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Aristóteles. Metafísica. 982b 10-25. 
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RESUMO 

Geotecnologias aplicadas no mapeamento digital de solos 

A civilização vive em um mundo de mapas os quais são vitais em nível regional e local para 
o delineamento das melhores práticas agrícolas. O solo é o substrato para o crescimento das plantas 
e, portanto, fundamental para atender a demanda alimentar. No entanto, a escala cartográfica desses 
mapas de solos, que para a melhor prática agrícola de manejo (MPAM), tem que ser a mais 
detalhada possível os quais atualmente são escassos. O Mapeamento Digital de Solos (MDS) 
tornou-se a abordagem mais fácil e viável para atingir essa demanda. Apesar de estudos anteriores 
terem tentado caracterizar melhor as profundidades do solo, há espaço para aperfeiçoamento em 
sua dinâmica e mapeamento. Tendo como foco este objetivo, as tecnologias de Sensoriamento 
Remoto (SR) provam ser uma grande ferramenta nesta tarefa. No entanto, alguns aspectos dessa 
abordagem ainda precisam ser testados usando outros modelos híbridos, estocásticos e 
determinísticos para as previsões de susceptibilidade magnética (SM) e atributos do solo na 
superfície e subsuperfície. Portanto, o capítulo 1 apresenta a avaliação de nove algoritmos de 
aprendizado de máquinas (AAMs) para predizer o teor de ferro livre na superfície do solo (0 - 20 
cm) usando a estrutura do MDS. Com base no melhor desempenho desses nove AAMs, 
selecionamos cinco. O capítulo 2 mostra o uso desses cinco AAMs com variáveis ambientais usuais 
e novas (por exemplo, DEM, rede de drenagem e espectroscopia do solo) para predizer SM e 
atributos do solo até 100 cm de profundidade. Quanto a mineralogia dos solos, a quantificação dos 
minerais do solo atualmente consistem na análise de laboratório tradicional de solos. No entanto, 
desenvolvimentos na interpretação e análise da refletância difusa do visível e do infravermelho 
próximo (VNIR) permitem quantificar alguns dos minerais do solo. No capítulo 3, implementa-se 
uma nova metodologia usando espectroscopia VNIR para quantificar os principais minerais do 
solo e avalia a aplicação da estrutura de mapeamento digital do solo para espacializar esses minerais. 
Por fim, mas não menos importante, o capítulo 4 apresenta a inovação de usar todos os 
componentes do solo como preditores das unidades de mapeamento de solo na região de 
Piracicaba-SP em escala de fazenda (1: 20.000), gerando o primeiro mapa digital detalhado do solo 
da região. Adicionalmente neste capítulo, foi criado o mapa digital de ambientes de produção para 
cana-de-açúcar. Assim, esta tese apresenta uma nova estrutura metodologica e integrativa na 
obtenção de mapas digitais de solo em escala detalhada para a MPAM e serve como guia para 
futuros levantamentos de solos em todo o mundo. 

Palavras-chave: Pedometria, Sensoriamento remoto, Espectroscopia, Mineralogia, 
Mapeamento digital de solos  
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ABSTRACT 

Geotechnologies applied in digital soil mapping 

The civilisation lives in a world of maps and soil maps are vital at regional and farm levels 
to achieve best management agricultural practices. Soil is the substrate for plant growth and vital 
to the fulfilment of the food demand. However, the cartographic scale of those soil maps, which 
for the best management agricultural practice (BMAP) have to be the most detailed as possible and 
they are scarce. The Digital Soil Mapping (DSM) became the easiest and feasible approach to 
achieve such demand. Despite previous studies have tried to better characterise soil depths, there 
is space for improvements on its dynamics and mapping. Looking at this goal, Remote Sensing 
(RS) technologies have proven to be a great power on this task. Nevertheless, some aspects of that 
approach still need to be tested using another hybrid, stochastic, and deterministic models for the 
predictions of magnetic susceptibility (MS) and soil attributes at surface and subsurface.  Therefore, 
chapter 1 presents the evaluation of nine machine learning algorithms (MLAs) to predict the free 
iron content at the soil surface (e.g. 0 – 20 cm) using the DSM framework. Based on the best 
performance of those nine MLAs, we selected five MLAs. Chapter 2 shows the use of those five 
MLAs with usual and new environmental variables (e.g. DEM, drainage network, and soil 
spectroscopy) to predict the MS and soil attributes up to 100 cm depth. Attempts on quantifying 
soil mineral consist of having an observation measured using traditional laboratory soil analysis. 
However, developments in interpreting and analysing the visible and near-infrared (VNIR) diffuse 
reflectance have allowed quantifying some soil minerals. In chapter 3, it implements a novel 
framework using VNIR spectroscopy to quantify the main soil minerals and evaluates the 
application of digital soil mapping framework to spatialise those soil minerals. Last but not least, 
the chapter 4 presents the novelty of using all predict soil components as predictors of the soil 
mapping units in the region of Piracicaba-SP at farm scale (1:20,000), generating the first detailed 
digital soil map of the region. Additionally in this chapter, it was created the digital yield 
environmental map for sugarcane production. Thus, this thesis presents a new integrative 
framework to achieve detail soil maps for the BMAP and serves as a guide for future soil surveys 
across the world.  

Keywords: Pedometrics, Remote sensing, Soil spectroscopy, Mineralogy, Digital soil mapping 
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1.  FREE IRON OXIDE CONTENT IN TROPICAL SOILS DETECTED BY INTEGRATIVE DIGITAL 

MAPPING 

 

ABSTRACT 

The free iron (FI) content in tropical soils is an important indicator of soil quality and can be used 
to infer soil genesis, classification, and distribution. Despite its importance in agriculture and pedology, 
laboratory analyses of soil iron content are costly and time-consuming. Remote sensing data combined with 
digital soil mapping procedures are useful tools for reducing the number of soil samples needed to 
characterise soil variability and, consequently, laboratory analysis costs. This study aimed to create a strategy 
for mapping FI content using a 35-year time series of Landsat images combined with topographic 
parameters at two spatial resolutions (5 and 30 m) as covariates and machine learning algorithms (MLAs) in 
a region with complex soil and geology in Brazil. The dataset comprised 344 FI observations at depths of 
0–20 cm in a 2574 km2 area. The dataset was split for calibration and external validation (85:15%), and the 
environmental covariates were chosen based on scorpan factors. We found that the temporal bare soil image 
improved model performance. Although 5 and 30 m resolution terrain data differed slightly, the best-fit 
model was obtained with the Random Forest 5 m resolution (root mean square error, 25.09 g kg-1; adjusted 
R2, 0.84). Among the evaluated MLAs, Random Forest was most suitable for predicting FI distribution in 
the study area. The FI map was crucial for identifying detailed soil types, which should be prioritised in 
future pedological studies.  
 
Keywords: Machine Learning Algorithms; Regression Kriging; Pedometrics; Soil iron; Spectroscopy 
 

Graphical Abstract 

 

 

1.1. INTRODUCTION 

Iron oxides are among the most abundant metallic oxides in soils, and iron is the element most frequently 

found in soil minerals (Hunt, 1980). Soil mineral forms, incidence, and concentrations vary spatially with environmental 

conditions (Schwertmann and Cornell, 2000; Viscarra Rossel et al., 2010). Iron species are most commonly classified 

as free, organic-bound, and amorphous iron. Goethite and haematite are the most common iron minerals in the tropics 

and are yellow-brown and red pigment agents in soils, respectively (Anda et al., 2008; Macedo and Bryant, 1989). Free 
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iron (FI) is the main diagnostic group and comprises iron encrusted on the soil surface (Fe2+ and Fe3+) but not 

embedded in the soil lattice structure (Fan et al., 2016). Thus, it is key to understanding soil genesis, classification, and 

distribution (Fan et al., 2016). Even though tropical soils contain trace amounts of iron oxides, these compounds can 

affect soil cation exchange capacity, particle aggregation, and colour (Viscarra Rossel et al., 2010).  

Some pedogenetic processes are easily observed in situ because of the different chemical phases of iron oxides, 

which are directly influenced by the water table, temperature, pH, and soil redox conditions (Fan et al., 2014; Viscarra 

Rossel et al., 2010). For instance, in the Brazilian soil classification system, the pedogenetic process of gleisation 

produces Haplic Gleysols. This process is characterised by the presence of dissolved Fe2+ resulting from the stagnation 

of water in the soil profile and creating an anaerobic environment and grey soil layers. Ferralitisation, which involves 

the complete hydrolysis of iron to form haematite and goethite, characterises Haplic Ferralsols. Both processes occur 

under high soil iron concentrations and alteration of the water table.  

Topographically, soils located in high, well-drained areas have a high haematite concentration and are typically 

reddish. Yellowish soils are generally found on foot slopes, where the anaerobic environment coupled with high organic 

matter content is conducive to high goethite concentrations (Macedo and Bryant, 1989); these are the typical patterns 

of tropical soils with high Fe2O3 (FI) concentrations. Furthermore, FI is an indicator of soil quality, fertility, and 

deposition age (Bartholomeus et al., 2007; Mulder et al., 2011). For example, most iron originates from mafic rocks, 

forming clayey and very clayey soils, which strongly affects other soil properties, such as water retention capacity and 

soil physical quality (Chagas et al., 2016). Therefore, FI is highly relevant to agricultural production, soil conservation, 

and pedology. 

Despite the relevance of iron oxides to agriculture in the tropics, these minerals are generally poorly analysed 

in routine field assessments compared to other soil properties. This is likely because laboratory analyses are time-

consuming and costly. Moreover, the chemical analysis procedure uses hazardous sulphuric acid as reagent. Nanni and 

Demattê (2006) pointed out that proximal and remote sensing can be alternatives to traditional soil analyses for 

quantifying soil attributes. Quantification of iron content using proximal (Demattê, 2002) and remote (Ben-Dor and 

Banin, 1995; Coyne et al., 1990) sensing has been found to be feasible. Coleman et al. (1993) were pioneers in 

quantifying soil iron based on Landsat Thematic Mapper data and found correlations of 0.10–0.29 between iron 

content and radiance data. Imaging spectrometry has also been used to locate and measure the specific absorption 

features of iron oxides and hydroxides in the visible and near-infrared (NIR) spectral region (Abrams and Hook, 1995; 

Mulder et al., 2011).  

However, studies that solely used multispectral data from satellite sensors (e.g. Landsat data) did not 

accurately map iron content (Andrews Deller, 2006). Some spectral indices based on satellite data also did not provide 

accurate results. This was partially related to the loss of information when a single index instead of the entire soil 

spectrum was used (Levi and Rasmussen, 2014; Regmi and Rasmussen, 2018). Bartholomeus et al. (2007) used airborne 

hyperspectral data and found weak correlations between airborne spectral data and soil iron content. The reason for 

these weak relationships between spectral data and iron content was likely that external factors, such as partially covered 

or rough surfaces, physical and biological soil crusting, or atmospheric conditions, influenced the measurements, thus 

hampering the soil signals in the visible–NIR–short-wave infrared (SWIR) region (Xu et al., 2005).  

Digital soil mapping (DSM) has improved with developing technology, becoming an excellent tool for 

decision makers, landowners, and landscape managers (McBratney et al., 2019). Modern technologies, such as proximal 

sensors (e.g. portable X-ray fluorescence), remote sensors (e.g. satellites), and big data analyses (e.g. new-generation 

algorithms and high-performance computers), can be used to create high-resolution soil maps. These tools can help 



13 
 

to improve understanding of natural in situ resources and predict their variability and availability. FI is a well-studied 

soil attribute (Fan et al., 2016; Nandra, 1974; Shen et al., 2020) but has hardly been used in DSM. We therefore aimed 

to create a strategy for mapping FI by using multitemporal Landsat images to produce a bare soil image. This image, 

coupled with relief parameters, was used to train machine learning algorithms (MLAs) to predict FI content in a 

pedologically and geologically complex region in Brazil. The bare soil image could assist FI detection, since many 

laboratory spectroscopy studies have shown the strong relationship between FI content and soil spectral properties.  

 

1.2. MATERIAL AND METHODS 

1.2.1. Study area and dataset 

The study area (2574 km2) was located in São Paulo State, southeastern Brazil. The climate is dominated by 

two seasons, namely dry winters and rainy summers, with an annual average temperature of 20–22.5 °C and annual 

rainfall of 1200–1400 mm. Rolling uplands and undulating hills, with altitudes of 450–950 m, are common topographic 

characteristics. The main parent materials are Carboniferous siltstone, tillite, varvite, conglomerate, and sandstone 

(Tubarão Group), Permian shale, limestone, siltstone, and flint (Corumbataí Formation), Permian shale, dolomite, and 

siltite (Irati Formation), Jurassic sandstone, shale, and siltstone (Botucatu and Pirambóia Formations), and Cretaceous 

diabase and basalt (Serra Geral Formation) (Marconi, 1974). The diversity of parent materials and topography (plains 

to rolling hills) determines the varying FI content in the study area.  

The dataset consisted of 344 field observations via samples collected with an auger at depths of 0–20 cm, 

based on the toposequence principle (Burrough, 2006). The sampling locations were distributed across different soil 

and landform types (Fig. 1). After sampling, the soil samples were oven-dried for 48 h at 50 °C, ground, and sieved 

through 2 mm mesh. The FI oxides were analysed by using sodium dithionite–citrate–bicarbonate extraction according 

to Mehra and Jackson (2013). Subsequently, 1 mL 0.1 N nitric acid solution was added to each sample to digest the 

organic matter. The samples were then placed in a block digester at 350 °C (slowly increasing) for 4 h, after which they 

were cooled and the solutions filtered. The FI content (Fe2O3) was analysed via atomic absorption spectrometry 

(Varian SpectrAA 10 Plus; λ, 324.80 nm; slit width, 0.2 nm).  

The Brazilian Classification System (Santos et al., 2018) uses FI content to classify soils as follows: (i) 

hypoferric (< 80 g kg-1), (ii) mesoferric (80–180 g kg-1), (iii) ferric (180–360 g kg-1), and (iv) perferric (> 360 g kg-1). We 

classified our soil samples accordingly for exploratory analysis purposes. Furthermore, we used the predicted FI to 

relate our findings to the soil types of the Brazilian Classification System. 
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Fig. 1. The distribution of the selected samples across soil types according to the Brazilian Classification System (SiBCS) 
and World Reference Base (WRB), and landform types from the SRTM landform in the study area. 

 

1.2.2. Environmental covariates 
The scorpan model is the basis of DSM (McBratney et al., 2003). To fulfil all aspects of the scorpan model, we 

generated a list of environmental covariates (Table 1) that were input into MLAs for soil prediction. The first was the 

s factor. Based on Demattê et al. (2020, 2018), we retrieved satellite images from Landsat archives from the United 

States Geological Survey (USGS) platform and created a unique temporal mosaic (dry season, July to September from 

1984 to 2018) that represents pixels of bare soil areas. This mosaic was named Synthetic Soil Image (SYSI) and provided 

the spectral information of each pixel with bare soil on visible bands (1, blue; 2, green; 3, red), the NIR band (4), and 

SWIR bands (5, SWIR1; 7, SWIR2). 
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Table 1. Characteristics of the environmental covariates selected to be performed with the response variable, Total 
Free Iron content, in the digital soil mapping procedure. 

Scorpan’s 

factors 
Ancillary variables Unit 

Resolution 

(m) 

Type of 

variable 
Characteristics 

s 

Synthetic Soil 

Image’s bands 

Spectral 

reflectance 

30 Continuous Bare soil areas 

RGB soil colour adimensional 30 Continuous Soil colour 

c 

Annual mean 

temperature 

ºC 30 Continuous Temperature 

Annual mean 

precipitation 

mm 30 Continuous Rainfall 

o 

NDVI adimensional 30 Continuous Vegetation  

EVI adimensional 30 Continuous Vegetation 

Soil Relative 

Frequency 

% 30 Continuous Human activity 

r 

DEM from SRTM m 30 Continuous Relief 

Aspect from DEM degree 30 Continuous Downhill slope faces 

LS Factor from 

DEM 

adimensional 30 Continuous Component of the Revised Universal 

Soil Loss equation 

Plan Curvature from 

DEM 

degree m-1 30 Continuous (-) concave/ (+) convex contours 

Profile Curvature 

from DEM 

degree m-1 30 Continuous (-) convex/ (+) concave contours 

Slope from DEM % 30 Continuous Relief inclination 

Valley Depth from 

DEM 

m 30 Continuous Vertical distance to the base level of 

the channel network 

TWI from DEM adimensional 30 Continuous Soil water content 

DTM from IGC m 5 Continuous Relief 

Aspect from DTM degree 5 Continuous Downhill slope faces 

LS Factor from 

DTM 

adimensional 5 Continuous Component of the Revised Universal 

Soil Loss equation 

Plan Curvature from 

DTM 

degree m-1 5 Continuous (-) concave/ (+) convex contours 

Profile Curvature 

from DTM 

degree m-1 5 Continuous (-) convex/ (+) concave contours 

Slope from DTM % 5 Continuous Relief inclination 

Valley Depth from 

DTM 

m 5 Continuous Vertical distance to the base level of 

the channel network 

TWI from DTM adimensional 5 Continuous Soil water content 

Drainage Density m-1 30 Continuous Drainage network 

Landforms adimensional 30 Factor Physiographic and landforms 

patterns 

p 

Gypsic index adimensional 30 Continuous Gypsiferous soil 

Natric index adimensional 30 Continuous Sodium rich soil 

Calcareous index adimensional 30 Continuous Discriminate calcareous sediments 

from igneous rocks or sediments 

Carbonate radicals 

index 

adimensional 30 Continuous Carbonate radicals 

Ferrous Fe index adimensional 30 Continuous Ferrous Fe 

Ferrous index adimensional 30 Continuous Ferrous 

Ferrous oxides index adimensional 30 Continuous Ferrous oxide 

Clay and hydroxides 

index 

adimensional 30 Continuous Clay and hydroxides 

Geology adimensional 30 Factor Parent material 

a Geomorphology adimensional 30 Factor Hillslope position 

n 
X  m 30 Continuous Longitude 

Y  m 30 Continuous Latitude 

 

Regions without bare soil (e.g. forests, rivers, and perennial crops) were masked out and designated as ‘not 

available’ information, resulting in gaps without soil-surface spectral information. To fill these gaps, we applied the 

‘close gaps’ function and Gaussian filter of the System for Automated Geoscientific Analyses version 2.3.2 (SAGA 

Development Team, 2016). This was performed to create a continuous SYSI map and obtain a complete representation 

of soil variability. In addition to the covariates that represent the s factor, we created a predicted soil RGB colour based 

on the soil spectral reflectance (Fig. S1).  
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For the c factor, we retrieved annual mean temperature and precipitation data from the WorldClim BIO 

Variables V1 (Hijmans et al., 2005) available from the Earth Engine Data Catalog. The normalised difference 

vegetation index (NDVI) (Rouse et al., 1973) and enhanced vegetation index (EVI) (Huete, 2004) were calculated by 

averaging 35-year Landsat bands (dry and moist seasons) and categorised as o factors. We used these spectral indices 

to summarise the Landsat bands into single representations determined by the index equations, which enhanced the 

differences between and signals of spatial patterns of different spectral regions. Additionally, we created an image that 

provided information on the number of times that each pixel was classified as a bare surface along with the historical 

collection, namely soil relative frequency (SRF, %). This product was used as an indicator of anthropogenic activities, 

because it shows the area of surface soils that have been disturbed over the historical period covered by SYSI.  

For the r factor, we used and compared two terrain model sources. The first was retrieved from the Shuttle 

Radar Topography Mission from the USGS platform, which had a 30 m pixel resolution. The second digital elevation 

model (DEM) was created from the digitisation of a planialtimetric base map (with a scale of 1:10 000) with equidistant 

level curves of 5 m from the Geographic and Cartographic Institute of the State of São Paulo. Subsequently, we 

converted the vector to a raster with a 5 m pixel resolution using QGIS software (QGIS Development Team, 2020) 

and obtained a digital terrain model (DTM). The two DEMs were the basis for generating six relief features, namely 

aspect, LS factor, plan and profile curvature, slope, valley depth, and topographic wetness index. These were calculated 

in the System for Automated Geoscientific Analyses. Altogether, we obtained six relief covariates from the DEM with 

a spatial resolution of 30 m and another six from the DTM with a spatial resolution of 5 m. The DEM and DTM were 

used separately as covariates as well.  

Another covariate generated as the r factor was drainage density and was created using 3D images of the 

study area. We used digital aerial photographs from the Geographic and Cartographic Institute and vectorised all 

channels (e.g. rivers, streams, and bases) in PHOTOMOD Lite 6.3 software. The following equation was used to 

calculate the drainage density (DD) in ArcGIS version 10.3 software: DD = total length channels (m)/basin area (m2). 

The last covariate that represented the r factor was the Shuttle Radar Topography Mission landform (Theobald et al., 

2015) retrieved from the Earth Engine Catalog. This covariate contained detailed multiscale data on physiographic and 

landform patterns with a spatial resolution of 90 m, which was downscaled and resampled to 30 m using the nearest 

neighbour method.  

The SYSI spectral bands were used to create image indices that represented the p factor (Regmi and 

Rasmussen, 2018): gypsic index (SWIR1 – SWIR2/SWIR1 + SWIR2), natric index (SWIR1 – NIR/SWIR1 + NIR), 

calcareous sediment index (SWIR1 – Green/SWIR1 + Green), carbonate radicals (Red/Green), ferrous iron 

(SWIR2/Red), ferrous oxide (Red/Blue), ferrous (SWIR1/NIR), and clay/hydroxides (SWIR2/SWIR1). A geological 

map that represents the p factor was also used as a covariate. This map was created by Bonfatti et al. (2020), who used 

a DSM approach to characterise the soil parent material, which comprised alluvial deposits, sandstones, unconsolidated 

clay, basalt, shale, and siltstones.  

An implicit age factor covariate (a factor) was created according to Marques et al. (2018). This covariate 

comprised a geomorphological map containing five groups: summit, shoulder, back slope, foot slope, and toe slope. 

For the n factor, we used geographical coordinates (X and Y) with the coordinate reference system EPSG code 32723.  
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1.2.3. Machine learning methods and geostatistical approach 

Eight MLAs were tested: Cubist (Quinlan and Ross, 1993), Random Forest (RF) (Breiman, 2001), Generalised 

Linear Model (GLM) (Nelder, 1977), Bagged Regression Tree (BaRT) (Breiman, 1996), Stochastic Gradient Boosting 

(Friedman, 2002), Bayesian Regularised Neural Network (BRNN) (Ticknor, 2013), Partial Least Square Regression 

(PLSR) (Helland, 1988), and Support Vector Machine (SVM) (Vapnik, 2000). Cubist, RF, and BaRT are decision tree 

algorithms that differ based on their ways of dealing with variance reduction. RF and Cubist are widely used for DSM 

purposes and are well-described in the literature (Gray et al., 2016; Pouladi et al., 2019; Shahbazi et al., 2019a). BaRT 

is an algorithm that reduces the variation of a mathematical learning method as a general procedure (Keskin et al., 

2019). GLMs attempt to adapt the model rather than changing the input data and involve a lengthening of linear 

regressions to accommodate non-normal response distributions (Lane, 2002).  

Stochastic Gradient Boosting incorporates bagging aggregation and is a hybrid method that performs a small 

regression or grouping by using the residuals of the former trees building sequentially (Forkuor et al., 2017; Friedman, 

2002). The BRNN trains and calculates non-trivial weights, converging them to a constant as network increases in size. 

The model complexity is reduced, and unnecessary linkages are changed to zero. The PLSR is similar to principal 

component analysis and integrates predictor variables, collinearly compressing them to construct a predictive model. 

Some PLSR factors may explain part of the variation between response and predictor variables. The SVM differs from 

decision tree methods because it uses kernel functions, converting their linear non-separable issues into separable ones 

(Bishop, 2006; Franklin, 2005). It is widely applied in DSM (Gomes et al., 2019; Liakos et al., 2018; Meier et al., 2018). 

Additionally, we performed regression kriging (RK) using the best MLA result and its model residuals. RK, 

as highlighted by Keskin and Grunwald (2018), is extensively used in soil science because of its practicality and 

robustness as a hybrid spatial interpolator. Several studies have been conducted on RK, with the residuals of other 

machine learning methods in DSM (Angelini and Heuvelink, 2018; de Carvalho Junior et al., 2014; Knotters et al., 

1995; Odgers et al., 2011; Pouladi et al., 2019; Sayão et al., 2018; Sindayihebura et al., 2017; Vasques et al., 2016).  

 

1.2.4. Digital FI content mapping procedure 

FI was calibrated using 44 environmental covariates (Table 1). MLAs and RK were performed using the 

‘caret’ (Kuhn, 2008) and ‘gstat’ (Pebesma, 2004) packages in R software by randomly splitting the dataset into 

calibration (85%, 295 samples) and validation (15%, 49 samples) sets. The first set was used to calibrate the models. 

MLA parameters were optimised using a five-fold repeated cross-validation method, executed five times for each 

model to avoid the effects of environmental covariate autocorrelation (Bonfatti et al., 2020; Meyer et al., 2019). The 

best fit model was selected considering the lowest root mean square error (RMSE) and highest coefficient of 

determination (R2) (Table 2). This was considered as internal validation. Subsequently, the final predicted maps were 

validated using the omitted samples. This procedure is known as external validation and provides a better indication 

of the model’s generalisation. 
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Table 2. Model’s parameters of the best fit for total iron content (g kg-1) at 0 – 20 cm (layer A). 

Models Terrain 
sources 

Parameters 

Random Forest 

 mtry R2
train 

DEM 19 0.86 

DTM 19 0.86 

Cubist 

 Committees Neighbours R2
train 

DEM 20 9 0.87 
DTM 20 9 0.86 

Partial Least Square Regression 

 n. comp. R2
train 

DEM 3 0.66 
DTM 3 0.66 

Bayesian Regularised Neural Network 

 Neurons R2
train 

DEM 2 0.85 
DTM 2 0.85 

Bagged Regression Tree 

 mtrees R2
train 

DEM 25 0.83 
DTM 25 0.83 

Stochastic Gradient Boosting 

 ntrees Interaction depth R2
train 

DEM 150 3 0.86 
DTM 150 3 0.86 

Support Vector Machine 

 Cost R2
train 

DEM 1 0.81 
DTM 0.25 0.80 

Generalised Linear Model 

 AIC R2
train 

DEM 1169.5 0.80 
DTM 1170.9 0.81 

Regression Kriging Residuals 
Random Forest 

 model psill range kappa nugget 

DTM Spherical 0.42 8 0.7 0 

Shrinkage value (0.1) was constant in the Stochastic Gradient Boosting models. AIC means the Akaike Information 

Criterion. 

  

1.2.5. Model evaluation 

The dataset separated for external validation was used to assess the models’ performance. The RMSE, 

adjusted R2 value (R2
adj), ratio of performance to interquartile distance (RPIQ), and coefficient of efficiency (COE) 

were calculated to assess the amount of variation explained by each model. The RPIQ index was calculated via the 

difference between the third and first quartiles divided by the RMSE. We included the COE as proposed by Legates 

and McCabe (2013):  

𝐶𝑂𝐸 = 1.0 −
∑ |𝑂𝑖 − 𝑃𝑖|

𝑁
𝑖=1

∑ |𝑂𝑖 − 𝑂̅′𝑙|𝑁
𝑖=1

 

where 𝑂𝑖  is the observed value, 𝑂̅′𝑙  the observed baseline, and 𝑃𝑖  is the model predicted series with N pairs for 

evaluation.  

The COE value ranged between 1 and -1, with a value close to 1 indicating that the model prediction had a 

good fit. A COE value close to zero or a negative value indicates that the model is not predictive. The bias was also 

calculated, which measured the distance between the average predicted and observed values. This validation metric 

compensated for a limitation of the R2
adj, revealing the model bias. Moreover, we qualitatively investigated the 

relationship between the predicted map of FI content and the Brazilian soil map. 
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1.3. RESULTS AND DISCUSSION 

1.3.1. Exploratory analysis 

The distribution of FI in the study area ranged from 0 to 250 g kg-1 and reflected the diversity of parent 

materials. The distribution of the covariate values among the Fe2O3 classes are shown in Table 3. The derivative 

covariates from both the DEM (30 m resolution) and DTM (5 m resolution) indicated variation within Fe2O3 classes. 

On the other hand, the geology was a combination of three parent materials (sandstone, diabase, and siltite) for the 

hypoferric class; the other two classes had only diabase as bedrock. This tendency corroborated the soil FI content 

found by Santos et al. (2018). Therefore, this exploratory analysis was the first to show how environmental covariates 

responded to variation in iron content before DSM procedures were executed. 
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Table 3. Summary of the ancillary variables selected and grouped by the total free iron classes according to the Brazilian 
Soil Classification System. 

Parameters 

Hypoferric 
(< 80 g kg-1) 

Mesoferric 
(80-180 g kg-1) 

Ferric 
(180-360 g kg-1) 

Perferric 
(> 360 g kg-

1) 

1st Quartile Median 3rd Quartile 1st Quartile Median 3rd Quartile 1st Quartile Median 3rd Quartile 

N
o

 d
at

a 
av

ai
la

b
le

 

SYSI B11 646.40 716.10 824.50 456.30 498.40 575.50 463.60 506.00 552.00 

SYSI B21 1016.90 1111.50 1273.20 746.30 814.10 930.60 755.90 798.20 854.70 

SYSI B31 1361.00 1486.00 1667.00 1096.70 1183.20 1296.20 1099.40 1163.70 1225.50 

SYSI B41 2047.00 2228.00 2512.00 1583.00 1705.00 1829.00 1568.00 1655.00 1712.00 

SYSI B51 2710.00 3045.00 3493.00 2038.00 2154.00 2325.00 2008.00 2113.00 2211.00 

SYSI B71 2362.00 2659.00 3060.00 1812.00 1909.00 2035.00 1741.00 1832.00 1908.00 

SC Red2 127.08 137.67 144.28 113.71 119.61 125.31 113.45 118.89 124.49 

SC Green2 89.18 104.89 113.64 66.99 71.03 90.61 67.90 78.98 87.82 

SC Blue2 67.42 79.24 87.69 45.64 61.05 69.88 48.34 63.24 69.84 

AMT3 20.40 20.60 20.70 20.30 20.40 20.60 20.40 20.60 20.60 

AMP4 1166 1178 1245 1166 1166 1176 1166 1166 1166 

NDVI5 0.18 0.20 0.21 0.16 0.18 0.18 0.16 0.17 0.18 

EVI6 0.29 0.32 0.35 0.22 0.25 0.28 0.22 0.24 0.28 

SRF7 5.78 10.92 14.85 2.13 4.44 9.83 0.63 0.91 2.20 

DEM8 504.00 533.50 561.00 524.00 533.00 578.00 531.50 550.00 561.20 

ADEM9 61.39 152.41 271.68 53.49 89.53 276.68 52.24 79.65 278.54 

LSFDEM10 0.37 0.76 1.20 0.65 1.28 1.71 1.09 1.58 1.81 

PLCDEM11 -0.0093 0.0034 0.0141 -0.0087 0.0016 0.0083 -0.0044 0.0007 0.0077 

PRCDEM12 -0.0007 0.0000 0.0010 -0.0004 0.0004 0.0013 -0.0003 0.0006 0.0013 

SDEM13 5.04 7.48 10.02 6.44 9.92 12.93 9.76 12.72 15.64 

VDDEM14 5.24 12.65 22.67 5.01 8.22 14.94 0.64 4.95 11.13 

TWIDEM15 6.19 6.72 7.67 6.26 7.11 7.73 5.97 6.24 6.68 

DTM16 498.30 529.60 558.40 521.30 531.60 574.40 528.90 547.50 559.30 

ADTM17 62.98 152.03 269.80 51.03 95.93 286.78 62.05 100.43 284.88 

LSFDTM18 0.32 0.69 1.10 0.52 0.82 1.44 0.74 1.27 1.77 

PLCDTM19 -0.02 0.00 0.03 -0.0115 0.0094 0.0240 -0.0212 0.0025 0.0305 

PRCDTM20 0.00 0.00 0.00 -0.0027 -0.0004 0.0055 -0.0002 0.0024 0.0059 

SDTM21 4.23 7.00 10.13 5.41 7.62 11.69 7.35 10.64 15.03 

VDDTM22 0.13 1.21 4.22 0.17 0.52 3.72 0.02 0.50 3.56 

TWIDTM23 6.28 6.89 7.52 6.15 6.99 7.58 5.90 6.52 7.08 

DD24 5.73 7.36 8.48 6.82 7.44 8.76 8.48 8.92 9.02 

Landforms 
Upper 

slope 

Upper 

slope 

Lower 

slope 

Upper 

slope 

Upper 

slope 

Upper 

slope 

Upper 

slope 

Upper 

slope 

Upper 

slope 

GYPI25 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 

NATI26 0.13 0.15 0.17 0.10 0.11 0.14 0.11 0.13 0.14 

CALI27 0.44 0.46 0.47 0.41 0.44 0.46 0.43 0.45 0.46 

CARI28 1.30 1.32 1.36 1.38 1.44 1.48 1.38 1.44 1.49 

FFI29 1.70 1.78 1.86 1.51 1.59 1.66 1.50 1.57 1.65 

FI30 1.31 1.35 1.41 1.21 1.26 1.32 1.25 1.30 1.33 

FOI31 1.99 2.06 2.17 2.20 2.37 2.51 2.12 2.23 2.47 

CHI32 0.87 0.87 0.88 0.87 0.88 0.89 0.86 0.87 0.87 

Geology Sandstone Diabase Siltite Diabase Diabase Diabase Diabase Diabase Diabase 

Geomorph33 Shoulder Shoulder Footslope Shoulder Shoulder Footslope Backslope Shoulder Shoulder 

X34 218759 228008 228783 228309 229124 229633 229124 229280 229435 

Y35 7454661 7459606 7486013 7453767 7454165 7458770 7453646 7453764 7453990 

1Synthetic Soil Image bands (SYSI B1, B2, B3, B4, B5 and B7); 2Predicted Soil RGB colours (SC Red, Green and Blue); 
3Annual Mean Temperature (AMT); 4Annual Mean Precipitation (AMP); 5Normalised Difference Vegetation Index 
(NDVI); 6Enhanced Vegetation Index (EVI); 7Soil Relative Frequency (SRF); 8Digital Elevation Model (DEM); 
9Aspect from DEM (ADEM); 10LS Factor from DEM (LSFDEM); 11Plan Curvature from DEM (PLCDEM); 12Profile 
Curvature from DEM (PRCDEM); 13Slope from DEM (SDEM); 14Valley Depth from DEM (VDDEM); 
15Topographic Wetness Index from DEM (TWIDEM); 16Digital Terrain Model (DTM); 17Aspect from DTM 
(ADTM); 18LS Factor from DTM (LSFDTM); 19Plan Curvature from DTM (PLCDTM); 20Profile Curvature from 
DTM (PRCDTM); 21Slope from DTM (SDTM); 22Valley Depth from DTM (VDDTM); 23Topographic Wetness Index 
from DTM (TWIDTM); 24Drainage Density (DD); 25Gypsic Index (GYPI); 26Natric Index (NATI); 27Calcareous Index 
(CALI); 28Carbonate Radicals Index (CARI); 29Ferrous Fe Index (FFI); 30Ferrous Index (FI); 31Ferrous Oxides Index 
(FOI); 32Clay and Hydroxides Index (CHI); 33Geomorphology (Geomorph.); 34Longitude (X) and 35Latitude (Y) 
coordinates. 

