalities with average yield for soybean and sugarcane were divided into seven 

different classes, called Class yield ‘Cy’. The variables Cs and Cy are available in table 2, and 

are fundamental to perform the yield level calculation, i.e., each Brazilian municipa lity 

producing soybeans and sugarcane falls into some category of Cy and Cs. 

 
Table 2. Categorization of municipal productivity values for sugarcane, soybean (IBGE 2022) 

and SoilPPmap in Class yield and Class score. 

Soybean Sugar Cane   SoilPPI 

Yield (kg ha-1)   Yield (ton ha-1)   
Class yield 

(Cy) 
  SoilPP score 

  Class score 
(Cs) 

3517.0 - 5440.0    79.7 - 130.0    1   85.5 - 87.7   1 

3339.0 - 3517.0    69.8 - 79.7    2   83.1 - 85.4   2 

3194.0 - 3338.0    58.3 - 69.8    3   80.8 - 83.0   3 

3034.0 - 3194.0    52.0 - 58.3    4   78.4 - 80.7   4 

2823.0 - 3034.0    45.6 - 52.0    5   76.1 - 78.3   5 

2496.0 - 2823.0    40.0 - 45.6    6   73.7 - 76.0   6 

1500.0 - 2496.0    35.0 - 40.0    7   71.3 - 73.6   7 

* The Class score (Cs) and Class yield (Cy) variables are used in equation 6. 
 

The verification of the productive levels of the Brazilian municipalities allows to 

visualize at which levels the SoilPP is being explored. To perform this analysis, equation 6 was 

used: 

 

𝑌𝑖𝑒𝑙𝑑 𝑙𝑒𝑣𝑒𝑙 = Cs – Cy (6) 

 

If the resulting value of the “Yield level” is positive for a Brazilian municipality, it 

means that: the agricultural areas that cultivate soy or sugar cane located within its territory are 

exploiting the productive potential of the soil at optimal levels, and the greater the value, the 

greater its exploitation. However, if the resulting value is negative, municipalities can increase 

the productivity value of the evaluated crops.  
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2.5.2 Farm extent 

A case study was carried out on a sugar cane farm, located in the municipality of Rafard 

(State of São Paulo). The farm's area is about 182 ha of the sugar cane. We used this example 

as a basis for validation and comparison of the Production Environment map (Demattê and 

Demattê, 2009) prepared through the pedological classification of the area, with information on 

texture, soil fertility, and productivity. The production environment system (PES) has seven 

different categories based on sugarcane productivity (A: greater than 100 tons per hectare; B: 

91 to 100 tons; C: 86 to 90 tons; D: 81-85 tons, E: 76-80 tons; 70-75 tons and G: < 70 tons per 

hectare). SoilPPmap relationships with the geology and soil classification of the area were also 

analyzed through legacy field maps, enabling a better understanding of the characteristics of a 

given environment. The SoilPPmap (.tif file) of the Brazilian agricultural areas was cut 

according to the perimeter of the Rafard farm (SP), presenting a spatial resolution of 30 m and 

soil information up to a depth of one meter. The PES was generated from the physical, chemica l 

and biological properties of the soil, plant evapotranspiration and productivity, which were 

evaluated in the field. 

 

2.6 Correspondence analysis 

Multiple Correspondence Analysis (MCA) was performed with about 21000 soil 

samples evaluated in the field via PES and used in SoilPPmap prediction, to verify the 

association of categorical groups between both systems. The variables analyzed were the 

SoilPPscore compared to Production Environment System (PES), which is categorized through 

pedological classification, with information on texture, fertility and evapotranspiration of the 

plant (Demattê and Demattê, 2009). The PES is divided into seven different categories (A, B, 

C, D, E, F and G) based on sugarcane yield, as described in the previous item. With this, it is 

possible to analyze whether the SoilPPI categorical system (equation 5) corresponds with the 

empirical categorical system performed through the methodology of Demattê and Demattê, 

(2009). The Chi-square test was applied to assess the significance of the association between 

the categories of both methods. 
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3. RESULTS 

3.1 Prediction of soil productive potential (SoilPP) 

The performance of the SoilPPmap prediction model for layers A (0-20 cm), B (40-60 

cm), and C (80-100 cm) using the covariates extracted through soil samples with geographic 

coordinates was observed (Table 3). Subsequently this was employed in an algorithm of 

machine learning (Random forest). The performance of the spatial prediction of SoilPP for the 

three layers has values of R2 smaller than 0.25, RMSE values ranging from 5.53 to 5.80 and 

RPIQ values higher than 1.41. Layer A presented the lowest R2 (0.20), demonstrating the largest 

size of the forest (FS: 100), where the prediction was calculated using the most unstable 

hyperparameters of the model, such as the high number of observations on the end sheets (MSL: 

500). Layers B and C presented R2 values of 0.23 and 0.25, respectively. The predictions were 

calculated from 200 samples in the terminal leaves for both layers B and C. The difference 

between these layers was in the size of the forest, where layer C had an FS equal to 60, and 

layer B had an FS equal to 30. The number of hyperparameters of random features tested in 

each split of the tree was the same for all layers (NRF: 13). 

