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RESUMO 

Aplicações de sensoriamento remoto e proximal para conservação e manejo do solo 

A presente tese de doutorado teve por objetivo desenvolver técnicas de sensoriamento 
remoto e próximo e mapeamento digital do solo aplicadas ao manejo e conservação dos solos. O 
Capítulo 1 expõe uma introdução geral do trabalho. No Capítulo 2 objetivou-se avaliar a 
utilização de diferentes sistemas sensores na predição do teor de um dos mais importantes 
atributos do solo que a argila, para apoiar práticas de manejo em uma pequena propriedade 
agrícola. Para isso, foram usados dados provenientes dos sensores hiperespectrais de laboratório 
FieldSpec e aerotransportado AISA-FÊNIX, e dos sensores ópticos orbitais do LANDSAT 8-
OLI, Sentinel 2-MSI e PlanetScope. No terceiro capítulo uma abordagem semelhante foi adotada, 
no entanto, adotou-se uma área de estudo de maior extensão (regional) para mapear a 
erodibilidade do solo, um importante parâmetro utilizado em modelagens da predição de perda 
do solo por erosão hídrica. Para isso foi obtida uma imagem multi-temporal de solo exposto 
denominada SYSI. No quarto capítulo, uma coleção de imagens Landsat (1985 a 2019) foi 
utilizada para entender a dinâmica espaço-temporal de exposição dos solos (descobertos) 
cultivados com cana-de-açúcar cobrindo a região de Piracicaba. No segundo capítulo os 
resultados encontrados mostraram melhores desempenhos de predição para os sensores de 
laboratório e a bordo de aeronave, seguido pelos sensores Landsat 08-OLI e Sentinel 2-MSI. O 
sensor PlanetScope apresentou a menor performance de predição (R² 0,26 e 0,14). No terceiro 
capítulo as técnicas utilizadas permitiram a criação de mapas digitais da erodibilidade do solo mais 
adequados para a utilização em pequenas áreas do que mapas de erodibilidade gerados a partir de 
mapas de solos legados atualmente disponíveis. No quarto capítulo foi possível identificar o 
impacto positivo do fim da queima da cana-de-açúcar, na redução da área de solo desprotegido 
durante o ano. Entretanto, se constatou que solos arenosos são mais frequentemente 
desprotegidos devido ao seu menor potencial produtivo. Essa maior frequência de exposição 
pode potencializar a perda de carbono orgânico do solo, uma vez que está associada a práticas 
convencionais de preparo do solo para um novo plantio da cultura da cana-de-açúcar. Solos mais 
argilosos apresentam menor frequência de exposição devido ao maior potencial produtivo dos 
mesmos, o que leva a uma menor necessidade de renovação do canavial. Finalmente o capítulo 5, 
faz considerações gerais e conclusões sobre o trabalho como um todo. 

Palavras-chave: Mapeamento digital do solo, Sensoriamento remoto, Sensoriamento próximo, 
Erosão, USLE, Séries temporais de imagens de satélites, Manejo do solo, 
Pedometria  
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ABSTRACT 

Remote and proximal sensing applications for soil conservation and management 

This doctoral thesis aimed to develop techniques for remote and proximal sensing and 
digital soil mapping applied to soil management and conservation. Chapter 1 provides a general 
introduction to the work. In Chapter 2, the objective was to evaluate the use of different sensor 
systems in predicting the content of one of the most important attributes of the soil than clay, to 
support management practices in a small agricultural property. For this, data from the FieldSpec 
laboratory and airborne AISA-FÉNIX hyperspectral sensors, and from the orbital optical sensors 
of LANDSAT 8-OLI, Sentinel 2-MSI and PlanetScope were used. In the third chapter a similar 
approach was adopted, however, a larger (regional) study area was adopted to map soil 
erodibility, an important parameter used in modeling the prediction of soil loss by water erosion. 
For this, a multi-temporal image of exposed soil called SYSI was obtained. In the fourth chapter, 
a collection of Landsat images (1985 to 2019) was used to understand the spatio-temporal 
dynamics of exposure of (discovered) soils cultivated with sugarcane covering the Piracicaba 
region. In the second chapter, the results found showed better prediction performance for the 
laboratory and on-board sensors, followed by the Landsat 08-OLI and Sentinel 2-MSI sensors. 
The PlanetScope sensor presented the lowest prediction performance (R² 0.26 and 0.14). In the 
third chapter, the techniques used allowed the creation of digital maps of soil erodibility more 
suitable for use in small areas than erodibility maps generated from currently available legacy soil 
maps. In the fourth chapter, it was possible to identify the positive impact of the end of the 
sugarcane burning, in the reduction of the area of unprotected soil during the year. However, it 
was found that sandy soils are more often unprotected due to their lower productive potential. 
This higher frequency of exposure can potentiate the loss of organic carbon from the soil, since it 
is associated with conventional practices of soil tillage for a new planting of the sugarcane crop. 
More clayey soils have a lower frequency of exposure due to their greater productive potential, 
which leads to a lower need for sugarcane renewal. Finally, chapter 5 makes general 
considerations and conclusions about the work as a whole. 

Keywords: Digital soil mapping, Remote sensing, Proximal sensing, Erosion, USLE, Satellite 
images time series, Soil management, Pedometric 
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1. GENERAL INTRODUCTION 

 
Soil has importance not just in agriculture, but also in the performance of six other functions that are 

related to the good functioning of ecosystems and human well-being (Blum, 2005). Therefore, knowing the soil and 

its attributes, as well as its distribution in space, is extremely important for its proper conservation and management. 

One of the most practical and didactic ways to represent information on the variation of important soil 

characteristics is through maps. This can be a map of soil classes, or of a particular attribute, or even a map generated 

from basic information in order to point out where specific management practices should occur, such as maps of 

management zones. 

However, in many places around the world soil information is difficult to obtain and is practically 

nonexistent, especially in developing countries and in tropical region (Minasny and Hartemink, 2011). This is more 

pronounced for data on an adequate scale for local soil management and conservation planning and for smallholder 

farming application (Lepsch, 2013). Digital Soil Mapping (DSM) (Nolasco de Carvalho et al., 2015) linked or not 

with remote or proximal sensing and pedotransfer functions (PTFs), is a technique that can contribute to obtain 

information in these situations. 

Different techniques of proximal sensing (PS), such as visible, near and short-wave infrared spectroscopy 

(Vis-NIR-SWIR), have boosted the obtaining of faster and low cost punctual soil information, which makes it 

possible, for example, to increase the number of samples collected. This aspect is very important mainly for spatial 

predictions using geostatistical (e.g., kriging). On the other hand, remote sensing (RS) makes it possible to obtain 

information that can contribute to spatial predictions based on spatial association approaches (Miller, 2017), by 

providing information used as covariates. Satellites have the capability of imaging large areas and provide a spatial 

overview of possible changes in landscapes at short or longer distances (e.g., 30m of spatial resolution), with 

different temporal resolution, which is allowing the monitoring of changes that can associated to the spatial 

variability of soils (Demattê et al., 2020). Recent advances, such as the use of hyperspectral sensors aboard aircraft or 

satellites, further increase this potential for obtaining grided soil information. 

Another important advance in recent years is the use of multi-temporal images. With an image collection 

obtained since the 1970s, that is, over 40 years of information, it is possible to assess changes in environment 

characteristics or, in the case of agricultural soil, to measure the spatial information of the exposed/bare soil. All this, 

driven by the advance in computational processing capacity, artifitial intellingence algorithms, cloud-based processing 

tools, among others. 

In this thesis, we are concerned in addressing two main subjects: a) advance in the digital mapping of 

important soil properties for the correct management and conservation of soils, using data from remote and 

proximal sensing. b) to use satellite time series images as a tool for monitoring soil management practices, aiming at 

their adequate conservation (soil security). In the Chapter 2, spectral data from sensors located on different 

platforms (laboratory, aircraft and satellites) with different spatial and spectral resolutions were used as independent 

variables for spatial prediction of clay content. Clay is an important attribute related to soil management and 

conservation practices, for which a farm-geographic extension area was used as a study area. In Chapter 3 a similar 

prediction approach was used, using data from a Synthetic Soil Image (SYSI) obtained from Landsat time series 

images (1985 to 2019) and 350 to 2500 nm proximal sensing data. However, the study area was the Piracicaba region 

(2574 km²), and the property predicted the soil erodibility (K factor). The results obtained were analyzed in two case 

studies aiming to demonstrate potential of the soil erodibility digital maps to better represent the spatial variation of 
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erodibility, compared to erodibility maps obtained from low-scale soil maps. Finally, Chapter 4 presented an 

innovative proposal, the analysis of soil exposure (discovered soil) from 1985 to 2019 for the sugarcane production 

area in the Piracicaba region. One of the basic factors necessary for soil loss by water born erosion, is the same being 

unprotected/uncovered/bare (Morgan, 2005). We demonstrate how sugarcane crop management practices are 

directly related to a greater number of times the soil is uncovered over time. 

This thesis ends with a general discussion and a conclusion of the main findings.  
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2. CLAY CONTENT PREDICTION USING SPECTRA DATA COLLECTED FROM THE GROUND TO 

SPACE PLATFORMS IN A SMALLHOLDER TROPICAL AREA  

 

Abstract 

Proximal and remote sensors are emerging as powerful sources of soil spectral information at an array of 
temporal and spatial resolutions. This study investigated clay content prediction at three spectral acquisition levels: 
laboratory, airborne, and spaceborne. Two approaches were tested, the use of prediction models developed with 
local and regional spectral libraries (52 samples- local scale and (950, 200 e 224 samples - regional scale), termed 
internal and external models respectively. A total of 52 soil samples were collected in a smallholder area, 83 ha, 
located in southeastern Brazil. Spectral data in the Vis-NIR-SWIR region were acquired in the laboratory using 
FieldSpec 3 sensor, and the clay content was determined by sedimentation technique. Afterward, bare soil images 
from AISA-FENIX, Planetscope, Sentinel2-MSI and Landsat8-OLI were obtained. The clay content determined in 
the laboratory was related to the soil spectra acquired by each of the sensors and was predicted using the Cubist 
regression tree algorithm. The results obtained from local spectral libraries showed good predictions using 
FieldSpec3 and AISA-FENIX sensors. Landsat8-OLI and Sentinel2-MSI provided satisfactory results, while 
PlanetScope gave poor results. For the prediction using regional spectral libraries, only lab-based FieldSpec 3 sensor 
provided a fair prediction, while other sensors gave poor results. This study demonstrated that soil sensing is 
possible at any level taking into account its advantages and limitations. This approach paves the way for acquiring 
soil spectra for smallholder farms. 
 
Keywords: Remote Sensing, Hyperspectral Sensing, Proximal Sensing, Multi-temporal Images, Bare Soil 
Reflectance; Digital Soil Mapping 
 
Published as: Bellinaso, H., Silvero, N.E.Q., Ruiz, L.F.C., Accorsi Amorim, M.T., Rosin, N.A., Mendes, W. de S., 
Sousa, G.P.B. de, Sepulveda, L.M.A., Queiroz, L.G. de, Nanni, M.R., Demattê, J.A.M., 2021. Clay content prediction 
using spectra data collected from the ground to space platforms in a smallholder tropical area. Geoderma 399, 
115116. https://doi.org/10.1016/j.geoderma.2021.115116 
 
 

2.1. Introduction 

The characterization of soil physical and chemical attributes is urgently needed to optimize tropical 

agricultural land management (Sanchez, 2019). Environmental information is frequently demanded to assist in public 

policy decisions (Bouma et al., 2012; Panagos et al., 2012). The knowledge of soil physical and chemical properties as 

well as of soil distribution on the earth's surface is essential for land use optimization (Feizizadeh and Blaschke, 

2013). However, in many places around the world soil information is difficult to obtain and is practically nonexistent, 

especially in developing countries and in tropical region (Mallavan et al.,2010; Minasny and Hartemink, 2011; Silatsa 

et al., 2018). This is more pronounced for data on an adequate scale for local soil management and conservation 

planning and for smallholder farming application (Arrouays et al., 2018; Lepsch, 2013; Steinmetz et al., 2018).  

Digital Soil Mapping (DSM) (Arrouays et al., 2014; Nolasco de Carvalho et al., 2015) linked or not with 

remote (Onyango et al., 2021) or proximal sensing (Silva et al., 2020) and pedotransfer functions (PTFs) (Minasny 

and Hartemink, 2011), is a technique that can contribute to obtaining information in these situations. However, 

DSM exploitation in Latin America and Africa has been lower than developed countries (Agyeman et al., 2020; 

Minasny and Hartemink, 2011; van Zijl, 2019). The high cost of collecting primary input data and the lack of 

government policies to obtain this (Nolasco de Carvalho et al., 2015; Silva et al., 2020a; van Zijl, 2019), the need for 

the correct digitization and harmonization of pre-existing legacy data (Agyeman et al., 2020; Samuel-Rosa et al., 2020; 

Santra et al., 2021) and the difficult to establish protocols (Coelho et al., 2021; Guevara et al., 2018), are possible 

explanations for this greater difficulty of application. In this context, information obtained by remote and proximal 

https://doi.org/10.1016/j.geoderma.2021.115116
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sensing becomes even more relevant for the high-resolution soil spatial information (Ben-Dor et al., 2009; Santra et 

al., 2021; Silva et al., 2020a; Viscarra Rossel et al., 2010).  

Soil spectral information can be collected at several acquisition levels: in the laboratory, in the field 

onboard unmanned terrestrial or aerial vehicles or aircrafts and satellites (Lausch et al., 2019). The soil's spectral 

signature must be well-known to ensure that the information acquired by sensors located on different platforms is 

related to soil. Huete (1996) emphasized the importance of the spectral data acquired in the laboratory as a basis for 

field, aerial, and satellite studies, because external factors can be controlled (geometry, atmospheric condition, light, 

distance from the object, among others) (Nouri et al., 2017). Each spectral acquisition level will have advantages and 

limitations related to the equipment, like spectral and spatial resolution, the equipment or data cost, and the need for 

data pre-treatment (Ben-Dor et al., 2009).  

Among soil properties, the clay content is one of the most commonly studied by spectral analysis 

(Lagacherie et al., 2020) and has a strong relationship with other soil properties and functions such as charge 

dynamics, soil carbon (Busato et al., 2012), water retention, drainage, permeability, fertility, chemistry, among others 

(Weil and Brady, 2017). Besides that, it is essential for soil classification (Hristov, 2013) and directly impacts soil 

erosion processes (Nciizah and Wakindiki, 2015; Reichert et al., 2009). The clay particles have direct physical 

interaction with electromagnetic radiation (Demattê et al., 2016), mainly due to minerals such as iron oxides, such as 

hematite and goethite in visible portion (Silva et al., 2020b), and aluminosilicates, gibbsite and carbonates in 

shortwave-infrared region (>2000 nm) (Chabrillat et al., 2002; Fang et al., 2018).  

The prediction of clay content using spectra acquired in the laboratory has been widely reported as the 

most feasible compared to other soil properties (Soriano-Disla et al., 2014; Viscarra Rossel et al., 2016). Airborne and 

spaceborne sensors have been successfully studied in predicting topsoil clay content (Gomez et al., 2019, 2018). 

Nanni and Demattê (2006) and Gomez et al. (2019, 2018) found promising results using Landsat and Sentinel 

satellite data to predict clay content. Gasmi et al. (2019) used a multiple linear regression (MLR) on ASTER images 

to predict clay content in an area of 2000 Km2 in Tunisia and achieved an R2val = 0.60. Odeh and McBratney (2000) 

used AVHRR images and regression kriging, and found a correlation coefficient of 0.76. Barnes and Baker (2000) in 

Arizona compared the SPOT and Landsat images to predict clay content and they demonstrated that all bands, 

except those from the thermal region, have correlation coefficients (r) > 0.4.  

The quantification of clay was also performed by hyperspectral sensors onboard aircrafts, such as 

SpecTIR (Hively et al., 2011), AISA-DUAL (Gomez et al., 2018) and AVIRIS (Dutta et al., 2015). Hyperspectral 

sensors in satellites, such as Hyperion (Lu et al., 2013) and HyMap (Gerighausen et al., 2012; Nouri et al., 2017) also 

provided good results. Gomez et al. (2012) used AISA-DUAL, with spatial resolution of 5 m and 359 non-

contiguous bands for imaging an area of 300 Km2 in Tunisia with high soil variability and achieved an R2 = 0.8. 

Usually, the prediction of clay content using ultraspectral laboratory sensors has been performed by 

models created using spectral data collected in the area under study or from global or regional spectral libraries that 

have or not data from the same area (Cezar et al., 2019; Guerrero et al., 2014). This approach is the most common 

approach reported in the literature with good results, with RMSE values from 64.2 to 94.4 g kg-1 (Araújo et al., 2014; 

Shepherd and Walsh, 2002; Viscarra Rossel and Behrens, 2010). There is also a growing interest to use models 

obtained from global, regional or local spectral libraries to map unknown areas without spectral information 

(Padarian et al., 2019a; Silva et al., 2019; Viscarra Rossel et al., 2016). Even the spectral library of a country can be 

used to predict soil attributes from spectra data of another country (Briedis et al., 2020; Gomez et al., 2020). 

Wetterlind and Stenberg (2010) compared prediction models obtained from external datasets (national and reduced 
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spectral libraries), internals datasets (local spectral library) and both combined. The best results were obtained when 

local prediction models were used, followed by local and external data combined (spiking) (Guy et al., 2015; Nawar 

and Mouazen, 2017). Brown (2007) and Sankey et al. (2008) also found improvement in predictions when combining 

local samples in external databases. However, these different approaches have only been extensively explored in 

laboratory ultraspectral data, and not tested for hyper and multispectral data.  