 

The distribution of FI was assessed by calculating its mean, standard deviation, skewness, and kurtosis. FI 

content showed a left distribution tendency and high variability (coefficient of variability > 90%) in the training dataset 

(Fig. 2a). In regression models, the target variable would be better fitted if it were normally distributed. To achieve a 

normal distribution, we performed Box–Cox transformation (Fischer, 2016; Malone et al., 2013). The power 

transformation decreased variation by up to 45% (Fig. 2b). We subsequently modelled the transformed data using eight 

MLAs, and the best fit model was selected to map the residual via RK (e.g. simple kriging). 
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Fig. 2. Descriptive statistics of total iron content (a) and its power transformation (√𝐹𝑒2𝑂3) (b). Red line empirical 

density and black line normal density in the histogram. 1SD, standard deviation. 2SE, standard error. 3CV, coefficient 
of variation. 

 

FI content was positively correlated with carbonate radicals and ferrous oxides indices of over 0.4, i.e. an 

increase in these indices indicated increased Fe2O3 content (Fig. 3). Martínez-Graña et al. (2016) mapped the soils of 

Spain and found that the fluvial terraces had soil features such as carbonate accumulation and gleyic horizon 

development. The relationship between carbonates and iron is directly connected to the hydrologic cycle, where the 

water table plays an important role in two soil-forming processes, namely gleisation and ferralitisation, respectively. 

Gleisation involves the periodic wetting of reduced iron (Bockheim, 2018) or dissolved Fe2+, which mostly remains 

reduced. Ferralitisation encompasses the total hydrolysis of Fe+3, forming oxides (e.g. goethite and hematite) and 

hydroxides. These iron and aluminium compounds are formed by the removal of silica and bases. Both processes 

occur in the presence of high soil iron concentrations and alterations in the water table.  
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Fig. 3. Pearson’s correlation index (p < 0.01) between the response variable (Fe2O3, g kg-1) and the environmental 
covariates (scorpan factors). False means negative correlation; True means positive correlation. 

 

Negative correlation coefficients between FI and soil RGB colour, ferrous and natric indices, NDVI, and 

SRF were found (Fig. 3). Similarly, ferrous iron index, EVI, and SYSI bands had negative correlation values of 0.6–

0.8, i.e. the values of these covariates increased with decreasing iron content. The opposite was reported by Regmi and 

Rasmussen (2018), who predicted soil landscape units in the arid southwestern United States. They found that lower 

values of ferrous iron index derivatives from satellite bands indicated aeolian deposits. However, our results showed 

high FI contents, which could have led to a low ferrous iron index. The same reasoning applies to the EVI and NDVI, 

where areas with higher vegetation cover should represent high FI contents and vice versa. The SRF showed that areas 

with higher exposure frequency had lower FI contents, which makes sense, as bare soil areas lead to greater physical 

weathering (e.g. wind erosion) of bare soil areas (Dwivedi, 2001). 

 

1.3.2. Model performance 

To predict FI content, we used satellite spectral bands of SYSI and other environmental variables that 

matched the scorpan factors (Table 1). The predictive models were run using terrain derivatives from the DTM (Fig. 
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4a) and DEM (Fig. 4b). Table 4 presents the parameters used to evaluate the models’ performance. Even though the 

RF model used only 19 of the 36 available environmental variables, it performed best, with RMSE, R2
adj, RPIQ, and 

COE values of 25.09, 0.84, 0.72, and 0.69 respectively. The mtry (Table 3) explicitly shows the number of predictors 

needed to outperform the RF predictions. No meaningful differences existed between models that used pixel 

resolutions of 5 or 30 m as environmental covariates. This corroborates the results of Samuel-Rosa et al. (2015), who 

found that detailed environmental covariates did not significantly improve DSM performance. These authors 

concluded that it would be more useful to increase sampling density rather than devoting time and resources to 

generating detailed data, such as DEMs or DTMs. 
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Fig. 4. The importance level, in percentage, of the top 20 environmental covariates after modelling the total free iron 
content within each machine learning algorithm based on 5 m (DTM, Digital Terrain Model) (a) and 30 m (DEM, 
Digital Elevation Model) (b) pixel resolution. 

 

Table 4. Model evaluation at 0 – 20 depth (layer A) for predicted total free iron based on covariates from Digital 
Terrain Model (DTM) and Digital Elevation Model (DEM).  

 Parameters GLM1 BaRT2 GBM3 Cubist BRNN4 PLSR5 RF6 SVM7 

R
eg

re
ss

io
n

 K
ri

gi
n

g 
b

es
t 

m
o

d
el

 

Parameters RKRF DTM8 

Fe2O3 (g/kg) DTM 

RMSE9 34.81 25.90 31.15 31.24 37.47 39.70 25.09 35.73 
RMSE 24.98 

R2adj10 0.71 0.83 0.76 0.75 0.66 0.61 0.84 0.69 

RPD11 1.83 2.46 2.04 2.04 1.70 1.60 2.54 1.78 
R2adj 0.84 

RPIQ12 0.52 0.69 0.58 0.58 0.48 0.45 0.72 0.50 

COE13 0.57 0.68 0.60 0.61 0.54 0.46 0.69 0.54 
RPD 2.55 

Fe2O3 (g/kg) DEM 

RMSE 36.86 26.19 31.00 33.58 39.13 39.69 25.97 37.60 

R2adj 0.67 0.83 0.76 0.72 0.63 0.61 0.83 0.67 
RPIQ 0.72 

RPD 1.73 2.43 2.05 1.90 1.63 1.60 2.45 1.69 

RPIQ 0.49 0.69 0.58 0.54 0.46 0.45 0.69 0.48 
COE 0.69 

COE 0.55 0.67 0.62 0.57 0.50 0.46 0.67 0.54 

Note. 1GLM, Generalised Linear Model; 2BaRT, Bagged Regression Tree; 3GBM, Stochastic Gradient Boosting; 
4BRNN, Bayesian Regularised Neural Network; 5PLSR, Partial Least Square Regression; 6RF, Random Forest; 7SVM, 
Support Vector Machine; 8RKRF, Regression Kriging with RF. 9RMSE, Root Mean Square Error; 10R2

adj, Adjusted 
Correlation Index; 11RPD, Ratio of Performance to Deviation; 12RPIQ, Ratio of Performance to Interquartile Distance; 
13COE, Coefficient of Efficiency. 
 

The final maps of all predicted models for FI content were evaluated using an external dataset (Table 4 and 

Fig. S2). The PLSR showed the poorest performance. Likewise, the BRNN, GLM, and SVM did not show satisfactory 

performance. On the other hand, Cubist, Stochastic Gradient Boosting, BaRT, and RF adequately predicted FI content. 
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We performed RK on the best model, i.e. the RF model (Fig. S3). RF residuals were spatialised over the entire site. 

The RK approach showed higher accuracy than the RF model alone did (Table 4). 

Shahbazi et al. (2019) monitored soil crystalline iron oxides in Iran via Cubist, multiple linear regression, and 

decision trees. Their estimated sampling density was one point per 0.02 km2, whereas ours was one point per 7.48 km2. 

Despite our low sampling density, almost all our models showed satisfactory performance. Shahbazi et al. (2019) 

indicated that decision tree prediction was superior to multiple linear regression and Cubist, corroborating our findings. 

To enhance DSM performance, sampling collection has to be well-distributed and represent most of the variability of 

the study area.  

We attained the model importance level within MLAs in our study by using the top 20 most relevant 

environmental covariates (Fig. 4). The main covariates were SYSI bands 7 (2064–2345 nm) and 4 (772–898 nm), which 

contained the SWIR and NIR spectral responses of bare soil. Therefore, soil FI content was directly linked to these 

spectral bands. Demattê et al. (2017) analysed the spectral behaviour of wetland soil properties and genesis in two 

Brazilian biomes and found that hematite had absorption features at 750 and 1050 nm. This could explain the 

importance level of band 4 in predicting FI content, because it comprised hematite and goethite responses. Regmi and 

Rasmussen (2018) mapped the relationship between soil attributes and landscape in the southwestern United States 

and found high ferrous iron concentrations (Landsat ETM + bands 7/3 and 5/4 ratios) in alluvial deposits of 

metamorphic rocks and lower concentrations in aeolian deposits. This supports our finding of SYSI band 7 being the 

most important covariate for predicting FI.  

Drainage density was also one of the foremost environmental covariates in the MLAs. This makes sense as 

the role of the water table in the natural chemical reactions of iron in pedogenetic processes is well-known (Klingebiel, 

1958; Vogt et al., 2003). The temporal images, SYSI, and their band indices were fundamental to obtaining good results 

in our study. The relationship between the environmental covariates used to predict FI content was in line with 

established soil formation factors and processes (Ma et al., 2019; Schaetzl and Anderson, 2005). 

 

1.3.3. Final FI content map and relationship with soils 

Using the best-predicted map of FI content, we identified zones with high iron content from mafic rocks and 

low iron content from sedimentary or metamorphic rocks (Fig. 5). Goethite and haematite are the most common iron 

minerals in tropical soils and are respectively described as yellow-brown and red pigment agents in soils (Anda et al., 

2008; Macedo and Bryant, 1989). High FI contents indicate higher haematite concentrations, and low FI contents 

indicate higher goethite concentrations. Demattê (2002) reported that soils with low iron content showed an increasing 

tendency from B1 to B7 in Landsat 5 Thematic Mapper. This agreed with the FI spectral curves in our study, which 

allowed us to differentiate the iron classes (Fig. 5c).  
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Fig. 5. Final predicted map of total free iron content using regression kriging of Random Forest algorithm with Digital 
Terrain Model (DTM). The highlighted areas are described in Fig. 7. 

 

We selected five sites and overlaid the soil map to qualitatively analyse the patterns (Figs. 5a and 6). Sites 1–

5 had high FI contents and were characterised by Typic Haplorthox (orange) and Typic Eutrorthox (red) soil types. 

The latter is derived from basalt rocks, with a very clayey texture and FI content of up to 180 g kg-1. Typic Paleudalf 

and Arguidoll have lower FI contents than Rhodic Paleudalf, Typic Eutrorthox, Typic Haplorthox, and Typic Paleudalf 

do, because they are derived from argillite, siltite, and sandstone. Typic Paleudalf is characterised by a red-yellow colour 

because of its high goethite and low FI contents (Galvão et al., 1997). This pattern strongly agreed with the predicted 

iron content in this study. Moreover, the predicted FI content map indicated areas with high and low soil iron 

concentrations, which could represent another soil type not mapped in the traditional soil survey. This likely happened 

because the traditional soil map scale represented 100 ha, whereas the predicted FI content map represented 0.09 ha 

(30 × 30 m pixel resolution), displaying more detailed information. 
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Fig. 6. Visual association of the predicted total free iron content with the Brazilian traditional soil map 1/100,000 scale 
from Agronomic Institute of Campinas (IAC, Portuguese acronym). LE: Typic Haplorthox, LR: Typic Eutrorthox, 
PV: Typic Paleudalf, Li: Lithic Distrochrept, PE: Typic Paludult, TE: Rhodic Paleudalf, and BV: Typic Arguidoll. 

 

The results showed the potential of DSM and remote sensing–derived products to produce detailed FI maps 

for tropical regions. The bare soil composite was an important predictor that revealed spatial changes in topsoil colour, 
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a morphological feature highly related to soil mineralogy and iron content (Gray et al., 2016; Shahbazi et al., 2019b). 

Furthermore, the soil iron cycle is strongly affected by hill slope water drainage, where crystalline forms occur on top 

of the relief with good drainage (oxidative environments), whereas reduced forms and less crystallised iron minerals 

are more abundant in moister areas (reductive environments) in the terrain (Bartholomeus et al., 2007). The parent 

material is another important factor affecting the soil iron cycle and was depicted by the bare soil composite. Therefore, 

the combination of spectral features derived from bare soil composites and terrain attributes could indicate the main 

patterns in FI content at the landscape level. 

 

1.4. CONCLUSIONS 

The mapping of FI content in tropical soils using a DSM approach proved to be feasible. It is vital to 

determine the best MLAs to better understand the relationship between the covariates and response variables for a 

specific site. However, no unique algorithm exists for mapping at local, regional, or national scales. In this study, we 

found that five models, namely Cubist, Stochastic Gradient Boosting, BaRT, RF, and RK, could accurately predict FI 

content. Detailed relief data at a 5 m resolution were not superior to 30 m resolution data. Therefore, for regional 

mapping, data available from the USGS is sufficient.  

The use of the temporal images from Landsat archives merged to a unique bare soil image was vital to 

improving model performance. The final predicted FI content map was important for identifying detailed soil types, 

which should be considered in future pedological studies. 

 

ACKNOWLEDGMENTS 

This work was supported by the São Paulo Research Foundation (grant numbers 2016/26124-6 and 

2014/22262-0) and forms part of the first author’s PhD thesis. The authors wish to thank the Geotechnologies in Soil 

Science Group (https://esalqgeocis.wixsite.com/english). 

 

APPENDIX A. SUPPLEMENTARY DATA 

Methodology and Results of the Soil RGB colour environmental variable 

S factor soil RGB colour prediction procedure  

Additional to the covariates that represent the s factor of the scorpan model, we created a predicted soil RGB colour 

based on the soil spectral reflectance. In this case, we used a part of the Brazilian Soil Spectral Library (Demattê et al., 

2019) with 1,431 soil samples. The spectral data were acquired using a Fieldspec 3 sensor, and the methodology is 

reported in Demattê et al. (2019). As described in Viscarra Rossel et al. (2006), the soil spectra from the laboratory in 

the wavelength range between 450 and 780 nm (visible spectral region) were converted to RGB values corresponding 

to the Landsat bands 1, 2, and 3 by taking the average reflectance between 450 – 520 nm (band 1, Blue), 520 – 600 nm 

(band 2, Green), and 630 – 690 nm (band 3, Red). Subsequently, the dataset was split into 75% for calibration (1,073 

samples) and 25% for external validation (358 samples). The SYSI’s bands were used as covariates in a Cubist model 

to predict RGB soil colour for the entire area using the following hyperparameters: Red, committees = 10 and 

neighbours = 0; Green, committees = 10 and neighbours = 0; Blue, committees = 20 and neighbours = 9. 
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Soil RGB colour as environmental covariates of “s” factor 

Soil colour of the region was predicted and spatialized from soil spectra data for mapping FI (Fig. S3). We 

performed the cubist model to predict the soil RGB colour from the laboratory using the SYSI’s bands as covariates. 

Hence, only spectral data were used to generate maps of red, green and blue colour components. The R2
adj for the 

predicted red, green, and blue were 0.53, 0.69 and 0.64, respectively. The RMSE values were 14.07, 13.27 and 11.91 

for red, green and blue, respectively. This soil RGB colour was used to boost our predictive models of FI.  

 

Fig. S1. Final predicted map of soil colour using Cubist algorithm with spectral reflectance of SYSI bands (a) and 

satellite image (b). 
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Fig. S2. Graphs of predicted versus observed values of free iron content for each model using Digital Terrain Model 

(DTM) and Digital Elevation Model (DEM) 

.
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Fig. S3. Semivariogram of the Regression Kriging of the Random Forest model, which was the best predictive model 

of free iron content.  
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2. INTEGRATION OF MULTISPECTRAL AND HYPERSPECTRAL DATA TO MAP MAGNETIC 

SUSCEPTIBILITY AND SOIL ATTRIBUTES AT DEPTH: A NOVEL FRAMEWORK 

 

ABSTRACT 
The understanding of attributes and magnetic susceptibility (χ) at soil surface, mainly subsurface, is crucial 

due to their role to identify climate changes, soil degradation, soil classification systems, soil fertility, and pedogenesis. 
The integration of proximal sensing (PS) and remote sensing (RS) data sources could increase the efficiency of Digital 
Soil Mapping. Nevertheless, products of this integration need to be evaluated in hybrid, stochastic, and deterministic 
models to predict soil attributes and χ at surface and subsurface. This study investigates the PS and RS integration by 
applying four deterministic (e.g. Bayesian Regularised Neural Network, Generalised Linear Model, Random Forest and 
Cubist) and hybrid models (e.g. Regression Kriging of residuals of the best-fitted model) to create a new environmental 
variable, the Best Synthetic Soil Image (BSSI), at three soil depths (e.g. 0 – 20, 40 – 60 and 80 – 100 cm) that 
quantitatively represent the soil spectral signature. We also used the BSSI in a comparison with bare soil surface (e.g. 
SYSI - Synthetic Soil Image) to predict soil attributes and χ by performing the deterministic and hybrid models. We 
hypothesize that the BSSI, which integrates PS and RS data, enhances soil modelling predictions at subsurface by 
selecting the best model approach. The BSSI demonstrated original and valuable contribution to increase the predictive 
model power at deeper layers, while SYSI was effective at upper layers. The PS and RS integration helped to identify 
the main soil patterns horizontally and vertically, which traditional soil surveys have not been capable of representing.  

 

Keywords: soil spectroscopy; soil mapping; remote sensing; pedometrics; pedology 
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2.1. INTRODUCTION 

The knowledge of soil attributes and properties at the surface, mainly subsurface, is crucial for pedogenesis. 

Soil attributes, such as clay and sand contents, soluble aluminium (Al3+), aluminium (Alsat) and base saturation (Bsat), 

cation exchange capacity (CEC), soil organic matter (SOM), sum of bases (SB), and the pH play a crucial role to identify 

climate changes (Gray and Bishop, 2019; Minasny et al., 2017), soil degradation (Chen and Rao, 2008; Lal, 2015; 

Nampak et al., 2018), soil classification systems (Demattê et al., 2019; Rizzo et al., 2020), soil fertility (Demattê et al., 

2017; Li et al., 2018), and soil security (Bennett et al., 2019; McBratney et al., 2014). Likewise, soil property, such as 

the magnetic susceptibility (χ), which stems mainly from soil maghemite and magnetite contents, helps to understand 

pedogenesis (De Jong et al., 2000; de Souza Bahia et al., 2017; Jordanova, 2016; Lourenço et al., 2014; Maher, 1998; 

Torrent et al., 2010) and map soil classes (Ramos et al., 2017; Silvero et al., 2019; Teixeira et al., 2018).  

The Digital Soil Mapping (DSM) is an easy and feasible approach to improve the understanding of soil 

attributes and properties. The DSM has been applied to predict soil classes (Silva et al., 2016; Triantafilis et al., 2009; 

Vincent et al., 2018), morphology (Demattê, 2016; Hartemink et al., 2020), parent materials (Bonfatti et al., 2020), and 

attributes, such as clay (Loiseau et al., 2019), SOM (Gray et al., 2016), pH (Dharumarajan et al., 2020), among others 

(Padarian et al., 2017; Poppiel et al., 2019b), contributing to the improvement of management practices (Minasny et 

al., 2017; Tajik et al., 2020). The DSM basis was formalised in the scorpan model by McBratney et al. (2003) and it takes 

into account the model of soil formation established by Jenny (1941). This framework deals with the spatial prediction 

of soil attributes and properties, which could be performed by the stochastic or deterministic models and by combining 

both approaches (hybrid). Therefore, the soil attribute predicted is the response variable and its predictors are 

environmental variables that explain its spatial behaviour in the landscape.  

The remote sensing (RS) and proximal sensing (PS) products provide valuable information to enhance the 

environmental variables, which simulate characteristics of the environmental conditions (e.g. vegetation, climate, soil, 

etc.), compromising the DSM efficiency. The Digital Elevation Models (DEM) is an example of RS data retrieved from 

different satellite data sensors (e.g. Shuttle Radar Topography Mission, Light Detection and Ranging), the source of 

relief features for soil modelling. The DEM are the basis for the topographic wetness index, slope, curvature, and many 

other relief features, which are related to the soil attribute mapped. Another example of RS data is the spectral 

information retrieved by satellite sensors. Demattê et al. (2018) retrieved bare soil surface using temporal Landsat 

collection and showed its potential for predicting soil attributes. This potential was assessed by Fongaro et al. (2018) 

by presenting model improvements for clay and sand quantification. Gallo et al. (2018) also evaluated and proved the 

potential of using bare soil surface image as a predictor of sand, clay, CEC, and SOM.  

Most studies on DSM applied environmental variables derived from multispectral data (e.g. satellite sensors) 

and digitalised maps (Behrens et al., 2014; Gray et al., 2016; Minasny and McBratney, 2016; Rutgers et al., 2019); 

however, these studies did not find models that were well-fitted at soil subsurface (Table 1), a limitation for soil 

mapping. The integration of PS and RS data sources could overcome this limitation. The successful integration of 

multi and hyperspectral data is key for a better prediction of soil properties (Crucil et al., 2019; Demattê et al., 2015; 

Poppiel et al., 2019a). Mendes et al. (2019) mapped subsurface using subsurface soil reflectance as an environmental 

variable and involved the laboratory spectra of soil samples at 80 – 100 cm depth into Landsat TM bands, the response 

variables. The bands of the Synthetic Soil Image were the environmental variables, as described at Demattê et al. (2018). 

This environmental variable represents surface bare soils retrieved from Landsat TM time-series. The soil spectra were 

predicted at subsurface by using the DSM approaches and by applying the multiple linear regression and geographically 
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weighted regression. Afterwards, the predicted bands of soil spectra at subsurface were used as environmental variables 

to map soil attributes at the same depth. This procedure of predicting an environmental variable at soil subsurface was 

pioneer and was named spectral pedotransfer (SPEDO) (Mendes et al., 2019). 
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Table 1. Comparison of studies predicting soil properties using a variety of deterministic, stochastic and hybrid methods in Digital Soil Mapping. 

Soil attribute 
Depth 
(cm) 

1 sample/x km2 Methods RMSE R2 Reference 

pH 0-30 0.73 GLM 0.15 0.05 (Mosleh et al., 2016) 
0-30  227.00 RK 0.68-0.84 0.06-0.14 (Malone et al., 2014) 

60-100 316.28 BMA 1.09-1.13 0.08-0.11 (Malone et al., 2014) 
0-30 15.38 RF, RK 0.75-0.83 0.71-0.75 (Vaysse and Lagacherie, 2015) 
30-60 17.76 RF, RK 0.82-0.83 0.71 (Vaysse and Lagacherie, 2015) 
0-20 0.55 Lasso, georob, geoGAM, BRT, RF, MA 0.83-0.93 0.35-0.45 (Nussbaum et al., 2018) 
40-60 0.83 Lasso, georob, geoGAM, BRT, RF, MA 1.07-1.25 -0.22-0.30 (Nussbaum et al., 2018) 

Clay (g kg-1) 0-15 191.29 QRF 76.5 0.45 (Loiseau et al., 2019) 
30-60 195.22 QRF ~100 0.35 (Loiseau et al., 2019) 
60-100 619.18 QRF ~130 0.20 (Loiseau et al., 2019) 
0-60 0.04 MLR 3.68-12.37 0.37-0.52 (Godinho Silva et al., 2016) 
0-20 1.45 GWR, MLR 82.87-91.88 0.54-0.62 (Mendes et al., 2019; Rizzo et al., 2020) 

80-100 1.45 GWR, MLR 88.24-101.43 0.54-0.63 (Mendes et al., 2019; Rizzo et al., 2020) 
0-20 3.27 PLSR 89.84 0.75 (Gallo et al., 2018) 
0-20 15.90 Cubist, RF 65.01-97.73 0.61-0.83 (Fongaro et al., 2018) 
0-30 0.73 ANN 87 0.22 (Mosleh et al., 2016) 
0-100 66.86 MLR 41.70-69.00 0.19-0.63 (Angelini et al., 2017) 
0-10 0.27 Lasso, georob, geoGAM, BRT, RF, MA 57.76-66.98 0.23-0.42 (Nussbaum et al., 2018) 

50-100 0.34 Lasso, georob, geoGAM, BRT, RF, MA 88.71-97.06 -0.16-0.02 (Nussbaum et al., 2018) 
Sand (g kg-1) 0-30 60.91 QRF 158.76-178.30 0.43-0.53 (Dharumarajan et al., 2020) 

60-100 60.91 QRF 142.50-166.10 0.36-0.54 (Dharumarajan et al., 2020) 

0-20 15.90 Cubist, RF 79.99-128.52 0.63-0.86 (Fongaro et al., 2018) 

0-20 3.27 PLSR 151.70 0.56 (Gallo et al., 2018) 

0-10 0.19 Lasso, georob, geoGAM, BRT, RF, MA 52.18-58.96 0.06-0.26 (Nussbaum et al., 2018) 

50-100 0.23 Lasso, georob, geoGAM, BRT, RF, MA 104.07-117.70 0.02-0.23 (Nussbaum et al., 2018) 
OM (g kg-1) 0-100 66.86 MLR 0.06-4.10 0.04-0.28 (Angelini et al., 2017) 

0-20 3.27 PLSR 22.31 0.34 (Gallo et al., 2018) 
0-10 0.19 Lasso, georob, geoGAM, BRT, RF, MA 31.58-35.04 0.08-0.25 (Nussbaum et al., 2018) 

50-100 0.23 Lasso, georob, geoGAM, BRT, RF, MA 60.90-75.36 -0.22-0.20 (Nussbaum et al., 2018) 
0-20 0.01 MLR 6.72-10.62 0.15-0.55 (Sayão et al., 2018) 
0-25 *28.5/ha RK(Cubist and RF), Cubist, RF, Kriging 2.27-4.20 0.88-0.91 (Pouladi et al., 2019) 

CEC (mmolc kg-1) 0-20 0.55 Lasso, georob, geoGAM, BRT, RF, MA 72.29-83.04 0.26-0.44 (Nussbaum et al., 2018) 
40-60 0.83 Lasso, georob, geoGAM, BRT, RF, MA 51.36-83.24 -0.68-0.36 (Nussbaum et al., 2018) 
0-20 3.27 PLSR 58.60 0.40 (Gallo et al., 2018) 

80-100 1.45 GWR, MLR 69.82-84.37 0.02-0.35 (Mendes et al., 2019; Rizzo et al., 2020) 
5-15 50.72 DSMART 51.12 0.28 (Ellili Bargaoui et al., 2019) 
30-60 54.78 DSMART 21.50 0.34 (Ellili Bargaoui et al., 2019) 
0-20 0.02 MLR, OK, RK 15.40-22.80 0.13-0.60 (Sun et al., 2019) 
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0-30 8/ha Bayesian model 7.2 **0.69 (Li et al., 2018) 
60-90 8/ha Bayesian model 26.2 **0.86 (Li et al., 2018) 

SB (mmolc kg-1) 5-15 353.71 Cubist, RF 47.86-97.72 **0.46-0.78 (Gray et al., 2016) 
0-30 403.30 MLR 53.70 **0.72 (Gray and Bishop, 2019) 

30-100 403.30 MLR 61.65 **0.74 (Gray and Bishop, 2019) 
Al3+ (mmolc kg-1) 80-100 1.45 GWR, MLR 11.73-14.56 0.07-0.32 (Mendes et al., 2019; Rizzo et al., 2020) 

AS (%) 80-100 1.45 GWR, MLR 17.01-19.16 0.11-0.27 (Mendes et al., 2019; Rizzo et al., 2020) 

0-20 104.55 RF 20 0.26 (Poppiel et al., 2019) 

20-60 104.55 RF 21 0.45 (Poppiel et al., 2019) 

80-100 104.55 RF 20 0.56 (Poppiel et al., 2019) 
BS (%) 0-20 1.45 GWR, MLR 14.83-16.04 0.24-0.31 (Mendes et al., 2019; Rizzo et al., 2020) 

80-100 1.45 GWR, MLR 20.19-21.09 0.05-0.12 (Mendes et al., 2019; Rizzo et al., 2020) 

0-20 104.55 RF 20 0.18 (Poppiel et al., 2019) 

20-60 104.55 RF 15 0.30 (Poppiel et al., 2019) 

80-100 104.55 RF 14 0.36 (Poppiel et al., 2019) 

*Small areas represented in hectares instead of square kilometres. **Lin’s concordance index.  
CEC, Cation Exchange Capacity; SB, Sum of Bases; AS, Aluminium Saturation; BS, base saturation; OM, Organic Matter; Al3+, exchangeable Al3+. 
GLM, Generalised Linear Model; RK, Regression Kriging; RF, Random Forest; QRF, Quantile Regression Forest; MLR, Multiple Linear Regression; PLSR, Partial Least Square 
Regression; ANN, Artificial Neural Network; KNN, K-Nearest Neighbour; Lasso, grouped least absolute shrinkage and selection operator; georob, robust external-drift kriging; 
geoGAM, boosted geoadditive model; BRT, boosted regression tree; MA, model averaging; DSMART, Disaggregation and Harmonisation of Soil Map Units Through Resampled 
Classification Trees; OK, Ordinary Kriging. 
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Another major aspect of DSM is to select the best modelling algorithm. Improvements in modelling soil 

formation factors and processes have been performed via geospatial and spatial analyses, characterised by the use of 

some particular treatments (e.g. data transformation; Hengl et al. 2004) and field designs (e.g. Latin hypercube; Carré 

et al. 2007) to reduce uncertainty, an intrinsic part of the soil taken as a natural system (McBratney et al., 2000). The 

knowledge generated from the stochastic, deterministic, and hybrid models has uncovered quantitative patterns of soil 

attributes and formation factors. These models comprise the Bayesian Regularised Neural Network (Poggio et al., 

2016; Tien Bui et al., 2012), Generalised Linear Model (McKenzie and Austin, 1993; Tajik et al., 2020), Random Forest 

(Castro-Franco et al., 2018; Hengl et al., 2018), Cubist (Bonfatti et al., 2016; Malone et al., 2018), Regression Kriging 

(Keskin and Grunwald, 2018), and among other untested algorithms in soil science. Machine learning algorithms 

classify instances of unknown identity using samples of known targets (Cracknell, 2007).  

The Bayesian Regularised Neural Network (BRNN) relies on supervised learning, a technique in the artificial 

neural network approach. The BRNN is a mathematical technique that converts nonlinear systems into a unique 

solution, which changes behaviour continuously in relation to the initial conditions. According to Ticknor (2013), the 

BRNN trains and calculates on non-trivial weights, converging them to a constant, as the network increases. The 

model complexity is penalised and unnecessary linkages are driven to zero, separating the unnecessary linkages (leaving 

those apart). Therefore, we conducted a comprehensive review of this approach to DSM (Table 1). The Generalised 

Linear Model (GLM) adapts the model instead of changing the input data. Besides, the GLM is a lengthening of linear 

regressions, accommodating non-normal response distributions (Lane, 2002; McBratney et al., 2003). The Random 

Forest (RF) and Cubist models are decision tree algorithms that differ from each other in terms of the way to deal with 

variance reduction. The decision tree methods, RF and Cubist, are widely and well-posed in the literature for DSM 

(Gray et al., 2016; Pouladi et al., 2019; Shahbazi et al., 2019). The Regression Kriging (RK), as highlighted by Keskin 

and Grunwald (2018), is extensively known in soil science because of its practicality and robusticity as a hybrid spatial 

interpolator. Several studies have investigated RK with the residuals of other machine learning on DSM (Angelini and 

Heuvelink, 2018; de Carvalho Junior et al., 2014; Knotters et al., 1995; Odgers et al., 2011; Pouladi et al., 2019; Sayão 

et al., 2018; Sindayihebura et al., 2017; Vasques et al., 2016). 

This study investigates the SPEDO method by applying four deterministic (e.g. Bayesian Regularised Neural 

Network, Generalised Linear Model, Random Forest, and Cubist) and hybrid models (e.g. Regression Kriging of 

residuals of the best-fitted model) to create a new environmental variable at three soil depths (e.g. 0 – 20, 40 – 60 and 

80 – 100 cm) that represents quantitatively the soil spectral signature. We also used the new environmental variable 

and compared it with the bare soil surface variable to predict soil attributes, namely clay, sand, and SOM contents, pH 

in water, CEC, SB, Al3+, Alsat, and Bsat, as well as χ by performing the deterministic and hybrid models. Our hypothesis 

is that the new environmental variable, which integrates PS and RS data, enhances soil modelling predictions at 

subsurface by selecting the best model approach. 
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2.2. MATERIAL AND METHODS 

2.2.1. Characterising the study area 

The study site covers approximately 2,574 km2 in the municipalities of Piracicaba, Charqueada, Iracemápolis, 

Saltinho, Rio das Pedras, Mombuca, Rafard and Capivari, São Paulo State, Brazil (Fig. 1). The climate in the region is 

characterized by dry winters and rainy summers, with an annual average temperature between 20.1 and 22.5 ºC, and 

annual average rainfall between 1200 and 1400 mm (INMET, 2020). The relief in the region consists of undulating 

hills and rolling uplands with altitude ranging from 450 to 950 m. The region has great diversity of parent material, 

such as Carboniferous materials composed of siltstones, tillites, varvites, conglomerates, and sandstones (Tubarão 

Group); Permian composed of shales, limestones, siltstones and flint (Corumbataí Formation); Permian consisting of 

shales, dolomite, siltite and pyrombetuminosite (Irati Formation); Jurassic consisting of sandstone, shales and siltstones 

(Botucatu and Pirambóia Formation); as well as Cretaceous constituted of diabase and basalt (Serra Geral Formation) 

(IGC, 2018). This diversity of parent materials and topography confer a great variety of soils to the region. The 

economic activity of the region is predominantly agriculture with till and no-till farming, meaning that some sites have 

the soil revolved up to 60 cm of depth along the year (Rudorff et al., 2010). 

 

 

Fig. 1. Study area. 
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2.2.2. Soil and spectral data  

The dataset consisted of the laboratory chemical and physical analyses of soil spectra (Table 2). The soil 

samples were collected using an auger at 0-20 cm (layer A), 40-60 cm (layer B), and 80-100 cm (layer C) depths based 

on the toposequence method, which considers relief and geological variation along the landscape. The toposequence 

method consists of selecting soil samples by a topographic profile along a transect crossing a map from summit to 

toeslope (Gobin et al., 2000). For the soil chemical and physical analyses, we collected 5,689 samples at layers A (2,229 

samples), B (1,796 samples), and C (1,664 samples). The number of samples for each layer differed because some of 

the sampling points presented soil compaction or reached the parent material.  

 

Table 2. Number of observations randomly split by 80% for calibration and 20% for validation at three different soil 
depths. 

Soil data source 
Calibration Validation 

A B C A B C 

Magnetic Susceptibility 279 - 153 71 - 37 
Laboratory Spectrum 808 656 701 200 164 172 
Laboratory Analyses 1,785 1,438 1,333 444 358 331 

Note. Laboratory Analyses include pH in water; clay, sand, and OM content; Al3+; sum of bases; cation exchange 
capacity; aluminium and base saturation. A: 0 – 20 cm depth. B: 40 – 60 cm depth. C: 80 – 100 cm depth. 

 

The samples were oven-dried at 45ºC for 48 h and then, ground, sieved at 2-mm mesh, and analysed. The 

chemical attributes determined were pH in water, exchangeable bases (Ca2+, Mg2+ and K+), soluble aluminium (Al3+), 

potential acidity (H+ + Al3+), and SOM, according to the methodology described by Camargo et al. (2009). We 

calculated the sum of bases (SB, mmolc kg-1), CEC (CEC, mmolc kg-1), percentage of base saturation (Bsat, %), and 

percentage of Al saturation (Alsat, %). The clay and sand contents were determined using the densimeter method and 

sieving, respectively, as described in Camargo et al. (2009). For the soil spectral analysis, 2,701 out of 5,689 soil samples 

at layers A (1008 samples), B (820 samples), and C (873 samples) were placed on Petri dishes. The Fieldspec 3 sensor 

(Analytical Spectral Devices, Boulder, Colorado, USA) was used to obtain soil reflectance spectra in the spectral range 

of 350 – 2500 nm in the laboratory. The sensor, vertically positioned at 8 cm from the platform, spotted the energy 

reflected from two 50-W halogen lights with no-collimated beam to the target plane. The lights were positioned at 35 

cm from the platform at a zenith angle of 30º. Three measurements were carried out for each sample turning the Petri 

dishes 90º between the sensor reading intervals. A white plate was used as a white reference (100% reflectance). 