 

Table 3. Prediction performance metrics and optimal hyperparameters of ensembled  

bootstrapped regression trees used to map the potential productive of the agricultural soils in 

Brazil. 

Layers1 FS2 MSL3 NRF4 5 R2 RMSE6 RPIQ7 

A 100 500 13 0.20 5.53 1.41 

B 30 200 13 0.23 5.80 1.90 

C 60 200 13 0.25 5.57 1.93 

1A: soil layer 0 - 20 cm of deep, B: soil layer 40 - 60 cm of deep, C: soil layer 80 - 100 cm of deep; 2FS: forest size, i.e., 

number of bootstrapped trees; 3NRF: hyper- parameter number of random features tested in each tree split; 4MSL: 

hyper-parameter minimum samples at leaves; 5R2: coefficient of determination; 6RMSE: root mean squared error;  
7RPIQ: ratio of performance to interquartile range. 

 

3.2 SoilPP map for Brazilian agricultural areas 

The map of the productive potential of the soil (SoilPPmap) for Brazilian agricultura l 

areas (Fig. 2) through the agricultural area filter (MapBiomas, 2020), represents about 205 

million hectares (Mha). The map was generated by evaluating approximately 70,000 soil 

samples through indexing strategies (equations 1, 2, 3, 4 and 5) associated with DSM techniques 

in conjunction with the “random forest” machine learning algorithm (Breiman, 2001). The 

SoilPPmap represents information up to 1m deep. The soil productive potential score 
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(SoilPPscore) reflects its ability to produce biomass and is divided into seven different classes 

(A, B, C, D, E, F, and G), and each one is represented by a specific color (Fig. 2). The best 

agricultural areas (pixels) with the highest SoilPP are those that obtained the highest scores (A, 

B and C) through the soil productive potential index (SoilPPI 'equation 5'), while the worst 

areas (E, F and G) are those that obtained the lowest scores. 

Soils belonging to class 'A' (SoilPP: very high) (Fig. 2), feature greater depth, good 

drainage, fine texture, rich in nutrients for plants, the relief can be variable and without the 

presence of rocky outcrops. On the other hand, the main characteristics of soils that belong to 

class 'G' (SoilPP: very low) are low capacity to provide nutrients to the plants, usually have a 

coarse texture (sandy), low water retention, and consequently low availability for the plant. This 

class also can present varied soil depth and, in some cases, have a high presence of stones. 

Intermediate categories as 'B and C' have a greater similarity of characteristics with class 'A', 

while 'E and F' categories are closer to class 'G'.  

The Brazilian agricultural soils that presented a very high SoilPP (class A) represented 

by the green color (Fig. 2), comprised about 11.1 million hectares (M ha) or 4.8% of the total 

agricultural areas. Areas with high SoilPP (class B) covered 14.5 M ha (5.5% of the total), the 

medium high SoilPP (class C) corresponded to 44.5 M ha (16.9% of the total). These are the 

soil classes that have the greatest productive potential, corresponding to about 27.2% of the 

total agricultural area. Agricultural soils with medium SoilPP, represented by the color orange, 

was the class that had the largest amount of occupied area, approximately 50 M ha (19% of the 

total area). Then, soils with medium/low, low and very low productive potential covered 44.1 

M ha (16.7% of the total agricultural area), 20.9 M ha (7.9%) and 18.6 M ha (7.0%) 

respectively.  
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Fig. 2: The Soil Productive Potential map for Brazilian agricultural areas; SoilPPscore: Soil Productive Potential 

score (pixel value); SoilPP: Soil Productive Potential. 

