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RESUMO 

 

Degradação do solo determinada por imagens de satélite temporais e variáveis 

ambientais no Estado de São Paulo, Brasil 

 

A saúde do solo é um grande desafio do século XXI. As regiões tropicais são as que 

apresentam maior expansão em terras agrícolas. Portanto, novas pesquisas sobre o processo 

de degradação do solo são imprescindíveis para prevenir danos à dinâmica social e ambiental. 

O objetivo principal deste trabalho foi gerar um Índice de Degradação do Solo em uma região 

tropical com base nos fatores que o afetam, em uma região tropical com base nos fatores que 

o afetam A metodologia seguiu os passos de um trabalho já desenvolvido para uma pequena 

área do interior do Estado. Coletamos imagens da área, obtidas por uma série temporal de 

imagens de satélite Landsat (1985 a 2019) e determinamos as áreas com solo exposto pela 

metodologia Geospatial Soil Sensing System. Amostras de solo (0-20 cm) foram coletadas 

para realizar a espacialização dos atributos do solo por meio do algoritmo de Random Forest. 

Dados climáticos médios foram obtidos para o período de análise, usando o conjunto de dados 

CHIRPS para gerar as informações médias históricas sobre os anos de estudo. A temperatura 

da superfície foi determinada com base nas bandas térmicas Landsat 5 e 8. Usando o modelo 

de elevação, outros dados de terreno foram obtidos, como fator LS e Slope. Todas essas 

variáveis foram sobrepostas pelo algoritmo de agrupamento k-means, normalizando-as para 

uma forma adimensional a fim de gerar um Índice de Degradação do Solo (SDI) (valores de 1, 

muito baixo a 5, níveis muito altos de degradação). A matéria orgânica (MO) foi utilizada 

para validar o modelo. Houve uma relação importante entre o SDI e a refletância espectral de 

superfície exposta do solo, obtida pelo Landsat. Os resultados mostraram que quanto menor a 

quantidade de OM, maior o nível de degradação. Portanto, o método utilizando dados de 

sensoriamento remoto multitemporal e variáveis ambientais mostrou-se satisfatório para 

atender a SDI, que permite a tomada de decisões sobre o uso do solo e políticas públicas.  

 

Palavras-chave: Qualidade do solo, Degradação do solo, Sensoriamento remoto, Imagens 

temporais de satélite, Landsat, Mapeamento digital do solo 
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ABSTRACT 

 

Soil degradation determined by temporal satellite images and environmental variables 

in São Paulo State, Brazil 

 

Soil health is a major challenge in the 21st Century. Tropical regions are the ones with 

the strongest expansion in agricultural lands. Therefore, novel researches on the soil 

degradation process are imperative to prevent damages to social and environmental dynamics. 

The main goal of this research was to generate a Soil Degradation Index based environment 

co-variables acquired by remote sensing and processed with machine learning. The work was 

developed in all the complete agricultural area of São Paulo State, Brazil. We used a Landsat 

time-series (1985 to 2019) and determined the areas with exposed soil using the Geospatial 

Soil Sensing System methodology. Based on a dataset with soil samples (0-20 cm) we 

calibrated pixel images and generated thematic maps of clay, and cation exchangeable 

capacity, CEC. Organic matter was also determined but used for validation and not a co-

variable. The specialization was performed using a random forest algorithm. Other co-

variables were determined such as land use. The k-means clustering algorithm was used to 

overlay all variables including historical data of rainfall and surface temperature as well as 

terrain attributes in order to generate a Soil Degradation Index (SDI) (values from 1, very low 

to 5, very high levels of degradation). Finally, the model was validated using OM. There was 

an important relationship between the SDI and the spectral surface reflectance obtained by 

Landsat. Locations with less OM presented a higher degradation. Therefore, integrating 

multitemporal remote sensing data and environmental variables proved to be effective to 

assist the SDI, which allows for land use decision-making and public policies. 

 

Keywords: Soil quality, Soil degradation, Remote sensing, Time-series satellite images, 

Landsat, Digital soil mapping, Monitoring 
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1. INTRODUCTION 

The main farming productions from São Paulo State are sugarcane, cattle and orange 

orchards. Information about farming data is available at “Instituto de Economia Agrícola” 

(Institute of Agricultural Economics, http://www.iea.agricultura.sp.gov.br). The State of São 

Paulo is an important national and international agent in terms of the agricultural sector. 

According to the data of this institute, this region is the world's largest producer of sugarcane 

ethanol, responsible for around 47% of Brazilian production. The interior of São Paulo is the 

world's largest producer of orange juice, accounting for 53.51% of industrially produced juice 

on the planet. The cattle breeding areas produced R$ 7.8 billion, approximately 10% of all the 

Brazilian productivity. The egg sector participated with about 23% of Brazilian production, in 

monetary terms this meant a production of R$ 3.4 billion. Therefore, this is an extremely 

important region for the study and the analysis of better soil practices. 