Afterwards, the average of all three readings, along with the white reference reflectance, was used to calculate the final 

reflectance factor for each sample. The magnetic susceptibility (χ, 10-8 m3 kg-1) was analysed using 540 out of 5,689 soil 

samples at layers A (350 samples) and C (190 samples). This soil property was determined in 10 g of air-dried fine soil 

and the clay fraction using the Bartington MS2 equipment coupled to a Bartington MS2B sensor at low and high 

frequencies of 0.47 kHz and 4.7 kHz, respectively, according to the methodology described by Dearing (1999).  
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2.2.3. Modelling approach 

2.2.3.1. Environmental variables 

The DEM was retrieved from the Shuttle Radar Topography Mission (USGS, 2018) and used to derive relief 

variables, such as aspect, LS factor, plan and profile curvatures, slope, valley depth, and the topographic wetness index 

in QGIS (QGIS Development Team, 2020).  The Normalised Difference Vegetation Index (NDVI) and the Enhanced 

Vegetation Index (EVI) were calculated by averaging 35-year Landsat images (moist and dry seasons). The Drainage 

Density was calculated (total length channels, m / basin area, m2) in the ArcGIS version 10.3 by vectorising all channels 

of digital aerial photographs from the Geographic and Cartographic Institute of Sao Paulo (IGC, 2018) in 

PHOTOMOD Lite 6.3 software. The gypsic, natric, calcareous, carbonate, ferrous iron, ferrous, ferrous oxide, and 

clay (hydroxides) indices, which typify the soil chemical composition, were calculated using the bands of the Synthetic 

Soil Image according to the formulas described by Regmi and Rasmussen (2018). The munsell colour was acquired 

from the study of Silvero et al. (2021). The soil relative frequency was created based on how many times each pixel of 

35-year Landsat collection was classified as a bare soil surface. Geology and geomorphology were acquired from 

Bonfatti et al. (2020). We summarised the environmental variables selected to predict the soil spectra and attributes at 

surface and subsurface in Table 3. 
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Table 3. Characteristics of the environmental variables selected as predictors of the soil attributes in the digital soil 

mapping procedure. 

Ancillary variables Unit 
Resolution 

(m) 
Type of 
variable 

Characteristics Reference 

Synthetic Soil 
Image’s bands 

Spectral 
reflectance 

30 Continuous Bare soil areas (Demattê et al., 
2018) 

Munsell colour Dimensionless 30 Factor Soil colour (Silvero et al., 
2021) 

NDVI Dimensionless 30 Continuous Vegetation  (Rouse et al., 
1973) 

EVI Dimensionless 30 Continuous Vegetation (Huete, 2004) 
Soil Relative 
Frequency 

% 30 Continuous Human activity (Demattê et al., 
2018) 

DEM from SRTM m 30 Continuous Relief (USGS, 2018) 
Aspect from DEM degree 30 Continuous Downhill slope faces 

(Conrad et al., 
2015) 

LS Factor from 
DEM 

Dimensionless 30 Continuous Component of the Revised 
Universal Soil Loss equation 

Plan Curvature from 
DEM 

degree m-1 30 Continuous (-) concave/ (+) convex 
contours 

Profile Curvature 
from DEM 

degree m-1 30 Continuous (-) convex/ (+) concave 
contours 

Slope from DEM % 30 Continuous Relief inclination 
Valley Depth from 

DEM 
m 30 Continuous Vertical distance to the base 

level of the channel network 
TWI from DEM Dimensionless 30 Continuous Soil water content 
Drainage Density m-1 30 Continuous Drainage network  

Gypsic index Dimensionless 30 Continuous Gypsiferous soil (Regmi and 
Rasmussen, 

2018) 
Natric index Dimensionless 30 Continuous Sodium rich soil  

Calcareous index Dimensionless 30 Continuous Discriminate calcareous 
sediments from igneous rocks 

or sediments 

 

Carbonate radicals 
index 

Dimensionless 30 Continuous Carbonate radicals  

Ferrous Fe index Dimensionless 30 Continuous Ferrous Fe  
Ferrous index Dimensionless 30 Continuous Ferrous  
Ferrous oxides 

index 
Dimensionless 30 Continuous Ferrous oxide  

Clay and hydroxides 
index 

Dimensionless 30 Continuous Clay and hydroxides  

Geology Dimensionless 30 Factor Parent material (Bonfatti et al., 
2020) 

Geomorphology Dimensionless 30 Factor Hillslope position  

 

2.2.3.2. Algorithms 

The Bayesian Regularised Neural Network,  Generalised Linear Model, Random Forest and Cubist models 

were performed using the “caret” R package (Kuhn, 2008), which required the “brnn” (Gianola et al., 2011), “glm” 

(Venables and Ripley, 2002), “ranger” (Breiman, 2001), and “Cubist” (Quinlan and Ross, 1993) R packages, 

respectively. The Regression Kriging of residuals of the best-fitted model was performed using the “automap” R 

package (Gianola et al., 2011). The model parameters are presented in Table S1. The algorithms were performed using 

the R programming (R Development Core Team, 2020). 
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2.2.3.3. Synthetic Soil Image and Bare Soil Image at three depths 

The soil spectral pattern is represented by the Synthetic Soil Image (SYSI) as part of the environmental 

variables to predict soil attributes; however, we predicted a bare soil spectral image at layers A, B, and C using the 

laboratory soil spectrum (LSS) in the visible, near, and shortwave infrared (Vis-NIR-SWIR; 350 – 2500 nm) region. 

The SYSI is a mosaic of bare soil surface retrieved from Landsat images during the dry season (July to September) 

between 1984 and 2018. The dry-season reduced cloud coverage, providing a higher absolute frequency of bare soil 

areas also reducing moisture influence on the spectra. The entire method to generate the SYSI is described at Demattê 

et al. (2018) and represents bare soil areas at the soil surface (layer A). To create a bare soil image at the three different 

depths, we used the SYSI bands as predictors and the LSS as a response variable. The soil spectra data measured were 

convolved to Landsat spectra bands (excluding the thermal band), as described in Ben-Dor and Banin (1995), and 

Demattê et al. (2018). Thus, laboratory soil spectra for band 1 (B1, blue, 0.45 – 0.52 µm), band 2 (B2, green, 0.52 – 

0.60 µm), band 3 (B3, red, 0.63 – 0.69 µm), band 4 (B4, near-infrared, 0.76 – 0.90 µm), band 5 (B5, shortwave infrared 

1, 1.55 – 1.75 µm), and band 7 (B7, shortwave infrared 2, 2.08 – 2.35 µm) were the spectral average of the wavelength 

allocated to each Landsat spectral band, respectively. Based on the DSM principles, the SYSI bands were the 

environmental variables applied to the response variable for each spectral band, using the machine learning algorithms 

(MLAs) and the Regression Kriging of residuals of the best model resulted from four MLAs. Mendes et al. (2019) 

named this process of predicting soil spectra at depth as the Spectral Pedotransfer Function (SPEDO). 

 

2.2.3.4. Model calibration and evaluation 

The soil chemical, spectral, and physical data were split into internal calibration, which is used to calibrate the 

models, and external validation sets, used to assess the models performance (Table 2). The calibration data for model 

fitting were set by using a fivefold repeated cross-validation method, executed five times, to avoid the effects of 

environmental variables autocorrelation, as described by Meyer et al. (2019). The model tuning parameters were 

selected based on the lowest root mean squared error (RMSE) and highest adjusted coefficient of determination (R2
adj) 

in the “caret” R package. The metrics of model assessment used in this study were the RMSE, R2
adj, concordance 

correlation coefficient (CCC), and bias. Each parameter explains the relationship between the predicted and observed 

values in distinct ways. The RMSE (Eq. (1)) explains the proximity of the predicted values to the real values by using 

the square root of squares of the residuals, which sum up the degree of residuals. The R2
adj verifies the variance 

proportion of covariates that affect the response variable by the approximated line of regression that the model explains 

(Eq. (2)). This metric allows digital soil mappers to compare model performances between distinct target variables. 

The Bias is calculated as the distance from the average prediction and observed values (Eq. (3)). This other validation 

metric fulfils one of the limitations of R2
adj, showing the model bias. The last validation metric of model performance 

is Lin’s CCC (Eq. (4)), which assesses the agreement between the predicted and observed values and could be a more 

appropriate metric than R2
adj.  
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Where n, 𝑦𝑖 , and 𝑦̂𝑖 are sample size, observed values, and predicted values of the response variable, respectively. 𝑆𝑆𝑟𝑒𝑠 , 

𝑆𝑆𝑡𝑜𝑡, 𝑑𝑓𝑒 , and 𝑑𝑓𝑡 are respectively the sum of squares of the regression residual, the sum of the square of the total 

residual, the degrees of freedom of the estimated population error variance, and the degree of freedom of the estimated 

population variance of the dependent variable. 𝜎𝑝𝑟𝑒𝑑
2  and 𝜎𝑜𝑏𝑠

2  are the prediction and observation variances, 

respectively, 𝜇𝑝𝑟𝑒𝑑 and 𝜇𝑜𝑏𝑠 are the means of the predicted and observed values.  𝜌 is the correlation coefficient 

between the predicted and observed values. 

 

2.3. RESULTS AND DISCUSSION 

2.3.1. Integrating Proximal and Remote Sensing data 

 The performance results of the models for layers A, B, and C are presented in Fig. 2. For layer A (Fig. 2a and 

Table S2), the BRNN and Cubist algorithms had the best overall performance compared with GLM, RF, and RK of 

BRNN residuals for all spectral bands. The RF showed the worst performance with higher RMSE and Bias, lower R2
adj 

and CCC. For layer B (Fig. 2b and Table S3), the GLM presented the best metrics of model assessment than any other 

models. The RF did not fit well the model for layer A. For layer C (Fig. 2c and Table S4), the model efficiency in all 

algorithms was rather similar, except for the RK of the GLM residuals. This shows that any of the models could be 

applied to predict soil spectra in layer C, where sampling density was 0.27 samples/km2. Mendes et al. (2019) found 

sampling density of 0.55 samples/km2 mapping soil spectra using the Multiple Linear Regression and Geographically 

Weighted Regression (GWR). These authors obtained the best result using GWR with R2
adj and RMSE of 0.62 and 

0.02, 0.72 and 0.03, 0.69 and 0.04, 0.69 and 0.05, 0.69 and 0.11, 0.67 and 0.05 for bands 1, 2, 3, 4, 5, and 7, respectively. 

Sampling densities were twofold the densities found in our study. We achieved similar performance of the models 

using MLAs (i.e. Cubist and RF) for bands 1, 2, 3, 4, 5, and 7 with R2
adj and RMSE of 0.22 and 0.04, 0.19 and 0.07, 

0.16 and 0.08, 0.20 and 0.10, 0.19 and 0.14, 0.22 and 0.10, respectively. 
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Fig. 2. Model evaluation at 0 – 20 (a), 40 – 60 (b) and 80 – 100 (c) cm depth for the predicted reflectance spectra in the Vis-NIR-SWIR based on observed laboratory convolved 
spectra. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; RF, random forest; RK, regression kriging of the residuals. 
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The mean spectral curve feature with 5% of a confidence interval for the three layers and six bands (Fig. 3) 

showed that BSSI had a similar reflectance factor to LSS. The spectral features from LSS, BSSI, and SYSI were 

qualitatively analogous; however, their spectral reflectance differed. The spectral curve of BSSI in layer A (Fig. 3a) 

followed the same pattern of the convolved spectra obtained in the laboratory. This tendency continued in layers B 

(Fig. 3b) and C (Fig. 3c). We highlight that there is limited evidence on subsurface reflectance prediction from surface 

spectra (Mendes et al., 2019). 

 

Fig. 3. Interval of confidence at 95% for the best model, laboratory convolved spectra and original SYSI in the layer 
A at 0 – 20 cm depth (a), layer B at 40 – 60 cm depth (b), and layer C at 80 – 100 cm depth (c) based on the mean 
values for each spectral band. 

 

2.3.2. Soil dataset  

 Nine soil attributes and one soil property were analysed and mapped. The descriptive statistics of these soil 

components are shown in Fig. 4 (Tables S5 and S6). Clay, sand, SOM, pH in water, and Bsat had skewness close to 

zero, meaning that data is almost symmetrically or normally distributed in layer A. Al3+ was strongly right skewed or 

unimodal right, while SB, CEC, Alsat were right skewed. In layer B, SOM, Al3+, SB, CEC and Bsat were not normally 

distributed. In layer C, SOM, Al3+, SB, and CEC were right skewed, meaning that they were not normally distributed. 

Normal distribution is an important characteristic that needs evaluation before modelling because the response variable 

could be better fitted, if normally distributed (Malone et al., 2013). Another significant statistical measure is the 

coefficient of variation (CV), which provides information on the dispersion frequency of the target variable. The 

relationship between accuracy of regression-kriging models and CV were well investigated by Keskin and Grunwald 

(2018). The authors highlighted that a higher CV means lower model accuracy. Soil attributes in the three layers 

presented CV up to 6%, meaning low variability. The study of Silvero et al. (2021) corroborates this finding. 
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Fig. 4. Descriptive statistics of the soil attributes and property analysed in the study area at 0 – 20, 40 – 60 and 80 – 100 cm depth. OM, Organic Matter; Al3+, soluble Al; SB, sum of 
bases; CEC, Cation Exchange Capacity; AS, Aluminium Saturation; BS, Base Saturation; χ, Magnetic Susceptibility. 
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Moreover, soil attributes reasonably represented the characteristics of the study site, which has very clayey to 

sandy soils (Silvero et al., 2021). Magnetic susceptibility (χ) at soil surface showed readings from 2.1 to 3,689 with a 

CV, mean value, and standard deviation of 2.32%, 239, and 555.9, respectively. Studies carried out using samples from 

soil surface in Brazil presented χ values varying from 48 to 9,670 and higher CV values compared to our data (Godinho 

Silva et al., 2016; Silvero et al., 2019; Teixeira et al., 2018). In layer C, χ had a CV, mean value, and standard deviation 

of 2.53%, 164.3, and 416.4, respectively. The diversity of the parent material probably explains the high χ variability. 

For instance, sandstones are rich in quartz and present low χ value, while basalts are rich in ferrimagnetic minerals and 

show high χ value. Basic (e.g. amphibolite, andesite, basalt, olivine-feldspar-basalt, charnockite, diabase, dolerite, 

gabbro, gneiss phomolite), and ultrabasic (e.g. gabbro, phonolite and serpentinite) igneous rocks exhibit median χ 

values around 1,000 or higher (Preetz et al., 2008). Nevertheless, the median χ values < 50 indicate soils derived from 

shales, clay-stones, phyllites, and mainly sandstones. Detection occurs because of the presence of magnetite in soils, as  

magnetite is weathering-resistant and thus its interference on susceptibility is constant or even increases caused by 

residual fortification (Friedrich et al., 1992). Furthermore, the χ data presented low variability and were slightly 

unimodal right in both soil layers.  

The initial relationship between the χ values (Figs. S2 and S3) and soil attributes (Figs. S4, S5, and S6) and 

environmental variables was measured by the Pearson’s correlation index. The χ values and soil physical attributes 

presented a satisfactory correlation with the environmental covariates, positively and negatively, in all three layers. 

Conversely, soil chemical attributes presented a low correlation with environmental variables.   

 

2.3.3. Soil attributes prediction 

The model assessment (e.g. R2
adj and CCC) for soil attributes and χ in all three layers are shown in Figs. 5 and 

6. In layer A, the best fitted-model used SYSI as the environmental variable and the Cubist algorithm for CEC, pH, 

and χ, and the RF algorithm for Alsat, Bsat, SOM, sand, and SB (Figs. 5a and 6a). The BSSI bands only contributed for 

a better prediction of Al3+ and clay by applying the Cubist and RF algorithms, respectively (Figs. 5b and 6b). In layer 

B, the Cubist and RF algorithms were the most efficient models. The SYSI bands improved predictions of Alsat, Bsat, 

CEC, clay, pH, sand, and SB, whereas the BSSI bands increased the model performance for Al3+ and SOM. As 

explained in the methodology, there was no available data for χ in this soil layer. In layer C, the RF and Cubist 

algorithms presented the best-fit model for soil attributes and χ, similar to observations for layers A and B. The BSSI 

bands improved the model performance to predict all soil attributes, except for CEC and χ. We do not recommend 

the GLM algorithm for predicting soil attributes and χ, because this algorithm displayed the worst performance in our 

study. Residuals of regression kriging (RK) of the best models presented similar metrics of the best model in predicting 

soil attributes and χ in all three layers (Fig. 7). 
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Fig. 5. Model evaluation of soil attributes and property predicted using the Synthetic Soil Image (a) and the Best 
Synthetic Soil Image (b) as an environmental variable accessed by the adjusted correlation index. Black arrow indicates 
the model that the residuals were used in the Regression Kriging. GLM, Generalised Linear Model; BRNN, Bayesian 
Regularised Neural Network; RF, Random Forest. 
 

 Further information on the metrics of model performance for soil attributes and χ are in the supplementary 

materials (Tables S7 – S16). Most studies on the mapping of soil physical attributes in different soil layers have reported 

a decreasing performance at increasing depths (Table 1). Despite the use of a variety of models or improvements of 

the quality of environmental variables (e.g. Digital Terrain Model) or sampling density, most studies have not reached 

reasonable improvements in the predictive power of soil properties at subsurface, which could be attributed to the 

lack of environmental variables that represent soil distribution and patterns at lower depths. Since the creation of SYSI 

(Demattê et al., 2018), some studies have proven its feasibility and great contribution to predicting clay, sand, and SOM 
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contents at 0 – 20 cm depth (Fongaro et al., 2018; Gallo et al., 2018). Recently, Mendes et al. (2019) convolved the 

laboratory spectra to satellite bands at 80 – 100 cm depth and used this information as a target variable by DSM 

framework with the SYSI bands as environmental variables predicting the subsurface soil spectra of an area covering 

478.82 km2. Afterwards, the bands obtained were used as predictors to map clay and other soil attributes, improving 

subsurface prediction. Our findings corroborate these results, as the models at lower depths had a better performance 

than the ones in the upper layers. 

 

 

Fig.6. Model evaluation of soil attributes and property predicted using the Synthetic Soil Image (a) and the Best 
Synthetic Soil Image (b) as an environmental variable accessed by the Lin’s concordance correlation coefficient. Black 
arrow indicates the model that the residuals were used in the Regression Kriging. GLM, Generalised Linear Model; 
BRNN, Bayesian Regularised Neural Network; RF, Random Forest. 
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The integration between PS and RS allowed to overcome issues, such as sampling density and detailed 

environmental variables, reducing costs and time to process data. Even though our sampling density was considered 

rather lower to predict soil chemical attributes, the models fitted well the predictions (Figs. 5 and 6). It is a consensus 

that soil chemical attributes are better mapped by increasing sampling density because of their dynamics in the soil 

matrix, as reported in the literature (Table 1). This trend remained for all chemical attributes mapped in our study; 

thus, as depth increased, the predictive power decreased. The Al3+ content is largely explored in plant nutrition because 

some plants are responsive to circa 20% of the effective CEC filled by Al (Buol et al., 2011). Thus, similar to other 

chemical attributes have for agricultural management, Al3+ should receive the same relevance to spatialize and locate 

sites for planting some crops.  

 

 

Fig. 7. Model evaluation of the Regression Kriging of the residuals of the best models for soil attributes and property 
predicted accessed by the adjusted correlation index (a) and the Lin’s concordance correlation coefficient (b). 
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Studies mapping χ have used only the geostatistical framework (de Souza Bahia et al., 2017; Ramos et al., 

2017; Siqueira et al., 2014; Teixeira et al., 2018). Siqueira et al. (2014) studied the minimal sampling density necessary 

to characterise Oxisols attributes (e.g. magnetic susceptibility) in São Paulo State and highlighted that density should 

be less than one sample per 7 ha to avoid the loss of χ spatial variability. Thus, this technique works well in small areas 

or when sampling has a volume large enough to meet the minimal density. Our findings proved that the use of residuals 

of MLAs and RK allows to overcome this limitation, even at lower sample density.  

 

2.3.4. Interpreting the predicted maps of soil attributes and magnetic susceptibility 

We selected three sites in the study area to discuss the spatial variability, vertically and horizontally, of soil 

attributes (Fig. 8) and χ (Fig. 9). Site 2 (Fig. 9) was selected to explain both soil attributes and χ, as it shows the diversity 

of the study area and highlights that traditional soil surveys (Oliveira and Prado, 1989) were not capable of capturing 

some important soil patterns along depth. The soil attributes selected were clay, SOM, pH, CEC, and Bsat because of 

their significant role in soil genesis and fertility. Site 2 has different parent materials, such as basalt, sandstone, sandy 

siltstone, and siltstone. Basaltic areas generate clayey soils (Fig. 8a) and sandy-to-medium-texture soils in sandstone 

and siltstones areas. Ferromagnesian minerals tend to form clayey, reddish colour, and base-rich soils with high χ (Fig. 

9). Sandstones are normally dominated by quartz and coarse-to-sandy residues (Schaetzl and Anderson, 2005). In layer 

B, there is a clear increase of clay contents, probably forming a textural gradient. This gradient results from lessivage 

and clay eluviation in kaolinitic soils (Buol et al., 2011). As the depth increased, the clay content decreased in some 

parts in layer C. The SOM showed a strong and positive correlation with soil texture (Figs. 8a and 8b), while clayey 

soils have high SOM contents and vice-versa. This pattern is common in tropical environments and well-described in 

Lepsch et al. (1994). Furthermore, the SOM content of most soils decreases as the depth increases (Detwiler, 1986), 

corroborating our findings. Conversely, in the clay content patterns, the soil pH in tropical environments is generally 

acidic in deeper (layer C) than in upper layers (Fig. 8c). The physical weathering of mineral rocks into primary minerals 

increases the amount of acidic pH from the lower to upper layers, which is in agreement with our findings.  
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Fig. 8. Relationship of the predicted (a) clay, (b) organic matter, (c) pH in water, (d) cation exchange capacity, and (e) 
base saturation contents with geology, traditional soil survey (scale of 1: 100,000), and digital terrain model (DTM) at 
three different soil layers. 
 

Moreover, the number of primary minerals, hydric regime, and relief in layer B could also explain the 

decreasing pH values, which increased soil acidity. The CEC is an indicator of low- and high-activity clay in soils. If 

CEC values are very low, it means low-activity clay in soils and vice-versa. As shown in Fig. 8d, there is a slight change 

in CEC values at increasing depths. Clay minerals, humic substances, Fe and Al oxides have a specific exchangeable 

surface and are thus responsible for CEC in tropical environments. These findings highlight soil-to-plant interaction 

where high values of CEC and Bsat indicate ideal soils for plant nutrition. Lepsch et al. (1994) analysed the relationship 

between carbon storage and other soil attributes in natural and cultivated areas in São Paulo State and underscored 

that Bsat values tend to increase at lower depths due to the downward movement of Ca with anions from fertilizers, 

such as sulphates (Fig. 8e). Although the authors reported no changes in pH in their study, Bsat values tended to 

increase, corroborating our results. Clayey soils retrieve more anions than sandy soils by the patterns observed between 

the Fig. 8a and 8e. The Bsat is used to differentiate some soil types in the Brazilian Classification System (Santos et al., 

2018), because Brazilian soils have few morphological features and low fertility, and Bsat indicates soil fertility and 

weathering levels (Buol et al., 2011). 

Analysing the magnetic susceptibility horizontally (Fig. 9), high values of χ are directly related to soils derived 

from ultrabasic and basic rocks. In site 1, it is possible to distinguish basaltic soils and other parent materials, such as 

sandstones (low χ values). In site 2, there is a huge transecting spot of soils derived from igneous rocks captured by 

the mapping of χ. In site 3, the mapping of χ reveals soils originated from mafic rocks in the west and east, and 

sedimentary rocks in the north and south of the selected area. The values of magnetic susceptibility decrease vertically 

with increasing soil depth. This trend has been reported in the literature (De Jong et al., 2000; Lu et al., 2019; Torrent 
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et al., 2010) due to magnetic susceptibility increase due to the burning of topsoil vegetation and high SOM 

concentration in upper soil layers. The SOM fermentation process provides electron donors to bacterial Fe reduction, 

transforming ferrihydrite into maghemite, which later turns into haematite (Barrn and Torrent, 2002; Maher, 1998; 

Torrent et al., 2010). 

 

 

Fig. 9. Satellite soil surface and the final predicted maps of the best machine learning algorithms performed using the 
Synthetic Soil Image’s and the Best Synthetic Soil Image’s bands for magnetic susceptibility at 0 – 20 and 80 – 100 cm 
depths in the study area. Sites 01, 02 and 03 display the spatial variability of the magnetic susceptibility at the two 
depths. 
 

Most Brazilian soils are Latosols and Argosols, virtually similar to Oxisols, as well as Ultisols and low-activity 

clay Alfisols of Soil Taxonomy. The latter have the textural B horizon (argillic and kandic horizons), according to Soil 

Survey Staff (2014), which is a diagnostic horizon and classifies the soils as Argosols (Santos et al., 2018). Fig. 10 shows 

how clay mapping at surface and subsurface could help identify the textural B horizon by calculating the ratio of clay 

in layers C and A. Values higher than 1.5, in general, characterise pixels with the argillic horizon. As this diagnostic 

horizon is a classifier for Typic Paleudalf and Ultisol, traditional soil survey was not capable of capturing a high detailed 

information on these soils. Therefore, we highlight that the DSM improves qualitatively and quantitatively soil surveys 

because it is capable of capturing unseen soil features in a detailed framework without further cost and environmental 

impacts.  
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Fig. 10. Traditional soil survey (scale of 1: 100,000) from Agronomic Institute of Campinas and calculated textural B 
horizon from the predicted clay maps from surface (0 – 20 cm) and subsurface (80 – 100 cm) with a soil profile 
collected in the site 02 identified in Fig. 9. 

 

2.4. CONCLUSION 

Integrating proximal and remote sensing allowed to overcome issues, such as sampling density and detailed 

environmental variables. These frameworks combined could reduce costs and time to process data.  Therefore, 

predicting soil spectra at 0 – 20, 40 – 60, and 80 – 100 cm depths using the DSM tools and the Synthetic Soil Image 

as environmental variables allowed creating variables that actually represent soil behaviour in deeper layers. For most 

soil attributes mapped in this study, the Best Synthetic Soil Image demonstrated original and highly valuable 

contribution to increase predictive model power at soil depth and the Synthetic Soil Image at upper layers. The models 

presented better predictive performance in deeper than in upper layers, possibly due to the scarcity of predictors that 

adequately describe soil subsurface variations of soil components, such as clay, sand, magnetic susceptibility, and soil 

organic matter. Nevertheless, despite improvements in the subsurface environmental variables, increasing sampling 

density of soil chemical attributes is necessary to improve their predictions at deeper layers.  

Our findings also helped to identify the best algorithms that could be easily accessed and performed to map 

the main soil attributes and χ. Random Forest and Cubist models are well-stated and were confirmed here as preferable 

algorithms for mapping soil chemical and physical attributes. The Bayesian Regularised Neural Network and 

Generalised Linear Model presented better and/or similar predictive power that Random Forest and Cubist for 

mapping soil spectra. We also recommend using a Generalised Linear Model to predict magnetic susceptibility, besides 

the Random Forest, and Cubist and hybrid models rather than the sole use of the stochastic framework. Integrating 

PS and RS helped to identify horizontally and vertically the main soil patterns, which traditional soil surveys were not 
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capable of capturing. Therefore, our findings evidenced the viability of using this integration with tacit knowledge from 

soil scientists. 
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APPENDIX A. SUPPLEMENTARY DATA 

Table S1. Tunning parameters of the machine learning methods applied for best synthetic soil image’s bands, magnetic susceptibility (χ), pH, clay, sand, organic matter, cation exchange 
capacity, sum of bases, exchangeable Al3+, aluminium saturation and base saturation. 

Target 
Main 

Source 
Depth 

Generalised Linear Model Cubist Bayesian Regularised Neural Network Random Forest 

RMSE R2 Committee Neighbours RMSE R2 Neurons RMSE R2 Mtry RMSE R2 

B1 SYSI 
0-20 0.03 0.24 10 0 0.03 0.26 3 0.03 0.27 2 0.03 0.20 
40-60 0.04 0.14 10 0 0.04 0.15 3 0.04 0.15 2 0.04 0.05 
80-100 0.05 0.23 1 0 0.05 0.24 3 0.05 0.25 2 0.05 0.12 

B2 SYSI 
0-20 0.05 0.22 10 0 0.05 0.22 3 0.05 0.24 2 0.05 0.18 
40-60 0.07 0.12 10 0 0.07 0.13 3 0.07 0.13 2 0.07 0.04 
80-100 0.07 0.23 20 0 0.07 0.25 3 0.07 0.27 2 0.08 0.12 

B3 SYSI 
0-20 0.06 0.19 20 0 0.06 0.18 2 0.06 0.20 2 0.06 0.13 
40-60 0.08 0.11 10 0 0.08 0.10 2 0.08 0.12 2 0.09 0.03 
80-100 0.09 0.19 20 0 0.09 0.21 3 0.09 0.21 2 0.10 0.11 

B4 SYSI 
0-20 0.08 0.22 20 0 0.08 0.22 3 0.08 0.23 2 0.08 0.17 
40-60 0.11 0.14 20 0 0.11 0.14 2 0.10 0.15 2 0.11 0.06 
80-100 0.11 0.24 10 0 0.11 0.26 2 0.11 0.25 2 0.12 0.16 

B5 SYSI 
0-20 0.13 0.24 20 0 0.12 0.25 3 0.12 0.25 2 0.13 0.20 
40-60 0.15 0.13 20 0 0.15 0.13 2 0.15 0.14 2 0.16 0.06 
80-100 0.15 0.25 20 0 0.15 0.27 3 0.15 0.27 2 0.16 0.19 

B7 SYSI 
0-20 0.11 0.22 20 0 0.11 0.23 3 0.11 0.23 2 0.12 0.18 
40-60 0.12 0.15 10 0 0.12 0.153 1 0.12 0.15 2 0.12 0.08 
80-100 0.11 0.25 20 0 0.11 0.26 3 0.11 0.25 2 0.11 0.21 

χlog 
SYSI 

0-20 0.98 0.68 20 0 0.88 0.74 1 0.92 0.71 16 0.89 0.73 
80-100 1.19 0.55 20 9 1.05 0.64 2 1.04 0.63 16 1.03 0.64 

BSSI 
0-20 0.98 0.68 10 5 0.89 0.73 2 0.90 0.73 16 0.87 0.74 

80-100 1.26 0.49 20 9 1.02 0.65 2 1.02 0.65 31 0.96 0.68 

pH 

SYSI 
0-20 1.23 0.01 10 0 1.23 0.04 3 1.23 0.01 2 1.20 0.05 
40-60 1.23 0.03 10 0 1.23 0.04 3 1.23 0.03 31 1.23 0.09 
80-100 1.23 0.00 10 9 1.23 0.03 2 1.23 0.00 16 1.23 0.06 

BSSI 
0-20 1.23 0.02 10 0 1.23 0.04 3 1.23 0.02 16 1.23 0.04 
40-60 1.23 0.03 10 0 1.23 0.03 3 1.23 0.03 31 1.23 0.07 
80-100 1.23 0.01 10 0 1.23 0.03 2 1.23 0.02 31 1.23 0.07 

Clay 

SYSI 
0-20 3.38 0.48 20 0 3.31 0.50 2 3.31 0.49 16 3.16 0.53 
40-60 141.77 0.35 10 9 136.55 0.40 3 140.03 0.36 16 134.55 0.41 
80-100 3.09 0.43 20 0 3.02 0.46 3 3.02 0.46 16 2.95 0.48 

BSSI 
0-20 3.46 0.45 20 0 3.31 0.49 3 3.31 0.48 31 3.16 0.52 
40-60 148.20 0.30 20 9 138.12 0.38 3 141.62 0.35 31 136.22 0.40 
80-100 2.95 0.48 10 9 2.88 0.51 3 2.95 0.48 16 2.81 0.52 

Sand 
SYSI 

0-20 192.70 0.38 20 0 184.11 0.44 3 189.01 0.41 16 183.91 0.44 
40-60 203.46 0.36 20 9 193.27 0.42 2 197.90 0.40 16 192.26 0.43 
80-100 193.11 0.41 20 0 187.24 0.44 3 188.66 0.43 31 184.53 0.46 

BSSI 
0-20 196.25 0.37 20 0 185.20 0.43 3 190.95 0.39 16 183.71 0.44 
40-60 214.00 0.30 20 9 197.67 0.40 3 203.05 0.36 16 193.81 0.42 
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80-100 191.46 0.42 20 9 182.80 0.47 3 189.40 0.43 31 179.45 0.49 

OM 

SYSI 
0-20 8.01 0.21 20 9 7.84 0.26 3 7.86 0.24 16 7.59 0.29 
40-60 3.55 0.14 20 9 3.23 0.25 3 3.38 0.18 16 3.23 0.26 
80-100 3.80 0.18 20 9 3.31 0.35 3 3.71 0.21 31 3.23 0.37 

BSSI 
0-20 8.29 0.18 20 9 7.75 0.27 3 7.97 0.22 16 7.57 0.30 
40-60 3.55 0.13 10 9 3.31 0.22 2 3.55 0.14 16 3.23 0.25 
80-100 3.71 0.21 20 9 3.23 0.36 3 3.63 0.25 31 3.23 0.35 

CEC 

SYSI 
0-20 3.02 0.30 20 0 2.88 0.35 3 2.95 0.34 16 2.88 0.37 
40-60 3.63 0.30 20 9 3.55 0.34 3 3.63 0.31 31 3.46 0.35 
80-100 4.26 0.26 20 9 3.89 0.36 3 4.17 0.30 16 3.80 0.37 

BSSI 
0-20 3.02 0.29 20 9 2.95 0.33 2 3.02 0.31 16 2.88 0.36 
40-60 3.71 0.27 20 9 3.55 0.33 2 3.63 0.31 16 3.55 0.33 
80-100 4.46 0.22 20 9 4.07 0.33 3 4.26 0.27 31 3.89 0.35 

SB 

SYSI 
0-20 4.89 0.26 10 9 4.78 0.29 3 4.78 0.28 31 4.67 0.31 
40-60 6.16 0.30 20 0 5.88 0.33 2 6.02 0.31 16 5.62 0.36 
80-100 7.08 0.16 20 0 6.60 0.23 3 6.76 0.20 31 6.16 0.29 

BSSI 
0-20 5.12 0.23 20 0 4.89 0.26 2 4.89 0.26 31 4.67 0.31 
40-60 6.30 0.28 20 9 5.88 0.33 2 6.02 0.30 31 5.62 0.36 
80-100 7.08 0.16 20 9 6.45 0.25 3 7.08 0.18 31 6.30 0.27 

Al 

SYSI 
0-20 9.77 0.05 20 9 9.54 0.09 2 9.54 0.06 16 8.91 0.12 
40-60 22.38 0.08 20 0 21.37 0.10 3 21.37 0.11 16 19.95 0.14 
80-100 20.89 0.12 20 0 20.89 0.14 3 20.89 0.14 16 19.05 0.18 

BSSI 
0-20 10.23 0.04 20 9 9.77 0.08 1 9.54 0.06 31 8.91 0.11 
40-60 22.38 0.08 20 0 21.87 0.10 3 21.87 0.10 2 20.41 0.12 
80-100 20.89 0.14 20 0 19.50 0.17 3 20.41 0.15 31 19.05 0.18 

AS 

SYSI 
0-20 21.37 0.02 20 0 20.89 0.06 2 20.89 0.03 31 18.62 0.09 
40-60 37.15 0.04 20 9 38.02 0.06 3 36.30 0.06 16 33.88 0.09 
80-100 28.22 0.05 20 9 27.68 0.10 3 28.09 0.06 31 26.95 0.12 

BSSI 
0-20 24.54 0.02 20 0 21.37 0.05 2 20.89 0.03 31 19.49 0.08 
40-60 36.30 0.05 20 9 38.02 0.06 1 36.30 0.04 16 34.67 0.07 
80-100 27.65 0.08 20 0 27.19 0.11 2 27.69 0.07 31 26.94 0.12 

BS 

SYSI 

0-20 19.39 0.07 10 0 19.46 0.07 2 19.29 0.08 16 19.04 0.10 

40-60 22.70 0.11 20 0 22.20 0.15 2 22.50 0.13 16 21.81 0.18 

80-100 22.88 0.02 10 0 23.12 0.02 1 22.77 0.02 16 22.16 0.07 

BSSI 

0-20 20.24 0.06 20 0 19.51 0.07 2 19.38 0.07 31 19.15 0.09 

40-60 22.80 0.11 20 0 22.33 0.14 2 22.47 0.13 16 22.08 0.15 

80-100 22.84 0.02 20 9 23.08 0.04 1 22.84 0.01 31 22.35 0.05 

Note. B1, B2, B3, B4, B5 and B7, band 1, 2, 3, 4, 5, and 7 of convolved laboratory soil spectrum (reflectance factor); χ log, magnetic susceptibility logarithm; pH, pH in water; clay, (g 
kg-1); sand, (g kg-1); OM, organic matter (g kg-1); CEC, cation exchange capacity (mmolc kg-1); SB, sum of bases (mmolc kg-1); Al, exchangeable Al3+ (mmolc kg-1); AS, aluminium 
saturation (%); BS, base saturation (%); SYSI, bands of Soil Synthetic Image; BSSI, bands of Best Synthetic Soil Image (B1, B2, B3, B4, B5 and B7); RMSE, Root Mean Square Error; 
R2

adj, Adjusted Correlation Index; CCC, Lin’s Concordance Correlation Coefficient. 
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Table S2. Model evaluation at 0 – 20 cm depth (layer A) for predicted reflectance spectra in the Vis-NIR-SWIR based 
on observed laboratory convolved spectra. Highlighted the selected models within each band to generate the best final 
predicted synthetic soil image. Original values of SYSI were also extracted with the validation points for comparing 
the model performance.  