 

Fig 3 shows the distribution of the areas of SoilPP levels across the different Brazilian 

biomes. Most agricultural soils located in the Amazon biome had SoilPP ranging from very 

high to medium (Fig 3a). Through the use of the GEOS3 algorithm (Demattê et al., 2018) and 

the agricultural mask (MapBiomas, 2022), about 35.5 Mha are destined for agricultural use in 

this biome. The very high, high, medium/high, and medium SoilPP corresponds to an area of 

3.2, 4.4, 15.5, and 8.8 Mha respectively. The smaller part of the agricultural areas of the 

Amazon (9.8%) had a low SoilPP. The Cerrado biome is the one with the largest territorial use 

for agricultural activities in Brazil, occupying around 81.9 Mha (Fig 3b). Most agricultural soils 

located in the Cerrado showed a medium/high to medium/low SoilPP with an area of 52.8 Mha 

(64.5% of the territory). The SoilPP considered low and very low represent an area of 24.7 Mha 

and high and very high with an area of 4.4 Mha. 
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Fig. 3: Area of productive potential of agricultural soils quantified by Brazilian biomes in Millions of hectares 

(Mha). a) SoilPP for the Amazon biome in Mha. b) SoilPP for the Cerrado biome in Mha. c) SoilPP for the Caatinga 

biome in Mha. d) SoilPP for the Pantanal biome in Mha. e) SoilPP for the Atlantic Forest biome in Mha. f) SoilPP 

for the Pampa biome in Mha. 
 

The Caatinga biome had an estimated 29 Mha occupied for agricultural use (Fig 3c). 

Most of the agricultural soils in the Caatinga show a medium to very low SoilPP (95.5% of the 
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agricultural soils in the Caatinga). The wetland biome had most agricultural soils ranging from 

medium/high to medium/low classes, with 3 Mha (Fig 3d). The soils belonging to the low and 

very low classes in this biome correspond to an amount of less than 10 thousand hectares. The 

Atlantic Forest (Fig 3e) is the second-largest Brazilian biome in terms of land use for 

agricultural activities, occupying an area of about 46.6 Mha. Most agricultural soils located in 

the Atlantic Forest had a SoilPP ranging from very high to medium (69.7% of the Atlantic 

Forest territory). Soils with low and very low SoilPP are at 4.7 Mha (10%). Finally, the pampa 

biome shows most of its soils with medium SoilPP (3.3 Mha), however, a significant part of the 

areas has soils with very high to medium/high potential. 

 

3.3 Assessment of croplands (national extent) 

We evaluated the yield level for soybean (Glycine max) and sugarcane (Saccharum 

officinarum), both of which are of great agricultural and economic importance to Brazil and 

other countries. This assessment allows us to understand whether Brazil is making the most of 

SoilPP for its crops, which will result in the need to expand agricultural areas in the future. If 

not, yields for these crops can be increased where they are already being grown. This analys is 

was carried out at the municipal level, using real average values of productivity corresponding 

to 5 harvests (2016 - 2020). Municipalities were categorized into seven different classes (Fig. 

2 a and d) according to average grain yield (Table 2). The SoilPPmap (Fig. 2) was also averaged 

from all the pixels that make up the Brazilian municipalities, resulting in an average value of 

SoilPP for each municipality (Fig 3b and e), with seven different classes (Table 2). Afterwards 

the municipal yield level was calculated using equation (6), where municipalities with positive 

values indicate that SoilPP is being exploited to the fullest. On the other hand, municipalit ies 

with negative values indicate that productivity can be increased at some level. 

About 2304 Brazilian municipalities with average soybean productivity above 1500 

kg ha-1 (Fig. 4a) were analyzed. Approximately 1051 soy-producing municipalities showed 

positive values. Therefore, the SoilPP is being well explored in these areas due to agricultura l 

management and its yield level is high for the soybean, resulting in the highest average 

municipal yields (Fig. 4c). About 155 municipalities had a yield level equal to 0, i.e, the level 

of the yield of soybean crops is at adequate levels, but their yield can be increased in these 

municipalities. Finally, about 896 municipalities showed negative yield level values. Therefore, 

the yield for the soybean crop is below adequate levels, showing a difference in yield when 
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compared to the municipalities that had a positive yield level, i.e, soybean productivity can be 

increased in these municipalities through management. 

