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RESUMO 
 

Geomicrobiologia, déficit de saturação e potencial de sequestro de carbono dos solos 

agrícolas brasileiros 

 

O serviço ecossistêmico de regulação climática provido pelo solo se dá por sua 

capacidade de sequestrar C, sendo que o carbono orgânico do solo (COS) é essencial para sua 

saúde. A capacidade do solo de reter COS depende dos minerais e de sua interação com a 

microbiota. O presente trabalho aborda no capítulo 1 a análise do potencial de sequestro de 

COS da fração argila para solos da região de Piracicaba, estado de São Paulo, com base em 

uma equação do déficit potencial de saturação de C de partículas finas do solo, ajustada para 

solos agrícolas tropicais. Esse potencial foi ajustado por um modelo de regressão espacial. Na 

camada superficial, o potencial de sequestro é explicado principalmente pela abundância 

relativa de caulinita, hematita, goethita e gibbsita determinados via espectroscopia Vis-NIR-

SWIR. Foi observada uma relação direta com a goethita e a gibbsita. Em uma profundidade 

de 80 a 100 cm, a caulinita e a hematita foram responsáveis pela maior variação no potencial 

de sequestro. A contribuição de cada mineral para o potencial de sequestro de COS também 

foi mapeada, verificando-se altas contribuições de goethita e gibbsita para as camadas 

profundas do solo. O Capítulo 2 foi baseado no ajuste do modelo de potencial de sequestro de 

C com variáveis microbiológicas e mineralógicas. A modelagem e o mapeamento de diversas 

propriedades microbiológicas foram realizados por meio de funções de transferência espectral 

e mapeamento digital do solo (MDS), atingindo R2 de 0,77 a 0,85. Todas essas propriedades 

foram detectadas usando bandas específicas, que alcançaram correlações de 0,64 a 0,98 com 

as análises laboratoriais. Os modelos autorregressivos obtiveram r de 0,61 a 0,7. As variáveis 

explicativas foram associadas à caulinita, hematita, goethita, gibbsita e abundância de fungos, 

actinomicetos, fungos micorrízicos vesiculares-arbusculares, atividade enzimática da beta-

glucosidase, urease e fosfatase e matéria orgânica particulada (POM), sendo a abundância 

geral de fungos a variável microbiológica mais importante. O Capítulo 3 baseou-se no 

desenvolvimento de uma estratégia para analisar a atividade microbiológica em microescala 

por meio da detecção espectroscópica de 35 amostras com análise do carbono da biomassa 

microbiana (MBC) e atividade enzimática de betaglucosidase, urease e fosfatase, e 

fracionamento da matéria orgânica do solo (MOS) em POM e MOS associada à fração 

mineral (MAOM). A fim de caracterizar os espectros Vis-NIR-SWIR e Mid-IR das diferentes 

frações em função das variáveis microbiológicas, foram selecionadas bandas específicas para 

cada variável. Por último, no capítulo 4, foi desenvolvida uma técnica para calcular e 

espacializar os índices de atividade das enzimas beta-glucosidase, fosfatase e urease para as 

áreas agrícolas do Brasil utilizando MDS e tendo como covariáveis uma Imagem Sintética do 

Solo (SYSI), variáveis associadas ao relevo, clima, biomas e mapas mineralógicos. Os mapas 

de atividade enzimática foram obtidos para a área agrícola do Brasil (3481362,60 km²), com 

um R2 de validação variando de 0,68 a 0,35. Esses índices de atividade enzimática em escala 

de 30 m podem ser considerados uma contribuição importante para o monitoramento e o 

mapeamento da qualidade e da saúde dos solos brasileiros, pois são sensíveis ao uso e ao 

manejo da terra. 

 

Palavras-chave: Sequestro de carbono, Mineralogia, Espectroscopia do solo, Atividade 

enzimática, Mapeamento digital do solo 
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ABSTRACT 

 

Carbon geomicrobiology, saturation deficit and sequestration potential of Brazilian 

agricultural soils 

 

The ecosystem service of climate regulation provided by soil is due to its capacity to 

sequester C, and soil organic carbon (SOC) is essential for its health. The capacity of the soil 

to retain OC depends on the minerals and their interaction with the microbiota. Chapter 1 of 

this work analyzes the potential for COS sequestration in the clay fraction for soils in the 

Piracicaba region, in the state of São Paulo, based on an equation for the potential C 

saturation deficit of fine soil particles, adjusted for tropical agricultural soils. This potential 

was adjusted using a spatial regression model. In the surface layer, the sequestration potential 

is mainly explained by the relative abundance of kaolinite, hematite, goethite and gibbsite 

determined by Vis-NIR-SWIR spectroscopy. A direct relationship was observed with goethite 

and gibbsite. At a depth of 80 to 100 cm, kaolinite and hematite were responsible for the 

greatest variation in sequestration potential. The contribution of each mineral to COS 

sequestration potential was also mapped, with high contributions from goethite and gibbsite in 

the deep soil layers. Chapter 2 was based on the adjustment of the C sequestration potential 

model with microbiological and mineralogical variables. The modeling and mapping of 

different microbiological properties was carried out using spectral transfer functions and 

digital soil mapping (DSM), achieving R2 of 0.77 to 0.85. All these properties were detected 

using specific bands, which achieved correlations of 0.64 to 0.98 with the laboratory analyses. 

The autoregressive models obtained r from 0.61 to 0.7. The explanatory variables were 

associated with kaolinite, hematite, goethite, gibbsite and the abundance of fungi, 

actinomycetes, vesicular-arbuscular mycorrhizal fungi, enzymatic activity of beta-

glucosidase, urease and phosphatase and particulate organic matter (POM), with the overall 

abundance of fungi being the most important microbiological variable. Chapter 3 was based 

on the development of a strategy to analyze microbiological activity at the microscale through 

the spectroscopic detection of 35 samples with analysis of of microbial biomass carbon 

(MBC) and enzymatic activity of beta-glucosidase, urease and phosphatase, and fractionation 

of soil organic matter (SOM) into POM and SOM associated with the mineral fraction 

(MAOM). In order to characterize the Vis-NIR-SWIR and Mid-IR spectra of the different 

fractions according to the microbiological variables, specific bands were selected for each 

variable. Finally, in chapter 4, a technique was developed to calculate and spatialize the 

activity indices of the enzymes betaglycosidase, phosphatase and urease for agricultural areas 

in Brazil using DSM and having as covariates a Synthetic Soil Image (SYSI), variables 

associated with relief, climate, biomes and mineralogical maps. The enzyme activity maps 

were obtained for the agricultural area of Brazil (3481362.60 km²), with a validation R2 

ranging from 0.68 to 0.35. These enzyme activity indices on a 30 m scale can be considered 

an important contribution to monitoring and mapping the quality and health of Brazilian soils, 

as they are sensitive to land use and management. 

 

Keywords: Carbon sequestration, Mineralogy, Soil spectroscopy, Enzyme activity, Digital soil 

mapping 
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1. GENERAL INTRODUCTION 

Soil is a fundamental natural resource that supports 95% of human food production 

(Sarkheil et al., 2020), and represents the difference between the survival and extinction of 

most terrestrial life (Doran and Zeiss, 2000). Therefore, maintaining or improving the health 

of our soils is important for achieving the Sustainable Development Goals (SDGs), ensuring 

the provision of ecosystem services, food security and sustaining life on Earth (Sarkheil et al., 

2023). 

Soil dynamics responds to the direct interaction between microorganisms, 

biomineralization and synergistic coevolution with plants (Gouda et al., 2018), which gives it 

a number of functions corresponding to (i) food and biomass production, (ii) storage, filtration 

and transformation of compounds, (iii) habitats for living beings and gene pools, (iv) physical 

and cultural environment, (v) source of raw materials, (vi) carbon reservoir and (vii) archive 

of geological and archaeological heritage (European Commission (COM 2006.231). These 

functions are related to the ecosystem services provided by soil associated with provisioning 

(food, fiber and timber production), regulation (climate, flood and water regulation), and 

cultural and supporting services (nutrient cycling, soil formation) (Silvero et al., 2023). 

Within the climate regulation service, soil has the capacity to sequester carbon (C), which 

favors the reduction of carbon dioxide (CO2) concentration in the atmosphere (Houghton 

2003, Kimble et al. 2003). This is because global soils have the potential to absorb about 20% 

of anthropogenic C emissions (Yang et al., 2021). Therefore, C sequestration is a phenomenon 

that can help to partially mitigate climate change (Padarian et al., 2022), as well as 

greenhouse gas emissions (Minasny et al., 2017). 

It is important to mention that the largest stock of organic carbon (OC) associated with 

terrestrial ecosystems is found in soil (Eswaran et al. 1993, Hounkpatin et al. 2018), 

comprising approximately two-thirds of global C (Scharlemann et al., 2014), estimated at 

2500 Gt, which includes 1550 Gt of soil organic carbon (SOC) and 950 Gt of inorganic soil C 

(Hounkpatin et al., 2018). Changes in these soil C stocks constitute a change in atmospheric 

CO2 concentration that may affect global climate change, as soil stocks contain 3.3 times 

more than atmospheric stocks (760 Gt) and 4.5 times more than biota stocks (560 Gt) 

(Hounkpatin et al., 2018). Analysis of the vertical and horizontal distribution of soil C 

interferes with the abundance of C-related greenhouse gases (Hobley et al. 2015, Xu et al. 

2011). The importance of SOC not only influences climate change mitigation but is also 

critical for maintaining soil productivity and health in agricultural systems (Li et al., 2019). 
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SOC dynamics is closely related to the soil development process and thus to its formative 

factors (Hobley et al., 2015). There are active factors, such as climate and organisms, and 

passive factors, such as parent materials, relief, and time. To make predictions of the C cycle, 

it is necessary to understand the complete processes related to C sequestration and release 

(Marschner et al., 2008). 

In relation to the climate-forming factor, the variables that most affect C storage are 

related to temperature and precipitation (Shi et al., 2020), which determine the intensity of 

weathering of parent material, net primary productivity (Lal 2004, Adhikari et al. 2014, Weil 

& Brady 2016, Lamichhane et al. 2019) and the rate of C decomposition by microorganisms 

(Lal, 2004). According to Zeraatpishe & Khormali (2012) OC decreases with decreasing 

precipitation and increasing temperature. In addition, precipitation plays a key role in biomass 

productivity that determines litter input to the soil (Chaplot et al., 2010), due to its influence 

on the volume, quality and quantity of mineralization (Zeraatpishe & Khormali, 2012). 

In relation to relief, topographic indices, such as elevation, slope and landscape position, 

influence the action of climatic factors on soils (Weil and Brady, 2016, Lamichhane et al. 

2019). Terrain parameters, associated with land surface shape, elevation, slope and curvature, 

are used as predictive covariates of SOC (Sothe et al. 2022, Guevara et al. 2020, Rentschler et 

al. 2019, Forkuor et al. 2017, Fissore et al. 2017, Hengl et al. 2017, Nyssen et al. 2008, 

Oueslati et al. 2013). Because these variables control soil water status, litter mineralization 

dynamics, erosion and deposition processes (Hengl et al., 2015). In addition, terrain elevation 

is related to temperature and thus responds to the rate of decomposition (Schindlbacher et al. 

2010). The slope of the terrain influences the type and intensity of cultivation (Kobler et al., 

2019). 

Vegetation also interferes with SOC stocks because it favors the addition of plant biomass 

and its ease of decomposition (Bui et al., 2009), associated with the type of species (Mueller 

et al. 2015, Vesterdal et al. 2012). These biomass inputs are relevant in the most superficial 

horizons but gain importance with increasing depth due to increased subsurface OC stocks 

(Rasse et al. 2005, Lorenz et al. 2017) and their interaction with the mineralogy of the parent 

material (Angst et al., 2018), as rock composition influences OC conservation and litter 

production and thus the interaction of roots with the soil (Hassink 1997). 

Soil cover is an indicator of organic activity (Lamichhane et al. 2019) and is therefore one 

of the most influential predictors of carbon stocks (Rial et al. 2017, Wiesmeier et al. 2011). 

For Akpa et al. (2016), SOC contents vary with land use change, for example, significant 

changes occur when moving from a natural or semi-natural cover to an agricultural type, due 
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to vegetation variation that affects the proportion of SOC contributed by biomass, similarly 

the amount of biomass also varies according to land use (Sothe et al. 2022). Dos Reis et al 

(2014), indicates that the type of land use will especially affect the amounts of soil organic 

matter (SOM) reaching the soil, and the change in use affects SOM associated with minerals 

(MAOM). 

In general, management practices, as well as soil type and climate, intervene in C 

dynamics through their influence on physical, chemical and biological agents and thus on its 

availability to microorganisms and its loss through mineralization and erosion (Singh et al., 

2018). Erosion and deposition processes, degradation and volatization related to the activity 

of organisms, translocation of dissolved and particulate carbon caused by water runoff and 

infiltration, and stabilization within micro- and macroorganisms also influence SOC dynamics 

(Curtin et al., 2012).  

In general, in relation to the dynamics of C, much progress has been made on the 

influence of climate and relief factors, and on organisms related to vegetation on the soil. 

Climatic and topographic variables such as mean annual precipitation and temperature, slope, 

among others, land use, soil physical characteristics associated with texture, parent material, 

among others, and microbial biomass have been used as covariates for SOC mapping 

(Albaladejo et al. 2013, Jobbágy & Jackson 2000, Ladd et al. 2013, Powers et al. 2011, 

Poeplau et al. 2011, Wiesmeier et al. 2012). The definition of variables that interfere with 

SOC varies in relation to regional conditions (Li et al., 2019), and these variables are related 

to climate, parent material and organisms in the area (Minasny et al., 2013), which 

combinations create unique local conditions (Carvalho et al., 2019). However, it is important 

to clarify that, on a global and continental scale, SOC is controlled by temperature and 

precipitation, increasing at higher precipitation and lower temperature (Hengl et al. 2015, 

Minasny et al. 2013). But one should not ignore the importance of the other factors, such as 

parent material, which is related to the amount of clay that influences SOC protection due to 

the interaction of SOC with the reactive surface of clays (Grüneberg et al. 2013, Mayer 1994), 

thus interfering with carbon stabilization (Wagai et al., 2008) associated with organo-mineral 

aggregation (von Lützow et al., 2008). 

The ability of soil to sequester C depends especially on mineralogy and its interaction 

with microorganisms. Ingram and Fernandes (2001), Weil and Brady (2016) indicated the 

importance of mineralogy on SOC storage potential, especially soils in deeper layers (Grey 

and Bishop 2015, Wiesmeier et al. 2011). In contrast, land use presents a more significant 

influence in the surface layers (Adhikari et al., 2014, Hobley et al., 2015). 
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For Ashton et al. (2016), clay content alone is not related to the increase or decrease of C. 

The concentration is influenced by the mineralogy and geochemistry of the soil, so it depends 

on the presence of clay minerals and high specific surface area iron oxides and pH. Therefore, 

the clay fraction is key to C sequestration because it involves different minerals and varying 

amounts of pedogenic Fe and Al oxides (Yang et al. 2021, Kirsten et al. 2021, Prout et al. 

2021). Minerals such as iron and aluminum oxides, specifically goethite and gibbsite, are 

recognized as critical C sorption surfaces (Kaiser and Zech 2000, Dos Reis et al. 2014). 

Soil oxides, oxyhydroxides and hydroxides present electrostatic attractions and ionic 

bonds between the hydroxyl groups of the oxides and the carboxyl or hydroxyl groups of the 

SOM, with additional strong relationships between iron, manganese and humic substances 

(De Mastro et al., 2020). This adsorption of SOM by minerals favors SOC stabilization, 

reducing microbial mineralization (Kalbitz et al., 2005), due to the specific surface area of 

these minerals and their surface charge that favors these bonds and stabilizes SOM. Kirsten et 

al. (2021) indicated that clay minerals and oxyhydroxides (pedogenic metal oxides) are the 

most reactive and control SOC persistence. However, most studies did not explicitly evaluate 

the contribution of clay minerals to SOC. For example, Weismeier et al. (2013) estimated the 

SOC sequestration potential of silt and clay particles in soils from Germany, without 

specifying the type of clay mineral. Ashton et al. (2016) analyzed SOC concentrations in 

different parent materials and clay mineralogies, evaluating total concentrations without 

determining the specific contribution of each mineral. Yang et al. (2021) evaluated the 

spatiotemporal dynamics of carbon adsorption and release in aggregates of a transparent 

smectite clay, also relating enzymatic decomposition, through 4D imaging on a microfluidic 

chip. It should be noted that this study was not performed on a specific soil. Kirsten et al. 

(2021) determined the contribution of kaolinite, gibbsite, goethite and hematite to C storage in 

soils under forests and agricultural lands, evaluating only the variation of C and clay mineral 

concentrations, but keeping the mineral types invariant. 

Mapping the C sequestration potential of the clay minerals that make up the clay fraction 

is important for understanding their dynamics and soil management (Padarian et al., 2022), 

remembering that SOC contents and their stable forms vary in relation to the amount and type 

of mineral (Yang et al. 2021, Kirsten et al. 2021, Prout et al. 2021, Dos Reis et al. 2014). 

In addition to mineralogy, microbiological activity is also important in predicting SOC 

sequestration potential. Microorganisms are responsible for 80 to 95% of C mineralization 

(Hassink, 1994), by the use of C through respiration (Follett et al., 2001). They contribute 

with the decomposition of SOM and C stabilization by participating in the formation of 
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microaggregates with extracellular activity and with their dead remains (Nicolas et al. 2019, 

De Mastro et al. 2020). 

In general, the degradation of SOM, especially its degree of decomposition, is related to 

the intra- and extracellular enzymatic activity of fungi and bacteria (De Beeck et al., 2021). 

Enzymes act as regulators in litter decomposition thus influencing labile forms of SOM 

(Zhang et al 2020). Considering the microbial C-pump concept described by Adamczyk et al. 

(2019), stable forms of SOM result from microbiological activity. As microorganisms 

generate biomass through metabolic processing of plant residues, microbial residues are 

converted into stable forms by interacting with soil minerals. 

Aluminum and iron oxides, as well as clay minerals, especially smectites, control C 

storage and release; however, their relationship with the presence of microbes and 

extracellular enzymes that degrade SOM is still unclear (Yang et al., 2021). According to 

Parink et al. (2014), bacterial adhesion to clay minerals and oxides is mediated by interactions 

with proteins, extracellular enzymes, and hydrogen bonds. 

There is a need to improve the understanding of the activity and diversity of exoenzymes 

and their interactions with minerals in SOC modeling, as microbial and extracellular enzyme 

activity directly affects the efficacy of SOC mineral protection and promotes its release (Yang 

et al., 2021). Hart et al. (2020) proposed the use of spectroscopy-focused technologies in 

association with molecular cues to model the presence of fungi and bacteria in soil samples. 

Since microbiological activity presents a close relationship with the types and amounts of 

SOM, that is, it responds to the quantity and quality of OC (Rasche et al., 2013), Vis NIR 

SWIR and Mid IR reflectance spectroscopy analysis is key for the characterization of this 

activity, since it facilitates the differentiation of the functional groups of the different organic 

compounds in the soil (Ojeda et al. 2008, Viscarra Rossel and Hicks, 2015) and allows the 

interpretation of clay mineralogy and iron oxides that are related to soil microorganisms 

(Viscarra Rossel et al. 2022, Yang et al. 2021). 

However, there are no specific vis-NIR-SWIR and Mid IR absorbances assigned to 

microbial communities, but, since the soil physicochemical environment conditions the 

abundance and function of microorganisms (Rasche et al., 2011), and the spectral response of 

the soil favors the prediction of fundamental components such as minerals, SOM and water 

content (Yang et al. 2021, Viscarra Rossel et al. 2022) that are required by fungal and bacterial 

communities for their growth and obtaining energy (Müller, 2015), it is possible to relate 

wavelengths to microbiological characteristics. 
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The major difficulty in accessing soil microbiological properties directly through spectral 

frequencies is due to the low content of microbial biomass and enzyme activity which limits 

the induction of changes in spectra (Rinnan and Rinnan, 2007). However, microbiological 

properties can be predicted due to the strong relationship with the compounds comprising the 

SOC which influence the spectral response of the soil (Cohen et al. 2005, Chodak 2011). As 

an example, extracellular enzymes produced by fungi for lignin and lignocellulose 

degradation release C into the soil solution (Nicolas et al., 2019), which allows interpreting 

spectral information as an indicator of soil microbiology (Rasche et al. 2013, Viscarra Rossel 

et al., 2022). Additionally, interaction with soil mineralogy can also be interpreted spectrally, 

Fe, for example, is related to microbial energy generation for Fe-reducing microorganisms 

(Weber et al., 2006), as well as for phototrophic bacteria (Hegler et al., 2008), and the spectral 

response of iron oxides is recognized in the 540, 640 and 900 nm bands, oxides associated 

with hematite in the 550 nm band, goethite around 440 to 470nm (Dematte et al. 2014). Fe 

oxides have also been recognized in the SWIR 1400 and 1900 nm bands (Dalmolin et al., 

2005). However, some authors highlight the modification of these bands upon interaction with 

microbiological activity, for example, Fe oxides associated with fungal diversity in the bands 

390, 410, 460 nm (Vis Nir) (Yang et al., 2022), CH-goethite bond ratio in 1725 nm (Sharma et 

al., 2021). Parikh et al. (2014) indicates that the interaction of phosphate groups presents in 

bacterial cell walls and goethite surfaces, which favors POFe bonds, are distinguished in the 

bands 1027, 1037 and 1045 cm-1, in the Mid IR spectrum. Additionally, Rong et al. (2010) 

recognized the interaction of water and polymer bridges favoring bacteria-goethite bonds at 

the 1085 cm-1 band. 

In general, as mentioned by Nath et al. (2021) the soil matrix provides and regulates the 

habitat of different microbial communities, therefore, reflectance spectroscopy analyses on 

soil samples contribute to the prediction of compounds used by microbes, and to the 

prediction of products of microbiological activity, since these analyses provide integrated 

measures of the mineral-organic composition of the soil (Viscarra Rossel et al., 2016). Rasche 

et al. (2013) points out some bands of the Mid IR spectra that favor the prediction of beta-

glucosidase, xylosidase and urease, as well as bacterial abundance. In relation to Vis-Nir 

spectra some predictions associated with bacterial abundance (Viscarra et al. 2022., Zornoza 

et al. 2008), microbial biomass (Coûteaux et al. 2003, Zornoza et al. 2008, Chodak 2011), 

enzyme activity in soil (Cohen et al. 2005, Zornoza et al. 2008, Chodak 2011), respiration 

(Zornoza et al. 2008, Chodak 2011), fungal diversity and abundance (Yang et al., 2022). 
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NIR and Mid IR reflectance spectra respond to the concentration of compounds related to 

C-H, N-H, S-H, C=O and O-H chemical bonds, thus allowing to differentiate the organic 

composition of a soil sample (Zornoza et al. 2008, Parikh et al 2014, Viscarra Rossel et al. 

2022). It is these compounds with which microbial properties (for example, soil microbial 

biomass or enzymatic activities) are closely related (Parikh et al., 2014). Because they are 

integrated with fungal and bacterial products. Ammann & Brandl (2011) indicate typical 

fingerprints for microorganisms by referring to the Mid IR spectrum bands associated with 

cellular carbohydrate and protein compounds. According to Jiang et al. (2004) hydroxyl, 

carboxyl, phosphoryl and amide groups are common among bacterial cell walls. In general the 

organic nature of bacteria and fungi makes peak locations similar between SOM and 

microbial samples. For this reason, many Vis NIR SWIR and Mid IR band assignments are 

common to the response of different soil organic compounds (Rasche et al. 2013, Parikh et al. 

2014). 

Spectral order and specific band identification is important in the prediction of soil 

properties, since characteristic peaks occur at different positions in the spectrum and may 

represent differences in information (Zhang et al., 2020). This spectral response information 

requires its mathematical extraction and subsequent correlation with soil properties (Reda et 

al., 2020), which is achieved by using machine learning techniques and multivariate 

regression analysis to extract the wave coverages related to the specific property to be 

predicted (Zornoza et al., 2008).  For example, Rasche et al. (2013) developed a partial least 

squares regression (PLSR) analysis based on Mid IR reflectance spectroscopy to predict soil 

microbial biomass and enzyme activities. 

Evaluating the interactions of organic compounds with mineral surfaces is fundamental to 

understand the stabilization of SOM (Parik et al., 2011). The charge of biomolecular 

functional groups on the surfaces of microorganisms and on minerals determines the adhesion 

process, being useful reflectance spectroscopy as it allows to evaluate such organo-mineral 

interactions facilitating the analysis of the binding mechanisms (Parik et al., 2014). Moreover, 

if this type of analysis is performed on the different fractions of the SOM, it favors the 

understanding of SOC dynamics (Six et al., 2004). The biogeochemical interaction between 

mineral particles and OM is a fundamental factor in the preservation of SOC and the study of 

the selective contribution of clay minerals and iron and aluminum oxides to this stabilization 

of organic compounds is favored by individual analyses of SOM fractions (Kirsten et al., 

2021). 
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In general, traditional methods for analyzing soil microbiological activity are costly and 

time consuming, and given their importance in understanding C dynamics, soil quality and 

soil health, there is a need to develop techniques through simple and cost-effective methods 

(Rasche et al. 2013). Spectroscopy has come a long way in detecting specific bands in the 

Mid IR region. 

In addition, enzyme activity has been recognized as a biological indicator that is closely 

related to soil physical and chemical properties, and allows predicting global microbial 

activity (Ma et al., 2021). Such activity influences C depletion and sequestration (Zhang et al., 

2020), and is considered as one of the indicators with higher sensitivity to soil management 

practices than other variables (Adetunji et al., 2017). 

Enzyme activity plays a vital role in agriculture and nutrient cycling (Balota and Chaves, 

2010), especially hydrolases that are associated with carbon (betaglucosidasea), nitrogen 

(ureasea) and phosphorus (phosphatase) cycles (Karaca et al., 2010), and are widely used as 

indicators of soil quality (Bandick and Dick, 1999). 

Despite the importance of enzymatic activity of microorganisms as indicators of soil 

health, few efforts have been made to map these indicators, making it a challenge. However, 

digital soil mapping (DSM) techniques are available, which favor the construction of maps 

with high spatial resolution and low uncertainty, even at low sampling densities (Mendes et 

al., 2022).  These DSM techniques combine soil point data with statistically correlated 

auxiliary data (covariates) (McBratney et al., 2003) and together with reflectance 

spectroscopy analyses associated with soil microbiological and mineral enzymatic activity, it 

is possible to generate methodologies for mapping, classification and monitoring (Di Iorio et 

al., 2019), of these soil properties, mainly by means of machine learning techniques. 

Mathematical models related to DSM approaches have the ability to predict soil properties 

based on environmental covariates, through algorithms associated with these machine 

learning techniques (Hengl et al., 2015). Among these algorithms, the most widely used is 

Random Forest (RF) (Zeraatpisheh et al. 2020, Padarian et al. 2020), because it is a robust 

model that is composed of multiple decision trees that are not correlated with each other, 

which gives it a high accuracy in predictions with low possibility of overfitting (Wadoux et 

al., 2020). 

The quality of DSM products is conditional on the environmental covariates used for 

modeling the attribute of interest. Usually environmental covariates representing physical and 

chemical processes associated with soil spatial variation (McBratney et al. 2003, Wadoux et 

al. 2020), and/or representing soil formation factors (Viscarra Rossel, 2011) are used, so 
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digital terrain elevation models, vegetation indices, climatic covariates, geological maps, 

satellite images of surface reflectance are commonly used (Ma et al., 2019). Recently, bare 

soil reflectance images have been included as environmental covariates (Rosin et al. 2023, 

Safanelli et al 2021b). These images are obtained using the GEOS3 (Geospatial Soil Sensing 

System) technique developed by Dematte et al. (2018), which allows capturing bare soil 

reflectance from historical series of Landsat images by adding pixels that were exposed at 

least once throughout the time series to a synthetic soil image (SYSI). Silvero et al. (2021), 

Rizzo et al. (2020), Rosin et al. (2023) have demonstrated the importance of this covariate in 

soil mapping due to its strong correlation with edaphic attributes. 

This work is based on identifying the importance of mineralogy and microbiological 

activity in soil C sequestration potential, additionally mapping the importance of individual 

minerals that compose the clay fraction and microbiological activity and proposes the creation 

of microbiological activity indices based on reflectance spectroscopy, thus creating a cost-

effective technique that contributes to the monitoring of indicators of the health of agricultural 

soils in Brazil. 

Therefore, the thesis was divided into 4 scientific articles (Chapters) based on the main 

objectives:  

-To analyze the individual contribution of each mineral composing the clay fraction in the 

sequestration potential of new SOC, through quantification, modeling and mapping of this 

potential in different pedogenetic soils of Brazil, using remote sensing products and the 

equation of Feller and Beare (1997) to obtain the theoretical potential of SOC sequestration.  

- Mapping microbiological activity in different pedogenetic soils by reflectance 

spectroscopy and DSM approach and fitting the C sequestration potential model by including 

these microbiological variables in the spatial regression models and considering the 

interaction of these variables with mineralogy. 

- Develop a strategy to analyze microbiological activity at the microscale by spectroscopic 

detection, through the interpretation of Vis NIR SWIR and Mid IR spectra of SOM fractions 

(particulate organic matter (POM) and SOM associated with the mineral fraction (MAOM)) 

based on the relationship of the spectra with the quantification of microbial biomass carbon 

(MBC) and enzymatic activity of beta-glucosidase, urease and phosphatase (which interfere in 

the carbon, nitrogen and phosphorus cycles).  

-To develop a technique based on Vis NIR-SWIR and Mid IR reflectance spectroscopy 

products, DSM approach and machine learning techniques, to create and spatialize beta-

glucosidase, phosphatase and urease enzyme activity indices for the Brazilian agricultural 
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territory, having as covariables the Synthetic Soil Image (SYSI), variables associated to relief, 

climate, biomes and mineralogical maps. 
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2. POTENTIAL OF SOIL MINERALS TO SEQUESTER SOIL ORGANIC CARBON 

 

Abstract 

The capacity of soil to sequester carbon (C) is a key process that promotes the 

reduction of CO2 in the atmosphere. Soils can absorb as much as 20% of anthropogenic 

carbon emissions, which can contribute to mitigate climate change. This capacity relies on the 

organo-mineral association, which includes different minerals, Fe and Al oxides, which have a 

critical soil organic carbon (SOC) sorption surface. Based on an equation of the potential C 

saturation deficit of fine soil particles (<20 μm/silt and clay fractions) for tropical regions, this 

study investigated the SOC sequestration potential of the clay fraction for soils in Piracicaba 

region, São Paulo State, Brazil as influenced by the clay minerals. This potential was fitted to 

a spatial regression model for soil depths 0 - 20 cm and 80 to 100 cm. In the surface layer, the 

sequestration potential was mostly explained by the relative abundance of soil minerals 

(Kaolinite, Hematite, Goethite and Gibbsite) determined using Vis-NIR-SWIR spectroscopy. 

A direct relationship was observed with Goethite and Gibbsite, indicating that low 

concentrations would reduce the sequestration potential. At 80 to 100 cm depth, Kaolinite and 

Hematite explained most variation in SOC sequestration potential. Additionally, the C 

associated with the mineral fraction and the C saturation potential as a function of minerals 

were modeled and a strong importance of hematite in the C sequestration and stabilization 

cycle was identified at both depths. The individual mineral contribution to SOC sequestration 

potential was also mapped, which identified high contributions of goethite and gibbsite for 

deep soil layers. The influence of land use on the carbon sequestration potential of minerals 

was observed, with the greatest potential being found in areas with pasture and cropping 

mosaics and grassland and forest mosaics, with a high presence of kaolinite and hematite. 

These minerals have a greater potential for carbon sequestration at greater depths and, 

therefore, could be critical in climate change mitigation strategies. 

 

Keywords: Spatial regression, Digital soil mapping, Sustainability, Soil security, Soil 

spectroscopy, Saturation deficit 
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2.1. Introduction 

The ability of soil to sequester carbon is considered a cost-effective and plausible method 

to reduce the concentration of CO2 in the atmosphere (Houghton 2003, Kimble et al. 2003). 

This is because global soils have the potential to absorb about 20% of anthropogenic carbon 

emissions (Yang et al., 2021). Therefore, carbon sequestration is a phenomenon that can help 

to partially mitigate climate change (Padarian et al., 2022), as for greenhouse gas emissions 

(Minasny et al., 2017). 

Hassink (1997) and Loveland and Webb (2003) proposed that soils have a limited capacity 

to retain carbon, which is based on the reactive capacity of mineral surfaces (Churchman et 
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al., 2020; Prout et al., 2021). Therefore, it is understood that the clay fraction has a finite 

carbon storage capacity (Diekow et al., 2005), and the search for this storage limit justifies the 

determination of carbon (C) sequestration potential (Six et al. 2002; Goh 2004; Stewart et al. 

2008 and Chung et al. 2008), which also depends on the limited potential of the soil to 

stabilize soil organic carbon (SOC) against microbial mineralization. 

The SOC stabilization is based on selective preservation associated with recalcitrance or 

chemical resistance (Singh et al., 2018). It is also related to the spatial inaccessibility of soil 

organic matter (SOM) by occlusion in soil aggregates, especially in microaggregates 

(Hoffland et al., 2020). Furthermore, the interaction with mineral surfaces favors the 

formation of organic-mineral complexes (Sollins et al. 1996, Von Lützow et al. 2006), 

especially with clay minerals and metal ions (Oades 1988, Arrouays et al. 2006, Singh et al., 

2018). 

Hassink (1997) indicated that the potential C saturation is associated with silt and clay 

particles. Angers et al. (2011) also pointed out that fine-textured soils have a higher retention 

capacity than sandy soils, due to a larger specific surface area available for organo-mineral 

interactions present in the silt and clay fractions (Stewart et al., 2008). Similarly, Zeraatpishe 

and Khormali (2012) observed that the SOC can be adsorbed by coarse aggregates, fine 

aggregates, and particles smaller than 0.053 mm. Brodowski et al. (2006) found that particles 

such as clay and silt alone cannot retain much SOC, and more than 90% is stored in the 

aggregates, which protects SOC from microbial decomposition (Hoffland et al. 2020, Baldock 

& Skjemstad 2000, Lützow et al. 2006). 

The SOC dynamics is closely related to the soil development process and, therefore, to its 

formation factors (Hobley et al., 2015). There are active factors, such as climate and 

organisms, and passive factors, such as parent materials, relief, and time. To make predictions 

of the terrestrial carbon cycle, it is necessary to understand the complete processes related to 

the sequestration and release of carbon (Marschner et al., 2008).  

Ingram and Fernandes (2001) and Weil and Brady (2016) indicated the importance of 

mineralogy on the potential for SOC storage, especially soils in the deeper layers (Gray et al. 

2015, Wiesmeier et al. 2011). In contrast, land use presents a more significant influence in the 

superficial layers (Adhikari et al. 2014, Hobley et al. 2015). For Ashton et al. (2016), clay 

content alone is not related to the increase or decrease of C content. The concentration is 

influenced by soil mineralogy and the geochemistry of the soil, thus depending on the 

presence of clay minerals and iron oxides of high specific surface area and pH. The clay 

fraction is key to C sequestration because it involves different minerals and varying amounts 
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of pedogenic Fe and Al oxides (Yang et al., 2021; Kirsten et al., 2021; Prout et al., 2021). 

Minerals such as iron and aluminum oxides, specifically goethite and gibbsite are recognized 

as critical C sorption surfaces (Kaiser and Zech, 2000; Dos Reis et al., 2014). 

Feng et al. (2005) highlighted the adsorption of anionic cations by SOM through ionic 

linkages related to hydrogen, cation and anion exchange, ligand exchange and cation bridges, 

likewise electrostatic attractions or van der Waals linkages alone can occur. Soil oxides, 

oxyhydroxides and hydroxides present electrostatic attractions and ionic linkages between the 

hydroxyl groups of the oxides and the carboxyl or hydroxyl groups of the SOM, with 

additional strong relationships between iron manganese and humic substances (De Mastro et 

al., 2020). This adsorption of SOM by minerals favors SOC stabilization, reducing microbial 

mineralization (Kalbitz et al., 2005), due to the specific surface area of these minerals and 

their surface charge that favors these linkages and stabilizes SOM. 

Interactions of the reactive phases of poorly crystalline Fe and Al oxides with SOM are an 

essential mechanism in the long-term stabilization of SOC (Kögel-Knabner et al. 2008, 

Percival et al. 2000). According to Weber et al. (2006), the biogeochemical cycling of iron is 

closely related to the dynamics of SOM. Lalonde et al. (2012) noted that about 21.5% of 

global SOC is associated with reactive forms of Fe. Crystalline Fe and Al oxides present 

reactive sites on the surface that can adsorb SOC (De Mastro et al., 2020), however Duiker et 

al. (2003) and De Mastro et al. (2020) observed that Fe oxides of low degree of crystallinity 

stabilize SOM more effectively than crystalline Fe oxides or oxyhydroxides, because they 

present higher specific surface area and density of hydroxyl sites compared to crystalline 

ones, increasing their chelation capacity (Wen et al., 2019). Zeraatpishe and Khormali (2012), 

to the contrary, reported that amorphous and crystalline iron oxides and hydroxides retain 50-

70% of total carbon. 

Poorly crystalline Fe minerals have a specific surface area of around 800 m2 g-1, for 

example, for ferrihydrite, higher than crystalline forms of Fe found around 200 m2 g-1, as in 

the case of goethite (Eusterhues et al., 2005). According to Churchman and Velde (2019), 

SOC shows a preference for weakly crystalline oxides as well as Fe and Al silicates. Bonds 

with 2:1 phyllosilicates are going to depend on their relative surface reactivities. Therefore, 

minerals such as smectite that are more reactive present greater potential to retain C 

(Churchman et al., 2020). However, a more significant effect occurs with poorly crystalline Fe 

oxyhydroxides (Rasmussen et al., 2007). The combined effect of silicates and oxides is 

involved in SOC stabilization, for example, ferrihydrite and goethite can favor the sorption 

capacity of kaolinite (De Mastro et al., 2020). 