Demattê et al. (2018b) used the Landsat 7 ETM+ to obtain prediction models from one region, which 

were then applied to another area. They found that the coefficients of determination between the observed and 

estimated values were higher than 0.5 and the prediction errors were lower than 30%. Nouri et al. (2017) used a 

laboratory spectral database to build regression models and then used them to predict soil properties over bare soils 

of a hyperspectral airborne image. The results are promising results (R2test > 0.79 and RMSEP < 38 g kg-1). 

Although many articles have already indicated the potential of laboratory, airborne and satellite sensors, 

only a few compared prediction models obtained from these sensors at different acquisition levels, or compared the 

use of prediction models obtained by external (regional spectral libraries) and internal datasets (local spectral 

libraries). Thus, we aimed at evaluating prediction models to predict clay content using spectral data acquired from 

five different sensors at three acquisition levels: laboratory, aircraft, and satellite. In addition, we compared the 

prediction results obtained using models built with soil samples collected from our study area (local spectral libraries) 

and those obtained from external (regional spectral libraries) databases. The results may bring light on strategies how 

to use spectral libraries. 

 

2.2. Material and methods 

2.2.1. Location and characterization of the study area 

The study area comprises 83 ha and is located in São Paulo State, Brazil (−22.710315°, −47.516506°) (Fig. 

1). A humid subtropical mesothermic temperature regime characterizes the climate with dry winters between June 

and August, and rainy summers between November and February, according to the Köppen climatic classification 

system (Alvares et al., 2013). The mean annual precipitation is 1275 mm, being the wettest period (December to 

February) with a mean of 610 mm of rainfall and the driest period (June to August) with a mean of 101 mm of 

rainfall. The mean annual temperature is 21.4 °C, with a mean annual maximum of 28.2 °C and a mean annual 

minimum of 14.8 °C (Domínguez-Castillo et al., 2020). The area is mainly cultivated with sugarcane and is 

geomorphologically located within the Paulista Peripheral Depression. The main parent materials are the sandy 

siltstone, massive argillaceous siltstones and sandstones from the Tatuí Formation, and sandstones, sandy 

mudstones, clayey-sandy or sandy-clayey mudstone, and siltstone from the Itararé Formation (Marques et al., 2018). 

The soils comprise red oxisol, in the center of the study area. As we move away from the center, red ultisol can be 

found and after that, red-yellow ultisol (Fig. 1d). 



16 
 

 

 

Figure 1. Data location: regional spectral libraries used to develop clay prediction models for Landsat-8 OLI and Sentinel-2 MSI, 
with 950 samples (a), PlanetScope, with 200 samples (b) and FieldSpec 3 and AISA-FENIX, with 224 samples (c) sensors. Study 
area (d) with 52 samples locations, clay variability and soil classes. LE - Red Oxisol; PEL - Red Ultisol; PVA1 - Red-yellow Ultisol 
(adapted from Vidal-Torrado, 1994). 

  

2.2.2. Soil sampling and analysis  

On July 25, 2017, soil surface (0–20 cm) samples were collected at 52 locations, recorded by using GNSS 

(Global Navigation Satellite System) Topcon GPR 3 receiver, with RTK (Real Time Kinematic) corrections 

obtaining positioning accuracy of 0.3 m. The samples were oven-dried for 48 h at 50 °C, and ground and sieved to 2 

mm. Sand, silt and clay contents were determined following the sedimentation method (Teixeira et al., 2017), using 

50.0 g of each sample and the sodium hydroxide (0.1 mol L−1) and sodium hexametaphosphate (0.1 mol L−1) as 

dispersant agents. Soil organic matter was determined by the Walkley-Black method (Teixeira et al., 2017).  

2.2.3. Spectral laboratory data acquisition 

The spectral data from the soil samples (350-2500 nm) were acquired in the laboratory using the FieldSpec3 

spectroradiometer (Analytical Spectral Devices, ASD, Boulder, CO), with spectral resolution of 3 nm, from 350 to 

700 nm and 10 nm from 700 to 2500 nm. The output data used in this work, was automatically interpolated to 1 nm, 

resulting in 2151 bands with 1 nm resolution (Demattê et al., 2019). The samples were placed in petri dishes and 

were homogeneously distributed over a flat surface for spectral reading. Two halogen lamps (50 W) were used as 

light sources. The distance between the lamps formed a 90° angle and was located at 0.35 m from the sample with a 

zenith angle of 30°. These geometric configurations generated a not-collimated light beam towards the target. An 

optic fiber placed in the vertical position at 0.08 m from the sample surface captured the reflected light from an area 
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of approximately 2 cm2 at the center of the sample (Poppiel et al., 2019). Three replicates from distinct rotations 

positions for each sample were taken to reduce shadow effects. To maximize the signal-to-noise ratio, 100 readings 

were performed and the average calculated for each sample. The instrument was calibrated at the beginning and after 

20 min, using a white Spectralon® plate with reflectance superior to 99% (Labsphere, North Sutton, NH, USA). 

2.2.4. Hyperspectral data acquisition  

Hyperspectral data were obtained by imaging the area with the AISA-FENIX sensor onboard the Piper II 

aircraft (Fig. 2). The AISA-FENIX is a hyperspectral sensor that operates in the visible-near-shortwave-infrared 

ranges (Vis-NIR-SWIR, 380–2500 nm), with spectral resolutions ranging from 3.5 to 12 nm and 363 spectral bands. 

The flight altitude was of approximately 660 m, which provided a spatial resolution of 1 m. The field of view (FOV) 

was 32.3°. After collecting the images, the hypercube was processed in the software Specim CaliGeo PRO® (Spectral 

Imaging, Specim Ltd., Finland) to convert digital numbers into radiance. Caligeo presents the sensor's factory 

parameters for the conversion of each spectral band. At the same time the conversion was carried out, a geometric 

correction was performed in the same software. For that, a GPS/IMU oxford OXTS - RT3050 model collected data 

related to the plane oscillations in pitch, roll and yaw axis (aircraft principal axes), velocity and geographic 

coordinates. The correction results in an error lower than 1 m. The image resulting from the correction was 

converted in “.bsq” format in the ENVI® software and imported to the ATCOR-4® software. Then, in the software, 

empirical parameters of the AISA-FENIX sensor were created to correct atmospheric influences such as aerosols 

and water vapor, resulting in a converted image, from radiance to reflectance (Richter and Schläpfer, 2015). 

 

Figure 2. Details of the AISA-FENIX system. a) flight path, b) study area and sampling locations, c) hyperspectral image, d) 
visualization at 200 feet, e) sensor system. Photos from GALeS group of University of Maringá (http://www.gales.uem.br/.). 
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2.2.5.  Satellite multispectral data acquisition 
 

The multi-temporal images from Landsat8-OLI and Sentinel2-MSI sensors were obtained from Silvero et 

al. (2021), who applied the GEOS3 method (Demattê et al., 2018a) to a collection of images from both satellites. The 

GEOS3 method consisted of the use of NDVI (Normalized Difference Vegetation Index), NBR2 (Normalized Burn 

Ratio 2) and quality mask to exclude from the images areas with vegetation, cloud, shadows, crop residues and 

burned vegetation. After masking, the images were ordered by date, and the median reflectance was calculated for 

each pixel. A total of 63 Sentinel2-MSI and 45 Landsat8-OLI images, from 2016 and 2019, were used to obtain the 

Synthetic Soil Images (SYSI Landsat and SYSI Sentinel) (Fig. 3). 

 

Figure 3. Illustration of the sensors and respective spatial resolution and soil synthetic images (SYSI). True color composition 
(red, green, blue) and false color (SWIR, NIR, red). 
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We also used the PlanetScope, which is composed of nanosatellites with a weigh of less than 10 kg to 

acquire multispectral orbital images with very high spatial and temporal resolution. These nanosatellites are 

characterized by having four spectral bands, in the visible (Blue: 455-515nm, Green: 500-590nm and Red: 590-

670nm) and near-infrared (NIR: 780-860nm) regions. It is a commercial service; however, we obtained the images 

without charge in this study. Since PlanetScope images do not have bands in the SWIR region, it was not possible to 

obtain the NBR2 index used in GEOS3 methodology (Demattê et al., 2018) Therefore, a specific methodology was 

developed to obtain a Synthetic Soil Image from PlanetScope images (SYSI Planet) (Fig. 3). 

The SYSI Planet was obtained through a supervised classification using the Random Forest (RF) method. 

First, twenty surface reflectance images from September and October of 2017 were classified into the following land 

covers: bare soil, vegetation, cloud, shadows, straw and burned. Training samples of bare soil collected from 

PlanetScope images were used for the classification procedure. 

 The RF method is an ensemble learning method (Padarian et al., 2020). It divides training samples into 

subsets and generates a decision tree for each subset (forest). After the model fitting, the classification is obtained by 

voting the classes of each tree in the forest. The growing of the decision tree is made by feature vector selection that 

reduces the impurity of each node of the tree. The RF method estimates the feature importance by computing a 

mean decrease in impurity (Breiman, 2001; Tian et al., 2016). The number of trees and their maximum depth are 

adjustable parameters. The number of trees represents the number of Decision Trees created (estimators) and the 

maximum depth represents the depth of each tree. The deeper the tree, the more divisions are performed, and 

consequently, bigger is the number of child nodes (Rodriguez-Galiano et al., 2012). The number of trees and 

maximum depth were evaluated between 10 and 200. Gini index was used as a criterion of division for tree nodes. 

The selection of optimal parameters in the classification was performed by cross-validation. The samples 

were randomly partitioned into 10 sets. These validation samples were used to avoid selecting parameters that that 

would overfit. To evaluate the performance of the models, the kappa coefficient was used. The modeling was carried 

out in the Python programming language, with the Scikit-Learn, Numpy and Pandas libraries.  

After the classification procedure was finalized, the classified bare soil images were filtered, ordered by date 

and the median of each pixel calculated. A SYSI Planet with only bare soil pixels was obtained (Fig. 3). 

 
2.2.6 Statistical analysis 

2.2.6.1 Descriptive statistics of soil attributes and Pearson's correlation 

The first step was to link spectral data at different acquisition levels for the same point (pixel). A soil line 

analysis, which consists of a linear relationship between reflectance values from two wavebands (NIR and RED 

portions) (Baret et al., 1993), was carried out to confirm if the reflectance values of each sensor corresponded to bare 

soil pixels. This analysis removes points that have vegetation or crop residue interference. The lab information was 

considered as the standard soil spectra. 

The next stage was to study the relationship between FieldSpec 3, AISA-FENIX, Sentinel2-MSI, Landsat8-

OLI and PlanetScope spectral data by Pearson's correlation analysis. Pearson's correlation was carried out between 

similar bands of different satellite sensors (i.e. the Landsat8-OLI blue band was correlated with Sentinel2-MSI and 

PlanetScope blue bands; Landsat8-OLI SWIR1 was correlated Sentinel2-MSI SWIR1 band). The original bands used 

were for Landsat8-OLI (nm) (blue-452–512; green-533–590; red-636–673; NIR-851–879 nm; SWIR1-1566–1651; 

SWIR2-2107–2294), Sentinel2-MSI (nm) (blue-458–523; green-543–578; red-650–680; NIR-785–899; SWIR1-1565–

1655; SWIR2-2100–2280) and PlanetScope (nm) (blue-455–515; green-500–590; red-590–670; NIR-780–860). Also, 
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the FieldSpec and AISA-FENIX data were simulated (convoluted) following the spectral range of Landsat8-OLI 

bands, using the hsdar package (Lehnert et al., 2016) in R software.  

A second approach was to relate the original spectral data from different acquisition levels and the clay 

content by Pearson’s correlation. The correlation analysis was performed using R software. 

2.2.6.2 Qualitative analysis of spectral signatures 

After confirming that the spectra corresponded to bare soil, the clay content was used to assess spectral 

patterns. The soil samples were classified into five textural classes, usually used for sugarcane soil management in São 

Paulo State, based on the clay content as follows (g kg-1): sandy (clay content < 150), sandy loam (clay content = 

150–250), loam clayey (clay content = 250–350), clayey (clay content = 350–600) and very clayey (clay content > 

600) (Lacerda et al., 2016; Demattê et al., 2018). The spectral reflectance of each sensor was averaged for each 

textural class, and then plotted and compared qualitatively. 

 

2.2.6.3 Prediction of soil attributes - internal and external spectral library approach 

Two approaches (Fig. 4) were adopted to predict topsoil in the study area (83 ha field) from spectra 

collected by various sensors:  

a) Internal models, meaning models developed using the local dataset (local spectral library- 52 samples) 

(Fig 1d) 

b) external models, meaning that models were developed using regional spectral libraries (without spectral 

data from the study area). The regional libraries were obtained from different locations located in the region of the 

study area (São Paulo) along with measured clay content values (Fig 1a, b, c). The models generated with these 

external datasets were used to predict clay content on the study area.  
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Figure 4. Flowchart of the prediction models development methodology. Red lines and squares indicate the steps followed to 
obtain prediction models from external datasets (regional spectral libraries) while blue lines correspond to clay content predicted 
by internal datasets (local spectral libraries). The black color is related to the validation procedure (clay content determined in the 
laboratory). 

 

The internal (local spectral libraries) dataset was composed of soil samples collected from the study area (n 

= 52) (Fig. 1d) with their corresponding reflectance values collected using five sensors. 

The external datasets (regional spectral libraries) were composed of soil data in the same region of the study 

site, with similar geology, soil types and climate (Fig 1a, b, c). This regional library was collected from our past works 

(Demattê et al., 2019; Silvero et al., 2021), except for PlanetScope sensor, and the number of samples of each library 

was 200 for AISA-FENIX and FieldSpec 3, 222 for PlanetScope and 950 for Sentinel2-MSI and Landsat8-OLI (Fig. 

5). The procedure obstianed by SYSI was variable for each sensor. Differences in the number of multitemporal 

images used to obtain each SYSI created different numbers of bare soil pixels. In the case of hyperspectral sensors, 

we used the samples that have soil analysis and spectral data collected in the laboratory. 
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Figure 5. Descriptive statistics of Local and Regional datasets. 

 

 All samples from the internal dataset were used to calibrate and validate prediction models, using a 10-fold 

repeated cross-validation method (Vapnik, 1995). For external models, data of regional spectral libraries (Fig 1abc) 

were randomly partitioned into training (70%) and validation (30%) sets using the createDataPartition function in R 

software. The generated models were then applied to predict clay content in the study area, and validated using the 

local data. 

For model fitting and prediction accuracy measurements, a bootstrapping method with 100 repetitions and 

the Cubist algorithm were used for both internal and external datasets. Briefly, the Cubist is a tree-rule-based 

algorithm in which linear regression models are obtained at each branch of the tree to allow the prediction of the 

values. It uses a boosting-like procedure named committees and the most common k neighbors to avoid overfitting 

(Kuhn et al., 2013; Quinlan, 1992). The algorithm has shown high accuracy in predicting soil properties (Coblinski et 

al., 2020; Fathololoumi et al., 2020; Zhang et al., 2017). Furthermore, the algorithm was also used for clay content 

prediction in various papers, usually showing better results than other algorithms (Demattê et al., 2019; Silva et al., 

2019; Zhao et al., 2018). The bootstrapping method implies that the dataset used represents the population’s 

characteristics and thus, it can be simulated from the dataset by multiple realizations (Padarian et al., 2019b), which 

was performed by sampling random with replacement. At each realization of the bootstrap routine, the coefficient of 

determination (R2), root mean square error (RMSE) and performance to interquartile ratio (RPIQ) were calculated 

using the goof function from the ithir package in R software. 

The FieldSpec and AISA-FENIX spectra were reduced by Principal Components Analysis due to their high 

number of variables and multicollinearity. The first three PCs were used to develop and validate the models. The 

AISA-FENIX image was also reduced to three PCs and the model obtained were applied to it to obtain the clay 

content map. For the FieldSpec 3 spectra, since the spectra were not available throughout the field, the predicted clay 

content values of the 52 points, were interpolated throughout the area by ordinary kriging (Viscarra-Rossel et al., 

2010c; Viscarra-Rossel et al., 2011; Knadel et al., 2015), with a regular grid of 5m spacing using the gstat package 

(Pebesma, 2009) in R software. For other sensors, the models and the clay content maps were calibrated and 

spatialized in R software using the caret and raster packages.   

The uncertainty maps for each sensor were represented by the 90% prediction interval (90% PI) obtained 

from the bootstrapping routine. The lower and upper limits (5th and 95th) and the mean of the 100 realizations were 
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calculated. The 90% PI was calculated as the difference between 95th and 5th percentiles (90% PI = 95th - 5th). The 

mean and the 90% PI were presented and discussed. 

 

2.3 Results 

2.3.1. Descriptive analysis of soil attributes and soil line analysis 

A wide range of clay contents (110 to 610 g kg-1), with a high CV was observed in the study area (Fig. 5 and 

S.2). In general, most of the data were concentrated around 400 and 500 g kg-1. For the external datasets, a wide 

range with a suitable distribution was verified for FieldSpec 3 and AISA-FENIX (Fig. S1). Landsta8-OLI, Sentinel2-

MSI and PlanetScope datasets also showed variability, but with more samples with low clay content.  

Five spectral datasets were analyzed by the soil line (Fig. 6). Comparing the slope and coefficient of 

determination (R2) among them, it can be confirmed that the spectra collected at different acquisition levels 

corresponded to bare soil, where the best trend was observed for laboratory and AISA-FENIX spectra. The 

laboratory spectra were very close to the 1:1 line, with coefficient of determination (R2: 0.97) similar to AISA-

FENIX data. The other sensors also had high values of R2 (Fig. 6). 

 

 

Figure 6. Soil line analysis for each sensor. 