For sugarcane, approximately 2468 municipalities with average productivity above 35 

tonnes ha-1 (Fig. 4d) were analyzed. Around 1070 sugarcane municipalities showed positive 

yield level values, that is, the productivity of sugarcane plantations in these municipalities is 

above SoilPP (Fig. 4f). Therefore, the soil potential is being well explored for the production 

of biomass in these areas due to agricultural management and its yield level is high for the crop 

in question. Around 342 municipalities had a yield level equal to 0, that is, the yield level of 

sugarcane crops is at adequate levels, but their yield can still be increased in these municipalit ies 

(Fig. 4f). Finally, 1056 municipalities presented negative yield level values. So, the yield for 

sugarcane is below adequate levels, showing a difference in yield when compared to the 

municipalities that had a positive yield level, that is, the productivity of sugarcane can be 

increased in these municipalities through management. 
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Fig. 4: analysis of the exploitation of SoilPP at the municipal level for the cultivation of sugar cane and soy. a) 

main Brazilian soy-producing municipalities. b) Average SoilPP of Brazilian municipalities. c) (6) yield level for 

Brazilian soybean-producing municipalities  (calculated using eq. 6). d) main Brazilian sugarcane-producing 

municipalities. e) Average SoilPP of Brazilian municipalities. f) (6) yield level for Brazilian sugarcane-producing 

municipalities (calculated using eq. 6). Cy (6): Yield class; Cs (6): Score class. 
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3.3.1 Farm extent 

A comparative analysis was carried out between SoilPPmap and the Production 

Environments System (PES) developed by Demattê and Demattê (2009) at the farm level. The 

PES was developed after some empirical studies initiated by Coopersucar (1994), which 

observed the strong relationship between soil types and sugarcane productivity. The basis of 

this system is the soil pedological map, where the pillars that support plant productivity are soil 

classification, texture, fertility, depth, water retention (from surface to subsoil, 1 m), and 

climate. The PES is categorized into seven different classes (Fig. 5) due to the sugarcane 

productivity in each mapping unit, which corresponds to a soil class, represented by a specific 

color. 

 

 
Fig. 5: a) Limit of the study area (Rafard Farm); b) Empirical production environment for sugarcane; c) SoilPP 

map. d) Yield of sugar cane in environment A. e) Yield of sugar cane in environment F. Sugarcane productivity 

categories: A: greater than 100 tons ha-1; B: 90-100 tons ha-1; C:86-90 tons ha-1; D: 81-85 tons ha-1; E: 76-80 tons 

ha-1; F: 71-75 tons ha-1; G: less than 70 tons ha-1. 

 

The farm's area is 182 ha (located in the city of Rafard, São Paulo state) (Fig. 5a). 

Figure 5b presents the PES for the sugarcane farm. The SoilPPmap (Fig. 2) was cut along the 

perimeter of the Rafard farm (Fig. 5c), making it possible to compare its similarities and 

differences in relation to the PES (Fig. 5b) for the sugarcane crop. Therefore, the 

correspondence between areas with the highest SoilPP (A) and PES mapping units with the 

highest yields (A) of sugarcane (Fig 5b and c) is remarkable, i.e, the most productive 
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environments classified in the field present similarities when related to the best SoilPP classes. 

Fig 5d exemplifies soil conditions for environment 'A' which has a higher production of plant 

biomass where the soil has a clayey texture and base saturation (V%) above 50%. Figure 5e 

demonstrates the soil and plant conditions of an 'F' environment, where this soil has a very 

sandy texture, base saturation below 50%, and the presence of Al3+. 

 

3.4 Correspondence analysis between SoilPP vs. Production Environment System (PES) 

Multiple Correspondence Analysis (MCA) was performed with approximately 21000 

soil samples evaluated in the field via PES and used in SoilPPmap prediction, to verify the 

association of categorical groups between both systems. The spatial association between SoilPP 

and PES classes (Demattê and Demattê, 2009) is confirmed (p<0,01) by correspondence 

analysis (Fig. 6). The soil samples that obtained the highest scores (class A) via the soil 

productive potential index “SoilPPI”, express a significant association with class A via “PES” 

determined in the field. Therefore, the soils that showed the highest productive potential 

presented high similarity with the best categories (A, B and C) of production environments. 

Soil samples that obtained the lowest scores (classes F and G) by SoilPPI presented greater 

correspondence with the worst classes of PES (Classes F and G) evaluated in the field. The 

category with low correspondence between the two methods was D (Fig. 6). Classes B, C, and 

E also demonstrate the correspondence between the different methods. 
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Fig 6. Correspondence analysis between Production Environment System 'PES' and SoilPP. 
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4. DISCUSSION 