30 
 

Kirsten et al. (2021) indicated that clay minerals and oxyhydroxides (pedogenic metal 

oxides) are the most reactive and control the persistence of SOC. However, most studies did 

not explicitly evaluate the contribution of clay minerals on SOC. For example, Weismeier et 

al. (2013) estimated the SOC sequestration potential of silt and clay particles, in soils from 

Germany, without specifying the clay mineral type. Ashton et al. (2016) analyzed SOC 

concentrations in different parent materials and clay mineralogies, evaluating total 

concentrations without determining the specific contribution of each mineral. Yang et al. 

(2021) evaluated the spatio-temporal dynamics of C adsorption and release in aggregates of a 

transparent smectite clay, also relating enzymatic decomposition, through 4D imaging on a 

microfluidic chip. It should be noted that this study was not performed on a specific soil. 

Kirsten et al. (2021) determined the contribution of kaolinite, gibbsite, goethite, and hematite 

to C storage in soils under forests and agricultural lands, evaluating only the variation of C 

and clay mineral concentrations, but keeping the mineral types invariant.  

Mapping the C sequestration potential that clay minerals composing the clay fraction has 

is important for the understanding of their dynamics and soil management (Padarian et al., 

2022), remembering that SOC contents and their stable forms vary in relation to the amount 

and type of mineral (Yang et al., 2021; Kirsten et al., 2021; Prout et al., 2021; Dos Reis et al., 

2014). However, in general, soil mapping has limitations in terms of spatial delimitation 

(Teng et al., 2018), and depends on the estimation and description of their properties. These 

conventional methods require complex laboratory chemical analysis and expertise for their 

description, incurring more time and costs (Shi et al., 2015), and are generally developed with 

limited information on quantity, volume and spatial coverage (Soil Survey Staff, 2017). 

Information systems and remote sensing techniques have facilitated the acquisition of 

spatial information, specifically by digital soil mapping (DSM) approaches, which combine 

point soil data with statistically correlated auxiliary data (covariates) (McBratney et al., 2003), 

mainly through machine learning techniques (Padarian et al., 2019). Additionally, reflectance 

spectroscopy is a technology that has improved DSM (Teng et al., 2018), as the evaluation of 

infrared spectral curves provides useful indicators to map, classify and monitor different soil 

properties (Di Iorio et al., 2019), as is the case of mineral quantification (Mendes et al., 2021).  

This study has the objective of analyzing the individual contribution of each mineral that 

composes the clay fraction in the sequestration potential of new SOC, through the 

quantification, modeling and mapping of this potential in different pedogenetic soils of Brazil, 

using remote sensing products and the equation of Feller and Beare (1997) to obtain the 

theoretical SOC sequestration potential. Considering the importance of the minerals that 
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compose the clay fraction and that this fraction in tropical soils is dominated by kaolinite, 

gibbsite, hematite and goethite (Kämpf and Curi 2003, Schaefer et al. 2008) and the high 

sorption power of Fe and Al oxides for organic molecules, it is expected that the SOC 

sequestration potential is directly related to the concentration of these minerals. 

 

2.2.Methodology 

2.2.1. Study area 

The study area is in Piracicaba region, São Paulo State, Brazil, with approximately 2.598 

km2 (Figure 1). The climate of the region, according to the Köppen system, is classified as 

subtropical Cwa, with a dry winter and a rainy summer, with an average annual temperature 

ranging from 20 to 22.5 ° C and annual rainfall between 1200 and 1400 mm (Alvares et al., 

2013). In relation to the topography, undulating highlands and rolling hills with altitudes 

ranging from 450 to 950 m are characteristic. Agricultural land uses such as sugarcane and 

pasture are dominant under no-till and conventional tillage management systems. The main 

soil types are Cambisol, Gleysol, Ferralsol, Nitosol, Lixisol, Leptsol, Arenosol and Planosol, 

according to the World Reference Base (IUSS Working Group WRB, 2015). Geologically, 

there are diverse parent materials, such as siltstones, tillites, varvites, conglomerates, 

sandstones, limestones, siltstones, flint, dolomite, siltite, pyrombetuminosite, schists, diabase, 

and basalt (Bonfatti et al., 2020). 

The soil observations used are from the Brazilian Soil Spectral Library (BSSL) (Demattê 

et al., 2019). A total of 2354 observations from 0 to 20, 40 to 60, and 80 to 100 cm depths 

were used (Figure 1).  The soil organic carbon (SOC) content and particle size were analyzed 

by the Walkey-Black method (wet digestion) (Walkey and Black, 1934) and the hydrometer 

method (Bouyoucus and John, 1962), respectively. 
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  Figure 1. Location of the study area (Piracicaba region, São Paulo state). The geology map 

is from Bonfatti et al. (2020). 

 

2.2.2. Point modeling of soil carbon sequestration potential 

2.2.2.1. Carbon saturation potential 

Hassink (1997) proposed the following equation to determine the C saturation potential of 

fine soil particles (<20 μm/silt and clay fractions): 

  Csat-pot= 4.09 + 0.37 * Particles ≤ 20 µm (%) 

where Csat-pot corresponds to the potential C saturation (mg g-1), referred to as the 

theoretical maximum SOC that is stabilized in fine particles and allows estimating the SOC 

storage potential (Fujisaki et al., 2018). However, considering the study area, the modified 

equation by Feller and Beare (1997) for tropical soils was used, as it included samples of 

Brazilian clay soils with iron and aluminum oxyhydroxides, some located in our study area 

(Figure 2): 

Csat-pot= 3.2 + 0.29 * Particles ≤ 20 µm (%)  (r= 0.95, p <0.001) 

In this study, the value of the percentage of fine soil particles (particles ≤ 20 µm (%)) 

was replaced by the percentage of clay. The silt fraction, both coarse (20-53 μm) and fine 

fraction (2-20 µm), was not used in this study, as it was reported that the silt fraction of highly 
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weathered soils with high contents of kaolinite and iron and aluminum oxides store a small 

amount of carbon, representing about 4.8% of the total C content (Rodrigues et al., 2022). 

Figure 2 shows the methodological sequence of the point modeling to determine the C 

sequestration potential and to generate an equation to predict this potential based on spectral 

information associated with the minerals of the clay fraction. 

 

 

Figure 2. Methodological scheme of the point modeling of the carbon sequestration potential 

of minerals that compose the clay fraction. sat-pot: potential C saturation, sat-def: C saturation 

deficit, CmOM cur: actual concentration of C in mineral-associated organic matter, Gt: 

goethite, Hem: hematite, Gbs:  gibbsite, Kln: kaolinite, A: relative abundance of soil minerals.  

 

The determination of the C saturation deficit requires the actual concentration of C in 

the fine soil particles (<20 µm). For this, 35 representative soil samples were selected from 

the study area, based on the conditioned Latin hypercube sampling method, which 

corresponds to a stratified random sampling procedure where the selected samples follow 

multivariate characteristics according to the indicated covariables (Yang et al., 2020). Here, 

the Soil Synthetic Image (SYSI), soil type and variability in clay and C content were 

considered as covariates.  

In these representative samples, fractionation was performed to quantify the C in 

particulate organic matter and the C in organic matter associated with the mineral fraction 

(mOM) (Cotrufo et al., 2019) following the methodology described by Jindaluang et al. 

(2013). The soil was dispersed using 5% sodium hexamethasphate solution and considering 

the low contribution of the coarse and fine silt fraction to the total C storage described by 

Rodrigues et al. (2022) the separation of sand and clay/silt faction was performed by 53 µm 

sieving. Subsequently, a linear regression model based on the total SOC content and mOM 
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was developed to predict the C content of mOM in the remaining samples, with an R2 fit of 

0.98 (Figure 3). Therefore, the C saturation deficit, corresponds to the expression: 

Csat-def= Csatpot- (0.8966*SOC total + 0.0773) 

 

 

Figure 3. Simple linear regression between total soil C (x-axes) and C in organic matter 

associated with the mineral fraction (mOM) (y-axes).  

 

Subsequently, the C reserve or stock of this difference is calculated from this 

difference, using the Benites et al. (2007) equations: 

SOC-stock = (SOC × D × BD) ×10 

Where: SOC-stock = Soil Organic Carbon Stock (g m−2), SOC = Soil Organic Carbon 

content (g kg−1), D = soil thickness (cm), BD= bulk density (g cm-3). The bulk density is 

calculated from: 

BD (g cm-3) = 1.5688 − 0.0005 × clay (g kg-1) − 0.0090 × SOC (g kg-1) 

 

2.2.2.2. Spatial regression analysis 

As pointed out by Marschner et al. (2008), predictions of SOC storage potential require an 

understanding of the processes related to SOC sequestration and release. Several authors 

(Hassink, 1997; Yang et al., 2021; Kirsten et al., 2021), highlighted the importance of 

minerals associated with the clay fraction in C sequestration because they involve variable 

amounts of minerals that have an affinity with organic molecules, according to the interaction 

on their surfaces that favors the formation of organic-mineral complexes (Sollins et al. 1996, 

Von Lützow et al. 2006), reflecting in higher stability of SOC (De Mastro et al., 2020). Thus, 

this study focused on specifically demonstrating the response of variability in mineralogy on 
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SOC sequestration potential; therefore, regression models were built to predict the theoretical 

potential SOC saturation deficit (Sat-def), potential C saturation (Sat-pot), and C in mineral-

associated organic matter (CmOM), each as a function of the mineral contents that make up 

the clay fraction. According to Okunlola et al. (2021), the presence and quantity of a specific 

mineral content depend on the spatial location. Therefore, it was necessary to perform a 

regression analysis considering the geographic coordinates of the samples and the spatial 

dependence of soil variability (Webster and Oliver 2007), so a weight matrix associated to all 

neighbors was generated. 

The spatial regression analysis considered as dependent variables the potential SOC 

saturation deficit or potential SOC sequestration and potential C saturation (Sat-pot), 

calculated from the equation of Feller and Beller (1997) and the C in mineral-associated 

organic matter (CmOM) determined in the laboratory, as explanatory variables were 

considered the relative abundance of soil minerals represented by their infrared spectral 

amplitudes (calculated from diffuse reflectance spectroscopy data (Vis-NIR-SWIR)). The 

mineral amplitudes correspond to the difference between maxima and minima of the 

Savitzky-Golay second derivative curves obtained from the Kubelka-Munk absorption curves 

of the original spectra. These amplitudes were obtained from the study of Mendes et al. 

(2020), in which the bands associated with goethite (Gt, 422/450nm), hematite (Hem, 535/575 

nm), gibbsite (Gbs, 2265/2285 nm) and kaolinite (Kln, 1415/2205 nm) are defined. A data set 

of 1248 samples was taken for the 0 to 20 cm depth and 833 for the 80 to 100 cm depth.  

Spatial regression models, such as spatial autocorrelation models (SAC; referred to in the 

literature as SARAR), spatially lagged models (SLM) and spatial error model (SEM and 

SDEM) were fitted to predict the potential SOC sequestration spatially (Elhorts, 2014). 

SARAR is a double autoregressive model that includes the autoregressive component of the 

response and the residuals, allowing to explain the spatial dependence of the residuals. 

The models are expressed in the following equation: 

𝑌 = 𝜆𝑊𝑌 + 𝛼𝜄𝑛 + 𝑋 + 𝑢;                              |𝑢| < 1

                                  𝑢 = 𝜌𝑊𝑢 + 𝜀                            |𝜌| < 1       
 

Where, Y Where, Y represents the potential saturation deficit of SOC (Sat-def) or 

potential saturation of C (Sat-pot) or the CmOM, X represents the matrix of explanatory 

variables associated with the amplitude of minerals, W corresponds to the matrix of weights 

in relation to the distances of the nearest neighbor centroids in the polygons generated by 

tessellation of the soil sampling points, λ represents the spatial autoregressive coefficient, ρ 

the spatial autocorrelation coefficient, α corresponds to the intercept, β represents the 



36 
 

parameters linked to the explanatory variables, u is associated with the vector of residuals 

with spatial dependence and 𝜀𝑁(0,  2I) , where I is an identity matrix. 

The choice of the model that best explains the statistical relationship of the 

experimental data was based on the lowest value of the Akaike information criterion (AIC) 

and on the fulfilment of the assumption of independence of the residuals based on the Moran 

Index Test (MIT), with the matrix of weights of all neighbors (Liu and Chen, 2021), where the 

p-value of the test must be greater than 0.05. In the case that more than one model satisfied 

the above assumptions, the highest correlation (r) between the observed values of response Y 

and the values estimated by the model was used as a criterion (Hoge et al., 2018). 

Once the spatial regression model has been selected, it is important to evaluate and 

interpret the impact of the explanatory variables to determine the most important ones, 

however, in some spatial regression models, such as the autoregressive ones, it is not possible 

to perform this interpretation directly with the coefficients of the model as it is evaluated in 

classical regression models, therefore, according to Elhorst (2014), strategies are proposed for 

the estimation and interpretation of these coefficients, dividing them into direct, indirect and 

total impacts, which are obtained from the impacts function of the spatialreg library of R 

(Mendez, 2020). For the present study, the direct impacts are analyzed and the relative 

importance of each explanatory variable is calculated according to the total impacts. 

 

2.2.3. Spatialization of carbon sequestration potential 

The carbon sequestration potential of the clay fraction was spatialized by applying the 

equations described in the point modeling on the SOC and clay predicted maps for the 

different depths, as described in Figure 4. 

For SOC and clay mapping, covariables (predictors) associated with relief and a Synthetic 

Soil Image (SYSI) were used. The relief attributes included elevation, slope, aspect, 

curvatures, valleys, hills, orientation, and topographic wetness index as described by Carvalho 

et al. (2019) and Sabetizade et al. (2021). The terrain variables were from a digital elevation 

model (DEM) of the Radar Topography Mission – SRTM (USGS, 2018), at 30 m spatial 

resolution. The SYSI in turn corresponds to a mosaic of the bare soil surfaces obtained from 

the Landsat images collection from 1984 to 2020. The SYSI images contain six bands in the 

Vis-NIR-SWIR spectral range (blue, green, red, NIR, SWIR1 and SWIR2) and were obtained 

by applying the Geospatial Soil Sensing System (GEOS3), developed by Demattê et al. 

(2018). 
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The Random Forest (RF) algorithm was chosen for spatial prediction, as it was reported as 

the best performing predictive algorithm in SOC mapping (Khaledian and Miller 2020, 

Zeraatpisheh et al. 2020, Lamichhane et al. 2019; Padarian et al., 2020). RF is a 

nonparametric model that performs classification and regression of sets through the 

construction of several decision trees in the training stage, where each tree is generated by a 

random vector (Breiman, 2001). The subdivisions within each tree are determined based on 

predictor variables chosen randomly from the set of variables (Coelho et al., 2020). Its 

strength is based on bootstrapping randomization of data and random input selection (Sothe et 

al., 2022) with replacement of the original data and internal validation with data not used in 

the bootstrap procedure (Khaledian and Miller 2020, Zeraatpisheh et al. 2020). The samples 

(n = 2354) were randomly divided into 70% and 30% for calibration and validation, 

respectively. The adjusted coefficient of determination (R2) was used as a model evaluation 

metric. 

 

 

Figure 4. Methodological scheme for the spatialization of the carbon sequestration potential 

of the minerals that compose the clay fraction, based on map algebra. 
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For the spatialization of the C sequestration potential of each of the minerals that compose 

the clay fraction (goethite, hematite, gibbsite and kaolinite), we used the mineral maps 

elaborated by Mendes et al. (2021), which were obtained by digital soil mapping, using 

diffuse reflectance spectroscopy (Vis-NIR-SWIR) to estimate mineral abundance at specific 

locations and environmental covariates for spatialization. As for the clay fraction, the 

equations described in the point model were applied using map algebra, where "Particles ≤ 20 

µm (%)" was replaced by the abundance map of each mineral at different depths, leaving 

fixed the predicted SOC maps for the different depths. According to Sothe et al. (2022) in the 

use of machine learning models for SOC prediction it is possible to use the same model 

keeping some covariates fixed to identify the influence of the variable of interest in the SOC 

prediction. Such spatialization will allow us to observe a spatial approximation of the 

individual contribution of the minerals that compose the clay fraction in the C sequestration 

potential, and together with the predictive model of this potential obtained from the spatial 

regression, will help to understand the dynamics of the potential of the mineralogy of the clay 

fraction to sequester new carbon. 

 

2.3.Results 

2.3.1. Point modeling of soil carbon sequestration potential 

For the selection of the best fit models of the relationship between the response associated 

with the C sequestration potential or potential saturation deficit of SOC (Sat-def), potential 

saturation of C (Sat-pot) and CmOM with the explanatory variables related to mineral 

amplitude, the pure spatial autoregressive regression models (PAR), the spatial lag model 

(SLM), the spatial error (SEM), the spatial double autoregressive model (SARAR) and the 

spatial Durbin error (SDEM) were used were used, however the latter was excluded from Sat-

pot and CmOM because a fit was not achieved (Tables 1 and 2). 
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Table 1. Fitted spatial regression models and its related statistics for potential saturation 

deficit of SOC (Sat-def). λ = autoregressive parameters, ρ= spatial autocorrelation coefficient, 

r= correlation coefficient, MIT= Moran Index test. 

Model λ ρ AIC r MIT Explanatory variables 

 0-20 cm 

PAR 
0.98  6848 0.51 6.41E-13 Sat-def-a 

(2.22E-16) 

SEM 
0.97  

6708 0.56 2.15E-08 AKln + AGbs + AGt + AHem 
(2.22E-16)  

SLM 
 0.95 

6720 0.55 1.53E-10 AKln + AGbs + AGt + AHem  (2.22E-16) 

SLMA 
 0.97 

6700 0.56 9.90E-06 AKln + AGbs + AGt + AHem  (2.22E-16) 

SARAR 
0.87 0.66 

6692 0.56 0.39407 AKln + AGbs + AGt + AHem 
(7.53E-13) (7.18E-04) 

SDEM 
0.97  6701 0.56 2.98E-05 AKln + AGbs + AGt + AHem 

(2.22E-16) 

 80-100 cm 

PAR 
0.99  4520 0.62 2.00E-15 Sat-def-c 

(2.22E-16) 

SEM 
0.98  

4455 0.65 1.98E-10 AKln + AGbs + AGt + AHem 
(2.22E-16)  

SLM 
 0.98 

4445 0.65 1.65E-06 AKln + AGbs + AHem  (2.22E-16) 

SLMA 
 0.96 

4443 0.65 3.98E-05 AKln + AGbs + AGt + AHem  (2.22E-16) 

SARAR 
0.82 0.85 

4429 0.66 0.37 AKln +AHem 
(4.88E-02) (1.21E-02) 

SDEM 
0.98 

  4449 0.65 1.15E-07 AKln + AGbs + AGt + AHem 
(2.22E-16) 

Sat-def = potential carbon saturation deficit or carbon sequestration potential. A= amplitude of the different 

minerals AKln (kaolinite), AGt (goethite), AHem (hematite), AGbs (gibbsite). 

 

Table 2. Fitted spatial regression models and its related statistics for C in organic matter 

associated with the mineral fraction (CmOM) and Potential C saturation (Sat-pot). λ = 

autoregressive parameters, ρ= spatial autocorrelation coefficient, r= correlation coefficient, 

MIT= Moran Index test. 

Model λ ρ AIC r MIT Explanatory variables 

C in organic matter associated with the mineral fraction (CmOM) 

 0-20 cm 

PAR 
0.98  6823.3 0.56 0 CmOM-a 

(2.22E-16) 

SEM 
0.99  

6700.3 0.59 0 AKln + AGbs + AGt + AHem 
(2.22E-16)  
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SLM 
 0.98 

6695.5 0.59 2.87E-15 AKln + AGbs + AGt + AHem  (2.22E-16) 

SLMA 
 0.98 

6693.1 0.59 2.31E-11 AKln + AGbs + AGt + AHem  (2.22E-16) 

SARAR 
0.88 0.88 

6659.1 0.60 0.1723 AKln + AGbs + AGt + AHem 
(0.015) (0.013) 

 80-100 cm 

PAR 
0.99  3895.2 0.64 0 CmOM -c 

(2.22E-16) 

SEM 
0.99  

3783.8 0.68 0 AGbs + AGt + AHem 
(2.22E-16)  

SLM 
 0.98 

3783.7 0.67 0 AGbs + AGt + AHem  (2.22E-16) 

SLMA 
 0.98 

3778.9 0.68 0 AGbs + AGt + AHem  (2.22E-16) 

SARAR 
0.94 0.92 

3734.3 0.70 5.05E-02 AGbs + AGt + AHem 
(1.59E-06) (1.60E-04) 

Potential carbon saturation (Sat-pot) 

 0-20 cm 

PAR 
0.99  7053.1 0.65 0 Sat-pot-a 

(2.22E-16) 

SEM 
0.99  

6620 0.75 0 AKln + AHem 
(2.22E-16)  

SLM 
 0.89 

6623.9 0.74 1.15E-14 AKln + AHem  (2.22E-16) 

SLMA 
 0.98 

6610.6 0.43 4.68E-11 AKln + AHem  (2.22E-16) 

SARAR 
0.89 0.71 

6586.9 0.76 0.28 AKln + AHem 
(2.22E-16) (1.05E-07) 

 80-100 cm 

PAR 
0.99  4711.8 0.75 0 Sat-pot-c 

(2.22E-16) 

SEM 
0.99  

4517.5 0.79 0 AKln + AGbs + AHem 
(2.22E-16)  

SLM 
 0.98 

4501.1 0.79 1.57E-08 AKln + AGbs + AHem  (2.22E-16) 

SLMA 
 0.99 

4534.2 0.79 0 AKln + AGbs + AHem  (2.22E-16) 

SARAR 
0.86 0.86 

4481.5 0.66 0.37 AKln + AGbs + AHem 
(8.54E-05) (9.14E-06) 

Where A= amplitude of the different minerals AKln (kaolinite), AGt (goethite), AHem (hematite), AGbs 

(gibbsite). 

 

Based on the MIT evaluation (Tables 1 and 2), only the SARAR model, for each of the 

dependent variables, satisfied the criteria. Based on AIC and r, the SARAR model also 
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performed best in all three models for the depth of 0-20 cm (Sat-def: AIC = 6692 y r= 0,56; 

CmOM: AIC=6659 y r=0.60; Sat-pot: AIC=6587 y r=0.76) and 80-100 cm (Sat-def: AIC = 

4429 y r= 0,66; CmOM: AIC=3734 y r=0.70; Sat-pot: AIC=4481 y r=0.66). For 0-20 cm, the 

SARAR model of carbon sequestration potential (Sat-def) includes all minerals, whereas, for 

the latter depth, it includes only kaolinite and hematite. CmOM is also explained by all 

minerals at the first depth, and the importance of kaolinite was lost in the last layer. On the 

contrary, Sat-pot at the first depth was only explained by kaolinite and hematite, and at the 

last depth kaolinite, gibbsite and hematite were considered. 

 

Table 3. Parameters of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 

100 cm for potential saturation deficit of SOC (Sat-def) 

Coefficients Estimate 
Asymptotic  

Std. Error 
z value Pr(>|z|) Impact Direct 

Impact   

p-value 

 0-20 cm 

(Intercept) -0.64 0.89 -0.72 0.47   
AKln 840 142 5.92 3.26E-09 845 1.90E-09 

AGbs -1264 376 -3.35 0.000786 -1272 0.000563 

AGt -164 40 -4.08 4.48E-05 -165 2.94E-05 

AHem 612 90 6.80 1.02E-11 616 6.10E-13 

 80-100 cm 

(Intercept) -1.66 1.28 -1.30 0.19   
AKln 600 101 5.94 2.92E-09 611 2.72E-08 

AHem 127 66.9 1.90 0.05 130 3.35E-02 

 

Where A= amplitude of the different minerals AKln (kaolinite), AGt (goethite), AHem (hematite), AGbs 

(gibbsite). Pr (>IzI) is related to the significance of each variable in the model, with lower values highlighting 

greater importance. 
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Table 4. Parameters of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 

100 cm for C in organic matter associated with the mineral fraction (mOM) and Potential 

carbon saturation (Sat-pot) 

Coefficients Estimate 
Asymptotic  

Std. Error 
z value Pr(>|z|) Impact Direct 

Impact   

p-value 

C in organic matter associated with the mineral fraction (mOM) 

 0-20 cm 

(Intercept) -0.81 1.41 -0.57 0.57   
AKln -278.9 137.1 -2.03 0.041 -283.7 0.061 

AGbs 1283.4 364.8 3.52 0.0004 1305.4 0.0007 

AGt 164.7 38.4 4.29 1.75E-05 167.6 8.94E-06 

AHem 183.2 85.9 2.13 0.032 186.3 0.028 

 80-100 cm 

(Intercept) -1.71 1.78 -0.95 0.34   
AGbs 720.1 234.1 3.07 0.002 739.8 0.003 

AGt 66.6 22.9 2.91 0.003 68.4 0.009 

AHem 188.4 57.8 3.26 0.001 193.6 0.0009 

Potential carbon saturation (mg g-1) (Sat-pot) 

 0-20 cm 

(Intercept) -0.46 1.3 -0.35 0.72   
AKln 616.6 121.6 5.07 3.95E-07 621.6 4.95E-07 

AHem 824.2 65.9 12.5 2.22E-16 830.9 2.22E-16 

 80-100 cm 

(Intercept) -3.03 1.15 -2.61 0.009   
AKln 716.4 110.8 6.47 9.98E-11 729.5 0.0002 

AGbs 886.4 385.4 2.30 0.021 902.7 0.035 

AHem 346.4 78.4 4.42 1.004E-05 352.8 6.36E-05 
Satdef = potential carbon saturation deficit or carbon sequestration potential. A= amplitude of the different 

minerals AKln (kaolinite), AGt (goethite), AHem (hematite), AGbs (gibbsite). Pr (>IzI) is related to the 

significance of each variable in the model, with lower values highlighting greater importance. 

 

The models for each depth described in the tables 2 and 3 can be expressed from the 

matrix point of view as shown in the following equations: 

1) For depth from 0 to 20cm: 

 

  
Csat − def = 0.87𝑊𝑦 − 0.64 + 840𝐴𝐾𝑙𝑛 − 1264𝐴𝐺𝑏𝑠 − 164𝐴𝐺𝑡 + 612𝐴𝐻𝑒𝑚 + 𝑢; 

                                  𝑢 = 0.66𝑊𝑢 + 𝜀       
 

C 𝑚𝑂𝑀 = 0.88𝑊𝑦 − 0.81 − 278.9𝐴𝐾𝑙𝑛 +  1283.4𝐴𝐺𝑏𝑠 + 164.7𝐴𝐺𝑡 + 183.2𝐴𝐻𝑒𝑚 + 𝑢; 
                                  𝑢 = 0.88𝑊𝑢 + 𝜀       

 

C 𝑆𝑎𝑡𝑃𝑜𝑡 = 0.89𝑊𝑦 − 0.46 + 616.6𝐴𝐾𝑙𝑛 +  824.2𝐴𝐻𝑒𝑚 + 𝑢; 
                                  𝑢 = 0.71𝑊𝑢 + 𝜀       

 

2) For depth from 80 to 100cm: 

Csat − def = 0.82𝑊𝑦 − 1.66 + 600𝐴𝐾𝑙𝑛 + 127𝐴𝐻𝑒𝑚 + 𝑢;                              
                                  𝑢 = 0.85𝑊𝑢 + 𝜀                   
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C 𝑚𝑂𝑀 = 0.94𝑊𝑦 − 1.71 + 720.1𝐴𝐺𝑏𝑠 + 66.6𝐴𝐺𝑡 + 188.4𝐴𝐻𝑒𝑚 + 𝑢; 
                                  𝑢 = 0.92𝑊𝑢 + 𝜀       

 

C 𝑆𝑎𝑡𝑃𝑜𝑡 = 0.86𝑊𝑦 − 3.03 + 716.4𝐴𝐾𝑙𝑛 +  886.4𝐴𝐺𝑏𝑠 + 346.4𝐴𝐻𝑒𝑚 + 𝑢; 
                                  𝑢 = 0.86𝑊𝑢 + 𝜀       

 

Where, Sat-def = potential carbon saturation deficit or carbon sequestration potential, 

CmOM= C in organic matter associated with the mineral fraction, Sat-pot= Potential carbon 

saturation, A= amplitude of the different minerals AKln (kaolinite), AGt (goethite), AHem 

(hematite), AGbs (gibbsite), W corresponds to the matrix of weights, u is associated with the 

vector of residuals with spatial dependence and 𝑁(0,  2I) , where I is an identity matrix. 

The spatial modeling results show that the carbon sequestration potential (sat-def) for 

0-20 cm depth could be explained by the relative contents of kaolinite, gibbsite, goethite and 

hematite (Table 3). Where kaolinite and hematite had the largest direct positive impact. On the 

contrary, a direct but negative impact was observed for goethite and gibbsite, which could 

indicate that an increase in the concentration of these minerals reduces the C sequestration 

potential of the soil, however these minerals have the highest affinity for organic molecules 

(Kaiser and Zech, 2000; Dos Reis et al., 2014), so they tend to saturate first compared to 

kaolinite and hematite, and stabilize more efficiently the sequestered C (Kalbitz et al., 2005; 

Dos Reis et al., 2014), in that sense, such negative impacts could then be translated as the 

higher concentration of these minerals, the greater stabilization of organic molecules may 

occur, that is, higher current COS content and lower potential to sequester new carbon. This 

explains the results of the model for potential C saturation (sat-pot, Table 4), corresponding to 

the theoretical maximum of SOC, which in the 0-20 cm depth was only explained by kaolinite 

and hematite, indicating that it is these minerals that have the potential to sequester new C. 

It is also important to highlight that the CmOM model for the 0 to 20 cm depth (Table 

4) shows greater importance in gibbsite and goethite (Figure 5), due to the potential for 

stabilization of organic molecules presented by these minerals, which corroborates that these 

are the ones who contribute most to the current C, and contrary to the Sat-def model (Table 3), 

the negative impacts were presented in kaolinite, since, as mentioned above, the C associated 

with this mineral is related to the potential for sequestering new C. On the other hand, the C 

sequestration potential (sat-def) for the 80 to 100 cm depth (Table 3) was mainly explained by 

the contents of kaolinite and hematite, with the greatest impact of kaolinite (Figure 5). CmOM 

at this depth (Table 4) was mainly explained by gibbsite, goethite and hematite, with greater 

impact of gibbsite and hematite (Figure 5). On the contrary, Sat-pot was explained by 

kaolinite, gibbsite and hematite with higher impact of kaolinite and hematite. It is important to 

highlight the importance of hematite in the C sequestration and stabilization cycle at the two 



44 
 

depths, since in all three models it is a variable of high importance (Figure 5). According to 

Georgiou et al. (2022) increasing mineral-associated C is key to long-lasting C sequestration, 

and for the soils of the study region hematite responds to these additional spaces to sequester 

and stabilize new C along the soil profile. 

 

 

Figure 5. Importance of the explanatory variables of the SARAR spatial regression model for 

depths 0 to 20 cm and 8 to 100 cm for the potential carbon saturation deficit or carbon 

sequestration potential (sat-def), C in organic matter associated with the mineral fraction 

(CmOM) and Potential carbon saturation (sat-pot) 

 

In general, the participation of goethite and gibbsite in explaining the C sequestration 

potential (sat-def) was low in the 0 to 20 cm depth and null in the 80 to 100 cm depth (Figure 

5), with greater importance of kaolinite compared to hematite, whose difference was not so 

marked for the 0 to 20 cm depth. 

 

2.3.2. Carbon sequestration potential mapping 

Carbon and clay maps were obtained for the different depths using DSM with R2 of 0.6 

and 0.7, respectively. Areas with higher clay content had a higher carbon sequestration 

potential (areas in red), that is, the minerals that compose this fraction had the potential to 

retain more carbon, and these were related to agricultural areas (Figure 6 and 13, Table 5). On 

the contrary, areas with more than 15 years under the same land use, such as pastures and 

forests (Figure 6 and 13, Table 5), had less potential for additional carbon sequestration. 

When evaluating the individual contribution of each mineral (Figure 7), it was observed 

that the zones with the highest C sequestration potential in Figure 6 corresponded to areas that 

were saturated, highlighting the importance of the individual analysis of the minerals that 

make up the clay fraction, because evidently not all of them have the potential to sequester 



45 
 

new carbon, being kaolinite and hematite those that still have space to store new carbon in the 

0 to 20 cm depth, which was consistent with the result of the spatial regression models in 

Tables 3 and 4 elated to Sat-def and Sat-pot. Spatially, a high C sequestration potential was 

evidenced for kaolinite in the areas related to pasture and agricultural mosaics with more than 

15 years (Figure 13, Table 5), and the agricultural zone presented a low to null C sequestration 

potential (Figure 7, Figure 13). For gibbsite and goethite, zero sequestration potential was 

observed, indicating C saturation since the major contribution of these minerals translates into 

the current C associated with the mineral fraction (CmOM), confirming their low importance 

in the Sat-def spatial regression model (Figure 5). On the other hand, areas dominated by 

hematite had a medium to high sequestration potential. Areas under agriculture and 

agricultural mosaics with pastures and forests showed the highest potential for carbon 

sequestration by hematite. 

 

 

Figure 6. Carbon saturation potential, C in organic matter associated with the mineral fraction 

(mOM), saturation deficit, and deficit stock associated with clay contents at soil depth of 0 to 

20 cm. 

 

For the 40-60 cm and 80-100 cm depths, an increase in C sequestration potential was 

observed compared to the 0-20 cm depth (Figure 8, 10 and 12). Specifically, the increase in 
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potential in relation to the first depth was observed in the agricultural zones, from the north 

and southwest of the study area, with a considerable improvement in the zones that had mixed 

pasture and cropping (Figure 13, Table 5). 

 

 

Figure 7. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon 

saturation potential (b) and saturation deficit (c) for 0 to 20 cm. 
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Figure 8. Carbon saturation potential, C in organic matter associated with the mineral fraction 

(mOM), saturation deficit and deficit stock associated with clay contents at soil depth of 40 to 

60 cm. 

 

Higher mineral contents were observed in the deeper layers (Figures 9 and 11), 

especially kaolinite. However, the contents of other minerals showed a reduction at 40-60 cm 

and a considerable increase at 80-100 cm depth, which was reflected in an increase in C 

sequestration potential. It should be noted that even with the reduction of iron and aluminum 

oxide minerals contents at depth 40-60 cm (Figure 9), a considerable improvement in the C 

sequestration potential of hematite and kaolinite were observed. A slight improvement in the 

potential of gibbsite and goethite was also observed, where gibbsite maintains a low potential 

in most of the area, with a slight improvement in the proximity of pasture, forest and cropping 

mosaics. The increase in C sequestration potential for goethite was observed in areas with 

crop and pasture mosaics. For hematite, low C sequestration potential was maintained in the 

northeastern part of the study area, corresponding to areas with more than 15 years in 

agriculture (Figure 13, Table 5). 
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Figure 9. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), C saturation 

potential (b) and saturation deficit (c) for 40 to 60 cm. 

 

For 80-100 cm, the results of Sothe et al. (2022) were confirmed, showing that the 

kaolinite and the iron and aluminum oxides were not fully saturated (Figures 10 and 11). C 

sequestration potential was higher, observing an increase in the potential for hematite in the 

areas under agriculture, with an increase in hematite potential observed in the areas under 

agriculture, which at depths 40-60 cm still showed low sequestration potential. Similarly, an 

increase in the sequestration potential for goethite and gibbsite were observed in the areas 

with pasture and cropping mosaics, maintaining a low potential in the areas with agricultural 

use for more than 15 years (Figure 13, Table 5). Statistically, the point modelling highlighted 

the importance of kaolinite and hematite in the carbon sequestration potential of this depth 

(Table 3), however, it did not consider this contribution of gibbsite and goethite. 
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Figure 10. Carbon saturation potential, C in organic matter associated with the mineral 

fraction (mOM), saturation deficit and deficit stock associated with clay contents at a soil 

depth of 80 to 100 cm. 

 

In general, it was observed that as the depth increases, there is a greater potential for 

sequestration of new C (Figure 12), because there is less current C content in the mineral 

fraction, as Georgiou et al. (2022) mention, the greater the depth, the greater the subsaturation 

of C associated with minerals, therefore it is possible to consider that there is a potential C 

pool that could be exploited with the inclusion of shrub and tree crops whose root system 

reaches deeper into the soil. 
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Figure 11. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon 

saturation potential (b) and saturation deficit (c) for 80 to 100 cm. 

 

2.4. Discussion 

According to Boddey et al. (2010), the analysis of C storage potential requires the 

evaluation of deeper soil layers because studies from 0 to 100 cm depth reveal 59% more 

storage in relation to a study from 0 to 30 cm. That is, the inclusion of depth allows adequate 

prediction of SOC concentration (Sothe et al., 2022), since at shallower depths the mineral 

particles are more saturated with SOC. Therefore, depth allows for improved analysis of SOC 

storage potential (Hobley et al., 2015). This was confirmed in the present study, where with 

increasing depth a higher C sequestration potential was observed (Figure 12), due to lower C 

saturation in clay fraction minerals such as kaolinite, hematite, goethite and gibbsite (Figures 

7, 9 and 11) and to the increase in the content of these minerals with depth, as they are more 

commonly found in highly weathered soils, with greater homogeneity in depth (Berg and 
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Oliveira, 2000) and according to Georgiou et al. (2022) the maximum C content associated 

with minerals depends on the amount and type of mineral. 

Ingram and Fernandes (2001), Weil and Brady (2016), indicated the importance of clay 

mineralogy on the potential of a soil to store organic C, especially in the deeper layers (Gray 

et al. 2015, Wiesmeier et al., 2011). In the present study, the spatial regression models showed 

a clear difference in the minerals contributing to C sequestration potential at depth 0 to 20 and 

80 to 100 cm (Table 2), with low contribution of gibbsite and goethite at the deeper depth. 