 

2.3.2. Quantitative relationship between sensors 

The correlation between the spectra of the sensors is shown in Fig. 7. Strong positive correlations were 

found for all bands and sensors, except between PlanetScope and the other sensors, where the lowest positive values 

were observed. The most significant correlations were observed between Landsat8-OLI and Sentinel2-MSI, followed 
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by FieldSpec and Sentinel2-MSI. Most of the positive correlation values were observed between the blue, green and 

SWIR bands. In general, the lowest values of positive correlations were observed between the red and NIR bands. 

Considering the FieldSpec 3 sensor as a standard spectral reference, its correlation with other sensors was in the 

following order: Sentinel2-MSI, Landsat8-OLI, AISA-FENIX, and PlanetScope. 

 

 

Figure 7. Pearson’s correlation between spectra from all sensors. 

 

2.3.3. Spectral signatures in function of the clay content 

The spectral signatures of all sensors as function of soil textural classes are presented in Fig. 8. Each sensor 

gave a specific spectral behavior due to the different number spectral ranges. FieldSpec3, with 2151 bands, has a very 

detailed signature showing absorption characteristics and reflectance intensities. With 363 bands, AISA-FENIX 

maintains this trend but loses information at 1400 and 1900 nm due to atmospheric water absorption. Regarding the 

multispectral sensors, Sentinel2-MSI and Landsat8-OLI, several absorption characteristics have disappeared, but the 

spectral behavior characteristic of soils remains. In all of these sensors, the trend of reflectance intensity and textural 

class is maintained. The PlanetScope image has no bands in the SWIR portion, which makes it difficult to assess its 

spectral patterns. 
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Figure 8. Mean spectral signatures from each sensor classified by textural classes: sandy (<150 g kg−1), loam-sandy (150–250 g 
kg−1), loam-clayey (250–350 g kg−1), clayey (350–600 g kg−1), and very clayey (>600 g kg−1). a) FieldSpec 3, b) AISA-FENIX, c) 
Sentinel-2 MSI, d) Landsat-8 OLI, e) PlanetScope, f) sample distribution in each textural class. 

 

2.3.4. Correlation between clay content and spectral data 

The relationship between the clay content and the spectral bands of the five sensors is shown in Fig. 9. A 

strong negative correlation was evidenced for all sensors along the electromagnetic spectrum, with the PlanetScope 

data being an exception, where the lowest negative correlation values were observed. Generally, most of the negative 

correlation values were observed in the blue, green, and SWIR bands of the orbital sensors and in the wavelengths: 

440 to 550 nm and 2100 to 2350 nm from FieldSpec and AISA-FENIX. 
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Figure 9. Pearson’s correlation analysis between clay content and spectra for each sensors bands. Scale in red tones 
corresponding to continuous values and scale in blue tones corresponding to classes of correlation values. 

 

2.3.5. Prediction of clay content by models built with internal and external datasets 

The results of clay content prediction by internal (local) and external (regional) datasets are presented in Fig. 

10 and 11, respectively. For the internal models, we found that the FieldSpec and AISA-FENIX had the best 

performance (R2 > 0.75), followed by the Sentinel2-MSI and Landsat8-OLI (R2 > 0.60) while the PlanetScope 

showed the worst result with R2 = 0.26.  

The uncertainty maps for each sensor, represented by the 90% prediction interval of 100 realizations 

(90%PI), are also presented for the internal dataset (Fig. 10). The narrower the prediction interval, the more certain 

were our predictions. However, considering that the mean value of the clay content measured in our study area was 

384.80 g kg-1, we can say that the values predicted by the Sentinel2-MSI showed the lowest uncertainty, confirmed by 

their narrower prediction interval and the closeness of the values to the measured clay content. Among the other 

sensors, L8-OLI showed the second lowest uncertainty, with predictions ranging between 60 and 430 g kg-1, but the 

mean was below 300 g kg-1.  The predictions obtained from PlanetScope and AISA FENIX were the more uncertain, 

as confirmed by their highest prediction intervals and outliers. Although the values predicted by the FieldSpec 

showed the lowest prediction interval, probably indicating the lowest uncertainty, this is not completely true, because 

it tends to overestimate clay content values.  

 For the external models (models developed using regional data), the results are shown in Fig. 11. We 

observed that, in general, all external models applied to our study area had lower performances than internal (local) 

models. Only FieldSpec model showed a good resuls (R2 = 0.66 and RPIQ 1.6). The PlanetScope again showed the 

lowest R2 (0.14). The AISA-FENIX showed the largest decrease in the performance from the external model 

validation (R2 = 0.78) to the internal model validation (R2 = 0.32). The mean predicted spatial maps of clay content 

were quite different among the sensors. Nevertheless, results from Landsat8-OLI and Sentinel2-MSI were very 

similar, as the difference in their pixel size is not large (30 and 20 m, respectively). Regarding the uncertainty, we 

showed that the prediction interval width was considerably lower than those observed for the internal dataset (Fig. 

11), giving the wrong idea that the uncertainty was low. The true is that the external models tended to underestimate 

the clay content values of our study area. The exception was the clay content predicted by the FieldSpec, which 

showed a high PI width but it was more prone to overestimate clay content values. 
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Figure 10. Spatial predictions of clay content and internal (Local) model performances. Mean of 100 realizations (left) and 90% 
prediction interval (right) for each sensor. FS: FieldSpec 3, A-F: AISA-FENIX, PS: PlanetScope, S2-MSI: Sentinel 2-MultiSpectral 
Instrument, L8-OLI: Landsat 8-Operational Land Imager, R2: Coefficient of determination, RMSE: Root Mean Square Error, 
RPIQ: Performance to Interquartile Ratio. 
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Figure 11. Spatial predictions of clay content and external (regional) model performances. Mean of 100 realizations (left) and 90% 
prediction interval (right) for each sensor. FS: FieldSpec 3, A-F: AISA-FENIX, PS: PlanetScope, S2-MSI: Sentinel 2-MultiSpectral 
Instrument, L8-OLI: Landsat 8-Operational Land Imager, R2: Coefficient of determination, RMSE: Root Mean Square Error, 
RPIQ: Performance to Interquartile Ratio. 
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2.4. Discussions 

2.4.1. Importance of the soil attribute analysis 

Although the study area is small (83 ha), it was possible to observe a high variability in clay content, which 

provided a wide range of textural classes (from sandy to very clayey) (Fig. 1d). The variability of the clay content 

observed in the study area is related to the different parent materials (Marques et al., 2018), with sandstone from two 

different formations, massive argillaceous siltstones, sandy mudstones, clayey-sandy or sandy-clayey mudstone and 

siltstone. The region presents a highly complex geological domain (Gallo et al., 2018), which also impacts the 

different predominant soil types described there and their respective textural classes in the soil surface: Oxisols 

(clayey and very clayey) and Ultisols (sandy and loam sandy) (Fig. 1d). 

 

2.4.2. Is the pixel with bare soil? 

We attempted to obtain spectra for all samples corresponding to bare soil. The high variability of soils in 

the study area explained the high amplitude of distribution of points in the soil line for all sensors (Fig. 6). 

The best results shown for the laboratory spectral data can be explained by the low impact of 

environmental factors in the spectra, especially humidity, which in general decreases the reflectance intensities, 

mainly in sandy soils (Galvão and Vitorello, 1998; Knadel et al., 2014). Laboratory spectra were not affected by 

environmental interferences. The spectra from Sentinel2-MSI, Landsat8-OLI and PlanetScope came from synthetic 

soil images (SYSI) obtained from satellite time-series, and represented only bare soil areas throughout a period.  

 Recently, bare soil images based on satellite time series, like SYSI images in our work, have been proposed 

basically calculating mean (Diek et al., 2017; Gasmi et al., 2021; Rogge et al., 2018) or median (Demattê et al., 2020, 

2018a; Safanelli et al., 2020) spectral reflectance from the bare soil pixels along the period of the time series, both 

approaches showing good results. Roberts et al. (2019) proposed another method applying a high-dimensional 

statistic called a weighted geometric median (WGM). Demattê et al. (2018a) considered that use of median is the key 

of GEOS3 methodology. However, Safanelli et al. (2020) pointed that in the case of bare soil composite, generated 

using a shorter historical collection, median could not be a good approach because of the only few bare soil 

exposures along the time series. Most of these works highlight that the spectral reflectance data obtained from 

composite image are more robust than spectra obtained from a single image. This is probably due to the mitigation 

of the impact of some factor that influence the spectral response of the soil surface such as surface roughness, 

surface residues, soil crust and soil humidity (Demattê et al., 2018a; Diek et al., 2016; Gasmi et al., 2021). New works 

comparing these different methodologies could be developed for a better comparison between them.  

 We observed that the SYSIs from Sentinel2-MSI, Landsat8-OLI and PlanetScope well represented the bare 

soil. Interestingly, the soil line from PlanetScope showed the worst result, which was probably because the NIR 

region´s reflectance values are generally higher than those observed on other sensors. The differences in the soil line 

observed among sensors could be related to the differences in sensor characteristics (e.g., differences in sensors 

spectral and spatial resolutions; geometric distortions; view angle) and environments effects (e.g., differences in 

atmospheric and surface conditions on acquisition dates and spectral mixture of features) (Richter and Schläpfer, 

2002). These effects could be the cause of the difference in the intensity of the reflectance factor values, for the 

different sensors (Fig. 8). However, it is not possible to state the degree of influence of these differences in clay 

prediction.  
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 Another aspect that needs to be considered is that the SYSI PlanetScope was obtained from images of only 

two months from the same year due to financial limitations (the images are commercial). A short historical collection 

could be a problem for median spectral reflectance data (Safanelli et al., 2020). Meanwhile images from Sentinel2-

MSI and Landsat8-OLI were obtained from a four-year period. The greater temporal variation of the images used 

could be a factor in attenuating interferences in spectral data, caused by soil surface conditions, such as roughness 

and the presence of vegetation residues (Castaldi et al., 2016; Gasmi et al., 2021; Wulder et al., 2015). 

 

2.4.3. Evaluation of the spectral reflectance data 

The distribution of soil surface reflectance points near the 1:1 soil line, in addition to proving the absence 

(or low influence) of photo synthetically active biomass (Rukhovich et al., 2016), evidenced the correspondence 

between the spectra of different sensors. This is reiterated by the high correlation coefficients observed between the 

sensors at all acquisition levels (except PlanetScope) and all spectral regions considered (Fig. 7). These analyses also 

proved the connection between sensors and consolidated the path for soil attribute predictions with data from 

various acquisition levels. Similar results were obtained by Rizzo et al. (2020), comparing SYSI Landsat spectra with 

convoluted laboratory spectra. Differences in the correlation between the sensor bands can be explained by the fact 

that multispectral and hyperspectral sensors perform direct measurements of the surface, the ultraspectral sensor is 

performed with standardized parameters (e.g., following sample preparation and environmentally controlled 

conditions). Besides that, differences are also related to the scale of measurement, satellite-based pixels can show 

different signal than the laboratory measurement (Rizzo et al., 2020); differences in atmospheric and surface 

conditions on acquisition dates; structural effects; differences in sensors spectral and spatial resolutions; geometric 

distortions; view angle and spectral mixture of features (Kriebel, 1978; Anderson et al., 2005; Mulder et al., 2011; 

Richter and Schläpfer, 2002). 

 In addition to the aforementioned fact of the possible influence on the data spectral quality due to the fact 

that SYSI Planet was obtained with images collected in an interval of two months, the poor correlation between all 

sensors and PlanetScope (0.13 to 0.63), can be explained because PlanetScope images provide high spatial (3 m) and 

temporal (daily) resolution, composed of a constellation greater than 150 microsatellites, dominated by "Doves" or 

CubeSat. This microsatellite constellation has a low quality in the radiometric and orbital parameters, causing 

inconsistencies in the spectral responses of the sensors (Leach et al. 2019). 

We observed a common soil spectral pattern for each textural class, in which the reflectance intensities 

decreased from sandy to very clayey textures, except PlanetScope. A decrease in the mean reflectance intensities was 

observed for the different sensors following the order: FieldSpec, AISA-FENIX and satellites. This behavior was 

also observed by Gholizadeh et al. (2018) but diverged from that observed by Gomez et al. (2018). Soil particles' 

mineral composition could explain the reflectance decrease related to clay content. The presence of quartz (sandy 

soil) increases the reflectance, while the presence of iron oxides (clayey soil) decreases the reflectance (Demattê et al., 

2007). The difference in reflectance intensities was more easily observed for sandy and loam sandy soils, but it also 

occurred for loam clay and clay. The lower influence of water can explain the higher reflectance values found for the 

Fieldspec data since the soil samples were dried and sieved (Gholizadeh et al., 2018; Nocita et al., 2013; Nouri et al., 

2017). Other factors such as light sources, instrumental noise, spatial resolution, atmospheric condition and purity of 

the pixels can explain these differences as well (Gomez et al., 2015).  

 The qualitative analysis of the spectral signatures acquired in the laboratory with the FieldSpec sensor (Fig. 

8a), demonstrated a typical kaolinite feature at 2200 nm for all textural classes (Vicente and de Souza Filho, 2011). 
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Clay soils, can present a smoothed gibbsite feature at 2265 nm (Madeira et al., 1995). Concave features, characteristic 

of the presence of iron oxides (Demattê et al., 2014), were verified in all textural classes; however, its intensity 

declined proportionally as the clay content decreased. The spectral signatures obtained by the AISA-FENIX 

hyperspectral sensor had similar features to those described for the lab spectra, except the gibbsite feature, which 

was very smoothed as also observed by Galvão et al. (2008).  

The spectral data from airborne and spaceborne sensors showed lower reflectance intensities than those 

observed from the laboratory spectra, caused by differences in moisture conditions and other environmental factors 

(Gomez et al., 2015). Specifically, for the NIR band, the PlanetScope spectra showed reflectance values closer to the 

values of the laboratory data than the other sensors. Sentinel2-MSI spectra showed slightly higher reflectance 

intensities than Landsat8-OLI for the sandy, loam-sandy and loam-clay textural classes, especially in the SWIR 

region. 

 The great negative correlation values found between the clay content and the spectral bands of all sensors 

was observed mainly in the SWIR region and blue, green and red bands (Fig. 9). Similar results were found by 

Castaldi et al. (2016) for Sentinel2-MSI spectral bands. Sorensen and Dalsgaard (2005) found the best correlations on 

400-600 nm, 1350-1600 nm and 1850-2500 nm wavelengths, for laboratory spectral data. Fongaro et al. (2018) 

working with Landsat multi-temporal images, found greater correlation with clay content for NIR and SWIR, but not 

for blue, green and red bands. For Sentinel2-MSI, Gholizadeh at al. (2018) found that the red-edge band from 773 to 

793 nm provided the highest correlation with clay content, while Vaudour et al. (2019) found the highest importance 

for SWIR bands. For AISA-FENIX and Sentinel2-MSI sensors, the NIR bands also showed an important 

correlation. PlanetScope had the worst results about correlation with other sensors, soil line, spectral correlation with 

clay content and ability to be used in prediction models, possibly due to the issues previously discussed, such as 

environmental interferences and sensor characteristics. 

 

2.4.4. Prediction of clay content - the internal and external dataset approach 

2.4.4.1 Local prediction models - internal dataset approach 

Even working with a small number of local data (52), we demonstrated that the use of internal (local) 

models had better performance to predict topsoil clay content, and better represented its variability than those 

observed for the external (regional) models (Fig. 10 and 11). Considering the results of the local modeling, the 

ultraspectral and hyperspectral sensors obtained good results while Landsat8-OLI and Sentinel2-MSI satisfactory 

results. The similar results obtained for AISA-FENIX and FieldSpec3 for internal model prediction, were in 

agreement with the results obtained by Castaldi et al. (2016), Adeline et al. (2017) and Gomez et al (2018).  Gomez et 

al (2018) evaluated the effect of spectral degradation of AISA-DUAL hyperspectral data, on clay prediction. The 

authors found that the clay prediction did not have a marked decrease in accuracy when the spectral degradation was 

performed until a number of 19 bands (with a 100 nm spectral resolution) was reached. This number is 

approximately triple the number of bands of the Landsat8-OLI and Sentinel2-MSI satellites, which agree with the 

lower predictive potential of the multispectral sensors used in our work than FielSpec3 and AISA-FENIZ sensors. 

 The use of Landsat8-OLI and Sentinel2-MSI to predict clay content have been shown to provide good 

results in several works either using single or multi-temporal images (Chagas et al., 2016; Demattê et al., 2016; 

Fongaro et al., 2018; Gasmi et al., 2021; Gholizadeh et al., 2018; Gomez et al., 2019; Loiseau et al., 2019; Vaudour et 

al., 2019). In our work, satellite data showed satisfactory results, but worse than observed for airborne and laboratory 
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data. This is probably due to environmental factors that influence the spectra acquired by spaceborne, as atmosphere 

effects, surface roughness and moisture, and spatial resolution (Ben-Dor et al., 2009; Zhang and Zhou, 2016). 

The PlanetScope showed the worst result, it can be attributed to the absence of spectral ranges in the 

shortwave-infrared region. Usually, in the SWIR region there are differences in reflectance intensities for different 

soil granulometric classes, especially due to the spectral expression of quartz (from 1900 to 2500 nm) and clay 

minerals around 2200 nm (Friedel et al., 2018; Gomez et al., 2018; Lacerda et al., 2016).  

Better spectral resolution of hyperspectral and ultraspectral sensors allows better detection of the influence 

of iron oxides, such as goethite and hematite, in visible and NIR range and clay minerals such as illite, vermiculite, 

kaolinite and gibbsite in SWIR region, especially around 2200 nm. These clay minerals and oxides features detection 

are important factors that contribute to better prediction performance of clay content by these sensors (Adeline et 

al., 2017; Fang et al., 2018; Gomez et al., 2015; Mohamed et al., 2018).  

 Although we have obtained good and satisfactory results, the small local dataset (52 samples) probably 

could limit the prediction performance. Shepherd & Walsh (2002) stated that the prediction’s accuracy using Vis-

NIR-SWIR spectra data could be compromised in the number of samples are less than 200 samples. 