The alteration of natural ecosystems by agricultural activity is impairing soil physical, 

chemical, and biological processes (Usharani et al., 2019; Ferreira et al., 2021). The land use 

planning and management are the key for preventing soil degradation (Orchard et al., 2013). 

Soil quality can only be achieved by the conservation of proper traits, which involve its 

biomass, structure, water storage, nutrient cycling, biological activity, and diversity (Lal, 

2004). Besides, soils are a fundamental component for food and fiber production, as well as 

maintaining the quality of the region and the world, as they are the foundation of agriculture 

and the natural vegetation community (Doran; Zeiss, 2000; Nortcliff, 2002). 

Conceptually, Lal (2015) grouped four types of soil degradation: physical, chemical, 

biological and ecological. The soil physical degradation is recognized to regulate soil 

porosity, water infiltration and retention, surface runoff, soil compaction, land surface 

temperature fluctuations, soil organic matter and other modifications in soil structure (Rabot 

et al., 2018). Likewise, soil chemical degradation is described by the loss of soil fertility, 

reducing cation exchange capacity (CEC) with the increase of aluminum, soil salinization, 

acidification, alkalinization and nutrient deficiency in plants (Nieder et al., 2018).The third 

type is soil biological degradation that can be accessed by soil organic carbon (SOC) contents, 

especially caused by erosion (Veum et al., 2014). Indeed, some authors demonstrated that the 

decline in native vegetation reduces the SOC, as intensive land use decreases its quality 

(Dlamini et al., 2014). The reduction of SOC can compromise soil fertility, water retention 

and erosion increase. Finally, the cluster of physical, chemical and biological degradation 

generate the fourth type of soil degradation, that is ecological depletion (Lal, 2015). The 

http://www.iea.agricultura.sp.gov.br/
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ecological degradation can be identified by the disturbance in the ecosystem due to change in 

elemental cycling, soil and organic matter. 

Soil organic matter (SOM) is boosted by the land coverage maintenance and is a crucial 

soil attribute for minimizing soil degradation (Bayer and Mielniczuk, 1997). High levels of 

SOM help to reduce the degradation by enhancing  soil fertility, structure and water 

infiltration capacity (Lal, 2015). However, inadequate soil management may increase the rate 

of SOM decomposition, which is influenced by soil surface temperature, physical and 

chemical properties (Alexander, 1978) and erosion processes (Sanderman and Berhe, 2017). 

According to Chaplot et al. (2005), the establishment of annual crops on former forest 

lands considerably increases the possibilities of soil loss due to erosion. Some tilling 

procedures can accelerate soil degradation, with negative impacts on the physical, chemical 

and biological quality, as well as a decrease in productivity (Mendes et al, 2006). Moraes 

(2016) concluded that tillage systems foster erosion and compaction while also increasing 

SOM mineralization and soil degradation. Moreover, the constant exposure of soil due to 

agricultural activity (bare soil) increases the soil temperature and the SOM decomposition 

rates while decreasing the water infiltration due to the sealing process (Llanillo et al. 2006). 

Water retention and availability, mainly in surface layers, are higher in non-bared soils 

due to their structure, which also explains the lesser susceptibility to leaching (Dalmago et al. 

2009; Carvalho et al. 2000). Furthermore, an increase in SOM leads to an increase in the 

water retention capacity (Weil and Brady, 2017) Galdino et al. (2016) explained that soil 

degradation is accelerated by exposure to erosive agents intensifies its degradation, 

particularly in areas covered by pastures on Leptosols, which have a high susceptibility to soil 

loss and sediment transport. The lack of vegetation, especially in more mountainous or 

sloping areas, can also accelerate the degradation process (Eroğlu et al., 2010). Monteiro et al. 

(2018), show that areas with high to very high degradation, had soils with a longer exposure 

duration.  

The soil topography, which is represented by the steepness and landscape shape, 

influences the surface runoff rates, as a key factor along with climate, driving the soil loss 

(Fernandes et al., 2014). The infiltration rates in steep terrain are lower, encouraging  surface 

runoff and enhancing drainage channel formation (Mello et al., 2021) This scenario stimulates 

soil erosion across the landscape and necessitating adequate management (Weill e Sparovek, 

2008) and a reduction in SOM (Starr et al., 2000).   

The soil degradation process mentioned can also be affected by the soil texture. Indeed, 

lands with higher aggregate stability, such as clayey soils, are less predisposed to degradation 
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due to its lower erodibility rate, which is a measure of the susceptibility to detachment and 

transport of ground particles by rainfall and runoff (Elwell, 1986).  