 Parameters GLM Cubist BRNN Random Forest 
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Parameters BRNN SYSI 

Band 1 

RMSE 0.032 0.031 0.031 0.034 RMSE 0.034 0.035 

R2
adj 0.27 0.33 0.35 0.21 R2

adj 0.24 0.20 

CCC 0.42 0.47 0.46 0.38 CCC 0.43 0.33 

Bias 0.000 0.003 0.000 0.000 Bias 0.005 -0.008 

         

Band 2 

RMSE 0.048 0.047 0.047 0.051 RMSE 0.052 0.054 

R2
adj 0.24 0.27 0.28 0.18 R2

adj 0.21 0.19 

CCC 0.38 0.43 0.42 0.34 CCC 0.37 0.28 

Bias 0.000 -0.003 0.000 0.000 Bias 0.009 -0.020 

         

Band 3 

RMSE 0.059 0.059 0.057 0.061 RMSE 0.064 0.086 

R2
adj 0.19 0.20 0.24 0.13 R2

adj 0.14 0.14 

CCC 0.33 0.33 0.37 0.28 CCC 0.29 0.14 

Bias -0.001 -0.004 -0.001 -0.002 Bias 0.013 -0.061 

         

Band 4 

RMSE 0.078 0.075 0.076 0.084 RMSE 0.085 0.102 

R2
adj 0.26 0.31 0.31 0.16 R2

adj 0.19 0.21 

CCC 0.41 0.45 0.45 0.32 CCC 0.38 0.26 

Bias -0.001 -0.001 0.000 -0.004 Bias 0.014 -0.062 

         

Band 5 

RMSE 0.123 0.121 0.120 0.130 RMSE 0.131 0.169 

R2
adj 0.28 0.30 0.31 0.21 R2

adj 0.19 0.22 

CCC 0.44 0.45 0.47 0.39 CCC 0.44 0.25 

Bias -0.005 0.004 -0.006 -0.008 Bias 0.010 -0.110 

         

Band 7 

RMSE 0.113 0.110 0.109 0.118 RMSE 0.120 0.176 

R2
adj 0.28 0.31 0.33 0.21 R2

adj 0.20 0.21 

CCC 0.42 0.47 0.45 0.38 CCC 0.43 0.19 

Bias -0.006 0.000 -0.007 -0.009 Bias 0.008 -0.136 

Note. BRNN, Bayesian Regularised Neural Network; GLM, Generalised Linear Model; SYSI, Synthetic Soil Image. 
RMSE, Root Mean Square Error (Reflectance factor x 10000); R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S3. Model evaluation at 40 – 60 cm depth (layer B) for predicted reflectance spectra in the Vis-NIR-SWIR based 
on observed laboratory convolved spectra. Highlighted the selected models within each band to generate the best final 
predicted synthetic soil image. Original values of SYSI were also extracted with the validation points for comparing 
the model performance. 
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Parameters GLM SYSI 

Band 1 

RMSE 0.044 0.045 0.045 0.050 RMSE 0.045 0.049 

R2
adj 0.19 0.18 0.16 0.02 R2

adj 0.16 0.10 

CCC 0.28 0.28 0.25 0.11 CCC 0.31 0.18 

Bias -0.003 -0.009 -0.002 0.001 Bias -0.001 -0.014 

         

Band 2 

RMSE 0.071 0.073 0.071 0.078 RMSE 0.072 0.086 

R2
adj 0.17 0.15 0.17 0.02 R2

adj 0.14 0.08 

CCC 0.24 0.26 0.26 0.10 CCC 0.27 0.12 

Bias -0.006 -0.013 -0.005 -0.003 Bias -0.004 -0.043 

         

Band 3 

RMSE 0.088 0.088 0.088 0.095 RMSE 0.090 0.142 

R2
adj 0.15 0.15 0.15 0.02 R2

adj 0.10 0.08 

CCC 0.23 0.22 0.24 0.11 CCC 0.26 0.06 

Bias -0.008 -0.012 -0.008 -0.005 Bias -0.006 -0.110 

         

Band 4 

RMSE 0.108 0.108 0.108 0.117 RMSE 0.110 0.162 

R2
adj 0.18 0.17 0.17 0.05 R2

adj 0.14 0.12 

CCC 0.27 0.27 0.28 0.16 CCC 0.28 0.11 

Bias -0.013 -0.010 -0.012 -0.008 Bias -0.013 -0.118 

         

Band 5 

RMSE 0.148 0.150 0.150 0.162 RMSE 0.155 0.217 

R2
adj 0.18 0.17 0.17 0.06 R2

adj 0.11 0.11 

CCC 0.27 0.29 0.27 0.18 CCC 0.28 0.13 

Bias -0.021 -0.006 -0.021 -0.016 Bias -0.023 -0.154 

         

Band 7 

RMSE 0.124 0.125 0.126 0.133 RMSE 0.127 0.180 

R2
adj 0.18 0.18 0.16 0.08 R2

adj 0.14 0.13 

CCC 0.28 0.28 0.26 0.20 CCC 0.27 0.14 

Bias -0.019 -0.012 -0.019 -0.013 Bias -0.015 -0.127 

Note. BRNN, Bayesian Regularised Neural Network; GLM, Generalised Linear Model; SYSI, Synthetic Soil Image. 
RMSE, Root Mean Square Error (Reflectance factor x 10000); R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S4. Model evaluation at 80 – 100 cm depth (layer C) for predicted reflectance spectra in the Vis-NIR-SWIR 
based on observed laboratory convolved spectra. Highlighted the selected models within each band to generate the 
best final predicted synthetic soil image. Original values of SYSI were also extracted with the validation points for 
comparing the model performance. 
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Parameters GLM SYSI 

Band 1 

RMSE 0.042 0.041 0.043 0.043 RMSE 0.045 0.043 

R2
adj 0.21 0.22 0.21 0.18 R2

adj 0.20 0.16 

CCC 0.40 0.40 0.42 0.37 CCC 0.40 0.27 

Bias 0.004 -0.004 0.006 0.009 Bias -0.004 -0.009 

         

Band 2 

RMSE 0.071 0.070 0.071 0.071 RMSE 0.075 0.082 

R2
adj 0.18 0.19 0.20 0.19 R2

adj 0.17 0.13 

CCC 0.37 0.37 0.40 0.37 CCC 0.37 0.18 

Bias 0.005 -0.007 0.007 0.010 Bias -0.007 -0.038 

         

Band 3 

RMSE 0.090 0.089 0.090 0.090 RMSE 0.094 0.148 

R2
adj 0.16 0.16 0.16 0.16 R2

adj 0.14 0.07 

CCC 0.32 0.33 0.33 0.33 CCC 0.33 0.06 

Bias 0.004 -0.002 0.008 0.010 Bias -0.002 -0.115 

         

Band 4 

RMSE 0.109 0.108 0.108 0.107 RMSE 0.159 0.159 

R2
adj 0.18 0.19 0.19 0.20 R2

adj 0.04 0.11 

CCC 0.37 0.37 0.38 0.37 CCC 0.37 0.12 

Bias 0.003 -0.002 0.006 0.009 Bias 0.009 -0.112 

         

Band 5 

RMSE 0.150 0.153 0.150 0.148 RMSE 0.152 0.198 

R2
adj 0.18 0.18 0.18 0.19 R2

adj 0.19 0.14 

CCC 0.36 0.38 0.36 0.37 CCC 0.37 0.19 

Bias 0.005 0.011 0.007 0.010 Bias 0.010 -0.126 

         

Band 7 

RMSE 0.108 0.108 0.108 0.105 RMSE 0.108 0.146 

R2
adj 0.18 0.18 0.19 0.22 R2

adj 0.21 0.15 

CCC 0.36 0.36 0.38 0.41 CCC 0.41 0.21 

Bias 0.006 0.008 0.009 0.011 Bias 0.011 -0.096 

Note. BRNN, Bayesian Regularised Neural Network; GLM, Generalised Linear Model; SYSI, Synthetic Soil Image. 
RMSE, Root Mean Square Error (Reflectance factor x 10000); R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S5. Exploratory analysis of the soil attributes. 

0 – 20 cm 
pH Clay Sand OM Al3+ SB CEC AS BS 

- g kg-1 mmolc kg-1 % 

Minimum 4.00 7.00 0.00 0.00 0.00 1.30 6.00 0.00 0.00 
1st Quartile 5.14 118.00 308.10 8.10 0.10 23.00 46.19 0.10 47.00 

Median 5.50 207.00 514.00 13.00 1.00 39.60 68.80 2.00 62.05 
Mean 5.58 260.40 533.40 14.48 4.64 53.50 82.14 9.72 60.16 

3rd Quartile 6.00 374.00 772.00 20.50 3.90 68.00 102.00 11.00 75.72 
Maximum 7.72 765.00 963.00 61.00 913.00 461.90 481.90 99.00 100.00 

SD 0.60 174.44 245.35 9.03 23.75 46.66 52.55 16.52 20.06 
CV 0.11 0.67 0.46 0.62 5.11 0.87 0.64 1.69 0.33 

Skewness 0.33 0.81 0.04 0.68 31.85 2.22 1.92 2.42 -0.47 
Kurtosis 0.00 -0.32 -1.37 0.65 1202.91 7.73 6.08 6.00 -0.38 

Skewness log 0.88 -0.31 -1.29 -1.34 1.19 -0.17 0.04 0.55 -2.20 
Kurtosis log -0.16 -0.38 7.36 1.72 1.19 0.03 0.00 -0.96 9.54 

40 – 60 cm 
pH Clay Sand OM Al3+ SB CEC AS BS 

- g kg-1 mmolc kg-1 % 

Minimum 4.00 14.00 20.00 0.00 0.00 0.60 9.00 0.00 3.23 
1st Quartile 4.90 153.00 245.20 5.40 0.40 16.12 47.00 0.67 29.00 

Median 5.30 263.60 431.00 8.00 4.40 31.00 72.00 13.09 48.48 
Mean 5.38 301.20 472.70 9.28 13.56 48.35 92.58 23.43 49.10 

3rd Quartile 5.80 430.00 720.00 12.00 16.00 59.00 112.39 42.71 69.00 
Maximum 7.70 794.00 967.00 50.00 189.00 448.80 504.00 94.00 100.00 

SD 0.63 175.26 254.13 5.84 23.03 52.20 70.91 25.45 24.07 
CV 0.11 0.58 0.54 0.63 1.69 1.08 0.76 1.08 0.49 

Skewness 0.57 0.57 0.20 1.65 3.00 2.87 2.12 0.85 0.11 
Kurtosis 0.02 -0.69 -1.33 5.16 10.99 11.37 5.64 -0.48 -1.00 

Skewness log 0.34 -0.59 -0.66 -0.70 0.32 -0.05 0.15 -0.26 -0.99 
Kurtosis log -0.37 0.11 -0.03 1.94 -1.02 -0.06 -0.05 -1.48 0.75 

80 – 100 cm 
pH Clay Sand OM Al3+ SB CEC AS BS 

- g kg-1 mmolc kg-1 % 

Minimum 4.00 7.00 24.00 0.00 0.00 0.60 7.57 0.00 1.32 
1st Quartile 4.80 176.00 240.00 4.10 1.10 11.00 38.00 5.00 20.00 

Median 5.10 268.00 440.00 6.40 7.70 21.00 62.00 31.00 34.67 
Mean 5.24 331.70 471.50 8.12 18.80 33.39 88.63 34.06 39.02 

3rd Quartile 5.60 483.00 714.00 10.40 22.20 40.00 107.00 58.00 57.00 
Maximum 8.10 811.00 975.00 36.00 214.10 319.50 564.00 97.12 100.00 

SD 0.61 193.27 250.67 5.60 28.18 38.32 79.77 28.73 22.94 
CV 0.11 0.58 0.53 0.69 1.49 1.14 0.90 0.84 0.58 

Skewness 0.79 0.58 0.13 1.31 2.55 2.96 2.28 0.36 0.47 
Kurtosis 0.68 -0.85 -1.36 1.61 7.90 11.86 6.23 -1.15 -0.79 

Skewness log 0.52 -0.53 -0.75 -0.65 0.06 0.02 0.36 -0.81 -0.63 
Kurtosis log 0.07 0.48 0.12 1.48 -1.04 -0.05 -0.27 -0.80 -0.14 

Note. OM, Organic Matter; SB, the Sum of Bases; CEC, Cation Exchange Capacity; AS, Aluminium Saturation; BS, 
Base Saturation. SD, Standard Deviation; CV, Coefficient of Variation. 
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Table S6. Descriptive statistics of Magnetic Susceptibility (χ) at 0 – 20 cm and 80 – 100 cm depths. 

Parameters Unit 0 – 20 cm 80 – 100 cm 
Minimum 

10-8 m3 kg-1 

2.13 0.64 
1st Quartile 12.30 7.64 

Median 36.21 19.59 
Mean 239.05 164.36 

3rd Quartile 157.44 86.71 
Maximum 3689.40 3163.22 
Skewness 

Dimensionless 

3.75 4.36 
Kurtosis 15.11 22.64 

Skewness log 0.53 0.70 
Kurtosis log -0.53 -0.22 

SD 10-8 m3 kg-1 555.89 416.40 
CV % 2.32 2.53 

Note. SD, Standard Deviation; CV, Coefficient of Variation. 

 
Table S7. Model evaluation for predicted pH in water using SYSI’s and BSSI’s bands as covariates based on laboratory 
analyses. In bold the best fitted model.  
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 0.57 0.55 0.56 0.55   

R2
adj 0.01 0.08 0.01 0.06 RMSE 0.55 

CCC 0.04 0.11 0.03 0.14   

Bias -0.02 -0.02 -0.02 -0.01 R2
adj 0.07 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 0.64 0.58 0.57 0.56 CC 0.11 

R2
adj 0.00 0.02 0.00 0.04   

CCC 0.06 0.09 0.02 0.11 Bias -0.02 

Bias -0.17 -0.09 -0.01 -0.01   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 0.63 0.62 0.63 0.62   

R2
adj 0.01 0.05 0.03 0.04 RMSE 0.63 

CCC 0.05 0.09 0.09 0.10   

Bias 0.01 -0.04 0.02 0.02 R2
adj 0.03 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 0.75 0.68 0.63 0.62 CC 0.09 

R2
adj 0.00 0.00 0.02 0.04   

CCC -0.08 -0.04 0.04 0.09 Bias 0.03 

Bias 0.01 -0.08 0.02 0.03   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 0.60 0.61 0.60 0.58   

R2
adj 0.20 0.02 0.01 0.08 RMSE 0.59 

CCC 0.06 0.10 0.04 0.14   

Bias -0.02 -0.02 -0.02 -0.01 R2
adj 0.07 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 0.59 0.60 0.66 0.57 CC 0.34 

R2
adj 0.03 0.04 0.00 0.10   

CCC 0.08 0.08 0.02 0.17 Bias 0.02 

Bias -0.01 -0.07 -0.01 0.00   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S8. Model evaluation for predicted clay content (g kg-1) using SYSI’s and BSSI’s bands as covariates based on 
laboratory analyses. In bold the best fitted model. 
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 129.03 122.99 125.95 120.75   

R2
adj 0.52 0.54 0.53 0.57 RMSE 119.36 

CCC 0.65 0.71 0.69 0.71   

Bias -38.69 -25.67 -31.72 -32.49 R2
adj 0.55 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 127.76 123.53 296.05 119.33 CC 0.72 

R2
adj 0.51 0.52 0.04 0.58   

CCC 0.65 0.69 0.19 0.72 Bias -6.30 

Bias -25.45 -8.99 23.11 -30.12   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 138.25 135.05 136.38 129.74   

R2
adj 0.36 0.40 0.38 0.44 RMSE 130.57 

CCC 0.53 0.59 0.56 0.59   

Bias 9.70 7.61 11.71 12.86 R2
adj 0.43 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 180.84 161.94 177.36 131.30 CC 0.59 

R2
adj 0.18 0.31 0.23 0.45   

CCC 0.42 0.54 0.48 0.56 Bias 5.40 

Bias 23.02 40.36 10.53 16.26   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 138.98 130.99 134.81 130.72   

R2
adj 0.49 0.54 0.52 0.56 RMSE 116.37 

CCC 0.65 0.70 0.68 0.70   

Bias -29.26 -24.37 -30.79 -33.07 R2
adj 0.63 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 136.54 123.86 169.76 118.12 CC 0.77 

R2
adj 0.51 0.59 0.27 0.63   

CCC 0.68 0.76 0.49 0.76 Bias -5.72 

Bias -23.79 -16.52 -26.91 -27.64   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S9. Model evaluation for predicted sand content (g kg-1) using SYSI’s and BSSI’s bands as covariates based on 
laboratory analyses. In bold the best fitted model. 
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 188.32 180.51 188.84 177.58   

R2
adj 0.40 0.45 0.40 0.46 RMSE 179.79 

CCC 0.58 0.64 0.59 0.62   

Bias 10.45 17.01 7.92 3.22 R2
adj 0.45 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 198.55 193.21 306.24 178.30 CC 0.62 

R2
adj 0.34 0.38 0.10 0.46   

CCC 0.53 0.59 0.31 0.61 Bias -1.04 

Bias -18.51 -15.52 -8.91 -1.06   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 204.69 195.07 203.44 192.80   

R2
adj 0.35 0.41 0.36 0.43 RMSE 198.63 

CCC 0.51 0.58 0.55 0.57   

Bias -12.18 -13.21 -12.02 -9.31 R2
adj 0.39 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 268.20 236.75 325.49 194.89 CC 0.56 

R2
adj 0.12 0.25 0.06 0.42   

CCC 0.33 0.48 0.24 0.55 Bias -5.38 

Bias -54.16 -38.45 -22.80 -9.81   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 192.67 186.42 191.49 188.31   

R2
adj 0.38 0.41 0.39 0.40 RMSE 180.82 

CCC 0.56 0.59 0.58 0.57   

Bias -5.02 -2.40 -1.24 -1.66 R2
adj 0.45 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 192.89 181.87 221.74 178.55 CC 0.62 

R2
adj 0.38 0.45 0.19 0.46   

CCC 0.56 0.64 0.37 0.62 Bias -3.45 

Bias -7.40 -7.49 -6.02 -5.48   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S10. Model evaluation for predicted organic matter content (g kg-1) using SYSI’s and BSSI’s bands as covariates 
based on laboratory analyses. In bold the best fitted model. 
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 8.32 8.05 8.30 7.77   

R2
adj 0.25 0.30 0.26 0.35 RMSE 8.06 

CCC 0.38 0.49 0.39 0.48   

Bias -0.73 8.05 -0.81 -0.39 R2
adj 0.32 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 8.53 8.20 8.47 7.96 CC 0.45 

R2
adj 0.21 0.27 0.23 0.32   

CCC 0.35 0.46 0.39 0.44 Bias -1.48 

Bias -0.63 -0.21 -0.98 -0.15   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 4.73 4.68 4.71 4.62   

R2
adj 0.15 0.17 0.16 0.19 RMSE 4.56 

CCC 0.29 0.34 0.27 0.33   

Bias -0.77 -0.62 -0.71 -0.75 R2
adj 0.19 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 13.20 6.76 4.76 4.51 CC 0.35 

R2
adj 0.00 0.01 0.15 0.24   

CCC 0.02 0.14 0.26 0.34 Bias 0.15 

Bias 0.08 -0.75 -0.92 -0.84   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 4.63 3.98 4.57 4.13   

R2
adj 0.29 0.46 0.31 0.45 RMSE 3.97 

CCC 0.44 0.63 0.46 0.56   

Bias -1.17 -0.70 -1.19 -1.09 R2
adj 0.46 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 4.49 3.97 12.90 4.00 CC 0.63 

R2
adj 0.33 0.46 0.00 0.48   

CCC 0.50 0.63 -0.07 0.60 Bias -0.73 

Bias -1.03 -0.72 0.73 -1.05   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S11. Model evaluation for predicted cation exchange capacity (mmolc kg-1) using SYSI’s and BSSI’s bands as 
covariates based on laboratory analyses. In bold the best fitted model.  
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 39.53 36.12 37.17 36.06   

R2
adj 0.32 0.42 0.38 0.43 RMSE 36.12 

CCC 0.44 0.61 0.56 0.56   

Bias -8.04 -4.91 -6.03 -6.93 R2
adj 0.42 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 39.69 39.72 45.95 36.77 CC 0.61 

R2
adj 0.29 0.28 0.14 0.42   

CCC 0.43 0.44 0.35 0.52 Bias -4.91 

Bias -4.82 -2.98 -6.01 -7.19   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 62.28 58.74 61.14 60.64   

R2
adj 0.21 0.30 0.23 0.27 RMSE 58.74 

CCC 0.31 0.41 0.37 0.34   

Bias -11.99 -10.85 -10.24 -12.55 R2
adj 0.30 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 85.33 73.51 76.48 61.01 CC 0.41 

R2
adj 0.05 0.05 0.00 0.27   

CCC 0.20 0.21 0.01 0.32 Bias -10.85 

Bias 31.98 13.77 -17.61 -12.94   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 75.60 70.09 72.46 72.65   

R2
adj 0.18 0.29 0.23 0.25 RMSE 70.10 

CCC 0.25 0.39 0.33 0.30   

Bias -19.29 -16.55 -16.16 -17.35 R2
adj 0.29 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 75.78 72.22 105.53 72.98 CC 0.40 

R2
adj 0.18 0.24 0.08 0.26   

CCC 0.24 0.36 0.28 0.30 Bias -16.57 

Bias -19.77 -16.32 12.41 -19.10   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S12. Model evaluation for predicted sum of bases (mmolc kg-1) using SYSI’s and BSSI’s bands as covariates 
based on laboratory analyses. In bold the best fitted model. 
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 36.52 33.75 34.36 32.98   

R2
adj 0.27 0.36 0.34 0.42 RMSE 33.77 

CCC 0.37 0.55 0.49 0.51   

Bias -9.32 -6.45 -7.66 -8.62 R2
adj 0.33 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 36.32 34.16 44.23 33.94 CC 0.49 

R2
adj 0.27 0.34 0.04 0.39   

CCC 0.39 0.53 0.19 0.47 Bias 1.72 

Bias -8.67 -6.41 -7.28 -9.13   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 48.62 47.63 48.29 46.02   

R2
adj 0.24 0.29 0.24 0.37 RMSE 45.52 

CCC 0.28 0.32 0.30 0.37   

Bias -11.71 -12.27 -11.65 -12.37 R2
adj 0.29 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 57.93 63.75 54.93 46.99 CC 0.38 

R2
adj 0.07 0.12 0.03 0.31   

CCC 0.23 0.31 0.09 0.34 Bias -3.91 

Bias 19.86 22.96 -15.15 -11.43   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 42.43 41.27 41.79 40.55   

R2
adj 0.11 0.19 0.13 0.20 RMSE 40.33 

CCC 0.14 0.19 0.17 0.22   

Bias -12.55 -12.33 -11.78 -11.56 R2
adj 0.17 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 41.95 40.33 107.54 40.93 CC 0.25 

R2
adj 0.15 0.17 0.00 0.21   

CCC 0.16 0.25 0.03 0.20 Bias -10.20 

Bias -12.51 -10.21 17.74 -12.24   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S13. Model evaluation for predicted Al (mmolc kg-1) using SYSI’s and BSSI’s bands as covariates based on 
laboratory analyses. In bold the best fitted model.  
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 10.54 10.01 10.17 10.16   

R2
adj 0.10 0.13 0.20 0.12 RMSE 10.19 

CCC 0.04 0.17 0.12 0.12   

Bias -2.72 -2.25 -2.61 -2.32 R2
adj 0.08 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 10.45 10.17 10.56 10.36 CC 0.21 

R2
adj 0.02 0.08 0.07 0.08   

CCC 0.06 0.21 0.05 0.08 Bias -1.74 

Bias -1.76 -1.72 -2.80 -2.44   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 21.52 21.16 21.30 21.12   

R2
adj 0.06 0.12 0.05 0.11 RMSE 21.03 

CCC 0.05 0.08 0.08 0.09   

Bias -7.90 -7.72 -7.45 -7.76 R2
adj 0.03 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 51.49 23.70 21.93 21.03 CC 0.13 

R2
adj 0.00 0.00 0.00 0.13   

CCC -0.04 0.01 0.05 0.10 Bias -0.46 

Bias 2.81 -4.36 -4.95 -7.68   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 29.88 28.64 29.36 29.23   

R2
adj 0.13 0.18 0.14 0.18 RMSE 28.18 

CCC 0.12 0.18 0.16 0.16   

Bias -10.71 -9.23 -10.19 -10.57 R2
adj 0.20 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 29.34 28.16 30.64 28.92 CC 0.22 

R2
adj 0.16 0.20 0.06 0.24   

CCC 0.16 0.22 0.09 0.18 Bias -9.03 

Bias -10.51 -8.97 -11.13 -10.69   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S14. Model evaluation for predicted aluminium saturation (%) using SYSI’s and BSSI’s bands as covariates based 
on laboratory analyses. In bold the best fitted model. 
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 19.49 19.66 19.29 18.64   

R2
adj 0.02 0.08 0.08 0.13 RMSE 18.19 

CCC 0.02 0.04 0.04 0.10   

Bias -7.16 -8.06 -7.17 -6.54 R2
adj 0.03 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 19.41 19.51 19.38 18.81 CC 0.08 

R2
adj 0.00 0.04 0.03 0.10   

CCC 0.04 0.04 0.03 0.08 Bias -2.21 

Bias -5.15 -7.56 -7.04 -6.60   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 29.64 28.63 28.77 29.30   

R2
adj 0.03 0.05 0.08 0.08 RMSE 28.65 

CCC 0.04 0.11 0.09 0.07   

Bias -15.74 -13.88 -15.07 -15.86 R2
adj 0.05 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 48.23 33.19 29.66 29.47 CC 0.11 

R2
adj 0.01 0.00 0.04 0.09   

CCC -0.12 -0.03 0.05 0.07 Bias -13.91 

Bias -0.24 12.55 -15.92 -16.20   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 27.05 27.22 26.94 25.73   

R2
adj 0.04 0.06 0.06 0.13 RMSE 24.92 

CCC 0.11 0.19 0.16 0.23   

Bias 1.24 1.33 1.12 1.71 R2
adj 0.18 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 26.21 25.14 27.27 24.72 CC 0.31 

R2
adj 0.10 0.17 0.03 0.21   

CCC 0.19 0.30 0.09 0.30 Bias 0.70 

Bias 1.13 -1.08 -0.91 1.16   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S15. Model evaluation for predicted base saturation (%) using SYSI’s and BSSI’s bands as covariates based on 
laboratory analyses. In bold the best fitted model.  
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 20.05 19.99 19.71 19.19   

R2
adj 0.04 0.06 0.07 0.12 RMSE 19.57 

CCC 0.12 0.13 0.15 0.21   

Bias 0.60 3.04 0.71 0.45 R2
adj 0.09 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 21.62 20.51 22.38 19.40 CC 0.19 

R2
adj 0.02 0.04 0.00 0.10   

CCC 0.14 0.14 -0.01 0.18 Bias 1.14 

Bias -1.33 2.27 0.75 0.60   

 40 – 60 cm 40 – 60 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 23.30 22.68 22.85 22.11   

R2
adj 0.07 0.12 0.11 0.16 RMSE 22.66 

CCC 0.17 0.22 0.21 0.27   

Bias 0.96 0.00 1.12 0.93 R2
adj 0.13 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 30.97 30.13 25.11 22.61 CC 0.27 

R2
adj 0.00 0.00 0.02 0.12   

CCC 0.00 0.06 0.11 0.23 Bias 0.23 

Bias 10.77 9.74 4.31 1.17   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Random Forest 

SYSI 

RMSE 22.77 22.84 22.41 21.81   

R2
adj 0.01 0.03 0.04 0.09 RMSE 22.38 

CCC 0.06 0.08 0.08 0.17   

Bias -0.75 -4.38 -0.74 -0.45 R2
adj 0.05 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 22.47 22.85 22.86 21.79 CC 0.14 

R2
adj 0.03 0.04 0.00 0.09   

CCC 0.09 0.07 0.03 0.16 Bias 0.91 

Bias -0.63 -4.79 -0.56 -0.06   

Note. GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural Network; SYSI, Synthetic Soil Image; 
BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted Correlation Index; CCC, Lin’s 
Concordance Correlation Coefficient. 
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Table S16. Model evaluation for predicted magnetic susceptibility (χ, 10-8 m3 kg-1) using SYSI’s and BSSI’s bands as 
covariates based on laboratory analyses. In bold the best fitted model. 
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0 – 20 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 370.21 313.30 309.47 333.70   

R2
adj 0.14 0.29 0.38 0.23 RMSE 313.28 

CCC 0.38 0.53 0.33 0.48   

Bias -49.86 -34.83 -107.16 -33.60 R2
adj 0.29 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 835.06 405.40 348.63 329.22 CC 0.53 

R2
adj 0.03 0.13 0.28 0.22   

CCC 0.15 0.38 0.12 0.47 Bias -34.77 

Bias 116.21 -11.52 -127.63 -36.91   

 80 – 100 cm 80 – 100 cm 

 Parameters GLM Cubist BRNN Random Forest Parameters Cubist 

SYSI 

RMSE 244.84 213.18 301.83 231.40   

R2
adj 0.44 0.62 0.51 0.63 RMSE 212.84 

CCC 0.59 0.67 0.24 0.58   

Bias -56.74 -61.48 -113.35 -73.47 R2
adj 0.66 

BSSI 

Parameters GLM Cubist BRNN Random Forest   

RMSE 207.67 212.80 288.14 245.35 CC 0.65 

R2
adj 0.61 0.66 0.56 0.64   

CCC 0.70 0.65 0.31 0.52 Bias -60.18 

Bias -54.24 -60.11 -107.81 -84.09   

Note. Note. MS, Magnetic Susceptibility; GLM, Generalised Linear Model; BRNN, Bayesian Regularised Neural 
Network; SYSI, Synthetic Soil Image; BSSI, Best Synthetic Soil Image; RMSE, Root Mean Square Error; R2

adj, Adjusted 
Correlation Index; CCC, Lin’s Concordance Correlation Coefficient. 
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Fig. S1. Pearson’s correlation coefficient between the laboratory convolved soil spectra and the Synthetic Soil Image’s 
bands at 0 – 20 (a), 40 – 60 (B), and 80 – 100 cm depth (c). 

 



79 

 

 

Fig. S2. Pearson’s correlation coefficient between the magnetic susceptibility (χ) with the environmental covariates at 
0 – 20 cm depth. 
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Fig. S3. Pearson’s correlation coefficient between the magnetic susceptibility (χ) with the environmental covariates at 
80 – 100 cm depth. 
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Fig. S4. Pearson’s correlation coefficient between the soil attributes with the environmental covariates at 0 – 20 cm 
depth. 
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Fig. S5. Pearson’s correlation coefficient between the soil attributes with the environmental covariates at 40 – 60 cm 
depth. 
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Fig. S6. Pearson’s correlation coefficient between the soil attributes with the environmental covariates at 80 – 100 cm 
depth. 
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Fig. S7. Final predicted maps of the best machine learning algorithms performed using the Synthetic Soil Image’s and 
the Best Synthetic Soil Image’s bands for pH in water, clay, sand, and organic matter (OM) contents, exchangeable 
Al3+ (Al), sum of bases (SB), cation exchange capacity (CEC), aluminium saturation (AS), and base saturation (BS) at 
0 – 20 cm depths in the study area.  

 



85 

 

 

Fig. S8. Final predicted maps of the best machine learning algorithms performed using the Synthetic Soil Image’s and 
the Best Synthetic Soil Image’s bands for pH in water, clay, sand, and organic matter (OM) contents, exchangeable 
Al3+ (Al), sum of bases (SB), cation exchange capacity (CEC), aluminium saturation (AS), and base saturation (BS) at 
40 – 60 cm depths in the study area. 
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Fig. S9. Final predicted maps of the best machine learning algorithms performed using the Synthetic Soil Image’s and 
the Best Synthetic Soil Image’s bands for pH in water, clay, sand, and organic matter (OM) contents, exchangeable 
Al3+ (Al), sum of bases (SB), cation exchange capacity (CEC), aluminium saturation (AS), and base saturation (BS) at 
80 – 100 cm depths in the study area.  
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3. A NOVEL FRAMEWORK TO ESTIMATE SOIL MINERALOGY USING SOIL SPECTROSCOPY 

 

ABSTRACT 
Attempts on quantifying soil mineral consist of having an observation measured using traditional laboratory 

soil analysis. However, developments in interpreting and analysing the visible and near-infrared (VNIR) diffuse 
reflectance have allowed quantifying some soil minerals. In this study, we aimed to implement a novel framework using 
VNIR spectroscopy to quantify the main soil minerals and evaluated the application of digital soil mapping framework 
to spatialise those soil minerals.  The soil spectra database comprised 2,701 observations in the spectral range of 350 
– 2,500 nm at 0 – 20, 40 – 60, and 80 – 100 cm depths. The soil mineral bands in the VNIR spectra were selected 
based on the literature and in the strong maxima and minima of the second-derivative curves of the soil mineral 
standards using the Savitzky-Golay method. We proposed an estimative and conversion of the measurement unit of 
the soil minerals in weight percentages to g kg-1 based on clay content. For this procedure, we randomly selected 185 
samples out of 2701 available at 0 – 20 cm depth and sent to traditional laboratory analyses to calibrate the final 
estimative. Therefore, a constant factor was determined to estimate mineral content in soils. For the digital soil 
mapping procedure, it was used the 2701 samples which were split into 80% and 20% for calibration and validation of 
the models for each of the nine minerals. This study showed that our proposed novel framework using VNIR 
spectroscopy and clay content, to estimate soil minerals are promising. 
 