However, in Figures 9 and 11, the contribution of goethite and gibbsite in this overall 

contribution of new carbon sequestration that is not seen in the statistical model was observed.  

  

 

Figure 12. Variation of the content of the potential C saturation deficit or C sequestration 

potential, at different soil depths 

 

Interpreting the individual contribution of the C sequestration potential of the clay 

fraction minerals is difficult due to their coexistence (Kirsten et al. 2021). Georgiou et al. 

(2022) points out the importance of generating mathematical models that allow inferring the C 

associated with the mineral fraction, however, their study was based on the limit line analysis 
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where the determination of the C saturation potential is based on the highest C stocks and C 

contents in soils with presence of 2:1 clays and poorly crystalline minerals, which 

theoretically have higher capacity to stabilize C. For the present study this theoretical 

maximum limit was calculated as the potential C saturation based on the equation of Feller 

and Beare (1997) and spatial regression models were used to explain this potential C 

saturation (Sat-pot), the C associated with the mineral fraction (CmOM) and the potential for 

sequestration of new C (Sat-def) as a function of the relative abundance of the minerals that 

compose the clay fraction, finding the best fits with the SARAR double autoregressive spatial 

regression model, highlighting that the main contributing minerals in the C sequestration 

potential correspond to kaolinite and hematite (Table 3), with a low contribution of goethite 

and gibbsite in the 0 to 20 cm depth (Figure 5). These minerals have direct impacts that 

indicate that a reduction in their concentration could reduce the C sequestration potential of 

the study area, since they are the minerals that contribute most to C stabilization and to the 

CmOM content. 

According to Schaefer et al. (2008), the clay fraction of Brazilian soils is dominated by 

kaolinite and low crystallinity Fe and Al oxides, typically corresponding to gibbsite, hematite, 

goethite and maghemite (Kämpf and Curi, 2003). This low crystallinity of these iron oxides in 

Brazilian soils translates into more effective OM stability than crystalline Fe oxides or 

oxyhydroxides (Schaefer et al., 2008), because they exhibit electrostatic attractions and ionic 

bonds between the hydroxyl groups of the oxides and the carboxyl or hydroxyl groups of the 

OM (Duiker et al. 2003, De Mastro et al. 2020). In our study area, the presence of parental 

material associated with basalt (Figure 1) allows locating ferruginous minerals of low degree 

of crystallinity according to Tombácz et al. (2004) and Ashton et al. (2016). Such localization 

coincides with the concentration of iron oxides with higher affinity for the MO (Ashton et al., 

2016), which highlights that the reduction of goethite and gibbsite contents affects the 

stabilized MO, since as observed in the CmOM model, these minerals account for 

approximately 90% of the importance in explaining the current C of the mineral fraction 

(Figure 5). 

According to Guzmán et al. (1994), goethite usually presents greater affinity for OM 

because it presents a double network of octahedra, where Fe+3 occupies only half of the spaces 

(Bigham et al., 2002). It gives a greater specific surface area for this oxide, compared to 

hematite, which presents an occupation of Fe+3 in 66% of the oxygens, reducing its specific 

surface area (Bigham et al. 2002) considerably. Kaiser and Guggenberger (2000) indicated 

that goethite and gibbsite have a high density of reactive sorptive sites, allowing more 
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effective organo-mineral interactions. Hematite has a denser structure and lower surface area 

compared to goethite, having lower reactivity of hydroxyl groups on its surface (Dos Reis et 

al., 2014). Therefore, C had affinity and preference for goethite (Figures 7 and 9). Similarly, it 

was found that gibbsite also had higher C saturation potential. 

A decrease in pH increases the positive charges of iron oxides, increasing OC sorption 

(Ashton et al., 2016). However, the high presence of kaolinite could generate an increase in 

the negative charges neutralizing the positive charges of the oxides. In turn, it could lead to a 

reduction of stabilized OC (Kirsten et al., 2021), which is evidenced in the greater C retention 

potential, being clear the role played by pH (Ashton et al., 2016), as it influences the surface 

charge and therefore the adsorption capacity of organic compounds (Saidy et al., 2013). The 

pH control of the protonation and deprotonation of hydroxyl groups (Wang et al., 2020). For 

the study area, the more significant presence of kaolinite was related to a high hematite 

content, especially in the eastern region, where pH ranged from strongly acidic (5 to 5.5) to 

moderately acidic (5.6 to 6) (Figure 13), which could also explain the high potential for C 

sequestration in these areas. 

Land use type also influences SOC content due to differences in vegetation and C 

input. Agricultural and highly degraded soils have considerable potential to store additional 

SOC (Wiesmeier et al. 2013, Georgiou et al. 2022), as a marked depletion of SOC stocks is 

observed (Paustian et al. 1997, Lal 2004, Smith 2004, Follett et al. 2001, Padarian et al. 

2022). Sothe et al. (2022), reported a higher concentration of SOC in crops than in grazing 

land. Areas with more than 15 years of agriculture had both the lowest and the highest carbon 

sequestration potential (Table 5), that is, minerals such as goethite and gibbsite at depth 0 to 

20 cm present a low potential to sequester new C in the study area and at greater depth the 

low potential is concentrated in these areas with traditional agricultural use. On the other 

hand, at shallower depths, minerals such as hematite and kaolinite had a higher sequestration 

potential, being higher for kaolinite in areas of pasture and cropping mosaics, and higher for 

hematite in areas with cropping mosaics of pasture and forest. With increasing depth, unlike 

goethite and gibbsite, kaolinite and hematite had high C sequestration potential in areas with 

traditional agricultural use. In agricultural areas, management practices that favor 

sequestration are related to the promotion of organic inputs, conservation/minimum tillage, 

conversion of cropland to pasture, introduction of perennials, proper management of 

cultivated peatlands, and organic farming (Sauerbeck 2001, Vleeshouwers and Verhagen 

2002, Freibauer et al. 2004, Lal 2004, Johnson et al. 2007, Smith 2012).  Rabbi et al. (2015) 
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and Ashton et al. (2016), reported that conversion of cropland to grassland could increase C 

sequestration, that coincides with the observed results. 

Afforestation and pasture improvements could contribute with soil C storage increase 

(Zeraatpishe and Khormali 2012, Nave et al. 2013). It has also been reported when conversion 

from forest to managed pasture and   from cropland to pasture occurred (Poeplau and Don, 

2013).  The areas under exclusively forest use presents low sequestration potential and the 

minerals such as goethite were highly saturated. On the other hand, areas with cropping and 

pasture mosaics presents a medium potential for C sequestration. However, it was evident that 

as the depth increases, the C sequestration potential improves in the forest uses, especially in 

agriculture and forest mosaics. For Minasny et al. (2013), historical land use is a variable that 

influences the explanation of C concentrations in deeper soil layers. Land use change can 

favor C sequestration because it results in a variation of organic compounds reaching the soil 

and mechanization can reactivate the C cycle, where bacteria in the environment take 

advantage of the released C, however, there are residues of this microbial decomposition that 

can be retained by minerals (Kirsten et al., 2021).  

Acosta-Martinez et al. (2004) concluded that continuous monoculture systems had a 

negative impact on soil function and sustainability. Cultivation and tillage reduce and change 

the distribution of SOC, while appropriate crop rotation can increase or maintain the quantity 

and quality of SOM, improving soil chemical and physical properties (Liu et al., 2006). Crop 

intensity or frequency affects SOC storage by modifying the amount of time the soil is 

supporting a crop, thereby increasing annual production and C input to the soil (Ogle et al., 

2005). Areas with the same land use for more than 15 years were those with higher saturation 

of minerals, such as goethite and gibbsite (higher affinity for SOM), as well kaolinite and 

hematite (low affinity for SOM). However, it was clear that those areas with agriculture and 

pasture mosaics, and pasture and forest mosaics, had the greater potential to retain new C, and 

its potential increases with soil depth (Table 5). 
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Figure 13. Additional variables, Land use history (1985-2015) based on Tayebi et al., (2021) 

(a), iron oxide (F2O3) (b) and pH in water (c). 

 

These areas with higher retention potential due to mineralogy are key to promote CO2 

sequestration by agroforestry and silvopastoral systems, because as evidenced, it is important 

to exploit the potential of goethite and gibbsite at depth (Figure 11, Table 5), since, as 

indicated by Georgiou et al. (2022), the deeper the soil minerals are, the less saturated they 

become.  Additionally, crop rotation or cover crops to exploit the potential of the most 

superficial layers of the soil is also important. The results presented could contribute to 

climate change mitigation strategies, as described by Minasny et al. (2017), who pointed out 

that at the 21st Conference of the Parties to the United Nations Framework Convention on 

Climate Change in Paris (COP21) the strategy "4 per thousand soils for food security and 

climate" was unveiled. This strategy aims to increase global soil organic matter stocks by 4 

per 1000 (or 0.4%) per year considering SOC sequestration as a possible solution to mitigate 

climate change by taking atmospheric CO2 and converting it into long-lived soil C. 
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2.5. Conclusions 

The C sequestration potential prediction models obtained in the present study confirm the 

importance of the minerals that compose the clay fraction in the C sequestration potential of 

the soil. The prediction of this potential was fitted to a spatial regression model SARAR 

(Spatial AutoRegressive-AutoRegressive model) for depths of 0 to 20 and 80 to 100 cm, 

where at a depth of 0 to 20 cm the sequestration potential is explained by the content of 

kaolinite, hematite, goethite and gibbsite, with kaolinite and hematite being the most 

important explanatory variables. On the other hand, goethite and gibbsite had a direct but 

negative impact, indicating that an increase in the concentration of these minerals reduces the 

potential for sequestration of new C, due to the affinity they have with organic molecules, so 

they tend to saturate reducing their potential to store new C, but translates into greater 

stability of organic molecules and higher current COS content. For the 80 to 100 cm depth, 

the prediction of C sequestration potential was explained by the content of kaolinite and 

hematite, with greater importance of kaolinite. Hematite is a mineral of importance in C 

sequestration and stabilization since it was a variable of high importance in explaining 

mineral-associated C (CmOM), potential C saturation (Sat-pot) and C sequestration potential 

(Sat-def) at different depths. 

Soil carbon sequestration potential by mineralogy is strongly influenced by land use. 

Areas of pasture and crop on soils with high kaolinite and hematite content presented greater 

potential to sequester carbon. In addition, areas with lower pH and higher kaolinite and 

hematite content also have a high potential for carbon sequestration, which can be enhanced 

by land use change.   

Gibbsite and goethite had a higher sorption power of organic molecules; therefore, they 

had a lower potential for sequestration of new carbon in areas with the same land use for more 

than 15 years, because they are the first minerals to become saturated, especially in the 

surface layers. However, their potential increases in cropping and pasture areas at greater 

depths because the concentration of SOM was lower. Soils at greater depths had the greatest 

potential for carbon sequestration and could be key for climate change mitigation strategies. 

 

  



57 
 
Table 5. Areas expressed in m2 with high, medium and low potential saturation of COS according to historical land use, type of mineral and soil 

depth A) from 0 to 20 cm, B) from 40 to 60 cm, C) from 80 to 100 cm.   

Depth Mineral 
C retention 

potential 

Agricultur

e 

Agricultur

e  +Forest 

Agricultur

e+Pasture 

Agriculture 

+pasture+ 

forest 

Agricultu

re50+fore

st 

Agricultur

e50+pastur

e 

Forest 
Forest+ 

pasture 

Forest50+ 

agriculture 

forest50+ 

pasture 
Pasture 

Pasture50 

+agricultu

re 

Urban+ 

road 
Water 

A 

Kaolinite 

Low 52396.6 465.6 262.7 23562.2 20265.8 38032.0 4393.6 1.6 7323.5 215.1 15.9 1842.2 12186.4 1802.7 

Medium 13677.1 42.0 146.2 6874.3 3763.8 29507.4 473.8 0.4 858.5 19.2 17.6 2106.3 1782.6 36.8 

High 7360.7 19.5 104.4 2856.0 1661.7 19954.7 201.0 0.0 325.6 4.5 16.4 1649.2 648.8 15.6 

Goethite 

Low 73434.3 527.1 513.4 33292.5 25691.2 87493.8 5068.4 2.0 8507.6 238.7 50.0 5597.7 14617.8 1855.1 

Medium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

High 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hematite 

Low 66288.9 485.9 460.3 30888.7 23123.2 77702.7 4761.1 2.0 8002.5 232.5 43.2 4990.3 14130.4 1728.4 

Medium 3688.8 17.2 37.8 1507.7 1270.6 6256.7 174.5 0.1 275.2 3.5 5.7 495.5 284.7 29.9 

High 3456.6 24.0 15.2 896.1 1297.4 3534.7 132.9 0.0 229.9 2.7 1.1 111.9 202.7 96.8 

B 

Kaolinite 

Low 71.4 12.8 6.2 163.2 81.5 133.5 15.0 0.0 28.6 0.9 0.0 9.5 123.6 107.7 

Medium 48898.5 435.4 341.2 25196.8 19562.4 50230.5 3977.6 1.7 6771.1 203.7 33.1 3593.9 10811.2 1666.4 

High 24464.5 78.9 166.0 7932.5 6047.4 37130.0 1075.8 0.3 1707.9 34.1 16.9 1994.2 3683.0 80.9 

Goethite 

Low 40753.6 385.4 131.9 11137.0 14632.5 17110.1 2298.7 0.5 3909.2 112.9 0.7 224.8 9804.2 1749.9 

Medium 29688.4 141.0 342.2 21566.7 10708.3 61886.3 2769.4 1.6 4591.3 125.9 45.4 4814.1 4653.6 105.2 

High 2992.3 0.6 39.3 588.8 350.4 8497.7 0.3 0.0 7.1 0.0 3.8 558.7 160.0 0.0 

Hematite 

Low 28685.1 348.7 144.8 13647.5 13272.1 19183.1 2379.2 0.6 4280.7 130.3 3.0 589.5 8785.2 1678.6 

Medium 23448.0 112.6 186.1 11982.5 7155.1 35365.3 1624.2 1.2 2648.0 70.4 23.4 2413.4 3562.1 120.4 

High 21301.2 65.7 182.5 7662.5 5264.0 32945.6 1065.0 0.2 1578.8 38.0 23.6 2594.8 2270.6 56.1 

C 

Kaolinite 

Low 5.2 0.0 0.0 1.5 1.4 0.9 0.0 0.0 0.3 0.1 0.0 0.2 1.4 0.0 

Medium 50559.7 354.1 386.9 24990.2 18462.5 57869.0 4162.6 1.7 6751.2 199.0 42.3 4554.3 9986.5 1302.4 

High 22869.4 173.0 126.5 8300.8 7227.3 29624.2 905.9 0.3 1756.0 39.7 7.7 1043.2 4629.9 552.7 

Goethite 

Low 16045.7 38.5 22.1 1323.4 4608.5 3656.2 96.6 0.0 209.0 5.9 0.2 52.1 2363.4 115.8 

Medium 33551.0 431.8 228.7 18888.6 14494.6 29235.3 3986.0 1.3 6420.1 183.0 9.5 1522.5 10177.2 1706.4 

High 23837.6 56.7 262.6 13080.4 6588.1 54602.6 985.9 0.7 1878.5 49.9 40.3 4023.0 2077.2 32.9 

Hematite 

Low 3983.1 89.4 42.0 3303.2 2218.1 3529.6 572.7 0.2 1152.4 32.1 1.5 267.2 1649.2 613.1 

Medium 40247.3 294.0 374.5 24427.0 14854.8 62214.4 3759.0 1.6 6058.4 179.0 43.0 4681.5 9522.6 818.3 

High 29204.0 143.7 96.9 5562.3 8618.3 21750.1 736.7 0.2 1296.8 27.7 5.5 649.0 3446.0 423.6 

The land uses described correspond to a historical use analysis for a period of 30 years. The number 50 in the heading relates to the middle of the period under this use. The highlighted 

numbering indicates the largest areas with high, medium and low carbon saturation potential. 
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3. SOIL ORGANIC CARBON SEQUESTRATION POTENTIAL EXPLAINED BY 

MINERALOGY AND MICROBIOLOGICAL ACTIVITY BY SPECTRAL 

TRANSFER FUNCTIONS 

 

Abstract 

The ability of soil to sequester carbon and reduce atmospheric CO2 concentrations is 

limited and depends on the soil minerals and their interaction with the microbiota. Microbial 

activities are closely associated with the types and amounts of soil organic matter (SOM) and 

clay minerals that have functional groups that interact with energy in Vis NIR-SWIR and 

Mid-IR wavelengths. The main objective of this research was to determine, based on these 

spectral ranges, the relation between mineralogical and organic compounds, as their 

sequestration and specialization in soils from Brazil. It was possible to map microbiological 

activity by spectral transfer functions and digital soil mapping reaching R2 from 0.77 to 0.85. 

Multiple regression equations were constructed to quantify enzymatic activity, microbial 

biomass carbon (MBC), particulate organic matter (POM), and resistant forms of carbon, and 

SOM associated with the mineral fraction (MAOM). All these properties were detected by 

specific bands obtained with the recursive feature elimination (RFE) algorithm, reaching 

correlations from 0.64 to 0.98 in specific ranges. The prediction model of the carbon 

sequestration potential was adjusted with microbiological and mineralogical variables from 

Vis-NIR-SWIR and the Mid-IR spectral range. A SARAR double autoregressive model was 

adjusted with r 0.61 and to a spatial error model (SEM) with r 0.7. The explanatory variables 

were associated with kaolinite, hematite, goethite, gibbsite, and the abundance of fungi, 

actinomycetes, vesico-arbuscular mycorrhizal fungi, enzymatic activity of beta-glucosidase, 

urease and phosphatase, and POM. Among the microbiological variables, the general 

abundance of fungi was the most important, in contrast to enzymatic activity that was the least 

important. The interaction between the different maps constructed and historical land use 

allowed the identification of areas that contribute to sequestering new carbon and could be the 

key to climate change mitigation strategies. 

 

Keywords: Mineralogy, Spectroscopy, Spectral ranges, Soil health, Proximal sensing 

 

3.1. Introduction  

Soil dynamics respond to direct interactions between microorganisms, biomineralization, 

and synergistic co-evolution with plants (Gouda et al., 2018); they allow soil to perform 

several ecosystem services such as carbon (C) sequestration. This dynamic is considered a 

method to reduce the concentration of CO2 in the atmosphere, since soils can absorb about 

20% of anthropogenic C emissions and thus help to mitigate climate change (Yang et al., 

2021; Padarian et al., 2022). The ability of the soil to sequester C depends especially on the 

mineralogy and its interactions with microorganisms, mainly in clay fractions, which includes 

different minerals such as variable amounts of pedogenic Fe and Al oxides that have a critical 

soil organic carbon (SOC) sorption surface (Kirsten et al., 2021; Dos Reis et al., 2014). 

Microorganisms are responsible for 80% to 95% of C mineralization (Hassink, 1994), as they 
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make use of C through respiration (Follett et al., 2001) and increase its concentration through 

their dead remains. Additionally, they participate in the formation of microaggregates that 

interfere in SOC stabilization (De Mastro et al., 2020) and contribute to C sequestration 

potential through extracellular activity that aids soil organic matter (SOM) decomposition and 

C stabilization (Nicolas et al., 2019). 

In general, the degree of SOM decomposition is related to the extracellular enzymatic 

activity of microbiological organisms (De Beeck et al., 2021). Considering the microbial C-

pump concept that Adamczyk et al. (2019) describe, stable forms of SOM result from 

microbiological activity. As microorganisms generate biomass through metabolic processing 

of plant residues, microbial residues are converted into stable forms by interacting with soil 

minerals. Rodriguez-Albarracín et al. (2023) identify the importance and varying capacity of 

soil minerals in predicting the potential to sequester new C. Aluminum and iron oxides, as 

well as clay minerals (especially smectites), control C storage and release. However, it is still 

unclear how they relate to the presence of microbes and extracellular enzymes that degrade 

SOM (Yang et al., 2021). Bacterial adhesion to clay minerals and oxides is mediated by 

interactions with proteins, extracellular enzymes, and hydrogen bonds (Parink et al., 2014). 

Our understanding of the activity and diversity of exoenzymes and their interactions with 

minerals in SOC modeling needs to be enhanced, because microbial and extracellular enzyme 

activity directly affects the effectiveness of SOC mineral protection and promotes its release 

(Yang et al., 2021). Hart et al. (2020) propose the use of spectroscopy-focused technologies in 

association with molecular leads to model the presence of fungi and bacteria in soil samples. 

However, there are no specifics visible (Vis: 400 - 700 nm), near infrared (NIR: 700 - 1100 

nm), shortwave infrared (SWIR: 1100 - 2500 nm), and mid-infrared (Mid-IR: 2500 - 25000 

nm, 4000 - 400 cm-1) absorbances assigned to microbial communities. Nevertheless, since the 

soil physicochemical environmental conditions and the abundance and function of 

microorganisms (Rasche et al., 2011) and the spectral response of soil samples allow 

predicting fundamental components like minerals, SOM, and water content (Yang et al. 2021; 

Viscarra Rossel et al., 2022) that are required by fungal and bacterial communities for their 

growth and obtaining energy (Müller, 2015), it is possible to relate wavelengths to 

microbiological characteristics. Iron, for example, is related to microbial energy generation 

for Fe-reducing microorganisms (Weber et al., 2006), as well as for phototrophic bacteria 

(Hegler et al., 2008); and the spectral response of iron oxides is recognized on faults 540, 640 

and 900 nm, hematite on fault 550 nm, and goethite around 440 to 470 nm (Dematte et al., 

2014). 
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The major difficulty to access soil microbiological properties directly by spectral 

frequencies is due to the low contents of microbial biomass and enzymatic activity that limits 

the induction of changes in the spectra (Rinnan and Rinnan, 2007). However, microbiological 

properties can be predicted due to the strong relationship with specific soil organic 

compounds that influence their spectral responses (Chodak 2011). As an example, 

extracellular enzymes produced by fungi for lignin and lignocellulose degradation release C 

into the soil solution (Nicolas et al., 2019), making it possible to interpret spectral information 

as an indicator of soil microbiology (Rasche et al., 2013; Viscarra Rossel et al., 2022). Not 

only the quantity but also the quality of organic carbon (OC) interferes in the prediction of 

microbiological properties (Rasche et al., 2013). Thus, the differentiation of organic 

functional groups is possible through Vis-NIR-SWIR and Mid-IR spectroscopy (Ojeda et al., 

2008; Viscarra Rossel and Hicks, 2015; Viscarra Rossel et al., 2022). 

NIR reflectance spectra respond to the concentration of compounds related to C-H, N-H, 

S-H, C=O and O-H chemical bonds, allowing a differentiation of the organic composition of a 

soil sample (Zornoza et al., 2008; Viscarra Rossel et al., 2022). These compounds are 

absorbed more strongly in the Mid-IR region (Burns and Ciurczak, 2001) making it possible 

to identify wavelengths related to the specific property to be predicted by multivariate 

regression analyses (Zornoza et al., 2008). In this way, Rasche et al. (2013) develop a partial 

least squares regression (PLSR) analysis based on Mid-IR reflectance spectroscopy to predict 

soil microbial biomass and enzyme activities. 

The SOM fractionation analysis allows a better understanding of the destiny of the 

sequestered and stabilized C by the discrimination of labile and more stable forms of C 

(Demyan et al., 2012). Organic matter (OM) associated with the fine-sized mineral fraction 

contributes more to SOM compared to particulate OM (POM) (Kleber et al, 2015). The SOM 

associated with the fine mineral fraction (MAOM) contains the largest amount of transformed 

microbial SOM, including microbial biomass and necromass (Buckeridge et al., 2020; Liang 

et al., 2019), while the POM is the raw material for microbial activation. In general, microbial 

activities are closely associated with the types and amounts of MOS, and NIR and Mid IR 

wavelengths that respond to functional groups of different types of soil organic compounds 

(Viscarra Rossel and Hicks, 2015), iron oxides, and clay minerals (Yang et al., 2021) that are 

related to microbial activity.  

Identifying the influence of microbial activity on the C sequestration potential of clay 

minerals allows an understanding of C dynamics and promotes sustainable soil management. 

Monitoring soil quality and health requires predictions of soil microbiological properties 
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using a simple and cost-effective method (Rasche et al., 2013). Geographic information 

systems and remote sensing techniques are key for this by facilitating the acquisition of 

spatial information specifically through digital soil mapping (DSM) approaches. This allows 

mapping soil attributes by combining soil point data with statistically correlated auxiliary data 

(covariates) (McBratney et al., 2003). Reflectance spectroscopy is also key, as it provides 

access to soil mineralogical and microbiological activity (Di Iorio et al., 2019). A clear 

example of the combination of these techniques is presented in Rodriguez-Albarracín et al. 

(2023), in which a prediction model of the soil's potential to sequester new C was adjusted 

and this potential was mapped by differentiating the storage capacity of each mineral using 

mainly machine learning techniques and soil mineralogical information from spectral data. In 

summary, there is a gap in our understanding of the energy interaction between mineralogical 

and organic compounds. Therefore, it is important to deepen our understanding of C 

sequestration involving microbiological effects mediated by the mineral component of the 

soil. 

We aimed to map microbiological activity in different pedogenetic soils of the Piracicaba 

area (São Paulo, Brazil) by reflectance spectroscopy and a DSM approach and to fit the C 

sequestration potential model developed by Rodríguez-Albarracín et al. (2023), through the 

inclusion of these microbiological variables in the spatial regression models while considering 

the interaction of these variables with mineralogy. We expected that the detection of this 

microbiological activity by spectral readings would favor an understanding of its influence on 

C sequestration. 

 

3.2.Material and Methods  

3.2.1. Study area  

The study area was located in São Paulo State, Brazil, including approximately 2,598 km2, 

comprising eight municipalities (Figure 1). The region has a mean annual temperature varying 

between 20°C and 22.5°C, an annual rainfall between 1200 mm and 1400 mm, with a 

subtropical climate with a dry winter and a rainy summer, classified Cwa according to the 

Köppen classification (Alvares et al., 2013). The topographical relief is characterized by 

undulating highlands and undulating hills with altitudes ranging from 450 to 950 meters. The 

area is dominated by agricultural land use, principally sugarcane and pasture, under no-till and 

conventional tillage management systems. The main soil types from the World Reference 

Base system (IUSS Working Group WRB, 2015) are Cambisol, Gleysol, Ferralsol, Nitosol, 

Lixisol, Leptsol, Arenosol and Planosol (Oliveira and Prado, 1989). 
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Figure 1. Study area and sample points. a) Map of potential C saturation deficit (C 

sequestration potential) for depths of 0 cm to 20 cm (Rodriguez-Albarracín et al., 2023); b) 

synthetic soil image (SYSI) RGB 543 (image from Geos3, Demattê et al., 2018). 

 

3.2.2. Microbiological activity estimated by spectrotransfer functions 

Two methods were developed for the prediction and mapping of microbiological activity. 

The first one considered bibliographic information associated with specific wave coverages 

for each variable described in Table 1 to obtain relative values in terms of reflectance. The 

second method was based on the development of specific prediction equations that allowed 

quantifying the enzymatic activity of beta-glucosidase, phosphatase, and urease, microbial 

biomass carbon (MBC), POM and MAOM, through regression analyses between laboratory 

measurements and the specific bands of each spectral range for each variable, identified with 

machine learning techniques. 

 

Selection of sampling points 

New 35 soil samples from representative sites of the study area were selected for soil 

sampling through the conditional Latin hypercube sampling method (Minasny and 
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McBratney, 2006) (Figure 2). This corresponded to a stratified random sampling procedure in 

which the selected samples follow multivariate characteristics according to the indicated 

covariates (Yang et al., 2020). In this case, we considered as covariates the synthetic soil 

image (SYSI), terrain elevation model (DEM), soil type, variability in clay and C content, and 

the maps obtained from method 1 of microbial biomass carbon (MBC), general abundance of 

fungi, Actinomycetes and Acidobacteria, enzymatic activity of beta-glucosidase, urease and 

acid phosphatase, and maps of labile and resistant C forms. 

 

Laboratory analysis  

For these 35 samples, we performed fractionation of SOM and microbiology analyses 

(Figure 2). We made the physical fractionation of SOM to quantify C in POM and MAOM 

(Cotrufo et al., 2019) following Jindaluang et al. (2013). We dispersed the soil sample with a 

5% sodium hexametaphosphate solution, and we separated the sand and clay/silt fraction by 

sieving at 53 µm. The MBC quantification was performed according to Vance et al. (1987). 

We determined the enzymatic activity of beta-glucosidase, acid phosphatase, and urease 

following Tabatabai (1994) and Dick et al. (1996). 

Spectral data acquisition  

The Vis-NIR-SWIR data, from 350 to 2500 nm, were acquired using the FieldSpec 3 

spectroradiometer (Analytical Spectral Devices, Boulder, Col., USA) with a spectral 

resolution of 3 nm for the range between 400 nm and 700 nm and 10 nm for the range from 

700 nm to 2500 nm. It was then resampled to 1 nm, obtaining 2,151 spectral bands (Demattê 

et al., 2019). Readings with this sensor required air-dried soil samples, ground and sieved at 2 

mm. Mid-infrared data from 4000 to 600 cm-1 were obtained with the Alpha Sample 

Compartment RT-DLaTGS ZnSe sensor (Bruker Optik GmbH), equipped with a drift 

attachment (Souza et al., 2022). The Alpha sensor had a resolution of 1.2 nm and worked 64 

scans per second, according to Mendes et al. (2022). Readings with this sensor required 

samples to be ground and sieved to 100 mesh (149 µm). 

 

3.2.2.1.Method 1 

We used legacy soil observations from the Brazilian Soil Spectral Library (BSSL) 

(Demattê et al., 2019; Mendes et al., 2022; Demattê et al., 2023) totaling 1,828 points at 0 cm 

to 20 cm depth (Figure 1). A total of 403 observations had spectral data in the Mid-IR range 

and 1,425 in the Vis-NIR-SWIR range. The wavelengths of the Vis-NIR-SWIR and Mid-IR 

ranges related to the microbiological activity variables were defined according to Zornoza et 
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al. (2008); Rasche et al. (2013); Parikh et al. (2014); and Zhang et al. (2022) (Figure 2, Table 

1). 

 

 

Figure 2. Flowchart of methodology. 
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Table 1. Wavelengths related to soil microbiological activity reported in literature. In the gray 

fields, no correspondence was found in the literature.  

Variable Mid IR wavelengths Reference 
Vis-NIR-SWIR 

wavelengths 
Reference 

Microbial 

biomass 

carbon (MBC) 

3658-3317, 2301-939, 3658-3317, 

2980 -2399, 1959-939 

Rasche et 

al. (2013) 

1374-2092, 

2270-2630 

Zornoza et al. 

(2008) 

Beta- 

glucosidase 

3951-2399, 2301-1279, 3951-2978, 

2640-2399, 2301-1618, 941-630 

Rasche et 

al. (2013) 
1372-2272 

Urease 
3951-2978, 2640-2399, 1959-1279, 

3658-2978, 2640-2399, 1959-1618 

Rasche et 

al. (2013) 

1195-1734, 

1912-2094 

Phosphatase   

1014-1195, 

1732-2092, 

2270-2630 

Labile (POM) 1727, 1650, 1160, 1127, 1050 
Parikh et 

al. (2014) 
  

Resistant 

(MAOM) 

2950, 2924, 2850, 1530, 1509, 1457, 

1420, 779 

Parikh et 

al. (2014) 
  

Fungi 

3990-3930, 3920-3790, 3780-3710, 

3520-3140, 3130-3050, 3040-3000, 

2990-2860, 2850-2820, 2810-2740, 

2730-2670, 2270-2180, 2170-2050, 

2040-1810, 1800-1790, 1740-1730, 

1360-1320, 1240-1230, 1220-1130, 

1120-1040, 820 

Zhang et 

al. (2022) 

1193-1555, 

1912-2453 

Zornoza et al. 

(2008) 

Vesicular 

arbuscular 

mycorrhizal 

fungi 

  

1014-1195, 

1374-1555, 

2092-2274, 

2452-2632 

Bacteria 

3990-3840, 3830-3720, 3550-3520, 

3510-3110, 3100-3030, 3020-2850, 

2840-2780, 2370-2280, 2270-2160, 

2150-1810, 1800-1780, 1500-1480, 

1420-1300, 1230-1200, 1190-1060, 

1050-1040, 820 

Zhang et 

al. (2022) 

1195-1913, 

2092-2274, 

2452-2632 

Actinomycetes 

3990-3910, 3900-3730, 3720, 3560-

3540, 3530-3120, 3110-3010, 3000-

2950, 2940-2850, 2840-2810, 2370-

2290, 2280-2150, 2140-1810, 1800-

1780, 1530-1470, 1450-1430, 1420-

1310, 1300-1290, 1230-1200, 1190-

1050, 1040-1030 

Zhang et 

al. (2022) 

1014-1195, 

2092-2274, 

2452-2632 

 

Acidobacteria 

3680-3660, 3650-3590, 2980-2920, 

2910-2870, 2860-2840, 2830-2690, 

2680-2650, 2640-2570, 2560-2540, 

2490-2380, 1760-1720, 960-860, 

760-710, 640-630 

Zhang et 

al. (2022) 
  

 

For each spectral range reported by Zornoza et al. (2008), Rasche et al. (2013) and 

Parikh et al. (2014), the median was calculated and subsequently a mean reflectance value 

was determined as an activity index for each variable, as follows:  

𝑌̅𝑋 =
∑ 𝑀𝑑𝑊

𝑁𝑜. 𝑊
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Where X corresponds to the variables associated with microbiological activity 

described in Table 1; Y activity index (mean value of reflectance); Md is the median; Wi is the 

specific spectral range described in Table 1; No. is the number.  

The correlation values (a) between the microbiological variables and the ranges 

defined by Zhang et al. (2022) were available and used as weights in the weighted sum to 

define a single reflectance value for each variable, as follows: 

𝑌̅𝑥 =  ∑ 𝑎 ∗ 𝑀𝑑𝑊 

For mapping the average reflectance values Yx of the different variables associated 

with microbiological activity, covariates associated with relief, climate, and the synthetic soil 

image (SYSI) were used (Figure 2). For topographical relief we used the elevation, slope, 

aspect, curvatures, valleys, hills, orientation, and topographic moisture index, obtained from 

the radar topography mission (SRTM) (USGS, 2018) with the digital terrain elevation model 

(DEM) at 30 meters spatial resolution (Safanelli et al., 2020). The climatic variables 

corresponding to the annual temperature trend, mean diurnal range, seasonality (coefficient of 

variation), maximum temperature of the warmest month, annual trend, and the seasonality of 

precipitation were taken from the 1970 to 2000 dataset of WorldClim2 with resolution of 1 

km (Fick and Hijmans, 2014). They were resampled to 30 m in R software through the 

resampling function and the bilinear method (Gómez et al., 2023). The land surface 

temperature (LST) obtained from the median of the Landsat7 images collection from 1999 to 

2020 (Ermida et al., 2020) was also included.  Finally, a synthetic soil image (SYSI) that 

corresponds to a mosaic of bare soil pixel from the Landsat 5,7 and 8, images collected from 

1984 to 2020, was used. The SYSI had six bands in the Vis-NIR-SWIR spectral range (blue, 

green, red, NIR, SWIR1 and SWIR2) and was obtained by the Geospatial Soil Sensing 

System (GEOS3) method, developed by Demattê et al. (2018). 

The spatial prediction was made by the random forest (RF) algorithm, reported as the 

best-performing algorithm for the prediction and mapping of a wide range of soil attributes 

such as SOC (Gómez et al., 2023; Zeraatpisheh et al., 2020; Padarian et al., 2020). This 

algorithm is based on a combination of different decision trees in the training stage. A random 

sampling of the covariate values distributed identically for each tree is performed, allowing 

the obtention of an average value for the prediction of all trees (Breiman, 2001; Gómez et al., 

2023). The samples were randomly split 70% and 30% for calibration and validation. The 

adjusted coefficient of determination (R2) was used as a model evaluation metric. 
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3.2.2.1.1. Correlation analysis  

The pixel information of microbiological maps obtained by methodology 1 was sampled 

for these 35 observation points to determine their correlation with truth laboratory analysis. 

The correlation coefficient was used to quantitatively evaluate the degree of correlation 

between variables (Zhao et al., 2022), and Spearman's correlation coefficient, which is one of 

the most suitable and accurate metrics for this type of analysis because it is applicable for data 

with normal and non-normal distributions and is effective for characterizing linear and non-

linear correlations, robust and insensitive to outliers (Zhang and Wang, 2023). 

 

3.2.2.2. Method 2  

3.2.2.2.1. Spectral ranges selection 

Spectral information is a high-dimensional dataset that may contain redundant and 

irrelevant information (Chen et al., 2018); therefore, it is necessary to select a more specific 

dataset according to its importance (Wang and Li, 2023). For this purpose, we applied the 

recursive feature elimination (RFE) algorithm developed by Guyon et al. (2002) and 

implemented in the "Caret" package of R, using the random forest (RF) machine learning 

method as an internal model (Kuhn, 2021). 

RFE is a method with wide applicability that allows handling nonlinear and more complex 

relationships, considering in an integral way the relationships between the analyzed factors 

(Wang and Li, 2023). This algorithm is based on backward selection. Initially a model is 

created using all n predictors, the performance is calculated by k-fold cross-validation 

(RMSE) and the importance of the variable. Subsequently, the least important predictor is 

eliminated from the set, and the model is readjusted. Again, the performance is evaluated and 

the least important predictor is eliminated. This is done repeatedly until the optimal number of 

predictors is determined by taking the model with the best performance (RMSE) (Zhang et al., 

2023). For this research, we applied the RFE algorithm for each variable and for each range of 

the electromagnetic spectrum, thus obtaining the most important Vis-NIR-SWIR and Mid-IR 

bands for each variable (Figure 2). Using this data, we built regression models to quantify the 

variables through spectral information. 