Current advances in geographic information system (GIS) and remote sensing (RS) 

technologies are fostering the monitoring and management of large territories (Barvels and 

Fensholt 2021; Hu et al., 2021; Vieira et al., 2021). RS is characterized by the use of sensors 

to process any geographical information and are positioned on platforms such as airplanes or 

spacecrafts for data transmission to support the study of events occurring on the Earth’s 

surface (Novo, 2010). Therefore, RS tools can be employed as proxies to extract and describe 

the environmental process of soil degradation as well as its relationship with anthropic 

activities (Cunha et al., 2012). Several projects attempted to build land degradation models 

using innovative technology.  For example, Chaves et al. (2015) employed RS to collect 

information about the vegetation, soil, and topography in order to develop a model to estimate 

soil degradation. Barbosa et al. (2007) correlated the dynamics in land use with the soil 

degradation through digital processing and temporal analysis of a Landsat 5 image. Mota et 

al. (2011) prepared a map of soil degradation vulnerability through GIS and multicriteria 

additive methodology, taking into account the geology, geomorphology, pedology, 

vegetation, and climate information. 

A widely used technique to measure soil degradation is the Revised Universal Soil 

Loss Equation (RUSLE). This method employs the equation that depends on the variables 

such as topography, cover management, support practice, erodibility and soil loss tolerance 

(Renard 1997; Lu et al., 2004; Santos et al., 2015). Another method for assessing soil 

degradation, for example, considered the following factors: soil erosion by water, bioclimate 

indicator, and topsoil depth (Diodato and Ceccarelli, 2004). Besides, new approaches  that use 

spectral to express land degradation are being developed (Chikhaoui et al., 2005; Chabrillat, 

2006). for example,  Dantas et al. (2018) used a method that considers land use, NDVI, 

precipitation, livestock, and erodibility in the evaluation of degradation. However, there are 

few works that attempt to reach fine resolution (30 m) in great areas in South America, where 

pressure for lands and agriculture has become the focus of the world's needs. This takes us to 

the necessity to achieve faster techniques to sow the ‘big picture’ of the situation and thus 

take actions. Despite this, most papers as indicated use land use, soil properties and other co-

varieties but there is absence on the exposed soils. Soil exposed such as carbon degradation, 

microorganisms alteration, erosion, water loss, among others. 

Said this, the aim of this work is to introduce a new co-variable to the degradation 

index: the bare soil factor. The main objective was to develop a soil degradation index for the 
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entire State of Sao Paulo Brazil where we have one of the most important agriculture systems. 

Each chosen variable was expected to contribute to the determination of soil degradation 

susceptibility. We expect an important relationship between soil properties and degradation. 

Also, we expect that areas with more agriculture present greater degradation. 
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2. MATERIALS AND METHODS 

2.1. Study area 

The São Paulo State is located in the Southeast region of Brazil and covers a total of 

248,209 km2. The Cfa is the predominant climate, which occupies 33.4% of the territory, 

presenting characteristics such as hot summers and an undefined dry season. The other types 

of climate present in the study area, in descending order, are Aw, Cwa, Cfb, Cwb, Af and Am 

(Alvares et al., 2013). The annual precipitation of São Paulo State varies from very high 

quotas, as observed on the slopes of Serra do Mar, which can reach 4500 mm, to moderate 

indices, as in stretches of the Depressão Periférica, between 1000 and 1100 mm (Nery et al., 

2004). 

The predominant soil classes in the area are Ferralsol, covering 38.14%, followed by 

Lixisol, with 37.63% (Rossi, 2017). The flowchart of the steps performed in this work can be 

seen in Fig.1 

 

 
Figure 1. Flowchart of the methodology performed. 
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2.2. Obtaining the environmental variables used in the calculation of soil degradation 

index 

In total, 11 environmental variables were used to construct the soil degradation index 

map.  The following sections describe how each variable was obtained. 

 

2.2.1 Synthetic soil image (SySI) and bare soil frequency (SF) 

Demattê et al. (2018) developed a procedure for obtaining a single synthetic image, 

which would represent bare soils by combining  multi-temporal satellite image information. 

The method called Geospatial Soil Sensing System (GEOS3) uses a Landsat database to 

generate a Synthetic Soil Image (SYSI) with six spectral bands, nm: blue (450–520), green 

(520–600), red (630–690), NIR (760–900), SWIR1 (1550–1750) and SWIR2 (2080–2350), 

which present a multitemporal composition of pixels with bare soil from 1984 to 2019. 

The SYSI was generated through the Landsat images database from 1984 to 2019 

through the Google Earth Engine platform.  Following the GEOS3 methodology, indices such 

as the Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio 2 

(NBR2) and others described by the authors, were used to identify and remove these features 

and to capture only the pixels that showed bared soil. Subsequently, the generated images 

were overlaid and the median spectral reflectance was selected. The composite of all TESS 

values generates a unique image as a SYSI. The GEOS3  method also provides the frequency 

of times that the soil was exposed. This information is very relevant for the degradation 

research, which can improve the understanding of the relationship between remote sensing 

indicators and soil properties. 

 

2.2.2 Soil attributes data and spatial prediction 

The legacy soil observations gathered across the São Paulo State came from the 

previous surveys developed by the Geotechnologies in Soil Science Group 

(https://esalqgeocis.wixsite.com/geocis) and others (Nanni et al., 2004; Terra et al., 2015; 

Rizzo et al., 2016; Fongaro et al., 2018; Gallo et al., 2018; Demattê et al., 2019; Mendes et al., 

2019). Surface (0.00-0.20 m) samples (n = 22,311) were collected with augers in 

georeferenced locations, mostly following the sampling strategy of toposequences or grid 

schemes. 

