• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.11.2021.tde-11102021-103725
Documento
Autor
Nombre completo
Ralf Vieira de Araujo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Piracicaba, 2021
Director
Tribunal
Cerri, Carlos Eduardo Pellegrino (Presidente)
Camargo, Plinio Barbosa de
Carvalho, André Carlos Ponce de Leon Ferreira de
Oliveira, Stanley Robson de Medeiros
Título en inglés
Machine learning for prediction of soil carbon stock changes in sugarcane crop due to straw removal
Palabras clave en inglés
Machine learning
Soil attributes
Soil organic carbon
Waste management
Resumen en inglés
Brazil, as other countries, has established energy and climate policies that foster the use of biofuels as sugarcane ethanol, in which a growing practice is to use harvesting residues, the straw, for cogeneration of electricity or to produce second-generation ethanol. In this study, it was aimed to create machine learning (ML) models capable of predict short-term changes in the soil organic carbon stocks according to the mass of sugarcane straw leftover the soil during harvest. Considerations were also made on the current state of the art regarding the application of ML in soil science, with an emphasis on tropical soils and soil carbon stocks. The initial data was generated between 2015 and 2018 in five experimental sites under commercial cultivation of sugarcane in Brazilian south-central region and the available variables were related to climate, soil physical and chemical attributes, organic matter and crop variety. The variable to be predicted (y) was the rate of carbon stock change per area per year (Mg C ha-1 yr-1) in relation to the total dry mass of straw. The initial dataset was divided into training (80%) and test (20%) and eight ML models were trained using the algorithms Random Forest (RF) and Support Vector Machine (SVM) associated to four feature selection methods. Results were evaluated using 10-fold cross-validation of the root mean squared error (RMSE) in the training set and prediction RMSE in the test set. The trained models were statistically compared among them and to the use of mean y stratified by straw mass deposited and soil layer. All the ML models surpassed the simple generalization of previously known mean values of y. The model SVM associated with RF feature selection performed better with a considerable reduction in the number of attributes, which could reduce the costs and effort of data acquisition and processing in future applications. The achievements indicate that ML models are good tools to predict short-term changes in carbon stocks due to total or partial straw remotion from the field. The obtained results and applied methodology have the potential to help producers and decision-makers interested in identifying cause-effect relationships between in situ crop conditions, straw management and expected soil carbon variations.
Título en portugués
Aprendizado de máquina para predição de alterações nos estoques de carbono do solo em cultivo de cana-de-açúcar devido à remoção da palha
Palabras clave en portugués
Atributos do solo
Carbono orgânico do solo
Machine learning
Manejo de resíduos
Resumen en portugués
O Brasil estabeleceu políticas energéticas e climáticas que fomentam o uso de biocombustíveis como o etanol da cana-de-açúcar. Uma prática crescente é usar os resíduos da colheita, a palha de cana-de-açúcar, para cogeração de energia elétrica ou para produzir etanol de segunda geração. Neste estudo, objetivou-se prever mudanças de curto prazo nos estoques de carbono orgânico do solo de acordo com a massa de resíduos depositada na colheita utilizando técnicas de aprendizado de máquina (AM). Foram feitas também considerações sobre o atual estado da arte relativo à aplicação de AM nas ciências do solo, com ênfase em solos tropicais e estoques de carbono do solo. Os dados iniciais foram gerados entre 2015 e 2018 em cinco áreas de cultivo comercial de cana-de-açúcar na região centro-sul do Brasil e as variáveis disponíveis relacionam-se ao clima, atributos físicos e químicos do solo, matéria orgânica e variedade cultural. A variável predita (y) foi a taxa de variação do estoque de carbono por área por ano (Mg C ha-1 ano-1) em relação à massa seca total da palha. O conjunto de dados inicial foi dividido em treino (80%) e teste (20%) e oito modelos baseados em algoritmos de AM foram desenvolvidos utilizando Random Forest (RF) e Support Vector Machine (SVM) associados a quatro métodos de seleção de atributos. Os resultados foram avaliados pela raiz do erro quadrático médio (RMSE) com validação cruzada no conjunto treino e RMSE da predição no conjunto de teste. Os modelos treinados foram comparados com a adoção de valores médios de y estratificados por massa de palha depositada e camada de solo e entre eles (p < 0,05). Todos os modelos AM superaram a generalização de valores médios de y previamente conhecidos. O modelo SVM aplicado ao conjunto de atributos selecionado por RF apresentou melhor desempenho com redução considerável no número de atributos, o que poderia reduzir os custos e esforço de aquisição e processamento de dados em aplicações futuras. Conclui-se que modelos de AM são boas ferramentas para prever mudanças de curto prazo nos estoques de carbono devido à remoção total ou parcial da palha do campo. Os resultados obtidos e metodologia aplicada tem potencial de auxiliar produtores e gestores a identificar ralações de causa-efeito entre as condições locais de cultivo, o manejo da palhada adotado e as variações esperadas no carbono orgânico do solo.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-10-13
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.