 

3.2.2.2.2. Quantification and regression analysis with geo-referenced data 

The regression analyses studied considered the geographical coordinates of the samples 

and the spatial dependence of soil variability (Webster and Oliver, 2007) and made use of a 

weight matrix associated to all neighbors. MBC, enzymatic activity of beta-glucosidase, 
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phosphatase and urease, POM, and the MAOM were considered as dependent variables. As 

explanatory variables, the reflectance values of the most important bands for each variable 

and for each Vis-NIR-SWIR and Mid IR electromagnetic spectrum were considered; 

regression models were performed for each range of the spectrum and each variable. 

The spatial regression models applied for the prediction of each microbiological variable 

corresponded to the spatial autocorrelation models (SAC), the spatially lagged models (SLM), 

the spatial error model (SEM and SDEM), the SARAR double autoregressive model that 

includes the autoregressive component of the response and the residuals, allowing us to 

explain the spatial dependence of the residuals (Elhorts, 2014).  

These models are expressed in matrix form as follows: 

𝑌 = 𝜆𝑊𝑌 + 𝛼𝜄𝑛 + 𝑋 + 𝑢;                              |𝑢| < 1                                   

 𝑢 = 𝜌𝑊𝑢 + 𝜀                            |𝜌| < 1         

Where Y represents each microbiological variable (MBC, beta-glucosidase, 

phosphatase, urease, POM, and MAOM), X represents the matrix of explanatory variables 

associated with the reflectance of the most important set of bands for each variable Y, W 

corresponds to the matrix of weights in relation to the distances of the nearest neighbor 

centroids in the polygons generated by tessellation of the soil sampling points, λ represents 

the spatial autoregressive coefficient, ρ the spatial autocorrelation coefficient, α corresponds 

to the intercept, β represents the parameters linked to the explanatory variables, u is associated 

with the vector of residuals with spatial dependence εN(0,^2 I), and I is an identity matrix" 

(Rodríguez-Albarracín et al., 2023). 

Additionally, the multivariate linear regression model (MRA) was tested considering 

also the X and Y coordinates as explanatory variables, as described by Böhner and Bechtel 

(2018). This type of analysis is considered as an extension of the linear spatial trend function 

and if the assumptions of independence of residuals are satisfied, it can be applied as a 

function of prediction and spatialization of unknown values.  

The choice of the best fit models was based on the lowest value of the Akaike 

information criterion (AIC). The assumption of independence of residuals through the Moran 

index test (MIT) with the matrix of weights of all neighbors (Liu and Chen, 2021) is satisfied 

where independence is fulfilled when the p-value of the test is greater than 0.05. And the 

highest correlation value (r) between the observed values of the response of the dependent 

variables Y and the values estimated by the model is considered as an additional criterion 

(Hoge et al., 2018). 
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It is important to interpret the impact of the explanatory variables of the selected spatial 

regression model, taking into account that in some models such as autoregressive models, 

such interpretation cannot be done directly with the coefficients of the model. In the case of 

classical regression models the impacts of the coefficients must be estimated and interpreted, 

as described by Elhorst (2014) through the determination of direct, indirect, and total impacts 

obtained from the impacts function of the spatialreg library of R (Méndez, 2020). For this 

study, direct impacts were analyzed and the relative importance of each explanatory variable 

was calculated as a function of the total impacts. 

 

3.2.3. Predictive models for C sequestration potential 

The potential deficit of SOC saturation or C sequestration potential (Sat-def) relates to the 

additional amount of OC that can stabilize a soil, considering that there is a potential 

saturation (sat-pot) (referring to a theoretical maximum of SOC that can be stabilized in fine 

soil particles), the C sequestration potential will correspond to the difference between the 

potential saturation and the actual C (Figure 3). The latter is related to the C contained in the 

fine particles that is the MAOM fraction (Hassink, 1997; Fujisaki et al., 2018). The potential 

saturation of C for the study area was calculated using Feller and Beare (1997); and the actual 

C was calculated with Rodríguez-Albarracín et al. (2023). The methodological details are 

described in that study. 

Rodríguez-Albarracín et al. (2023) determined the individual contribution of soil minerals 

on the C sequestration potential. However, the activity of microorganisms must be considered 

due to their effects on C dynamics (Follet et al., 2001). In this sense, spatial regression models 

were developed as a dependent variable of the C sequestration potential (Sat-def) determined 

by Rodríguez-Albarracín et al. (2023) for depths of 0 cm to 20 cm, maintaining the 

explanatory variables proposed by the authors associated with the relative abundance of soil 

minerals (goethite, hematite, gibbsite, kaolinite). These variables were represented by their 

spectral amplitudes in the Vis-NIR-SWIR range, adding as explanatory variables the MBC, 

beta-glucosidase, phosphatase and urease activity, POM, and MAOM obtained with method 2 

in addition to the general abundance of bacteria, fungi, actinomycetes, acidobacteria, and 

vesicular arbuscular mycorrhizal fungi obtained with method 1 (Figure 3). The models 

described in the previous section were tested, and the best model was selected considering the 

fulfillment of the assumptions described in that section. 
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Figure 3. Flow chart of the carbon sequestration potential adjustment through the inclusion of 

variables associated with microbiological activity. These are sat-pot: potential C saturation; 

sat-def: C saturation deficit; CMAOM cur: actual concentration of C in mineral-associated 

organic matter; Gt: goethite, Hem: hematite; Gbs: gibbsite; Kln: kaolinite; AIC:  Akaike 

information criterion. 

 

3.3. Results  

3.3.1. Method 1 

The spatial prediction of bacterial abundance, fungal abundance, actinomycetes, and 

acidobacteria were obtained with an R2 of 0.67, 0.63, 0.62 and 0.69 using Mid-IR reflectance 

(Figure 4) and making use of the RF algorithm. An improvement in R2 was observed with the 

Vis-NIR-SWIR dataset, reaching 0.77 for bacterial abundance, 0.80 for fungi abundance, 0.85 

for actinomycetes, and 0.78 for the additional map of vesicular-arbuscular mycorrhizal fungi 

with an R2 of 0.78. It is evident that a similar distribution is maintained with both ranges of 

the electromagnetic spectrum. This distribution of organisms responds to a greater amount of 

iron oxides (Figure 8). We observed potential values of microorganism abundance or an index 

of microorganism activity based on reflectance (Figure 4). The lower reflectance values were 

associated with a higher activity rate of the organisms. The areas corresponding to the higher 

abundance (green ones) were related to higher iron oxide content, especially of gibbsite. 

Towards the western zone, some green areas can also be observed, marked in the Vis-NIR-

SWIR and responding to medium contents of kaolinite. Similarly, in the central-western zone, 

green zones associated with high contents of kaolinite, goethite, and gibbsite can be seen for 

both spectral ranges. 

The enzyme activity index maps obtained with the first method (Figure 5 a, c, e, g, i, k) 

shows some variations, especially in the distribution of beta-glucosidase and urease for both 

ranges of the electromagnetic spectrum. These had a higher potential content of enzymes 

(dark and light green areas) in the Mid-IR spectrum (Figure 5 a, c, e). Some areas with lower 

contents (red color) can be seen in the western, central-eastern, and north-eastern zones. This 
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zone (north-eastern) seems to coincide with low gibbsite contents, while the other zones are 

due to their urban location. This differentiation is not observed with the Vis-NIR-SWIR 

spectra (Figure 5 g, i, k), where the zones with potentially high contents are lower. Some 

zones with low contents (red color) are observed towards the southeast that seem to be related 

to low hematite and goethite contents. The enzymatic activity of acid phosphatase was only 

elaborated for the Vis-NIR-SWIR electromagnetic spectrum, according to the spectral range 

(Zornoza et al., 2008). As with the other enzymes, the highest potential contents are in the 

zones with the highest iron oxide content (Figure 8). However, unlike the other enzymes, the 

areas with low iron oxide contents and in general of minerals associated with the clay fraction 

are observed with low potential contents. 

 

 

Figure 4. Spatial prediction of mycorrhizal activity index based on reflectance of Mid-IR and 

Vis-NIR-SWIR spectral ranges for bacterial abundance (a, e), fungal abundance (b, f), 

actinomycetes (c, g), acidobacteria (d) and vesicular arbuscular mycorrhizal fungi (h). R2 is 

coefficient of determination of the spatial prediction 

Spearman's correlation analysis between laboratory measurements and the 

microbiological activity index maps (Figure 5 and 6 a, c, e, g, i, k) showed high correlations 

for the two ranges of the electromagnetic spectrum evaluated. For Mid-IR, correlations of -

0.66 for beta-glucosidase and -0.57 for urease were obtained (Figure 5 a, c). For Vis NIR-

SWIR we calculated correlations of -0.55 for beta-glucosidase, -0.70 urease, and -0.65 acid 

phosphatase (Figure 5 g, i, k). The correlations are negative because there is an inverse 

relationship between reflectance values and microbiological activity; higher reflectance 

translates into lower activity. For MBC maps there was a similar distribution in both 
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electromagnetic spectrums. However, with Mid-IR (Figure 6 a) there were larger areas in red 

that represented lower potential MBC as occur in urban areas. In contrast for Vis-NIR-SWIR 

(Figure 6g) this differentiation was not seen, but areas with average potential values were 

detailed towards the western zone, related to average contents of gibbsite. Correlations 

between map values and laboratory data were obtained for MBC of -0.63 for Mid IR and -

0.59 for Vis NIR-SWIR. 
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Figure 5. Spatial prediction based on Mid-IR and Vis-NIR-SWIR reflectance of the enzyme 

activity index determined in method 1 for beta-glucosidase (a, g), urease (c, i), and 

phosphatase (e, k). Values inside yellow boxes correspond to Spearman correlations between 

laboratory analyses and activity indexes. Spatial prediction of enzyme quantification results of 

method 2 for beta-glucosidase (b, h), urease (d, j), phosphatase (f, l). The quantification 

equations for each variable are shown; the numbers in red indicate the specific bands X and Y 

correspond to the longitude and latitude. R is the correlation value between the observed value 

and the one predicted by the quantification equation. R2 is coefficient of determination of the 

spatial prediction. 

 

We also elaborated POM and MAOM maps (Figure 6 c and e), with the Mid-IR, 

including the ranges reported by Parikh et al. (2014) that follow a similar distribution to the 

MBC, especially MAOM. The POM showed small differentiations towards the northeastern 

zone with potentially lower values. The correlations obtained with the POM and MAOM 

laboratory values were -0.28 and -0.74. These results allow validation of these 
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microbiological activity maps elaborated from soil spectral data. They allowed us to validate 

the methodology for those variables that could not be analyzed in the laboratory, such as the 

abundance of bacteria, fungi, actinobacteria, acidobacteria, and vesicular arbuscular 

mycorrhizal fungi that contributed to the development of exploratory analysis of potential 

values of these variables. 
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Figure 6. Spatial predictions based on Mid-IR and Vis-NIR-SWIR reflectance of the activity 

index determined in method 1 for microbial biomass carbon (MBC) (a, g), labile C 

compounds (c, i), and resistant C compounds (e, k). Values inside the yellow boxes 

correspond to Spearman correlations between laboratory analyses and the activity index. 

Labile compounds were compared to particulate organic matter (POM) and resistant 

compounds to mineral-associated organic matter (MAOM). Spatial predictions of method 2 

quantification results for MBC (b, h), POM (d, j), MAOM (f, l). The quantification equations 

for each variable can be seen, the numbers in red indicate the specific band, X and Y 

corresponding to longitude and latitude. R is the correlation value between the observed value 

and the one predicted by the quantification equation. R2 is coefficient of determination of the 

spatial prediction. 

 

3.3.2. Method 2 

The results of the different parameters analyzed in the various spatial regression models 

tested are shown in the appendix tables. The data were fitted to different models with high R 
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values that were not far from the fits associated with the multiple linear regression model 

considering location. Therefore, due to the ease of replicating the proposed methodology, we 

decided to work with this model for the prediction of microbiological activity. The specific 

Mid-IR and Vis-NIR-SWIR bands obtained with the RFE technique and those of greatest 

importance in the prediction of each of the variables analyzed are shown as predictors in red 

in the regression equations in Figures 5 and 6. 

For beta-glucosidase most of the bands (1310, 1581, 1826, 1856 cm-1) were in the ranges 

reported by Rasche et al. (2013) for the Mid-IR spectrum (Figure 5b), and an R of 0.79 was 

obtained. The adjusted map shows a similar distribution to that of the initial method, with 

more high and medium values. In contrast, for Vis-NIR-SWIR (Figure 5h) the bands obtained 

(350, 360, 361 and 2500 nm) were not within the range reported by Zornosa et al. (2008) 

(1372-2272 nm). This is reflected by the difference in the distribution of the adjusted map that 

also varies considerably in relation to the Mid-IR map. In this map there are greater areas with 

low activities of this enzyme; however, the ranges related to the highest values maintain a 

similar distribution. Additionally, the R2 of the map validation for Vis-NIR-SWIR was higher 

than that obtained for Mid-IR (0.43 and 0.3). 

For urease, the bands used in the model (604, 608 and 620 cm-1) were not within the 

ranges reported by Rasche et al. (2013) for Mid-IR (Figure 5d), although a strong R of 0.92 

was obtained. Despite not showing coincidence between the bands reported in the literature 

and those obtained in the model, a similar distribution was observed with the adjusted map, 

with few low values and smaller areas with moderated values. Similarly, the bands associated 

with the prediction model for Vis-NIR-SWIR (350, 410, 2499 and 2148 nm) were not in the 

ranges reported by Zornoza et al. (2008); however, the distribution of the adjusted map 

(Figure 5j) was similar to the one elaborated with the first methodology, showing some areas 

with low values in the northwestern and southwestern localities and larger areas in green 

color, associated with high values of this enzymatic activity. 

For acid phosphatase, an initial map with the Mid-IR spectrum was not constructed, 

because no studies were found relating this enzymatic activity to the indicated range (Table 

1). We observed that the bands with greater importance in the prediction of this enzyme 

corresponded to 610, 614, 622, 624, 689, 1083 and 2660 cm-1, from which we elaborated a 

prediction equation with an R of 0.8. This map showed an R2 of 0.49 in the validation (Figure 

5f), and it is clear that the high values of this activity are concentrated in the areas with high 

iron oxide contents (Figure 8). The most important bands associated with the Vis-NIR-SWIR 

spectrum correspond to 356, 357, 667 and 1911 nm, of which only the last one was within the 
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ranges reported by Zornoza et al. (2008). We obtained an R2 for validation equal to that 

obtained with the Mid-IR spectrum; however, we saw strong differences in the maps and the 

predicted values, because higher data were obtained with Mid-IR, reflecting wider areas with 

low or no enzyme activity (areas in red) with the prediction based on the Vis-NIR-SWIR 

spectrum (Figure 5l). However, if the maps of the initial methodology are compared, a similar 

distribution was observed. 

For the MBC, the most important bands of the Mid-IR spectrum for the prediction of this 

variable (1864, 1866, 1885, 1887, 1899 cm-1) are within the ranges reported by Rasche et al. 

(2013), from which we obtained a prediction equation with an R correlation of 0.69. The 

quantification map of this variable had an R2 of 0.47 (Figure 6b) and a similar distribution 

was obtained for the map with the first method, with a reduction of the areas with low 

contents, especially in the southern zone. In relation to the Vis-NIR-SWIR spectrum, the most 

important bands in the prediction correspond to 356, 360, 371, 2300 and 2467 nm, of which 

only the last two were within the ranges reported by Zornoza et al. (2008). We obtained an R 

correlation of 0.81 for the prediction equation and a map with a validation R2 of 0.5, with a 

distribution like that obtained in the first methodology (Figure 6h). However, few areas with 

high contents were observed that were strongly related to the areas with higher iron oxide 

contents (Figure 8). 

The most important bands of the Mid-IR spectrum for POM prediction did not match to 

those reported by Parikh et al. (2014). Although, they obtained a prediction equation with an 

R correlation of 0.5 and a map with an R2 in the validation of 0.53 that presented strong 

differences in relation to the map obtained with the first method (Figure 6d), given that areas 

with low contents were not observed and areas with high percentage of particulate matter 

were mostly observed. For the Vis-NIR-SWIR spectrum, a map of this variable was not 

constructed using the first method, because no specific bands for these forms of organic 

matter were reported in this spectrum.  The most important bands corresponded to 800, 802, 

808 and 821nm, from which we adjusted a prediction equation with an R correlation of 0.64 

and obtained a map with R2 of 0.33. This showed a similar distribution on the map obtained 

with the Mid-IR spectrum with the first methodology, only with a reduction of the zones with 

high values (Figure 6j). This was clearly one of the most difficult variables to map. 

The MAOM prediction was related to the Mid-IR spectrum bands 614, 616, 618 and 

1887cm-1 that did not coincide with those reported by Parikh et al. (2014), but from these, a 

prediction equation was obtained with an R correlation of 0.92 and a map with R2 of 0.65, 

whose distribution was similar to that of the map developed with the first method (Figure 6f). 
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No map was made with the first method using the Vis-NIR-SWIR, because there were no 

studies that report specific ranges or bands for this variable (Table 1). The most important 

bands in the prediction correspond to 351, 375, 573 and 2360 nm, from which a prediction 

equation was adjusted with an R correlation of 0.98 and a map with an R2 of 0.33 that had a 

distribution similar to that of the Mid-IR map of the first methodology, while the higher 

values were restricted to a smaller area (Figure 6l). 

 

3.3.3. Predictive models for C sequestration potential 

The prediction equation for C sequestration potential proposed by Rodríguez-Albarracín 

et al. (2023) for the 0 to 20 cm depth was adjusted by including microbiological variables. 

Thus, we obtained an equation for Mid-IR and a Vis-NIR-SWIR (Table 2). 
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Table 2. Fitted spatial regression models and their related statistics for C sequestration 

potential (Sat-def). λ = autoregressive parameters, ρ = spatial autocorrelation coefficient, r = 

correlation coefficient, MIT = Moran index test. 

Model Λ R AIC r NT MIT variables 

Mid-IR Depth 0 to 20 cm 

PAR 
0.837 

 2024.22 0.33 1.81E-08 5.39E-02 Sat-def 
(1.78E-06) 

SEM  
0.816  

1931.259 0.59 8.35E-12 1.80E-01 
B-g + U + AKt + 

AGb + Ahm + F + 

Acti (4.95E-06)  

SLM 
 0.751 

1930.69 0.69 1.86E-12 8.61E-02 
B-g + U + AKt + 

AGb + AHm + F + 

Acti  (3.20E-05) 

SARAR 
0.526 0.519 

1929.71 0.66 1.39E-12 0.463 
B-

g+U+AKt+AGt+A

Hm+F+Acti (3.43E-01) (3.26E-01) 

SLMA  
 0.792 

1941.47 0.66 2.84E-12 1.64E-01 
B-g + MAOM + 

AKt + AGb + 

AHm + F + Acti  (1.86E-05) 

Multiple 

linear 

regression 

   

0.59 1.70E-11 1.30E-05 
B-

g+U+AKt+AGt+A

Hm+F+Acti+X       

Vis NIR SWIR Depth 0 to 20 cm 

PAR 

0.986 

 6775.45 0.50 6.80E-10 8.78E-12 Sat-def 
(< 2.220e-

16) 

SEM  

0.976  

6533.76 0.61 6.63E-12 3.07E-06 
B + F + AKt + AGt 

+ AHm + B-g + P 

+ POM 
(< 2.220e-

16) 
 

SLM 

 0.928 

6550.45 0.59 3.54E-13 4.08E-09 
B + F + AKt + AGt 
+ AHm + B-g + P 

+ POM  
(< 2.220e-

16) 

SARAR 

0.892 0.585 

6520.93 0.61 1.45E-12 0.591 
F + VAM + AKt + 
AGt + AHm + B-g 

+ P + POM 
(< 2.220e-

16) 
(8.35E-04) 

SLMA  

 0.940 

6517.21 0.62 1.02E-12 3.44E-03 
B + AKt + AGt +  
AHm + B-g + p + 

POM 
 

(< 2.220e-

16) 

Multiple 

linear 

regression 

   
0.53 5.08E-12 0 

B + F + VAM + 
AGb + AGt + 

AHm + U + POM 

+ MAOM + X + Y 
   

Where A = the amplitude of the different minerals AKln (kaolinite), AGt (goethite), AHem (hematite), 

and AGbs (gibbsite) from Mendes et al. (2020), cited by Rodriguez-Albarracin et al. (2023) and 

enzymatic activity of beta-glucosidase (B-g), urease (U), and phosphatase (P) and activity indexes of 

bacteria (B), fungi (F), actinomycetes (Acti), and vesicular arbuscular mycorrhizal fungi (VAM). The 

models selected as the best ones are shown in gray. 

 

According to Table 2 we observe that all models for Mid-IR meet the assumptions of 

independence of residuals (MIT >0.05); therefore, the criterion for the selection of the best 

model was based on the highest value of r, associated with SLM (r=0.69). We observed that 
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for the SLM model of MIR (Table 3) the C sequestration potential (Sat-def) was explained by 

the enzymatic activity of beta-glucosidase and urease, the activity index of fungi and 

actinomycetes, and the abundance of kaolinite, gibbsite, and hematite. Minerals had the 

highest impact and were also the most important variables, followed by the activity index of 

actinomycetes. Enzymatic activity had low impact and low importance (Figure 7). 

 

Table 3. Parameters of the SLM spatial regression model for Mid-IR and SARAR model for 

Vis-NIR-SWIR for C sequestration potential (Sat-def) 

Coefficients Estimate 

Asymptoti

c Std. 

Error 

z value Pr(>|z|) 
Impact 

Direct 

Impact  p-

value 

Mid-IR Depth 0 to 20 cm 

(Intercept) 2.21 1.676 1.321 0.186   

Beta-

glucosidase -0.21 0.026 -8.110 4.44E-16 -0.217 4.15E-14 

Urease 0.27 0.089 2.963 0.003 0.270 0.00162 

AKt 642.11 298.187 2.153 0.031 654.972 3.66E-02 

AGb -2150.77 1748.846 -1.230 0.219 -2193.856 2.25E-01 

AHm 340.73 156.824 2.173 0.030 347.552 0.02764 

Fungi -81.88 32.360 -2.530 0.011 -83.523 0.01771 

Actinomycetes 90.20 38.759 2.327 0.020 92.002 0.02908 

Vis NIR SWIR Depth 0 to 20 cm 

(Intercept) 1.42 1.427 0.995 0.3196   

Fungi 27.82 8.436 3.297 0.0010 27.956 0.00077 

VAM Fungi -16.28 4.609 -3.532 0.0004 -16.362 0.00031 

AKt 511.14 169.000 3.025 0.0025 513.690 0.00192 

AGt -169.49 41.327 -4.101 4.11E-05 -170.337 0.00013 

AHm 740.10 89.606 8.259 2.22E-16 743.783 4.44E-16 

Beta-

glucosidase 0.05 0.021 2.427 0.015 0.051 0.01185 

Phosphatase 0.00 0.002 -2.013 0.044 -0.004 0.03827 

POM -1.37 0.183 -7.464 8.42E-14 -1.374 2.41E-13 

 

In relation to the Vis-NIR-SWIR spectra, we observed that only the SARAR model 

satisfied the assumption of independence of the residuals (MIT= 0.59) (Table 2), presenting 

the lowest AIC value (6520) and a high r (0. 61). Because of that, it was chosen as the best 

fitted model. The enzymatic activity of beta-glucosidase and acid phosphatase, activity index 

of fungi, VAM fungi, POM and the abundance of kaolinite, hematite and goethite explained 

the Sat-def. The minerals had the highest impacts, followed by the activity index of fungi 

(Table 3). The most important variables corresponded to hematite and kaolinite, followed by 

the activity index of fungi, goethite, and VAM fungi, while the lowest impacts and the least 

importance were related to enzymatic activity and POM (Figure 7). 
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Figure 7. Importance of the explanatory variables of the spatial regression models SLM for 

Mid-IR and SARAR for Vis-NIR-SWIR for the prediction of C sequestration potential (sat-

def) at a depth of 0 cm to 20 cm. 

 

3.4. Discussion  

3.4.1. Method 1 

Our study performed the prediction and spatialization of the activity index for biological 

variables such as MBC, soil enzymes, and different microbial groups by RF algorithm, based 

on Mid-IR reflectance and using environmental covariates such as SYSI, topographical relief, 

and climate. We obtained an R2 for MBC of 0.41 (Figure 6a), which is lower than that 

reported by other studies (Soriano-Disla et al., 2014 [R2=0.82]; Ludwig et al., 2008 

[R2=0.84]; Rasche et al., 2013 [R2=0.92]; Nath et al., 2021 [R2=0.84]), when we made 

predictions using PLS models. The R2 obtained from the activity index of microbial groups 
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(Figure 4) such as bacteria (R2=0.67), fungi (R2=0.63), actinomycetes (R2=0.62) and 

acidobacteria (R2=0.69) are close to Nath et al. (2021) for identification of microbial groups 

(R2=0.75). For beta-glucosidase and urease activity, we obtained an R2 of 0.54 and 0.65 

(Figure 5 a, c). These values were lower than Rasche et al. (2013) for beta-glucosidase 

(R2=0.89) and urease (R2=0.91) and lower than the R2 value of Mimmo et al. (2002) for the 

prediction of enzymatic activity through the Mid-IR spectrum (R2=0.7). 

For the predictions based on Vis-NIR-SWIR spectra we obtained an R2 of 0.72 for MBC 

(Figure 6g), 0.73 for beta-glucosidase (Figure 5g), 0.71 for urease (Figure 5i), 0.65 for acid 

phosphatase (Figure 5k), 0.77 for the activity index of bacteria (Figure 4e), 0.80 for fungi 

(Figure 4f), 0.85 for actinomycetes, and 0.78 for VAM fungi (Figure 4g and h). These values 

were similar to those obtained by Zornoza et al. (2008), whose study was the basis for the 

selection of spectral ranges. They report an R2 of 0.76 for MBC, 0.88 for phosphatase, 0.55 

for beta-glucosidase, and 0.46 for urease. Additionally, they report R2 based on PLS 

regression of 0.93 for bacteria, 0.77 for fungi, 0.92 for actinobacteria, and 0.91 for VAM. 

Rinnan and Rinnan (2007) perform NIR-based predictions using PLS. They obtain R2 values 

of 0.78 for fungi and 0.72 for bacterial activity, while Soriano-Disla et al. (2014) report R2 of 

0.93 for MBC.  

In general, the spatial predictions of the different microbiological activity indices obtained 

R2 values mostly higher than those of Rodriguez-Albarracín et al. (2023) in the mapping of 

variables such as clay (R2= 0.7) and SOC (R2=0.7), in the study area of this research, using 

the DSM methodology for the mapping. 

 

3.4.2. Methodology 2 

The second method allowed identifying specific bands related to microbiological activity 

for Vis-NIR-SWIR and Mid-IR ranges through the RFE algorithm, from which we obtained 

MLR equations for the prediction of each variable (Figures 5 and 6). The R2 of the spatial 

prediction determined by RF for some variables predicted with the Mid-IR spectrum were 

low, as observed for beta-glucosidase (0.3) and urease (0.42) (Figure 5 b and d); however, the 

R of the prediction equations were 0.79 and 0.92, showing a considerable improvement of 

these metrics compared to the first method, approaching the values reported by Rasche et al. 

(2013). 

For beta-glucosidase the bands involved in the MLR prediction model for the Mid-IR 

spectral range corresponded to 1310, 1581, 1826 and 1856 cm-1 (Figure 5b). These are within 

the range reported by Rasche et al. (2013) (2301-1279cm-1). For the 1310 cm-1 band there are 
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no studies reporting a specific activity. Parikh et al. (2014) cite the range 1330 to 1315 cm-1 in 

which the influence of the C=O ester group is highlighted. In the 1315 cm-1 sulfone band, in 

1300-1340 diamond C=C and in 1300 cm-1 the CH overtone, is also reported from 1379-1384 

cm-1 by Liu et al. (2015). Gao and Chorover (2009) report the influence of Amide III (NH, 

CN, CH, NH) at 1337-1313 cm-1, and Nicolas et al. (2017) report the general activity of 

aliphatic groups in the range 1350-1450 cm-1. In relation to the 1581cm-1 band (Figure 5b), 

aromatic groups are reported at 1510 cm-1 (Nicolás et al 2017); and specifically aromatic C=C 

at 1630-1580 cm-1 (Ladd et al., 1993), who also point out the influence of amide II at 1550 

and lignin at 1500 cm-1. Parikh et al. (2014) point out the influence of amide II (NH C=N) 

from 1590-1500 cm-1, aromatic CH deformation at 1570 cm-1, aromatic C=C stretching from 

1550-1500 cm-1, and 1600-1580 cm-1. The influence of amide II is also reported by Cao et al. 

(2011) from 1540-1549 cm-1 and Omoike and Chorover (2006) from 1544-1516 cm-1. 

According to Cao et al. (2011) and Mc Whirter et al. (2002), the amide II band shift is due to 

the interaction between iron oxides, such as goethite and the abundance of surface adsorbed 

bacteria observed in the 1550 cm-1 band. The bands 1826 and 1856 cm-1 (Figure 5b) can be 

related to the carbonyl influence reported at 1620-1850 cm-1 by Liu et al. (2015). Demyan et 

al. (2012), note that the peaks 1980 to 1870 cm-1 and 1792 cm-1 are related to SiO bonds of 

quartz minerals and carbonyl stretching. 

For urease, the bands involved in the prediction model 604, 608 and 620 cm-1 (Figure 5d), 

are within the CH2 stretching vibrational range of bacterial cellular compounds of 650-450 

cm-1 (Parikh et al., 2014). Ludwig et al. (2008) indicate that the broad range of 1057-397 cm-1 

is related to nitrogenous compounds. The range 690-670 cm-1 is associated with clay and 

quartz minerals (Demyan et al., 2012). In the 696 cm-1 peak there is an association of the 

interaction of amide IV from bacterial cells with the AlO groups of clay minerals (Deo et al., 

2001). 

The bands involved for acid phosphatase prediction 610, 614, 622, 624 and 689 cm-1 

(Figure 5f) can be related to some bacterial compounds (Parikh et al., 2014) and the 

interaction of these with clay minerals (Deo et al., 2001). The 1083 cm-1 band can be 

associated with the stretching of P=O groups of polyphosphate products, nucleic acid 

phosphodiester, and phosphorylated proteins recognized in their study in the 1084 cm-1 band 

(Ojeda et al., 2008). Gao and Chorover (2009) report COC, C-C, and PO32- vibrations at 1080 

cm-1. Liu et al. (2015) mention the influence of P-O=R features in the range 1000-1100 cm-1 

and C-O stretching in the range 1006-1122 cm-1. Lad et al. (1993) indicate the influence of 

carbohydrates in the 1050 cm-1 band. Parikh et al. (2014) point out that the range 1000-1080 
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cm-1 is an indicative of POM cellulose, the range 1160-1020 cm-1 reflects the influence of 

polysaccharides such as cellulose lignin or pectin, and CO and CN stretches in the band 1085 

cm-1. Also, the influence of POFe bonds in the bands 1037, 1045 and 1027 cm-1 are a result of 

the interaction between the PO groups of the bacterial walls and the surfaces of metal oxides, 

specifically the PO reported at 1075-1028 cm-1 and the phosphorus of humic fractions at 

1100-1000 cm-1 (Parihn et al. 2014). Cao et al. (2011) report on the 1031 cm-1 band the 

symmetric stretching of PO and at 1051 cm-1 of nucleic acids and the C-OH stretch of 

phosphorylated proteins, which are displaced at 1049 and 1092 cm-1 when bound to goethite. 

The 2660 cm-1 band is also involved in the prediction of acid phosphatase (Figure 5f) and can 

be related to the 2600-2500 cm-1 range associated with the H-bridges of OH bonds of 

carboxylic acids (Parikh et al., 2014). A close range of 2640-2399 cm-1 is reported for 

enzymatic activity in general (Rasche et al. 2013). 

The Mid-IR spectra involved in the prediction of MBC corresponded to 1864, 1866, 1885, 

1887 and 1899 cm-1 (Figure 6b) and are contained within the broad 1959-939 cm-1 range 

reported by Rasche et al. (2013). This range is also related to the interaction of SiO bonds of 

quartz minerals and carbonyl stretching identified in the 1980-1870 cm-1 range (Demyan et al. 

2012). Ammann & Brandl (2011) note that cellular carbohydrate and protein compounds 

associated with microorganisms are distinguished in the 650 cm-1 and 1800 cm-1 bands. 

The prediction of POM through Mid-IR involved the bands 604, 1824 and 1826 cm-1 

(Figure 6d) reflects the interaction between bacterial compounds and clay minerals, quartz 

minerals, and organic compounds with the presence of carbonyl groups (Deo et al., 2001; 

Demyan et al., 2012). They also relate to nitrogenous compounds (Ludwig et al., 2008) and 

these compounds are required by fungi in different forms such as nitrates, amines, amides 

(Nicolás et al., 2017). Furthermore, these bands are related to carbohydrates and proteins from 

microorganisms (Ammann and Brandl, 2011). Resistant organic matter MAOM also involves 

bands within these ranges associated with 614, 616, 618 and 1887 cm-1 (Figure 6f). The 

differentiation of POM and MAOM in the Mid-IR spectrum is difficult. There are multiple 

molecular bonds in the same Mid-IR frequency range that may limit specific assignments; 

however, the prediction of resistant materials has higher statistics metrics (Figure 6f) (Parikh 

et al., 2014). 

In contrast, in the Vis-NIR-SWIR range the differentiation of the spectrum bands for POM 

and MAOM was clearer (Figure 6 j and l). The POM involved the 800, 802, 808 and 821 nm 

bands. NH, CH, and CO ratios have been reported in the 820 peak (Stenberg et al., 2010) and 

in a 825 nm response of aromatic compounds (Viscarra-Rossel and Behrens, 2010). The 
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MAOM involved the bands 351, 375, 573 and 2360 nm (Figure 6l). Sharma et al. (2021) 

report the interaction of fulvic acids in the peaks 355 nm and 395 nm and strongly humified 

material in the range 600-670 nm. Viscarra-Rossel and Behrens (2010) report the interaction 

of carbonates in 2336 nm, carbohydrates in 2381 nm and methyl functional groups in the 

range 2307-2469 nm. 

The Vis NIR-SWIR spectral range for beta-glucosidase prediction in the bands 350, 360, 

361 and 2500 nm were involved. Zornoza et al. (2008) point out an adequate range of 1372-

2272 nm. Yang et al. (2022) report the interaction of the methyl CH group at 2450 nm and 

2440 nm, and the interaction of fungi with iron oxides at 390 nm. 

The prediction of urease involved the 350, 410, 2148 and 2499 nm bands (Figure 5j). 

Viscarra-Rossel and Behrens (2010) indicate at 2137 nm as the response of polysaccharides, 

and Fidêncio et al. (2002) and Cozzolino and Morón (2003) report NH of amine and phenolic 

COH at 2200 nm. Yang et al. (2022) report the interaction of clay minerals with fungi in the 

2140 and 2150 nm bands and the interaction of fungi and iron oxides at 410 nm. 

For acid phosphatase there were the bands 356, 357, 667 and 1911 nm (Figure 5l) that also 

involved the response of strongly humified material (600-670n m) reported by Sharma et al. 

(2021). Viscarra-Rossel and Behrens (2010) indicate the influence of carboxylic acid at 1930 

nm and polysaccharides at 1961 nm. The 191 nm band is in the range 1732-2092 nm (Zornoza 

et al., 2008). 

MBC related bands 356, 360, 371, 2300 and 2467 nm (Figure 6h) are involved in 

enzymatic activity and are associated with fungal interaction with clay minerals and iron 

oxides (Yang et al. 2022). CH bonds and fulvic acids are also recognized in these bands 

(Viscarra-Rossel and Behrens, 2010). Additionally, a relationship is known between the 

ranges for MBC (2270-2630 nm) and the ranges reported for bacteria, fungi, actinobacteria 

and VAM fungi (Zornoza et al., 2008). 

Soriano-Disla et al. (2014) point out a clear differentiation of N and C in the Mid-IR 

spectrum that favors strong correlations of this spectral region with soil enzymatic activity. 

We verified in Vis-NIR-SWIR and Mid-IR enzymatic activity and differentiation of C forms 

(Figures 5 and 6). The quality of organic matter responds to the extracellular enzymatic 

activity of fungi and bacteria (De Beeck et al., 2021). 

Few works try to predict microbial composition through reflectance spectroscopy 

(Zornoza et al., 2008). These studies are based on the prediction of other soil parameters 

related to biological indicators (Soriano-Disla et al., 2014), such as Fe oxides, that modify 

microbial community composition providing specific niche conditions product of redox 
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processes (Whitman et al. 2018, Chen et al. 2020). Goethite and hematite are the most 

common iron oxides in Brazilian soils (Schaefer et al., 2008; Carvalho Filho et al., 2015). In 

general, the areas with higher amounts of kaolinite, goethite, hematite, and gibbsite were 

those with higher relative concentrations based on the activity index of fungi, actinomycetes, 

acidobacteria, MBC beta-glucosidase, urease, and acid phosphatase activity (Figures 4, 5 and 

6). POM and MAOM show a close relationship; however, differences in predictions with each 

sensor are clear (Figure 6). In Vis-NIR-SWIR these higher abundances seem to be restricted 

to higher contents of iron oxides. On the other hand, for Mid-IR the highest concentrations of 

POM were found in locations with higher contents of clay minerals and Fe and Al oxides. 

Several organic particles exhibit a net negative charge at ambient pH values (Rijnaarts et 

al., 1995), that varies in magnitude with pH due to ionization of surface functional groups and 

extracellular polymeric substances (EPS) (Omoike and Chorover 2004).  EPS functional 

groups are mainly protonated at pH< 2.0 and become negatively charged as pH increases due 

to the dissociation of protons in their functional groups (Cao et al., 2011). Evidently, the pH of 

the study area favors negative charges on EPS functional groups (Figure 8) that will bind with 

positively charged mineral surfaces, like Fe and Al oxides (Parikh et al., 2014). Carboxyl 

groups can form inner and outer sphere complexes with oxide surfaces, and the pH of the 

study area favors inner sphere complexes (Gao et al., 2009; Parikh et al., 2014), resulting in 

the stabilization of these C forms (Figure 6). 