Keywords: remote sensing; digital soil mapping; clay minerals; near-infrared; proximal sensing 
 

3.1. INTRODUCTION 

Knowing mineral properties and their contributions to soil formation help to explain how plants growing 

mechanisms change over different soils, water filtration and partitioning behaviour over and under soils, and how 

potential toxic elements immobilisation and contamination work in soils (Churchman & Lowe, 2012). The soil 

minerals’ occurrence, alteration and formation take place by physical and/or chemical weathering processes of the 

bedrocks or coarse particles, which could be influenced by climate, relief and time (Jenny, 1941; Viscarra Rossel, 2011; 

Zhao et al., 2018). Those processes provide primary and secondary minerals in soils, namely clay minerals or 

phyllosilicates, which is an indicator of soil formation (Churchman & Lowe, 2012; Dokuchaev, 1883; Jenny, 1941; 

Omran, 2017). The clay minerals strongly contribute to the soil chemical and physical characteristics. As described by 

Kämpf et al. (2012), the Brazilian Oxisols have an average of 73% of phyllosilicates (kaolinite), 14.5% of iron and 

12.5% of aluminium oxides, and other phyllosilicates in the clay fraction. Winters and Simonson (1951), explaining the 

properties of subsoils for crop production and management. The authors pointed out that clay minerals are the main 

definers of soil characteristics at different depths. Essentially, most of the soils are constituted by phyllosilicates (i.e. 

kaolinite, montmorillonite, muscovite, illite, and chlorite), oxides (i.e. goethite, haematite/hematite, and gibbsite), and 

carbonate such as calcite (Churchman & Lowe, 2012; Weaver & Pollard, 1973; Winters & Simonson, 1951).  

The most frequently analytical method to characterise soil minerals is the X-ray Powder Diffraction (XRD). 

This method can provide fair information about mineral chemical composition quantitatively, but mainly qualitatively 

(Bish & Plötze, 2011) and has been extensively used in soil science (L. A. Camargo, Marques, & Pereira, 2013; Carvalho, 

Nunes, & Coelho, 2017; Scheinost, Chavernas, Barrón, & Torrent, 1998; Xu et al., 2013; Zhang et al., 2016). Despite 

some improvements in this method, quantitative analysis using XRD is a laborious and demanding process (Bish & 

Plötze, 2011; Fang et al., 2018). Another aspect is the chemical extraction treatments of the samples, which are 

destructive, not environmentally friendly analyse and can interfere with the interpretation of the real soil status. The 

XRD method does not apply to large scale soil investigations. 

The diffuse reflectance spectroscopy (i.e. visible and near-infrared, VNIR) uses wavelengths of 350-2500 nm 

to provide qualitative information and prediction of soil physical, chemical and biological characteristics (Ben-Dor & 

Banin, 1995; Brown, Shepherd, Walsh, Dewayne Mays, & Reinsch, 2006; José A M Demattê, Araújo, Fiorio, Fongaro, 
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& Nanni, 2015; Grunwald, Yu, & Xiong, 2018; Viscarra Rossel et al., 2016). The advantages of VNIR consist on a fast 

scan, cost-efficient (minimum area, portable sensors, field reading), and non-destructive (environmentally friendly 

source) methodology (Brown et al., 2006; Fang et al., 2018; Viscarra Rossel et al., 2016). This technique has been 

playing as a replacement for future laboratory soil analysis and XRD method. Brown et al. (2006), characterising soils 

using VNIR, predicted clay minerals such as montmorillonite and kaolinite finding close values to using XRD. 

Generally, the soil mineral is identified by the spectral features at a specific wavelength. For example, goethite and 

haematite are characterised around at 415 and 445 nm, and 535 and 580 nm, respectively (Scheinost et al., 1998). This 

identification is based on spectral morphology, which is the peak intensity, band surfaces, absorbance valley position 

and asymmetries. It allows to create indices to characterise the soil mineralogy such as those described in Madeira et 

al. (1997), and Terra et al. (2015).  

Attempts on quantifying soil mineral consist of having an observation measured using traditional laboratory 

soil analysis. However, developments in interpreting and analysing VNIR diffuse reflectance have allowed quantifying 

some soil minerals. Fernandes et al. (2004), quantifying iron oxides in Brazilian oxisols by VNIR spectroscopy, 

proposed regression equations that the inputs are the spectral reflectance at the specific band to quantify hematite and 

goethite. They found correlation values varying between 0.46 and 0.94. The procedure involves applying the second 

derivative of the Kubelka-Munk (K-M) function in the original spectra. This differential equation permits a hyperbolic 

solution, which shows strongly and wide superposed bands at different wavelengths likewise the raw spectra. However, 

obtaining the derivative of the K-M function curves enhance the resolution of sharply defined features. Examples of 

the application and limitations of the K-M function to estimate iron oxides and kaolinite can be found in Barron and 

Torrent (1986), Jepson (1988), and Scheinost et al. (1998). The second-derivative enhances slight concavities and 

convexities of the original spectrum and presents a much narrower bandwidth (Kosmas, Curi, Bryant, & Franzmeier, 

1984). The weak absorption on the K-M function curves become strong minima and maxima in the second-derivative 

curves. More recently, Mathian et al. (2018) proposed an approach to identify and quantify semi-quantitatively 

phyllosilicate minerals in laterite saprolites using VNIR diffuse reflectance second derivative method. It was found 

detection limit, in the existence of sizeable quantities of lateritic kaolinite, at values from 5-10 wt.% of the total clay 

content using the second derivative. The demand to derive detailed soil information has increased in the last decades 

to better manage land-use and sustainably increase food production. The Digital Soil Mapping (DSM) became the 

easiest and feasible approach to achieve such demand. The DSM basis was solemnised in the scorpan model by 

(McBratney, Mendonça Santos, & Minasny, 2003), and it considers the model of soil formation established by Jenny 

(1941). Mainly, the spatial prediction of soil is performed using only stochastic or deterministic models, or combining 

them with field observations, tacit knowledge and environmental and/or RS data in DSM. Furthermore, (Ma, Minasny, 

Malone, & Mcbratney, 2019) demonstrated the link between DSM and Pedology showing thriving applications of 

DSM in spatializing soil attributes, classes and profiles by integrating tacit knowledge and data-driven.  

In this study, we aimed to implement a novel framework using VNIR spectroscopy to quantify the main soil 

minerals like kaolinite, montmorillonite, muscovite, illite, chlorite, goethite, haematite/hematite, gibbsite and calcite. 

Besides, we evaluated the application of DSM framework in the estimated values of those soil minerals using as 

environmental covariates a Synthetic Soil Image (SYSI), which represents bare soil areas from 1985 to 2019 at the soil 

surface, a Best Synthetic Soil Image (i.e. predicted from SYSI at 80 – 100 cm depth), a 3D drainage network and the 

Digital Elevation Model through the Random Forest algorithm. 
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3.2. MATERIAL AND METHODS 

3.2.1. Study area 

The study area covers about 2,574 km2 and contains eight cities in the São Paulo State, Brazil. There are two 

defined seasons, dry winters and rainy summers, annual average temperature ranging from 20º to 22.5ºC, and annual 

rainfall between 1,200 and 1,400 mm. The common topographic characteristics are rolling uplands and undulating hills 

with altitudes ranging from 450 to 950 m. The main land-use is predominantly agriculture (e.g. sugarcane and 

pastureland) with no-till and till farming, which implicates to have soil revolved up to 60 cm depth along the year 

before planting some crops. Geologically, there are a great diversity of parent materials such as siltstones, tillites, 

varvites, conglomerates, sandstones, limestones, siltstones, flint, dolomite, siltite, pyrombetuminosite, shales, diabase 

and basalt. This great diversity of parent materials and variation of topography (plain to strong rolling) gave the region 

contrasting minerals. 

 

3.2.2. Soil spectra data 

The soil spectra database comprises 2,701 observations in the spectral range of 350 – 2,500 nm at 0 – 20, 40 

– 60, and 80 – 100 cm depths. These spectra were acquired using the Fieldspec 3 sensor (Analytical Spectral Devices, 

Boulder, Colorado, USA) with a spectral resolution of 1 nm in the laboratory. The soil samples were air-dried for 48h 

at 45ºC, sieved (< 2 mm), and placed on petri dishes. The sensor was positioned vertically at 8 cm from the platform, 

spotted the energy reflected from two 50-W halogen lamps with no-collimated beam to the petri dishes. These lamps 

were positioned 35 cm from the platform at a zenith angle of 30º and three measurements for each sample were 

performed turning the petri dishes 90º between the sensor’s reading intervals. A Spectralon was used as a white 

reference of ~100% reflectance for calibration. Afterwards, the average of the three readings and the white reference 

reflectance was used to calculate the final reflectance factor for each sample. Furthermore, the soil mineral spectra 

standard was retrieved from the USGS Spectral Library Version 7 (Kokaly et al., 2017). We selected the nine most 

common soil minerals (Table 1). 

 

 

 

 

 

Table 1. List of the soil mineral spectra retrieved from the USGS Spectral Library Version 7. 

Mineral Type Sample ID Spectrometer 

Goethite Hydroxide GDS134 FieldSpec3 standard resolution 
Haematite Oxide HS45.3 FieldSpec3 standard resolution 
Gibbsite Hydroxide HS423.2B FieldSpec3 standard resolution 
Kaolinite Phyllosilicate KGa-2 FieldSpec4 high-resolution next generation 

Montmorillonite Phyllosilicate SAz-1 FieldSpec4 high-resolution next generation 
Muscovite Phyllosilicate GDS113 FieldSpec4 high-resolution next generation 

Illite Phyllosilicate IMt-1.a FieldSpec4 high-resolution next generation 
Chlorite Phyllosilicate HS179.2B FieldSpec3 standard resolution 
Calcite Carbonate GDS304 FieldSpec3 standard resolution 
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3.2.3. Processing spectral data 

Qualitative evaluation of the raw spectra of most minerals presents sparse information on the optical features. 

One way to reveal this information is performing mathematical transformation and the most useful is given by the 

Kubelka-Munk theory (Barron & Torrent, 1986). The reflectance is stated as a function of the reflectance over a 

background and thickness of the layer, and the absorption and scattering are constants (Equation 1). The Kubelka-

Munk (K-M) function at any wavelength is: 

𝐾

𝑆
=

(1 − 𝑅∞)2

2𝑅∞

= 𝜃 (1) 

where 𝐾 and 𝑆 are respectively the absorption and scattering coefficients, the 𝜃 is the remission or K-M function, and 

the 𝑅∞ is the limiting reflectance.  

 

 This differential equation permits a hyperbolic solution, which shows strongly and wide superposed bands at 

different wavelengths, likewise the raw spectra. However, obtaining the derivative of the K-M function curves enhance 

the resolution of sharply defined features. Examples of the application of the K-M function to estimate iron oxides 

and kaolinite can be found in Barron and Torrent (1986), and Jepson (1988). The second-derivative enhances slight 

concavities and convexities of the original spectrum and presents a much narrower bandwidth (Kosmas et al., 1984). 

Yet, the weak absorption on the K-M function curves become strong minima and maxima in the second-derivative 

curves (Fig. 1). As spectra are acquired stepwise, a smoothing procedure must be performed for calculation of 

successive derivatives. One of the foremost algorithms of smoothing spectra was developed by Savitzky and Golay 

(Savitzky & Golay, 1964). This method consists of using a set of contiguous data points to fit a polynomial curve as 

described in Torrent and Barron (2015). As pointed out by Scheinost et al. (1998), and Silva et al. (2020), the second-

derivative of the K-M function curves has slightly smaller detection sensitivity than X-ray diffraction for quantifying 

minerals in soils.  
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Fig. 1. Exemplifying spectral processing of goethite. Original spectra (a), Kubelka-Munk (K-M) function (b), and 
second-derivative of the K-M function using the Savitzky-Golay method (c). 
 

3.2.4. Mineral quantification 

 The soil mineral bands in the Vis-NIR-SWIR spectra were selected based on the literature, but mainly in the 

strong maxima and minima of the second-derivative curves of the soil mineral standards (Table 2). The soil minerals 

selected in this study were: goethite (Gt), haematite/hematite (Hem), gibbsite (Gbs), kaolinite (Kln), montmorillonite 

(Mnt), muscovite (Ms), illite (Ill), chlorite (Chl), and calcite (Cal). The mineral abbreviations are in according to those 

recommended by the International Union of Geological Sciences (Siivola & Schmid, 2007). The amplitude of each 

mineral was calculated and then normalised. 

The mineral quantification was achieved by transforming the original spectra (Fig. 1a) into the K-M function 

curves (Fig. 1b) and calculating the second-derivative using the Savitzky-Golay method with a set of 35 points and a 

polynomial function of order 2 (Fig. 1c) in the R software (R Development Core Team, 2020) and the AlradSpectra 

(Dotto, Dalmolin, Caten, Gris, & Ruiz, 2019). This procedure identified the strong minima and maxima in the second-

derivative curve, matching the positions of the absorption bands in the original spectra (Fig. 1c). Table 2 shows the 

spectral bands selected to calculate the amplitude. Afterwards, the amplitude values were normalised by dividing by 

the maximum value per each value and multiplying by 100. Thus, the final results were measured as relative weight 

percentages (wt.%) for each mineral. 



100 

Table 2. Descriptive position of the spectral bands for identification and characterisation of soil minerals according to 
mineral purity of USGS Spectral Library Version 7 and the scientific literature. 

Type mineral Abbrev. 
Selected References 

 (λ𝑚𝑖𝑛/λ𝑚𝑎𝑥)  (λ𝑚𝑖𝑛/λ𝑚𝑎𝑥) 

Goethite Gt (422/450) (~415/~445) (Scheinost et al., 1998) 
Haematite Hem (535/575) (~535/~580) (Scheinost et al., 1998) 
Gibbsite Gbs (2265/2285) (2265/2295) (Clark et al., 1990) 
Kaolinite Kln (1415/2205) (1395/2165), (1406/2194) 

and (1415/2210) 
(Mathian et al., 2018) 

Montmorillonite Mnt (1415/1885), (1900/2190) 
and (2207/2236) 

(1400/1900), (1413/2207) 
and (2207/2236) 

(Mathian et al., 2018; 
Mulder et al., 2013) 

Muscovite Ms (1415/2190) and 
(2350/2406) 

(1412/2197) and 
(2350/2450) 

(Mathian et al., 2018) 

Illite Ill (2205/2280) (2200/2350) (Mulder et al., 2013) 
Chlorite Chl (2247/2296) and 

(2326/2360) 
(1407/2259) and 

(1415/2351) 
(Mathian et al., 2018) 

Calcite Cal (2342/2367) (2300/2350) (Mulder et al., 2013) 

Note: λ𝑚𝑖𝑛, the spectral band with minima value in nm;  λ𝑚𝑎𝑥 , the spectral band with maxima value in nm. 

 

3.2.5. Estimation and Assessment of the mineral quantification 

 We proposed an estimative and conversion of the measurement unit of the soil minerals in weight percentages 

to g kg-1 based on clay content. For this procedure, we randomly selected 185 samples out of 2701 available at 0 – 20 

cm depth and sent to laboratory analyses. It is of noteworthy we had not enough soil samples of all 2701 observations 

and financial resources for chemical analyses. That is why we selected only at the soil surface because it had more 

samples available and well-distributed in the study area. The samples were air-dried (48h at 45ºC) and sieved (< 2mm 

mesh). The clay content was determined using the densimeter method as described in Camargo et al. (2009). Whilst, 

the potassium (K) was analysed using the 3051A method (US EPA, 2007). This method is the microwave-assisted acid 

digestion (extraction or dissolution) of sediments, sludges, soils, and oils and an alternative to conventional heating 

with nitric acid (HNO3) or hydrochloric and nitric acid (HCl+HNO3) solutions.  

Frequency data in the literature shows that muscovites are more common in soils and contain between 9 and 

10% of total potassium (Weaver & Pollard, 1973). This percentage has been used to estimate the mica content in the 

clay fraction of the soil (Jackson, 1958; Kämpf et al., 2012). Such parameter was applied to estimate the mica content 

from the 185 samples (Equation 2). Then, we calculated the probable value of total clay content expected for each 

sample as in Equation 3. Thus, the factor that has to be multiplied by the clay content and the relative weight percentage 

of each mineral was defined (Equation 4) by selecting the median value (Fig. 2). This factor (W) could be used to 

calculate the estimate of the soil mineral content as long as the users follow the methodology proposed here. Further 

assessment of this factor was performed by using the regression equation estimated by Fernandes et al. (2004) to 

calculate the Hematite and Goethite contents based on soil spectra. Using the W factor of 0.3 (Fig. 2), we estimated 

the hematite and goethite contents (Equation 5). Then, we assessed the good of fitting (e.g. RMSE, R2, CCC, and Bias) 

considering as observed values the estimative values based on Fernandes et al. (2004) work and predicted values our 

estimative. 
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𝑀𝑠𝑔 𝑘𝑔−1 = 10 × 𝐾 (2) 

𝐸𝐶𝑙𝑎𝑦𝑔 𝑘𝑔−1  = (
𝑀𝑠𝑔 𝑘𝑔−1  

𝑀𝑠𝑤𝑡%

) × 100 (3) 

𝑊 = (
𝐸𝐶𝑙𝑎𝑦𝑔 𝑘𝑔−1  

𝐶𝑙𝑎𝑦𝑔 𝑘𝑔−1
) (4) 

𝑆𝑀𝑔 𝑘𝑔−1 = 𝑊(0.3) × 𝑆𝑀𝑤𝑡% (5) 

    Where 𝑀𝑠𝑔 𝑘𝑔−1  is the estimated muscovite, 𝐾 is the total potassium determined in the laboratory (1000g kg-1), 

𝐸𝐶𝑙𝑎𝑦𝑔 𝑘𝑔−1  is the estimated clay content, 𝑀𝑠𝑤𝑡% is the muscovite calculated from the soil spectra, 𝑊 is the estimated 

factor, 𝐶𝑙𝑎𝑦𝑔 𝑘𝑔−1  is the clay content determined in the laboratory, 𝑆𝑀 is the soil mineral of interest. 

 

 

Fig. 2. Histogram of the estimated factor for mineral quantification using Vis-NIR-SWIR spectra. Redline is the normal 
curve. 
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3.2.6. Digital Mapping 

 There was a total of 1008, 820, and 873 observations at 0 – 20, 40 – 60, and 80 – 100 cm depths. The 2701 

samples were split into 80% and 20% for calibration and validation of the models for each of the nine minerals, 

respectively. The internal validation for each mineral was performed by using the calibration dataset and the external 

validation, which simulates field observations, was the 20% left out of the model. The environmental variables as 

proxies of the soil mineral formation into the digital soil mapping framework (McBratney et al., 2003) were the digital 

elevation model (DEM) retrieved from the Shuttle Radar Topography Mission at a resolution of 1 arc-second (USGS, 

2018), the drainage density created using 3D digital aerophotographies, and the Synthetic Soil Image (SYSI) as 

described in Demattê et al. (2018, 2020). Mendes et al. (2019) mapping the soil attributes in the same study area, 

evaluated the original SYSI and the predicted SYSI (e.g. called Best Synthetic Soil Image – BSSI) from integrative hyper 

and multispectral approach. Thus, the authors concluded that the original SYSI could be used as a proxy (covariable) 

from soil depths above 60 cm and the BSSI for depths below 60 cm improving digital soil mapping predictive power. 

Based on those results, we used the original SYSI as environmental predictors at 0 – 20 and 40 – 60 cm depths, and 

the BSSI at 80 – 100 cm depth.   

The chosen machine learning algorithm was the Random Forest (RF), which is categorised as an ensemble 

learning method. The RF split training samples into subsets and generates decision trees for each subset. Each new 

training subset used to build a decision tree, one third is randomly removed. This sample is called out-of-bag and the 

remaining samples (in-the-bag) are handled to build the decision tree. Out-of-bag samples are used to assess the model 

performance and select the training subset with higher accuracy. Thus, it was performed a grid search for optimal 

tuning hyperparameters and 100 interactions within the models by 10-fold repeated cross-validation method carried 

out five times for each mineral model. The hyperparameters selected is in Table 3. Each mineral modelling had different 

inputs in the hyperparameters mTry, minimum node size, and the number of decision trees at the three distinct soil depths. 

Further details on these hyperparameters are described in (Breiman, 2001; Cutler et al., 2007; Hengl, Nussbaum, 

Wright, Heuvelink, & Gräler, 2018). 
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Table 3. Hyperparamenters of random forest models for nine soil minerals. 

Type Depth mtry Minnodes ntree 

Goethite 
0 – 20 5 26 5000 
40 – 60 7 27 1000 
80 – 100 7 29 1000 

Haematite 
0 – 20 5 29 1500 
40 – 60 7 24 1000 
80 – 100 7 25 1000 

Gibbsite 
0 – 20 6 25 1000 
40 – 60 6 10 2000 
80 – 100 7 21 1000 

Kaolinite 
0 – 20 7 15 1500 
40 – 60 7 17 1000 
80 – 100 2 26 1000 

Montmorillonite 
0 – 20 6 21 1500 
40 – 60 7 28 750 
80 – 100 7 26 1000 

Muscovite 
0 – 20 1 26 1500 
40 – 60 1 20 750 
80 – 100 7 24 1000 

Illite 
0 – 20 7 23 1000 
40 – 60 7 12 1000 
80 – 100 7 27 750 

Chlorite 
0 – 20 1 8 750 
40 – 60 1 26 1000 
80 – 100 1 20 1000 

Calcite 

0 – 20 2 27 750 

40 – 60 1 20 1500 

80 – 100 1 25 1000 

 

3.2.7. Model evaluation 

The metrics of model assessment used in this study were root mean squared error (RMSE), adjusted 

coefficient of determination (R2
adj), concordance correlation coefficient (CCC), and bias. Each of these parameters 

explains the relationship between the predicted and observed values in distinct ways. The RMSE (Equation 5) explain 

how close the predicted values are to the real values by using the square root of the squares of the residuals, which 

sum up the degree of the residuals. The R2
adj verifies the proportion of the variance of the covariates that affect the 

response variable by the approximated line of regression that the model enlightens (Equation 6). This metric allows 

digital soil mappers to compare model performances among distinct target variables. The Bias is calculated as the 

distance from the average prediction and observed values (Equation 7). This other validation metric fulfils one of the 

limitations left by the R2
adj, showing the model bias. The last validation metric of model performance is the Lin’s 

concordance correlation coefficient (CCC) (Equation 8). The CCC assesses the agreement between the predicted and 

observed values and so, it could be a more appropriate metric than R2
adj.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (5) 

𝑅𝑎𝑑𝑗
2 = 1 −

(𝑆𝑆𝑟𝑒𝑠/𝑑𝑓𝑒)

(𝑆𝑆𝑡𝑜𝑡/𝑑𝑓𝑡)
 (6) 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑(𝑦̂𝑖 −  𝑦𝑖

𝑛

𝑖=1

) (7) 
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𝐶𝐶𝐶 =
2𝜌𝜎𝑝𝑟𝑒𝑑𝜎𝑜𝑏𝑠

𝜎𝑝𝑟𝑒𝑑
2 + 𝜎𝑜𝑏𝑠

2 + (𝜇𝑝𝑟𝑒𝑑 − 𝜇𝑜𝑏𝑠)
2 (8) 

 

Where n, 𝑦𝑖 , and 𝑦̂𝑖 are sample size, observed values, and predicted values of the response variable, respectively. 𝑆𝑆𝑟𝑒𝑠 , 

𝑆𝑆𝑡𝑜𝑡, 𝑑𝑓𝑒 , and 𝑑𝑓𝑡 are respectively the sum of squares of the regression residual, the sum of the square of the total 

residual, the degrees of freedom of the estimated population error variance, and the degree of freedom of the estimated 

population variance of the dependent variable. 𝜎𝑝𝑟𝑒𝑑
2  and 𝜎𝑜𝑏𝑠

2  are the prediction and observation variances, 

respectively, 𝜇𝑝𝑟𝑒𝑑 and 𝜇𝑜𝑏𝑠 are the means of the predicted and observed values.  𝜌 is the correlation coefficient 

between the predicted and observed values. 

 

3.3. RESULTS AND DISCUSSION 

3.3.1. Soil mineral spectra 

The descriptive statistics are in Table 4. The negative values of amplitude were replaced by zero values. This 

was performed because whether the amplitude was negative, it meant there is not that mineral in soils. The 

normalisation was done as described in the methodology and the mineral content converted from spectral values to 

wt.%. The outliners were removed. Grouping each soil mineral into classes based on their content, in wt.%, it allowed 

us to identify their distinction on the vis-NIR-SWIR spectra (Fig. 3). The standards of the USGS Library were 

processed together with the original soil spectra. The literature reports Gt and Hem bands close to 415 and 445 nm, 

and 535 and 580, respectively. However, it was identified that their peak values were in bands 422 and 450 nm, and 

535 and 575 nm. Some minerals had a slight difference in their specific band reported in the literature with those found 

in our study (Table 2). Thus, some bands were chosen based on the peaks from the spectral standards for each mineral 

not necessarily following the same bands in the literature.  

 

Table 4. Descriptive statistic of the amplitude retrieved from the laboratory soil spectra for nine soil minerals. 

 n *Minimum 1st Quartile Median Mean 3rd Quartile Maximum SD 

Agt 2701 0 0.00118 0.00243 0.00290 0.00408 0.05873 0.00255 

Hem 2701 0 0.00035 0.00108 0.00233 0.00354 0.01273 0.00272 

Gbs 2701 0 0.00000 0.00002 0.00013 0.00017 0.00293 0.00024 

Kln 2701 0 0.00129 0.00219 0.00237 0.00316 0.00888 0.00139 

Mnt 2701 0 0.00153 0.00221 0.00233 0.00295 0.00888 0.00114 

Ms 2701 0 0.00047 0.00077 0.00086 0.00110 0.00473 0.00056 

Ill 2701 0 0.00059 0.00100 0.00111 0.00147 0.00466 0.00069 

Chl 2701 0 0.00000 0.00001 0.00007 0.00005 0.00334 0.00020 

Cal 2701 0 0.00000 0.00001 0.00009 0.00010 0.00295 0.00021 

Note. SD, standard deviation. *Negative values of amplitude were replaced by zero values considering no mineral’s 
presence. 
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Fig. 3. Soil mineral spectral curves of the Second-Derivative using Savitzky-Golay with a set 35 points and a polynomial function of order 2. Blackline is the mineral standards from 
USGS Library. 
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3.3.2. Soil mineral content estimative 

A soil mineral content estimative was suggested based on clay content (g kg-1) from laboratory analysis. First 

of all, it was created an index, constant factor, using the observed values of potassium. As reported in the literature 

(Jackson, 1958; Kämpf et al., 2012; Weaver & Pollard, 1973), these values can be multiplied by 10 and the final values 

represent the actual content of muscovite in soils. With these values, it was computed, as explained in the methodology, 

the constant factor selecting the median (Fig. 2). Therefore, we found 0.3 as the constant factor to be multiplied by 

the clay content to print out the actual mineral content in soils. The muscovite content estimative using this factor 

presented similar values that the laboratory analysis (Fig. 4). As it is intrinsic to the term, we found an estimative to 

compute minerals content in soils using the vis-NIR-SWIR spectra. The assessment of this factor was performed by 

analysing the good of fitting (e.g. RMSE, R2, CCC, and Bias) of the observed values which were estimated based on 

Fernandes et al. (2004) work and the predicted values from our estimative for Hem and Gt (Fig. 5). Without outliers, 

the total samples were 2619 and 2645 units for Hem and Gt, respectively. The Hem and Gt presented RMSE and R2 

values of 67.94 g kg-1 and 0.89, and 56.82 g kg-1 and 0.63, respectively. This proved the level of concordance between 

our methodology and that stated by those authors.  

 

 

Fig. 4. Soil mineral content estimative of muscovite (predicted) and the total soil muscovite from laboratory analysis 
(observed). 
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Fig. 5. Validating the soil mineral content estimative using the Hematite and Goethite minerals with observed values 
from the regression equation estimated method by Fernandes et al. (2004), and our estimated index. 
 

3.3.3. Digital mineral mapping 

The digital soil mapping is a framework that integrates field observations, algorithms, and remote sensing 

data to predict and create spatial information of soil attributes, properties and classes. This discipline of soil science 

was stated by McBratney et al. (2003). Herein, we create spatial information of the minerals content estimative in soils 

using the Random Forest algorithm with the environmental variables digital elevation model (DEM), drainage network, 

the Synthetic Soil Image (SYSI) at 0 – 20, and 40 – 60 cm depth, and the Best Synthetic Soil Image (BSSI) at 80 – 100 

cm depth to predict those soil minerals. The initial assessment of the interaction between the soil minerals and the 

environmental variables was accessed by the Pearson correlation index (Fig. 6). Most of the correlation values showed 

a negative tendency among those variables and the response variable. Low correlation coefficients were found among 

DEM, Drainage and the soil minerals. Chlorite and Calcite presented low correlations with all environmental variables. 

The correlation coefficients ranged from 0.1 to -0.4 (Fig. 6a), 0.1 to -0.2 (Fig. 6b), and 0.0 to -0.50 (Fig. 6c) at 0 – 20, 

40 – 60, and 80 – 100 cm depths, respectively. Strong negative correlation values were observed using the BSSI as a 

proxy of soil minerals (Fig. 6c).  
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Fig. 6. Pearson correlation index (p < 0.01) between the soil minerals and the environmental variables used for Digital 
Mineral Mapping at 0 – 20 cm (a), 40 – 60 cm (b), and 80 – 100 cm (c) depths. 
 

Table 5 displays the descriptive statistics of the minerals content estimative used as calibration (80%) and 

external validation (20%) of the models in the DSM framework in the three depths. The outliners were removed 

prompting different sets of observations for each mineral at each depth. The uncertainty inside the models was 

accessed by the RMSE and R2 to choose the best-fitted model. The real predictive power of the models was accessed 

using the external validation dataset, which mimics the field observations (Table 6). In both cases, we could achieve 

better performances for soil subsurface (Fig. S1) rather than above 60 cm depth (Fig. S2 and S3). Even though the 

sampling density for soil subsurface was lower than above 60 cm depth, the models fitted better the predictions of the 

soil minerals. The only exception was the chlorite. Overall, the model did not fit well and some of the predictions 

presented lower correlation index, however, the RMSE values were satisfactory. 
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Table 5. Descriptive parameters of nine soil minerals (wt.%). 
Type Depth (cm) Training Validation Total points Skewness Kurtosis SD CV 

 0 – 20 796 196 992 0.79 -0.10 2.93 72.73 
Goethite 40 – 60 640 156 796 0.71 -0.09 3.13 70.50 

 80 – 100 640 158 798 0.43 -0.32 3.29 60.23 
 0 – 20 778 192 970 1.32 0.52 17.87 121.84 

Haematite 40 – 60 600 148 748 1.38 1.07 11.92 107.62 
 80 – 100 651 160 811 0.95 -0.34 22.02 98.75 
 0 – 20 758 188 946 1.34 0.64 3.21 137.95 

Gibbsite 40 – 60 563 140 703 1.78 2.39 2.16 158.25 
 80 – 100 613 152 765 1.23 0.47 4.92 129.66 
 0 – 20 792 196 988 0.68 -0.18 10.23 54.97 

Kaolinite 40 – 60 651 160 811 0.59 -0.33 15.37 53.33 
 80 – 100 640 157 797 0.36 -0.26 13.03 40.72 
 0 – 20 789 196 985 0.45 -0.28 8.44 45.49 

Montmorillonite 40 – 60 648 160 808 0.24 -0.30 11.84 41.78 
 80 – 100 636 156 792 0.47 0.02 9.81 32.05 
 0 – 20 783 192 975 0.59 -0.23 6.93 56.75 

Muscovite 40 – 60 632 156 788 0.46 -0.21 9.62 52.62 
 80 – 100 631 156 787 0.19 0.00 9.29 44.74 
 0 – 20 783 192 975 0.80 0.00 9.26 56.49 

Illite 40 – 60 647 160 807 0.73 -0.12 14.03 55.21 
 80 – 100 629 156 785 0.54 -0.09 11.88 42.25 
 0 – 20 698 173 871 1.98 2.95 0.74 182.50 

Chlorite 40 – 60 559 139 698 2.20 3.95 0.69 207.25 
 80 – 100 564 140 704 1.69 1.93 1.04 163.62 
 0 – 20 703 175 878 1.71 2.08 1.36 155.64 

Calcite 40 – 60 575 142 717 1.79 2.22 2.30 166.54 
 80 – 100 579 144 723 1.61 1.65 2.17 155.88 

 

Table 6. Results of internal and external validation of the models for nine soil minerals (wt.%). 

Type Depth RMSEtrain R2
train MAEtrain RMSEval R2

val CCC Bias 

Goethite 
0 – 20 2.47 0.29 1.84 2.81 0.16 0.31 0.09 
40 – 60 2.91 0.14 2.29 3.22 0.10 0.19 0.14 
80 – 100 2.91 0.22 2.22 2.81 0.24 0.39 0.01 

Haematite 
0 – 20 12.97 0.47 9.37 12.81 0.54 0.68 -0.72 
40 – 60 11.42 0.09 8.75 11.70 0.17 0.23 0.53 
80 – 100 13.26 0.63 9.32 13.77 0.62 0.74 0.37 

Gibbsite 
0 – 20 2.56 0.36 1.85 2.59 0.32 0.51 0.03 
40 – 60 2.09 0.07 1.56 1.95 0.00 0.04 -0.17 
80 – 100 3.97 0.36 2.95 3.56 0.38 0.57 -0.06 

Kaolinite 
0 – 20 9.30 0.18 7.26 9.78 0.17 0.28 0.03 
40 – 60 14.19 0.15 11.40 14.37 0.09 0.19 0.34 
80 – 100 11.11 0.28 8.64 10.79 0.42 0.51 0.82 

Montmorillonite 
0 – 20 7.96 0.11 6.28 7.98 0.16 0.26 0.17 
40 – 60 11.39 0.08 9.18 11.90 0.04 0.11 -0.02 
80 – 100 8.56 0.24 6.71 8.83 0.27 0.38 0.42 

Muscovite 
0 – 20 6.52 0.12 5.10 6.86 0.07 0.16 0.05 
40 – 60 9.48 0.04 7.53 9.32 0.04 0.08 0.47 
80 – 100 8.91 0.09 6.82 9.30 0.08 0.16 0.17 

Illite 
0 – 20 8.45 0.17 6.54 7.84 0.19 0.35 -1.21 
40 – 60 13.26 0.11 10.57 12.84 0.13 0.20 0.00 
80 – 100 9.99 0.30 7.78 10.01 0.25 0.42 -0.47 

Chlorite 
0 – 20 0.73 0.03 0.53 0.74 0.07 0.10 0.02 
40 – 60 0.69 0.01 0.49 0.62 0.05 0.07 -0.02 
80 – 100 0.99 0.10 0.75 0.93 0.06 0.18 -0.17 

Calcite 

0 – 20 1.33 0.05 0.99 1.44 0.01 0.05 0.01 

40 – 60 2.29 0.02 1.73 2.00 0.02 0.06 -0.23 

80 – 100 2.10 0.06 1.61  1.90 0.09 0.17 -0.03 
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It was also retrieved the level of importance that each environmental variable had inside the model to predict 

each mineral (Fig. 7). The drainage network and DEM were the most relevant among the others predictors at 0 – 20 

and 40 – 60 cm depths (Fig. 7a, b). Drainage influences reductive and oxidative soil processes altering iron oxides state 

(Bigham, Golden, Bowen, Buol, & Weed, 1978; Malone, McBratney, & Minasny, 2018). Whilst, the relief alter the 

dynamic of water and also interfere in the particle remove process (Terra, Demattê, & Viscarra Rossel, 2018). 