4.1 Prediction of soil productive potential (SoilPP) 

The low prediction accuracy of SoilPPmap (Table 3) is possibly associated with the 

evaluation of soil chemical attributes in SoilPPI (Table 1). This problem is possibly linked to 

the variability of these attributes caused by crop management, such as liming and fertiliza t ion 

of agricultural lands. Safanelli et al. (2021) performed poorly for the prediction of soil pH in 

water (R2 0.07) and CEC mmolc kg -1 (R2 0.27) for Brazilian agricultural areas using 

approximately 4500 soil samples. Mendes et al. (2019) performed the prediction of chemica l 

attributes such as CEC (R2 0.35 to 0.02), V% (R2 0.12 to 0.05), m% (R2 0.27 to 0.17), and Al 

(R2 0.36 to 0.07), using different covariates and prediction methods, but the model accuracy 

was also low. Poor chemical property prediction performance also occurred in other studies 

(Poppiel et al., 2019; Rizzo et al., 2020). Therefore, the insertion of chemical attributes (Table 

1) in the SoilPPI to generate the SoilPPmap was probably the main factor that reduced the 

accuracy of the prediction, since the chemical attributes had a greater influence on the index 

result (Table A1) and present high variability in the landscape. 

 

4.2 SoilPPmap for Brazilian agricultural areas 

First, the correspondence of the different Soil categories with the Brazilian geologica l 

map with a scale of 1:5.000.000 was observed (Gómez et al., 2019). Agricultural soils that 

present higher SoilPP (Fig. 2) correspond to areas of source material from volcanic rocks, 

mainly in territories with the presence of basalt (Fig. A1a and A2c) (Gómez et al., 2019). Areas 

with medium/high to very low SoilPP correspond mostly to agricultural soils with parental 

material from sedimentary and metamorphic rocks (Fig. A1a and A2c).  

In agreement with Beerling et al., (2018) basalt is widely recognized source material 

for as a producer of productive soils because it weathers quickly, releasing essential elements 

for plant growth, including P, K, Ca, Mg and Fe. This statement justifies why the Brazilian soils 

from agricultural areas with the highest SoilPP (Fig. 2) are located in territories origina t ing 

from basalt. The main soil classes that are located in the areas with the highest SoilPP (Fig. 2) 

are mainly Nitosols (Nitosols, Lixisols, and Alisols), Latosols (Ferralsols), and Ultiso ls 

(Acrisols, Lixisols, and Aisols) (Fig. A1b and A2e). 

SoilPPmap showed high spatial similarity with the soil organic carbon stocks (SOC) 

map for Brazilian agricultural areas produced by Safanelli et al., (2021) (Fig. A2a and b). The 

areas that obtained the highest scores through SoilPPI (very high and high) (Fig. 2) are the same 

areas that demonstrate the highest concentrations of SOC. In agreement with Huang et al., 
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(2021), SOC has the potential to improve soil structure (such as aggregate stability) and 

retention of water and nutrients (such as nitrogen) in soils. Other studies indicate that increasing 

SOCs can increase soil quality (improvement in the performance of certain soil functio ns, such 

as water retention, aggregation, and cation exchange capacity) and improve crop yields (Lal, 

2006; Williams et al., 2016; Yost and Hartemink, 2019). Therefore, the territories with the 

highest concentration of SOC in Brazilian agricultural areas (Safanelli et al., 2021) correspond 

with the highest values of SoilPP, since SOC has a direct influence on the production of biomass 

of cultivated plants (Huang et al., 2021). 

This factor can encourage farmers to reformulate their soil management for increasing 

the soil organic matter (SOM) content in agricultural areas. It can contribute to the global 

initiatives such as “Soil Carbon 4 per Mille”, which proposed to increase SOC sequestration, 

mitigating the harmful effects of global anthropogenic greenhouse gas emissions (Minasny et 

al., 2017). In order to increase global food security for a rapidly growing population under a 

changing climate, best management practices should be adopted to improve soil structure and 

SOC stock that can increase water storage, nutrient retention and energy conservation (Huang 

et al., 2021). 

The area quantification of the SoilPPmap allowed seeing the spatial extension of the 

best and worst categories of agricultural soils in each Brazilian biome, based on the evaluat ion 

of the physical, chemical, and biological properties of these soils (Fig 3). The best agricultura l 

soils in Brazil due to their territorial extension that belong to the SoilPP categories “very high 

and high” are found in the Atlantic Forest (11.8 M ha), Amazon (7.6 M ha), and Cerrado (4.4 

M ha) (Fig. 3a, b, and e). On the other hand, soils ranging from medium/high to very low 

potential are found in the Cerrado (77.9 M ha), Caatinga (28.9 M ha), and Atlantic Forest (34.5 

M ha) biomes (Fig. 3a, b, and e). A possible explanation for the lower values of SoilPP in the 

Cerrado and Caatinga biomes can be observed through the pasture quality map provided by 

MapBiomas (https://mapbiomas.org) on Google Earth Engine platform. Most of the pastures in 

the respective biomes are in a severe or moderate degree of degradation, corresponding to the 

worst SoilPP classes “medium/low, low and very low” (Strassburg et al., 2014). 