According to Puissant et al. (2019), the acid phosphatase is an isoenzyme that can report 

higher activity at pH 5 that does not correspond to what  was found in the present study, since 

the areas where the pH > 5 had lower activity of this enzyme (Figure 5 f and l). Nitrogen 

compounds associated with EPS are preferentially adsorbed on clay minerals and phosphate 

compounds preferentially on goethite (Cao et al., 2011). In our study, the highest phosphatase 

activity was concentrated in areas with higher goethite and gibbsite content (Figure 5 and 8).  

Urease includes more areas with higher activity that seem to accompany the high and 

intermediate concentrations of kaolinite (Figure 5 d and j, Figure 8). 

The measurement of enzyme activity allows predicting global microbial activity (Arias et 

al., 2005). Soil microbial properties are sensitive indicators of soil quality and are important in 

the evaluation of management practices (Zornoza et al., 2008). Microbiological variables such 

as enzyme activity, MBC and microbial groups are significantly related to soil safety (Nath et 

al., 2021). Therefore, prediction equations based on Vis-NIR-SWIR and Mid-IR spectral 

information (Figures 5 and 6) can contributed to soil health monitoring. 
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3.4.3. Prediction of C sequestration potential  

Mid-IR and Vis-NIR-SWIR prediction models of C sequestration potential (Sat-def) show 

that the main contribution comes from soil mineralogy (Table 3). The crystallinity of iron 

oxides in Brazilian soils is low (Schaefer et al., 2008), and this stabilizes SOM more 

effectively (Duiker et al., 2003). The importance of minerals in the C sequestration potential, 

highlights the major contribution of kaolinite and hematite without ignoring the importance of 

goethite and gibbsite in the stabilization of this new C (Rodríguez-Albarracín et al., 2023). In 

our research, the high positive impacts of kaolinite and hematite and the high negative 

impacts of gibbsite and goethite were confirmed (Table 3). Clearly, mineralogy not only 

conditions OC stabilization but it also conditions microbiological activity. For example, Fe 

oxides such as goethite can modify the composition of the microbial community through 

oxido-reduction processes that provide specific niche conditions (Jeewani et al., 2021). The 

above could explain the relatively lower contribution of microbial activity compared to that of 

clay minerals (Table 3, Figure 7) in C sequestration potential. For Rinnan and Rinnan (2007) 

the general concentrations of microbial compounds in soil are low but are directly related to 

the quantity and quality of OM, given the relationship of the products of microbial activity 

with organic functional groups. Such functional groups interact with soil oxides through 

electron transfer (Chen et al., 2020) from which metabolic energy is generated for 

microorganisms (Omoike et al., 2004). 

Parikh et al. (2014) report different studies that have used spectroscopy to evaluate the 

interaction between bacteria and biomolecules with mineral surfaces in which the importance 

of hematite, kaolinite, and goethite are evident. For goethite, the interactions with EPS were 

highlighted with kaolinite and hematite having a greater relationship with bacteria. The 

contribution of bacteria in C stabilization is reported by Rong et al. (2010), while, in our study 

no influence of bacteria on new C sequestration potential was seen (Table 3). This occurred 

possibly due to a higher dominance of fungi that may reduce bacterial diversity (Davinic et 

al., 2012). Therefore, it is possible that there were dominant contributions of fungal 

exoenzymes, since as Puissant et al. (2019) report, beta-glucosidase activity in soils with pH > 

5 (Figure 8) is related to a higher abundance of actinomycetes that may explain the positive 

impacts that this variable showed in the Mid-IR model (Table 3). Soils with high Fe contents 

are dominated by actinomycetes (Jeewani et al., 2021). 
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Figure 8. Additional variables: maps of kaolinite, goethite, hematite and gibbsite taken from 

Mendes et al. (2021), maps of iron oxide (F2O3) and pH in water taken from Rodríguez-

Albarracín et al. (2023) 

 

In general, fungi represent an important component in both prediction models (Table 

3, Figure 7). They are the main decomposers of lignin and lignocellulose into SOM, through 

the secretion of oxidative and hydrolytic enzymes that generate extracellular metabolites that 

facilitate the decomposition of SOM (Yang et al., 2022). This highlights the importance of 

enzymatic activity because net and charged organic molecules including enzymes from 

bacteria and fungi accumulate in these EPSs (De Beeck et al., 2021). In general, enzymatic 

activity influences SOC depletion and sequestration, and the formation of labile forms of C, 

especially hydrolytic and oxidative enzymes (Zhang et al., 2020). 

The enzymatic activity of beta-glucosidase was important in both models (Table 3). It 

is found in the matrix of EPS of fungi and bacteria (De Beeck et al., 2021), and acts in the last 

phase of cellulose degradation (Gil-Sotres et al., 2005), obtaining glucose as a final product. 

Glucose is an important source of energy C for the growth and activity of soil microorganisms 

(Merino et al., 2016). In addition, the prediction models variables for this enzyme allowed 

corroboration that spectroscopically beta-glucosidase is related to MAOM (Figure 5 b and h). 
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Urease enzymatic activity is part of the nitrogen cycle (Meyer et al., 2015) and 

spectroscopically presents strong relationships with functional groups with nitrogenous 

compounds (Figure 5 d and j) that are required by fungi (Nicolás et al., 2017). These 

microorganisms contribute significantly to the sequestration of new C, according to our 

research (Table 3). 

Acid phosphatase is also involved in C sequestration (Table 3 and Figure 5fl). This 

enzyme is related to phosphorus compounds like nucleic acids as present in bacterial walls, 

phosphate groups that interact with the surfaces of metal oxides, and humic fractions (Omoike 

and Chorover, 2006; Parickh et al., 2014). It is possible that this enzymatic activity involves 

bacterial contributions to the C sequestration potential that was not observed in the 

mathematical models. 

The influence of VAM fungi on C sequestration potential was also seen (Table 3), with 

a negative impact indicating that a reduction in the abundance of these organisms results in an 

increase of sequestration potential. The hyphae of these fungi form a microhabitat 

(mycosphere) that serves as an important reservoir of carbonaceous compounds and 

photosynthates accessible to other microorganisms (Halsey et al., 2016). A similar influence is 

present with POM (Table 3), as this fraction includes forms of C that microorganisms readily 

decompose (Zhang et al., 2020) and that are important for energy and sources of C and 

oxygen for respiration (Follett et al., 2001). 

Some of the C forms bound to clay fractions may be relatively inert. They do not respond 

to land use, while others may be more active and respond to land use changes (Demyan et al., 

2012). The zones with higher sequestration potential reported by Rodríguez-Albarracín et al. 

(2023) respond to zones with lower microbial activity and medium enzymatic activity 

(Figures 4 and 5) that can be activated with land use change. The authors discussed the 

historical land use map of Tayebi et al. (2021) and underlined that areas with more than 15 

years of agriculture have both the lowest and highest C sequestration potential, given that in 

some areas minerals such as goethite are completely saturated with C and in others, kaolinite 

and hematite show high C sequestration potential (Figure 8). Land use change causes a 

variation of organic compounds to reach the soil (Kirsten et al., 2021). These zones with 

higher sequestration potential (Figure 4, 5 and 6) are key for promoting crop renewal to take 

advantage of the potential that minerals such as kaolinite and hematite have to retain new C 

and thus reactivate microbial activity in these zones, given that an increase in SOC stocks 

would enhance the activity of microorganisms. 
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3.5.Conclusions 

Maps of activity indices related to the relative abundance of bacteria, fungi, 

actinomycetes, acidobacteria, and vesicular-arbuscular mycorrhizal fungi were obtained, 

based on information from the Vis-NIR-SWIR and Mid-IR spectral ranges by the digital soil 

mapping framework. The best results were found for Vis-NIR-SWIR spectrum, which R2 

varied from 0.77 to 0.85. 

The method based on literature for the relative determination of the enzyme activity index 

and MBC from Vis-NIR-SWIR and Mid-IR spectral information was validated, obtaining 

correlations from -0.55 to -0.7 with the laboratory data. The mapping based on this 

methodology obtained R2 values between 0.41 and 0.73. 

Equations were obtained for the quantification of enzymatic activity, MBC, and POM and 

MAOM, for each spectral range, based on multiple linear regression models including as 

explanatory variables the specific bands for each variable and the X and Y coordinates that 

presented correlations from 0.64 to 0.98. POM was the variable with the lowest adjustment 

(0.50). The spatial modeling showed lower R2 than those obtained with the first methodology; 

however, for variables such as MBC, an improvement was verified. 

The bands involved in the multiple linear prediction models, and therefore the most 

important for the Mid-IR spectral range for beta-glucosidase corresponded to 1310, 1581, 

1826, 1856 cm-1; for urease they corresponded to 604, 608, 620 cm-1, for Phosphatase 610, 

614, 622, 624, 689, 1083, 2660 cm-1, for MBC 1864, 1866, 1885, 1887, 1899 cm-1, for POM 

604, 1824, 1826 cm-1, for MAOM 614, 616, 618 and 1887cm-1. For the Vis NIR-SWIR 

spectral range for beta-glucosidase they corresponded to 350, 360, 361, 2500 nm, urease 350, 

410, 2499, 2148 nm, phosphatase 356, 357, 667, 1911nm, MBC 356, 360, 371, 2300, 

2467nm, POM 800, 802, 808, 821nm, and MAOM 351, 375, 573 and 2360nm. 

The C sequestration potential was fitted to a double SARAR autoregressive model, 

considering the Vis-NIR-SWIR electromagnetic spectrum bands with an r of 0.61 and a 

spatial error model (SEM) for the Mid-IR spectral range with r of 0.7. The explanatory 

variables include mineralogy (kaolinite, hematite, goethite, and gibbsite) and microbiology 

(activity index of fungi, actinomycetes, vesico-arbuscular mycorrhizal fungi, enzymatic 

activity of beta-glucosidase, urease and acid phosphatase and POM). The greatest importance 

corresponded to minerals with positive impacts for kaolinite and hematite, and negative 

impacts for goethite and gibbsite. The microbiological variables with the greatest importance 

were related to the general abundance of fungi, those of lesser importance were of enzymatic 

activity, especially that of acid phosphatase. 
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The influence of land use was identified in C sequestration potential by its relation to the 

organic molecules that reach the soil and interact with microbiota and minerals. The areas 

with higher C sequestration potential could be key to climate change mitigation strategies. 
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Appendix 

Regression models using Mid-IR spectra. λ = autoregressive parameters, ρ = spatial 

autocorrelation coefficient, r = correlation coefficient, MIT = Moran index test. 

Model λ ρ AIC r NT MIT variables 
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423.0452 0.759904 3.81E-02 5.84E-01   
  3.02E-02 

Multiple 

linear 

regression 

      0.8004089

5 
0.95430983 0.44943272 

X610 + X614 

+ X622 + 

X624 + X689 

+ X1083 + 

X2660 + Y 

            

POM 

PAR 
-0.32003 

  -54.386 0.14853 1.05E-06 5.35E-01 POM 
6.31E-01 

SEM 
-1.70472   

-55.6317 0.603126 1.34E-03 8.57E-01   
4.10E-02   

SLM 
  

-

0.7736157 -54.0022 0.47296 3.05E-04     

  2.68E-01 

SARAR 
-1.70821 0.0075366 

-53.6318 0.603425 1.33E-03 0.854312   
6.27E-02 9.92E-01 

SLMA 
  -1.398681 

-51.0468 0.66046 1.18E-04 6.12E-01   
  6.11E-02 

Multiple 

linear 

regression 

      0.5005439

5 
0.00146353 0.23588697 

X604 + 

X1824 + 

X1826 + X + 

Y 
            

mOM 

PAR 
0.51104233 

  66.36513 0.316946 4.60E-02 1.37E-01 mOM 
2.76E-01 

SEM 
-2.243194   

17.68908 0.93247 7.48E-02 5.90E-01   
3.15E-03   

SLM 
  0.417768 

22.1285 0.90499 6.64E-02 3.31E-01   
  2.66E-01 

SARAR 
-2.2696241 0.5093 

16.11034 0.936927 2.86E-02 0.558712   
4.71E-07 4.17E-02 

SLMA 
  -1.06488 

17.23342 0.95357 2.87E-02 3.85E-01   
  1.73E-01 

Multiple 

linear 

regression 

      0.9193920

6 
0.46953504 0.39331561 

X614 + X616 

+ X618 + 

X1887 + X + 

Y 
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Regression models using Vis NIR-SWIR spectra. λ = autoregressive parameters, ρ = spatial 

autocorrelation coefficient, r = correlation coefficient, MIT = Moran index test. 

Model λ ρ AIC r NT MIT variables 

Betaglucosidase 

PAR 
0.205243 

  269.5247 0.114515 
0.00015087635

5 

0.28960972930

1 

B 

glucosidase 7.22E-01 

SEM 
0.0485971   

264.745 0.5889 3.10E-04 3.98E-01   
9.43E-01   

SLM 
  0.350019 

263.635 0.579 5.40E-04 2.79E-01   
  5.03E-01 

SARAR 

-

0.2996447

2 

0.3865110

5 266.4204 0.601578 3.09E-04 0.475324   

8.52E-01 7.00E-01 

SLMA 

  -0.638987 

258.7513 0.798672 2.56E-02 7.61E-01   

  
3.38E-01 

Multiple 

linear 

regression 

      

0.733414 0.010611 0.841555 

X350 + 

X360 + 

X361 + 

X2500 + X 
      

MBC 

PAR 

0.0636528

1   -48.1165 0.03381 4.45E-02 3.95E-01 MBC 

9.17E-01 

SEM 
-1.787408   

-53.0489 0.762504 4.82E-02 9.29E-01   
4.59E-02   

SLM 
  -0.014175 

-47.6278 0.676818 7.32E-02 5.69E-01   
  9.82E-01 

SARAR 
-1.415988 0.2957249 

-48.2873 0.734847 2.53E-02 0.781315   
1.26E-01 6.04E-01 

SLMA 
  -0.239454 

-47.5104 0.769772 9.01E-02 7.61E-01   
  7.13E-01 

Multiple 

linear 

regression 

      

0.775849 0.213436 0.296102 

X356 + 

X360 + 

X371 + 

X2300 + 

X2467 

      

Urease 

PAR 

-

0.1227791   187.4721 0.057155 8.06E-02 4.72E-01 Urease 

8.39E-01 

SEM 
-0.2254   

177.336 0.662996 5.42E-01 5.42E-01   
7.70E-01   

SLM 
  -0.1394 

177.3627 0.66201 6.02E-01 5.47E-01   
  8.09E-01 

SARAR 
-0.2295 -0.02123 

177.8583 0.65665 6.29E-01 0.036841   
8.62E-01 9.84E-01 

SLMA 
  -0.64557 

178.903 0.7171 7.18E-01 9.94E-01   
  4.11E-01 

Multiple 

linear 

      
0.853596 0.67725 0.466732 

X350 + 

X410 +       
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regression X2499 + 

X2148 + Y 

Phosphatase 

PAR 
-0.695538 

  436.5051 0.294914 4.66E-02 6.98E-01 Phosphatase 
3.23E-01 

SEM 
-1.708131   

419.5673 0.744989 6.90E-01 8.64E-01   
3.04E-02   

SLM 
  -0.848109 

424.1408 0.688341 4.81E-02 8.62E-01   
  1.83E-01 

SARAR 
-1.6005 

-

0.3892522 421.1563 0.74545 5.21E-01 0.90999   

7.61E-02 6.07E-01 

SLMA 
  -1.55095 

423.0452 0.759904 3.81E-02 5.84E-01   
  3.02E-02 

Multiple 

linear 

regression 

      

0.746176 0.944923 0.180025 

X356 + 

X357 + 

X667 + 

X1911 + X 
      

POM 

PAR 
-0.32003 

  -54.386 0.14853 1.05E-06 5.35E-01 POM 
6.31E-01 

SEM 
-1.70472   

-55.6317 0.603126 1.34E-03 8.57E-01   
4.10E-02   

SLM 
  

-

0.7736157 -54.0022 0.47296 3.05E-04     

  2.68E-01 

SARAR 
-1.70821 0.0075366 

-53.6318 0.603425 1.33E-03 0.854312   
6.27E-02 9.92E-01 

SLMA 
  -1.398681 

-51.0468 0.66046 1.18E-04 6.12E-01   
  6.11E-02 

Multiple 

linear 

regression 

      

0.613692 8.09E-05 0.261614 

X800 + 

X802 + 

X808 + 

X821 + X 
      

mOM 

PAR 

0.5110423

3   66.36513 0.316946 4.60E-02 1.37E-01 mOM 

2.76E-01 

SEM 
-2.243194   

17.68908 0.93247 7.48E-02 5.90E-01   
3.15E-03   

SLM 
  0.417768 

22.1285 0.90499 6.64E-02 3.31E-01   
  2.66E-01 

SARAR 

-

2.2696241 
0.5093 

16.11034 0.936927 2.86E-02 0.558712   

4.71E-07 4.17E-02 

SLMA 
  -1.06488 

17.23342 0.95357 2.87E-02 3.85E-01   
  1.73E-01 

Multiple 

linear 

regression 

      
0.980153 0.460622 0.672804 

X351 + 

X375 + 

X573 + 

X2360 + X 
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4. A PROGRESSIVE KNOWLEDGE STRATEGY TO DETECT 

MICROBIOLOGICAL ACTIVITY IN SOIL THROUGH VIS NIR-SWIR AND MID 

IR SPECTRAL CHARACTERIZATION AND MACHINE LEARNING 

TECHNIQUES 

 

Abstract 

The activity of microorganisms is related to the degradation of soil organic matter 

(SOM) and involves intra- and extracellular enzymatic activity, which interferes with its final 

forms. Therefore, the fractionation of SOM is key to understanding the results of such activity 

and the destiny of sequestered and stabilized carbon (C). The fine mineral fraction contributes 

more to the preservation of SOM compared to particulate OM (POM), since the SOM 

associated with the mineral fraction (MAOM) contains the highest amount of transformed 

microbial OM, including microbial biomass and necromass. However, POM constitutes the 

raw material for microbial activation considering that it includes many of the oxygen-

containing functional groups that are preferentially utilized by microorganisms. This type of 

analysis can be assisted by new techniques, such as spectroscopy, as Vis NIR SWIR and Mid 

IR wavelengths respond to functional groups of different types of soil organic compounds, 

iron oxides and clay minerals that are related to microorganisms, so their interpretation is 

considered a key tool for the characterization of this microbial activity. Therefore, the 

objective of this work was to develop a strategy to analyze microbiological activity at 

microscale using Vis NIR SWIR and Mid-IR spectroscopic techniques. Thirty-five samples 

were taken in the region of Piracicaba, São Paulo, and analyzed for quantification of 

microbial biomass carbon (MBC) and enzymatic activity of beta-glucosidase, urease and 

phosphatase, and fractionation of the SOM into POM and MAOM was performed. 

Subsequently, an interpretation of the Vis NIR SWIR and Mid IR spectra of the different 

fractions was performed, supported with information reported in the literature and with 

machine learning techniques that allowed the extraction of specific bands related to 

microbiological activity.  Additionally, based on the results of the spectral interpretation, the C 

forms of the POM and MAOM fractions and their interaction with the particles that compose 

the clay fraction were characterized using Imbuia infrared beamline of the Sirius synchrotron 

at the Brazilian Synchrotron Light Laboratory's (LNLS). It was observed that the spectral 

peaks corresponding to      functional groups CH, NH, CO, COH, CO and PO are related to 

the enzymatic activity of beta-glucosidase, urease and phosphatase. β-glucosidase was related 

to labile compounds of the MOS so pronounced peaks were identified in the POM fraction, 

whose amplitude is considerably reduced when analyzed in the MAOM fraction. Urease 

activity was related to NH functional groups, and its detection was also characteristic in the 

POM fraction. Phosphatase activity is strongly related to phosphate groups (PO) and prevails 

in the different fractions, due to the quality of the organo-mineral bonds. It was corroborated 

that the soil particles present Al and Fe coatings that favor the interaction with the 

extracellular enzymes. Additionally, it is concluded that the POM fraction includes the organic 

compounds that activate the enzymatic degradation, and the spectral analysis of this fraction 

favors the discrimination of the different enzymes, without discarding that a joint analysis of 

the fractions helps in the identification of the activity of the microorganisms that together with 

regression techniques and machine learning would favor the quantification and 

characterization of the microbial diversity, understanding of the destiny of the C forms, C 

sequestration potential and consequently in the evaluation of soil quality. 

 

Keywords: Soil spectroscopy, Enzyme activity, Functional groups, Microbiological activity 
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4.1.Introduction  

Soil organic matter (SOM) degradation, especially its degree of decomposition, is related 

to intra- and extracellular enzymatic activity of fungi and bacteria (De Beeck et al., 2021). 

Enzymes act as regulators in litter decomposition thus influencing labile forms of SOM 

(Zhang et al., 2020). Stable forms of SOM are also a product of this microbiological activity, 

as microorganisms produce biomass through metabolic processing of plant residues, and 

microbial residues are converted into stable forms through interaction with soil minerals 

(Adamczyk et al., 2019). It is important to study and relate in the predictions of carbon (C) the 

activity and diversity of exoenzymes and their interactions with minerals, because this 

microbial and extracellular enzymatic activity directly affects the effectiveness of mineral 

protection of soil organic carbon (SOC), and promotes its release (Yang et al., 2021), that is, 

the final forms of SOC are the product of microbial activity and mineralogical interaction. 

Additionally, it is important to include the fractionation analysis of SOM because it 

facilitates the understanding of the fate of the sequestered and stabilized C, helping to 

discriminate the labile forms of C and the more stable ones (Rasche et al. 2013, Demyan et al. 

2012). According to Parikh et al. (2014), the fractionation by density of SOM responds to its 

degrees of stability, considering that the fine size fraction, linked to the mineral, contributes 

more to the conservation of SOM compared to particulate OM (POM) (Kleber et al. 2015, 

Torn et al. 2013). The SOM associated with the mineral fraction (MAOM) involves the largest 

amount of transformed microbial OM, including microbial biomass and necromass (microbial 

residues) (Buckeridge et al. 2020, Liang et al. 2019). However, it is the POM that is the prime 

material for microbial metabolic activation considering that it includes many of the oxygen-

containing functional groups that are preferentially utilized by microorganisms (Parikh et al., 

2014). 

Reflectance spectroscopy is related to the study of the interaction of light with matter, 

where an exclusive response of a particular element or molecule is presented, thus serving as 

a fingerprint that facilitates identification (Viscarra Rossel et al. 2006, Madejová et al. 2017). 

According to Silvero et al. (2020), these interactions occur throughout the electromagnetic 

spectrum and are classified as electronic transitions in the visible (Vis: 400 - 700 nm), non-

fundamental vibrations in the near infrared (NIR: 700 - 1100 nm) and shortwave infrared 

(SWIR: 1100 - 2500 nm) and fundamental vibrations in the mid-infrared portions (mid MIR: 

2500 - 25000 nm, 4000 - 400 cm-1).Considering that microbiological activity presents this 

close relationship with the types and amounts of SOM, that is, it responds to the quantity and 

quality of organic carbon (OC) (Rasche et al., 2013), Vis NIR SWIR and Mid IR reflectance 
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spectroscopy analysis is key for the characterization of this activity, because it facilitates the 

differentiation of the functional groups of the different soil organic compounds (Ojeda et al. 

2008, Viscarra Rossel and Hicks, 2015) and allows the interpretation of clay mineralogy and 

iron oxides that are related to soil microorganisms (Viscarra Rossel et al. 2022, Yang et al. 

2021). There are no specific visible and infrared spectroscopic absorption bands assigned to 

microbial communities, however, given that the soil physicochemical environment conditions 

the abundance and function of microorganisms (Rasche et al., 2011), and the spectral response 

of the soil favors the prediction of fundamental components such as minerals, OM and water 

content (Yang et al. 2021, Viscarra Rossel et al. 2022) that are required by fungal and bacterial 

communities for their growth and obtaining energy (Müller, 2015), it is possible to relate 

wavelengths to microbiological characteristics. 

According to Rinnan & Rinnan (2007), the greatest difficulty in relating soil 

microbiological properties directly to spectral frequencies is due to the fact that microbial 

biomass and enzymatic activity have low contents compared to other edaphic compounds, so 

they hardly induce changes in spectra. However, it is possible to predict these microbiological 

properties due to their strong relationship with different C-containing soil organic compounds 

(Cohen et al., 2005). This correlation of microbiological activity with OC is indeed reflected 

in spectral patterns (Chodak, 2011). For example, extracellular enzymes produced by fungi 

for lignin and lignocellulose degradation release C into the soil solution, so it is possible to 

interpret spectral information as a bioindicator of soil microbiological properties (Rasche et 

al., 2013). Additionally, the interaction with soil mineralogy can also be interpreted spectrally, 

Fe, for example, is related to microbial energy generation for Fe-reducing microorganisms 

(Weber et al., 2006), as well as for phototrophic bacteria (Hegler et al., 2008), and the spectral 

response of iron oxides is recognized in the 540, 640 and 900 nm wavelengths, oxides 

associated with hematite in the 550 nm range, goethite around 440 to 470nm (Dematte et al., 

2014). Fe oxides have also been recognized in the SWIR 1400 and 1900nm ranges (Dalmolin 

et al., 2005). Now, some authors highlight the modification of these wave coverages upon 

interaction with microbiological activity, for example, Fe oxides associated with fungal 

diversity in the bands 390, 410, 460 nm (Vis NIR) (Yang et al., 2022), CH-goethite links ratio 

at 1725 nm (Sharma et al., 2021). Parikh et al. (2014) indicates that the interaction of 

phosphate groups presents in bacterial cell walls and goethite surfaces, which favors POFe 

bonds, are distinguished in the bands 1027, 1037 and 1045 cm-1, in the Mid IR spectrum. 

Additionally, Rong et al. (2010) recognized the interaction of water and polymer bridges 

favoring bacteria-goethite bonds in the band1085 cm-1. 
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In general, as mentioned by Nath et al. (2021) the soil matrix provides and regulates the 

habitat of different microbial communities, therefore, reflectance spectroscopy analyses on 

soil samples contribute to the prediction of compounds used by microbes, and to the 

prediction of products of microbiological activity, because these analyses provide integrated 

measures of the mineral-organic composition of the soil (Viscarra Rossel et al., 2016). Rasche 

et al. (2013) point out some wave coverages of the Mid IR spectrum that favor the prediction 

of glucosidase, xylosidase and urease, as well as bacterial abundance. In relation to Vis-Nir 

spectra, there have been reported some predictions associated with bacterial abundance 

(Viscarra-Rossel et al. 2022, Zornoza et al. 2008), microbial biomass (Coûteaux et al. 2003, 

Zornoza et al. 2008, Chodak 2011), enzymatic activity in soil (Cohen et al. 2005, Zornoza et 

al. 2008, Chodak 2011), respiration (Zornoza et al. 2008, Chodak 2011), fungal diversity and 

abundance (Yang et al., 2022 In general, the soil matrix provides and regulates the habitat of 

different microbial communities (Nath et al., 2021), therefore, reflectance spectroscopy 

analyses on soil samples contribute to the prediction of compounds used by microbes, and to 

the prediction of products of microbiological activity, because these analyses provide 

integrated measures of the mineral-organic composition of the soil (Viscarra Rossel et al., 

2016). Rasche et al. (2013) point out some wave coverages of the Mid IR spectrum that favor 

the prediction of glucosidase, xylosidase and urease, as well as bacterial abundance. In 

relation to Vis-Nir spectra, there have been reported some predictions associated with 

bacterial abundance (Viscarra-Rossel et al. 2022, Zornoza et al. 2008), microbial biomass 

(Coûteaux et al. 2003, Zornoza et al. 2008, Chodak 2011), enzymatic activity in soil (Cohen et 

al. 2005, Zornoza et al. 2008, Chodak 2011), respiration (Zornoza et al. 2008, Chodak 2011), 

fungal diversity and abundance (Yang et al., 2022). 

NIR and Mid IR reflectance spectra respond to the concentration of compounds related to 

C-H, N-H, S-H, C=O and O-H chemical bonds, thus allowing differentiation of the organic 

composition of a soil sample (Zornoza et al. 2008, Parikh et al. 2014, Viscarra Rossel et al. 

2022). It is these compounds with which microbial properties (for example, soil microbial 

biomass or enzymatic activities) are closely related (Parikh et al., 2014). Since these 

compounds are integrated with fungal and bacterial products. Ammann & Brandl (2011) 

indicates typical fingerprints for microorganisms by referring to the Mid IR spectrum wave 

coverages associated with cellular carbohydrate and protein compounds. According to Jiang et 

al. (2004) hydroxyl, carboxyl, phosphoryl and amide groups are common in bacterial cell 

walls. In general, the organic nature of bacteria and fungi makes the peak locations similar 

between SOM and microbial samples. For this reason, many Vis NIR SWIR and Mid IR band 
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assignments are common to the response of different forms of SOC (Rasche et al 2013, Parikh 

et al 2014). 

Specific wave coverages related to the specific property to be predicted can be extracted 

from the spectra by multivariate regression analysis and machine learning techniques using 

different algorithms (Zornoza et al. 2008, Shen and Viscarra Rossel 2021).  For example, 

Rasche et al. (2013) developed a partial least squares regression (PLSR) analysis based on 

Mid IR reflectance spectroscopy to predict soil microbial biomass and enzymatic activities. 

Evaluating the interactions of organic compounds with mineral surfaces is fundamental to 

understanding SOM stabilization. The charge of biomolecular functional groups on the 

surfaces of microorganisms and on minerals determines the adhesion process, being useful 

reflectance spectroscopy because it allows to evaluate such organo-mineral interactions 

facilitating the analysis of the binding mechanisms (Parik et al., 2014). Moreover, if this type 

of analysis is performed on the different fractions of the SOM, it favors the understanding of 

SOC dynamics (Six et al., 2004). The biogeochemical interaction between mineral particles 

and OM is a fundamental factor in the preservation of SOC, and the study of the selective 

contribution of clay minerals and iron and aluminum oxides to this stabilization of organic 

compounds is favored by individual analyses of SOM fractions (Kirsten et al., 2021). 

Synchrotron radiation (SR) is basically electromagnetic radiation that is emitted when 

charged particles are accelerated radially (Hota, 2021). When spectroscopy is combined with 

a microscope and this type of radiation, it allows the identification of the molecular chemistry 

of soil particles, because it favors the capture of images that help to differentiate the 

composition, structure and distribution of chemical constituents with a high signal-to-noise 

ratio and fine spatial resolution, which helps to improve the understanding of organo-mineral 

interactions, SOC sequestration, and the spatial distribution of these interactions (Lehmann 

and Salomon, 2010). Since synchrotron radiation provides spectroscopic analysis with high 

spatial resolution, it facilitates the mapping of C contents and forms and the interaction with 

minerals in small soil fractions (Lehmann et al., 2007). 

In general, traditional methods for analyzing soil microbiological activity are expensive 

and time consuming, and given their importance in understanding C dynamics, soil quality 

and soil health, there is a need to develop techniques through simple and cost-effective 

methods (Rasche et al. 2013). Spectroscopy has made great progress in detecting specific 

bands in the Mid IR region. On the other hand, we evolved towards microscale analysis and at 

this level no work has been done. 
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Therefore, the objective of this study was to develop a strategy to analyze micro-scale 

microbiological activity by spectroscopic detection. For these, we performed the 

interpretation of Vis NIR SWIR and Mid IR spectra of the SOM fractions (POM and MAOM) 

based on the relationship of the spectra with the quantification of microbial biomass carbon 

(MBC) and of the enzymatic activity of beta-glucosidase, urease and phosphatase (which 

interfere in the carbon, nitrogen and phosphorus cycles). Machine learning techniques were 

used to determine specific bands related to microbiological activity. Additionally, from the 

results of the spectral interpretation, we characterized the C-forms of the POM and MAOM 

fractions and their interaction with the particles that compose the clay fraction using the 

National Imbuia Beamline Synchrotron Light (µ-MIR) laboratory. 

 

4.2. Methodology  

4.2.1. Study area 

The study area is located in the State of São Paulo, Brazil, with approximately 2,598 km2, 

comprising eight municipalities (Figure 1). According to Alvares et al. (2013), this region 

presents an average annual temperature ranging between 20 and 22.5 ° C and annual rainfall 

between 1200 and 1400 mm, with a climate defined as subtropical Cwa, which presents a dry 

winter and a rainy summer according to the Köppen classification. The terrain includes 

undulating highlands and rolling hills with altitudes ranging from 450 to 950 m. The area is 

dominated by agricultural land uses, such as sugarcane and pasture, under no-till and 

conventional tillage management systems. The main soil types according to the World 

Reference Base (IUSS Working Group WRB, 2015) are Cambisol, Gleysol, Ferralsol, Nitosol, 

Lixisol, Leptsol, Arenosol and Planosol. 

4.2.2. Selection of sampling points 

Thirty-five representative sites of the study area were selected for soil sampling through 

the conditional Latin hypercube sampling method (Figure 1), which corresponds to a stratified 

random sampling procedure in which the selected samples respond to multivariate 

characteristics according to the indicated covariates (Yang et al., 2020). In this case, the 

covariates considered were the Synthetic Soil Image (SYSI), the terrain elevation model 

(DEM), soil type, variability in clay content and C, and the maps of Rodríguez-Albarracín et 

al. (2023) corresponding to microbial biomass carbon (MBC), general abundance of fungi, 

Actinomycetes and Acidobacteria, enzymatic activity of Beta glucosidase, Urease and 

phosphatase, and maps of labile and resistant carbon forms. 
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4.2.3. Laboratory analysis 

The 35 selected samples were 2mm sieved and the laboratory analyses were performed 

(Figure 1). The methodology of Vance et al. (1987) was used to quantify the carbon in the 

microbial biomass. The enzymatic activity of beta-glucosidase, phosphatase and urease were 

determined following the methodology of Tabatabai (1994) and Dick et al. (1996). The soil 

texture (Teixeira et al., 2017) and SOC (Walkley and Black, 1934) analyses were also 

performed. Finally, the physical fractionation of the samples to quantify C in particulate 

organic matter (POM) and C in OM associated with the mineral fraction (mOM) (Cotrufo et 

al., 2019) making use of the methodology described by Jindaluang et al. (2013), which starts 

from the dispersion of the soil with a 5% sodium hexametaphosphate solution; subsequently, 

the separation of the sand and clay/silt fraction is performed by 53 µm sieving. The 

microbiological analyses were performed with wet samples sieved at 2 mm.  

 

 

Figure 1. Study area and flowchart of methodology 

 

4.2.4. Spectral data acquisition 

Spectral data from the Vis-NIR-SWIR and Mid IR ranges, were acquired through the use 

of two sensors, the FieldSpec 3 spectroradiometer (Analytical Spectral Devices, Boulder, 

Col., USA) for obtaining reflectance data from 350 to 2500 nm (Vis-NIR-SWIR) (Demattê et 

al., 2019) and the Alpha Sample Compartment RT-DLaTGS ZnSe sensor (Bruker Optik 
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GmbH), equipped with a drift attachment (Souza et al., 2020) for obtaining spectral 

information in the mid-infrared range (4000 to 600 cm-1), with a resolution of 1.2 nm and 64 

scans per second as described by Terra et al. (2015). For sensor calibration, a gold plate was 

used as a standard. FieldSpec 3, has a spectral resolution of 3 nm for the range between 400 

and 700 nm and 10 nm for the range from 700 to 2500 nm, therefore, resampling was 

performed at 1 nm, obtaining 2151 spectral bands (Greschuk et al., 2022). FieldSpec 3 

readings require air-dried, ground and sieved soil samples at 2 mm. For Mid IR range 

readings, soil samples were ground and sieved at 100 mesh. 

 

4.2.5. Statistical analysis and spectral behavior 

Due to the high dimensionality presented by the data set related to spectral information, it 

has redundant and irrelevant information (Chen et al., 2018), so it is necessary to select the 

most important data set (Wang & Li, 2023). To perform this selection, the Recursive Feature 

Elimination (RFE) algorithm developed by Guyon et al. (2002) and implemented in the 

"Caret" package of R is used, applying the Random Forest (RF) machine learning method as 

an internal model (Kuhn, 2021).  

The RFE algorithm is a method with a wide applicability that allows handling nonlinear 

and more complex relationships, considering comprehensively the relationships between the 

analyzed factors (Wang & Li, 2023). RFE is based on backward selection, where initially a 

model is created using all n predictors, the performance is calculated by k-fold cross-

validation (RMSE) and the importance of the variable; subsequently the least important 

predictor is removed from the set, and the model is refitted, again the performance is 

evaluated and the least important predictor is removed; this is done repeatedly until the 

optimal number of predictors is determined by taking the model with the best performance 

(RMSE) (Zhang et al., 2023). 

For the present work, the RFE algorithm was applied for each variable (enzymatic activity 

of betaglucosidase, phosphatase and urease, POM and mOM) and for each range of the 

electromagnetic spectrum, to obtain the most important Vis NIR SWIR and Mid IR bands of 

each variable (Figure 1), which were subsequently analyzed directly in the spectra, through a 

visual interpretation of the distribution patterns. 

 

4.2.6. Mid-IR and XRF Spectroscopy 

Mid IR spectral images were recorded at the IMBUIA-micro station of the Brazilian       

Synchrotron Light Laboratory (LNLS), composed with a Focal Plane Array (FPA) IR detector 
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and a mercury-cadmium-telluride (MCT) detector. The FPA 128x128 detector allows the 

capture of images at 25-fold magnification, in a spectral range from 4000 to 700 cm-1. The 

images correspond to 350 x 350 µm 2 field of views with a pixel size of 3.3 µm. In order to 

avoid particle overlapping, suspensions of soil in water (1:100) were prepared, then a drop of 

this suspension was placed on gold substrate plates. The advantage of this sample preparation 

is that it avoids physicochemical alterations, and the particle chemistry remains practically 

intact (Wan et al., 2007). 

Multivariate data analysis is useful to interpret the information generated by spectroscopy 

(Lehmann and Solomon, 2010), therefore, the interpretation and speciation analysis was 

performed from the bands identified with RFE and using as support the visual interpretation 

of the Mid-IR spectrum. 