Nevertheless, this trend was not observed below 80 cm depth (Fig. 7c). As increase depth, the concentration of primary 

minerals increases as well (Ben-Dor et al., 2006; Melo, Corrêa, Maschio, Ribeiro, & Lima, 2003), and it could affect, 

positively or negatively, the absorption and reflectance processes in soil spectra.  

 

 

Fig. 7. Variable importance in predicting soil minerals using Random Forest algorithm at 0 – 20 (a), 40 – 60 (b), and 
80 – 100 (c) cm depths. 
 

3.3.4. Interpreting the predicted maps and their application 

The predicted maps for the soil oxides (e.g. Hem, Gt, and Gbs), carbonate, 1:1 and 2:1 clay minerals are 

presented in the Fig. 8, 9, and 10. The minerals content increases as depth increase, which are in according to the 

principles of soil science because the minerals are close to the parent material (Buol, Southard, Graham, & McDaniel, 

2011; Schaetzl & Anderson, 2005). The weathering of primary minerals forms most iron and aluminium oxides which 

are considered secondary minerals. The gibbsite is the most plentiful Al-oxide in soils and its formation is elevated by 

high precipitation in freely drainage sceneries, which allows the leaching of silica from the underlying parent material 

(Yokozeki, Watanabe, Sakata, & Otsuki, 2004), and by warm temperatures, that promote the weathering of primary 

minerals (Buol et al., 2011). Aspects of soil fertility in humid tropics are straitly related to weathering mechanism being 

kaolinite (1:1 phyllosilicate) with more proportion in those soils.  
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Fig. 8. Predicted maps of soil oxides and carbonate minerals at three soil depths. 
 

As pointed out by Schwertmann and Herbillon (2015), Oxisols and Ultisols present unvaried mineralogy 

(hematite, goethite, gibbsite and kaolinite) in very weathered soils such as those in humid tropics. The oxides can arise 

as discrete particles in highly weathered environments and as coatings on mineral grains in moderated weathered ones. 

More rich in soils than the gibbsite is the goethite and haematite affecting soil colours brown to yellowish and grey 

that is common in an anaerobic environment. The occurrence of chlorides and carbonates are mainly as salt crusts in 

arid soils and as inherited from calcareous or formed in root zones, respectively. The first one is more soluble than the 

latter. Illites and muscovites are phyllosilicates of the mica group and part of the clay fraction highlighted by the 

potassium content into their chemical composition (Churchman, 2010).  
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Fig. 9. Predicted maps of 1:1 clay mineral, hematite and goethite ratio, and kaolinite and gibbsite ratio at three soil 

depths. Blackline shows an area of Oxisols derived from basalt. 

 

Igneous rocks are the source of micas and most of the phyllosilicates in soils. Micas similar to muscovites in 

soils are called illites when are found in clay fractions and biotite when in coarse fractions (Kämpf et al., 2012).  

Montmorillonites are also 2:1 phyllosilicates typified by a low layer charge and common in soils (Brown et al., 2006; 

Coyne et al., 1990; Dufréchou, Grandjean, & Bourguignon, 2015). Those regions with a high concentration of 

phyllosilicates and oxides are located in basalt and could indicate how it is interconnected to the parent material. The 

ratio of Hem and Gt, and Kln and Gbs show where they are more concentrated and help to access their dynamic in 

soils derived from sedimentary to igneous materials. As described in  Gallo et al. (2018), quantifying topsoil attributes 

and the relationship with soil classes and geology, there is a great variation in soils and strong relationship with parent 

materials of this study area (black line in Fig. 9). 
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Fig. 10. Predicted maps of 2:1 clay minerals at three soil depths. 

 

The mineral maps could enhance some previous and published studies in the area. As an example of this 

application, we selected the same area that reported in Vidal-Torrado and Lepsch (1999), which described the 

relationship between parent material and pedogenesis on a slope dominated by clayey oxidic soils (Fig. 11). The clay 

mineralogy of pedon 1 (P1 – clayey Dark-red Latosol/Rhodudox) was characterised as rich in kaolinite, gibbsite and 

illite. In the pedon 5 (Ultisol), those authors rose a question if there is mica in the form of illite above 500 cm depth. 

Thus, as in Fig. 11, we found the answer to that question without XRD and for a larger area including that one.  
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Fig. 11. Example of an application showing the spatial distribution of soil minerals in a former punctual soil survey 
inside the study area. The selected area and soil profiles (e.g. P1, …, and P5) are described in Vidal-Torrado and Lepsch 
(1999). 
 

3.4. CONCLUSIONS 

 Attempts on quantifying soil mineral consist of having an observation measured using traditional laboratory 

soil analysis. However, developments in interpreting and analysing VNIR diffuse reflectance have allowed quantifying 

some soil minerals. This study showed that our proposed novel framework using VNIR spectroscopy and clay content, 

to quantify soil minerals in soils are feasible, non-destructive, quick and cost-efficient rather than traditional laboratory 

analysis and XRD. This methodology is promising to estimate soil mineralogy. 

Furthermore, the application of DSM framework in the estimated values of those soil minerals using as 

environmental covariates a Synthetic Soil Image, a Best Synthetic Soil Image, a 3D drainage network and the Digital 

Elevation Model through the Random Forest algorithm proved to add spatialized soil mineral information into former 

investigations. 
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APPENDIX A. SUPPLEMENTARY DATA 

 

Fig. S1. Graphs of predicted and observed values (wt.%). of the soil minerals at 0 – 20 cm depth in the digital mineral 
mapping. 
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Fig. S2. Graphs of predicted and observed values (wt.%). of the soil minerals at 40 – 60 cm depth in the digital mineral 
mapping. 
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Fig. S3. Graphs of predicted and observed values (wt.%) of the soil minerals at 80 – 100 cm depth in the digital mineral 
mapping. 
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4. APPLYING THE DIGITAL SOIL MAPPING PRODUCTS TO PREDICT THE SOIL TYPES IN BRAZIL 

 
ABSTRACT 

The civilisation lives in a world of maps and soil maps are vital at regional and farm levels to achieve best 
management agricultural practices. Soil is the substrate for plant growth and vital to the fulfilment of the food demand. 
However, the cartographic scale of those soil maps, which for the best management agricultural practice (BMAP) have 
to be the most detailed as possible are scarce. Therefore, the objectives of this research were to (i) present the 
potentiality of using the digital soil mapping (DSM) products such as soil chemical, physical, indices, mineralogy, and 
properties to extrapolate former soil survey maps at 1:20000 scale; (ii) create the digital yield environment for sugarcane 
based on the DSM products; and (iii) evaluate qualitatively the predict soil maps and relationship with former research 
and the predicted yield environment. The region of interest (ROI) covers eight cities and almost 2,598 km2 in the São 
Paulo state, Brazil. The soil survey at farm level conducted covered almost 86.52 km2, which is ~3.33% of the total 
area (96.67% of the unmapped area). Thus, we created a point grid (centroid) with the same spatial resolution (30 m) 
of the rasters used as covariates for soil mapping unit (SMU) predictions. Such grid intended to retrieve the 
representative soil mapping unit of each geometric polygon. It was retrieved 117,413 points representing twenty-seven 
soil mapping units of seven soil orders at a first categorical level according to the Brazilian Classification System and 
seven yield environment for sugarcane production. The prediction of the SMUs and their respectively soil orders were 
performed using the random forest machine learning regression method. The level of association between the SMUs 
and yield environments was 0.34 (p<0.01) by the Cramer’s V coefficient displaying a very strong relationship. The 
digital yield environment for sugarcane based on the DSM products was created and an qualitatively evaluation of the 
predict soil maps and relationship with former research showed that our findings and framework could attend the need 
for soil maps at regional and farm levels to achieve best management agricultural practices. 
 

Keywords: pedometrics; sugarcane yield; digital soil mapping; remote sensing. 
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4.1. INTRODUCTION 

 The soil is known in Soil Science as part of the landscape and the self-organised complex natural system 

wherein all abiotic and biotic processes take place, which it is also the substrate for the forest, crop, and pasture growth. 

Acting so, the fulfilment of the food demand cannot be achieved without better knowledge of soil formation (e.g. 

inputs, translocation/movement, transformation/change, and outputs), genesis, and spatial variability. As stated by 

Jenny (1941), the five main interacting factors that affect soil formation are climate, organisms (e.g. including human 

activities), relief, parent material, and time. These soil formation factors are responsible for the soil genesis or 

pedogenesis (Buol et al., 2011). Soil genesis is the roundabout that connects soil mineralogy, chemistry, physics, 

climatology, geology, anthropology, geography, biology, and agriculture aiming the soil quality (Norfleet et al., 2003). 

The pedogenesis encompasses specific soil-forming processes such as gleization, podsolization, lateralization, 

plinthization, carbonization, salinization, sodification, turbation, and paludization. Understanding these processes 

enable to classify soil and determine which are the limitation and advantage for plant growth and productivity.  

   The soil classification system and maps are the final step of a soil survey grouping soils by similar attributes 

and/or properties, which it makes more accessible to policy-makers, farmers, and scientific community. Each country 

around the world or most of them has its classification system. However, the main challenge is to make a unified 

classification system or a more comprehensive/simplified soil classification. Another point is the cartographic scale of 

those soil maps, which for the best management agricultural practice (BMAP) have to be the most detailed as possible. 

Hartemink et al. (2013), reviewing this topic, pointed out that our civilisation lives in a world of maps and soil maps 

are vital at regional and farm levels to achieve BMAP. For instance, according to Embrapa (2020) and Polidoro et al. 

(2017), up to 5% (~425,000 out of 8.5 million km2) of the Brazilian territory has soil maps at ≥ 1:100,000 scale while 

the United States of America has mapped almost their entire territory at 1:20,000 – 1:40,000 scale.  

The soil maps at a detailed scale can be used to determine capability groups and/or yield environment for 

agricultural purposes. The capability groupings were conceived by Klingebiel (1958), and associated soil classes into 

eight capability classes, which described their potentiality for plant growth and soil conservation management. Acting 

similar to this approach, it was created the yield environment for sugarcane production in Brazil by Demattê and 

Demattê (2009) associating eight yield environment with soil mapping units, evapotranspiration, and sugarcane tons 

per hectare (STH). Each of these classes is related to specific estimative of sugarcane production. Those two 

approaches showed how the detailed soil map is vital to provide valuable information for agriculture. However, none 

of that valuable information has been available on a large scale for policy-makers, farmers, and the scientific 

community. A feasible, fast, and recent framework and discipline in Soil Science that can help to change those scenarios 

(e.g. scarce soil map and capability groupings/yield environment at detailed scale) is the digital soil mapping. 

 The Digital soil Mapping (DSM) framework was stated by McBratney et al. (2003), and consists of using 

quantitative models (e.g. stochastic, deterministic, and hybrid methods) from field soil georeferenced samples 

interrelated with landscape variables (e.g. remote sensing data) to predict soil attributes, properties, and classes 

considering the soil formation factors established by Jenny (1941). A couple of reviews in this topic has been done 

since then (Grunwald, 2010; Hartemink et al., 2020; Ma et al., 2019; Mendonça-Santos et al., 2006; Odgers et al., 2011; 

Rossiter, 2018; Sanchez et al., 2009). Most of the studies in digital soil mapping predict the soil attributes (Chen et al., 

2020; Gallo et al., 2018; Li et al., 2018; Padarian et al., 2017), properties (César de Mello et al., 2020; Dharumarajan et 

al., 2020; Odeha et al., 1994; Poppiel et al., 2020; Steinberg et al., 2016) or classes (Debella-Gilo and Etzelmüller, 2009; 

Demattê et al., 2017; Poppiel et al., 2019a, 2019b; Wolski et al., 2017; Zeng et al., 2017) using as predictors remote 

sensing data, which retrieve the main landscape patterns. Another example of soil class predictions is the 
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Disaggregation and Harmonization of Soil Map Units Through Resampled Classification Trees (DSMART) algorithm 

enables to remap conventional soil maps at detailed scale as described in Odgers et al. (2014) who developed the 

DSMART. However, it is rarely seen in DSM the soil attributes and/or properties as predictors to model soil classes. 

This question rise because if the final predicted attributes or properties play in the same way that the traditional 

laboratory analyses to determine soil classes punctually, why not use those predict soil attributes and properties as 

predictors to model the soil types. Exploiting that it will enhance the potentiality of DSM which consists in spatialize 

soil data easily, detailed, and low-costs. 

Therefore, the objectives of this research were to (i) present the potentiality of using the DSM products such 

as soil chemical, physical, indices, mineralogy, and properties to extrapolate former soil survey maps at 1:20000 scale; 

(ii) create the digital yield environment for sugarcane based on the DSM products; and (iii) evaluate qualitatively the 

predict soil maps and relationship with former research and the predicted yield environment.  

 

4.2. MATERIAL AND METHODS 

4.2.1. Description of the region of interest (ROI) 

The study area covers eight cities and almost 2,598 square kilometres in the São Paulo state, Brazil (Fig. 1a). 

We chose the limits of such area based on the regional administrative criteria (IBGE, 2019), agricultural impacts 

(Machado et al., 2017), and importance (Gallo et al., 2018). The economic activity is predominantly sugarcane with no-

till and till farming along the year (Rudorff et al., 2010). The total sugarcane cultivated area for the crop year 2013/2014 

was 1,221.04 square kilometres (Fig. 1b), which is approximately 47% of the total study area.  

 

 
Fig. 1. Study area (a) and sugarcane cultivated area by municipalities (b). 

Dry winters and rainy summers are the defined weather seasons with annual average rainfall and temperature 

ranging from 1200 to 1400 mm and 20 to 23ºC, respectively. The area covers 500 m in elevation (450 – 950 m) with 

gentle slopes, undulating hills, and rolling uplands, and has parent materials such as siltstones, tillites, varvites, 

conglomerates, sandstones, shales, limestones, dolomite, flint, diabase, and basalt. 
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4.2.2. Data 

 The soil survey at farm level conducted in the ROI covered almost 86.52 km2, which is ~3.33% of the total 

area. This means there were around 96.67% of the unmapped area at the same map scale. Thus, we created a point 

grid (centroid) with the same spatial resolution (30 m) of the rasters used as covariates for soil mapping unit (SMU) 

predictions (Fig. 2). Some polygons had more points inside than others. Such grid intended to retrieve the 

representative soil mapping unit of each geometric polygon. It was retrieved 117,413 points representing twenty-seven 

soil mapping units of seven soil orders at a first categorical level according to the Brazilian Classification System (Table 

1) and seven yield environment (Demattê and Demattê, 2009). The latter is defined by the joint of two or more soil 

mapping units with equal yield capacity based on the soil-climate-plant interaction and local characteristics. This is 

similar to the capability groupings described in Klingebiel (1958) and adopted by the Natural Resources Conservation 

Service of the United States Department of Agriculture (USDA-NRCS). 
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Fig. 2. Scheme of the methodology and results. 
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Table 1. Description and correspondence among mapping unit, the Brazilian Soil Classification System (SiBCS)(Santos et al., 2018), World Reference Base (WRB)(IUSS Working 
Group WRB, 2014), and Soil Taxonomy (Soil Survey Staff, 2014). Number of samples for each soil mapping unit (N). 

Mapping unit 
Soil group 
(1st Letter) 

SiBCS WRB Soil taxonomy 
Mapping unit 
(other letters) 

Colour/Parent material/Other character N 

CX C 
Cambissolo Cambisol Udepts 

X Haplic 9713 
CXL C XL Haplic and Latosolic 23 
GX G Gleissolo Gleisol Aqualf X Haplic 202 
LA L 

Latossolo Ferralsol Udox 

A Yellow 1762 
LH L H Humic 652 
LV L V Red 27065 

LVA L VA Red-Yellow 944 
LVAP L VAP Red-Yellow and Argilic 16 
LVf L Vf Red and ferric 10707 
LVP L VP Red and Latosolic 547 
NV N 

Nitossolo Nitisol 

Udalf, Udult 

V Red 1234 
NVf N Vf Red and ferric 3870 
NVL N VL Red and Latosolic 709 
NVLf N VLf Red, Latosolic and ferric 710 
NX N X Haplic 84 
PA P 

Argissolo Lixisol 

A Yellow 7607 
PAL P AL Yellow and Latosolic 40 
PV P V Red 15187 

PVA P VA Red-Yellow 12850 
PVAL P VAL Red-Yellow and Latosolic 230 
PVf P Vf Red and ferric 97 
PVL P VL Red and Latosolic 3014 
RL R 

Neossolo 

Leptsol Lithic Udorthent/Psamments L Lithic 2997 
RQ R Arenosols Quartzipsamment Q Quartzenic 10735 

RQP R Arenosols Quartzipsamment QP Quartzenic and Argilic 2317 
RR R Regosols Psamment, Orthent R Regolitic 3790 
TX T Luvissolo Luvisols Alfisol, Aridisol X Haplic 311 
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The digital soil mapping framework uses a series of ancillary variables that represent quantitatively and 

spatially the soil formation factors as described in McBratney et al. (2003). In this sense, our ancillary variables were 

the soil chemical, physical, and mineralogical attributes plus other properties such as magnetic susceptibility and free 

iron (Fig. 2). The response variable, in this case, was the soil mapping units. The soil constituents were predicted in 

Chapters 1, 2, and 3, wherein further information about the methodology can be found, for the same ROI. It was 

selected the best-fitted models from those studies comprising nine soil minerals, three soil physical and six soil chemical 

attributes, three indices calculated from other rasters, and two soil properties (Table 2). At total, we had 64 predictors.  
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Table 2. Selected digital soil mapping products in the study area from Chapters 1; 2; and 3. 
Soil Constituents Abbrev. Depth (cm) RMSE R2 CCC 

Mineralogy 
Goethite 
(g kg-1) 

Gt 
0 – 20 2.81 0.16 0.31 

 40 – 60 3.22 0.10 0.19 
 80 – 100 2.81 0.24 0.39 
 

Hematite 
(g kg-1) 

Hem 
0 – 20 12.81 0.54 0.68 

 40 – 60 11.70 0.17 0.23 
 80 – 100 13.77 0.62 0.74 
 

Gibbsite 
(g kg-1) 

Gbs 
0 – 20 2.59 0.32 0.51 

 40 – 60 1.95 0.00 0.04 
 80 – 100 3.56 0.38 0.57 
 

Kaolinite 
(g kg-1) 

Kln 
0 – 20 9.78 0.17 0.28 

 40 – 60 14.37 0.09 0.19 
 80 – 100 10.79 0.42 0.51 
 

Chlorite 
(g kg-1) 

Chl 
0 – 20 0.74 0.07 0.10 

 40 – 60 0.62 0.05 0.07 
 80 – 100 0.93 0.06 0.18 
 

Calcite 
(g kg-1) 

Cal 
0 – 20 1.44 0.01 0.05 

 40 – 60 2.00 0.02 0.06 
 80 – 100  1.90 0.09 0.17 
 

Illite 
(g kg-1) 

Ill 
0 – 20 7.84 0.19 0.35 

 40 – 60 12.84 0.13 0.20 
 80 – 100 10.01 0.25 0.42 
 

Muscovite 
(g kg-1) 

Ms 
0 – 20 6.86 0.07 0.16 

 40 – 60 9.32 0.04 0.08 
 80 – 100 9.30 0.08 0.16 
 

Montmorillonite 
(g kg-1) 

Mnt 
0 – 20 7.98 0.16 0.26 

 40 – 60 11.90 0.04 0.11 
 80 – 100 8.83 0.27 0.38 

Physical 
Clay 

(g kg-1) 
- 

0 – 20 119.33 0.58 0.72 
 40 – 60 129.74 0.44 0.59 
 80 – 100 118.12 0.63 0.76 
 

Sand 
(g kg-1) 

- 
0 – 20 177.58 0.46 0.62 

 40 – 60 192.80 0.43 0.57 
 80 – 100 178.55 0.46 0.62 
 

Soil Organic Matter 
(g kg-1) 

SOM 
0 – 20 7.77 0.35 0.48 

 40 – 60 4.51 0.24 0.34 
 80 – 100 3.97 0.46 0.63 

Chemical 
Soluble Al3+ 
(mmolc kg-1) 

Al 
0 – 20 10.17 0.08 0.21 

 40 – 60 21.03 0.13 0.10 
 80 – 100 28.16 0.20 0.22 
 

Cation Exchange Capacity 
(mmolc kg-1) 

CEC 
0 – 20 36.12 0.42 0.61 

 40 – 60 58.74 0.30 0.41 
 80 – 100 70.09 0.29 0.39 
 

Sum of Bases 
(mmolc kg-1) 

SB 
0 – 20 32.98 0.42 0.51 

 40 – 60 46.02 0.37 0.37 
 80 – 100 40.33 0.17 0.25 
 

Aluminium Saturation 
(%) 

AS 
0 – 20 18.64 0.13 0.10 

 40 – 60 28.63 0.05 0.11 
 80 – 100 24.72 0.21 0.30 
 

Base Saturation 
(%) 

BS 
0 – 20 19.19 0.12 0.21 

 40 – 60 22.11 0.16 0.27 
 80 – 100 21.79 0.09 0.16 
 

pH - 
0 – 20 0.55 0.08 0.11 

 40 – 60 0.62 0.04 0.10 
 80 – 100 0.57 0.10 0.17 

Indices 
Hematite/ 

(Hematite + Goethite)  
Hem/ 

(Hem+Gt) 

0 – 20 
Hematite /  

(Hematite + Goethite) 
 40 – 60 
 80 – 100 
 

Kaolinite/ 
(Kaolinite + Gibbsite) 

Kln/ 
(Kln+Gbs) 

0 – 20 
Kaolinite / 

(Kaolinite + Gibbsite) 
 40 – 60 
 80 – 100 
 B textural horizon Bt Clay (40 – 60 cm)/ Clay (0 – 20 cm) 

Properties Magnetic Susceptibility 
(10-8 m3 kg-1) 

χ 
0 – 20 313.30 0.29 0.53 

 80 – 100 212.80 0.66 0.65 
 Free Iron (g kg-1) FI 0 – 20 24.98 0.84 0.69* 

*Coefficient Of Efficiency 

 

4.2.3. Modelling and evaluation 

 Random Forest (RF) models are decision tree algorithms that deal with reducing the variance. The RF is 

widely and well-posed in the literature for digital soil mapping purposes (Gray et al., 2016; Møller et al., 2019; 
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Nussbaum et al., 2018). In this sense, it was applied to the RF machine learning regression method, which is categorised 

as an ensemble learning method. The RF split training samples into subsets and generates decision trees for each 

subset. Each new training subset used to build a decision tree, one third is randomly removed. This sample is called 

out-of-bag and the remaining samples (in-the-bag) are handled to build the decision tree. Out-of-bag samples are used 

to assess the model performance and select the training subset with higher accuracy. Thus, it was performed a grid 

search for optimal tuning using the “caret” R package  (Kuhn, 2008) by 10-fold repeated cross-validation method 

carried out five times and the best accuracy and kappa selected (Table 3).  

 

Table 3. Random forest parameters of calibration and internal validation. 

 Number of Factors Ntree Mtry Accuracy Kappa 

Soil Orders 7 500 33 0.86 0.81 
Soil Mapping Units 27 500 33 0.84 0.82 
Yield Environment 7 500 33 0.86 0.83 

Soil Legacy  (IAC 1989) 42 500 33 0.58 0.52 

Number of trees (Ntree); Number of variables available for splitting at each tree node (Mtry). 

 

 The default metrics for multi-class classification used to initially assess model performances were the accuracy 

and kappa coefficient (Eq. 1). The latter was proposed by Cohen (1960), and is based on a confusion matrix that has 

the upper limit of 1 only when there is an entire agreement between the predicted and observed samples. 

𝐾𝑎𝑝𝑝𝑎 =  
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒

 (1) 

   where 𝑃𝑜 is the proportion of correctly classified sites, and 𝑃𝑒 is the probability of random agreement.  

  

The Cohen’s kappa is more useful on multi-class classification wherein there is an imbalance in the classes. The 

accuracy coefficient is more likely to access a binary classification rather than various classes classification. Another 

important result of the RF is the mtry which makes explicit how many predictors is needed to outperform the 

predictions. For example, in our study, 33 out of 64 predictors were enough to outperform the soil mapping unit 

predictions. Furthermore, we analysed one former study of five soil profiles from 1999 (Vidal-Torrado and Lepsch, 

1999) in the ROI and compared to our predictions, and evaluated three other soil profiles in the field. Another index 

of consistency between two categorical variables is the Cramer’s V coefficient (Liebetrau, 1983; Rees, 2008), which 

measures the level of association based on Chi-squared test similar to Pearson’s correlation with values varying from 

0 to 1.  Usually, the interpretation of this index is as follows: very strong (> 0.25), strong (0.15 – 0.25), moderate (0.10 

– 0.15), weak (0.05 – 0.10), and no or very weak (0.05 – 0.00)(Akoglu, 2018). This index was used to evaluate the level 

of association between the SMUs and yield environments at p < 0.01.  

 

4.3. RESULTS  

4.3.1. Soil mapping units by soil orders 

 The information of the sixty-four soil attributes, properties and indices was retrieved by using the 117,413 

points from twenty-seven soil mapping units (SMUs) of seven soil orders at a first categorical level according to the 

Brazilian Classification System (Santos et al., 2018)(Table 1). We grouped the descriptive statistics of those SMUs into 

three categories as soil chemical attributes, soil properties (e.g. free iron and magnetic susceptibility), indices and 

physical attributes, and soil mineralogy. To sum up the data, we chose to describe the soil orders instead of each SMUs. 

The soil chemical attributes are presented in Table 4. As the soil components were predicted based on increment core 
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samples at 0 – 20, 40 – 60, and 80 – 100 cm depths, we concentrated the quantitative description only in the deepest 

layer because it is the less revolved in agriculture areas. The chemical attributes are not diagnostic to classify soils in 

the 1st categorical level of the Brazilian Classification System, but related to soil fertility without considering taxonomy. 

Analysing the C layer, there is no significant difference among soil orders in the ROI. However, SMUs in the Latossolo 

(L), Nitossolo (N), Neossolo (R), Luvissolo (T), Argissolo (P), Cambissolo (C), and Gleissolo (G) orders presented 

median values of soluble Al3+ between 5 and 14 mmolc kg-1, CEC from 62.4 to 89.6 mmolc kg-1, SB betwixt 19 and 

29 mmolc kg-1, AS from 25.3 to 44%, BS between 36 and 43%, and constant pH (5.2). The lowest values of Al3+, 

CEC, and AS were found for soils in the L and N orders, and the highest for the G order. SB and BS values were 

higher for soils in the C (SB = 28.7 mmolc kg-1; BS = 40.4%), G (SB = 27.6 mmolc kg-1; BS = 39.7%), N (SB = 25.7 

mmolc kg-1; BS = 42.9%), and P (SB = 24.4 mmolc kg-1; BS = 39.9%) orders. The lowest results were found in the 

L (SB = 19.8 mmolc kg-1; BS = 37.7%), R (SB = 19.8 mmolc kg-1; BS = 37.7%), and T (SB = 20.5 mmolc kg-1; BS 

= 36.8%) orders. The most differentiating soil chemical attributes among soils were AS and CEC (Fig. 3a). 
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Table 4. Descriptive statistics of soil chemical attributes soluble Al3+, cation exchange capacity (CEC), sum of bases (SB), aluminium saturation (AS), base saturation (BS), and pH 
Argissolo (P), Latossolo (L), Neossolo (R), Cambissolo (C), Gleissolo (G), Nitossolo (N), and Luvissolo (L) soil orders (1st categorical level) of SiBCS. 

  

Al3+ CEC SB AS BS pH 

A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 

mmolc kg-1 % Dimensionless 

P 
 

1Q 1.1 3.6 6.9 52.1 51.7 52.4 29.0 23.4 17.8 2.4 5.7 31.3 56.4 44.1 36.3 5.5 5.3 5.1 
M 1.7 5.1 11.3 66.3 70.4 71.1 36.8 29.4 24.4 3.4 9.5 37.3 59.9 48.4 39.9 5.5 5.3 5.2 
3Q 2.8 7.5 16.9 85.5 92.2 100.8 47.0 37.1 32.8 4.7 14.8 43.5 63.4 53.1 43.6 5.6 5.4 5.3 
SD 3.2 3.9 10.3 28.1 31.8 38.2 15.4 13.5 13.1 2.1 8.2 9.4 5.4 7.1 5.5 0.1 0.2 0.1 

L 
 

1Q 1.0 2.9 4.4 62.5 56.3 51.1 32.6 22.3 15.3 2.1 5.7 24.8 54.5 39.7 33.5 5.5 5.2 5.1 
M 1.5 3.9 6.1 74.7 69.1 63.7 39.1 26.6 19.8 2.9 9.6 30.5 58.0 43.9 37.7 5.5 5.3 5.2 
3Q 2.1 5.2 9.5 87.7 82.8 79.5 45.9 32.1 26.1 4.2 15.8 38.0 61.1 48.4 41.7 5.6 5.4 5.3 
SD 2.5 2.9 6.2 21.3 25.1 31.1 11.7 10.9 10.9 1.8 10.0 9.6 5.7 7.6 6.3 0.1 0.2 0.2 

R 
 

1 Q 1.3 2.8 3.4 33.0 27.4 28.2 16.4 8.6 8.6 3.5 7.4 33.5 49.6 37.0 33.7 5.4 5.2 5.1 
M 2.2 4.7 9.5 57.0 60.5 64.4 27.9 23.9 19.8 4.7 11.6 39.3 54.5 44.3 37.5 5.5 5.3 5.2 
3Q 3.8 7.6 16.3 78.6 91.3 101.3 37.4 33.6 30.7 6.3 18.9 46.4 59.2 49.7 41.2 5.5 5.4 5.3 
SD 7.7 4.4 18.2 30.0 39.4 46.5 18.2 18.1 15.6 2.6 11.4 9.6 7.3 9.5 5.8 0.1 0.2 0.2 

C 
 

1 Q 1.1 4.0 9.7 55.6 57.4 61.7 31.0 26.3 21.3 2.2 5.4 33.8 57.6 46.3 36.7 5.5 5.3 5.1 
M 1.8 5.7 13.8 72.1 78.0 83.1 42.2 33.3 28.7 3.4 9.1 39.4 61.8 51.0 40.4 5.6 5.4 5.2 
3Q 3.0 8.1 18.8 94.2 103.8 113.3 55.5 44.7 39.0 5.3 14.4 44.7 65.8 55.4 44.3 5.6 5.5 5.3 
SD 11.9 3.8 11.6 33.3 38.3 44.4 19.3 18.7 16.4 2.8 9.5 8.9 6.6 8.2 6.2 0.1 0.2 0.1 

G 
 

1 Q 1.3 4.7 12.1 58.1 71.5 71.3 36.3 29.2 21.3 3.2 6.9 36.5 57.4 45.4 34.2 5.5 5.3 5.1 
M 1.9 6.0 15.6 66.1 89.9 89.6 40.7 33.4 27.6 4.1 10.4 40.9 60.6 51.4 39.7 5.6 5.4 5.2 
3Q 3.1 7.2 19.5 84.7 114.3 119.6 46.4 41.2 35.9 4.9 16.0 45.9 63.6 55.4 44.7 5.6 5.4 5.3 
SD 4.3 4.3 13.8 30.8 29.6 37.2 17.7 14.5 14.0 2.0 6.5 7.8 5.5 6.5 6.3 0.1 0.1 0.1 

N 
 

1 Q 0.9 2.2 3.4 67.6 64.6 51.8 39.6 27.9 18.9 1.5 3.1 19.3 58.3 44.9 37.7 5.5 5.3 5.2 
M 1.3 2.9 5.2 80.3 75.6 65.6 45.1 32.3 25.7 2.2 6.1 25.3 61.5 50.5 42.9 5.6 5.4 5.3 
3Q 1.9 4.0 9.8 100.0 89.9 81.7 54.7 41.9 36.0 3.1 10.9 32.8 65.0 57.3 49.1 5.6 5.6 5.5 
SD 4.2 3.2 6.5 31.4 34.2 47.8 18.3 19.9 20.8 1.7 5.9 9.5 5.4 8.5 7.7 0.1 0.2 0.2 

T 
 

1Q 2.0 3.8 7.4 55.3 47.7 49.2 24.3 21.7 17.5 4.3 8.3 37.1 47.2 44.5 34.5 5.4 5.2 5.1 

M 3.0 5.6 10.2 67.4 65.7 62.4 30.8 26.8 20.5 6.4 12.7 44.0 50.9 47.0 36.8 5.5 5.3 5.2 

3Q 4.2 9.8 17.9 80.6 84.6 99.5 36.5 29.7 24.7 8.7 19.6 51.6 58.6 49.2 39.8 5.6 5.4 5.3 

SD 4.4 6.5 12.7 17.8 24.7 42.1 7.9 7.2 5.8 3.3 15.9 9.8 6.3 4.3 3.9 0.1 0.1 0.1 

A1 (0 – 20 cm); B1 (40 – 60 cm); C1 (80 – 100 cm); 1Q (1st Quartile); M (Median); 3Q (3rd Quartile); RMSE (Standard Deviation). 
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The magnetic susceptibility (χ) and the free iron contents (FI) were used to characterise the soil mapping 

units. Moreover, three indices were calculated such as the hematite and goethite ratio, the kaolinite and gibbsite ratio 

and the B textural horizon. The soil physical attributes clay, sand and soil organic matter were also analysed. Those soil 

properties, indices, and physical attributes are described in Table 5. For the χ, we had data at 0 – 20 and 80 – 100 cm 

depths only. Analysing the deepest layer, N (χ = 552) and L (χ = 324) showed the highest values followed by P, G, R, 

C, and T. These last five soil orders had χ values betwixt 22 and 30. For the FI, we only had values from the soil surface 

(0 – 20 cm).  High contents of FI were found in N (FI = 106.7 g kg-1) and L (FI = 81.9 g kg-1) orders. The other soil 

orders had median values from 10.5 to 25.4 g kg-1 being the T order the lowest. The same patterns were described for 

clay and sand contents. Assessing the 80 – 100 cm depth, clayey soils were those classified into N and L orders and 

sandy soils into R and T orders. C, G, and P presented clay contents ranging from 230.3 to 234.1 g kg-1. N and L had 

SOM contents of 9.0 and 8.4 g kg-1, whilst the other soil orders had a constant value of 5.3 g kg-1. At the deepest layer, 

SOM could differentiate N and L from others soil orders (Fig. 3a), as well as, MS, clay, sand, and FI (0 – 20 cm) 

contents (Fig. 3b). Among SMUs in the seven soil orders presented none significant difference for the median values 

of the soil indices (Fig. 3c). 
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Table 5. Descriptive statistics of magnetic susceptibility (χ), hematite and goethite ratio (Hem/Hem+Gt), kaolinite and gibbsite ratio (Kln/Kln+Gt), Bt horizon, free iron (FI), clay, 
sand, and soil organic matter (SOM) contents for Argissolo (P), Latossolo (L), Neossolo (R), Cambissolo (C), Gleissolo (G), Nitossolo (N), and Luvissolo (L) soil orders (1st categorical 
level) of SiBCS. 