The chemical and physical analysis were determined according to Camargo et al. 

(2009). The soil attributes selected for mapping purposes were Clay (g kg-1), Cations 

Exchange Capacity (CEC, mmol kg-1) and Organic Matter (OM, g kg-1).  

https://esalqgeocis/
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The soil attributes were spatialized using the same methodology as Safanelli et al 

(2021). The Random Forest algorithm was applied in this study. The Random Forests 

algorithm is a set of many regression trees built with bootstrap samples and randomized 

predictors. To define the optimal hyperparameters for each soil attribute a grid search was 

performed. The number of trees in the forest, the number of random predictors tested at splits 

of each tree, and also the minimum number of samples at the tree leaves were tested, to 

choose those that resulted in smaller prediction errors. To optimize the number of trees of the 

forest, the following values were tested: 30, 60, 100, 200 and 500 trees. 

In total, 13 predictors were available to predict the attributes, SYSI blue, SYSI green, 

SYSI red, SYSI NIR, SYSI SWIR1, SYSI SWIR2 and seven terrain attributes derivatives of 

the Digital Elevation Model (DEM) built using the Shuttle Radar Topography Mission 

(SRTM) image: elevation, slope, northness, eastness, horizontal curvature, vertical curvature, 

and terrain shape index. More details on terrain attributes are found in Safanelli et al. (2020). 

The values of 3, 5, 8, 11 and 13 predictors were investigated for defining the number of 

random predictors. Further, the values of 10, 20, 30, 40, 50, 100, 200 and 500 observations 

were tested for minimum number of samples at the tree leaves.  

The sample data were randomly divided into two sets, the training set and the model 

test set. The training set was determined by collecting bootstrapped samples of each 

regression tree, whereas the testing set was defined by the remaining samples (out of the bag) 

that were not selected at each bootstrapping. Bootstrapping is a method that samples 

observations with replacement to the same size of the dataset, covering, in general, around 67 

% of the entire dataset. We applied the bootstrapping method up to 500 times, which is 

equivalent to the maximum number of trees tested for the random forest.  

 

2.2.3 Land data 

2.2.3.1 Terrain attributes 

The Digital Elevation Model (DEM) was generated using the Shuttle Radar 

Topography Mission (SRTM) (Farr et al., 2007) with 30 meters resolution. The result was 

processed in QGIS 3.10 software in order to achieve its attributes, using the Basic Terrain 

Analysis tool in the SAGA GIS 2.1.3. software (Conrad et al., 2015). The co-variables 

produced by this methodology were the LS Factor, and Slope. The LS factor was calculated 

based on the methodology proposed by Desmet and Govers, 1996. These are the  parameters 

that will be used to analyze degradation levels.  
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2.2.3.2 Land surface temperature (LST) 

 Images from Landsat 5 and 8 were obtained from the "Earth Explorer" platform from 

the USGS (United States Geological Service). The images were acquired from Landsat 5 TM 

sensor with resolution of 30 meters for the visible (VIR), near infrared (NIR) and short wave 

(SWIR) and 120 meters for the thermal infrared (TIR). Landsat 8 has the Operational Land 

Imager sensor (OLI) with 9 spectral bands while the Thermal Infrared Sensor (TIRS) includes 

2 infrared spectral bands with the spatial resolution of 100 m (USGS, 2017). To process the 

data, images were needed to cover the entire study area in September and October (dry season 

and low cloudiness) of the years 1985 to 2019. The criterion used for choosing these months 

of the year was the greater consistency in finding cloudless images. 

For the years 1984 to 2014, the Landsat 5 (sensor TM) images were used and for 2014 

to 2019, the Landsat 8 (OLI and TIRS sensors). The thermal images of Landsat 8 presents 

some problems due to the dispersion of the stray light that reaches the sensor, which leads to 

inaccurate results. Several algorithms were tested by USGS and a correction was applied to 

the images from February 2014. The adjustment still remains with a significant amount of 

variation, especially within Band 11 (Pires; Junior, 2015) and USGS do not recommend using 

this band data in science studies (NASA, 2014). Therefore, band 10 was utilized to compute 

the LST from 2014 to 2019.  

The LST was estimated using the “Land Surface Temperature” plugin (Ndossi; 

Avdan, 2016) in QGIS software 2.18 version. At first,  the digital numbers of the thermal 

bands (band 6 for Landsat 5 and band 10 for Landsat 8),  (DN) were  converted into spectral 

radiance. Then it was converted into brightness temperature which represents the temperature 

of a black body under the assumption of uniform emissivity (Sayão et al., 2018). The NDVI 

number was calculated using visible and near-infrared bands (bands 3 and 4 for Landsat 5 and 

bands 4 and 5 for Landsat 8, respectively). The next step was to calculate the Land Surface 

Emissivity (LSE) proposed by Zhang et al. (2006) through the NDVI algorithm. Using the 

LSE, the LST was estimated with the inversion of Plank’s equation, methodology that does 

not depend on atmospheric parameters that could generate some error. (Ndossi; Avdan, 2016). 