To map the chemical composition of the minerals, the samples were scanned using X-ray 

fluorescence spectrometer  (μ-XRF) (Orbis PC EDAX, USA). The X-rays were generated by 

a Rh anode operating at 45 kV and 900 μA (Gomes et al., 2019) and focused to 30 μm by 

policapilary lens system. X-ray spectra are detected by a silicon drift detector (Junior et al. 

2019, Macedo et al. 2021).  

As pointed out by Lehmann and Solomon (2010), the combination of these two techniques 

(Mid-IR Spectro microscopy and XRF) helps to understand the biochemical interaction of 

organo-mineral complexes, as it favors the understanding of the spatial arrangement of 

organic and mineral particles. 

 

4.3. Results 

4.3.1. Mid IR spectral interpretation 

Table 2 shows the Mid IR bands obtained by the RFE, and Table 3 shows the most 

important bands for each of the evaluated variables, according to the RFE results. The Mid IR 

spectra readings were taken for each of the SOM fractions (Table 2 and 3) and considering 

these bands and the reports of different authors, the spectra were interpreted. In order to 

facilitate the description of the interpretation, 3 contrasting samples are presented, in relation 

to C and clay content (Table 1). Sample P16, is a more sandy sample with the lowest C 

content, compared to samples P 30 and P35. 
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Table 1. Physicochemical analysis of samples P16, P30 and P35. MBC= microbial biomass 

carbon, Ctotal= total carbon, CPOM= carbon of particulate organic matter, CmOM= carbon 

of organic matter associated with minerals, Fe= iron, P= phosphorus, Ca= calcium, Mg= 

magnesium, SB= base saturation. 

Laboratory analysis  
Samples 

P16 P30 P35 

M
ic

ro
b

io
lo

g
ic

a
l 

MBC  (mg C g-1 Soil) 0.4 0.43 0.7 

Ureasea (ug NH4 Kg-1Soil) 4.8 8.12 12.6 

Phosphatasea (mg PNF Kg-

1Soil) 137.91 91.75 310.16 

Betaglucosidasea (mg PNF 

Kg-1Soil) 6.51 16.2 32.67 

F
ra

ct
io

n
a
ti

o
n

 

M
O

S
 

C total (%) 0.451 1.119 2.656 

C POM %) 0.062 0.092 0.300 

CmOM (%) 0.389 1.026 2.356 

CPOM_gkg 0.618 0.923 3.005 

CmOM_gkg 3.887 10.265 23.558 

C
h

em
ic

a
l 

Fe mgkg 37.4 7.8 10.5 

P mgkg 32.3 24.2 29.5 

pH H2O 5.3 6.9 6.1 

Ca mmolkg 4 23.7 73.4 

Mg mmolkg 2.1 12.3 28.6 

SB mmolkg 6.7 37 115.1 

P
h

y
si

ca
l 

Sand gkg 941 867 149 

Silt gkg 22 33 103 

Clay gkg 37 100 748 

 

It is observed that for the MBC of the unfractionated sample, which we will call 

"total", the most important bands of the Mid IR spectrum are in the range 1880, 864 and 602 

cm-1 (Table 2). Phosphatase and Urease present similar ranges in the "total" samples, and in 

general the different variables of this fraction present high importance in the bands 600 - 620, 

1600-1900 cm-1 with the exception of Fe. If we observe the Mid IR spectra (Figure 2, 3 and 

4), in the ranges below 1000 cm-1 is where different peaks and valleys are presented related to 

enzymatic activity, MBC and labile and resistant forms of C. Analyzing the spectra of sample 

P16, the spectral response of Fe also follows these microbiological variables, due to the fact 

that microorganisms take energy from Fe to carry out their metabolic processes (Weber et al. 

2006, Müller 2015). Between 1000 and 1500 cm-1 high activity is also present, and a high 

ratio is evident in the enzymatic activity of Betaglucosidasea, phosphatasea and Ureasea, as 

well as POM. 

Interaction of betaglucosidasea, phosphatasea and MBC activity is evidenced between 

2000 and 1500 cm-1, together with Fe (Figure 2). On the contrary, the activity of Urease, 
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phosphatase and MBC is concentrated from 4000 to 3500 cm-1, also maintaining the 

interaction with Fe. It is also observed that the highest reflectance is present in the POM 

fraction, because it is related to the coarsest particles (>53 µm) and it is in this fraction where 

the functional groups with the highest presence of O are present (Parikh et al., 2014), and it is 

the fraction that contains the highest food contribution of the microorganisms, because it 

presents the most easily available forms of C (Follet et al. 2001, Zhang et al. 2020). The high 

reflectance in each of the most important band ranges is reduced in the total and mOM 

fractions, especially in the latter, where the most stable carbon forms and smaller particles 

associated with the clay fraction are found. The unfractionated sample behaves similarly to 

POM between 4000 to 2000 cm-1, with lower reflectance in the range 1200 to 600 cm-1. 

 

Table 2. Bands of the Mid IR spectrum related to the microbiological variables (MBC 

(microbial biomass carbon), enzymatic activity of ureasea, phosphatasea and 

betaglucosidasea, POM (particulate organic matter), mOM (organic matter associated with 

minerals), total C, Fe (iron)), according to the results of the Recursive Feature Elimination 

(RFE) algorithm. 

Variables  
Fractionation MOS Mid IR (cm-1) 

Total POM mOM 

MBC 

600, 602, 604, 606, 614, 616, 618, 

620, 622, 626, 640, 651, 661, 667, 

669, 671, 679, 681, 816, 822, 1222, 
1226, 1230, 1234, 1236, 1240, 1242, 

1244, 1246, 1250, 1267, 1269, 1275, 

1287, 1289, 1291, 1293, 1540, 1542, 
1556, 1558, 1560, 1824, 1850, 1852, 

1854, 1856, 1858, 1860, 1862, 1864, 

1866, 1868, 1870, 1872, 1875, 1877, 
1879, 1881, 1883, 1885, 1887, 1889, 

1891, 1893, 1895, 1897, 1899, 1901, 

1903, 1905, 1907, 1942, 2001, 2005, 
2044,  

777, 779, 781, 785, 828, 830, 832, 
1289, 1312, 1322, 1324, 1326, 1332, 

1344, 1346, 1348, 1354, 1358, 1361, 

1363, 1365, 1367, 2727, 2729, 2748, 
2758, 2760, 2762, 2764, 2766, 2768, 

2770, 2772, 2778, 2782, 2784, 2786, 

2790, 2792, 2805, 2829, 2870, 2872, 
2888, 2925, 2945, 2956, 2972, 2980, 

3678, 3680,  

618-916, 922, 930-948, 957-965, 

979-1259, 1271-1532, 1540-1544, 

1556-1605, 1613-1685, 1693-1703, 
1711, 1715, 1724-2056, 2064-2072, 

2072, 2079, 2087-2109, 2121-2127, 

2140-2150, 2162-2231, 2240-2244, 
2250, 2254, 2262-2297, 2309-2319, 

2331-2358, 2364-2382, 2393, 2403, 

2413, 2425, 2429, 2433, 2444, 2452, 
2454, 2470, 2482, 2489, 2491, 2501-

2507, 2513, 2519, 2533, 2558, 2560, 

2566, 2576, 2586, 2605, 2617, 2646, 
2660, 2664, 2678, 2680, 2686, 2690, 

2697, 2709, 2713, 2721, 2733, 2743, 

2746, 2748, 2756, 2760, 2780, 2788, 
2799, 2801, 2811, 2813, 2821, 2823, 

2852, 2854, 2862, 2884, 2894, 2929, 

2933, 2945, 2949, 2954, 2962, 2964, 
2970, 2984, 2992, 3005, 3023, 3027, 

3037, 3188, 3196, 3204, 3443, 3594, 

3614, 3616, 3619, 3621, 3633, 3637, 
3643, 3661-3676, 3690-3698 

Ureasea 

600-620, 632-643, 659-704,722, 

730-732, 755, 761-777, 781-820, 
824, 832, 842, 873, 895, 902, 912, 

918, 922, 926-928 932, 967, 987-

989, 993-997, 1006-1008, 1012-
1018,1024-1026,  1032-1057, 1063-

1101,1108, 1116, 1122-1497,                                                                                                                                                

1503-1805, 1815 1824-1838, 1846-
1848 1854-1901, 1909-2072, 2095 

2130 2138 2162 2170, 2201, 2207, 

2221-2256 , 2282 2295-2297  2305, 
2327, 2348, 2352, 2358, 2360, 2366, 

2401, 2440, 2452, 2456, 2458, 2464, 

2476-2480,   2489-2501,  2519-
2554, 2590, 2609, 2898, 2919, 2925, 

3164, 3264, 3272, 3335, 3404, 3425, 

3443-3445, 3453-3455,3472-

614, 616, 618, 691, 694, 696, 765, 

787, 1018, 1020, 1022, 1024, 1026, 

1028, 1030, 1032, 1034, 1036, 1293, 
1314, 1316, 1318, 1320, 1322, 1324, 

1326, 1328, 1336, 1346, 1348, 1354, 

1356, 1358, 1361, 1363, 1365, 1367, 
1369, 1371, 1373, 1375, 1377, 1379, 

1383, 1399, 1401, 1403, 1409, 1412, 

1414, 1416, 1418, 1420, 3698, 3700, 
3702,  

600-628, 632, 634, 640, 659, 665-

669, 687, 694, 698, 700, 708, 730, 
740, 767, 783, 791, 793, 804-818, 

828-834, 840, 999, 1020, 1024, 

1034, 1038-1046, 1050-1059, 1063-
1067, 1085, 1101, 1110-1120, 1126, 

1128, 1136-1140, 1150, 1161, 1163, 

1167, 1169, 1183, 1185, 1189-1212, 
1230-1371, 1383, 1385, 1401, 1403, 

1409, 1416, 1424, 1426, 1428, 1440, 

1444, 1458, 1475, 1483, 1487, 1540-
1550, 1558-1569, 1575, 1577, 1601, 

1607, 1622-1640, 1671, 1683, 1766, 

1777, 1787, 1791, 1803, 1811, 1815, 
1819-1824, 1832-1840, 1848-1858, 

1870, 1883, 1891-1911, 1928, 1979-

2034, 3780, 3845, 3888, 3890-3896, 
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3476,3504, 3598, 3600, 3629, 3633, 
3645-3649,3657-3663,3682-3700 

3714,3833-3839 3855, 3900,3904-

3910, 3933-3941, 3951, 3959, 3963-
3969, 3975, 3980-3998   

3904, 3906, 3949, 3951, 3965-3971, 
3980-3998 

Phosphatasea 

600-630, 634, 640-651, 659-665, 
673-704, 726-736, 742, 769-779, 

785, 789-895, 910, 934-936, 957, 

961, 969, 979-993, 1018-1026, 
1042, 1069-1097, 1104-1152, 1159-

1191, 1201, 1212-1283, 1295-1299, 

1320-1328, 1342, 1354, 1358, 1399, 
1403, 1426-1428, 1438, 1454-1458, 

1465, 1509, 1513, 1520, 1524, 

1556-1560, 1601, 1628-1632, 1648-
1658, 1683, 1687, 1693-1701, 1720, 

1748-1752, 1768, 1781, 1875-1883, 

1911, 1942, 1958, 2038-2056, 2231, 
2242, 2250, 2358, 2482, 2499, 2523, 

2527, 2533-2535, 2593, 2605, 2611-

2621, 2637, 2652-2662, 2670-2688, 
2695-2727, 2737-2741, 2750-2770, 

2778-2780, 2847-2854, 2911, 2923, 

3098, 3231, 3249, 3280-3284, 3298, 
3376, 3435-3437, 3451-3466, 3523-

3525, 3610, 3619-3629, 3635, 3643-

3674, 3682-3727, 3733, 3751, 3808-

3810, 3835-3839, 3853-3857, 3873, 

3900-3908, 3939, 3951-3955, 3961-

3969, 3980-3998, 

600-612, 622-630, 643-647, 669-

671, 679-704, 712-724, 749-753, 
767-775, 781, 789-818, 834-840, 

895, 987-999, 1006-1026, 1034, 

1042, 1053-1057, 1101, 1138-1140, 
1152-1159, 1230-1248, 1254, 1261, 

1273-1287, 1297-1416, 1426, 1432-

1436, 1446, 1448, 1534, 1556, 1569, 
1583-1607, 1622, 1652, 1736, 1856, 

1885, 1895, 2025, 2030-2036, 2525, 

2533, 2544, 2692, 2741, 2829, 2839, 
2847, 2850-2862, 2870, 2876, 2911-

2958, 2988, 2990, 2996, 3000, 3003, 

3213, 3441, 3606-3733, 3741, 3873, 
3929-3933, 3955-3957, 3992-3998, 

620-647, 653-708, 716, 722-736, 

753, 771, 793, 800-816, 826-853, 

879, 906, 912, 914, 948-953, 969-
1079, 1087-1097, 1108, 1114-1218, 

1248, 1256, 1261-1275, 1289-1422, 

1436, 1450-1460, 1473, 1483-1550, 
1558-1597, 1611-1634, 1646, 1656, 

1669, 1679, 1681, 1683, 1691, 1693, 

1711, 1713, 1724, 1726, 1736, 1748, 
1750, 1758, 1781-1809, 1815, 1822, 

1838, 1846, 1852, 1868, 1870, 1872, 

1889-1903, 1913-1917, 1926, 1950, 
1952, 1962, 1989-2003, 2030, 2484, 

2491-2495, 2670-2674, 2954, 2958, 

3007, 3188, 3196, 3204, 3251, 3364, 
3374, 3417, 3508, 3510, 3551-3557, 

3614-3621, 3659, 3670-3708, 3718, 

3778, 3802, 3833, 3839, 3849, 3851, 
3865, 3900-3924, 3931, 3937, 3943, 

3947, 3951-3998,    

POM 
602, 604, 820, 1299, 1301, 1303, 

1752, 1824, 1826, 1832, 1834, 1842, 

1919, 1921, 1923, 2042,    

600-640, 647-716, 726-734, 740-

855, 865-995, 1004, 1014-1034, 

1044-1169, 1175-1226, 1244, 1246, 
1252-1254, 1265-1450, 1460, 1467, 

1471, 1475, 1483-1513, 1520, 1524, 

1540-1593, 1601-1697, 1705-1715, 
1720-1734, 1742-1758, 1777, 1779, 

1787, 1840, 1852, 1862, 1864, 1870-

1875, 1887-1905, 1921-1926, 1932, 
1934, 1962, 1972, 1995, 2032, 2038-

2062, 2089-2121, 2127-2132, 2156, 

2160, 2180, 2187, 2197, 2201-2248, 
2256, 2260-2285, 2293, 2317-2319, 

2331-2348, 2368-2378, 2384, 2389, 

2405, 2415, 2429, 2507, 2517, 2566, 
2584, 2686, 2733, 2780, 2782, 2913, 

2952, 3037, 3056, 3109, 3235, 3257, 

3315, 3374, 3425, 3464-3472, 3484-
3488, 3500-3514, 3563, 3565, 3580-

3586, 3600, 3608, 3614, 3619, 3623, 

3665, 3674, 3696-3704, 3727, 3733, 
3739, 3751, 3792, 3816, 3818, 3851-

3855, 3878, 3882, 3898-3902, 3945-

3947, 3961-3975, 3990-3998,   

624-638, 649, 651, 665-669, 677, 

679, 687, 689, 694-702, 718, 783, 

808-812, 914, 944, 997, 1010, 1030, 
1034, 1040, 1046, 1244, 1250-1336, 

1342-1356, 1369, 1371, 1381-1454, 

1460-1509, 1520-1530, 1542, 1564-
1615, 1622-1634, 1640, 1709, 1752, 

1771, 1777, 1785, 1789-1970, 1983, 

1997, 2005-2015, 2042-2050, 2056, 
2064-2074, 2784-2792, 2803, 2815, 

2817, 2935, 2956, 3619, 3649, 3663, 

3665, 3667, 3670, 3690, 3692,  
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C total  
602, 606, 614, 616, 618, 1862, 1864, 
1881, 1883, 1885, 1887, 

602, 694, 696, 822, 1022, 1024, 
1026, 1028, 1030, 1091, 1093, 1095, 

1097, 1099, 1307, 1310, 1312, 1314, 

1316, 1318, 1320, 1322, 1324, 1326, 
1328, 1330, 1332, 1334, 1336, 1338, 

1340, 1342, 1344, 1346, 1348, 1350, 

1352, 1354, 1356, 1358, 1361, 1363, 
1365, 1367, 1369, 1371, 1373, 1375, 

1377, 1379, 1381, 1383, 1385, 1387, 

1389, 1391, 1393, 1395, 1397, 1399, 
1401, 1403, 1405, 1409, 1412, 1418, 

1420, 1650, 1893, 2727, 2748, 2756, 
2762, 2766, 2772, 2774, 2778, 2784, 

2790, 2792, 2892, 3614, 3616, 3619, 

3621, 3623, 3625, 3627, 3629, 3631, 
3633, 3635, 3637, 3641, 3661, 3692, 

3694, 3696, 3698, 3700, 3955, 

622-634, 645-657, 665-669, 677, 
679, 685-689, 696-702, 718-726, 

734-742, 749-759, 769, 783-810, 

822, 826, 832-849, 857, 871-875, 
910, 922, 928, 979, 991-1152, 1159-

1187, 1197, 1203, 1228, 1246-1354, 

1361-1369, 1393, 1395, 1412, 1416, 
1424, 1428, 1448-1463, 1473-1477, 

1493-1507, 1528-1534, 1540, 1542, 

1558, 1560, 1571-1585, 1597-1624, 
1634, 1636, 1689, 1760, 1768, 1777, 

1781-1819, 1838-1946, 1962, 1981-
1987, 1997-2025, 2030-2048, 2187, 

2236, 2240-2244, 2258-2262, 2403, 

2425, 2905, 2915, 2921-2925, 2949, 
3188, 3196, 3204, 3251, 3433, 3443-

3449, 3457, 3459, 3690-3700 

mOM 
600, 606, 614, 616, 618, 1862, 1864, 

1881, 1883, 1885, 1887,  

1312, 1318, 1320, 1322, 1324, 1326, 

1328, 1330, 1332, 1334, 1336, 1338, 

1340, 1342, 1344, 1346, 1348, 1350, 
1352, 1354, 1356, 1358, 1361, 1363, 

1365, 1367, 1369, 1371, 1373, 1375, 

1377, 1379, 1381, 1383, 1385, 1387, 
1389, 1391, 1399, 1401, 1403, 3692, 

3694, 3696, 3698, 3700, 

622-632, 640, 645-649, 655-669, 

677, 679, 687, 698, 700, 702, 710, 

749, 751, 757, 769, 791-806, 820, 

836, 840-844, 871-875, 993, 995, 

1010-1020, 1028-1155, 1163-1187, 
1201, 1261-1269, 1279, 1285-1289, 

1297-1354, 1361, 1389, 1428, 1509, 

1756, 1775, 1779, 1801, 1805, 1830, 
1850-1917, 1928, 1932, 1974, 1977, 

1981, 1987, 1995-2011, 2023, 2028, 

2030, 2905, 2915-2925, 3188, 3196, 
3251, 3443, 3445, 3459, 3698 

Fe 

604, 612, 618, 1279-1314, 1320-

1332, 1340-1344, 1352-1356, 1365, 
1416-1471, 1540-1542, 1562-1607, 

1622-1632, 1677-1679, 1707-1713, 

2050, 3692, 3716, 3933-3998 

1318, 1320, 1322, 1324, 1326, 1328, 

1395, 1412, 1414, 1420, 1877 

640, 643, 645, 647, 649, 812, 814, 

816, 936, 938, 942, 944, 946, 1371, 

1442, 1444, 3616, 3619, 3661, 3663, 
3665, 3667, 3670, 3672, 3674, 3676 

Betaglucosidasea 
606, 608, 1310, 1581, 1826, 1834, 
1856, 1870, 2040, 2042, 2046 

606, 1310, 1312, 1326, 1346, 1365, 
1367, 1399, 1401, 1426, 1872 

632, 1034, 1036, 1044, 1046, 1050, 
1053, 1587, 1644, 1781, 1850 
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Table 3. Bands of the Mid IR and Vis NIR SWIR spectrum of major importance for the 

prediction of microbiological variables (MBC (microbial biomass carbon), enzymatic activity 

of ureasea, phosphatasea and betaglucosidasea, POM (particulate organic matter), mOM 

(organic matter associated with minerals), total C, Fe (iron)), according to the results of the 

Recursive Feature Elimination (RFE) algorithm. 

Variables 

Fractionation MOS Mid IR (cm-1) Vis NIR SWIR 

(nm) Total POM mOM 

MBC 
864, 1883, 1887, 

1885, 602 

1363, 830, 1365, 

1361, 1324 

1316, 1312, 

802, 804, 2003 

 350, 351, 360, 361, 

356, 371 

Ureasea 
606, 604, 618, 608, 

620 

1399, 1326, 1324, 

1401, 1418, 1356 

667, 612, 665, 

634, 622 

350, 2499, 366, 351, 

379 

Phosphatasea 610, 612, 624, 614, 

606, 622 

1338, 1340, 1354, 

3704, 3661 

1057, 1055, 

1046, 1067, 

1044 

356, 357, 361, 360, 

2482, 2476 

POM 604, 602, 1834, 

1832, 1919, 1921 

1312, 689, 1310, 

614, 1664, 1577 

1477, 1467, 

1583, 1293, 

1581 

802, 790, 353, 813, 

812, 821 

C total  1883, 1887, 618, 

614, 1862 

1326, 1399, 1324, 

1346, 1369 

1316, 1320, 

1318, 1322, 

873 

1883, 1887, 618, 

614, 1862 

mOM 614, 618, 1881, 

1883, 1864, 1862 

1326, 1399, 1324, 

1322, 1401 

1320, 1318, 

1316, 873, 

1322 

351, 360, 350, 375, 

2444, 2360 

Fe 
3998, 1436, 1434, 

1422, 1589 

1324, 1320, 1322, 

1414, 1395 

936, 812, 643, 

814, 640 - 

Betaglucosidasea 
 2042, 1856, 1834, 

1581, 1862, 606, 

608 

1326, 1328, 1399, 

1324, 1346 

600, 602, 1852, 

1850, 1589 

350, 351, 361, 360, 

2500 

 

Peaks of the functional groups -NH (3400 cm-1), NH+ (2400 cm-1), PO2 (960, 1200 

cm-1), P-O=R (1000-1100 cm-1), amide II and Amide I (1600 cm-1) proposed by Parikh et al. 

(2014), Liu et al. (2015) and Ladd et al. (1993) were identified, which are lost in the mOM 

fraction (Figure 2). The spectral response of amide I and II is not recognized in the "total" 

sample, possibly due to the interaction of other compounds. The Urease behavior identified in 

the spectrum of the total sample between 3000 and 3100 cm-1, is transferred to the POM 

fraction but highlighting the response of MBC and aromatic CH bonds and in the mOM 

fraction this response is associated with the more stable C forms. The interaction of 

phosphatasea activity and the functional groups -NH, OH of carboxylic acids and NH+ (3400, 

2550, 2400 cm-1 respectively) is also highlighted. 
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Figure 2. Characterization of the microbiological activity of the Mid IR spectra of sample 16, 

focused on the interpretation of the enzymatic activity of Betaglucosidasea, Ureasea and 

Phosphatasea, MBC (microbial biomass carbon), POM (particulate organic matter) and mOM 

(organic matter associated with minerals). 

 

When analyzing the spectra of sample P30 (Figure 3), which presents a similar textural 

behavior to P16 (Figure 2) but with higher C and clay content (Table 1), most of the peaks and 

valleys are maintained, however, the spectra of the mOM and total fractions present greater 

similarity between 4000 and 3000 cm-1. In these fractions the response of MBC and CmOM at 

3500 cm-1 is not observed clearly anymore, on the contrary, in the POM fraction it seems that 

the peaks and valleys are more pronounced, as it is also observed in the response of -NH. 

Additionally, the OH response of carboxylic acids and phosphatasea activity observed at 2500 

cm-1, especially in the POM fraction in sample P16 (Figure 2), are observed less pronounced 

at P30 (Figure 3), but this behavior is carried over to the total and mOM fractions. Similarly, 

the expression of NH+ at 2400 cm-1 can be clearly observed in all three fractions unlike P16 

which is only observed in the total and POM fractions. Another difference is identified 

between 2000 and 1500 cm-1, where the lowest reflectance is observed in POM and similar 

and differentiable behaviors of the three fractions are observed, being the mOM fraction the 

one that presents higher reflectance especially in the peaks where the Fe-MBC interaction is 

detected. The MBC, Fe and Betaglucosidase interaction observed in the P16 spectra in the 

range 1500-1400 cm-1 is not observed to be intertwined at P30, and a higher reflectance of 

mOM is identified. Around the range 1200 to 1000 cm-1 the behavior is similar to P16, 

however, the peak of the C-O-C/C-O and P-O=R bonds that is present at 1000 cm-1, in 
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agreement with that proposed by Liu et al. (2015) and Parikh et al. (2014), is not observed 

anymore in the P30 sample and overlapping of mOM and total is present, this is also 

identified from 800-600 cm-1, in the response of MBC, Fe, POM, Urease, phosphatase and 

Betaglucosidase. 

 

 

Figure 3. Characterization of the microbiological activity of the Mid IR spectra of sample 30, 

focused on the interpretation of the enzymatic activity of Betaglucosidasea, Ureasea and 

Phosphatasea, MBC (microbial biomass carbon), POM (particulate organic matter) and mOM 

(organic matter associated with minerals). 

 

Sample P35 has a higher clay and C content than samples P30 and P16 (Table 1), 

which is reflected in the groups of spectra of the different fractions. The differences in the 

spectral behavior are not as marked as in the other two samples, due to the fact that it is more 

clayey, therefore, the concentration of particles larger than 53 µm is lower. The peaks and 

valleys along the spectrum are maintained with less difference in reflectance, and between the 

ranges 4000 to 3500 cm-1 the peaks are much more pronounced. The -NH response is clearly 

seen in the mOM and total fractions, which coincides with the POM peak associated with the 

labile and resistant forms of C, MBC and Urease. Similarly, the interaction response of these 

forms of carbon, urease, phosphatasea and MBC at the 3550 cm-1 peak is clearly seen in all 

three fractions. The peaks and valleys near 3500cm-1 associated with phosphatasea, MBC and 

CmOM are observed more pronounced in the total and mOM fractions, as is the -NH and 

phosphatasea peak of the POM fraction. In contrast, Urease activity at 2900 cm-1 is not 

observed as clearly in the mOM and total fractions, but the behavior of the aromatic CHs in 
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the POM fraction is more pronounced. The OH of the carboxylic acids and the phosphatase 

activity in the 2500 cm-1 range are not as clearly observed as in the other two samples. In 

contrast, the NH+ response at 2200 cm-1 is clearer in all three fractions. The NH+ (Liu et al., 

2015), Ureasea, fofatasea and POM valleys observed at 2250 cm-1 are not observed anymore 

in the total fraction, however, they are maintained in the POM fraction. 

 

 

Figure 4. Characterization of the microbiological activity of the Mid IR spectra of sample 35, 

focused on the interpretation of the enzymatic activity of Betaglucosidasea, Ureasea and 

Phosphatasea, MBC (microbial biomass carbon), POM (particulate organic matter) and mOM 

(organic matter associated with minerals). 

 

The peak relating MBC and beta-glucosidase at 2050 cm-1 in the POM and total fractions 

disappears in the total fraction of sample 35. The behavior between 2000 and 1700 cm-1 is 

very contrasting and a higher reflectance of the mOM fraction is maintained, as observed in 

sample 30 (Figure 3), however, multiple pronounced peaks and valleys are observed, 

highlighting the interaction of betaglucosidase, cmOM, MBC and Fe (Figure 4). The response 

of amide I and II is lost in the POM spectrum. Between 1550 and 1450cm-1 the behavior is 

very different from the other two samples, the reflectance of the mOM fraction is higher and 

the peaks are very pronounced where the activity of betaglucosidase, MBC is highlighted. On 

the other hand, between 1200 and 600 cm-1, the spectra behave similarly to the two previous 

samples, with a higher reflectance of the POM fraction and in the C-O-C/C-O and P-O=R 

response at 1000 cm-1, there is overlapping and an increase in the peak of the mOM fraction. 

The reflectance below 800 cm-1 is very attenuated in the mOM and total fractions. 
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4.3.2. Spectral interpretation Vis NIR SWIR 

In contrast to the Mid IR spectroscopy, the Vis NIR SWIR spectra of samples P16, P30 

and P35 show similar behaviors, where only differences in reflectance values are observed, 

due to the differential texture of the three samples (Figure 5). The region 350 to 400 nm 

presents differential peaks of the activity of the three enzymes, MBC and CmOM. At 395 to 

400 nm the interaction of Ureasea, MBC and CmOM is observed. 

 

 

Figure 5. Characterization of microbiological activity from Vis NIR SWIR spectra of samples 

16, 30 and 35, focused on the interpretation of enzymatic activity of Betaglucosidasea, 

Ureasea and Phosphatasea, MBC (microbial biomass carbon), POM (particulate organic 

matter) and mOM (mineral-associated organic matter). 

 

An elbow is observed at 550 nm associated with CmOM, more pronounced in the 

more clayey sample (P35), this absorbance is gradually lost in the samples with higher sand 

content (Figure 5). At 1000 nm, a small peak associated with phosphatase activity is 

identified, which is more pronounced in the less clayey sample (P16). At 1350-1360 nm, an 

elbow related to MBC and Betaglucosidasea is observed, which is lost in the more clayey 

sample (P35).  

A valley is observed in 1900 -1920 nm related to ureasea activity, which is clearly 

distinguishable in samples P16 and P30. Another small valley is observed at 2100 nm, 

associated with the activity of this enzyme (Figure 5, Table 4). 
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Phosphatase activity at 2250 nm is clearly observed in the three samples, identifying a 

series of peaks. At 2300 nm the presence of MBC is identified, which is slightly displaced in 

sample P30. Another region associated with this variable is observed between 2400 and 2500 

nm, and between 2440 and 2500 nm valleys and peaks associated with Ureasea and 

phosphatasea are identified (Figure 5, Table 4). 

 

Table 4. Bands of the Vis NIR SWIR spectrum related to the microbiological variables (MBC 

(microbial biomass carbon), enzymatic activity of ureasea, phosphatasea and beta-

glucosidasea, POM (particulate organic matter), mOM (organic matter associated with 

minerals), total C), according to the results of the Recursive Feature Elimination (RFE) 

algorithm. 

Variables  Vis NIR SWIR (nm) 

MBC 

350, 351, 352, 355, 356, 357, 358, 360, 361, 362, 363, 364, 365, 367, 368, 

369, 370, 371, 372, 375, 376, 378, 380, 381, 382, 386, 387, 395, 398, 402, 

403, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 2300, 2436, 2467, 2469, 

2474, 2475, 2476, 2482, 2485, 2486, 2489, 2490, 2492  

Ureasea 

350, 351, 352, 355, 359, 360, 363, 366, 367, 368, 369, 370, 373, 374, 376, 

379, 380, 381, 382, 383, 384, 386, 387, 393, 395, 397, 398, 400, 403, 406, 

410, 555, 797, 804, 805, 814, 815, 2148, 2149, 2151, 2360, 2444, 2460, 

2461, 2462, 2463, 2464, 2465, 2466, 2467, 2469, 2470, 2471, 2472, 2473, 

2474, 2475, 2476, 2479, 2481, 2482, 2483, 2485, 2486, 2489, 2490, 2492, 

2494, 2495, 2496, 2499 

Phosphatasea 

350, 351, 352, 355, 356, 357, 360, 361, 365, 367, 368, 371, 381, 576, 577, 

578, 579, 580, 581, 582, 583, 667, 1911, 1912, 1913, 1914, 1915, 1916, 

1918, 1921, 1922, 2426, 2469, 2470, 2474, 2475, 2476, 2477, 2482, 2483, 

2484, 2485, 2486, 2490, 2491, 2493 

POM 353, 790, 802, 803, 810, 812, 813, 816, 817, 819, 821 

C total  1883, 1887, 618, 614, 1862 

mOM 

350, 351, 352, 356, 357, 358, 359, 360, 361, 365, 367, 371, 373, 375, 376, 

377, 378, 379, 381, 395, 399, 400, 401, 402, 573, 577, 812, 2173, 2350, 

2360, 2426, 2428, 2434, 2436, 2442, 2444, 2449, 2462, 2463, 2467, 2468, 

2469, 2474, 2476, 2479, 2480, 2481, 2482, 2483, 2484, 2485, 2486, 2487, 

2489, 2490, 2491, 2492, 2498, 2499, 2500 

Betaglucosidasea 350, 351, 361, 360, 2500, 2499 

 

4.3.3. Mid-IR and XRF spectromicroscopy 

Based on the RFE results (Table 2 and 3) and the description of the Mid IR spectra, 

specific bands were identified that allowed the speciation of the activity of the 

microorganisms. Figures 6, 7 and 8 show the mapping of the spectral ranges with the most 

characteristic responses of the activity of the microorganisms for the total, POM and mOM 

fractions, respectively, of sample P16, which is the sandiest. Figure 9 corresponds to the total 

fraction of the most clayey sample, P35. The range between 600 to 1000 cm-1, in which 
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several interactions of microorganism activity were identified, could not be mapped due to the 

resolution of the equipment. However, the range from 1000 to 1500 cm-1, which also 

presented high importance, was analyzed and the 1150-1160 cm-1 region (Figure 6 A, 7 A, 8 

A), related to Ureasea and phosphatasea activity (Table 3, Figures 2,3,4), was mapped, where 

green and blue colors are related to low reflectance and orange to reddish colors to higher 

reflectances.  

In relation to microbiological activity, the analysis of these peaks and valleys becomes a 

bit confusing, because some valleys relate a lower reflectance to a higher presence of the 

analyzed variable, on the contrary, the peaks may indicate a higher presence. For example, in 

the reflectance range 1800 to 1700cm-1, which is also related to phosphatase, urease and 

additionally POM activity, the reddish tones of the mapping of the total fraction in Figure 6B, 

are characterized by a higher reflectance in these zones, possibly indicating higher activity of 

these enzymes.  
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Figure 6. Relative microbiological activity distribution maps of sample 16, for the total 

fraction and spectra obtained from the different aggregates for regions A (1150-1160 cm-1), C 

(1740-1760 cm-1) and D (2200-2300 cm-1), associated to the enzymatic activity of ureasea and 

phostatasea, and region B (1540-1570cm-1) related to the enzymatic activity of beta-

glucosidasea, Fe, MBC, Ureasea and phosphatasea. Contrasting zones (1, 2) of the mapped 

particles were chosen to observe the difference in spectral response. 
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In general, it is observed that the highest reflectance values are located in coarser 

particles, associated with quartz but presenting some coating (Figures 6 A1, 7 A1, 8 A1, 9 

A1). Additionally, it was identified that the spectrum of zones where the reflectance was 

lower, possibly associated with coatings of other compounds (Figures 6 A2, 7 A2, 8 A2, 9 

A2). Figure 10, corresponding to the mapping with the μ-XRF spectrometer, allows to 

confirm that the coatings of the particles present in the total sample 16 (Figure 10 A), present 

high aluminum contents and some particles coatings with high Fe contents. 

The 1540-1570cm-1 region was also mapped (Figures 6 B, 7 B, 8 B, 9 B), in which the 

response of the enzymatic activity of betaglucosidasea, Fe, MBC, Ureasea and phosphatasea 

is identified (Table 3, Figures 2,3,4). The reddish color shades are related to high reflectance 

and this is maintained in the two mapped regions of the total fraction of sample P16 (Figure 6 

B). The reflectance is lost in the POM fraction (Figure 7B), especially in the darker observed 

particles, because only the phosphatase response is maintained according to Table 3. The 

response of this enzyme is related to the more stable compounds in the bacterial walls 

(Omoike & Chorover 2006). In the mOM fraction of sample P16 the reflectance is lower in all 

regions, due to the fact that in this fraction the finest particles are present, where possibly the 

bonds with the organic compounds are stronger (Figure 8). In addition, as shown in Figure 10 

B, this fraction has a higher content of Al and Fe, which favors organo-mineral interaction. In 

sample 35 (Figure 8 B) red colors are observed on the reddest particles, and in the darkest 

particles with some type of coating a decrease in reflectance is observed, but a more 

pronounced peak. It is observed that the reddest particles have high Fe and Al contents 

(Figure 10 D), however, it is confirmed that the darkest particles have the highest Fe content. 

In general, it is observed that the POM fraction (Figure 7), presents higher reflectance 

due to the fact that there are only coarse particles larger than 53 µm and the valleys appear to 

be more pronounced, however, the reflectance decreases in those particles that appear to have 

some coating, as occurs in regions B and C. On the other hand, the identification of activity in 

region A (1150 to 1160 cm-1) is not as clear for ureasea, but the response of phosphatasea is 

maintained according to Table 3. The peaks in region C (1740-1760 cm-1) are also maintained 

for phosphatasea, but disappear for Ureasea. When analyzing sample 35 (Figure 9), strong C-

region reflectances are maintained, which could confirm the quality of organo-mineral bonds, 

remembering that phosphatasea activity is related to the phosphate groups of bacterial walls 

(Parikh et al., 2014). 

The valley at 2230 cm-1 related to ureasease and phosphatase enzyme activity is also 

observed for the total and POM fractions (Figures 6 D and 7 D, respectively). For the total 
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fraction, a valley is present indicating that lower reflectance is associated with higher activity. 

However, for the POM fraction a valley is displaced, and a peak is observed (Figure 7B). 