  

χ Hem/(Hem+Gt) Kln/(Kln+Gbs) Bt FI Clay Sand SOM 

A1 C1 A1 B1 C1 A1 B1 C1 B1/ A1 A1 A1 B1 C1 A1 B1 C1 A1 B1 C1 

10-8m3 kg-1 Dimensionless g kg-1 

P 
 

1Q 11.3 14.6 0.7 0.7 0.7 0.9 0.9 0.9 1.3 11.0 127.3 199.1 188.9 478.6 397.2 390.1 10.9 6.6 4.6 

M 26.6 29.6 0.7 0.7 0.7 0.9 1.0 0.9 1.5 20.1 164.8 263.1 230.3 596.5 507.7 506.3 13.0 7.4 5.6 

3Q 74.6 58.8 0.8 0.7 0.8 0.9 1.0 1.0 1.7 37.3 229.0 326.5 294.6 679.9 607.6 602.2 15.9 8.6 6.9 

SD 424.0 147.4 0.1 0.0 0.1 0.0 0.0 0.0 0.3 30.4 75.7 91.0 83.1 132.8 140.1 130.8 3.4 1.6 1.9 

L 
 

1Q 53.1 55.9 0.7 0.7 0.7 0.9 0.9 0.9 1.2 27.1 188.0 280.6 254.3 412.3 354.9 327.1 15.1 8.4 6.4 

M 280.1 324.0 0.7 0.7 0.8 0.9 0.9 0.9 1.4 81.9 252.6 360.0 345.3 500.4 442.2 416.0 17.8 10.1 8.4 

3Q 750.4 755.7 0.8 0.8 0.8 0.9 1.0 0.9 1.6 108.2 325.0 439.9 435.9 618.5 554.0 538.8 20.1 11.5 10.4 

SD 1088.5 519.6 0.1 0.0 0.1 0.0 0.0 0.0 0.3 41.9 105.1 109.9 116.5 129.5 130.8 129.0 3.8 2.0 2.8 

R 
 

1 Q 6.4 12.9 0.7 0.7 0.6 0.9 0.9 0.9 1.3 9.0 91.9 137.5 140.2 620.9 548.9 521.7 9.4 6.1 4.4 

M 17.4 26.2 0.7 0.7 0.7 0.9 1.0 0.9 1.5 10.5 120.9 182.7 175.5 738.8 682.0 656.0 10.9 7.1 5.3 

3Q 30.1 51.4 0.8 0.7 0.7 0.9 1.0 1.0 1.7 14.8 152.6 241.6 212.3 834.1 806.0 756.8 12.8 7.8 6.3 

SD 608.2 185.2 0.1 0.0 0.1 0.0 0.0 0.0 0.3 18.3 58.1 81.3 69.7 152.9 175.6 157.3 2.9 1.4 1.6 

C 
 

1 Q 14.2 13.6 0.7 0.7 0.7 0.9 0.9 0.9 1.3 12.2 129.9 196.3 186.9 436.2 356.4 363.2 10.7 6.5 4.4 

M 25.1 24.6 0.7 0.7 0.7 0.9 1.0 0.9 1.5 23.9 172.4 262.5 232.0 545.1 456.1 460.1 12.4 7.2 5.3 

3Q 61.4 45.1 0.8 0.7 0.8 0.9 1.0 1.0 1.6 38.4 235.5 327.4 293.9 640.6 584.8 566.4 14.8 8.2 6.4 

SD 603.2 217.6 0.1 0.1 0.1 0.0 0.0 0.0 0.3 29.7 73.5 90.1 78.4 134.6 141.1 126.5 3.2 1.4 1.8 

G 
 

1 Q 18.9 19.0 0.7 0.7 0.7 0.9 1.0 0.9 1.4 19.0 150.9 260.5 201.6 470.4 407.7 407.3 13.0 6.8 4.4 

M 30.9 29.3 0.7 0.7 0.7 0.9 1.0 1.0 1.6 25.4 167.9 286.2 234.1 567.8 468.9 478.9 14.2 7.7 5.3 

3Q 46.4 44.4 0.7 0.7 0.7 0.9 1.0 1.0 1.8 31.2 206.7 309.3 264.4 613.4 507.0 555.0 15.8 8.6 6.0 

SD 96.2 48.2 0.0 0.0 0.1 0.0 0.0 0.0 0.3 19.9 47.8 41.6 60.8 98.8 86.9 105.8 2.1 1.2 1.4 

N 
 

1 Q 270.6 242.6 0.7 0.7 0.8 0.9 0.9 0.9 1.2 89.3 255.2 367.7 336.4 364.4 318.1 284.4 17.3 9.0 7.4 

M 671.2 552.0 0.8 0.7 0.8 0.9 0.9 0.9 1.3 106.7 303.4 420.2 406.8 415.0 364.5 339.5 19.2 10.3 9.0 

3Q 1987.8 1187.4 0.8 0.8 0.8 0.9 1.0 0.9 1.5 116.7 399.2 497.8 470.3 480.9 425.3 414.9 21.5 11.2 10.7 

SD 2473.7 779.2 0.1 0.0 0.1 0.0 0.0 0.0 0.2 31.9 103.4 84.8 108.5 81.9 79.4 95.6 3.5 1.7 2.8 

T 
 

1Q 5.2 13.8 0.7 0.7 0.7 0.9 1.0 0.9 1.3 8.7 104.3 169.5 172.1 643.0 578.1 542.6 10.2 6.6 4.7 

M 10.4 22.6 0.8 0.7 0.7 0.9 1.0 1.0 1.5 10.5 126.1 204.4 189.3 723.2 674.5 595.8 11.9 7.2 5.3 

3Q 16.4 31.6 0.8 0.7 0.7 0.9 1.0 1.0 1.8 13.8 152.9 235.7 213.0 773.3 732.6 646.2 13.8 7.8 6.0 

SD 7.8 11.5 0.0 0.0 0.0 0.0 0.0 0.0 0.3 5.0 38.9 45.4 38.1 93.8 94.0 85.9 2.8 0.9 1.0 

A1 (0 – 20 cm); B1 (40 – 60 cm); C1 (80 – 100 cm); 1Q (1st Quartile); M (Median); 3Q (3rd Quartile); SD (Standard Deviation). 
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Nine soil minerals were used as predictors of the SMUs such as muscovite (Ms), gibbsite (Gbs), chlorite (Chl), 

calcite (Cal), illite (Ill), kaolinite (Kln), montmorillonite (Mnt), hematite (Hem), and goethite (Gt) at 0 – 20, 40 – 60, 

and 80 – 100 cm depths. The descriptive statistics for the three layers are in Table 6. We concentrated the descriptive 

analysis at 80 – 100 cm depth because it is the less revolved soil layer.  The most hematitic soils were those into the N 

and L orders with 26.1 and 18.4 g kg-1 each. The other SMUs grouped into the R, T, G, P, and C presented median 

values of Hem ranging from 4.9 to 7.4 g kg-1. Iron and aluminium oxides were higher in the SMUs which belonged to 

N and L orders. The kaolinite, 1:1 clay mineral, contents were between 14 and 45 g kg-1. The 2:1 phyllosilicates 

presented values ranging from 14 - 41 g kg-1 for Ill, 14 - 42 g kg-1 for Mnt, and 14 – 30 g kg-1 for Ms. Chl and Cal 

displayed values ranging from 0.2 to 2.2 g kg-1.  The Ill, Mnt, and Ms contents allowed to distinguish most of the main 

SMUs into their orders (Fig. 3d).  
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Table 6. Descriptive statistics of soil minerals muscovite (Ms), gibbsite (Gbs), chlorite (Chl), calcite (Cal), illite (Ill), kaolinite (Kln), montmorillonite (Mnt), hematite (Hem), and 
goethite (Gt) for Argissolo (P), Latossolo (L), Neossolo (R), Cambissolo (C), Gleissolo (G), Nitossolo (N), and Luvissolo (L) soil orders (1st categorical level) of SiBCS. 

  

Gt Hem Gbs Kln Ill Cal Mnt Chl Ms 

A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 

g kg-1 

P 
 

1Q 1.1 2.4 2.4 2.5 4.9 4.4 0.4 0.6 0.6 5.6 15.3 15.5 5.0 14.3 13.1 0.3 0.7 0.7 5.8 15.3 15.7 0.1 0.2 0.2 3.9 10.2 10.9 

M 1.6 3.4 3.2 4.1 7.6 7.4 0.6 1.0 1.2 7.9 21.7 21.1 6.8 20.5 17.7 0.5 1.0 1.2 7.9 21.2 21.1 0.2 0.3 0.3 5.5 14.1 14.5 

3Q 2.4 4.6 4.5 7.6 11.2 13.2 1.0 1.6 2.3 12.1 30.0 29.8 10.4 26.7 26.5 0.7 1.5 1.6 11.9 28.6 29.3 0.3 0.3 0.5 8.0 18.3 19.9 

SD 1.4 1.8 1.9 5.9 6.0 9.3 0.9 0.8 1.9 5.9 11.5 11.7 5.5 9.2 10.9 0.3 0.5 0.6 5.3 9.8 10.2 0.1 0.1 0.3 3.4 6.3 6.8 

L 
 

1Q 2.0 3.8 3.9 5.0 9.3 9.1 0.8 1.3 1.6 9.8 25.2 24.0 8.3 24.0 21.0 0.5 1.2 1.5 9.8 24.9 24.2 0.2 0.2 0.4 6.9 16.8 16.6 

M 3.5 5.9 5.9 10.5 16.4 18.4 1.6 2.0 2.9 17.3 36.7 35.6 15.5 32.0 32.4 0.8 1.8 2.0 16.5 33.8 34.4 0.4 0.3 0.8 10.2 22.1 24.0 

3Q 5.0 7.2 7.9 15.8 22.4 31.3 2.7 2.6 6.1 22.8 45.8 49.4 20.7 39.4 45.1 1.1 2.2 2.4 21.5 41.2 45.5 0.5 0.5 1.1 13.4 28.0 31.1 

SD 2.2 2.1 2.7 11.4 8.4 17.8 1.6 0.9 3.6 8.6 13.7 15.3 7.9 10.7 14.8 0.5 0.9 0.7 7.7 11.3 13.1 0.2 0.2 0.4 5.1 7.8 9.6 

R 
 

1 Q 0.8 1.4 1.7 2.0 3.6 3.5 0.3 0.4 0.5 3.9 8.5 9.5 3.3 9.6 8.5 0.2 0.4 0.5 3.8 8.8 10.0 0.1 0.1 0.2 2.7 6.8 7.1 

M 1.0 2.1 2.2 2.5 4.9 4.9 0.4 0.6 0.7 5.3 13.6 14.3 4.8 12.7 12.2 0.3 0.7 0.7 5.5 13.9 14.5 0.1 0.2 0.2 3.6 9.2 10.0 

3Q 1.4 3.0 3.0 3.8 6.6 7.0 0.6 0.8 1.1 7.2 18.9 19.6 6.4 17.5 16.3 0.5 1.0 1.0 7.5 19.5 19.8 0.2 0.3 0.3 4.9 12.6 13.1 

SD 0.9 1.3 1.3 3.3 3.6 7.5 0.4 0.5 1.6 3.8 8.3 9.1 3.5 6.8 8.3 0.2 0.5 0.4 3.8 7.9 8.5 0.1 0.1 0.2 2.4 4.8 5.2 

C 
 

1 Q 1.1 2.3 2.2 2.8 4.7 4.3 0.4 0.6 0.7 5.9 14.9 14.9 5.2 14.0 12.6 0.3 0.7 0.6 6.2 14.8 15.2 0.1 0.2 0.2 4.1 9.9 10.6 

M 1.7 3.3 3.0 4.8 7.3 7.4 0.6 0.9 1.3 8.4 20.9 20.6 7.2 19.6 17.4 0.5 1.1 1.0 8.6 21.3 20.8 0.2 0.3 0.3 5.6 13.6 14.2 

3Q 2.6 4.5 4.4 7.8 10.8 13.1 1.0 1.3 2.3 12.5 29.4 29.3 10.4 26.3 26.4 0.7 1.6 1.5 12.6 28.1 29.3 0.3 0.4 0.5 8.1 17.8 19.5 

SD 1.3 1.8 1.9 5.1 5.9 9.5 0.7 0.6 1.9 5.7 11.1 11.4 5.2 8.8 10.6 0.3 0.6 0.6 5.2 9.7 9.8 0.1 0.1 0.3 3.2 6.1 6.3 

G 
 

1 Q 1.3 3.3 2.6 2.9 7.3 5.1 0.5 0.8 0.7 6.5 21.0 16.9 5.7 20.2 14.7 0.5 1.0 0.9 6.7 21.4 17.4 0.1 0.2 0.2 5.0 14.4 12.0 

M 1.5 3.7 3.2 4.1 8.6 6.9 0.6 1.0 1.0 7.9 24.5 21.4 6.8 22.4 17.7 0.6 1.2 1.1 8.2 24.3 21.6 0.2 0.3 0.3 5.6 16.1 14.5 

3Q 2.1 4.2 3.8 6.3 10.8 11.7 0.8 1.2 2.2 11.2 27.9 26.8 9.0 24.5 24.3 0.7 1.5 1.4 10.9 26.8 26.7 0.2 0.3 0.4 6.9 17.7 17.6 

SD 0.9 1.0 1.4 2.6 3.1 7.6 0.7 0.3 1.6 4.1 5.9 9.2 3.6 5.1 8.6 0.2 0.3 0.4 3.8 4.5 7.8 0.1 0.1 0.2 2.0 2.9 4.9 

N 
 

1 Q 3.0 6.0 5.6 10.4 16.2 18.7 1.4 1.7 2.8 16.5 38.1 34.8 14.5 32.1 31.0 0.8 1.7 1.8 15.8 35.5 33.4 0.3 0.3 0.7 9.9 22.8 22.4 

M 4.3 7.0 7.0 15.1 20.4 26.1 2.4 2.3 4.3 20.9 43.9 44.7 19.1 38.1 40.3 1.0 2.1 2.2 19.9 40.2 41.9 0.5 0.4 1.0 12.5 26.6 27.8 

3Q 5.7 7.7 8.1 26.5 23.6 44.0 3.6 2.9 7.1 26.4 51.3 53.2 24.4 44.9 50.6 1.4 2.8 2.6 25.1 43.7 49.2 0.7 0.6 1.2 17.2 31.2 32.7 

SD 1.8 1.8 2.2 15.2 6.0 20.4 2.1 0.8 3.3 8.7 11.3 12.3 7.6 9.3 14.3 0.5 1.0 0.6 7.5 7.7 11.3 0.3 0.2 0.5 5.6 6.3 10.4 

T 
 

1Q 0.8 1.9 2.2 2.7 4.4 4.5 0.3 0.5 0.6 5.3 13.2 14.4 4.7 13.1 12.7 0.2 0.6 0.6 5.5 12.7 14.4 0.1 0.2 0.2 3.1 8.4 10.0 

M 1.0 2.4 2.5 3.7 5.5 5.7 0.4 0.7 0.8 6.5 16.9 16.9 5.6 15.4 14.7 0.3 0.8 0.8 6.5 15.8 17.2 0.1 0.2 0.2 4.0 10.4 11.5 

3Q 1.4 2.9 3.0 5.2 6.7 6.8 0.6 0.8 1.2 7.6 19.5 20.9 6.4 18.4 18.6 0.5 0.9 1.1 7.5 19.8 20.8 0.2 0.2 0.3 5.1 12.7 13.8 

SD 0.4 0.7 0.9 1.7 2.2 3.5 0.2 0.2 0.8 1.8 4.8 6.0 1.4 4.4 5.9 0.2 0.2 0.5 1.6 4.8 5.5 0.0 0.0 0.1 1.4 2.9 4.2 

A1 (0 – 20 cm); B1 (40 – 60 cm); C1 (80 – 100 cm); 1Q (1st Quartile); M (Median); 3Q (3rd Quartile); SD (Standard Deviation). 
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Fig. 3. Median values of the initial dataset for the seven soil orders according the Brazilian Soil Classification System 
(SiBCS) grouped by soil chemical attributes (a), soil properties and physical attributes (b), soil indices (c), and main soil 
mineralogy (d) at 0 – 20 (_A), 40 – 60 (_B), and 80 – 100 cm (_C) depths. 
 
 The major soil chemical, physical and mineralogical components, as well as, soil indices and properties median 

values were analysed for the 27 SMUs in the ROI (Fig. 4). The most significant chemical attribute to differentiate 

SMUs was the cation exchange capacity (Fig. 4a). The other chemical attributes such as AS, BS, and pH did not play 

an important role in separating the SMUs. The SOM had more content in red and ferric Nitisols (NVf) rather than 

among others. The soil physical attributes (e.g. clay and sand), and soil properties (e.g. FI and MS) proved to be vital 

players splitting up the SMUs (Fig. 4b). However, soil indices such as B textural horizon, Hem/(Hem+Gt), and 

Kln/(Kln+Gbs) could not quantitatively disaggregate well the SMUs (Fig. 4c). It does not mean that those indices are 

not important for soil classification, but they were not significant in the ROI. Conversely, the 2:1 phyllosilicates showed 

that could be quantitatively essential splitting up the SMUs (Fig. 4d). Generally, the SMUs were well described by the 

soil attributes, indices and properties selected from predictive maps using the DSM framework.  
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Fig. 4. Median values of the initial dataset for twenty-seven soil mapping units grouped by soil chemical attributes (a), 
soil properties and physical attributes (b), soil indices (c), and main soil mineralogy (d) at 0 – 20 (_A), 40 – 60 (_B), 
and 80 – 100 cm (_C) depths. 
 

4.3.2. Yield environment 

As it was done for the SMUs, it was performed for the yield environment. This yield environment was based 

on the same SMUs and used the sugarcane yield with soil fertility levels creating an index from A to G, where A is the 

best and G is the worst. Intrinsic to yield environment is the real evapotranspiration and sugarcane tons per hectare 

(STH), which delineated the thresholds for those yield environment (Demattê and Demattê, 2009). For example, yield 

environment A has 95 – 100 STH, LVf (Red ferric Ferralsol) SMU, and 5 mm day-1 evapotranspiration. However, such 

data is not easy to find and deal, that is why we used that previous information to analyse and propose the yield 

environment based on soil properties, attributes, indices, and mineralogy.   

Assessing the soil chemical aspects related to each yield environment at the deepest depth (Table 7), soluble 

Al3+ median values ranged from 5.2 to 12.8 mmolc kg-1. CEC and SB presented values between 65 – 76, and 20 – 25 

mmolc kg-1, respectively. AS and BS displayed median values from 26.4 – 40.6, and 37.6 – 41.1%. The pH values were 

still around 5.2, not displaying significant differences among yield environments. Aluminium saturation at 80 – 100 cm 
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and cation exchange capacity at 0 – 20 cm depth were the foremost soil chemical attributes distinguishing the seven 

yield environments (Fig. 5a). Considering the less revolved soil layer, AS is the soil chemical attributes to take into 

account classifying the yield environments.  
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Table 7. Descriptive statistics of soil chemical attributes soluble Al3+, cation exchange capacity (CEC), sum of bases (SB), aluminium saturation (AS), base saturation (BS), and pH for 
each yield environment A, B, C, D, and E. 

  

Al3+ CEC SB AS BS pH 

A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 

mmolc kg-1 % Dimensionless 

A 

1Q 0.9 2.5 3.7 67.9 63.3 53.4 38.2 25.9 18.1 1.8 3.9 21.1 57.3 43.7 37.5 5.5 5.3 5.2 
M 1.3 3.2 5.2 80.2 73.6 65.4 44.2 30.8 23.0 2.5 6.9 26.4 60.4 47.7 41.1 5.6 5.4 5.3 
3Q 1.9 4.3 8.0 94.0 86.1 79.4 50.9 37.3 30.3 3.4 11.3 32.7 63.3 54.1 45.6 5.6 5.5 5.4 
SD 2.7 2.2 5.0 23.7 24.6 32.7 13.6 14.3 14.1 1.5 6.7 8.4 5.3 8.2 6.4 0.1 0.2 0.2 

B 

1Q 1.0 3.1 5.0 64.3 59.4 54.2 35.0 23.1 16.1 2.2 6.0 26.4 55.4 39.8 33.6 5.5 5.2 5.1 
M 1.4 4.0 6.8 75.5 71.0 65.4 40.0 27.2 20.5 3.0 9.7 31.1 58.8 43.8 37.6 5.5 5.3 5.2 
3Q 2.1 5.5 11.0 89.9 86.7 84.2 47.6 33.6 28.0 4.0 15.3 36.9 62.3 49.5 41.9 5.6 5.4 5.3 
SD 2.3 2.6 6.5 25.9 28.5 35.5 14.2 12.6 13.3 1.6 9.6 7.9 5.8 7.9 6.0 0.1 0.2 0.2 

C 

1Q 1.2 3.2 4.9 55.3 48.6 48.4 27.4 19.4 14.3 2.3 6.0 27.9 52.4 38.8 33.0 5.5 5.2 5.1 
M 1.7 4.3 8.4 68.2 65.2 63.1 37.0 26.2 20.5 3.3 10.1 35.0 58.6 44.9 38.1 5.5 5.3 5.2 
3Q 2.4 5.9 13.1 89.3 87.9 88.5 47.3 35.6 29.1 5.2 16.1 42.5 63.2 51.8 42.6 5.6 5.4 5.3 
SD 3.6 4.2 12.2 29.6 33.4 37.1 16.8 16.5 13.7 2.2 10.0 9.9 7.6 9.7 7.2 0.1 0.2 0.2 

D 

1Q 1.0 3.6 6.9 55.7 50.5 51.8 30.3 21.3 16.1 2.3 6.2 31.4 56.0 42.0 35.0 5.5 5.2 5.1 
M 1.6 4.9 10.6 67.0 66.9 69.6 38.6 29.1 24.3 3.2 10.5 36.7 60.2 47.3 39.4 5.5 5.3 5.2 
3Q 2.4 6.7 15.5 83.6 88.1 98.5 48.9 38.0 34.4 4.4 16.5 42.1 64.1 52.8 43.3 5.6 5.4 5.3 
SD 2.7 4.0 7.0 27.9 36.4 37.9 16.2 18.4 16.0 2.0 8.7 8.5 6.3 8.9 6.6 0.1 0.2 0.2 

E 

1Q 1.3 4.0 7.3 47.6 49.5 49.3 26.7 22.5 16.5 2.4 6.5 31.5 55.3 44.3 36.8 5.5 5.3 5.2 
M 2.1 5.6 11.4 63.3 69.7 72.3 35.2 28.7 24.5 3.6 10.4 37.7 59.5 48.8 40.1 5.5 5.3 5.2 
3Q 3.3 7.8 16.9 80.9 91.7 99.9 46.1 37.3 33.4 5.2 15.9 44.0 63.4 52.7 43.4 5.6 5.4 5.3 
SD 3.1 3.6 15.5 30.4 35.1 41.2 17.7 15.9 15.4 2.3 8.6 9.7 6.6 6.7 5.3 0.1 0.1 0.1 

F 

1Q 1.3 4.0 7.6 50.4 49.7 51.8 26.7 22.7 16.7 2.7 6.4 34.2 54.9 42.8 35.0 5.5 5.2 5.1 
M 2.1 5.9 12.8 65.5 70.7 75.6 34.0 28.6 24.1 4.0 10.6 40.1 58.5 47.1 38.7 5.5 5.3 5.2 
3Q 3.8 9.1 18.5 84.0 95.8 108.1 43.5 35.5 32.8 5.6 17.1 46.4 62.0 51.4 42.5 5.6 5.4 5.3 
SD 7.9 4.3 11.0 27.0 34.1 42.0 16.2 15.0 13.5 2.4 10.1 9.4 5.9 7.7 6.0 0.1 0.2 0.2 

G 

1Q 1.3 3.4 5.4 39.2 34.5 33.1 20.2 13.8 10.8 3.2 7.1 35.3 51.6 39.1 33.9 5.4 5.2 5.1 

M 2.1 5.1 11.4 59.0 61.4 67.6 29.9 25.4 21.2 4.4 11.2 40.6 56.1 46.0 37.7 5.5 5.3 5.2 

3Q 3.6 7.8 17.3 76.4 89.7 101.3 37.4 33.0 30.5 6.0 18.3 47.1 60.1 50.5 41.2 5.6 5.4 5.3 

SD 7.6 4.1 15.5 26.8 36.3 44.8 14.7 14.3 14.2 2.6 11.0 8.7 6.7 8.5 5.3 0.1 0.2 0.1 

A1 (0 – 20 cm); B1 (40 – 60 cm); C1 (80 – 100 cm); 1Q (1st Quartile); M (Median); 3Q (3rd Quartile); SD (Standard Deviation). 
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 The evaluation of the χ, FI, Bt horizon, kaolinite and hematite indices, and soil physical attributes are in Table 

8. The soil properties and physical attributes were excellent qualifiers of the yield environment (Fig. 5b). Nevertheless, 

there was no relevant values variation into the indices (Fig. 5c). Yield environment classified as A, B, C, D, E, F, and 

G presented χ median values of 543.4, 245.3, 86.9, 40.8, 24.5, 22.0, and 21.6, respectively. The FI values were 102.0, 

84.2, 40.9, 25.5, 14.9, 13.6, and 10.9 g kg-1. Moreover, the clay content was 400.5, 349.4, 274.4, 255.4, 210.9, 206.7, and 

184.1 g kg-1 for A, B, C, D, E, F, and G yield environments. SOM values presented no such difference among the 

seven yield environments (Fig. 5a). The trend is true for the sandier the soil the less productive it will be. 
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Table 8. Descriptive statistics of magnetic susceptibility (χ), hematite and goethite ratio (Hem/Hem+Gt), kaolinite and gibbsite ratio (Kln/Kln+Gt), Bt horizon, free iron (FI), clay, 
sand, and soil organic matter (SOM) contents for each yield environment A, B, C, D, and E. 

  

χ Hem/(Hem+Gt) Kln/(Kln+Gbs) Bt FI Clay Sand SOM 

A1 C1 A1 B1 C1 A1 B1 C1 B1/ A1 A1 A1 B1 C1 A1 B1 C1 A1 B1 C1 

10-8m3 kg-1 Dimensionless g kg-1 

A 

1Q 173.8 166.4 0.7 0.7 0.7 0.9 0.9 0.9 1.2 51.0 237.9 351.9 309.5 376.4 322.4 297.5 16.5 8.8 6.9 
M 541.3 543.4 0.8 0.7 0.8 0.9 1.0 0.9 1.4 102.0 294.0 414.7 400.5 429.1 378.2 351.6 19.0 10.2 8.6 
3Q 1334.6 1072.3 0.8 0.8 0.8 0.9 1.0 0.9 1.6 115.7 384.7 482.4 472.3 505.5 444.8 449.1 21.3 11.5 10.5 
SD 1615.5 637.3 0.1 0.0 0.1 0.0 0.0 0.0 0.3 38.0 107.1 92.8 111.2 99.8 92.0 107.0 3.5 1.9 2.7 

B 

1Q 66.7 49.3 0.7 0.7 0.7 0.9 0.9 0.9 1.3 33.6 200.2 296.3 266.1 419.0 349.9 331.4 14.5 8.0 6.1 
M 229.8 245.3 0.8 0.7 0.8 0.9 1.0 0.9 1.4 84.2 256.3 359.1 349.4 487.1 417.0 394.9 17.6 9.9 8.1 
3Q 601.6 564.9 0.8 0.8 0.8 0.9 1.0 0.9 1.6 103.8 310.8 422.8 419.8 569.2 497.7 494.4 19.4 11.4 10.1 
SD 927.9 389.2 0.1 0.1 0.1 0.0 0.0 0.0 0.3 38.7 84.1 87.7 97.4 106.1 106.0 109.3 3.5 2.1 2.8 

C 

1Q 22.4 25.4 0.7 0.7 0.7 0.9 0.9 0.9 1.3 18.4 155.9 249.8 220.4 443.7 389.7 369.1 12.3 7.1 5.2 
M 97.3 86.9 0.7 0.7 0.7 0.9 1.0 0.9 1.4 40.9 220.2 303.8 274.4 566.4 507.0 491.8 15.8 8.7 7.0 
3Q 254.9 275.9 0.8 0.8 0.8 0.9 1.0 1.0 1.6 79.2 266.5 360.2 343.4 650.5 587.4 587.1 18.1 10.5 9.5 
SD 1037.8 391.9 0.1 0.1 0.1 0.0 0.0 0.0 0.3 37.0 85.2 100.1 96.8 141.0 143.4 132.1 3.8 2.2 2.8 

D 

1Q 18.5 20.4 0.7 0.7 0.7 0.9 0.9 0.9 1.3 16.1 156.2 242.2 212.7 480.1 386.1 395.8 12.1 7.0 4.9 
M 40.7 40.8 0.7 0.7 0.7 0.9 1.0 0.9 1.5 25.5 189.6 285.2 255.4 583.9 489.4 489.8 14.4 8.1 6.1 
3Q 116.5 90.6 0.8 0.7 0.8 0.9 1.0 1.0 1.7 46.6 240.1 334.0 304.8 648.0 585.0 571.4 16.7 9.4 7.8 
SD 404.5 243.0 0.1 0.1 0.1 0.0 0.0 0.0 0.3 28.4 63.4 74.9 72.7 118.4 124.8 112.9 3.2 1.8 2.2 

E 

1Q 10.7 12.7 0.7 0.7 0.6 0.9 1.0 0.9 1.3 10.4 114.7 179.7 172.1 511.4 401.0 410.8 10.4 6.5 4.5 
M 21.0 24.5 0.7 0.7 0.7 0.9 1.0 1.0 1.5 14.9 149.2 234.3 210.9 623.2 525.5 541.7 12.0 7.1 5.3 
3Q 40.9 44.7 0.8 0.7 0.7 0.9 1.0 1.0 1.7 27.6 194.6 292.7 257.8 713.1 643.0 640.0 14.0 7.9 6.4 
SD 733.0 108.4 0.1 0.0 0.1 0.0 0.0 0.0 0.3 22.7 63.7 79.1 70.3 145.4 160.7 143.3 2.8 1.3 1.7 

F 

1Q 6.4 11.4 0.7 0.7 0.6 0.9 1.0 0.9 1.3 9.9 115.8 178.5 174.1 538.6 450.0 438.3 10.6 6.6 4.5 
M 15.8 22.0 0.7 0.7 0.7 0.9 1.0 1.0 1.5 13.6 145.0 225.4 206.7 642.3 569.3 555.4 12.1 7.4 5.4 
3Q 45.6 44.1 0.8 0.7 0.7 0.9 1.0 1.0 1.7 27.8 197.0 291.9 259.4 718.9 656.6 635.6 15.2 8.5 6.6 
SD 571.6 188.5 0.1 0.1 0.1 0.0 0.0 0.0 0.3 23.5 64.0 80.5 73.9 131.4 146.3 133.9 3.2 1.5 1.9 

G 

1Q 6.2 11.5 0.7 0.7 0.6 0.9 0.9 0.9 1.3 9.3 100.0 148.7 151.3 606.7 534.6 498.5 9.6 6.2 4.3 

M 14.6 21.6 0.7 0.7 0.7 0.9 1.0 1.0 1.5 10.9 125.3 190.7 184.1 698.1 638.2 611.4 11.1 7.0 5.1 

3Q 25.3 38.6 0.8 0.7 0.7 0.9 1.0 1.0 1.7 14.8 154.1 242.4 217.8 800.5 768.9 717.6 12.9 7.8 6.1 

SD 226.3 61.0 0.1 0.1 0.1 0.0 0.0 0.0 0.3 11.9 49.0 70.6 60.2 139.0 156.7 148.0 2.7 1.3 1.4 

A1 (0 – 20 cm); B1 (40 – 60 cm); C1 (80 – 100 cm); 1Q (1st Quartile); M (Median); 3Q (3rd Quartile); SD (Standard Deviation). 
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 The soil mineralogy for the seven yield environment is presented in Table 9. The Hem contents were more 

relevant splitting the yield environment instead of Gt contents. The Al oxide represented by Gbs contents varied from 

0.7 to 4.2 g kg-1. The 1:1 phyllosilicate median values were between 15 and 44 g kg-1. The Cal and Chl showed values 

up to 2.1 and 1.0, respectively. The Ill and Ms median values ranged from 12.9 - 39.6 g kg-1 and 10.6 – 27.8 g kg-1 by 

the less productive yield environment to the most productive one. The 2:1 clay mineral Mnt presented values of 40.9, 

34.9, 26.5, 24.4, 18.4, 18.8, and 15.4 g kg-1 for A, B, C, D, E, F, and G yield environment, respectively. There was no 

difference between the values for D and E yield environment. Most of the soil minerals estimated and used to split the 

seven yield environment worked satisfactory (Fig. 5d). 
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Table 9. Descriptive statistics of soil minerals muscovite (Ms), gibbsite (Gbs), chlorite (Chl), calcite (Cal), illite (Ill), kaolinite (Kln), montmorillonite (Mnt), hematite (Hem), and 
goethite (Gt) for each yield environment A, B, C, D, and E. 