On the other hand, Wetterlind and Stenberg (2010) obtained suitable results using local datasets with 25 

samples to calibrate models for four farm-scale areas (with 97, 78, 69 and 62 ha) with a cross-validation with 25 

randomly selected segments to determine the optimum number of PLS factors included in the calibrations by 

minimization of the root-mean-squared error of the coefficient of variation. Then, the models validation were 

performed in independent datasets of each areas. Coblinky et al. (2020) ran models with 66 and 197 samples datasets. 

While a good result can be achieved with 66 samples, the best results were obtained using 197 samples. Despite 

these, probably the best number of samples depends on the variation of the soils in the area. Spectral libraries spiked 

with local data, as a more robust approach and with less variation in results (Briedis et al., 2020; Brown, 2007; Gogé 

et al., 2014; Sankey et al., 2008; Wetterlind and Stenberg, 2010), and needs to be tested for multispectral and 

hyperspectral sensors. 

The internal dataset used varied considerably from very low to high clay content values (Fig. 1d and 5), 

contribute to increasing RMSE values (Gholizadeh et al., 2018). However, it can also improve R² values (Coblinski et 

al., 2020; Demattê et al., 2016; Wetterlind and Stenberg, 2010). It is important to understand that each statistical 

parameter used in the evaluation of prediction models has limitations (Bellon-Maurel et al., 2010). Therefore, model 

evaluation should be performed by analyzing the entire context of the data and results. Golizadeh et al (2018) 

reinforce that when there are great differences in soil´s spectral characteristics, there are problems in 

obtainingsuitable predictions. However, robust soil prediction attributesmodels depend on a wide range on the 

sample population and exhibit a uniform distribution of samples across the range (Niederberger et al., 2015; 

Gandariasbeitia et al., 2017). In these appointments, we agree with Coblinky et al. (2020) who concluded that the 

variability of the input data is a key factor affecting prediction results. Therefore, this should be considered when a 

prediction result is interpreted or when we compare results from different works. 

 The use of information from ultra and hyperspectral sensors as well as those from multispectral ones has 

practical application for clay content estimation. The need for more accurate data to support decision making in 

agricultural and environmental applications could benefit from the information provided by ultra and hyperspectral 

sensors. When the objective is to obtain information from large areas rapidly with less accuracy, the multispectral 

sensors gain prominence. Even though the hyperspectral sensor's high spatial resolution is an important factor for 

modeling, the revisiting time of the multispectral sensors (Immitzer et al., 2016) can compensate, improving the 



33 
 

prediction accuracy. Besides the influence of spectral and spatial resolutions, recent studies have shown that the use 

of multi-temporal multi-spectral satellite images provided better results than just a single-date image (Bousbih et al., 

2019; Gallo et al., 2018; Gasmi et al., 2021). 

 

2.4.4.2 Regional prediction models - external dataset approach 

The use of external datasets to develop clay prediction models showed, in general, lower accuracy than 

those observed for the internal data (Fig. 11). Only FieldSpec 3 presented a satisfactory result, which agrees with past 

studies (Brown et al., 2005; Chang et al., 2001; Demattê et al., 2016; Shepherd and Walsh, 2002). For ultraspectral 

sensors, in general, numerous studies found poorly prediction’s accuracies when large spectral libraries were used 

(Brown, 2007; Gogé et al., 2014; Sankey et al., 2008) when compared to local spectral libraries (Briedis et al., 2020; 

Wetterlind and Stenberg, 2010). Global or regional spectral libraries spiked with local data have been showing the 

most robust results (Brown, 2007; Gogé et al., 2014; Wetterlind and Stenberg, 2010; Seidel et al., 2019) 

 The difference in the data distribution characteristics of the datasets used to develop the models and the 

study area dataset, is probably the best explanation for the low accuracy, in general, obtained (Fig. 5 and S.1). The 

ultraspectral model, which obtained the best result, was built with a well-distributed sample dataset and with median 

and mean values close to the values of the study area. Demattê et al. (2018b) pointed out the importance of the 

amplitude values of the validation samples, which should not be wider than the one found in the training samples. A 

good result was expected for the airborne hyperspectral data as well. However, the performance of the sensor in this 

platform dropped considerably. This is probably due to the methodology used in our work, where data was obtained 

by simulating the airborne spectral responses from ultraspectral laboratory dataset (since we did not have an AISA 

spectral library) was used to calibrate the model and it was applied for real image.  

Despite that, data distribution characteristics of the datasets probably influenced the uncertainty. None of 

the external models showed prediction intervals close to the measured clay content value from our study area (Fig. 

11), all results had the tendency of sub estimate, in fact the regional dataset, in general, have major number of data 

with lower clay content than local dataset (Fig. S1).  

Another important limitation is that this study does not have an independent validation dataset for local 

validation dataset. The internal models were validated using cross validation which may disadvantage for the external 

model result. 

Regardless of the result, we believe that this study has developed an approach to obtain clay content by 

hyperspectral and multispectral data for a smallfield scale using regional dataset, similar another ultraspectral sensors 

studies (Brown, 2007; Sankey et al., 2008; Shepherd and Walsh, 2002). Probably better results when using external 

models from multitemporal images, where the spectral curve of an exposed soil point will be represented by the 

median of different images (Demattê et al., 2018a). The use of multispectral and hyperspectral spectral libraries 

spiked with local data to develop prediction models, could be a interesting approach to be studied, since it is mainly 

trialled in the literature for ultraspectral data (Briedis et al., 2020; Brown, 2007; Gogé et al., 2014; Wetterlind and 

Stenberg, 2010; Siedel et al., 2019). 

 

2.5. Conclusions 

Spatializing clay content by sensing technologies is challenging. Even more when the sensor is remote such 

as airborne and spaceborne sensors with different spatial and spectral resolution. In this work, we performed to 

reach the goal of quantifying the clay content by sensors at several acquisition levels in the same smallholder area. 
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The first step was to defining the quality of each sensor´s spectra by their spectral signature behavior, essential for 

the development of good prediction models. Afterwards, we observed that the spectral proxy between different 

sensors (laboratory, airborne and satellites) reached great correlation coefficients. In this case, PlanetScope was the 

exception. This directly impacted the correlation of spectra with clay property. For all sensors, negatively correlates 

with the reflectance, mostly in SWIR which is coherent with literature. 

 Clayey soil samples presented low intensity and flat spectral signatures. As we go from clayey to sandy 

samples, reflectance intensities increased mainly in the SWIR region. This analysis gave confidence on the soil 

spectral data, since we saw the behavior spectral signature. 

 The internal approach presents better results for clay quantification models, but the external approach is 

still feasible for ultraspectral data. Statistical information indicated better results, i.e., for internal and external 

approaches, for ultraspectral sensors, and worst for PlanetScope. Despite that the Planetscope having a greater 

spatial and temporal resolution, it lacks the SWIR band which is important for clay quantification. Thus, if we focus 

only on the quantification of clay property, ground to space sensors (with exception of PlanetScope) are important 

tools. 

 We emphasize the importance that spectral libraries should have a wide range and a good distribution of 

the attributes values. These factors should be taken into account in the evaluation and comparison of prediction 

results. Finally, the strategy, approach and sensor will depend on the users´ requirements and objectives. The most 

important take-home message is that soil sensing is possible at any level taking into account its advantages and 

limitations. 
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3. KRIGING AND COVARIATE-BASED METHOD FOR MAPPING SOIL ERODIBILITY: 

ALTERNATIVES FOR DATA-SCARCITY AREAS. 

 

Abstract 

      The Universal Soil Loss Equation and its derivations (USLE-based) are the most applied soil erosion models 
globally. One of the factors used in these equations is the soil erodibility (K), which indicates the soil’s inherent 
susceptibility to erosion. Although important for modeling soil erosion, there is a lack of adequate K factor maps, 
especially for research covering watershed or farm extensions. To address this challenge, the objective of this work 
was to use remote and proximal sensed data for soil erodibility mapping. Our hypothesis was that digital soil 
erodibility maps estimated from remote sensing or vis-NIR-SWIR spectroscopy (350 -2500nm) have strong spatial 
agreement with detailed soil maps and are an alternative for areas where data is scarce. In a tropical area with 2,574 
km², we developed prediction models (cubist algorithm) by a covariate-based method approach (CBMA) using a 
multi-temporal bare soil image called Synthetic Soil Image (SYSI) and topographic parameters as predictors, and a 
ordinary kriging approach (OKA) using 215 spectral bands in the 350-2500nm range as predictors. The dataset 
comprised 3210 soil observations for CBMA (0-20 cm depth) and 3644 for OKA (0-20, 40-60, 80-100 cm depth). 
The Erosion Productivity Impact Calculator (EPIC) methodology, which uses the contents of clay, sand and SOC, 
was used to calculate the erodibility (K factor). We nominate as Kpred the values obtained with the model developed 
using Kfactor as the dependent variable and environmental covariates or 350-2500nm bands, as independent 
variables. We also performed models of soil sand, clay, and SOC contents, and inputs the results in EPIC K equation 
to obtain another erodibility values nominated as “Kcalc”. Two areas were used to conduct a case study where we 
assessed the performance of erodibility digital maps. For OKA, kriging was used to spatialize the Kfactor, Kpred and 
Kcalc values obtained. A watershed and a farm scale area were used as case studies. Kpred, clay, sand and SOC 
model validation performances were R² = 0.47, 0.80, 0.67, 0.47 respectively for CBMA and 0.58, 0.83, 0.69, 0.44 for 
OKA. The results obtained from the two approaches, better represent the spatial variation of erodibility than 
information obtained from low-scale soil maps (1: 100,000). 
 
Keywords: USLE/RUSLE, K factor, Erosion, Remote Sensing, Proximal sensing 

 

3.1. Introduction 

 
The Universal Soil Loss Equation and its derivations (USLE-based) are the most applied soil erosion 

models globally ((Borrelli et al., 2021). The application of these models has been increasing since 1980 all of the 

world. The United States of America, China, Brazil, Italy, India, Spain, Australia, and Turkey are reported as the main 

countries that used these models (Alewell et al., 2019; Kumar et al., 2022). USLE-based models are normally simple, 

easy to use, and require a few input data, which makes their use more accessible in regions where data is scarce 

((Borrelli et al., 2021). They also require relatively low computational processing power when compared to other 

models (Bahrami et al., 2017; Efthimiou, 2018; Gelagay and Minale, 2016; Kumar et al., 2022). 

 Erosional models consider several factors: the rainfall-runoff erosivity (R), the soil erodibility (K), the slope 

length (L), the slope steepness (S), the land cover and management (C), and the soil conservation practices (P) 

(Wischmeier & Smith, 1965, 1978; Renard et al., 1991). The K factor indicates the soil’s inherent susceptibility to 

erosion, which is obtained by calculating the rate of soil loss per rainfall erosivity index measured in unit-plot 

conditions (Weil and Brady, 2017). It must be obtained from data collected for at least two years (ideal five years) 

from erosion plots (Wischmeier and Smith, 1965, 1978). However, due to the high cost and time required by 

traditional methods, other methodologies were also developed over time, as the pedotransfer functions (PTFs) that 

consider different soil attributes as inputs (Sharpley and Williams, 1990; Römkens et al. 1997; Ostovari et al., 2016; 

Vaezi et al., 2016; Zhang et al., 2019). 

 Usually, erodibility data for USLE-based models is obtained from legacy soil maps, in which a K value is 

attributed to each soil class (Briak et al., 2016; Kumar et al., 2022; Marques et al., 2019). Geostatistical methods are 
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also used to obtain maps of K-factor (Avalos et al., 2018; Vaezi et al., 2016; Zhu et al., 2021). Majhi et al. (2021) 

analyzed the results of 100 studies that used USLE-based models in India and found that i) 74% of them used soil 

maps to derive K factor maps, ii) 25% estimated the soil erodibility from soil samples, and iii) just one measured K 

values from plot-scale experiments. However, obtaining erodibility maps from soil maps can be compromised in 

regions with data scarcity, either by the lack of soil maps at adequate scale or by insufficient number of soil samples 

needed for geostatistical approaches. This situation is common in developing countries (Bellinaso et al., 2021; 

Minasny and Hartemink, 2011), especially in small farms or watersheds, where this problem is more pronounced 

(Benavidez et al., 2018; Gonçalves et al., 2021; Lepsch, 2013; Steinmetz et al., 2018). Often the consequence of this is 

the use of maps with inadequate scales (Majhi et al. 2021), but the use of input data with high uncertainty contributes 

to the higher prediction uncertainty in USLE-based models (Kumar et al., 2022; Schürz et al., 2020). Avalos et al. 

(2018) concluded that uncertainty in model outputs could be decreased as an effect of the reduction of estimation 

variance in the soil erodibility parameter. 

Digital soil mapping (DSM), remote and proximal soil sensing, spatial statistics, geographic information 

systems, and PTFs provide tools to easily and accurately obtain information regarding soil erodibility (Minasny and 

Hartemink, 2011; Nolasco de Carvalho et al., 2015). Numerous works have demonstrated the potential of using 

visible, near infrared, and short wave infrared (Vis-NIR-SWIR) data to predict soil attributes  related to soil 

erodibility, such as clay, sand, and soil organic carbon (SOC) contents (Angelopoulou et al., 2020; Nocita et al., 2015; 

Stenberg et al., 2010), as well as remote sensing techniques (Chagas et al., 2016; Nanni and Demattê, 2006), which 

recently have been enhanced through the use of multi-temporal images (Bellinaso et al., 2021; Castaldi, 2021; Gasmi 

et al., 2021; Loiseau et al., 2019). Similarly, recent literature reviews on USLE-based models highlights the 

importance of remote sensing techniques integrated with GIS to improve the performance of these models (Alewell 

et al., 2019; Kumar et al., 2022; Mello et al., 2016). However, Phinzi and Ngetar (2019), in an extensive literature 

review, found that among all RUSLE factors, the K factor has the lowest number of studies that use remote sensing 

for its estimation. According to the authors, only 2% of the reviewed papers proposed to determine the K factor 

through information obtained by remote sensing.  

Despite this, recent research has shown promising results from the use of these techniques to obtain soil 

erodibility information. Ostovari et al. (2018) and Salehi-Varnousfaderani et al. (2022), evaluating soils from Iran, 

obtained good performances in predicting erodibility values using Vis-NIR-SWIR data as independent variables. The 

same approach, with soils of a watershed in a subtropical monsoon region in China, was used by Jiang et al. (2020). 

Teng et al. (2016), developed a digital soil erodibility map of Australia from terrain, climate and soil variables, 

obtained by remote and proximal sensing. Godoi et al. (2021) and Tian et al. (2022) obtained digital erodibility maps, 

with 250 m resolution based on SoilGrids for an entire country, similar approaches were carried out by Panagos et al. 

(2014) and Efthimiou (2020) using Land Use/Cover Area frame Survey (LUCAS) data to obtain digital maps with 

500 m resolution for Europe and Greece. However, there is still a need for studies evaluating the potential of these 

techniques to generate information to be used on smaller scales, especially using multi-temporal images, as well as 

the comparison of these results with traditional mapping methods. 

The objective of this work was to use remote and proximal sensing variables for spatial erodibility 

predictions by a covariate-based method approach (CBMA) (multi-temporal bare soil images and terrain variables) 

and ordinary kriging approach (OKA) (predicting erodibility values of soil samples from 350-2500nm variables). The 

hypotheses are: digital soil erodibility maps estimated using variables obtained from remote sensing or spectroscopy 

data have greater spatial agreement with reference K map (obtained from detailed soil maps) than K map obtained 
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from low-scale soil legacy maps; digital soil erodibility maps obtained are a alternative for scarce-data areas, especially 

for farm and watershed scale. To evaluate the results obtained, two case studies were carried out in different areas, 

aiming to evaluate the potential of the approaches carried out to represent the spatial variability of erodibility. For 

this, traditional methodologies for obtaining erodibility maps were used as a reference. 

 

3.2. Material and methods 

3.2.1. Study area  

The study area has 2,574 km² and is located in the municipalities of Piracicaba, Charqueada, Iracemápolis, 

Saltinho, Rio das Pedras, Mombuca, Rafard, and Capivari, in São Paulo State, Brazil (Fig. 1). The region's climate, 

according to the Köppen system, is classified as Cwa, a Humid Subtropical with dry winter and hot rainy summer 

(Alvares et al., 2013). The mean annual precipitation is 1274 mm and the annual average temperature between 20.1 

and 22.5 °C. The relief consists of undulating hills and rolling uplands and the altitude varies between 450 to 900 m. 

The vegetation is characterized as a transitional zone between savanna and tropical forest (Barreto et al., 2006). It is 

geomorphologically located mainly within the Paulista Peripheral Depression, with only the northern part located in 

a transition zone with the Paulista Western Plateau. The region has a great diversity of parent materials (Mendes et 

al., 2021), predominant soils being Lixisols/Acrisols (∼58%), Ferralsols (∼19%), Leptosols (∼13%) and Arenosols 

(∼6%) (Oliveira et al., 1989). 



48 
 

 

 

Figure 1. Study area and soil datasets used in modeling (a), Ceveiro watershed area used as case study 1 (b) and farm extend area 
used as case study 2. 