The mean of historical LST  from 1985 to 2019 was calculated through the Raster Calculator 

tool in QGIS software. In the Raster Calculator tool LST in Kelvin degrees was subtracted 

273.15 to convert to Celsius. 
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2.2.4 Climatic data 

The CHIRPS Daily (Climate Hazards Group InfraRed Precipitation with Station Data, 

version 2.0 final) dataset was used to calculate mean annual precipitation from 1985 to 2020 

at a resolution of 4.8 km (Funk et al. 2015). All of these maps were created using Google 

Earth Engine (GEE) and upscaled to 30 m pixel size using ArcGIS10.3's Spline interpolation. 

Then, the historical mean was generated using the Raster Calculator tool in QGIS software. 

 

2.2.5 Land use/ Land cover 

Land-use/land-cover (LULC) changes and their management during the time can have 

significant effect on soil degradation and surface runoff (Gebresamuel et al. 2010). Therefore, 

it is very important to evaluate LULC history in the study of soil degradation. For Briassoulis 

(2020) the term “land use change” means quantitative or qualitative changes in the area. 

Together, Vezzani and Mielniczuk (2009) explain that such processes as deforestation, large 

agricultural plantations and agricultural management of soils, that is, processes of land use 

change, alter the quality of the soil, compromising the sustainability of the productivity of 

environmental quality. , despite the contribution to productivity. 

LULC history maps were reclassified for every three years from 1985 to 2019 based 

on the methodology explained in Tayebi et al. (2021). For this purpose, LULC maps were 

obtained from MapBiomas Collection 5 data that show the annual LULC maps on a 30 m 

resolution (https://mapbiomas.org/) (Souza et al. 2020). The legend of the Mapbiomas LULC 

maps were simplified from 30 to just 5 major classes (agriculture, forest, pasture, water, and 

urban), in order to make it easier to visualize and understand the changes that have occurred. 

Then, the frequency of land use changes for every three years from 1985 to 2019 were 

computed for each LULC class and in each pixel according Equation (1) in ArcGIS10.3 

(Tayebi et al. 2021):  

 

(1)                                                FLCi = (ai/n) ×100  

 

where FLCi is the temporal frequency of a specific LULC class for each three years; ai is the 

count of a specific LULC class that occurred over time and n is equal to 3 (the total number of 

LULC maps). 

The LULC modifications can be seen in the value of PLCi. Therefore, If PLCi has the greatest 

values (near to 100), the LULC class did not change over those three years, and if PLCi has 

the lowest frequency (zero), the LULC class did not exist throughout those three years 

https://mapbiomas.org/
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(Tayebi et al. 2021). Finally, from 1985 to 2019, a LULC history map was created based on 

the frequency of all LULC classes for each of the three years. 

 

2.3 Generating and validating the Soil Degradation Index 

The Soil Degradation Index (SDI) was created in R software with the “cluster” 

package, through the method of k-means, by clustering the variables: CEC, Clay and OM; 

LST, Rainfall; DEM, LS Factor, Slope; SYSI and the bare soil frequency (SF). It was used 

five categories of degradation as also detected in a smaller area (Nascimento et al., 2021). 

Then, the SDI was reclassified into five categories to develop a standard degradation ranking, 

which goes from 1 to 5. The method used Clay and CEC values to delimit the levels, both for 

the better grouping of the data, which did not overlap values among the different indexes and 

for their importance in soil quality. In order to understand the internal soil deterioration in the 

land, the soil physical and chemical attributes are needed, for these are relevant attributes for 

soil structure preservation, decreasing erosion rates and improving its fertility, providing a 

healthy soil (Newman, 1984; Brady and Weil, 2013). So, the higher the CEC and Clay group 

values composed by the R software, the lower the SDI value.  

For validating the SDI, we used the spatialized Organic Matter map. This soil attribute 

was used as a qualifier since this variable is fundamental in terms of soil quality, permeating a 

series of attributions, such as plant nutrition, participation in soil chemistry, physics and 

biology, maintenance of environmental processes such as gas emissions and effective 

participation in the sustainability discussion of agriculture. The procedure was performed in R 

software. 
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3 RESULTS AND DISCUSSION 

3.1 Synthetic soil image (SySI) and bare soil frequency (SF) 

The use of the Google Earth Engine tool for the generation of SYSI (Fig. 2a) and the 

bare soil frequency (Fig. 2b) proved to be a very agile platform that allowed the images to be 

generated in a much shorter period of time. 

 

 

Figure 2. São Paulo State maps of a) Synthetic soil image (SYSI); b) bare soil frequency 

(SF) 

 

0 
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In fig. 2, an administrative area of the State was highlighted, where the São Paulo 

municipality and several other municipalities in its adjacency are located. To visualize the 

spectral image of the bare soil (Fig 2a), the natural color composition (RGB - 321) was used. 