 

4.3 Assessment of croplands (national extent) 

Through the Yield level analysis of 2304 Brazilian soybean producing municipalit ies, 

around 896 municipalities were identified that could increase their production levels (Fig. 4c). 

For sugarcane, 2468 producing municipalities were evaluated, where 1056 municipalities could 

increase crop productivity (Fig. 4f). Some Brazilian municipalities had high average yields for 

https://mapbiomas.org/
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both crops even at low SoilPP values, such as the Southeast, Midwest, and Northeast regions 

(Fig. 4a, b, d, and e). This is possibly associated with the level of technological investment of 

the municipalities in the respective regions. For example, the regions with the adoption of 

irrigation practices have the highest average productivity per municipality, which can be 

verified through the map of irrigated Brazilian agricultural areas (https://mapbiomas.org; ANA 

- National Water and Sanitation Agency). 

Another factor is the large Brazilian reservoirs of residual phosphorus (P) accumulated 

over decades of cultivation, called “P legacy”, where Pavinato et al. (2020) mapped the Spatio-

temporal distribution of the legacy of P in the last 50 years in Brazil. Some regions with the 

highest accumulation of P legacy in Brazilian soil (greater than 300 kg ha-1) demonstrate the 

intense technological investment in municipalities with low SoilPP to leverage production 

levels for soybeans and sugarcane (Pavinato et al., 2020). 

The highest values of Gross Domestic Product (GDP) per capita in 2019 (IBGE, 2019) 

correspond to regions of irrigated areas that belong to some agricultural frontiers of strong 

expansion in Brazil (ANA - National Water and Sanitation Agency). Notably, in central Mato 

Grosso, southern Goiás and eastern Mato Grosso do Sul, western Bahia, and the upper reaches 

of the Parnaíba River, where there was a high share of agricultural activities in the GDP 

associated with a relatively small population (IBGE, 2019). Therefore, high munic ipa l 

productivity may be associated with a high technological investment in the respective regions, 

such as fertilization (Pavinato et al., 2020) and irrigation (ANA). Thus, the development of 

public policies to increase technological investment in municipalities with a negative Yield 

level (Fig. 4c and f), could result in an increase in their average productivity without the 

exploitation of new agricultural areas, contributing to food security (Huang et al. al., 2021; 

McBratney et al., 2014), forecasting of supply and support services (Adhikari and Hartemink, 

2016; Dominati et al., 2014; Kopittke et al., 2019; Robinson et al., 2012; Tóth et al., 2013). 

 

4.3.1 In farm extent 

Sugarcane, cultivated extensively in highly weathered soils, generates approximate ly 

US$43 billion per year for the Brazilian economy (Beerling et al., 2018). The soil classes with 

the highest productive potential on the farm located in the municipality of Rafard (state of São 

Paulo) (Fig. 5c) were mainly in the mapping units (Fig. A3d) occupied by the Red Nitosol (NV) 

and Argilluvic Chernossolo (MT) (Bazaglia Filho et al., 2013). These units have a fine texture 

and base saturation (V%) greater than fifty (eutrophic soils) (Bazaglia Filho et al., 2013; Santos 

et al., 2018). Confirmation of the best soil classes can be observed by the PES performed from 

https://mapbiomas.org/
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field information (Fig. A3a) and by observing its visual correspondence with SoilPPmap (Fig. 

A3b). The worst soils in the area classified by PES and SoilPPmap have a coarse texture (sandy) 

with a V% lower than 50 (dystrophic soils) (Bazaglia Filho et al., 2013). Acidification of 

agricultural soils is a worldwide problem and reversing it improves nutrient uptake, root growth, 

and crop yields (Beerling et al., 2018; Gillman, 1980). Neutralization of acidic soils also reduces 

metal toxicity (e.g. aluminum and manganese levels) and increases P availability, especially in 

highly weathered tropical acidic soils where metal oxides bind strongly to remaining P reserves 

(Beerling et al., 2018).  