 

3.2.2. Case Studies Area 

Two sites within the study area were chosen as case studies (Fig. 1b,c). The Ceveiro watershed for the 

CBMA and a farm scale area at Rafard municipality for the OKA. The main reason for choosing these areas was that 

both have detailed soil maps available at 1:10,000 scale and also a legacy soil map at 1:100,000 scale. The Ceveiro 

watershed had soil routine analyses information, but not 350 - 2500nm laboratory spectral  data, whereas the farm 

extent area had routine laboratory information and 350 - 2500nm laboratory spectral  data spatially distributed over a 

100 x 100 m regular grid. The Ceveiro watershed comprised 1990 ha in the municipality of Piracicaba (Fig. 1b), with 

central coordinates of 22°38’53″S and 47°44’48″W. The local relief is gently undulating, with altitude ranging from 

460 to 580 m. The geology consists of sandstones from the Pirambóia Formation, basic intrusive rocks from the 
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Serra Geral Formation, siltstones, claystones, and shales from the Corumbataí Formation (IPT, 1981). The 

predominant soils are Lixisols/Acrisols, Leptosols and Cambisols originated from different parent materials, Nitisols 

and Gleysols (Oliveira et al. 1989). Further details on the characterization of the Ceveiro Watershed can be obtained 

from Sparovek and Schnug (2001) and Weill and Sparovek (2008). The farm scale area (Fig 1c) has 182 ha and is 

located in Rafard city, with central coordinates of 22°59’58″S and 47°38’42″W. The local relief is gently undulating, 

with altitude ranging from 460 to 580 m. The soil classes of the area are Acrisols/Lixisols, Chernozems, Nitisols, 

Leptosols, and Cambisols, developed from a diversified parent material as diabase, siltite, metamorphosed siltite and 

alluvial deposits. Further details on the characterization of the area can be obtained from Nanni and Demattê (2006) 

and Bazaglia Filho et al. (2013). 

 

3.2.3. Soil data 

The soil information was obtained from the database of the Geotechnologies in Soil Science Group 

(GeoCiS) of the University of São Paulo, Brazil, which comprises a series of soil surveys conducted in the region of 

Piracicaba (Demattê et al., 2019). This dataset contains more than 9000 locations with soil data of physical and 

chemical attributes at 0–20, 40–60 and 80–100 cm depth (Fig. 2a). 

 This soil dataset was separated to be used in the CBMA and OKA approaches. First, we selected 3210 

samples (Fig. 1a) containing laboratory analysis of clay, sand, silt, and soil organic carbon (SOC) (Fig. 2e). These 

analyses were used to calculate the erodibility (we nominate as Kfactor value) for each location according to the 

equation proposed by Sharply & Williams (1990) (see item 2.4) (Fig. 2c). These samples were also used to perform 

the CBMA, by combining the soil data with multiple environmental variables and calibrating a prediction model for 

the study area (Fig. 2e,f). 

 The OKA used different samples from the general GeoCiS database, since it required Vis-NIR-SWIR (350–

2500 nm) spectral analysis (Fig. 2d). We used 3644 soil samples that contained this information (Fig. 1a) and used it 

to calibrate a second prediction models of the Kfactor, clay, sand and SOC for the study area (Fig. 2m). 

 The two case study areas used for external validation also had soil datasets, which were used to interact with 

the models from CBMA and OKA and perform statistical analysis. The Ceveiro watershed (Fig. 1b) had 174 soil 

samples collected at 0-20 cm depth with physicochemical laboratory analysis of clay, sand, silt, and SOC. This soil 

dataset was provided from the work of Weill and Sparovek (2008). The farm scale site located in the Rafard 

municipality (Fig. 1c) contained a soil dataset with 124 soil samples at 0-20 cm depth displaced in a 100 x 100 m grid 

across the area. The samples also contained the physicochemical analysis from laboratory (Silvero et al., 2021a). 
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Figure 2. Flowchart containing all the steps developed in the methodology. 

 

3.2.4. Laboratory analysis and spectral data acquisition 350-2500nm (Vis-NIR-SWIR) 

The soil samples were air dried, ground, and sieved in a 2 mm mesh for physical and chemical 

determinations in the laboratory according to the methods proposed by (Teixeira et al., 2017). The clay and sand 

contents were determined by the analysis, while the silt fraction was obtained by difference between clay and sand. 
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The soil organic carbon (SOC) was determined by the Walkley-Black oxidation method (Walkley and Black, 1934) 

(Fig. 2b). 

For the 3644 soil samples of OKA (Fig. 1a) and farm scale case study area (Fig. 1c), the Vis-NIR-SWIR 

spectral data (350–2500 nm) was collected from the GeoCiS database (Fig. 2d). The spectroscopic analysis was 

conducted with the FieldSpec 3 spectroradiometer (Analytical Spectral Devices, ASD, Boulder, CO), with spectral 

resolution of 3 nm, from 350 to 700 nm and 10 nm from 700 to 2500 nm. The output data was automatically 

interpolated to 1 nm, resulting in 2151 bands with 1 nm resolution (Demattê et al., 2019). The samples were placed 

in petri dishes and were homogeneously distributed over a flat surface for spectral reading. Two halogen lamps (50 

W) were used as light sources. The distance between the lamps formed a 90° angle and was located at 0.35 m from 

the sample with a zenith angle of 30°. These geometric configurations generated a not-collimated light beam towards 

the target. An optic fiber placed in the vertical position at 0.08 m from the sample surface captured the reflected light 

from an area of approximately 2 cm2 at the center of the sample (Poppiel et al. 2019a). Three replicates from distinct 

rotations positions for each sample were taken to reduce shadow effects. To maximize the signal-to-noise ratio, 100 

readings were performed and the average calculated for each sample. The instrument was calibrated at the beginning 

and after 20 min, using a white Spectralon® plate with reflectance superior to 99% (Labsphere, North Sutton, NH, 

USA). Using the binning function from the prospectr package in R software, all data were resampled by 10 nm 

width, totalizing 215 bands. 

 

3.2.5. Erodibility Estimation 

We used the soil databases to calculate the erodibility (Kfactor) through the EPIC - Erosion Productivity 

Impact Calculator (EPIC) equation (Sharply & Williams 1990): 

𝐾𝑓𝑎𝑐𝑡𝑜𝑟 = (0.2 +   0.3𝑒𝑥𝑝(−0.0256𝑆𝐴𝑁(1 − 𝑆𝐼𝐿/100)))  × (𝑆𝐼𝐿/𝑆𝐼𝐿 + 𝐶𝐿𝐴)0.3  ×  

(1 − (0.25𝑆𝑂𝐶/(𝑆𝑂𝐶 +  𝑒𝑥𝑝(3.72 −  2.95𝑆𝑂𝐶))))  ×  

(1 − (0.7𝑆𝑁/(𝑆𝑁 +  𝑒𝑥𝑝(−5.51 +  22.9𝑆𝑁))))  ×  0.1317 

 

 where Kfactor is the soil erodibility (t ha h ha−1 MJ−1 mm−1); SAN is the sand content (%); SIL is the silt 

content (%); CLA is the clay content (%); SOC is the soil organic carbon content (%); SN = 1 – SAN/100 and 

0.1317 is the SI metric unit conversion factor (Fig. 2c).  

 The calculated values, obtained in this step, were established as reference values and named in the text as 

"Kfactor" values. These values were later used as a dependent variable in the prediction models, together with the 

clay, sand and SOC values obtained by routine laboratory analyses. 

 

3.2.6. Environmental information 

3.2.6.1. Soil Synthetic Image (SYSI) 

We acquired a time-series of surface reflectance images from satellites Landsat 4 to 8 between 1985 to 2019 

and applied the Geospatial Soil Sensing System (GEOS3) algorithm (Demattê et al., 2018; Poppiel et al., 2019) to 

obtain a bare soil image called Synthetic Soil Image (SYSI) using the Google Earth Engine platform (GEE) 

(Gorelick et al., 2017). SYSI is a single image obtained by computing the median values from the bare soil images. 

Several works have demonstrated the potential the image in the prediction of soil attributes (Mendes et al., 2021; 

Raúl R Poppiel et al., 2019a; Safanelli et al., 2020). To classify the pixels of the time series images as bare soil, a set of 
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rules based on spectral indices were applied. These rules were coupled with quality assessment bands to remove 

clouds, shadows, inland water, photosynthetic vegetation, and non-photosynthetic vegetation (crop residues) 

(Safanelli et al., 2020). For the Normalized Difference Vegetation Index (NDVI), a threshold between −0.15 and 

0.25 was used to mask out green vegetation, Normalized Burning Ratio (NBR2), with a − 0.15 and 0.15 to mask out 

crop residues (Demattê et al., 2020, 2018). Afterwards, the bare soil pixels were used to calculate, pixel-by-pixel, the 

median values of topsoil reflectance for single bands and obtain the final reflectance value (Demattê et al., 2020, 

2018). SYSI had 30 m spatial resolution and six spectral bands harmonized as blue (0.45 - 0.52 µm), green (0.52 - 

0.60 µm), red (0.63 - 0.69 µm), near-infrared (0.76 - 0.90 µm), short-wave infrared 1 (1.55 - 1.75 µm), short-wave 

infrared 2 (2.08 - 2.35 µm) and thermal infrared (10.4 - 12.5 µm). The thermal band was resampled for 30 m 

resolution. 

 
3.2.6.2. Terrain Attributes 

The s.c.o.r.p.a.n model presented by McBratney et al. (2003) defined soil as the product of multiple formin 

factors such as soil (s), climate (c), vegetation (o), relief (r), parent material (p), age of surface (a) and spatial position 

(n).  Thus, we used topographic information as covariates in the prediction models based on spatial association, the 

covariate-based method approacha. We acquired the 30 m Shuttle Radar Topography Mission digital elevation model 

(DEM) and we used it as input to calculate 18 terrain attributes with the Terrain Analysis Library in SAGA GIS 2.3.2 

software (Conrad et al., 2015) (Table 1) (Fig. 2f). 
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Table 1: Environmental variables used as soil predictors for CBMA. The relief/drainage class were calculated using a DEM 
obtained from SRTM with 30 m resolution. SYSI was obtained from Landsat Images collection from 1985 to 2019. 

Class Attribute Description Unit Reference 

 Relief/ LS LS Factor - slope length non-dimensional 
Conrad et al. 
(2015) 

 Drainage TRI 
Terrain Ruggedness Index - measures terrain 
heterogeneity related to elevation 

non-dimensional 
Riley et al. 
(1999) 

  SLOPE 
Slope - a space curve defined for the set of 
nonspecial points on the surface 

Degree Florinsky (2012) 

  TWI 
Topographic Wetness Index - indicator of soil 
moisture distribution at different landscape 
positions 

non-dimensional Pei et al. (2010) 

 
CNBL Channel Network Base Level m 

Bock and 
Köthe, (2008) 

  VDCN Vertical Distance to Channel Network m 
Rennó et al. 
(2008) 

 
Elevation Elevation grid representing altitude m 

(Zhang and 
Montgomery, 
1994) 

 
AH Analytical Hillshading 

Radians 
Tayebi et al. 
(2021) 

 
Aspect Aspect 

Degree 
Mendes et al 
(2022) 

 
VD Valley Depth 

m 
Mendes et al 
(2022) 

 
CS Catchment Slope 

Degree 
Tayebi et al. 
(2021) 

 
GC General Curvature 

Degree SAGA 2.3.2 

 
LC Longitudinal Curvature 

Degree SAGA 2.3.2 

 
MSP Mid-slope Position non-dimensional 

SAGA 2.3.2 

 
NH Normalized Height non-dimensional Tayebi et al. 

(2021) 

 
RSP Relative Slope Position non-dimensional 

SAGA 2.3.2 

 
SH Slope Height non-dimensional Tayebi et al. 

(2021) 

 
SHe Standardized Height non-dimensional Tayebi et al. 

(2021) 

SYSI Band 1 Blue Reflectance 
factor 

Demattê et al., 
(2018) 

  
Band 2 Green Reflectance 

factor 
Demattê et al., 
(2018) 

  
Band 3 Red Reflectance 

factor 
Demattê et al., 
(2018) 

  
Band 4 Near Infrared Reflectance 

factor 
Demattê et al., 
(2018) 

  
Band 5 Short Wave Infrared - 1 Reflectance 

factor 
Demattê et al., 
(2018) 

  
Band 6 Short Wave Infrared - 2 Reflectance 

factor 
Demattê et al., 
(2018) 

 
Band 7 Thermal Infrared 

LST 
Poppiel et al. 
(2019) 
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3.2.7. Soil erodibility (K) prediction 

3.2.7.1. Cubist algorithm 

We used the cubist algorithm to make spatial predictions of soil attributes (clay, sand, and SOC) and the K 

factor in the study area. The cubist is a common machine learning algorithm often used for DSM works, having 

good results for the prediction of soil texture (Chagas et al., 2016; Lagacherie et al., 2019; Mello et al., 2022) and SOC 

(John et al., 2020; Li et al., 2021; Moura-Bueno et al., 2021). 

 Cubist is a tree-rule-based algorithm in which linear regression models are obtained at each branch of the 

tree to allow the prediction of the values. It uses a boosting-like procedure named committees and the most 

common k neighbors to avoid overfitting (Kuhn et al., 2013; Quinlan, 1992). The default the number of committees 

(1, 10 and 20) and neighbors (0, 5 and 9) were used to build the prediction models using the function train of caret 

package, totalizing nine models, the model with the minor root mean square error (RMSE) was chosen and applied 

to the validation dataset.  

The coefficient of determination (R2) and the root mean square error (RMSE) were used to evaluate the 

performance of the training and validation set's prediction. 

 

3.2.7.2. Covariate-based method approach (CBMA) 

The CBMA follows the established DSM framework to predict topsoil properties (Clay, Sand, SOC, and K) 

for the study area. We created a 60 m buffer for the 3210 soil points locations in the study area and use the circular 

areas to calculate the mean value of all the environmental variables (Table 1) through zonal statistics, producing a 

dataset with soil and environmental information. The resulting dataset was randomly partitioned into training (70%) 

and validation/test (30%) using the createDataPartition function from the caret package in R software (Kuhn, 2008). 

The training dataset was used to calibrate the prediction model (Fig. 2g). K factor was used as dependent variable 

and environmental covariates as independent variables (Table 1), to fit a cubist prediction model. The result was a 30 

x 30 m soil erodibility predicted map for the study area. The erodibility map obtained was nominated as “Kpred” 

map (Fig 2). 

 The random sampling and subsequent modeling were repeated 50 times for each setting to get a 

distribution of the performance of prediction (Fig. 2h). The 50 realizations mean represents overall model 

performance (Heil et al., 2022; Tang et al., 2020). The uncertainty map was constructed by 50 realizations of the 

previously described routine. They represent the 90% prediction interval (90% PI) obtained in the 50 realizations 

(Fig. 2h). The lower and upper limits (5th and 95th percentiles) were obtained and the 90% PI was calculated as the 

difference between 95th and 5th percentiles (90% PI = 95th − 5th). The mean value considered as the final attribute 

map. 

We also performed digital maps of soil sand, clay, and SOC contents, using the same machine learning 

algorithm. The digital map of silt was obtained by the difference between the digital maps of clay and sand (Fig. 2i). 

These maps were used as inputs to calculate a different digital soil erodibility map for the study area. We applied the 

EPIC equation in the predicted maps (clay, sand, silt and SOC) using the raster calculator function in QGIS 3.16 

software, resulting in another K map, nominated as “Kcalc” map (Fig. 2j). 

 In order to compare the two digital soil erodibility maps obtained (Kpred and Kcal), a difference map was 

obtained (Kpred - Kcalc) (Fig. 2k).  

 



55 
 

3.2.7.3. Ordinary kriging approach  (OKA) 

3.2.7.3.1 Obtaining point values 

Cubist prediction models were fit using the Kfactor of each sample as dependent variables and the 215 

bands of the Vis-NIR-SWIR as predictors. For this, 2733 samples of the dataset (Fig. 2o) were randomly partitioned 

into training (70%) and validation/test (30%), using the createDataPartition function from the caret package in R 

software. The remaining samples (911, denominated “uncertainty dataset”) were later used to calculate the 

uncertainty of the models (Fig 2n,q). The random sampling and subsequent modeling were repeated 50 times for 

each setting to get a distribution of the performance of prediction. The 50 realizations mean represents overall model 

performance (Heil et al., 2022; Tang et al., 2020) (Fig. 2p). Results of the erodibility model obtained was nominated 

as “Kpred”. We also performed models of soil sand, clay, and SOC contents, using the same machine learning 

algorithm. 

The uncertainty of each model was constructed by 50 realizations of the previously described routine (Fig. 

2q). For each realization the model obtained was applied in the “uncertainty dataset”, resulting in 50 predicted values 

for each sample. Then, the lower and upper limits (5th and 95th percentiles) were obtained and the 90% PI was 

calculated. In addition, the models built in each of the realizations. 

The models were also applied to the 124 samples of the farm extent area in order to be kriging for the 

OKA case study. The mean value was considered the predicted value of each farm scale area sample. The silt values 

were obtained by the difference using clay and sand predicted (Fig. 2r). These information (clay, sand, silt and SOC) 

was used as inputs in EPIC K equation, to calculate a different erodibility value for the study area, nominated as 

“Kcalc” (Fig. 2s). 

 

3.2.7.3.2 Digital soil erodibility maps by interpolation for case studies 

In other to compare erodibility maps in the farm extent study case area, obtained from different 

methodologies, the Kfactor, Kpred and Kcalc values were interpolated throughout the area by ordinary kriging 

(Knadel et al., 2015; Rossel and Chen, 2011; Viscarra Rossel et al., 2010), with a regular grid of 30 m. For this we first 

calculated the semivariance following the equation: 

𝛾(ℎ) =
1

2𝑛(ℎ)
∑

𝑁(ℎ)

𝑖=1

[𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]
2 

where, γ(h) is the semivariance; n(h) is the number of pairs of points separated by the distance h; z(xi) is the value of 

z in the position, and z (xi + h) is the value of z in the position xi + h.  