We can verify the frequency of times that the soil was bared (fig. 2b) in this region. The 

pixels in this image were represented in a range of colors from green (lower exposure) to red 

(greater exposure). In the first case, these areas are covered by forest, which did not showed 

land use changes throughout the years. Agriculture areas presented high frequency of bare soil 

due to land tillage, differently from pasture.  

The temporal image with exposed soil information is a very important variable in the 

generation of the index, since it can indicate areas that are easily degradable or already 

degraded. Fongaro et al. (2018) agrees that a temporal image of exposed soil is important for 

generating a continuous and general view of the soil situation. 

 

3.2 Soil attributes data and spatial prediction 

The physical (Clay - Fig. 3a), chemical (CEC - Fig. 3b) and biological (OM - Fig. 3c) 

spatialized soil attributes influence several important processes in soil dynamics. A soil with a 

lower amount of these attributes leads to few aggregates and weak structure. Then, the soil 

becomes very susceptible to erosion (Andreoli et al., 2014). Therefore, those are valuable 

attributes in the determination of soil degradation. Among the five ranges of values observed, 

those with the highest amount of Clay and CEC were those classified with the lowest 

degradation index. The Organic Matter was not contabilized since this variable was used for 

validation. 
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Figure 3. São Paulo State maps of a) Clay; b) CEC and c) OM. 

 

The statistical parameters of the best models used to predict soil attribute maps are 

shown in Table 1. 

 

Table 1. Performance evaluation of soil attributes prediction  

Attribute RMSE RPIQ R2 

Clay  (g kg-1) 8.56 1.67 0.69 

OM  (g kg-1) 6.10 1.42 0.41 

CEC (mmol kg-1) 32.62 0.82 0.19 

RMSE: root mean squared error.  RPIQ: ratio of performance to the interquartile range.  R2: 

coefficient of determination. OM: Organic Matter. CEC: Cations Exchange Capacity. 
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The clay map presented the best predictive performance (R2=0.69, RMSE=8.56 and 

RPIQ=1.67), followed by the OM (R2=0.41, RMSE=6.10 and RPIQ=1.42) and then the CEC 

(R2=0.19, RMSE=32.62 and RPIQ=0.82). 

The low value of CEC validation may show that it is noisy data and high variability, 

but it has a significant trend. The different level of attribute variability affects the accuracy of 

these predictions. Still, low R2 values can indicate a real relationship between the predictors 

and the response variable. 

 

3.3 Land data 

3.3.1 Terrain attributes 

The relief and its slope dictate the water flow and speed, carrying soil particles from 

the summit to the slope end. Therefore, this is an important variable for land degradation 

modeling. The DEM and its variables can be seen in Fig. 4a-c. 

The elevation map (Fig. 4a) presents values that can reach above 1000 meters. The 

territory of the State has the lowest relief values in the coastal strip. Then, from the southern 

part of São Paulo to the northeast region, there are the highest relief values. To the west of the 

State The surface of the territory presents altitudes that can vary from 300 to 900 meters 
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Figure 4. São Paulo State map of the terrain attributes: a) digital elevation model; b) 

slope; c) LS factor 

 

The processing of these terrain attributes enables the quantification and spatial 

representation of areas with different limitations to use, which may contribute to the 

observation of environmental susceptibility (Maganhotto et al., 2013). 

The slope (Fig. 4b) values in the study region vary from 1 to 30. According to Lepch 

et al., (1983), areas with a slope above 15% can provide a greater risk for erosive processes, 

and should be more restrictive in terms of their use. According to these authors, from 15% 

onwards, there is also a continuous decrease in aptitude. 

The LS Factor (Fig. 4c) is an essential parameter to quantify the erosion generated due 

to the influence on surface runoff speed, depending on the slope steepness factor (S) and slope 

length factor (L) (Beskow et al., 2009), that means, the LS Factor increment is related to the 

water runoff and soil erosion. The state of São Paulo has values from zero to about seven for 

the LSfactor parameter. According to Mansor et al. (2002), potentially critical areas present 

values from 6 to 10 and values from 4 to 6 can trigger erosive processes depending on the soil 

tillage.  



24 
 

3.3.2. Land Surface Temperature 

The highest values of LST were obtained in the northern region of the state and the 

lowest in the south (Fig. 5a). The western region of the state showed intermediate to high 

degree values. The LST is an important factor for the development of plants, since it controls 

the soil evaporation, aeration and biochemical processes (Allen et al., 2011). Also, LST can 

provide information on the physical properties of the surface, climatic conditions and human 

activities that affect the environment (Mao et al., 2012). In addition, higher soil temperatures 

increase microbial activity and hence the decomposition of SOM (Weil and Brady, 2017; Yan 

et al., 2017). 

 

 

Figure 5. São Paulo State historic mean of the a) LST 

 

3.4 Climatic data 

The highest values of annual precipitation are found in the south and east of the state, 

mainly in the coastal zone. The lowest values are found in the north and west of the state (Fig. 