Overall, it is possible to confirm the presence of this enzyme activity as a coating on the 

mineral particles. The ureasea response is lost in POM possibly because the microorganisms 

obtain food and energy from this fraction (Parikh et al., 2014). 
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Figure 7. Relative microbiological activity distribution maps of sample 16, for the POM 

fraction and spectra obtained from the different aggregates for regions A (1150-1160 cm-1), C 

(1740-1760 cm-1) and D (2200-2300 cm-1), associated to the enzymatic activity of ureasea and 

phostatasea, and region B (1540-1570cm-1) related to the enzymatic activity of beta-

glucosidasea, Fe, MBC, Ureasea and phosphatasea. Contrasting zones (1, 2) of the mapped 

particles were chosen to observe the difference in spectral response. 
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Figure 8. Relative microbiological activity distribution maps of sample 16, for the mOM 

fraction and spectra obtained from the different aggregates for regions A (1150-1160 cm-1), 

and C (1740-1760 cm-1), associated to the enzymatic activity of ureasea and phostatasea, and 

region B (1540-1570cm-1) related to the enzymatic activity of beta-glucosidasea, Fe, MBC, 

Ureasea and phosphatasea. Contrasting zones (1, 2) of the mapped particles were chosen to 

observe the difference in spectral response. 
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Figure 9. Relative microbiological activity distribution maps of sample 35, for the total 

fraction and spectra obtained from the different aggregates for regions C (1740-1760 cm-1) 

and D (2200-2300 cm-1), associated to the enzymatic activity of ureasea and phostatasea, and 

region B (1540-1570cm-1) related to the enzymatic activity of beta-glucosidasea, Fe, MBC, 

Ureasea and phosphatasea. Contrasting zones (1, 2) of the mapped particles were chosen to 

observe the difference in spectral response. 
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Figure 10. Images of the μ-XRF spectrometer with microprobe for soil samples 16 A) total 

fraction, B) mOM fraction, C) POM fraction. D) Sample 35 total fraction. Counts of 

aluminum (Al) (reddish images) and iron (Fe) (bluish images). 

 

4.4. Discussion 

4.4.1. Mid IR spectral interpretation  

Absorption features associated with organic compounds are identified at 3400, 2930, 

2850, 1600 and 1400 cm-1 according to Nguyen et al. (1991) and Viscarra Rossel et al. (2006), 

such zones can be observed in Figures 2, 3 and 4, related to the activity of microorganisms, 

however, high activity is also observed in the region below 1000cm-1. According to Ammann 

& Brandl (2011) the range between 650 - 1800 cm-1 is known as the typical fingerprint region 

for the prediction of microorganism activity, because it includes the response of cellular 
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carbohydrate and protein compounds. As seen in Figures 2, 3, and 4, this region identifies the 

spectral response of enzyme activity in general and its interaction with MBC and labile and 

resistant forms of carbon. 

The region between 1800 to 2500 cm-1 is also important for the spectral differentiation of 

microorganism activity (Figures 2,3,4), and according to Parikh et al. (2014) this spectral 

range is characterized by the response of more stable organic compounds. For Davinic et al. 

(2012) the 2000-1750 cm-1 bands present a strong influence of silicates. Calderón et al. (2011) 

also highlights that in the region 1790 to 2000 cm-1 three characteristic peaks related to 

silicates are present, thus reporting negative correlations with soil total C and N. In Figures 2, 

3 and 4 we see the peaks associated with silicates, in which important relationships of 

enzymatic activity with Fe were identified, in addition to specific regions associated with 

MBC and CmOM, considered as stable forms of C, which is in agreement with that reported 

by Davinic et al. (2012), Calderón et al. (2011) and Parikh et al. (2014).  

Betaglucosidase is strongly related to the C cycle, being responsible for catalyzing the 

hydrolysis and biodegradation of glycosides (Martinez and Tabatabai, 1997), which allows 

obtaining glucose as a final product, which is an important source of C energy for the activity 

of microorganisms (Merino et al., 2016). Therefore, the activity of this enzyme is related to 

the presence of simple sugars, frequently used by microorganisms (Adetunji et al., 2017). The 

bands of highest significance associated with betaglucosidasea activity (Table 3) are within 

the range reported by Rasche et al. (2013) (2301-1279cm-1) for this enzyme activity, however, 

the author does not report activity of this enzyme in the range 600 to 700 cm-1, however, this 

region is related to carbohydrate and protein response (Ammann & Brandl, 2011). According 

to Viscarra Rossel et al. (2022) the functional groups CH, NH of amines and CO of 

carbohydrates may indicate the presence of labile forms of C. As observed in Figures 2, 3 and 

4 between 1200 and 1300 cm-1 the interaction of the 3 enzymes is present, in addition to the 

response of carbohydrates and phosphates. According to Gao & Chorover (2009) in 1337-

1313 cm-1 the influence of Amide III (NH, CN, CH, NH) is identified, and according to 

Nicolas et al. (2017), the general activity of aliphatic groups is observed in the range 1350-

1450 cm-1.  

Parikh et al. (2014) highlights the influence of the C=O ester group in the range 1330 to 

1315 cm-1, in 1300- 1340 cm-1 diamond C=C and in 1300 cm-1 the CH overtone. The latter 

has also been reported by Liu et al. (2015) in the range 1379-1384cm-1. 

As shown in Table 3 the range between 600 to 700cm-1 involves some of the bands with 

greater importance in the prediction of the different variables analyzed in the spectra of 
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Figures 2, 3 and 4. For Parikh et al. (2014), the range 650-450cm-1 responds to the vibration 

of CH2 stretches of bacterial cellular compounds. According to Demyan et al. (2012) in the 

range 690-670 cm-1 the presence of clay and quartz minerals interacting with carbonyl groups 

is recognized. Therefore, it is possible that in this spectral range this interaction of microbial 

activity with soil minerals is being observed, such interaction is maintained in the three 

fractions. Deo et al. (2001) confirm the interaction of amide IV of bacterial cells with the AlO 

groups of clay minerals, in the peak 696 cm-1. The phosphatasea response in this range may 

also be due to the presence of phosphate groups in the cell walls that favor binding to the 

oxide surfaces (Parikh et al., 2014), which explains the Fe response in this spectral region. 

It is possible to observe that near the 1000 cm-1 range the response of the phosphate 

groups is intensified (Figures 2,3, 4). According to Ojeda et al. (2008) in the 1084 cm-1 band 

the stretching of P=O groups of polyphosphate products, nucleic acid phosphodiester and 

phosphorylated proteins is recognized. Gao & Chorover (2009) report in 1080 cm-1, COC, C-

C and PO3
2- vibrations. Liu et al. (2015) mentions in the range 1000-1100 cm-1 the influence 

of P-O=R features and in the range 1006-1122 cm-1 the C-O stretching. Lad et al. (1993) 

indicates in the band 1050 cm-1 the influence of carbohydrates. For Parikh et al. (2014) the 

range 1000-1080 cm-1 is an indicator of POM cellulose, the range 1160-1020 cm-1 reflects the 

influence of polysaccharides such as cellulose lignin or pectin, and on 1085 cm-1 CO and CN 

stretching are identified, additionally, the authors point out the influence of POFe bonds in the 

bands 1037, 1045 and 1027 cm-1, product of the interaction of the phosphate groups of the 

bacterial walls with the surfaces of the metal oxides, thus they specifically report PO 

phosphate groups in 1075-1028 cm-1, and the phosphorus present in humic fractions in 1100-

1000 cm-1. The above, responds to the influence of Fe in the last peak (Figures 2, 3 and 4) and 

the interaction of Urease due to the presence of nitrogenous compounds. Cao et al. (2011) 

report in the 1031cm-1 band the symmetric stretching PO, and in 1051cm-1 the PO associated 

with nucleic acids and the C-OH stretch of phosphorylated proteins, which are shifted to 1049 

and 1092 cm-1 when they bind to the goethite.  

Nicolas et al. (2017) also points out the stretching of carbohydrates in the 1100 cm-1 

range, which is possible to identify in Figures 2,3 and 4.  

Ludwig et al. (2008) indicates that the large range 1057-397 cm-1 is related to nitrogenous 

compounds, which may explain the ureasea activity observed between 1300 and 600 cm-1 

(Figures 2, 3 and 4).  

Between the range 1500 to 1600 cm-1, interaction of MBC, Fe and betaglucosidase is 

observed, in addition to the presence of C=C and CPOM bonds (Figures 2,3 and 4). Nicolás et 
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al. (2017) identified aromatic groups in the 1510 cm-1 band. For Ladd et al. (1993), these 

aromatic groups are specifically related to aromatic C=C bonds at 1630 - 1580cm-1, the 

authors also point out the influence of amide II at 1550 and lignin at 1500 cm-1. Parikh et al. 

(2014) reports in the bands 1590-1500 cm-1 the influence of Amide II (NH C=N), in 1570 cm-

1 aromatic CH deformation and in 1550-1500 and 1600-1580cm-1 aromatic C=C stretching. 

Cao et al. (2011) have also reported at 1540 -1549cm-1 the influence of amide II. Omoike & 

Chorover (2006) report this influence at 1544-1516 cm-1. According to Cao et al. (2011) and 

Mc Whirter et al. (2002) the 1550 cm-1 band of amide II may exhibit shifts upon interaction 

with the surface of iron oxides such as goethite. It is possible that the Fe, MBC and 

betaglucosidase ratio observed in Figures 2, 3 and 4 is due to this interaction of organic 

compounds with the surface of Fe oxides. 

Between 1800 and 2000 cm-1 where the peaks associated with silicates described by 

Davinic et al. (2012) and Calderón et al. (2011) are observed (Figures 2,3 and 4), interactions 

between SiO bonds of quartz minerals and carbonyl stretching are also present, specifically in 

the range 1980-1870cm-1 according to Demyan et al. (2012). A strong influence of CmOM 

and MBC is observed in these peaks, thus confirming that interaction of carbon forms with 

the mineral fraction. Rasche et al. (2013) reports a wide range 1980-1870 cm-1 associated with 

MBC, identified in Figures 2, 3 and 4 and within which the most important bands for variable 

prediction are located (Table 3). 

Between 2000 and 2500cm-1 a region with influence of amino groups, interaction of the 3 

enzymes, Fe, MBC and carbon labile forms (CPOM) is identified. Liu et al. (2015) points out 

the influence of NH+ in the region 2322-2360 cm-1, clearly identified in the spectra of Figures 

2,3 and 4. 

The region 2600 to 2700 cm-1 that relates to phosphatasea activity (Figures 2, 3 and 4) can 

be related to the range 2600- 2500 cm-1 reported by Parikh et al. (2014), associated with the H 

bridges of the OH bonds of carboxylic acids. Rasche et al. (2013) reports in the range 2640-

2399 cm-1 enzymatic activity in general. 

Between 3500 to 3400 cm-1 phosphatasea interaction with amino groups -NH, hydroxyl (-

OH) as well as MBC and CmOM is observed (Figures 2, 3 and 4). Davinic et al. (2012) 

identified in the 3400cm-1 band OH and NH stretching related to the presence of labile forms 

of C. According to Jiang et al. (2004) hydroxyl, carboxyl, phosphoryl and amide groups are 

common in bacterial cell walls, and the negative charges that allow interaction with the 

surface of minerals result from the deprotonation of carboxyls and phosphates. Rasche et al. 

(2013) report another important MBC range between 3658 and 3317 cm-1. In the present study 
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we identified specific bands in this wide range that are observed in Figures 2,3 and 4 and in 

Tables 2 and 3. 

Between 3500 - 3900 cm-1 an important region is also observed where high interaction of 

ureasea, phosphatasea, Fe activity and labile and resistant forms of carbon as well as MBC are 

identified (Figures 2, 3 and 4). According to Liu et al. (2015), a strong influence of 

mineralogy is observed in this region, with high dominance of structural OH hydroxyl groups 

of clay minerals, in the bands 3591-3626 cm-1. It is possible that we have identified specific 

regions of organo-mineral associations because MBC and enzymatic activity in general are 

strongly associated with the stretching vibrations of the hydroxyl (OH) groups of gibbsite and 

kaolinite between 3700 to 3500 cm-1 (Parikh et al. 2014, Wang and Johnston 2000). 

Additionally, Silvero et al. (2020) indicates that the range between 3700 and 3400 cm-1 is 

characterized by related absorptions associated with Al-OH bonds. Davinic et al. (2012) 

reports in the range 3700 to 3200 cm-1, interactions of OH and NH groups, which could 

explain the influence of ureasea in these regions (Figures 2, 3 and 4). Such OH and NH 

groups in this region are part of humic and fulvic acids (Parikh et al. 2014, Davinic et al. 

2012), so they respond to more stable forms of C. 

 

4.4.2. Spectral interpretation Vis NIR SWIR 

In relation to the Vis NIR-SWIR spectral range in the 350 to 400 nm region, the 

interaction of the enzymatic activity of the three enzymes, MBC and CmOM, is observed 

(Figure 5). Sharma et al. (2021) reported in the 355 and 395 nm peaks the interaction of fulvic 

acids. Yang et al. (2022) reported at 390 nm the interaction of fungi with iron oxides. It is 

possible that in this region it relates the more stable forms of C interacting with the surfaces of 

Fe oxides. 

Sharma et al. (2021) points out that the range 600-670 nm is related to strongly humified 

material with high presence of aromatic groups. In Figure 5 and Table 3, it is observed that the 

range between 600 to 620nm is associated with total C content and phosphatase activity. 

According to Kirsten et al. (2021), this more stable mOM-related material contributes a higher 

proportion to the total COS content. Older and processed C are generally related to the clay 

fraction and contain more than half of the total soil C (Parikh et al., 2014). 

According to Table 4 and Figure 5, labile forms are related in the range 790-821nm. 

Stenberg et al. (2010) has reported NH, CH and CO relationships in the 820nm peaks, and at 

825 nm recognizes the response of aromatic compounds (Viscarra-Rossel & Behrens, 2010). 
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This presence of NH groups may explain the response of Ureasea in this range of the 

spectrum.  

In the 1000 nm band, the phosphatasea response identified by Zornoza et al. (2008) (1014-

1195nm) was recognized. Viscarra-Rossel and Behrens (2010) report the presence of amines 

(1000, 1500 nm) and aromatic bonds (1100 nm) in this range. 

Zornoza et al. (2008) report the influence of beta-glucosidasea activity in the range 1372-

2272nm and MBC in 1374-2092nm. Figure 5 identifies the influence of MBC and beta-

glucosidasea between 1360-1380nm.  

The activity of ureasea and MBC identified between 1900 and 2000nm (Figure 5, Table 

4), responds to that proposed by Zornoza et al. (2008) who report the activity of this enzyme 

between 1912-2094nm. Viscarra-Rossel and Behrens (2010) indicate at 1930nm the influence 

of carboxylic acid and at 1961nm polysaccharides. Another urease response is also observed 

between 2100 to 2150 nm, which coincides with the response of amine NH functional groups, 

phenolic OH, and aliphatic CH reported by Fidêncio et al. (2002) and Cozzolino & Morón 

(2003) in the 2200nm band, which could also explain the CmOM response at 2173nm. 

Viscarra-Rossel and Behrens (2010) indicate the response of polysaccharides at 2137nm. 

Additionally, fungal and clay mineral interactions have been reported in the range 2140-2150 

nm (Yang et al., 2022). 

Zornoza et al (2008), reports an additional range for phosphatasea between 2270-2630 

nm, which may explain the response of this enzyme observed between 2200 to 2300 nm 

(Figure 5). Additionally, at 2300 nm it is also possible to observe the response of MBC. 

According to Viscarra-Rossel & Behrens (2010) at 2336 nm the interaction of carbonates is 

observed, at 2381 nm carbohydrates and in the range 2307-2469nm methyl functional groups.  

In the ranges 2340 -2360 nm the influence of urease and CmOM is observed and above 

2440nm the response of MBC, Urease and phosphatasea (Figure 5). According to Yang et al. 

(2022) at 2450 and 2440nm the interaction of the methyl CH group is recognized. Viscarra-

Rossel & Behrens (2010) recognize the presence of fulvic acids and carbohydrates at 2381nm. 

In general, Zornoza et al (2008) report the ranges 2270-2632nm for the influence of bacteria, 

fungi, actinomycetes and vesicular-arbuscular mycorrhizal fungi. 

 

4.4.3. Mid-IR and XRF spectromicroscopy 

As named in the section associated with the interpretation of Mid IR spectra, the range 

between 650-1800 cm-1 represents the typical fingerprint region for microorganisms 

(Ammann & Brandl, 2011). Figures 6, 7, 8 and 9 refer to the mapping of the ranges of that 
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region, corresponding to 1150-1160 cm-1 (region A), 1540-1560 cm-1 (region B) and 1740-

1760 cm-1 (region C). The ranges of region A and C are related to the activity of the enzymes 

ureasea and fostatasea, and region B to the activity of betaglucosidasea (Table 3). Different 

authors have identified in the 1000-1200 cm-1 region the presence of sugars (De Beeck et al., 

2021), carbohydrates (Lad et al.1993, Nicolas et al., 2017), P=O stretch (Ojeda et al. 2008, 

Cao et al. 2011, Liu et al., 2015), COC, C-C and PO32- vibrations (Gao & Chorover, 2009), 

C-O stretch (Liu et al., 2015), polysaccharides such as cellulose lignin or pectin, CN 

stretching, POFe bonds resulting from the interaction of bacterial wall functional groups and 

Fe oxide surfaces (Parikh et al. 2014, Cao et al. 2011). It is to be expected that the interaction 

observed in the figures corresponds to compounds of the bacterial walls bound to the surface 

of the minerals, since in Figure 10, it is confirmed that the darker coatings stand out for high 

contents of Al and Fe, which explains why in the POM fraction (Figure 7) the phosphatase 

response is maintained and the urease response disappears, since this phosphatase activity is 

strongly related to the most stable compounds of the bacterial activity (Omoike & Chorover 

2006, Parickh et al. 2014) and ureasea activity represents the energy contribution to 

microorganisms that is most easily used in this fraction. Parikh et al. (2014) demonstrated that 

coarser fractions are poor in the activity of most oxygen-containing functional groups, since it 

implies greater decomposition of organic compounds due to their easy access (Witzgall et al 

2021). 

Region B (1540-1560 cm-1) is related to betaglucosidasea, ureasea, phosphatasea, MBC 

and Fe activity (Table 3). Aromatic C=C bonds (Ladd et al., 1993), amide II (Cao et al. 2011, 

Parikh et al. 2014), aromatic CH deformation (Parikh et al., 2014) have been identified in this 

region. According to Cao et al. (2011) and Mc Whirter et al. (2002) in this region the 

interaction of amide II with the surfaces of Fe oxides is identified. This could explain the loss 

of reflectance in the particles with higher coating observed in Figure 7 B and in the reddish 

particles of the mOM fraction of sample P16 and the total fraction of P35, due to the high Al 

and Fe contents in these coatings (Figure 10). 

The C region between 1700 to 1800 cm-1 noted in Figures 6, 7, 8 and 9, associated with 

the response of Ureasea, Phosphatasea and POM, according to Parikh et al. (2014) and 

Nicolas et al. (2017), is related to a high presence of carboxylic acids (1778cm-1) and carbonyl 

(1700cm-1), which are oxygen-containing groups that can be used by microorganisms. 

According to Calderon et al. (2011) and Davinic et al. (2012) in this region, characteristic 

peaks associated with silicates are present. Therefore, it is possible to observe this organo-

mineral interaction, with higher enzymatic activity in the total fraction (Figure 6), which is 



146 
 

reduced in the POM fraction (Figure 7), since the functional groups that are recognized in this 

range contain oxygen and in the POM fraction are characterized by being easily available to 

microorganisms, so they have to be depleted quickly (Parikh et al., 2014). 

The 2200-2300 cm-1 region is also observed, in which the ureasea and phosphatasea 

response is also characterized in the total fraction (Figure 6), but the ureasea response is lost 

in the POM fraction (Figure 7), due to the depletion of the functional groups associated with 

this enzymatic activity. According to Silvero et al. (2020) in the 2230 cm-1 region Si-O 

stretching is present. For Liu et al. (2015) at 2300cm-1 characteristic NH+ peaks are 

presented. It is then identified in these regions of Figures 6, 7, 8 and 9 the interaction of 

minerals with organic compounds, product of the activity of microorganisms, also 

remembering that carboxyl, phosphate and amide groups are constituents of the cell walls of 

bacteria (Jiang et al., 2004). 

Kleber et al. (2021) indicate that there is competition between the different organic 

compounds for adsorption sites with inorganic ions, prevailing those stronger bonds, such as 

covalent or ionic interactions where the chemical state of the organic molecule changes, as 

usually occurs in bindings with metal oxides, silicates and clays 1:1. Clearly the most stable 

compounds of bacterial activity associated with phosphatasea activity are the most prevalent 

(Figures 6, 7, 8, 9 and 10) due to the quality of PO bonds with minerals (Omoike & Chorover 

2006, Parickh et al. 2014). 

According to Kirsten et al. (2021) kaolinite, gibbsite, goethite and hematite present 

functional groups reactive towards OM under acidic pH conditions, which is common in 

tropical soils. Cao et al. (2011), highlights the interaction between extracellular enzymes, 

which contain traces of proteins and nucleic acids with clay minerals and goethite, through 

covalent bonds and van der Waals association. Clearly most studies highlight the interaction 

goethite and bacterial cell wall compounds (Ojeda et al 2008, Gao and Chorover 2009, Cao et 

al 2011, Parikh et al 2014), however, it cannot be ignored that both goethite and gibbsite have 

high density of reactive adsorption sites that favor organo-mineral interactions (Kaiser and 

Guggenberger, 2000). As shown in Figures 6, 7, 8 and 9, the reddish and grayish coatings on 

the particles favor these bonds, and it is confirmed in Figure 10 that these compounds have 

high Fe and Al contents. 

 

4.5. Conclusions 

It was observed that the spectral peaks and valleys reported for the functional groups CH, 

NH, CO, COH, CO and PO are related to the enzymatic activity of betaglucosidase, Urease 
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and phosphatase. Mid-IR spectral characterization allowed to recognize 4 important regions 

for the differentiation of microbiological activity, the region 600 - 1800 cm-1 in which cellular 

compounds containing carbohydrates and proteins were detected, and a strong spectral 

response of enzymatic activity and its interaction with MBC, POM and mOM was observed. 

Near 1000 cm-1 the response of phosphate groups was intensified. The 1800-2500 cm-1 region 

in which important relationships between enzyme activity and Fe, and specific bands of MBC 

and C of mOM were identified. Between 2000 and 2500cm-1 a strong influence of amino 

groups was also identified. The 3700 to 2800 cm-1 region in which the interaction of 

phosphatasea with amino groups, MBC and C of mOM was observed. In addition, a strong 

interaction of clay minerals and enzyme activity was observed.  

Throughout the Mid IR spectrum, it was recognized that compounds associated with the 

cell walls of microorganisms such as phosphate and amino groups, present high interaction 

with Fe and with the bands reported in the literature for different clay minerals and Fe and Al 

oxides. 

The Vis NIR SWIR spectral characterization was more punctual and did not present strong 

overlapping of the different variables, as occurred in Mid IR, therefore it is possible that it has 

greater specificity in this spectral range, also a strong differentiation between samples was not 

observed, the greatest differentiation corresponds to variation of the reflectance value, so that 

the different bands identified could be recognized in any soil sample. 

In general, the Vis NIR SWIR and Mid IR characterization, allowed to corroborate that β-

glucosidase is related to labile compounds of the SOM so pronounced peaks were identified 

in the POM fraction, whose amplitude is considerably reduced when analyzed in the mOM 

fraction. Ureasease activity was related to NH functional groups, and its detection was also 

characteristic in the POM fraction. Phosphatase activity is strongly related to phosphate 

groups (PO) and contains the most stable compounds of the cell walls, so it is also related to 

amines and aromatic bonds and prevails in the different fractions, due to the quality of the 

organo-mineral bonds. 

It was corroborated that the soil particles present Al and Fe coatings that favor the 

interaction with the extracellular enzymes. Additionally, it is concluded that the POM fraction 

includes the organic compounds that activate the enzymatic degradation, and the spectral 

analysis of this fraction favors the discrimination of the different enzymes, without discarding 

that a joint analysis of the fractions helps in the identification of the activity of the 

microorganisms that together with regression and machine learning techniques will favor the 
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quantification and characterization of the microbial activity and the understanding of the 

destiny of the C forms. 
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5. SPATIALIZATION OF SOIL BETA-GLUCOSIDASE, PHOSPHATASE AND 

UREASE ENZYME ACTIVITY INDICES FOR BRAZILIAN AGRICULTURAL 

AREAS: A PARADIGM SHIFT 

 

Abstract 

Maintaining or improving soil health is fundamental to achieving the Sustainable 

Development Goals (SDGs). Therefore, it needs to be evaluated through indicators that 

inform politicians, farmers and citizens about the impact of human activities on soil and its 

functions. This evaluation requires a comprehensive consideration of soil chemical, physical 

and biological (microbial) indicators. Biological indicators include the enzymatic activity of 

microorganisms, such as beta-glucosidasea, phosphatase and urease activity, which are related 

to the carbon, phosphorus and nitrogen cycles. Such enzymatic activity of microorganisms is 

closely related to the types and amounts of MOS, and Vis NIR -SWIR and Mid IR 

wavelengths respond to functional groups of different types of soil organic compounds, iron 

oxides and clay minerals, which are related to this activity. The use of enzyme activity as an 

indicator of soil health requires a cost-effective estimation method, such as reflectance 

spectroscopy analysis that can be used to predict microbiological activity and thus achieve 

mapping, classification and monitoring methodologies, mainly through machine learning 

techniques. The objective of this work was to develop a technique to calculate and spatialize 

the activity indices of beta-glucosidase, phosphatase and urease enzymes for the Brazilian 

agricultural territory. These indices were constructed from the selection of specific bands of 

the Vis NIR-SWIR and Mid IR spectral range for each enzyme, obtained with the RFE 

algorithm, from which multiple linear regression equations were created and applied to 13657 

(Vis NIR SWIR) and 2651 (Mid IR) soil samples (0-20 cm depth) included in the Brazilian 

Soil Spectral Library (BSSL). These indices were mapped under the DSM framework, having 

as covariates the Synthetic Soil Image (SYSI), variables associated with relief, climate, 

biomes and mineralogical maps. The first beta-glucosidase, phosphatase and urease activity 

maps were obtained for the agricultural area of Brazil (3481362.60 km²), with a validation R2 

ranging from 0.68 to 0.35 and a validation with the oxide maps based on a Spearman 

correlation of 0.74 to 0.47. These enzyme activity indices at the 30 m scale can be considered 

an important contribution to the monitoring and mapping of the quality and health of 

Brazilian soils, as they are sensitive to land use and management. 

 

Keywords: Soil spectroscopy, Enzyme activity, Digital soil mapping, Soil health 

 

5.1. Introduction 

Soil is a fundamental natural resource that supports 95 % of food production for humans 

(Sarkheil et al., 2020), and represents the difference between survival and extinction for most 

terrestrial life (Doran and Zeiss, 2000), therefore, maintaining or improving the health of our 

soils is important for achieving the Sustainable Development Goals (SDGs), ensuring the 

provision of ecosystem services, food security and sustaining life on Earth (Sarkheil et al., 

2023). 

Soil health is understood as the capacity of this system to function and provide ecosystem 

services that determine agricultural and forest sustainability, environmental quality and, 
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consequently, plant, animal and human health (Wei et al. 2022, Costantini and Priori, 2023). 

Therefore, it is important and mandatory to assess soil health through the use of indicators 

that can inform policy makers, farmers and citizens about the impact of human activities on 

soil and its functions (Costantini and Priori, 2023). This assessment requires comprehensive 

consideration of soil chemical, physical and biological (microbial) indicators (Lehmann et al., 

2020). These indicators are chosen according to soil functions (Andrews et al., 2002a), 

corresponding to (i) food and biomass production, (ii) storage, filtration and transformation of 

compounds, (iii) habitats for organisms and gene pools, (iv) physical and cultural 

environment, (v) source of primary materials, (vi) carbon reservoir and (vii) archive of 

geological and archaeological heritage (European Commission (COM 2006.231). These 

functions are related to ecosystem services (ES) associated with provisioning (food, fiber and 

timber production), regulation (climate, flood and water regulation), and cultural and 

supporting services (nutrient cycling, soil formation) (Silvero et al., 2023). 

Biological indicators include enzyme activity, which is closely related to the physical and 

chemical properties of the soil, and allows predicting global microbial activity (Ma et al., 

2021). In addition, such activity influences carbon (C) depletion and sequestration (Zhang et 

al., 2020), and is considered as one of the indicators with greater sensitivity to soil 

management practices than other variables (Adetunji et al., 2017). 

Enzyme activity plays a vital role in agriculture and nutrient cycling (Balota and Chaves, 

2010), especially hydrolases that are associated with carbon (beta-glucosidase), nitrogen 

(urease) and phosphorus (phosphatase) cycles (Karaca et al., 2010), and are widely used as 

indicators of soil quality (Bandick and Dick, 1999). Beta-glucosidase catalyzes the hydrolysis 

and biodegradation of glycosides (Martinez and Tabatabai, 1997), obtaining glucose as the 

final product, which is an important source of energy C for the activity of microorganisms 

(Merino et al., 2016). In general, the activity of this enzyme is related to the presence of 

simple sugars, frequently used by microorganisms and can provide a clear signal of soil 

organic carbon (SOC) alterations (Adetunji et al., 2017). 

Phosphatase catalyzes the hydrolysis of phosphoric acid esters and anhydrides (Condron 

et al., 2005). The response of this activity is related to microbial abundance, amount of soil 

organic matter (SOM) and soil management (Banerjee et al., 2012). Additionally, the demand 

for phosphorus by plants and microorganisms is related to the enzymatic production of 

phosphatase in the soil, so it is used as an indicator of the availability of inorganic phosphorus 

(Piotrowska-Dlugosz and Charzynski, 2015). This enzyme is also related to nitrogen fixation 

(Makoi and Ndakidemi, 2008) maintaining a strong correlation with soil N availability. 
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Urease originates from bacteria, yeasts, fungi, algae, animal wastes and plants (Follmer, 

2008). This enzyme catalyzes the hydrolysis of urea (Das and Varma, 2010), so its expression 

is related to the regulation of N supply (Piotrowska-Dlugosz and Charzynski, 2015). This 

enzyme activity increases with organic fertilization and decreases with soil tillage (Adetunji et 

al., 2017). 

The use of the enzymatic activity of these three enzymes as biological indicators of soil 

quality requires a simple and cost-effective prediction method (Rasche et al., 2013), such as 

reflectance spectroscopy analysis in the visible, near-infrared and shortwave infrared (Vis-

NIR-SWIR) and mid-infrared (Mid IR) ranges, which can be used to predict the enzymatic 

activity of microorganisms due to their close association with the types and amounts of SOM,  

which respond to functional groups of different types of soil organic compounds, iron oxides 

and clay minerals that are related to such activity and are identified in different bands along 

the electromagnetic spectrum (Ojeda et al. 2008, Viscarra Rossel and Hicks 2015, Viscarra 

Rossel et al. 2022, Yang et al. 2021). 

In general, there are no specific vis-NIR-SWIR and Mid IR absorptions assigned to soil 

enzyme activity (Rasche et al., 2011), due to their low contents compared to other edaphic 

compounds, which makes it difficult to induce activity-specific changes in the spectra. 

However, their prediction is possible due to the strong relationship with soil organic materials 

(Cohen et al., 2005). Reflectance spectroscopy analyses on soil samples contribute to the 

prediction of compounds used by microbes and provide integrated measures of soil mineral-

organic composition (Viscarra Rossel et al., 2016). Rasche et al. (2013) points out some bands 

of the Mid IR spectrum that favor the prediction of betaglucosidase, xylosidase and urease. In 

relation to Vis-NIR spectra, some predictions associated with enzyme activity in soil have 

been reported by Cohen et al. (2005), Zornoza et al. (2008) and Chodak (2011), however, 

these studies indicate wide ranges of these electromagnetic spectra. 

NIR and Mid IR reflectance spectra respond to the concentration of compounds related to 

C-H, N-H, S-H, C=O and O-H chemical bonds (Zornoza et al. 2008, Viscarra Rossel et al. 

2022) and such compounds are closely related to enzymatic activity as they are integrated into 

fungal and bacterial products (Parikh et al., 2014). 

Spectral order and specific band identification is important in the prediction of soil 

properties, because characteristic peaks occur at different positions in the spectrum and may 

represent differences in information (Zhang et al., 2020). This spectral response information 

requires mathematical extraction and subsequent correlation with soil properties (Reda et al., 

2020), which is achieved by using machine learning techniques and multivariate regression 
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analysis to extract the wave coverages related to the specific property to be predicted 

(Zornoza et al., 2008). 

Despite the importance of the enzymatic activity of microorganisms as indicators of soil 

health, few efforts have been made to map these indicators, making it a challenge. However, 

digital soil mapping (DSM) techniques are available, which promote the construction of maps 

with high spatial resolution and low uncertainty, even at low sampling densities (Mendes et 

al., 2022).  These DSM techniques combine soil point data with statistically correlated 

auxiliary data (covariates) (McBratney et al., 2003) and together with reflectance 

spectroscopy analyses associated with soil microbiological and mineral enzymatic activity, it 

is possible to generalize methodologies for mapping, classification and monitoring (Di Iorio et 

al., 2019), of these soil properties, mainly by means of machine learning techniques. 

Mathematical models that relate to DSM approaches have the ability to predict soil 

properties based on environmental covariates, through algorithms associated with these 

machine learning techniques (Hengl et al., 2015). Among these algorithms, the most 

commonly used is Random Forest (RF) (Zeraatpisheh et al. 2020, Padarian et al., 2020), 

because it is a robust model that is composed of multiple decision trees that are not correlated 

with each other, which gives it a high accuracy in predictions with low possibility of 

overfitting (Wadoux et al., 2020). 

The quality of DSM products is conditional on the environmental covariates used for 

modeling the attribute of interest. Usually environmental covariates representing physical and 

chemical processes associated with soil spatial variation (McBratney et al. 2003, Wadoux et 

al. 2020), and/or representing soil formation factors (Viscarra Rossel, 2011) are used, so 

digital terrain elevation models, vegetation indices, climatic covariates, geological maps, 

satellite images of surface reflectance are commonly used (Ma et al., 2019). Recently, bare 

soil reflectance images have been included as environmental covariates (Rosin et al. 2023, 

Safanelli et al 2021b). These images are obtained using the GEOS3 (Geospatial Soil Sensing 

System) technique developed by Dematte et al. (2018), which allows capturing bare soil 

reflectance from historical series of Landsat images by adding pixels that were exposed at 

least once throughout the time series to a synthetic soil image (SYSI). Silvero et al. (2021), 

Rizzo et al. (2020), Rosin et al. (2023) have demonstrated the importance of this covariate in 

soil mapping due to its strong correlation with edaphic attributes. 

The objective of this work was to develop a technique based on Vis NIR-SWIR and Mid 

IR reflectance spectroscopy products, DSM approach and machine learning techniques, to 

create and spatialize the activity indices of betaglucosidase, phosphatase and urease enzymes 
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for the Brazilian agricultural territory, having as covariates the Synthetic Soil Image (SYSI), 

variables associated with relief, climate, biomes and mineralogical maps. It is expected that 

the maps obtained will cover all agricultural areas of Brazil, with a spatial resolution of 30 m, 

which will allow researchers, farmers and consultants to understand the dynamics of 

microbiological activity in the country and contribute to the management of these agricultural 

areas. 

 

5.2.Methodology  

5.2.1. Study area  

The study area covers the entire agricultural territory of Brazil. Brazil has an area of 

approximately 8.5 million km2 (Figure 1) and the agricultural area corresponds to 

3,481,362.60 km². The country has a high variability of soils, which is due to soil-forming 

factors such as climate, parent material and topography. The climate of Brazil varies from 

tropical (81.4%), dry (4.9%) and subtropical (13.7%) according to the Köppen classification 

(Alvares et al., 2013). The parent materials were formed mainly in the Cenozoic, Mesozoic, 

Neoproterozoic and Paleoproterozoic eras. These materials gave origin to a geology that is 

composed of several types of metamorphic, igneous and sedimentary rocks (Gómez et al, 

2019).  The region comprising the states of Paraná, São Paulo, Rio Grande do Sul, Minas de 

Gerais, Goiás and Mato Grosso do Sul, presents a large mass of basalt formed by basaltic 

eruptions, giving rise to extrusive rocks with high levels of iron. Towards the coastal zone of 

the country, intrusive plutonic rocks formed from continental drift, which present highly 

crystalline minerals such as quartz. 

Brazil also has a variable topography, composed mainly of slightly sloping terrain, with an 

altitudinal variation of 200 to 400m, where there is low tectonic and volcanic activity (Ross, 

2013). 

 

5.2.2. Soil observations 

A legacy database was used with spectral data in the Vis NIR-SWIR range (350-2500nm), 

with spectral resolution of 1 nm from the Brazilian Soil Spectral Library (BSSL) (Dematte et 

al., 2019), which has 69740 observations, of which 13657 associated to the depth 0 to 20 cm 

were taken. In addition, 2651 observations of the Mid IR range (4000 - 600 cm-1) with a 

spectral resolution of 1 cm-1 were used. 
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5.2.3. Enzyme activity indexes  

For the construction of the enzymatic activity indexes of beta-glucosidase, urease and 

phosphatase, 35 samples located in Piracicaba, Sao Paulo, 34 in the municipality of Tomé-

Açu, state of Pará, 15 in the municipality of Bandeirantes and 19 in Dourados, Mato Grosso 

do Sul, and 15 in Jardim Olinda, Paraná were used. The enzymatic activity of beta-

glucosidase, phosphatase and urease were determined following the methodology of 

Tabatabai (1994) and Dick et al. (1996). 