  

Gt Hem Gbs Kln Ill Cal Mnt Chl Ms 

A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 A1 B1 C1 

g kg-1 

A 
 

1Q 3.0 5.4 5.2 8.3 14.2 14.6 1.2 1.7 2.4 15.3 34.9 31.0 13.5 30.4 28.0 0.7 1.7 1.7 15.0 32.0 30.2 0.3 0.3 0.6 9.3 21.2 21.0 

M 4.3 6.8 6.9 13.4 19.3 24.9 2.2 2.3 4.2 20.8 42.8 43.3 19.0 37.5 39.6 0.9 2.1 2.1 20.0 38.5 40.9 0.5 0.4 1.0 12.0 26.4 27.8 

3Q 5.6 7.6 8.5 21.8 24.0 40.1 3.5 2.9 7.2 26.4 50.2 52.9 24.2 43.8 50.0 1.3 2.7 2.6 24.8 43.5 49.1 0.7 0.6 1.2 16.4 31.1 33.7 

SD 2.1 1.8 2.5 13.9 7.3 19.2 2.0 0.9 3.5 8.7 12.0 13.8 7.9 9.4 14.5 0.5 1.0 0.7 7.6 9.4 12.1 0.3 0.2 0.5 5.4 6.8 9.8 

B 
 

1Q 2.2 4.2 4.0 6.1 10.0 9.8 0.8 1.3 1.8 11.1 27.0 25.4 9.4 24.8 22.0 0.6 1.4 1.5 10.9 25.5 25.3 0.3 0.3 0.5 7.4 16.8 17.4 

M 3.3 5.7 5.8 11.1 17.0 17.7 1.6 2.0 2.8 16.7 36.7 35.9 14.7 31.6 32.4 0.8 1.8 2.0 15.9 33.9 34.9 0.4 0.3 0.8 10.1 22.1 24.0 

3Q 4.6 7.0 7.6 15.1 22.4 27.8 2.5 2.7 5.3 21.0 44.6 47.3 18.9 38.2 42.7 1.0 2.1 2.4 19.6 40.7 44.0 0.5 0.4 1.0 12.6 26.6 29.9 

SD 1.9 1.9 2.5 9.3 7.7 14.9 1.3 0.9 3.4 7.1 11.5 13.6 6.6 8.8 12.6 0.3 0.6 0.7 6.3 9.9 11.6 0.2 0.2 0.4 4.1 6.3 7.8 

C 
 

1Q 1.4 3.1 3.0 3.6 6.9 6.7 0.6 0.9 1.0 7.6 19.8 19.3 6.5 18.7 16.5 0.5 1.0 1.0 7.7 20.1 19.4 0.2 0.2 0.3 5.2 13.3 13.6 

M 2.5 4.8 4.5 7.8 12.1 10.8 1.1 1.6 1.9 13.2 30.7 26.7 11.9 27.3 23.4 0.7 1.5 1.6 12.8 28.8 26.5 0.3 0.3 0.5 8.3 18.2 18.2 

3Q 3.9 6.0 6.1 11.5 16.6 19.7 1.7 2.0 3.3 18.1 36.5 36.9 16.5 31.7 33.4 0.9 1.8 2.0 17.1 34.0 35.1 0.4 0.4 0.8 10.7 21.6 23.8 

SD 1.8 2.1 2.4 8.0 7.4 14.2 1.0 0.8 2.9 7.3 12.8 13.8 6.9 9.8 12.7 0.3 0.6 0.7 6.5 10.9 11.6 0.2 0.1 0.3 4.0 6.9 7.6 

D 
 

1Q 1.4 3.0 2.8 3.4 6.6 6.1 0.5 0.8 0.9 7.1 19.6 18.4 6.1 18.9 15.7 0.5 1.0 0.9 7.2 19.5 18.5 0.2 0.2 0.3 5.1 12.9 12.8 

M 1.9 3.8 3.6 5.1 9.0 9.1 0.8 1.1 1.6 9.6 25.0 24.1 8.2 23.1 20.8 0.6 1.2 1.4 9.6 24.7 24.4 0.2 0.3 0.4 6.7 16.5 16.6 

3Q 2.8 4.9 5.0 8.6 13.2 14.7 1.3 1.8 2.4 13.1 31.4 31.2 11.7 28.0 28.3 0.7 1.6 1.8 13.5 29.8 30.5 0.3 0.3 0.6 9.0 19.3 20.7 

SD 1.2 1.6 1.8 4.6 5.3 9.4 0.7 0.6 1.9 5.0 9.5 10.7 4.5 7.5 9.9 0.3 0.6 0.6 4.6 8.4 9.1 0.1 0.1 0.3 2.8 5.2 6.0 

E 
 

1Q 1.0 2.0 2.1 2.3 4.5 3.8 0.4 0.6 0.6 5.0 13.0 13.2 4.3 12.5 11.4 0.3 0.6 0.6 5.1 13.4 13.9 0.1 0.2 0.2 3.4 9.2 9.7 

M 1.4 3.0 2.8 3.3 6.5 6.4 0.5 0.8 0.9 6.8 18.8 18.3 6.0 17.8 15.5 0.5 0.9 0.9 7.0 18.9 18.4 0.2 0.2 0.3 4.8 12.4 12.6 

3Q 1.9 3.9 3.7 5.4 8.9 9.9 0.7 1.0 1.6 9.6 25.1 24.6 8.3 22.8 21.3 0.6 1.2 1.3 9.5 24.2 24.7 0.2 0.3 0.4 6.4 16.1 16.5 

SD 1.0 1.4 1.5 3.8 4.3 7.9 0.6 0.5 1.5 4.4 9.0 10.1 4.0 7.3 9.3 0.2 0.5 0.5 4.1 7.8 8.8 0.1 0.1 0.2 2.6 5.0 5.6 

F 
 

1Q 1.0 1.9 2.1 2.2 4.1 3.6 0.4 0.5 0.6 5.2 12.8 13.4 4.6 12.3 11.3 0.3 0.6 0.5 5.3 13.4 14.2 0.1 0.2 0.2 3.4 8.9 9.7 

M 1.3 2.8 2.8 3.4 6.0 6.1 0.5 0.8 0.9 6.9 17.7 18.6 6.0 16.7 15.5 0.4 0.9 0.8 7.0 18.2 18.8 0.1 0.2 0.2 4.6 11.9 12.7 

3Q 2.0 3.9 3.8 5.7 9.1 9.8 0.8 1.3 1.8 9.8 25.0 24.6 8.3 23.8 21.6 0.6 1.3 1.4 9.9 25.2 24.9 0.2 0.3 0.4 6.8 16.4 16.8 

SD 1.1 1.5 1.6 3.9 4.5 9.0 0.5 0.6 1.9 4.7 9.5 10.5 4.3 8.1 9.9 0.3 0.6 0.6 4.5 8.5 9.2 0.1 0.1 0.3 2.9 5.3 5.9 

G 
 

1Q 0.8 1.5 1.8 2.1 3.6 3.4 0.3 0.5 0.5 4.2 9.2 10.0 3.6 10.2 8.8 0.2 0.4 0.5 4.2 9.7 10.8 0.1 0.2 0.2 2.9 7.1 7.6 

M 1.0 2.2 2.3 2.6 4.9 4.9 0.4 0.6 0.7 5.6 14.5 15.2 5.0 13.4 12.9 0.3 0.7 0.7 5.7 14.5 15.4 0.1 0.2 0.2 3.8 9.6 10.6 

3Q 1.4 3.1 3.0 3.9 6.7 7.0 0.6 0.9 1.2 7.3 19.7 20.3 6.4 18.2 16.9 0.5 1.0 1.0 7.5 19.6 20.5 0.2 0.3 0.3 4.9 12.7 13.6 

SD 0.7 1.2 1.1 2.4 3.1 4.7 0.4 0.4 1.1 3.2 7.5 8.1 2.8 5.9 7.2 0.2 0.4 0.4 3.1 6.9 7.6 0.1 0.1 0.2 1.8 4.2 4.9 

A1 (0 – 20 cm); B1 (40 – 60 cm); C1 (80 – 100 cm); 1Q (1st Quartile); M (Median); 3Q (3rd Quartile); SD (Standard Deviation). 
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Fig. 5. Median values of the initial dataset for seven yield environment (A, B, C, D, E, and F) grouped by soil chemical 
attributes (a), soil properties and physical attributes (b), soil indices (c), and main soil mineralogy (d) at 0 – 20 (_A), 40 
– 60 (_B), and 80 – 100 cm (_C) depths. 
 

4.3.3. Prediction of soil mapping units and yield environment 

 The prediction of the SMUs and their respectively soil orders were performed using the parameters of random 

forest machine learning regression method available in the “caret” R package as described in the methodology. For the 

three response variables, it was necessary 33 variables for splitting at each tree node (Table 3). To avoid unbiased 

evaluation of the models, we did not leave out validation dataset and main assess the accuracy by retrieving a formal 

study in the same study area plus some soil profiles. Analysing the variable importance for soil order predictions, there 

was a certain variation of which ancillary variables had to be chosen for modelling (Table 10).  
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Table 10. Variable importance in percentage from Random Forest for the soil orders.  
 Argissolo Cambissolo Gleissolo Latossolo Luvissolo Neossolo Nitossolo 

Hem_A 52 30 12 37 13 24 27 
Hem_B 33 30 9 30 13 15 21 
Hem_C 42 22 6 20 4 13 15 
Gt_A 45 24 8 32 14 15 26 
Gt_B 50 32 8 31 14 14 38 
Gt_C 42 24 7 26 7 12 20 

Gbs_A 52 36 11 31 17 20 20 
Gbs_B 35 29 18 33 17 28 33 
Gbs_C 46 30 5 22 7 17 19 
Kln_A 49 35 8 22 10 12 18 
Kln_B 32 24 7 19 9 12 16 
Kln_C 39 24 5 19 4 13 17 
Chl_A 35 26 8 40 13 19 24 
Chl_B 79 50 9 45 12 41 35 
Chl_C 62 33 7 26 11 24 20 
Cal_A 59 36 8 41 17 13 30 
Cal_B 58 34 11 45 14 14 34 
Cal_C 37 26 13 35 13 20 25 
Ill_A 20 19 9 19 10 12 12 
Ill_B 34 20 10 16 9 16 16 
Ill_C 36 25 4 18 5 13 16 
Ms_A 37 25 5 26 14 17 18 
Ms_B 34 24 11 22 15 13 16 
Ms_C 37 24 6 29 5 11 21 
Mnt_A 34 29 9 21 11 12 16 
Mnt_B 47 36 8 19 12 12 24 
Mnt_C 39 24 5 20 5 11 16 

H/Gt_A 100 73 20 76 21 40 66 
H/Gt_B 57 46 14 79 23 58 46 
H/Gt_C 53 35 4 33 7 28 32 
K/Gb_A 86 67 18 66 29 43 37 
K/Gb_B 85 59 20 79 31 53 62 
K/Gb_C 60 36 11 37 12 42 27 

Bt 63 34 9 55 14 40 32 
χ _A 37 32 23 32 42 45 28 
χ _C 34 33 21 89 26 29 63 
FI_A 27 25 15 36 27 19 22 

Clay_A 49 31 5 35 12 13 19 
Clay_B 42 28 9 29 11 11 20 
Clay_C 39 23 6 22 7 13 18 
Sand_A 42 33 14 48 18 18 26 
Sand_B 62 48 14 51 21 23 36 
Sand_C 51 34 9 29 10 16 20 
SOM_A 42 30 13 39 18 15 23 
SOM_B 70 56 25 59 41 45 23 
SOM_C 37 17 11 39 10 26 21 

Al_A 70 52 7 60 10 45 39 
Al_B 78 45 12 54 21 26 32 
Al_C 45 36 23 68 20 29 39 

CEC_A 67 37 10 42 10 18 35 
CEC_B 47 38 19 60 21 19 40 
CEC_C 51 34 17 63 20 37 47 
AS_A 88 66 18 94 23 58 57 
AS_B 67 41 6 48 8 41 32 
AS_C 77 41 10 49 22 44 22 
SB_A 58 40 13 45 17 28 45 
SB_B 65 57 17 43 24 44 39 
SB_C 33 23 13 41 11 20 34 
BS_A 64 45 11 55 31 31 37 
BS_B 65 54 15 81 18 44 52 
BS_C 56 37 7 36 8 32 32 
pH_A 82 73 37 88 49 68 54 
pH_B 57 43 7 45 15 46 30 
pH_C 68 41 8 38 10 36 29 

A (0 – 20 cm); B (40 – 60 cm); C (80 – 100 cm); Hematite/ (Hematite + Goethite) (H/Gt); Kaolinite/ (Kaolinite + 
Gibbsite) (K/Gb). 
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The patterns of forty-nine predictors were relevant to model the soil orders. At 0 – 20 cm depth, the most 

relevant ancillary variables were Hem and Kln indices, pH, soluble Al3+, SB, CEC, BS, AS, sand and SOM contents, 

Hem, Gt, Gbs, Kln, Chl, and Cal contents, MS and FI contents. At 40 – 60 cm depth, the Hem and Kln indices, pH, 

soluble Al3+, SB, CEC, BS, AS, sand and SOM contents, Gt, Gbs, Cal, Chl, Ms, Ill, and Mnt contents were more 

important. At 80 – 100 cm, the indices of Bt horizon, Hem and Kln, and pH, soluble Al3+, SB, CEC, BS, AS, sand and 

SOM contents, Chl and Cal contents and χ contents were the most relevant. It is of note that those predictors randomly 

selected by the random forest algorithm are not necessarily the only vital soil data needed to best-predicted soil orders. 

We just intended here to show how those variables played inside the model as it is for the SMUs and yield environment 

predictions. Other models could show better performance using all sixty-four predictors, but we did not test them in 

this specific study as the random forest is the most used algorithm in digital soil mapping.  

 In the region of interest, seven soil orders plus rocky outcrops class were predicted classified according to the 

Brazilian Soil Classification System and their correspondence with the World Reference Base (Fig. 6). The predominant 

soil orders were Latossolo and Argissolo, followed by Neossolo, Nitossolo, Cambissolo, Luvissolo, Gleissolo, and 

Afloramentos. The cartographic scale of this soil map is 1:20000, which is considered detailed mapping. 

 

 

Fig. 6. Predicted soil orders according to the Brazilian Soil Classification System with their correspondence to World 
Reference Base. 
 
 We had 27 soil mapping units within those seven soil orders (Table 11). The main predictors modelling the 

SMUs at 0 – 20 cm depth were Hem and Kln indices, pH, soluble Al3+, SB, CEC, BS, AS, sand, clay and SOM contents, 

Hem, Gt, Gbs, Kln, Chl, Cal, Ill, and Mnt contents, χ and FI contents. Assessing the 40 – 60 cm depth, the Hem and 

Kln indices, pH, soluble Al3+, SB, CEC, BS, AS, sand and SOM contents, Hem, Gt, Gbs, Kln, Chl, Cal, Ill, Ms, and 

Mnt contents displayed as most valuable predictors. At the deepest layer, the most relevant ancillary variables were Bt 

horizon, Hem and Kln indices, pH, soluble Al3+, SB, CEC, BS, AS, sand, clay and SOM contents, Gt, Chl, and Cal 
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contents, and χ contents. Thus, fifty-six out of sixty-four predictors were expressive to model the SMUs. Fig. 7 presents 

the final predicted map of the soil mapping units. The CX, CXL, LVA, LVAP, LVf, PV, PVf, NVLf, NVf, and RQ 

are the most frequent soil mapping units in the region of interest. 
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Table 11. Variable importance in percentage from Random Forest for the soil mapping units. 
Attrib. CX CXL GX LA LH LV LVA LVAP LVf LVP NV NVf NVL NVLf NX PA PAL PV PVA PVAL PVf PVL RL RQ RQP RR TX 

Hem_A 42 4 14 31 12 40 18 0 25 23 22 18 22 18 9 42 7 47 46 9 13 35 28 31 19 35 17 

Hem_B 39 8 8 18 18 39 16 6 23 23 22 25 17 17 8 28 6 34 28 15 14 26 29 24 11 24 15 

Hem_C 33 3 7 13 8 24 10 3 14 15 11 19 5 12 3 26 7 38 31 8 11 26 17 15 15 22 6 

Gt_A 39 7 10 23 14 54 15 6 36 22 22 33 26 28 8 33 7 54 43 17 14 34 30 23 13 24 19 

Gt_B 42 6 10 19 17 58 19 9 29 23 19 38 32 24 10 37 5 50 36 12 16 32 26 18 13 28 16 

Gt_C 37 3 8 12 8 32 13 7 28 16 16 28 10 16 4 31 8 40 36 16 12 30 21 16 11 24 6 

Gbs_A 39 7 13 16 13 43 21 2 27 21 20 17 20 19 7 39 6 48 43 10 16 30 30 27 14 26 18 

Gbs_B 74 15 31 28 28 63 56 8 37 61 42 33 35 20 15 61 17 84 63 24 38 63 63 36 37 34 36 

Gbs_C 37 3 6 13 9 28 12 3 16 14 12 18 8 12 3 31 6 40 38 8 13 28 20 21 18 22 8 

Kln_A 49 5 10 23 12 35 14 4 26 18 19 21 18 17 7 43 5 49 52 12 12 35 34 18 20 32 14 

Kln_B 22 6 8 16 11 25 13 10 28 18 17 16 15 16 7 19 6 28 24 18 14 23 23 17 11 18 12 

Kln_C 33 3 6 14 6 24 8 4 19 14 11 16 8 10 2 26 7 31 29 8 11 24 16 13 12 23 7 

Chl_A 28 6 9 27 11 33 13 2 27 17 20 17 17 16 7 28 7 30 38 9 11 26 22 19 12 26 13 

Chl_B 65 5 13 37 16 70 25 3 31 28 24 38 27 27 13 63 7 72 56 12 18 48 36 20 25 40 16 

Chl_C 45 6 11 18 10 42 25 6 15 29 14 20 14 17 7 43 9 53 47 9 15 37 27 27 25 36 17 

Cal_A 25 7 12 27 15 40 18 5 27 23 25 23 24 19 9 33 8 34 40 11 13 33 20 25 13 37 20 

Cal_B 53 7 15 23 31 51 23 4 56 27 35 32 23 26 12 45 8 62 48 15 25 44 39 27 11 32 18 

Cal_C 30 5 13 21 11 30 20 3 25 23 18 21 15 18 8 33 8 35 32 14 14 26 26 20 21 24 14 

Ill_A 26 5 12 16 14 26 11 6 20 21 13 16 18 15 9 17 8 26 23 15 14 20 19 16 11 18 11 

Ill_B 22 7 13 21 12 27 16 3 15 22 15 29 13 12 11 22 8 27 24 13 14 22 29 17 15 22 14 

Ill_C 33 4 6 11 7 21 9 2 15 15 11 16 6 10 4 25 7 30 29 8 10 22 14 13 12 17 6 

Ms_A 18 5 9 15 10 28 10 5 22 16 15 15 17 13 5 17 7 20 22 12 11 19 17 14 13 15 12 

Ms_B 23 8 12 16 11 22 16 8 22 20 14 12 11 11 10 21 8 25 25 14 14 20 18 14 12 16 17 

Ms_C 33 3 8 14 7 28 12 4 19 15 13 18 11 13 6 22 9 37 31 8 10 26 20 14 13 22 7 

Mnt_A 23 5 12 26 12 31 16 4 23 18 14 20 16 14 9 22 5 37 32 9 12 28 27 17 25 29 15 

Mnt_B 45 6 11 21 22 33 16 11 50 21 22 33 18 31 10 38 6 48 39 16 15 39 29 17 10 31 15 

Mnt_C 32 3 7 11 7 21 9 4 17 16 12 17 8 14 3 26 6 31 27 6 10 26 16 15 10 22 6 

H/Gt_A 73 7 22 48 21 100 43 5 47 53 41 42 31 51 11 82 5 87 93 20 20 73 67 50 41 93 31 

H/Gt_B 60 13 19 29 25 85 35 4 44 36 31 57 38 34 17 53 15 77 60 26 29 69 38 37 30 37 31 

H/Gt_C 41 5 6 16 10 35 13 3 25 16 21 24 11 19 6 32 5 52 31 10 13 32 21 26 15 24 7 

K/Gb_A 68 9 23 32 23 91 37 3 47 37 37 39 28 30 10 63 14 96 79 16 27 56 61 47 38 40 31 

K/Gb_B 73 14 21 27 21 76 36 6 59 41 36 46 43 33 13 76 11 99 81 26 25 72 48 46 52 41 38 

K/Gb_C 49 6 10 19 13 49 17 3 22 17 16 28 13 15 4 43 7 58 55 7 16 38 29 37 30 28 11 

Bt 47 4 10 19 11 58 20 5 32 21 19 28 20 18 5 46 13 52 53 13 13 35 24 31 16 33 16 

χ_A 41 11 28 67 24 38 31 10 21 38 33 28 24 19 17 59 12 39 46 17 28 44 43 56 32 71 52 

χ_C 35 5 24 27 27 56 33 13 38 30 32 40 36 31 14 33 14 41 33 22 38 35 37 32 34 26 27 

FI_A 39 10 21 26 38 68 30 19 88 49 60 51 52 96 20 33 13 43 37 45 30 56 35 32 31 30 33 

Clay_A 30 5 8 18 12 36 13 4 22 17 16 14 19 14 7 27 10 30 32 12 12 26 17 18 17 28 14 

Clay_B 23 5 9 17 9 22 19 3 18 15 16 15 13 12 8 19 6 28 26 9 14 20 17 15 12 18 12 

Clay_C 39 4 8 14 9 21 11 3 17 17 12 18 8 10 4 30 8 37 35 10 11 26 21 14 15 28 8 

Sand_A 44 11 17 25 20 62 26 8 46 33 21 33 30 32 13 40 15 47 39 25 22 47 36 21 29 26 25 

Sand_B 54 10 16 20 14 54 27 8 46 34 31 38 22 27 13 49 10 60 39 22 17 50 43 24 15 24 19 

Sand_C 44 5 11 24 10 31 18 6 23 20 15 25 11 13 5 45 9 38 44 5 12 36 24 16 23 34 11 

SOM_A 62 8 15 31 14 51 24 3 28 45 24 34 27 20 10 61 7 74 60 16 17 49 46 20 15 48 21 
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SOM_B 49 7 19 62 48 52 32 6 25 37 22 17 16 16 16 64 12 51 66 16 39 56 31 33 29 81 41 

SOM_C 31 6 9 17 14 43 13 3 35 20 12 17 21 16 5 38 4 42 46 18 15 35 18 28 23 37 9 

Al_A 47 3 11 22 22 55 17 4 33 22 17 35 11 18 6 47 4 58 57 14 16 38 32 45 24 43 10 

Al_B 50 8 15 33 16 64 22 2 38 26 18 36 20 20 8 59 6 66 73 16 17 43 30 28 27 40 24 

Al_C 51 9 23 30 14 75 30 1 56 34 20 45 22 29 11 51 9 39 67 11 20 53 31 35 32 41 26 

CEC_A 49 5 11 26 20 53 14 3 34 25 25 43 27 24 10 49 4 56 49 12 19 42 28 24 23 44 12 

CEC_B 45 7 16 27 22 51 20 3 37 29 25 40 21 23 9 38 8 41 37 14 16 42 32 23 13 40 20 

CEC_C 53 10 18 26 17 72 53 4 36 31 28 43 23 21 8 61 9 55 57 17 18 52 35 28 18 35 25 

AS_A 73 6 25 19 18 89 42 3 58 37 31 48 43 31 19 77 9 81 78 14 27 64 51 47 35 38 27 

AS_B 43 7 9 25 20 50 20 4 31 21 15 35 15 17 5 42 4 68 48 9 16 38 25 37 20 32 13 

AS_C 50 4 12 24 18 55 23 0 39 21 16 27 11 20 6 51 5 58 58 10 15 40 33 42 24 34 21 

SB_A 42 7 14 26 21 47 28 5 39 29 36 33 22 27 12 44 9 52 48 14 24 39 45 24 26 44 17 

SB_B 63 9 20 38 27 50 32 8 37 36 43 40 25 28 18 61 16 54 60 24 32 55 54 51 28 48 28 

SB_C 31 7 10 19 12 44 19 3 28 17 21 27 16 16 8 32 2 30 36 11 12 30 18 22 19 30 11 

BS_A 48 7 11 31 27 50 22 8 28 22 20 35 30 22 11 51 8 49 56 16 19 48 27 45 24 39 33 

BS_B 70 9 20 28 28 72 29 13 49 40 45 52 42 43 15 52 16 74 70 35 27 63 53 37 26 48 20 

BS_C 43 7 8 18 30 42 18 3 28 13 26 34 26 18 6 42 7 53 48 11 16 40 21 33 23 29 12 

pH_A 77 9 26 71 29 98 37 6 54 57 51 38 33 36 22 85 8 91 71 23 30 80 44 58 52 76 40 

pH_B 52 5 8 31 20 47 19 2 39 23 18 33 32 26 13 46 5 55 53 16 17 40 31 44 24 38 15 

pH_C 51 5 8 24 18 37 16 1 23 16 16 24 20 20 7 46 2 55 50 10 14 40 31 29 13 32 9 

A (0 – 20 cm); B (40 – 60 cm); C (80 – 100 cm); Hematite/ (Hematite + Goethite) (H/Gt); Kaolinite/ (Kaolinite + Gibbsite) (K/Gb). 
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Fig. 7. Predicted soil mapping units in the region of interest, which represents the adapted fifth categorical level of the 
Brazilian Soil Classification System. 
 
  The yield environment classes from the most productive (A) to the less productive (G) needed forty-four 

out of sixty-four predictors to fit well the model (Table 12). The most important variables to build the yield 

environment at the three depths were Bt horizon, Hem and Kln indices, pH, soluble Al3+, SB, CEC, BS, AS, sand, clay 

(0-20 cm) and SOM contents, Hem (0-20 cm), Gt (0-20 and 40-60 cm), Gbs (0-20 and 40-60 cm), Kln (0-20 cm), Chl 

(40-60 cm), and Cal (0-20 and 40-60 cm) contents, MS (0-20 and 80-100 cm) and FI (0-20 cm) contents. 
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Table 12. Variable importance in percentage from Random Forest for yield environment. 
Attributes A B C D E F G 

Hem_A 29 27 31 33 35 41 35 
Hem_B 17 20 22 22 20 19 16 
Hem_C 16 17 25 27 24 30 14 
Gt_A 23 35 37 35 27 43 24 
Gt_B 29 29 37 37 36 39 23 
Gt_C 26 24 27 33 28 34 15 

Gbs_A 31 33 36 40 29 35 29 
Gbs_B 43 43 47 57 58 53 43 
Gbs_C 19 23 30 31 27 37 18 
Kln_A 16 31 32 35 33 41 19 
Kln_B 18 30 26 32 27 24 21 
Kln_C 17 15 18 26 21 29 13 
Chl_A 31 22 23 20 18 19 15 
Chl_B 45 42 51 57 45 62 60 
Chl_C 28 32 29 37 29 34 22 
Cal_A 33 41 42 39 29 43 28 
Cal_B 50 46 43 41 30 38 31 
Cal_C 25 29 27 30 25 33 27 
Ill_A 17 15 19 18 17 16 14 
Ill_B 13 19 16 18 17 16 17 
Ill_C 14 18 19 25 19 29 12 
Ms_A 11 11 12 13 12 14 13 
Ms_B 17 18 23 26 22 21 19 
Ms_C 16 18 25 27 21 31 16 
Mnt_A 16 26 22 32 29 37 22 
Mnt_B 17 33 25 24 18 23 20 
Mnt_C 16 15 19 27 18 28 14 

H/Gt_A 65 71 70 67 62 79 58 
H/Gt_B 41 51 56 46 41 46 48 
H/Gt_C 15 30 33 36 32 39 33 
K/Gb_A 46 66 59 67 52 51 47 
K/Gb_B 72 76 74 74 74 81 67 
K/Gb_C 25 36 35 38 37 50 38 

Bt 38 45 38 40 36 50 44 
χ_A 36 30 34 41 43 54 41 
χ_C 48 44 42 40 41 45 55 

FI_A 30 76 33 34 27 28 21 
Clay_A 25 25 28 36 23 38 36 
Clay_B 17 19 22 19 17 20 19 
Clay_C 13 17 20 27 23 34 14 
Sand_A 28 46 52 51 38 51 44 
Sand_B 34 48 50 51 49 54 56 
Sand_C 26 29 29 36 31 43 23 
SOM_A 33 41 49 49 44 60 51 
SOM_B 41 64 55 48 46 59 55 
SOM_C 40 38 27 36 31 49 47 

Al_A 49 51 36 39 35 51 46 
Al_B 37 46 55 44 42 56 33 
Al_C 43 47 56 49 43 55 32 

CEC_A 50 59 37 47 34 53 28 
CEC_B 42 53 40 42 38 44 27 
CEC_C 48 53 45 46 43 47 38 
AS_A 65 68 68 61 53 67 65 
AS_B 37 44 40 43 39 50 50 
AS_C 32 45 43 45 37 44 43 
SB_A 44 51 39 49 33 52 24 
SB_B 51 49 43 58 53 66 50 
SB_C 47 40 23 38 28 45 22 
BS_A 45 32 27 38 34 51 53 
BS_B 83 95 49 67 60 68 46 
BS_C 35 24 24 35 35 34 35 
pH_A 100 94 94 100 93 75 82 
pH_B 40 28 36 45 49 55 64 
pH_C 23 24 27 35 31 46 47 

A (0 – 20 cm); B (40 – 60 cm); C (80 – 100 cm); Hematite/ (Hematite + Goethite) (H/Gt); Kaolinite/ (Kaolinite + 
Gibbsite) (K/Gb). 
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 The predicted yield environment map was well represented in the study area (Fig. 8). The yield environment 

classes display sugarcane productivity as very high (A, > 100 ton ha-1), high (B, 90-100 ton ha-1), medium/high (C, 85-

90 ton ha-1), medium (D, 80-85 ton ha-1), low (E, 75-80 ton ha-1), very low (F, 70-75 ton ha-1), and extremely low (G, 

< 70 ton ha-1). Most of the ROI had A, B, and G yield environment followed by the other classes.  

 

 

Fig. 8. Predicted map of yield environment in the region of interest. 
 

4.3.4. Consistency between SMUs and Yield Environments 

 The level of association between the SMUs and yield environments was accessed using the Cramer’s V 

coefficient, which generalises statistically contingency tables of varying sizes (Table 13). This coefficient value was 0.34 

(p < 0.01) between those two categorical maps displaying a very strong relationship. The predicted yield environment 

in the region of interest had approximately 22.2, 16.5, 2.4, 4.2, 7.5, 13.3, and 33.5% of the pixels with A, B, C, D, E, F, 

and G yield environments, respectively. Therefore, most of the productive areas for sugarcane had very low yield.  
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Table 13. Consistency table of the relationship between soil mapping units (SMUs) and yield environments by predicted 
pixels in the region of interest. 

SMUs 
A B C D E F G 

% 

RL 0.142 0.103 0.005 0.007 0.018 0.662 0.608 

CX 1.068 1.983 0.266 0.888 3.078 1.990 8.102 

CXL 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

GX 0.000 0.002 0.000 0.002 0.010 0.001 0.008 

LA 0.000 0.003 0.000 0.008 0.018 0.060 0.699 

LH 0.079 0.111 0.010 0.001 0.000 0.000 0.000 

LV 10.113 5.989 0.875 0.859 0.128 1.559 1.447 

LVA 0.002 0.000 0.000 0.001 0.000 0.009 0.066 

LVAP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

LVf 3.918 1.769 0.087 0.001 0.000 0.000 0.008 

LVP 0.007 0.038 0.001 0.009 0.001 0.001 0.001 

NV 0.421 0.065 0.012 0.003 0.001 0.071 0.005 

NVf 1.511 0.052 0.000 0.000 0.004 0.001 0.007 

NVL 0.035 0.002 0.010 0.000 0.000 0.000 0.000 

NVLf 0.004 0.038 0.000 0.000 0.000 0.000 0.000 

NX 0.004 0.000 0.000 0.000 0.000 0.000 0.000 

PA 0.069 0.298 0.066 0.360 0.996 1.652 2.520 

PAL 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

PV 4.279 4.708 0.792 1.050 1.587 2.503 3.022 

PVA 0.484 1.289 0.274 0.926 1.248 4.020 7.108 

PVAL 0.006 0.008 0.038 0.001 0.000 0.000 0.000 

PVf 0.005 0.000 0.000 0.000 0.000 0.000 0.000 

PVL 0.037 0.107 0.013 0.127 0.004 0.037 0.023 

RQ 0.006 0.007 0.008 0.001 0.119 0.369 7.440 

RQP 0.012 0.005 0.001 0.002 0.302 0.051 0.544 

RR 0.003 0.004 0.001 0.001 0.027 0.367 1.978 

TX 0.003 0.000 0.010 0.000 0.000 0.004 0.003 

Total 22.209 16.581 2.470 4.252 7.543 13.357 33.588 

100% (N = 3,494,378 pixels of 30 x 30 m) 
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The SMUs of LV, LVf, PV, NVf, and CX were associated with the A yield environment, which can provide 

very high sugarcane productivity. High yield environment can be displayed for LV, PV, CX, LVf, and PVA SMUs. 

Those and these SMUs are derived from igneous rocks, that is why they presented high and very high yield 

environments. Medium/high yield environment, which is then characterised by C, was related to SMUS of LV and 

PV.  The PV, PVA, CX, and LV SMUs presented most of the D yield environment, that is 80-85 ton ha-1 of sugarcane. 

The CX, PV, and PVA SMUs were the foremost representatives in the E yield environment. While for the F yield 

environment, the highlighted soil mapping units were PVA, PV, CX, PA, and LV. Moreover, the G yield environment 

(extremely low sugarcane productivity) were found in the CX, RQ, PVA, PV, PA, and RR SMUs. Most of those SMUs 

are derived from sedimentary materials, which form sandy soils.  

 

4.3.5. Qualitative evaluation 

 In the study area, we found a study of five soil profiles developed by Vidal-Torrado and Lepsch (1999) and 

evaluated qualitatively the similarity with the predicted SMUs (Fig. 9). These authors classified those five soil pits as 

LV, PVAL, and PVL which matched to our SMUs prediction. This shows the potentiality of spatializing the soil 

information even though using the dataset from outside that area. Thus, it means the digital soil mapping applying our 

approach could reach a reasonable level of certainty.  
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Fig. 9. Assessing the qualitative association between the predicted SMUs and a former soil survey in a site in the region 
of interest published by (Vidal-Torrado and Lepsch, 1999). 

 

 Furthermore, we acquired the field information of three soil profiles in the ROI to assess the predictive power 

of our approach in a different area (Fig. 10). The predicted SMUs corresponded to those in the field. Of course, more 

need to be done to improve more and more the quality of the methodology developed here in this study, but we 

proved that a satisfactory level of accuracy was reached. 
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Fig. 10. Evaluating qualitatively the predicted SMUs by three soil profiles classified in the region of interest. 
 

4.4. DISCUSSION 

4.4.1. Soil mapping units’ mineralogy 

The magnetic susceptibility and the estimated soil mineralogy content of the Ill, Mnt, and Ms allowed 

distinguishing most of the main SMUs into their orders. Marconi (1974), analysing the main soil mineralogy of the 

soils in the same ROI, pointed out that those soils had the presence of minerals such as magnetite and muscovite. 
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Rodrigues and Marconi (1990), evaluating the mineralogy of sand fraction of LVf in the municipality of Piracicaba, 

highlighted the magnetite as the main mineral. Those studies corroborate with our findings pointing out the importance 

of the magnetic susceptibility to classify the soil units. This soil property is indirectly related to soil texture because 

soils that present high values of magnetic susceptibility will display high clay contents. The same trend applies to free 

iron content (Nandra, 1974), which also satisfactorily characterised the soil mapping units. Those two soil attributes 

play a vital role in ROI because of the diversity of parent materials such as siltstones, tillites, varvites, conglomerates, 

sandstones, shales, limestones, dolomite, flint, diabase, and basalt (Bonfatti et al., 2020; Teramoto et al., 2001). Another 

characteristic of the tropical soils in the ROI is the common presence of montmorillonite and kaolinite as revealed by 

Demattê et al. (2006). This fact underlies our findings in differentiating the SMUs.   

 

4.4.2. Soil mapping units’ fertility and yield environment 

The yield environment combines the soil physical, chemical, and types into a single component to classify 

areas for sugarcane production. The Brazilian soils usually have high acidity, which affects plant growth depending on 

the Al3+ and H+ ions in the soil solution (Abreu et al., 2003). Soluble aluminium is the major factor that can affect 

plant growth and produce a toxic environment for root development.  From all soil chemical attributes analysed in our 

study, considering the less revolved soil layer, aluminium saturation was the foremost attribute in classifying the yield 

environments and SMUs. (Cerri and Magalhães, 2012), analysing the correlation of Oxisols physical and chemical 

attributes with the sugarcane yield (e.g. yield environment), concluded that for Oxisols the physical and chemical 

attributes are weak to explain the yield variation. However, the Al3+ had a positive effect on the sugarcane yield. Those 

facts underlie our results and highlight the importance of this soil chemical attribute for yield environment in the ROI. 

Understanding the SMUs and their relationship with the yield environments allow farmers to better manage their areas 

allocating harvest blocks, for instance. The main challenging on this, according to Demattê and Demattê (2009), is to 

choose the suitable sugarcane variety for soils of low fertility as are most of the Brazilian soils.   

 

4.4.3. Application and limitations 

 Our approach of using the Digital Soil Mapping products to predict the SMUs is similar to the Disaggregating 

and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART) developed by Odgers et 

al. (2014) and extensively applied in some studies (Ellili-Bargaoui et al., 2020; Ellili Bargaoui et al., 2019; Møller et al., 

2019; Vincent et al., 2018). The difference is that the DSMART uses as predictors the environmental variables 

necessary to predict the soil attributes in DSM, while our approach is the first attempt to use the predict soil attributes 

as predictors of the SMUs. That is the novelty of our study. Here, we just applied the Random Forest algorithm, which 

is the most tested in DSM and achieved reasonable results as it was verified by accessing other former studies in ROI 

and field observations. Other studies using decision tree C4.5 (Giasson et al., 2011) and logistic regression (Giasson et 

al., 2006) presented overall accuracy lower than our findings because they had not used the DSM products instead. We 

know that is not a perfect system yet. There are some limitations as the actual soil survey protocol developed by 

humans has. However, creating the synergy between the technology available and the tacit knowledge is a step forward 

to improve more and more the spatialisation and classification of soils.  
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4.5. CONCLUSION 

  In this study, we applied the DSM products as predictors of the SMUs and yield environment in a complex 

diversity area. Therefore, it was presented the potentiality of using the DSM products such as soil chemical, physical, 

indices, mineralogy, and properties to extrapolate former soil survey maps at 1:20000 scale. The digital yield 

environment for sugarcane based on the DSM products was created and a qualitatively evaluation of the predict soil 

maps and relationship with former research showed that our findings and framework could attend the need for soil 

maps at regional and farm levels to achieve best management agricultural practices. 
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