6). Medeiros et al. (2016) found a similar distribution in the state for rainfall erosivity. Along 

with the high average annual temperatures, the irregular distribution of the rainfall may 

contribute to the desertification process (Silva, 2015) and its intensity, frequency and duration 

can lead to erosion process (Santos et al., 2010). Precipitation intensity can be a factor of soil 

loss. That is because of the energy that the drops reach the ground and the runoff are able to 

detach and carry the sediments, especially in uncovered soil with low aggregation (Carvalho 

et al., 2009).  
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Figure 6. São Paulo State historic mean of the rainfall information. 

 

Castellano and Nunes (2012) suggest that there is the possibility of anthropic factors 

having effects on these two climatic variables analyzed, even in a short period of time. 

However, important parameters for understanding climatic effects in the soil degradation 

process should be evaluated, such as the type of pollutants and the time of permanence in the 

atmosphere and the direction and speed of the winds. 

Mello et al. (2008) reported that geoprocessing is one of the main branches of 

climatology studies, being important in the use of techniques for better interpolation of spatial 

rainfall data. In the same way, Marcuzzo (2016) found the importance of this technology in 

his study. Reis et al. (2005) understand that the use of geographic information system (SIG) 

facilitates the verification of the way these precipitations are distributed in space and Hashmi 

et al. (1995) agree that this technology allows to cover large regions with agility and 

precision. 

 

3.5 Land use/ Land cover 

The generated LULC map can be seen in Fig. 7. The average land use and land cover 

map for the years 1985 to 2019 was acquired. Of the total territory, about 41% is occupied by 

grasslands, 28% agriculture and 21% by forests. 
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Figure 7. São Paulo State map of the land use/ land cover (LULC) mean from 1985-

2019. 

 

In the state of SP, there was a recognized expansion of annual crops over the years, 

such as sugar cane, which must be associated with government incentives given around the 

1970s, for the production of ethanol. However, as indicated by Ferreira et al. (2015), this 

occupation occurred mainly in pasture lands. The Calaboni et al. (2018) research observed 

that over the study period there was a general decrease in pasture areas from 1996 onwards, 

which type of use became more expressive in the west of the state, while annual crops 

expanded throughout the entire territory. Moreover, despite the forest cover being low in the 

municipalities, there was an increase in forest regeneration. 

  

3.6 Soil degradation index  

Clustering the chosen variables generated five categories of the risk of land 

degradation, leveled as (1) very low, (2) low, (3) medium, (4) high and (5) very high (Fig. 8).  
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Figure 8. Map of the Soil Degradation Index (SDI) of São Paulo State 

 

 

The level classification followed the Nascimento et al. (2021) method. The CEC and 

clay attributes were used in order to sort each group, as seen in Table 2. Therefore, we 

attributed to clay the following intervals and their respective classes of susceptibility to 

degradation: <12% clay – Very high risk of degradation; 12-18% - high; 18-30% - medium; 

30-40% - low; >40% - very low. 
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Table 2. Generated statistics of the variables used to create the different levels of SDI 

 

 

Analyzing table 2 and visualizing the classification regarding the levels of degradation 

and precipitation, it can be seen that there is an inconclusive situation between the levels, 

there was no linearity of the values. So, by themselves, it is not possible to conclude that they 

were representative for the construction of the index. The LS factor had almost no variation 

between classes and DEM and slope increased as the degradation level increased since where 

the relief reaches higher altitudes, it is also where it has higher values of declivity. In relation 

to the spectral bare soil image, the amount of clay influences the reflectance of the soil, which 

causes the increase of values according to the decrease of clay and the consequent increase of 

the levels. In the SF case, it increases as the level goes to 3 and then decreases to the 5. This 

may have happened due to the greater dissemination of conservationist tillage practices with 
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soil cover using straw, green manure and others, mainly in places at greater risk of 

degradation, which can force farmers to take measures to better conserve their areas. As 

already mentioned, CEC and clay were the parameters to define the degradation classes, so 

the higher the value of these variables, the lower the degradation level. 

The highest values of SDI were found in the center and southwest of São Paulo state 

(Fig. 9), occurring mainly in sandy soils of low CEC and OM. Low CEC and OM values are 

related to lower biomass production, which is also affected by the lower water retention 

capacity of sandy soils. Sugarcane production, in these types of soils, has lower average 

productivity (Landell et al., 2003; Sanches et al., 2019), which entails the need to renovate 

cultivated areas, requiring soil tillage, a practice that cooperates with the mineralization of 

SOM. Pastures in these areas in general are in some degree of degradation, which accentuates 

the low coverage of the surface, increasing erosion problems (Merten and Minella, 2013). 

There is a consensus in the literature that the removal of crop residues causes impacts 

on the soil that, if not well managed, can negatively alter its functions (Karlen et al., 2019, 

Freixo et al., 2002). Carvalho et al. (2019), found that for sugarcane, indiscriminate straw 

removal can have detrimental effects on soil functions. Furthermore, Lehmann et al. (2020) 

also agree that several factors are capable of influencing the soil response in terms of 

susceptibility to degradation. Therefore, it is important to recognize and compute differences 

in topography, climate, soil and impacts that different forms of management have, for better 

decision-making on which strategies to use in the desired location. 