For these samples, spectral readings of the Vis-NIR-SWIR and Mid IR ranges were 

performed, making use of two sensors, the FieldSpec 3 spectroradiometer (Analytical Spectral 

Devices, Boulder, Col., USA) for obtaining reflectance data from 350 to 2500 nm (Vis-NIR-

SWIR) (Demattê et al., 2019) and the Alpha Sample Compartment RT-DLaTGS ZnSe sensor 

(Bruker Optik GmbH), equipped with a drift attachment (Souza et al., 2020) for obtaining 

spectral information from the range 4000 to 600 cm-1, corresponding to the mid-infrared, 

with a resolution of 1.2 cm-1 and 64 scans per second according to the description of Terra et 

al. (2015). For readings with this sensor, the samples ground and sieved at 100 mesh.  The 

spectral resolution of FieldSpec 3, varies from 3 nm for the range between 400 and 700 nm 

and 10nm for the range from 700 to 2500 nm, so a resampling at 1 nm was performed, 

obtaining 2151 spectral bands (Greschuk et al., 2022). For the readings with this sensor, the 

soil samples were ground and sieved at 2 mm. 
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Figure 1. Study area and soil observation points for 0-20 cm depth from the Brazilian Soil 

Spectral Library (BSSL) dataset, points with data from the Vis NIR SWIR spectrum (orange) 

and Mid IR spectrum (MIR, green). In red are the samples located in Piracicaba Sao Paulo, 

Tomé-Açu municipality, Pará state, Bandeirantes municipality and Dourados de Mato Grosso 

do Sul, which present enzymatic activity analysis of beta-glucosidase, urease and 

phosphatase. Köppen climate classification map: A = Tropical zone, without dry season (Af), 

monsoon (Am), dry winter (Aw) or dry summer (As); B = Dry zone with semi-arid climate 

and low latitude and altitude (BSh); C = Dry zone with semi-arid climate and low latitude and 

altitude (BSh). Subtropical zone with oceanic climate, without dry season, with hot summer 

(Cfa) or with temperate summer (Cfb) or subtropical zone with dry winter and hot summer 

(Cwa) or temperate summer (Cwb), taken from Alvares et al. (2013). 

 

The Recursive Feature Elimination (RFE) algorithm developed by Guyon et al. (2002) 

and implemented in the "Caret" package of R, using the Random Forest (RF) machine 

learning method as an internal model (Kuhn, 2021), was used to select the set of bands of 
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greatest importance for each enzyme activity. This algorithm is a method of wide applicability 

that allows handling nonlinear and more complex relationships, considering comprehensively 

the relationships between the analyzed factors (Wang and Li, 2023). RFE allows determining 

the optimal number of predictors by taking the model with the best performance (RMSE) 

(Zhang et al., 2023). 

For the present work, the RFE algorithm was applied for each enzyme activity and for 

each range of the electromagnetic spectrum, thus obtaining the most important Vis NIR SWIR 

and Mid IR bands of each enzyme (Figure 2), from which regression models were constructed 

to quantify the variables through spectral information. 

Multivariate linear regression models (MRA) were tested considering as dependent 

variables the enzymatic activity of beta-glucosidase, phosphatase and urease, and as 

explanatory variables the reflectance values of the most important bands for each variable and 

each Vis NIR-SWIR and Mid IR electromagnetic spectrum. Therefore, regression models 

were performed for each range of the spectrum and each enzyme. 

The choice of the best fit models was based on the correlation value (r) between the 

observed values of the response of the dependent variables Y and the values estimated by the 

model (Hoge et al., 2018). In addition, we considered the fulfillment of the assumption of 

independence of the residuals, using the Moran index test (MIT) with the matrix of weights of 

all neighbors (Liu and Chen, 2021), where independence is fulfilled if the p-value of the test 

is greater than 0.05. From these models, enzyme activity was calculated for each observation 

in the legacy data sets. 

 

5.2.4. Environmental covariates  

Soil microbiological enzyme activity is directly related to SOC dynamics (Yang et al., 

2021), which is closely related to the soil development process and thus to its forming factors 

suggested by Jenny (Hobley et al., 2015), among which there are active factors, such as 

climate and organisms, and passive ones, such as parent materials, relief and time. Based on 

these forming factors, the covariates used in soil attribute mapping are defined. For the 

present study, SYSI, soil attributes, climate, mineralogy and biomes were taken into account. 

SYSI represents soil directly and parent material and time indirectly (Poppiel et al., 2020). 

This covariate is obtained using the GEOS3 method proposed by Dematte et al. (2018) and 

Dematte et al. (2020), applied in Google Earth Engine (GEE) to a collection of Landsat 

images (5.6, 7 and 8) from 1984 to 2020. SySI has 6 bands (blue (450-520 nm), green (520-

600 nm), red (630-690 nm), NIR (760-900 nm), SWIR1 (1550-1750 nm) and SWIR2 (2080-
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2350 nm), processed by the GEOS3 method corresponding to a data mining algorithm that 

extracts ground features from historical data, related to soil spectral trend, Normalized 

Difference Vegetation Index (NDVI) and Normalized Burning Index 2 (NBR2), which allows 

creating a soil mask for the Landsat image collection, by selecting bare soil pixels. Therefore, 

the SySI pixels correspond to the median of all the bare soil pixels detected in the time series 

images (Dematte et al., 2020). 

In relation to terrain attributes, elevation, slope, aspect, curvatures, valleys, hills, 

orientation and topographic moisture index were taken into account as covariates, due to their 

influence on the action of climatic factors on soils (Weil and Brady, 2016, Lamichhane et al. 

2019). In addition, these covariates control soil water status, litter mineralization dynamics, 

erosion, deposition processes (Hengl et al., 2015) and the rate of decomposition of organic 

materials, due to the direct relationship of elevation with temperature (Schindlbacher et al., 

2010). These terrain attributes were determined from the 30-m resolution digital elevation 

model (DEM) obtained from the Advanced Land Observing Satellite (ALOS) (Japan 

Aerospace Exploration Agency, 2021) available from GEE (Golerick et al., 2017), and by 

making use of the Terrain Analysis in GEE (TAGEE) package (Safanelli et al., 2020). 

As climatic covariates, temperature and mean annual precipitation were considered, 

because they are the covariates that most affect C storage (Shi et al., 2020), control its 

dynamics and by in enzymatic activity (Hengl et al. 2015, Minasny et al. 2013). Because they 

determine the rate of C decomposition by microorganisms (Lal, 2004). These covariates were 

taken from the 1970 to 2000 WorldClim2 dataset (Fick and Hijmans, 2014). 

Relative abundance maps of hematite, goethite, kaolinite and gibbsite from Rosin et al. 

(2023) were included as mineralogical covariates.  Because functional groups that are related 

to enzymatic activity present a strong interaction with the surfaces of Fe and Al oxides and 

clay minerals such as 1:1 clays (Cao et al. 2011, Parikh et al. 2014, Kleber et al. 2021, Yang et 

al. 2021, Viscarra Rossel et al 2022).  

Considering that vegetation also interferes with SOC stocks because it favors the addition 

of plant biomass, its ease of decomposition (Bui et al., 2009), associated with the type of 

species (Mueller et al. 2015, Vesterdal et al. 2013). These biomass inputs are relevant in the 

most superficial horizons (Rasse et al. 2005, Lorenz et al. 2017), therefore, a stratification by 

biome was performed considering the map of global ecoregions reported by Dinerstein et al. 

(2017). 
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5.2.5. Spatial prediction 

Spatial prediction was determined from the Random Forest (RF) algorithm, which 

corresponds to the algorithm with the best performance reported for the prediction and 

mapping of various soil attributes such as SOC (Gómez et al. 2023, Zeraatpisheh et al. 2020, 

Padarian et al. 2020). This algorithm is a non-parametric model, based on the combination of 

different independent decision trees that are created in the training stage, where each tree is 

generated from a random sampling of identically distributed covariate values, allowing to 

obtain an average value of the prediction of all trees (Breiman 2001, Gómez et al. 2023). The 

strength of this algorithm is based on the initial randomization of the data and the selection of 

random entries (Sothe et al., 2022) with replacement of the original data and internal 

validation with data not used in the bootstrap procedure (Khaledian and Miller 2020, 

Zeraatpisheh et al. 2020). This allows capturing complex relationships between variables 

leading to robust and accurate results (Cutler et al., 2012). 

Due to the great number of data represented by the mapping at the national level, the 

calculated values for each observation were uploaded to Google Cloud Storage through the 

Google Earth Engine Python API, which has a great set of publicly available geospatial data 

and it is possible to perform efficient data processing with fast visualizations (Gorelick et al., 

2017). The geospatial mapping followed the Pipeline proposed by Van Den Hoogen et al. 

(2021), which allows creating nationwide predictions with high resolution, allowing also to 

evaluate bootstrap confidence intervals and standard deviation. 

The pipeline makes use of Google Earth Engine (GEE) runs through the Python API. 

Predictions are created from the dataset of unprocessed observations (Mid IR (n= 2651), Vis 

NIR SWIR (n= 13657)), using the RF algorithm to identify the relationships with the set of 

covariates. This set is the combination of the raster of each covariate. Subsequently, the 

pipeline extracts the information from each covariate to the different unprocessed points, 

creating a training data set, from which a set of RF models is trained and evaluated. 

Subsequently, the RF hyperparameters are adjusted by a grid search procedure, and models 

with different combinations of hyperparameters are evaluated by k-fold random cross 

validation. The final model, which will be used to create the prediction map, corresponds to 

the best model from the grid search procedure based on R2 (coefficient of determination), 

RMSE (root mean square error) and the ratio of performance to interquartile distance (RPIQ) 

of the calibration and validation data sets. The R2 represents the variance explained, the 

RMSE the precision, and the RPIQ evaluates the error in the interquartile range of the data 

(Rosin et al., 2023). 
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To obtain the uncertainty estimates, the pipeline includes a stratified bootstrapping 

procedure, based on the Bootstrapping technique that simulates the distribution of samples to 

assign measures of accuracy to the model predictions. Therefore, the training dataset is 

sampled with replacement, using the biome as the stratification category, where each biome is 

proportionally represented in each bootstrap sample. One hundred resamples are performed 

and each is used in the classification of the final composite image containing the layers 

associated with the prediction map, bootstrap maps (mean, confidence intervals, standard 

deviation and coefficient of variation), and two interpolations versus extrapolation maps, and 

metrics of model accuracy and variable importance (Van Den Hoogen et al., 2021). 

 

5.2.6. Data interpretation 

Maps of the enzyme activity indexes determined from the Vis NIR SWIR and Mid IR 

spectral ranges were prepared for the three enzymes, applying color ramps in order to 

differentiate areas with higher or lower enzyme activity. Additionally, prediction interval 

maps were prepared in order to identify the areas with greater uncertainty. 

 

5.2.7. Spatial validation 

Given the strong interaction between Fe and Al oxides and functional groups associated 

with the products of beta-glucosidase, phosphatase and urease enzymatic activity (Cao et al. 

2011, Parikh et al. 2014, Kleber et al. 2021, Yang et al. 2021, Viscarra Rossel et al. 2022), a 

visual comparison was made with the Fe, Al and Si oxide maps of Brazil constructed by 

Rosas et al. (2024) and the SOC map (Gomes et al., 2019).   

Additionally, a correlation analysis was performed between the enzyme activity maps and 

the Fe, Al and Si oxides maps of Rosas et al. (2024). For this purpose, Spearman's correlation 

coefficient was used, being one of the most suitable and accurate metrics for this type of 

analysis, being robust and insensitive to outliers, applicable to data with normal and non-

normal distribution, and effective in the characterization of linear and non-linear correlations 

(Zhang and Wang, 2023). 

Adetunji et al. (2017) reports that the enzymatic activity of phosphatase and urease 

increases in leguminous crops, therefore, it is proposed to elaborate a visual validation in the 

region of Campo Novo do Parecis, Mato Grosso, where there is an area with soybean crops 

since 1995 next to pasture areas. 



168 
 

5.3. Results and Discussion 

5.3.1. Index of enzyme activity 

Table 1 shows the most important bands determined for each enzyme activity in each 

range of the electromagnetic spectrum. These bands were finalized from RFE and the 

comparison of the bands obtained by Rodriguez-Albarracin et al. (2024) for the enzyme 

activity mapping of the Piracicaba Sao Paulo area.  

For the Vis NIR SWIR range, an R2 for RFE of 0.67 was obtained for beta-glucosidase, 

0.4 for Urease and 0.26 for phosphatase. For the Mid IR range, an R2 of 0.74 was obtained for 

beta-glucosidase, 0.35 for urease and 0.26 for phosphatase. The models obtained for each 

spectral range and each enzyme activity are shown in Table 2. 
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Table 1. Bands of the Vis NIR SWIR and Mid IR spectral ranges of major importance for the 

prediction of urease, beta-glucosidase and phosphatase enzyme activity obtained from the 

Recursive Feature Elimination (RFE) algorithm and bands selected for the multivariate linear 

regression (MRA) models. 

Enzyme 
VisNIR SWIR Mid IR 

RFE Selected RFE Selected 

Urease 

350-441, 445, 447, 452, 455, 459, 460, 

463, 477, 479, 489, 553, 644, 659, 663, 

784, 791-821, 842, 843, 849, 868, 895, 

906, 969, 981, 982, 994, 999, 1010, 

1050, 1051, 1056, 1057, 1058, 1060, 

1061, 1076-1092, 1098, 1106, 1109, 

1110, 1116, 2182, 2265, 2360, 2444, 

2460-2499 

350, 351, 352, 

359, 368, 379, 

398, 410, 430, 

463, 489, 663, 

798, 821, 868, 

1106, 2360, 

2470, 2499 

614, 619, 620, 621, 627, 629, 630, 

648, 650, 651, 652, 656, 657, 658, 

662, 663, 676, 697, 836, 905, 1010, 

1304, 1308, 1309, 1310, 1311, 1312, 

1316, 1322, 1323, 1627 

1627, 1310, 

1010, 905, 836, 

651, 629, 619, 

606 

Phosphatase 

350-417, 422, 423, 431-439, 445, 711-

715, 725, 726, 728, 729, 730, 736, 737, 

738, 739, 740, 741, 742, 743, 744, 745, 

746, 747, 748, 750, 751, 752, 755, 757, 

758, 934, 940, 1054, 1231, 1240, 1249, 

1250, 1259, 1273, 1274, 1275, 1276, 

1277, 1278, 1279, 1280, 1281, 1282, 

1283, 1284, 1285, 1356, 1375, 1376, 

1377, 1410, 1411, 1414, 1415, 1416, 

1417, 1418, 1523, 1703-1707, 1820-

1840, 1869, 1870, 1871, 1873, 1874, 

1980, 1983, 1984, 2071, 2072, 2103, 

2138, 2139, 2142, 2143, 2180, 2423, 

2424, 2428, 2440-2445, 2453, 2459, 

2460, 2461, 2462, 2466, 2467, 2469, 

2471-2500,  

350, 355, 356, 

357, 360, 361, 

576, 667, 736, 

740, 1911, 2441, 

2476, 2482, 2498 

600-623, 629, 635-646, 652, 656, 

657, 661-688, 695-711, 735, 750, 

805, 818, 821-824, 838, 875, 882, 

887, 888, 889, 890, 913, 914, 920, 

951, 1000-1020, 1038, 1040-1068, 

1291, 1294, 1301-1324, 1331, 1332, 

1334, 1340, 1341, 1342, 1361-1366, 

1386, 1396, 1397, 1402-1412, 1458, 

1474, 1602, 1604, 1611, 1612, 1641, 

1649, 1653, 1869, 1912, 2010, 2011, 

2372, 2533, 2534, 2830, 2849, 2893, 

2897, 2917, 3449, 3496, 3498, 3613, 

3614, 3620, 3622, 3626, 3672, 3694-

3729, 3964, 3989, 3990, 3994-4000 

3722, 3714, 

3703, 3449, 

2534, 2372, 

1869, 1653, 

1474, 1397, 

1294, 1068, 

875, 735, 670, 

624, 616, 612, 

606 

Beta-glucosidase 
360, 361, 362, 366, 369, 376, 388, 394, 

398, 423, 432, 446, 535, 536, 537, 538, 

541, 542, 543, 544, 545,  

360, 361, 376, 

388, 394, 423, 

535, 543, 2499, 

2500  

617-640, 664, 683, 696, 705-708, 

738, 740, 743, 765, 768, 776, 804, 

819, 820, 886, 910-914, 992-1013, 

1023, 1027, 1030, 1037-1057, 1060, 

1175, 1177, 1186, 1187, 1190, 1199, 

1200-1238, 1242, 1300-1341, 1348, 

1350, 1351, 1352, 1771, 1774, 1844, 

1850-1870, 1879, 2038, 2042, 2048, 

3314, 3383, 3384, 3385, 3447, 3479, 

3481, 3482, 3484, 3485, 3499, 3501-

3504, 3520, 3539, 3540, 3551, 3552, 

3568, 3569, 3570-3580, 3600, 3681-

3684, 3697, 3698, 3700, 3714-3724, 

3911, 3934, 3935, 3952-3959, 3968, 

3971-4000 

4000, 3956, 

3383, 2042, 

1857, 1826, 

1581, 1311, 

1310, 1243, 

1054, 912, 886, 

776, 667, 629, 

617, 608 
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Table 2. Multivariate linear regression (MRA) equations for the prediction of urease, beta-

glucosidase and phosphatase enzyme activity from the selected bands of the Vis NIR SWIR 

and Mid IR spectral ranges. 

Enzyme VisNIR SWIR Mid IR 

Urease 

12.30 + 1411.36 (410) - 1500.72 (463) + 

949.22 (663) - 4750.01 (798) + 4277.31 (821) 

- 143.03 (1106) - 50.16 (2470) 

6.13 + 562.28 (1310) - 2948.53 (651) + 

3238.62 (629) - 945.31 (619) 

Phosphatase 

539.16 + 3340.61 (350) + 10585.21 (356) - 

13872.10 (360) - 9709.36 (576) + 43224.81 

(667) - 536484.72 (736) + 502451.57 (740) - 

1037.61 (2441) 

 815.84 -23409.77 (3714) - 11781.39 (2534) 

+ 95234.45 (1653) - 29869.57 (1474) - 

10903.26 (1068) - 66866.03 (875) + 

95526.29 (735) + 67049.22 (670) - 

24877.30 (606) 

Beta-glucosidase 

57.17 + 3140.16 (360) - 5047.09 (361) + 

4507.84 (376) - 2815.09 (423) + 412.16 (535) 

- 129.69 (2500) 

68.76 - 1551.95 (3956) + 1835.39 (3383) - 

1582.82 (2042) - 1871.06 (1857) + 4878.35 

(1826) + 57376.11 (1311) - 55386.80 (1310) 

+ 4906.20 (912) 

 

In the Mid IR range, correlations of 0.72 were obtained for urease, 0.89 beta-

glucosidase and 0.76 phosphatase. For the VIS NIR SWIR range 0.84 was obtained for 

urease, 0.76 betaglucosidase, 0.70 phosphatase. The models obtained satisfied the assumption 

of spatial independence of the residuals and normality.  

The highest coefficients are related to the most important bands, for the case of urease 

in the Vis NIR SWIR range corresponds to the bands 798 and 821 nm, related to the NH, CH 

and CO functional groups of the labile forms of OM (Stenberg et al., 2010). The bands of 

greatest significance for phosphatase correspond to 667, 736 and 740nm. In the range 600-670 

nm strongly humified material with strong presence of aromatic groups has been reported 

Sharma et al. (2021).  

It is important to note that the bands between 350 – 376 nm reported in the 

phosphatase and beta-glucosidase models are related to the interaction of cell wall compounds 

of microorganisms and Fe oxides (Yang et al., 2022). 

In general, it is observed that in this spectral range the bands with less importance in 

the model are related to the ranges above 2400 nm, in which methyl functional groups have 

been reported (Viscarra-Rossel and Behrens, 2010). 

In relation to the Mid IR range the most important bands for urease correspond to 651 and 

629 cm-1, which correspond to CH2 stretching vibrations of bacterial cellular compounds 

(Parikh et al., 2014). In the range 600-700 cm-1 different authors have reported the interaction 

of compounds associated with the cell walls of microorganisms with AlO groups of clay 

minerals (Deo et al. 2001, Demyan et al. 2012). For phosphatase the most important bands 
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correspond to 1653, 875, 735 and 670 cm-1. The latter band is related to the interaction of 

bacterial wall phosphate groups with Fe oxides (Parikh et al., 2014). It is possible that the 

1653 cm-1 band is related to aromatic C=C, amide II, CH bonds interacting with the surfaces 

of Fe oxides (Cao et al. 2011, McWhirter et al. 2002, Ladd et al. 1993). For beta-glucosidase 

the most important bands correspond to 1826, 1311, 1310 and 912 cm-1. Between the range 

650-1800 cm-1 the carbohydrate and protein response of cellular compounds is recognized 

(Ammann and Brandl, 2011), in the 1300 cm-1 ranges the influence of amide II, aliphatic and 

ester groups have been recognized (Parikh et al. 2014, Nicolas et al. 2017, Gao and Chorover 

2009). Near the 1000 cm-1 range, the response of phosphate groups, carbohydrates, cellulose 

and polysaccharides has been recognized (Ojeda et al. 2008, Gao and Chorover 2009, Liu et 

al. 2015, Parikh et al. 2014). 

 

5.3.2. Environmental covariates 

For the mapping of enzyme activity indices related to the Vis NIR SWIR spectral range 

(Figure 2) the most important covariates correspond to annual precipitation (28.7%), elevation 

(13.1%), annual temperature (11.8%), SWIR 1 (8.5%), blue (6.8%), goethite (5.4%), SWIR 2 

(4.3%), Northness (4%) and hematite (3.9%) for beta-glucosidase. For phosphatase, blue 

(15.2%), annual temperature (12.9%), annual precipitation (9.9%), SWIR 2 (9.4%), elevation 

(9.1%), hematite (8.5%), goethite (5.9%), kaolinite (4.6%), SWIR1 (4.4%), gibbsite (4.1%). 

For urease, precipitation (33.7%), elevation (21.6%), temperature (9%), blue (5%), SWIR 1 

(4.4%), Eastness (3.7%) and goethite (3.6%). 

For the Mid IR spectral range (Figure 3) the most important covariates for beta-

glucosidase enzyme activity index mapping were temperature (13.6%), precipitation (12.2%), 

blue (11.7%), SWIR 1 (11.1%), goethite (10.3%), elevation (8.2%), hematite (6.1%), SWIR 2 

(5.3%) and green (4.6%). For phosphatase were SWIR 2 (14.1%), temperature (13.6%), 

SWIR 1 (8.7%), kaolinite (7.9%), precipitation (6.8%), vertical curvature (6.6%), hematite 

(5.8%), blue (5.8%), NIR (5.1%), red (5.0%), horizontal curvature (4.9%). For urease blue 

(13.4%), precipitation (12.3%), SWIR 1 (11.1%), temperature (10.7%), hematite (10.1%), 

SWIR 2 (7.6%), kaolinite (6.3%), elevation (5.7%), goethite (4.5%). 

In general, the importance of climatic covariates precipitation and temperature in mapping 

enzyme activity is observed (Figure 2 and 3). Beta-glucosidase has a close relationship with 

the C cycle (Adetunji et al., 2017) and the formation of simple sugars that are utilized by 

microorganisms (Xiao-Chang and Qin, 2006). It is possible to assume that, due to this 

relationship, beta-glucosidase activity responds to the decomposition of C by microorganisms 
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and therefore temperature and precipitation are important because they interfere with these 

decomposition rates (Lal, 2004).  According to Shi et al., (2020), these variables have the 

greatest effect on C storage. In addition, precipitation plays a key role in biomass productivity 

that determines litter input to the soil (Chaplot et al., 2010), due to its influence on the 

volume, quality and quantity of mineralization (Zeraatpishe and Khormali 2012). 

Adetunji et al., (2017) indicates that soil temperature and moisture affect the activity of 

urease, presenting an increase in activity with increasing temperature and a reduction of this 

with loss of moisture.  

In relation to relief, topographic indices such as elevation, slope and landscape position 

influence the action of climatic factors on soils (Weil and Brady 2016, Lamichhane et al. 

2019). Terrain parameters such as elevation and orientation have been used as predictive 

covariates of SOC (Sothe et al. 2022, Hengl et al. 2015). Because these variables control soil 

water status, litter mineralization dynamics, erosion and deposition processes (Hengl et al., 

2015). In addition, ground elevation is related to temperature and thus responds to the rate of 

decomposition (Schindlbacher et al. 2010).  

According to Amatulli et al. (2018) topography measured by elevation, orientation and 

slope, allows characterizing the spatial heterogeneity and abiotic environment for a given 

area, which is subsequently driven by hydrological, geomorphological and biological 

processes. 

Slope curvatures influence the direction of water flow, soil erosion and soil moisture, thus 

influencing water availability (Bogaart and Troch, 2006). East and north are derived 

continuous topographic variables, calculated from orientation and slope (Fassnacht et al 

2003), and therefore describe orientation in combination with slope. A value close to 1 for 

north indicates a slope exposed to low amount of solar radiation and close to -1 indicates 

steep slopes with high exposure to solar radiation (Amatulli et al., 2018). 
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Figure 2. Prediction maps of the enzymatic activity of A) Beta-glucosidase, B) Phosphatase, 

C) Urease, considering the prediction models created from the Vis NIR SWIR spectral range, 

together with the prediction interval (PI) maps and D) importance of the covariates used in the 

mapping by applying the random forest (RF) algorithm. Where A. mean temp (annual mean 

temperature), A. precip. (annual precipitation), Vr curvature (vertical curvature), Hz curvature 

(horizontal curvature). 

 

Phosphatase activity is affected by soil moisture, being reduced under drought effects 

(Adetunji et al., 2017), which explains the importance of temperature, precipitation and 

elevation in the prediction of this enzyme activity (Figure 2). It is possible to observe that the 

most important variable was the SYSI blue band, this band includes the range between 450 

and 520 nm, and it is observed that, in the model associated with the phosphatase activity 

index, the 576 nm band contributes. Yang et al. (2022) reported the interaction of Fe oxides 

with fungal diversity in the 410 and 460 nm bands, that is, the blue band may be related to the 
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interaction of cell wall compounds that are related to phosphatase activity (Parikh et al., 2014) 

and Fe oxide surfaces. Dematte et al. (2014) indicates the presence of hematite in the 550 nm 

band and goethite around 440-470nm, and clearly the importance of these two oxides as 

covariates in mapping enzyme activity in general is observed. This blue band was also of 

importance in urease mapping, because the 410 and 463 nm bands are important in modeling 

the activity index of this enzyme (Table 2). 

SWIR 2 (2080-2350 nm) is also important in phosphatase mapping (Figure 2), possibly 

due to its proximity to the 2441 nm band, which participates in the model of the activity index 

of this enzyme. Zornoza et al. (2008) report the range 2270-2630 nm, associated with 

phosphatase. Viscarra-Rossel and Behrens (2010) report the presence of fulvic acids and 

carbohydrates at 2336 and 2381 nm. 

Hematite and goethite were important covariates in the mapping of the 3 enzymes (Figure 

2 and 3), different authors have reported the interaction of functional groups present in the 

cell walls with these Fe oxides (Yang et al. 2022, Parikh et al. 2014, Sharma et al. 2021, Ojeda 

et al. 2008, Gao and Chorover 2009, Cao et al. 2011). Kaolinite also appears as an important 

covariate for phosphatase, because the interaction of phosphate and amide II groups with AlO 

groups of clay minerals has been reported (Deo et al., 2001). 

 

5.3.3. Spatial prediction 

Prediction maps of enzyme activity indices based on the Vis NIR SWIR spectral range 

had an R2 of 0.68 and RMSE of 35.2 for beta-glucosidase, 0.35 and 111.86 for phosphatase, 

0.75 and 8.6 for urease (Figure 2).  For the Mid IR spectral range, R2 values of 0.38 and 

RMSE of 27.2 were obtained for beta-glucosidase, 0.11 and 760 for phosphatase and 0.45 and 

3.64 for urease (Figure 3). 

Safanelli et al. (2021b) reported an R2 of 0.5 for the SOC map and 0.74 for clay in the 

agricultural areas of Brazil obtained from the RF algorithm. Gomes et al. (2019) reported an 

R2 of 0.3 for the SOC map of Brazil. Rosas et al. (2024) reports R2 of 0.65 for Fe oxide maps 

of agricultural areas of Brazil. Rosin et al. (2023) elaborated hematite, goethite, gibbsite and 

kaolinite maps for Brazil and obtained R2 of 0.64, 0.4, 0.29 and 0.2, respectively. The maps 

obtained in the present study (Figure 2 and 3) present a high coefficient of determination 

especially with the Vis NIR SWIR spectral range, with the exception of phosphatase. 
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Figure 3. Prediction maps of the enzymatic activity of A) Beta-glucosidase, B) Phosphatase, 

C) Urease, considering the prediction models created from the Mid IR spectral range, together 

with the prediction interval (PI) maps and D) importance of the covariates used in the 

mapping by applying the random forest (RF) algorithm. Where A. mean temp (annual mean 

temperature), A. precip. (annual precipitation), Vr curvature (vertical curvature), Hz curvature 

(horizontal curvature). 

 

There are not many studies that have mapped the enzymatic activity of the soil, 

Rodriguez-Albarracín et al. (2024), elaborated the maps of the enzymatic activity indexes for 

the region of Piracicaba, Sao Paulo, and obtained R2 values of 0. 43 for beta-glucosidase, 0.52 

for urease and 0.49 for phosphatase, using the Vis NIR SWIR spectral range, and R2 of 0.3 for 

beta-glucosidase, 0.42 urease and 0.49 phosphatase with the Mid IR spectral range. 

The prediction interval (PI) maps are observed (Figures 2 and 3), which indicate that 

higher values are related to greater uncertainty. It is observed that beta-glucosidase and urease 
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both in the predictions with Vis NIR SWIR and Mid IR are the ones that present lower 

uncertainty, however, it is important to highlight that the urease model with Mid IR presents 

improvements contrary to beta-glucosidase. The most difficult variable to map was 

phosphatase because it presented the worst validation metrics. 

 

 

Figure 4. Distribution of relative enzyme activity of beta-glucosidase (Betaglu), Phosphatase 

(Phospha) and Urease, determined from the Vis NIR SWIR (VNIR) and Mid IR (MIR) 

prediction models, according to the agricultural uses reported by MAPBIOMAS (2022). 

 

Spatially, urease and phosphatase show similar behavior, observing that areas with 

lower phosphatase activity also coincide with low urease activity and vice versa (Figure 2 and 

3). The areas with the greatest differences are observed in the states of Minas Gerais, Paraná, 

Santa Catarina and Rio Grande do Sul (Figure 2), where areas with lower urease activity 

present higher phosphatase activity, which seems to follow the behavior of the Fe oxide map 

elaborated by Rosas et al. (2024). On the other hand, areas with lower urease activity seem to 

follow the pattern of the gibbsite map elaborated by Rosin et al. (2023) and the aluminum 

oxide map, however, a higher urease activity would be expected due to the relationship 

presented by the NH functional groups and Al-OH bonds (Davinic et al., 2012), however, 

Kleber et al. (2021) indicates that there is competition between different organic compounds 

for adsorption sites with inorganic ions, where stronger bonds prevail, which in these areas 

could be associated with phosphate group ligands on mineral surfaces (Omoike and Chorover 

2006, Parickh et al. 2014). However, the behavior of urease in these areas may be due to the 
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higher elevation of the terrain found in this area (Rosin et al., 2023), resulting in a possible 

reduction in temperature and, therefore, a decrease in the activity of this enzyme (Machuca et 

al., 2015). 

It is observed that in the southern part of the state of Rio Grande do Sul, there is a 

decrease in the activity of urease and phosphatase (Figures 2 and 3). In this area the slopes are 

lower (Rosin et al., 2023) and according to IBGE (2021) there are "planosolo" soils that are 

flooded, additionally, according to MapBiomas (2020) it is an area where rice is cultivated, 

which explains the reduction in the activity of this enzyme, due to the fact that commonly in 

this land use fertilization is conducted where nitrification inhibitors are applied (Marchesan et 

al., 2013). 
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Figure 5. Analysis of phosphatase and urease enzyme activity determined from Vis NIR 

SWIR prediction models in an area traditionally cultivated with soybean (1995-2022) in the 

region of Campo Novo do Parecis, Mato Grosso. 

 

Beta-glucosidase activity follows the distribution of the SOC map (Gomes et al., 2019), 

where higher enzymatic activity is related to higher C content (Figures 2 and 3), which is in 

agreement with that reported by Zhang et al. (2020) and Henríquez et al. (2014), who point 

out a strong correlation between beta-glucosidase activity and SOC. Some areas in the state of 

São Paulo and Mato Grosso do Sul with high beta-glucosidase enzymatic activity respond to 

hematite and goethite dominance (Rosin et al., 2023). However, when comparing the response 

of this enzymatic activity with the Fe and Al oxide maps of Rosas et al. (2024), a reduction of 

enzymatic activity is observed with increasing oxide content, this is because a large part of the 
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functional groups associated with betaglucosidase are related to labile forms of C and are the 

main source of energy for microorganisms (Adetunji et al., 2017). 

 

5.3.4. Spatial validation 

In general, high correlations were obtained between Fe, Al and Si oxide maps and enzyme 

activity (Figure 4). High correlations of beta-glucosidase with Fe2O3 (0.53), Al2O3 (0.61) and 

SiO2 (0.55) were observed, because the activity of this enzyme is also related to aromatic, 

ester and carbonyl functional groups interacting with the oxides surfaces (Gao and Chorover 

2009, Parikh et al 2014). It is important to clarify that SiO2 does not correspond to quartz, this 

is found in the structure of clay fraction minerals such as hematite, goethite, gibbsite, kaolinite 

and montmorillonite (Rosas et al., 2024), therefore, the correlation reflects that interaction of 

the products of the enzymatic activity with the surfaces of the clay minerals, especially the 

carbonyl functional groups that interact with the Si oxides (Calderón et al. 2011, Davinic et al. 

2012).  

The correlations between phosphatase activity and oxides are also high (Figure 4) and 

improve when compared to the Mid IR spectrum maps, possibly due to the fact that in this 

spectral range there are more specific bands related to the products of this enzyme (Table 1). 

The lowest correlations are presented for the enzymatic activity of urease with the Vis NIR 

SWIR spectral range, possibly because in this spectral range there are fewer specific bands 

associated with this enzymatic activity and, like phosphatase, there is a large number of bands 

resulting from the RFE algorithm (Table 1), contrary to the Mid IR range which has a more 

specific number of bands for urease activity and this is reflected in the lower uncertainty of 

the map (Figure 3) and greater correlation with the different oxides. 

Adetunji et al. (2017) and Meyer et al. (2015) highlight the influence of land use on 

enzyme activity, and this is identified in Figure 4, where lower activity is presented in pasture 

areas, contrary to forest, soybean and sugarcane areas. In these last two land uses, higher 

enzyme activity is observed in general. Beta-glucosidase activity is improved because in these 

uses commonly crop material is left covering the soil, which can be converted into labile 

forms of C for energy production by microorganisms (Kleber et al. 2015, Parikh et al., 2014) 

and furthermore this enzyme activity is related to the rate of OM oxidation (Henriquez et al., 

2014) and increases with OM input to the soil (Meyer et al., 2015) and is higher in soils where 

litter is maintained than in those without (Yang et al., 2003). Phosphatase activity is higher in 

soybean crops because legumes require more phosphorus in the N fixation process (Makoi 

and Ndakidemi, 2008). Higher urease activity is observed in sugarcane crops because nitrogen 
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fertilization is commonly used, unlike soybean crops, and this type of fertilization decreases 

the activity of this enzyme (Mohammadi, 2011). 

A case study in Mato Grosso, in the region of Campo Novo do Parecis (Figure 5) in an 

area traditionally used in Soybean crops (1995 - 2022), close to a pasture area, confirms the 

strong relationship of phosphatase enzyme activity with legume crops reported by Makoi and 

Ndakidemi, (2008) and Adetunji et al. (2017), because compared to pasture areas, a high 

activity of this enzyme is observed, as well as of urease, due to the fact that N availability 

favors the increase of urease activity (Adetunji et al. 2017, Henríquez et al. 2014). 

 

5.4. Conclusions  

Equations were obtained for the determination of the enzymatic activity of beta-

glucosidase, phosphatase and urease for each spectral range (Vis NIR SWIR and Mid IR) 

based on multiple linear regression models, which presented correlations that oscillated from 

0.89 to 0.7, presenting the highest correlations with the models based on Mid IR. 

The bands involved in the prediction models and therefore the most important, for the Mid 

IR spectral range for beta-glucosidase corresponded to 3956, 3383, 2042, 1857, 1826, 1311, 

1310 and 912 cm-1, for urease 1310, 651, 6249 and 619 cm-1, for phosphatase 3714, 2534, 

1653, 1474, 1068, 875, 735, 670 and 606 cm-1. For Vis NIR-SWIR spectral range for beta-

glucosidase corresponded to 360, 361, 376, 423, 535 and 2500 nm, urease 410, 463, 663, 798, 

821, 1106 and 2470 nm, phosphatase 350, 356, 360, 576, 667, 736 and 2441 nm. 

Prediction maps of enzyme activity indices were obtained based on the DSM framework 

and Vis NIR-SWIR spectral range information with R2 of 0.68 for beta-glucosidase, 0.35 

phosphatase and 0.75 urease. For the Mid IR spectral range much lower R2 values were 

obtained, however, the prediction interval (PI) decreased for urease. 

Climatic covariates were the most important for spatial prediction, due to their influence 

on enzyme activity. Additionally, the blue, SWIR 1 and SWIR 2 bands of the SYSI also 

presented high importance because the range of each band presents strong relationships with 

the bands of higher importance that participated in the prediction models. The mineralogical 

variables also presented high importance, especially hematite and goethite due to the 

interaction between the surfaces of these minerals and the functional groups related to the 

activity of these three enzymes.  Additionally, a strong correlation was observed between the 

enzymatic activity maps and the Fe, Al and Si oxide maps, which oscillated from 0.74 to 0.47, 

being higher with the maps based on the Mid IR spectral range. 



181 
 

Variation of enzyme activity was identified in the different land uses and it was observed 

that phosphatase and urease activity is higher in crops with soybean tradition, such activity 

decreases in pasture areas. Crops that commonly leave material in the soil after harvest, such 

as sugar cane and soybeans, show an increase in beta-glucosidase activity. The latter enzyme 

had a strong visual correlation with the SOC map due to its close relationship with the C 

cycle. 
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