Exponential, gaussian and spherical theoretical models were tested to fit the experimental variograms, and 

the model with minor RMSE in the kriging cross-validation was selected. Then, the kriging estimate was performed 

following the equation:  

ẑ(𝑥0) =∑

𝑁

𝑖=1

𝜆𝑖 𝑧(𝑥𝑖) 

where ẑ(x0) is the kriging estimator at the x0 point; z(xi) represents the measured erodibility value at the xi point; and 

λi is the kriging weight attributed to closest z(xi) values to estimate ẑ(x0). The estimated values then represented the 

average values of erodibility at each pixel. For this step the gstat package (Pebesma, 2009) in R software was used. 

  Of the three therethical models tested, the Exponential model presented the lowest RMSE for spatial 

estimates of soil erodibility. For the Kfactor, the parameters of the final fitted model were 0.000038 for sill, 80 m for 
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range and 0.000005 for nugget. For the Kpred, 0.000005 for sill, 154 m for range and 0.000006 for nugget. For The 

Kcalc, 0.000007 for sill, 186 m for range and 0.000007. For a better presentation of the results, the erodibility maps 

were multiplied by 1000. 

 

3.2.7.3.3 Digital soil erodibility map by interpolation for Ceveiro watershed 

In order to have one more erodibility map for comparison, a digital map using Kfactor values (obtained by 

soil laboratory routine analyses of the 174 soil samples from Ceveiro dataset) and kriging was also created for the 

Ceveiro watershed. The same methodology described above (item 2.6.3.2) was used. The parameters of the final 

fitted model were 0.000047 for sill, 400 m for range and 0.000006 for nugget. The resulting erodibility map was 

multiplied per 1000 an was nominated as “Kkriging” map. Although the main objective of the Ceveiro watershed 

case study area is the assessment of CBMA, this map was also created with the objective of being another traditional 

way of obtaining erodibility maps. 

 

3.2.8. Study cases 

The Ceveiro watershed was chosen as the case study area for the covariate-based method approach (Fig. 2l). 

In the same area, several works related to soil conservation and erosion prediction models were carried out 

(Sparovek et al., 1997; Sparovek and Schnug, 2001; Weill and Sparovek, 2008). Local conservation planning usually 

adopts the watershed as the unit of work. Kumar et al. (2022) emphasizes that the USLE-based models were created 

at their origin in order to assist soil conservation actions at the local level and that the models present better 

estimation results at this scale of work. To evaluate the agreement of modeled erodibility maps (Kpred and Kcalc), 

two soil maps were used as a traditional approach for obtaining reference erodibility maps. The first was a soil legacy 

map produced by Oliveira et al. (1989), with 1:100,000 scale. The second is a detailed soil map obtained from Silva 

(2001), with 1:10,000 scale. For these traditional approaches, each mapping unit received a unique erodibility value 

(average value of soil samples within the respective units), a methodology usually used in USLE-based models works. 

The rasterize tool of Qgis 3.16 was used to create a raster with spatial resolution of 30 m. Difference maps were 

obtained to evaluate areas with under and over estimation. The kriging map (item 2.6.3.2) was also used as a 

traditional approach, and it was developed by ordinary kriging o Kfactor values from samples within the Ceveiro 

watershed. 

 For the farm extent area (Fig. 2t), the same approach was adopted. The soil legacy map from Oliveira et al. 

(1989) and the detailed soil map obtained from Bazaglia et al. (2013), with a scale of 1:10,000 as reference. And the 

Kfactor ordinary kriging map as another traditional approach. Difference maps were obtained to evaluate areas with 

under and over estimation. 

 

3.3. Results 

3.3.1. Descriptive statistics of soil properties 

The distribution and descriptive statistics of the soil datasets used are shown in Fig. 3. For the covariate-

based method approach, the clay content showed a skewed distribution, with a mean value of 23% and several 

regions with less than 35%. The mean value of sand content was 57%, with a distribution tending to be bimodal. 

The SOC content showed a skewed distribution, with a mean value of 0.88 %. The Kfactor presented an average 
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value of 24.9 (10-3 t ha h ha−1 MJ−1 mm−1), and a wide range with values ranging from 4 to 60.4. The distribution of 

properties was similar between the training and validation (Test) datasets. 

 The kriging  approach showed a distribution similar to the dataset of the covariate-based method approach. 

Few differences were observed, a slightly higher mean clay value (32%) and a slightly lower sand (55%). The 

distribution of sand contents showed a characteristic bimodal distribution. 

 

 

Figure 3. Density plots of soil attributes of covariate-based method (a, b, c, d) and kriging approach (e, f, g, h) datasets. 

 

3.3.2.  Prediction performances 

3.3.2.1  Mapping soil K by covariate-based method approach 

The performance of prediction models and spatial maps of clay, sand and SOC contents and Kpred using 

the CBMA are presented in Fig. 4 (a,b,c,d). The values of R² and RMSE correspond to the average of 50 realizations. 

Clay´s prediction model had the best performance (R2val of 0.80 and RMSEval of 7.57%), followed by sand (R2val 

of 0.67 and RMSEval of 14.18 %). SOC and K factor models showed the worst results, with R2val of 0.47 and 

RMSEval of 0.3 % and 7.43 10-3 t ha h ha−1 MJ−1 mm−1 respectively. For all attributes, the training and validation R2 

and RMSE were very similar 

The uncertainty maps for each soil attribute, represented by the 90% prediction interval of 50 realizations 

(90% PI), are also presented in Fig. 4 (e,f,g,h). For the Kpred, the northwest part of the study area showed the lowest 

predicted values and also the lowest uncertainty. More to the center, from north to south, areas with higher Kpred 

values and high uncertainty can be found. In contrast, in the northeast region, intermediate values of Kpred and low 

uncertainty were observed. For sand, clay and SOC, the northwest region presented low uncertainties, and the same 

region, in general, presented low levels of clay and SOC and high levels of sand. The northeast region presented the 
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highest clay and SOC values and the lowest sand values. The same region presented the highest uncertainties for clay 

and variable uncertainties for sand and clay. The entire central area showed a tendency of intermediate to high 

uncertainty for sand prediction.  

The erodibility map obtained from the soil attribute maps (Kcalc) in general showed slightly lower values 

than Kpred. Figure 5 presents the Kpred (Fig. 5a) and Kcalc maps (Fig. 5b), as well as the difference map (Kpred - 

Kcalc) and its distributions. The difference values showed a normal distribution (Fig. 5c), with average values close 

to zero, an indication that both methodologies had very similar results. it is also possible to observe that the regions 

with the highest values of Kpred and Kcalc coincide with those with the highest percentage of silt (Fig. 5d). 

 

3.3.2.2 Point base prediction with 350-2500 nm spectral data for the kriging approach 

In Fig. 6, the boxplot of R2 (Fig. 6a), RMSE (Fig. 6b) and the 90% PI (Fig. 6c) values for all soil properties, 

from both, the training and validation sets are presented. The prediction models using the 215 bands of the Vis-

NIR-SWIR spectrum as predictors variables showed satisfactory performance for clay (median R²val of 0.83), good 

for sand (median R²val of 0.69) and reasonable for the Kpred (median R²val of 0.58). The SOC model presented the 

worst result (median R²val of 0.44). The training and validation set coefficients were similar, with a greater range for 

the validation set. 
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Figure 4. Digital maps of attributes generated in CBMA. Mean values maps for all attributes and the prediction performance of 
models (a,b,c,d). Uncertainty maps obtained by the 50 realizations and their respective histogram (e,f,g,h). 
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Figure 5. The digital soil erodibility maps for the study area obtained from two different approaches, Kpred (a) and Kcalc (b). 
The difference map between the two approaches (Kpred - Kcal) and their respective histogran (c). Silt map obtained by difference 
(100% - Sand + Clay) (d). 
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Figure 6. Boxplots showing the distribution of the R2 values (a) and the RMSE (b) for clay, sand, SOC and Kpred. The values 
were obtained for both the calibration/training (70%) and validation/test (30%) sets, from the 50 realizations. The 90% 
prediction interval (90% PI) (c) of each model was obtained applying models at the “uncertainty dataset” (50 realizations). 
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3.3.3. Case studies of the approaches developed 

3.3.3.1 Ceveiro watershed - covariate-based method approach 

Fig. 7a presents the soil erodibility maps obtained by different methodologies. In general, for all maps, the 

central area of the watershed presented the highest erodibility values, followed by the eastern region. The lowest 

values were found in the north west limits. The map generated from the legacy soil map 1: 100,000 presented only 

six K values, from 18 to 35 (10-3 t ha h ha−1 MJ−1 mm−1). The map obtained from the detailed soil map, the K 

ranged from 15 to 42. For the kriging Kfactor (Kkriging) map the range was 2 to 47, the Kpred map from 7 to 55 

and the Kcalc map from 2 to 46. All other approaches found values higher and lower than the threshold values 

obtained by the legacy map. 

 

 

Figure 7. Ceveiro Watershed Soil Erodibility Maps obtained by different methodologies, from a legacy soil map (1:100,000 scale), 
from a detailed soil map (1:10,000 scale), from a model (Kpred) and calculated from soil attribute maps (Kcalc) and by ordinary 
kriging (Kkriging) (a); Difference maps between legacy soil map at 1:100,000 scale and other methodologies (b). Difference maps 
between detailed soil map at 1:10,000 scale and other methodologies (c). 

 

When the legacy map (1:100,000) was chosen as a reference (Fig. 7b), in general, the other methodologies 

underestimated the values in the northwest limits of the watershed and overestimated in the southwest region. 

Comparing the difference maps obtained, there was a great agreement between the K legacy minus Kkriging map, K 

legacy minus K detailed and K legacy minus Kcalc. In the central-east region, however, the K legacy minus Kcalc 

presents positive values while the other two negative values. 

Fig. 7c shows the difference maps obtained using the K detailed map as reference. The K detailed minus 

Kkriging map showed more areas with slight overestimation of values. Both K detailed minus Kkriging, K detailed 

minus Kpred and K detailed minus Kcalc maps overestimated the erodibility values (negative values) in the central-

west region and in a small part in the north of the watershed.   
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3.3.3.2 Ceveiro watershed - ordinary kriging approach 

Fig. 8a presents the soil erodibility maps obtained by different methodologies in the farm extent area. The 

highest erodibility values are found in the limits of the area, close to the natural drainage channels of the terrain. All 

other methodologies showed lower erodibility values, for a large part of the area, than the values obtained by the 

legacy soil map. The map obtained by kriging the erodibility values calculated from the results of routine soil analysis 

(Kfactor), showed hotspots with high values. The legacy map presented only three K values, from 31.8, 35.6 and 

36.4 (10-3 t ha h ha−1 MJ−1 mm−1). The values of K obtained from the detailed map ranged from 22 to 39. For the 

Kfactor map, the range was 15 to 50, the Kpred map from 24 to 38 and the Kcalc map from 26.5 to 38.5. All 

approaches found values higher and lower than the threshold values obtained by the legacy map. 

 
Figure 8. Rafard farm scale area soil erodibility maps obtained by different methodologies, from a legacy soil map (1:100,000 
scale), from a detailed soil map (1:10,000 scale), from ordinary kriging of Kfactor, Kpred and Kcalc values (a); Difference maps 
between legacy soil map at 1:100,000 scale and other methodologies (b). Difference maps between detailed soil map at 1:10,000 
scale and other methodologies (c). 
 

Regarding difference maps, when the legacy map was considered as a reference (Fig. 8b), there was greater 

agreement between the Legacy minus Detailed and Legacy minus Kpred maps, than the Legacy minus Detailed and 

Legacy minus Kcalc maps. On the other hand, the Legacy minus Kfactor map presented areas with more intense 

colors, both underestimating and overestimating, and also presented hotspots. When the reference was the detailed 

map, the Detailed minus Kfactor and Detailed minus Kpred maps presented softer colors in relation to the Detailed 

minus Kcalc map, indicating greater agreement. However, while Kpred had a general tendency to slightly 

overestimate erodibility (negative values) for almost the entire area, Kfactor did not show a tendency to either 

overestimate or underestimate. 
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3.4. Discussions 

3.4.1. Soil properties and erodibility values 

The study area is highly variable in parent materials, resulting in a great variability of soil types and spatial 

variability of soil properties (Gallo et al., 2018; Mendes et al., 2022, 2021). Despite the number of samples showed 

high variability in clay and sand contents, the database showed a skewed distribution for clay (Fig. 3a). In part this 

can be explained by the absence of samples in the northeast region of the study area (Fig. 1a). This region has 

predominantly clayey and very clayey Ferralsols, sandy soils (with clay content < 15%) are found in the northwest 

region, while in the central region there is a tendency towards medium textured soils, where areas with soils with 

higher silt content also occur (Campos et al., 2022; Oliveira et al. 1989). The greater representation of samples with 

clay contents lower than 35% (Fig. 3a) partly explains the predominance of low SOC values (Fig. 3d) (Weil and 

Brady, 2017). Another explanation is the fact that the region is frequently cultivated with sugarcane, where soil 

preparation is still predominantly conventional and it favors the oxidation of soil organic matter (Campos et al., 

2022). 

 The K-factor values, calculated from soil properties, ranged between 4 and 60 (10-3 t ha h ha−1 MJ−1 mm−1), 

with an average of 25.03. In the classification proposed by (Rosewell and Loch, 2002), values below 10 are 

considered extremely low and values above 60 are considered extremely high. Working with soil data from all over 

Brazil, Godoi et al. (2021) compared erodibility values using the nomograph (Wischmeier and Smith, 1978) and the 

EPIC model (Sharpley and Willians, 1990), and observed that EPIC predicts higher values than the nomograph. The 

authors found values ranging from 0.2 to 63.3, with a mean value of 18.1 using the Nomograph and ranging from 

2.09 to 57.6 with a mean value of 30.7 using EPIC. Medeiros et al. (2016) applying the USLE model for the entire 

state of São Paulo, Brazil, estimated erodibility values between 9.7 and 59.2. Majhi et al. (2021) point out that the 

universal application of these methodologies needs to be questioned since they were developed for soils of temperate 

climate with predominance of medium texture. Despite that, Weill and Sparovek (2008), methodology for Brazilian 

soils proposed by Denardim (1990), in the same Cevereiro watershed, found values between 22 and 48, similar range 

obtained in our work. Anache et al. (2015), evaluating different methodologies for soils of a subwatershed in the 

Mato Grosso do Sul State, Brazil, found the EPIC model as the most suitable. Therefore, the approach used in our 

work can be considered effective to represent the variability of soil erodibility in the study area. 

 

3.4.2. Relationship of soil properties with bare soil images 

The best prediction performances were for clay and sand, similar results were obtained by different authors 

for the same region (Bellinaso et al., 2021; Mello et al., 2022; Nélida Elizabet Quiñonez Silvero et al., 2021). Silvero et 

al. (2021) obtained slightly lower results, but the authors used just six bands of a Landsat bare soil image. Mello et al. 

(2022) obtained slightly lower results for clay and higher for sand, using, in addition to a satellite image, terrain and 

drainage variables. The results demonstrate the importance of using multi-temporal images of bare soil to predict soil 

properties, wich was also confirmed in other regions (Gasmi et al., 2021; Rogge et al., 2018; Shabou et al., 2015). The 

highest prediction uncertainties for clay were found in the northeast and northern parts of the study area, as 

previously pointed out, the absence of samples in the northeast region possibly contributed to the greater uncertainty 

in this region. 

The low performance obtained by the SOC prediction model can be partly explained by the higher SOC 

dynamics in the soil over time (Ramesh et al., 2019). As SYSI considers the median reflectance value of each band 



65 
 

among all images that had soils exposed in that pixel (Demattê et al., 2018; Safanelli et al., 2020), it ends up 

portraying the spectral condition of a single day, which does not necessarily is the same period when the samples 

were collected. Despite this, the use of terrain variables allowed an increase in performance in relation to the results 

obtained by Silvero et al (2021) and Mello et al. (2022). Regarding the spatial distribution of SOC, even with the low 

performance of the model, the result found was within the expected, with the lowest values obtained in the 

northwest region where the sandy soils are found and the highest values in the northeast region where there is a 

predominance of soils with high clay content (Campos et al., 2022). 

The methodology used (EPIC) to calculate the erodibility uses clay, sand, silt and SOC as input data. In this 

sense, although the independent variables used, were effective for obtaining clay and sand prediction models with a 

good performance, they were insufficient to provide subsidies for the creation of a good SOC prediction model, 

consequently affecting the K prediction. This is confirmed by the fact that the Kpred values obtained are very similar 

to the Kcalc values (Fig. 5a,b). This is noticeable in the difference map of the two methodologies (Fig. 5c), which 

shows a predominance of colors with low intensity. Fig. 5d also reinforces the importance of silt values to calculate 

the erodibility, being possible to verify that the areas with the highest silt values present the highest K values, 

corroborating the conclusions of Bonilla and Johnson (2012). This is due to the fact that the methodology was 

basically developed with data from temperate areas with predominance of medium textured soils (Majhi et al., 2021). 

 

3.4.3. Spatial kriging approach - prediction performances 

The good performance of clay and sand content using Vis-NIR-SWIR data is reported in the literature by 

different works (Bellinaso et al., 2021; Demattê et al., 2016). For SOC, however, the performance was the lower than 

those obtained by other works (Heil et al., 2022; Tang et al., 2020). For Kpred, the performance was similar to that 

obtained by Ostovari et al. (2018) for soils in Iran. However, it should be noted that the authors used erodibility data 

measured directly from erosion plots as the dependent variable. Jiang et al. (2020) obtained different models for each 

soil class, with better and worse performance than our work. This difference indicates a possible influence on the 

results depending on the methodology used to calculate the erodibility reference value.  

 Regarding the two approaches for obtaining K through the predicted values, Kcalc presented values slightly 

higher than Kpred (on average 5 more). With Kpred values closer to those obtained when using data from routine 

laboratory analysis (Kfactor). 

 

3.4.4. Case study of the Ceveiro watershed - covariate-based method approach 

The erodibility prediction approaches (Kpred and Kcalc) were able to represent the spatial distribution of 

this attribute for the area when compared to traditionally methodologies (based in soil maps and interpolation) (Fig. 