The observations about the reflectance of the bare soil composite image bands are in 

agreement with Demattê et al. (2009). The values obtained show low reflectance intensity in 

bands 1 and 2, increasing in 3 and 4 reaching a maximum in 5, and decreasing again in 7. All 

values occurred in the same way, varying in the increase of the intensity. The clayey soil, for 

example, follows a trajectory of less intensity of reflectance (fig. 9b) in which as the level of 

degradation grows (indicating the decrease of clay amount), the reflectance of the bands also 

tends to increase. 

The validation of SDI with OM showed a negative correlation, which is the higher the 

SDI, the lower the amount of organic matter (Fig. 9a). The OM is an indicator of soil quality 

and one function that can be nominated is biomass production. Thus, this was a satisfactory 

result, since more degraded areas are the ones that have less organic matter. 

 

https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/same
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
https://dictionary.cambridge.org/pt/dicionario/ingles-portugues/of
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Figure 9. a) Boxplot of the interaction between the Soil Degradation Index (SDI) and the 

Organic Matter. b) Levels of degradation associated with spectral curve. 

 

The bare soil frequency (Fig. 2b) showed high soil exposure variability across the 

study area. When comparing the SF with LULC (Fig. 7), it is possible to observe that the 

agricultural and pasture areas presented greater soil exposure, with a frequency of 500 to 1100 

times of soil exposure. There is a perception that human activities are exposing the soils and 

leading to degradation (Medeiros et al., 2016; Merten and Minella, 2013). However, Demattê 

et al., (2020), showed that there has recently been an increase in the adoption of conservation 
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practices in Brazilian agricultural areas, creating a tendency to decrease the frequency of soil 

exposure in these areas.  

 In Medeiros et al. (2016) study, the authors estimated the annual soil loss rate in the 

state of São Paulo. They also found that many areas of the state have high levels of soil 

degradation, especially in sugarcane and pasture use. Another problem duly pointed out is that 

improper land management in previously productive areas causes its abandonment due to 

degradation, mainly caused by the erosion process. However, according to Cunha et al. 

(2016), the expansion of agricultural areas over degraded pastures can reduce the risks of soil 

erosion by up to 20%. 

 Another research carried out in the same region with the objective of evaluating the 

soil degradation level by water erosion, demonstrates that several areas in the state reached a 

very critical level of soil depletion, due to the predominance of agricultural activities, mainly 

sugarcane and livestock farming (Medeiros et al., 2016). 

In order to make a brief comparison with one more factor, we used the Instituto 

Florestal (Forestry Institute) pedological map. The predominant soil class in the study area is 

Ferralsols, covering 38.14% of the state, followed by Lixisols, covering 37.63% (Rossi, 

2017). By covering an extensive area with different local specificities, both soils that alone 

cover more than half of the state, are present from the highest level of risk of degradation to 

the lowest level. Thus, in a general panorama, it was not possible to find more details that 

correlate these two objects. 

Dube et al. (2017), also stated that determining the distribution of vulnerable areas 

with levels of degradation by associating various factors is valuable for coming up with 

possible control measures and strategies plans. It is expected that by the year 2037, more than 

300,000 restoration projects will be carried out in the state of São Paulo (Chaves et al., 2015). 

Therefore, we hope that this method, developed with the use of satellite images and 

environmental data, will be useful in the application of these programs, considering the agility 

for monitoring large areas. 
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4 CONCLUSION 

The development of a degradation index map based on environmental variables was 

achieved. The Clay and CEC content were used in order to designate the levels of 

degradation, working in a good sense. The insertion of remote sensing co-variables i.e., 

surface temperature and bare soil had a positive correlation with SDI. The organic matter had 

a negative correlation with the index and ratified the consistency of the index with great 

accuracy. Also, spectral data gave important clue on its relationship with the SDI since low 

SDI areas presented low spectral intensity related to higher organic matter. The high level of 

SDI was the most representative in the study area and the very low level was the least present. 

These statements show a good modeling of the index, since SDI had an inverse proportion 

with an indicator of soil health. Research and methods to assess the soil degradation must be 

increasingly robust in order to monitor and control the soil quality. Remote sensing appears to 

be a promising technology.  Using satellite images for digital soil mapping and monitoring is 

an important tool to analyze the dynamics in land use changes, which can lead to soil losses 

resulting in economic and environmental issues. Thus, may bring light for better decision 

making aiming for the good practices to manage the land as for public policies. 

For future work, some following recommendations are made. It is interesting to 

develop the degradation of each period, analyze the trend of improvement and relate it to the 

effectiveness of public policies. Knowing the awareness of farmers about the importance of 

better forms of soil management can be a good tool to develop mechanisms aiming to spread 

the knowledge of studies such as this. Also, it is relevant to understand the specificities of 

each locality over time to develop more effective management plans. 
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