The locations with the highest SoilPP (very high and high) on the farm have diabase 

(mafic igneous rock) as their parental material (Nanni and Demattê, 2006) (Fig. A3e). Mello et 

al. (2021) evaluated the magnetic susceptibility (κ) on the same farm and the highest values of 

κ are found in soil classes where clay was formed from source materials rich in ferrimagnetic 

minerals, where NV, MT, and CX occur. (Fig. A3d) and consequently at the sites origina t ing 

from diabase (Fig. A3e).  The soil classes that presented the lowest SoilPP are PVA and PA 

(Fig. A3d), where Mello et al. (2021) observed the lowest values of κ due to the presence of 

sandy texture in this class, coming from siltstone (Fig. A3e). Therefore, the SoilPPmap 

prediction assigned the highest SoilPP values in exposed soil pixels with the lowest reflectance 

intensities (Demattê et al., 2018). 

 

4.4 Correspondence analysis between SoilPP vs. Production Environment System (PES) 

Through correspondence analysis (Fig. 6), it was possible to confirm the similar ity 

between two different categorical systems, such as SoilPP and PES (Demattê and Demattê, 

2009). The categories that showed the greatest difference were 'B', 'D', and 'E' when comparing 

the two systems. On the other hand, categories 'A', 'C', 'F', and 'G' were the ones that showed 

the greatest correspondence between the two categorical systems. Therefore, it is notable that 

the numerical system that evaluates SoilPP through the scoring of soil properties corresponds 

to an empirical method of PES developed by Demattê and Demattê, (2009), where the 

categories of both systems showed similarities. 
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4.5 Contributions and limitations of SoilPPmap for understanding soils from agricultural 

areas in Brazil 

Legacy soil maps strongly supported Brazilian agricultural expansion. However, most 

soil maps in Brazil date from 1970 to 1980 (RADAM BRASIL) and have low cartographic 

detail (1:500.000 to 1:5.000.000). This information contributed to agricultural development in 

several areas of Brazil. Currently, there is great interest in the elaboration of detailed maps, 

promoting more efficient and sustainable use of land (Safanelli et al., 2021). And these 

techniques can help increase global food security (Huang et al., 2021; McBratney et al., 2014), 

through the aid of national-scale policy formulations, such as “Brazil’s National Soil Program” 

– PronaSolos (Polidoro et al., 2016) and “Computing the Iowa Corn Suitability Rating for Your 

Farm | Ag Decision Maker,” (2013). They can also contribute to agricultural resource 

management and soil security (Lehmann et al., 2020; McBratney et al., 2014; Mulder et al., 

2011). 

The main limitations of SoilPPmap (Fig. 2) are related to the low accuracy of the 

prediction model and to agricultural areas without information on exposed soil reflectance 

which allowed us to assess only 80% (205 M ha) of the total Brazilian agricultural areas (263 

M ha) (MapBiomas, 2020). The low precision performances are possibly associated with the 

evaluation of chemical attributes in SoilPPI, due to the low correlation of the chemistry with 

the reflectance of bare soils (Mendes et al., 2019; Poppiel et al., 2019; Rizzo et al., 2016; 

Safanelli et al., 2019; al., 2021) and high with SoilPPI (Table A1). Techniques for soil 

management and plant nutrition, such as limestone and fertilizer application, no-tillage, and 

biological nitrogen fixation, justify the high dynamics of soil chemical attributes (Beerling et 

al., 2018). 

Agricultural areas that did not show reflectance of exposed soil are possibly linked to 

two main reasons, the incidence of clouds at some time when the soil was exposed (Demattê et 

al., 2018), or the decreasing rate of soil exposure, as more soils were covered due to the adoption 

of conservation agriculture practices (no-till), which can reduce soil degradation (Demattê et 

al., 2020b). With this, the complexity of working with the mapping of large territories, such as 

the case of Brazil, is perceptible. Despite the difficulties, mapping was carried out with a spatial 

resolution of thirty meters, evaluating soil properties up to one-meter-deep for 80% of Brazilian 

agricultural areas. 
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5. CONCLUSION 

The proposed method for obtaining a SoilPPmap for agricultural Brazilian areas based 

on digital mapping of soil attributes integrated by scoring functions achieved a satisfactory 

spatial correspondence with external data of crop productivity at national and farm geographic 

extents. The indexing strategy generated through PCA to evaluate the soil attributes of the 

respective samples showed good categorical correspondence with the Production Environment 

System (PES). Therefore, this technique can assist in the development of soil products to assist 

global food and soil security policies and be replicated in other countries, regions, 

municipalities, or farms. The SoilPPmap for Brazilian agricultural areas had the following main 

limitations: 1) the sample representativeness for all types of agricultural soils in Brazil; 2) the 

low accuracy of the prediction model, which is possibly related to the evaluation of soil 

chemical attributes. Despite the limitations and challenges, about 205 Mha (80% of the total 

agricultural areas in Brazil) were mapped with soil information up to 1 m deep and a spatial 

resolution of 30 m. 