7a). Even with the limitation of the performance of each model, there was a better agreement of the digital maps 

with the map obtained through the 1:10,000 scale soil map and by kriging than with the map obtained through the 

legacy soil map. This fact can be better observed through the similarity of the difference maps obtained using the 

legacy soil map as a reference. Majhi et al (2021) in an extensive review of the application of USLE-based models in 

India, pointed out that in a total of 100 works evaluated, 91 studies had generated spatially-discrete K factor maps. In 

addition, when analyzing the representativeness of samples used to obtain the erodibility maps, they judged that 60 

out of 77 studies failed to adequately capture the spatial variability of soil erodibility. The same authors and Kumar et 

al (2022) reinforce that the best validation results of USLE-based models in predicting soil loss were found when 
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these models are applied at watershed or smaller areas. Therefore, the use of erodibility maps consistent with these 

scales of work is necessary for a better identification of the spatial variation of soil loss, since the quality of the result 

of a model depends on the quality of its inputs (Miller, 2017).  

 Another issue that must be considered is that even adopting the methodology for obtaining soil erodibility 

through a soil map at an adequate working scale (in our case the map at a scale of 1:10,000), its also presents errors 

inherent to the soil mapping process itself (Bazaglia Filho et al., 2013) and the uncertainties from the use of an 

average erodibility value for each soil mapping unit (Majhi et al., 2021). 

 

3.4.5. Case study of the farm extend area - kriging approach 

For this case study, the agreement of the digital erodibility maps obtained through the proposed 

methodologies with the map obtained from the detailed soil map was higher than with the map obtained from the 

legacy soil map (Fig. 8). Although the prediction of soil erodibility through Vis-NIR-SWIR data has a point value as a 

product, this approach can be used to build more detailed grids of information to be used in digital mappings based 

on spatial autocorrelation, the kriging approach, being faster and less polluting than routine laboratory analysis (Bahia 

et al., 2015; de Santana et al., 2019). 

 Another fact that must be discussed is that even though the erodibility map obtained from the detailed soil 

map was considered the most adequate for the area, it does not necessarily best represent the spatial distribution of 

erodibility in the area. As previously mentioned, Majhi et al. (2021), point out that the use of average values for a 

mapping unit can lead to variation smoothing, or even overestimates or underestimates caused by outliers within the 

same mapping unit. In the study area it is possible to verify this when comparing the map obtained through the 

detailed soil map and the one obtained by Kfactor ordinary kriging (Fig 8a). It is clear the presence of hotspots with 

high erodibility values in the Kfactor kriging map, which are smoothed in the detailed map. If there is no error in the 

routine analysis of these samples that generated the hotspots, even the detailed map would not adequately represent 

the erodibility of these areas. 

 

3.4.6. Advantages, limitations and future research 

In this work, we demonstrated the potential of using DSM and proximal and remote sensing techniques in 

order to obtain better erodibility maps than those obtained from coarse legacy soil maps, thus contributing to 

minimize one of the problems of applying USLE-based models (Majhi et al., 2021). For the prediction of the 

erodibility of the agricultural areas, 3600 soil samples were used), which corresponds to approximately 1 sample per 

0.715 Km2. Considering that it is not possible to obtain the SYSI for the entire area and excluding urban areas, it 

would be around 1 sample per 0.4 km². The potential use of the technique with a relatively low number of samples 

for model calibration makes the approach even more attractive for countries with scarce data. 

 Despite this, some limitations are evident, such as the fact that it is not possible to obtain the SYSI of the 

entire area, which can be an even more limiting factor in regions with a high presence of native vegetation or 

pastures. An alternative proposed by Silvero et al. (2021) and Poppiel et al. (2019) is the interpolation of information 

as a way to obtain data for these areas not captured by SYSI. Obtaining Vis-NIR-SWIR data from these areas can 

potentially contribute to this task. 

Another limitation is the relatively low performance of the prediction model obtained in the covariate-based 

method approach. The use of variables that can contribute to a better SOC prediction performance can be a path to 

be pursued. Furthermore, considering future research, the following are suggestions to be worked on: the modeling 
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of soil erodibility calculated through other methodologies (Wishmeier and Smith, 1978; Auerswald et al., 2014; 

Zhang et al., 2019) or even measured through erosion plots (Ostovari et al., 2018); use of other proximal sensing 

approaches in point estimates of erodibility, for example Mid-infrared spectroscopy; use of exposed soil images 

obtained by other sensors (eg Sentinel) as predictors of erodibility, as well as the use of hyperspectral images. 

 

3.5. Conclusions 

The work demonstrated the potential of using the SYSI obtained from multi-temporal Landsat images to be 

an important source of predictor variables for soil attributes modeling, including erodibility. As well as the potential 

of using proximal sensing in the point prediction of these attributes, as an alternative of information to compose 

grids to be used especially in spatial prediction autocorrelation approaches, as kriging. 

 The results obtained better represent the spatial variation of erodibility than information obtained from 

low-scale soil maps, especially when dealing with working areas at watershed or farm scale. These approaches, to 

obtain spatial information on soil erodibility, are even more relevant to be applied in regions with scarcity of data, 

mainly in developing countries. 

 New researches are necessary to improve the performance of the models, as well as using other calculation 

methodologies. 
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4. DETECTION OF BARE SOILS IN SUGARCANE AREAS BY TEMPORAL SATELLITE IMAGES: A 

MONITORING TECHNIQUE FOR SOIL SECURITY 

 

Abstract 

      Bare soil triggers several undesirable processes for its quality and remote sensing can be a powerful tool to 
monitoring its occurrence. This work aims to apply multi-temporal satellite image techniques to detect bare soil areas 
under sugarcane cultivation and relate with soil security. The study was carried out in an area of 2,574 km² located in 
Brazil. The MapBiomas land use and cover collection was used to know the sugarcane area changes from 1985 to 
2019. A collection of Landsat images over 35 years (1985 to 2019) were used to create Synthetic Soil Images (SYSIs) 
and the Bare Soil Frequency Images (BSF) of the area. SYSIs were generated annually, in the rainy and dry season. 
BSFs was generated in the total period and every five years by dry and rainy season. Thus, the land use changes and 
bare soil occurrence were compared to categorical maps of soil types, surface clay classes and slope, and also with 
economic, social and political changes in the period. In general, the bare soil increased from 1985 to 2006, and began 
to decline thereafter because of “Agro-environmental Protocol’ that anticipated the end of pre-harvest burning in 
sugarcane crop. BSF in the rainy season decreased over the period motivated by knowledge of farmers and changes 
in management. Despite this, many prone to erosion soils classes (Arenosols, Lixisols/Acrisols) remain under 
conventional tillage in the rainy season. We concluded that the use of multi-temporal satellite images is an important 
approach to monitoring soil management contributing to soil security. 
 
Keywords: Remote Sensing, Soil Degradation, Sustainability, Soil Management, Erosion, Multi-temporal images 
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4.1. Introduction 

Sugarcane is cultivated in over 100 countries (Aparecido et al. 2021; Paungfoo-Lonhienne et al. 2021), on 

about 26 M ha (Dias et al. 2021b) and is one of the most important crops for the global economy (Arruda et al. 

2021). In the actual global demand for renewable energy, where more than 64 countries have national programs to 

stimulate biofuels use (Caldarelli and Gilio, 2018), it is one of the most sustainable crops for biofuel production 

(Bordonal et al., 2018; Barbosa et al. 2019). Brazil is the largest sugarcane producer (Cherubin et al 2021a; Marin et 

al. 2021), India, China, Thailand and Australia are other important producing countries (Han et al. 2022; Som-ard et 

al. 2021). 

Brazil with approximately 376 sugarcane mills (Hernandes et al., 2021) is the second-largest bioethanol 

producer in the world (Carvalho et al. 2019; Gmach et al. 2020), producing 2,348,591.8 thousand liters from 

sugarcane (CONAB, 2021). Ethanol is present in the consumer's daily life, mainly as a clean and renewable fuel 

(Coelho et al., 2006; Antunes et al., 2019), it begins in the 1970s, with the “Pro-Álcool” (Pro-Ethanol), the National 

Alcohol Program (Chavegatti-Gianotto et al. 2011) and nowadays, around 71.4% of vehicles are flex-fuel (Sindipeças 

and Abipeças, 2021). In addition, Brazil produces 29,795.7 thousand tons of sugar (CONAB, 2021), around of 10% 

of national electricity demand (20 TWh of bioelectricity) is generate by co-generation (Gmach et al. 2020; Nechet et 

al. 2021) and sugarcane or its by-products have numerous other uses (Chavegatti-Gianotto et al. 2011; Dias et al. 

2021b). Brazil has been grown sugarcane since the colonial period (Dias et al. 2021a), cultivating around 10 million 

ha mainly in two traditional regions: the center-south (92% of the production) and the northeast (Carvalho et al. 

2019; Almeida et al. 2021; Cherubin et al. 2021b). In center-south region, São Paulo State concentrates 55% of 

sugarcane national production (Cherubin et al. 2021b; Teixeira et al. 2021; Valente e Laurini et al. 2021).  
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 At the 21st Conference of the Parties (COP21), Brazil commits to reducing greenhouse gas emissions 

(Tenelli et al. 2019; Sanchez et al. 2021;). For this, it is estimated that the country will need to double the production 

of Ethanol by 2030 (Almeida et al. 2021; Silva et al. 2021) and increase the production of other bioenergy produced 

from sugarcane by-products (Silva et al. 2021; Dos Santos et al. 2022). To this end, the recent biofuel policy of the 

country, denominated “Renovabio” was created (Gonçalves et al. 2021; Grangeia et al. 2022). 

 Although sugarcane is considered a sustainable crop for biofuel production (Barbosa et al. 2019; Dos 

Santos et al. 2022) and its expansion in Brazil a solution to reduce CO2 emissions (Jaiswal et al. 2017; Hernandes et 

al. 2021), some problems related to its soil management have been reported: degradation of the soil structure 

(Canisares et al. 2019), compaction (Esteban et al. 2019; Jimenez et al. 2021) excessive use of conventional tillage 

(Barbosa et al. 2019; Martini et al. 2021) and erosion (Medeiros et al. 2016). Soil erosion can cause lower sugar cane 

yield, due to diminishing the accumulation and transformation of soil organic matter (SOM), supply nutrients, 

infiltration, retention, and supply water (FAO & ITPS, 2015). In addition, carry sediment and nutrients to water 

bodies (Melland et al. 2022; Portinho et al. 2021; Santos et al. 2021). Keeping the soil uncovered (bare soil/ exposed 

soil) is considered one of the main causes of erosion (Morgan, 2005). The maintenance of soil cover (i.e. straw 

maintained in sugarcane areas) reduces soil erosion by dissipating the kinetic energy of raindrops, decreasing the flow 

velocity (Bordonal et al. 2018; Li et al. 2021) and reduces the pressure from agricultural machinery on the soil, 

attenuating the increase of compaction (Martini et al. 2021). Maintaining 50 and 100% of the sugarcane straw on the 

soil surface reduces soil erosion by 68 and 89% respectively (Martins Filho et al. 2009). Thus, efficient techniques are 

necessary for soil monitoring, preventing and minimizing soil threats and promoting soil security in sugarcane 

production.  

 The traditional ways of monitoring soil management are mostly through fieldwork (Oliveira et al., 1995; 

Ceddia et al., 1999; Prado and Centurion, 2001; Biddoccu et al., 2016), which are slow, and with low potential for 

spatial analysis. More recently, new techniques have emerged, like site-specific fertilizer management (Sanchez et al. 

2021), kriging to map compaction areas (Arruda et al., 2021), magnetic susceptibility to create management zones 

(Catelani et al. 2021), among others (Almeida et al. 2021; Hernandes et al. 2021; Luciano et al. 2021; Som-ard et al. 

2021). Another technique approach is to relate erosion susceptibility maps to land use (Azareh et al., 2019; Cerri et 

al., 2013; Krishna Bahadur, 2009; Weill and Sparovek, 2008). All of them do not include in their scope evaluate how 

many times the soil was bare in a certain period, a possible indication of potential degradation. Especially in 

agricultural areas where bare soils are related to management practices such as tillage (Demattê et al. 2018) 

In this aspect, remote sensing (RS) is a powerful environmental monitoring technique (Ben-Dor et al., 2009; 

Aguiar et al. 2011; Som-ard et al. 2021). The RS is based in the interaction of electromagnetic energy with matter, for 

example soil (Chabrillat et al. 2019). Viscarra Rossel et al., (2016) present these relationships at the laboratory level, 

followed by Diek et al. (2016) at airplane level and finally at satellite level with (Mulder et al., 2011). All these 

researches prove the important relationship between the bare soil and the reflected energy, allowing, through multi-

temporal images, to detect bare soil for multiples applications (Demattê et al., 2020; Minhoni et al. 2021). Therefore, 

the RS by multi-temporal strategies allows relating and evaluating the presence of bare soils with management 

aspects that can make it more prone to erosion or degradation (Nascimento et al. 2021). This work strategy for 

monitoring soil management is even more relevant in countries with large territorial extension and high agricultural 

demand, due to high costs (Dube et al., 2017).  

 Therefore, our hypothesis is: the use of multi-temporal satellite images makes it possible to evaluate aspects 

of soil management and their changes, in sugarcane areas, and to relate them to soil security, especially those linked 
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to erosion. It is expected that: i) The expansion of sugarcane occurred mainly in soils more prone to erosion and was 

influenced by public policies and economic factors; ii) the amount of bare soils decreased after the implementation 

of the public environmental policy “Agro-environmental Protocol – Green Ethanol”, which anticipated the end of 

sugarcane pre-harvest burning; iii) many areas with different levels of soil degradation propensity will be detected by 

satellite sensors during the crop field reform  iv) Due to the expansion of sugarcane areas and crop management 

changes, there was an increase in bare soil areas in the rainy season. 

 

4.2. Material and methods 

4.2.1. Study area 

The study area (Figure 1) has about 2,574 km² and is located in the Piracicaba region, a traditional sugarcane 

production area, in São Paulo State, Brazil (Brinkman et al. 2018; Cervone et al. 2018). The region's climate, 

according to the Köppen system, is classified as Cwa, a Humid Subtropical with dry winter and hot summer, with 

rainfall in the driest month in the winter minor than 40 mm, temperature of the coldest month between -3°C and 

18°C and temperature of the hottest month grater equal 22°C (Alvares et al. 2013). Using climate data from the 

conventional meteorological station from the “Luiz de Queiroz College of Agriculture” (ESALQ/USP) from 1917 

to 2021, we obtained that the mean annual precipitation is 1274 mm, being the wettest period (November to 

February) with a mean of 740 mm of rainfall and the driest period (June to August) with a mean of 102 mm of 

rainfall. The mean annual temperature is 21.7 °C. The mean temperature of the coldest month (July) is 17.6° C and 

of the hottest month is 24.8 (February). 

The predominant soils of the region are Lixisols/Acrisols (~58%), Ferralsols (~19%), Leptosols (~13%) 

and Arenosols (~6%) with occurrence also of Cambisols, Nitisols and Gleysols (Oliveira et al., 1989). 

 
4.2.2. Sugarcane crop management in study area 

Sugarcane is a semi-perennial crop, harvested annually during an average of five years before replanting 

(Aguiar et al. 2011; Cheavegatti-Gianotto et al. 2011). The harvest season occurs from April to December (Dias and 

Sentelhas, 2017; Marin et al. 2021) (Fig. S1). The traditional period of sugarcane renewal (replanting) is carried out 

during two seasons in the center-south region, during February to April and September to November, being called 

“one year-and-half cane” or “18 months- cane”, and “one-year cane” or “12 months-cane”, respectively (Pagani et 

al., 2017). However, currently, with the increase of production areas and the longer period of harvests, sugarcane is 

planted throughout all year, thus, the terms “winter cane”, and “two-summers cane” were created for sugarcane areas 

planted between May to August and December to January, respectively (De Maria et al. 2016). However, in center-

south region, planting carried out in January can be incorporated into the 18 months-cane system (De Maria et al. 

2016) (Fig.  S2). Soil preparation (tillage) practices are performed only in replanting period (Barbosa et al. 2018), 

usually a conventional tillage (Cheavegatti-Gianotto et al. 2011; Barbosa et al. 2018). More details about the crop's 

production system in the center-south region are described by Aguiar et al. (2011) and Cheavegatti-Gianotto et al. 

(2011). 
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Figure 1. Study area and flowchart of methodology 

 

4.2.3. Identification of sugarcane expansion 

The identification of sugarcane cultivation areas from 1985 to 2019 was carried out using the annual land 

use and land cover classification maps available in Collection 5 of the Annual Use and Coverage Mapping Project of 

the Earth in Brazil - MapBiomas (MapBiomas, 2021). The maps with a spatial resolution of 30 m were used to select 

only areas with sugarcane and mask out other land uses/covers from the images. Finally, the sugarcane areas were 

separated into soil, granulometric and slope classes. 

For it, we used a soil legacy map produced by Oliveira et al. (1989) (scale of 1: 100,000) rasterized by 

Mendes et al. (2021), with a spatial resolution of 30 m to select the main soil orders used for sugarcane cultivation. 

Therefore, soil orders found were Argissolos, Latossolos, Neossolos Litólicos, Neossolos Quartzarênicos, and 

Nitossolos (Santos, 2018), which are equivalent to Lixisols/Acrisols, Ferralsols, Leptosols, Arenosols, and Nitisols 

(WRB, 2014), respectively. The soil clay content map (0-20 cm) was also obtained from Mendes et al. (2021) and 

classified into five granulometric classes, usually used for sugarcane soil management in São Paulo State (Bellinaso et 
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al., 2021), as followed: sandy (<150 g kg-¹), medium-sandy (≥150 g kg-¹ to <250 g kg-¹), medium-clay (≥250 g kg-¹ 

to <350 g kg-¹) and clayey (≥350 g kg-¹). The slope map was obtained from the Shuttle Radar Topography Mission 

(SRTM) digital elevation model, using the algorithm proposed by Safanelli et al. (2020a) in the Google Earth Engine 

(Gorelick et al., 2017). Based on the slope values used for definition of soil conservation practices in sugarcane 

cultivation adopted in most of the center-south region, such as definition of the types of terraces used (Donzelli et al. 