The area quantification of SoilPP made it possible to see the best and worst agricultura l 

soils in each Brazilian biome. The best agricultural soils in Brazil are found in the Atlantic 

Forest (11.8 Mha), Amazon (7.6 Mha), and Cerrado (4.4 Mha) biomes. On the other hand, soils 

with medium/high to very low potential are found in the Cerrado (77.9 Mha), Caatinga (28.9 

Mha), and Atlantic Forest (34.5 Mha) biomes. Through the evaluation of the average munic ipa l 

productivity level, it was observed that of 2304 soybean-producing municipalities, 896 could 

increase the average soybean productivity to a certain level. For sugarcane, out of 2468 

municipalities evaluated, 1056 can increase their average productivity. Therefore, increasing 

agricultural technology in some municipalities through the development of public policies 

could increase average productivity for the respective crops in areas where they are already 

cultivated.  This can make it possible to reduce the opening of new areas, minimize the negative 

impacts of deforestation, mitigate the effects of climate change and contribute to global food 

security. 
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APPENDIX 

 

Table A1. Principal component analysis (PCA) for soil attributes. 

 PC1 PC2 PC3 PC4 PC5 PC6 

Sand -0.217 0.344 -0.084 -0.159 0.169 -0.029 

Silt 0.212 -0.142 -0.095 0.241 -0.232 0.049 

Clay 0.180 -0.368 0.146 0.095 -0.112 0.015 

Bulk Density -0.215 0.361 -0.146 0.036 -0.029 -0.019 

SOC 0.221 -0.209 0.092 -0.346 0.365 0.020 

SOM 0.221 -0.208 0.093 -0.345 0.365 0.021 

pH in water 0.204 0.229 0.208 0.055 0.022 0.163 

Ca+2 0.322 0.109 -0.021 0.061 0.001 0.004 

Mg+2 0.302 0.108 -0.083 0.122 -0.014 -0.046 

K+ 0.176 0.059 -0.048 0.098 0.204 -0.267 

Al +3 -0.041 -0.166 -0.456 0.000 -0.129 -0.048 

H++Al+3 0.077 -0.267 -0.373 -0.139 -0.072 -0.020 

CEC pH7 0.285 -0.096 -0.278 -0.030 -0.039 -0.036 

SB 0.331 0.114 -0.044 0.088 0.012 -0.033 

V% 0.249 0.281 0.134 0.101 -0.003 -0.023 

m% -0.219 -0.191 -0.261 0.023 0.003 -0.030 

Delta pH 0.011 0.075 -0.127 0.492 0.589 0.163 

Ki 0.042 0.101 -0.038 0.156 -0.131 -0.716 

Clay activ. 0.072 0.245 -0.354 -0.343 0.022 0.121 

Slope 0.053 0.016 -0.106 0.234 -0.238 0.568 
 

Table A2. Importance of the Principal Component Analysis. 

  PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 2.81 2.00 1.78 1.18 1.12 1.04 

Proportion of variance 0.34 0.17 0.14 0.06 0.05 0.05 

Cumulative proportion 0.34 0.52 0.65 0.71 0.77 0.81 
* The proportion of variance (PCn) of each selected principal component is one of the variables for calculation 

through the SoilPPI equation (5). 
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Fig. A1: a) Brazilian geological map “scale 1:5.000.000” (Gómez et al., 2019). b) Brazilian pedological 

classification (scale 1:5.000.000). 

 

 

Fig. A2. a) SOC stock Brazilian map (Safanelli et al., 2021); b) SoilPPmap; c) Brazilian geological map (Gómez 

et al., 2019); d) SoilPPmap; e) Brazilian pedological classification (Santos et al., 2018). 
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Fig. A3: a) PESmap based on pedological classification and sugarcane productivity; b) SoilPPmap carried out 

from the evaluation of soil properties (equation 1, 2, 3, 4 and 5) (Table A1 and A2); c) Elevation of the terrain, 

(meters); d) Pedological classification map represented by soil classes: PVA: Argissolo vermelho amarelo; PA: 

Argissolo amarelo; CX: Cambissolo háplico; NX: Nitossolo háplico; NV: Nitossolo vermelho; MT: Chernossolo 

argilúvico; RL: Neossolo Litólico; e) Parent material. 