2018; Rotta and Zuquette, 2021)(Fig. S3), as well as the maximum slopes recommended for mechanized harvesting 

(15-17%) (Cheavegatti-Gianotto et al. 2011) and the characteristics of the study area (Sparovek and Schug, 2001; 

Pinto et al. 2003), the slope was classified as: flat (<6%), flat/soft (≥6% and <10%), soft (≥10% and <15%), rolling 

(≥15% and <20%) and strong rolling (≥20%). 

 

4.2.4. Synthetic Soil Images and Bare Soil Frequency Images 

We used a time series of satellite images from the Landsat 4 to 8 and the Geospatial Soil Sensing System 

(GEOS3) method, described in detail by Demattê et al., (2018) and Demattê et al. (2020), to obtain images of bare 

soil, called Synthetic Soil Images (SYSI) and images with the frequency of pixels with bare soil, called Bare Soil 

Frequency (BSF) in a pre-determined period between 1985 and 2019 (Figure 1) (i.e.: from 1985 to 2019, or from 

1985 to 1989, or from January to December in a specific year, or from all January months from 1985 to 1989, etc.). 

For each chosen time interval a specific SYSI was created. To identify bare soil pixels from single satellite images, a 

set of rules were used based in spectral indices. These rules, coupled with quality assessment bands, removed cloud, 

cloud shadow, inland water, photosynthetic vegetation, and non-photosynthetic vegetation (crop residues) (Safanelli 

et al.2020b). Each pixel was classified as soil based on spectral indices: The Normalized Difference Vegetation Index 

(NDVI), with a threshold between −0.15 and 0.20 to mask out green vegetation, Normalized Burning Ratio (NBR2), 

with a − 0.15 and 0.15 to mask out crop residues, difference between bands 1 and 2 (B2 – B1) and bands 2 and 3 (B3 

– B2) (Demattê et al., 2020; Demattê et al., 2018). Afterwards, the bare soil pixels were used to calculate, pixel-by-

pixel, the median values of topsoil reflectance for single bands and obtain the final reflectance value (Demattê et al., 

2020, Demattê et al., 2018). In addition, bare soil pixels within the time-series determined, were counted to create 

bare soil frequency image, representing the times that the soil was bare (Nascimento et al. 2021). SYSI had 30 m 

spatial resolution and six spectral bands harmonized as blue (0.45 - 0.52 µm), green (0.52 - 0.60 µm), red (0.63 - 0.69 

µm), near-infrared (0.76 - 0.90 µm), short-wave infrared 1 (1.55 - 1.75 µm) and short-wave infrared 2 (2.08 - 2.35 

µm). 

 First, we obtained annual SYSIs from 1985 to 2019 (called SYSI_1985, SYSI_1986, ..., SYSI_2019). For 

example, the SYSI_1985, is a Synthetic Soil Image created using bare soil pixels from Landsat images obtained 

between January 1, 1985 and December 31, 1985. A second step was to obtain annual SYSIs of specific periods 

classified as wet and dry seasons. We consider the four months with the highest historical average of rainfall as the 

rainy season (November to February) and the three months with the lowest historical average of rainfall (June to 

August) as the dry season. For example, the SYSI of wet season of 1990 (called SYSI_1990wet), is a SYSI created 

using bare soil pixels from Landsat images obtained in the months of January, February, November and December 

of 1990.   

Finally, to assess whether there was an increase in the area of bare soil in the rainy season between 1985 and 

2019, SYSIs were created for the months of November, December, January and February. As the rainy season 

corresponds to the period of greatest presence of clouds, which makes it difficult to detect bare soil pixels, these 

SYSIs were created for a period of five years (1985-1989, 1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014, 
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2015-2019) to minimize annual variations, reducing the effect of possible extreme years. In addition, this 5-year 

interval was chosen because it corresponds to the average period of crop replanting (section 2.2) and it has been used 

in other sugarcane crop monitoring studies (Aguiar et al. 2011). For example, the SYSI of January from 1985 to 1989 

(Called SYSI_Jan_19851989), is a SYSI created using bare soil pixels from Landsat images obtained in the months of 

January 1985, January 1986, January 1987, January 1988 and January 1989, a similar approach was taken by Mzid et 

al. 2021, to create an average bare soil frequency image for the month of September across years 2016 and 2019. 

The acquisition and use of bare soil images obtained by multi-temporal satellite images has been 

consolidated in recent years, varying only in some methodological aspects of acquisition (Shabou et al. 2015; Diek et 

al. 2017; Demattê et al. 2018; Fongaro et al. 2018; Rogge et al. 2018; Loiseau et al. 2019; Roberts et al. 2019; Demattê 

et al. 2020; Poppiel et al. 2020; Safanelli et al. 2020b; Silvero et al. 2021a; Tziolas et al. 2020). However, obtaining and 

using them in different periods within a certain time interval (as proposed in this work) was only addressed by Zepp 

et al. (2021) that generated bare soil masks covering Germany for seven time periods from 1984 to 2019. 

Although the BSF is an image that represents how many times a single pixel was bare soil in a determined 

period. The calculation of the BSF, according to Demattê et al., (2020), is obtained by dividing the number of pixels 

classified as bare soil by the number of the same pixels with valid information, i.e., pixels that have clouds, shadows, 

or inconsistent values are masked (excluded) in the calculation. First, to relate the frequency of bare soil and classes 

of the thematic maps, we use the previous time series of Landsat images to create a BSF image of the period from 

1985 to 2019. In addition, to analyze trends of increase or decrease of bare soil in specific periods (rainy and dry 

seasons described above), we also obtained BSF images by the 5-year moving count of bare soil pixels, that is, 

counting the bare pixels every 5-year + 1. For instance, the BSF for dry season of the year 1989 was obtained using 

images from the months of June, July, August and September of years 1985 to 1989, and the BSF for dry season of 

the year 1990 from images from the months of June, July, August and September of years 1986 to 1990.  

The most used methodologies for creating bare soil images mentioned above also generate BSF images 

(Demattê et al. 2018; Rogge et al. 2018). However, there are still few works that have used this resource to monitor 

and analyze the frequency of bare soil (Demattê et al. 2018; Demattê et al. 2020; Mzid et al. 2021). 

Both the BSF images and the SYSIs were generated using the Google Earth Engine (GEE) cloud platform 

(Gorelick et al., 2017), which provided the processing structure and the Landsat series collection of surface 

reflectance images from 1985 to 2019 (Landsat 4 Thematic Mapper (TM) (1985-1993), Landsat 5 TM (1985–2012), 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (1999–2019) and the Landsat 8 Operational Land Manager 

(OLI) (2013–2019). 

 

4.2.5. Data analysis 

4.2.5.1 Land use and bare soil areas 

 Initially the areas of sugarcane, pasture and mosaic of agriculture and pasture classes were calculated, for 

each year from 1985 to 2019, using the Collection 5 of the Annual Use and Coverage Mapping Project of the Earth 

in Brazil - MapBiomas (MapBiomas, 2021). In a second moment, the sugarcane annual area (1985 to 2019) was 

calculated for each class of each thematic map (Soil, Granulometry and Relief). Using each annual SYSI and the map 

of sugarcane areas for the same year, the area of bare soil in the sugarcane crop for each year was calculated. With 

this information, the percentage of bare soil areas in the sugarcane areas was calculated for each year. The same 

approach was carried out with the rainy and dry period SYSIs from 1985 to 2019 and in the SYSIs of de wet season 
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months from periods of five years. To perform the sum of these areas, the r.report tool present in the Qgis 3.16.10 

software was used. 

 

4.2.5.2 Bare Soil Frequency and thematic map classes 

 Using the BSF image from 1985 to 2019 and the Soil, Granulometric Classes and Relief maps, boxplots 

were obtained using the ggplot2 package in R software (Wickham, 2016). In addition, a Pearson correlation test was 

performed between BSF values and clay content and slope, for which the corrplot package in R software was used 

(Wei and Simko, 2021). 

 

4.2.5.3 Temporal analysis of the Bare Soil Frequency 

 We calculate the mean value of BSF from 1989 to 2019, for each class of each thematic map, using the BSF 

images obtained by the 5-year window moving count for the two periods, the wet and the dry seasons. The 5-year 

window was chosen for the same reasons as described above (section 2.4). To obtain the mean values we used the 

zonal statistics tool of the raster layer present in the Qgis 3.16.10 software. Then, we submitted the time series to the test 

of tendency of Mann-Kendall (MK) (Kendall, 1975; Mann, 1945).  The test defines if a variable consistently changes 

through time or has an increasing or decreasing trend and can be performed on normally or not normally distributed 

data, which makes it a robust test. 

The MK test started by applying an indicator function (sgn) on the difference between all possible pairs of 

measurements (Eq. 1). The value measured in time j (xj) was subtracted from the values previously observed (xi), 

considering that time j > i. Then, these differences were used to define Kendall’s statistics S (Eq. 2): 

 

  

𝑠𝑔𝑛(𝜃) = {

+1   𝑓𝑜𝑟(𝜃) < 0
0      𝑓𝑜𝑟(𝜃) = 0

−1  𝑓𝑜𝑟(𝜃) > 0
 

 

𝑆 =  ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

     
where n is the length of the dataset. Based on S, the variance V (S) (Eq. 3) and the normalized test statistics 

Z (Eq. 4) were calculated: 

𝑉(𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5)] 

 

𝑍 =

{
 
 

 
 
𝑆 − 1

√𝑉(𝑆)
  𝑖𝑓𝑆 > 0

    0       𝑖𝑓𝑆 = 0
𝑆 + 1

√𝑉(𝑆)
  𝑖𝑓𝑆 < 0

 

 

where the null hypothesis of no trend was rejected, if the absolute value of Z was higher than the 

theoretical value of Z(1-α/2) (at 0.05 level of significance). A positive S value indicated an increasing trend while a 

negative S indicates a decreasing trend. The magnitude of the trend was represented by the Sen’s slope (Sen, 1968) 

calculated over the time period. To perform the MK test the rkt package in R software was used (Marchetto, 2021). 

(4) 

(3) 

(2) 

(1) 
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4.3. Results and Discussion 

4.3.1. Expansion of sugarcane land use 

The cultivation of sugarcane in the studied region has expanded over the years, from a planted area of 78 

thousand ha in 1985 to almost 116 thousand ha in 2019 (an increase of 48% - Figure 2a), lower than Brazil increase 

since the 1980s (150%) (Cherubin et al. 2021b). The most part of this expansion occurred in São Paulo State (Franco 

et al. 2015; Cherubin et al. 2021b). Meanwhile the pasture dimension was reduced, from 75 to 38 thousand ha in the 

same period. Today, the areas classified as agriculture and pasture remained without major changes. Results are in 

agreement with other regions evaluation (Loarie et al. 2011; Hernandes et al. 2021; Cherubin et al. 2021b). Adami et 

al. (2012) for whom the expansion of sugarcane over pasture in center-southern Brazil occurring 70% in degraded 

pastureland. Jaiswal et al. (2017), Spera et al. (2017), and Oliveira et al. (2019) consider that the most sustainable way 

for Brazil to expand sugarcane areas would be to occupy areas of degraded pastures. Different authors point out that 

the culture tends to expand in areas close to the mills, to reduce harvesting and logistic costs, even if this implies 

expanding a wide range of soil and slope conditions (Caldarelli and Gilio 2018; Hernandes et al. 2021; Rocha and 

Sparovek et al. 2021).  

The increase in sugarcane areas occurred mainly in the sandy and medium sandy soils types, with the 

expansion of approximately 248.5 and 64.4%, respectively (Figure 2b). In the loam-clayey, the increase was only 

9.1% and in the clayey one, there was a reduction of 4.6% (Figure 2b). Catelan et al. 2022 correlated crop 

productivity with soil magnetic susceptibility, which is closely linked to the amount and type of clay. Regarding soil 

types (classification), sugarcane advanced significantly in the Lixisols/Acrisols, Leptosols, and Arenosols, with 92.9, 

72.2, and 540.6%, respectively (Figure 2c-d). In the Ferralsols, there was an increase of only 2.5% and in Nitisols we 

see a reduction of 11.9% (Figure 2c-d). These expansions are in agreement with (Donagemma et al., 2016) for whom 

the main central Brazilian area is expanding under sandy soils. These soils are extremely fragile and need special 

necessities such as soil conservation, different management, fertilizers and carbon care, cover crops, to consolidate 

its use in this expansion frontier of agriculture, and maintain its health (Carneiro et al., 2020). Despite this, other soils 

are under threat such as because results indicate the expansion of sugarcane to areas of greater susceptibility to water 

erosion (98.4% Strong rolling). Indeed, these areas have presence of textural gradients (Lixisols/Acrisols), shallow 

(Leptosols, figure 2d), lower clay contents (Arenosols), and higher slopes (Sparovek and Schnug, 2001). The result of 

the expansion in these types of soils are impacts on less soil water infiltration, low soil water storage volume, low 

aggregation, and higher surface runoff speed and strength, respectively. Lixisols/Acrisols are the most ones prone to 

erosion (Figure 2c) (Corrêa et al., 2019). Oliveira-Andreoli et al. (2021) consider sugarcane areas associated with 

sandy soils and high declivity to be of high fragility. Silva et al. (2021) evaluating the production of sediments in a 

watershed, showed that areas with sugarcane cultivation in undulating terrain, were the ones that generated the 

greatest amount of sediments. Therefore, conservation agriculture practices and the renewal of sugarcane plantations 

must be prioritized in these areas at the ideal time for each type of soil class. 
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Figure 2. Area of the main land use classes from 1985 to 2019 (a); sugarcane cultivation area in clay (b), soil (c-d) and slope (e-f) 
classes from 1985 to 2019; Land use and land cover map for the year 1985 and 2019 (g). 

 

4.3.2. Historical moments and bare soil area 

Figure 3a shows a temporal alteration on sugarcane management, for which needs an historical explanation. 

The sugarcane production systems (Vitti and Prado, 2012) have undergone adaptations over the years, mainly 

motivated by the advance of mechanized harvesting in the sugarcane fields (Aguiar et al., 2011; Demattê and 

Demattê, 2009). This initiative began in 1996, and intensified after the creation of state law 11.241 in 2002, that 
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established a deadline for the end of pre-harvest burning, and mainly due to the Agro-environmental Protocol 

(“Green Ethanol Protocol”) for the sugar-energy sector signed in 2007, which essentially provided the anticipation of 

this deadline (Aguiar et al., 2011).  

This intensification is proven in the comparison of burning and non-burning area studies in the state of São 

Paulo (de Aguiar et al., 2009; Rudorff et al., 2010). Authors presented in the 2006/2007 33.5% of the area harvested 

without the use of fire and in the 2008/2009 increased to 49.1%. Valente and Laurin et al. (2021) highlight the 

effectiveness that the protocol had in reducing fires. Although it was not the main objective, the effectiveness of the 

Green Ethanol Protocol brought as another benefit, the maintenance of soil covers through the residue left after 

harvest (straw). Today, harvest 2020/2021 authorizations for burning were only 0.20% of the total sugarcane area in 

the state of São Paulo (Secretary of Infrastructure and Environment, 2021). Also, according to UNICA, (2021), there 

was an increase of 398% in the number of harvesting machines in the state of São Paulo from 2007/2008 to 

2016/2017. Recently, other public policies have been gaining prominence and may contribute to the improvement of 

soil conservation management in the crop, such as the “Greener Ethanol Protocol” (Secretary of Infrastructure and 

Environment, 2021) and the Renovabio (Klein et al., 2019; Carvalho et al. 2021; Grangeia et al. 2022).  

These historical facts and public policies explains the increase of raw sugarcane that allows the presence of 

straw covering the ground (Figure 3a). After 2006 a process of reducing areas with bare soil began, leaving an annual 

average of 53% in the period 1999-2006 to an average of 23% in the period 2012-2019. This information is also 

perceived when analyzing the dry season that is inserted in the harvest period (Figure 3b), whereas in the rainy 

season this tendency does not exist (Figure 3c), as part of the culture practices. In the off harvest season (rainy 

period) the area of bare soil is a consequence of the renovation (replanting) of the culture (renovation is about each 5 

years), or areas that suffered pre-harvest burning and crop regrowth was not enough to cover the soil. Thus, in the 

past, despite the soil not being prepared, it was exposed between harvesting and regrowth, so the GEOS3 method 

(SYSI creation) detected these areas.  

The increment of crop residue (Figure 3b) brought benefits for soil conservation and quality. According to 

Bezerra and Cantalice, (2006) and Valim et al. (2016), straw promotes a reduction in the impact of raindrops and 

surface runoff, thus resulting in less disaggregation of soil particles and reduction of erosion processes. Martins Filho 

et al., (2009) found that the water infiltration rate in a Red-Yellow Lixisol is higher in areas with 50 and 100% 

coverage by sugarcane plant residues than in areas with its absence. A reduction in the maximum temperature of the 

soil is also observed (Santos et al. 2022; Corrêa et al., 2019), and larger soil moisture conservation (Gmach et al., 

2019). In addition, over the cycles, the increase in soil organic carbon (SOC), and CEC contents occurs, thus 

improving the chemical quality of the soil (Correia and Alleoni, 2011; Signor et al., 2016, 2014).  
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Figure 3. Area of bare and covered soil (colored areas) and percentage of bare soil (line with points) in sugarcane area (a); area 
and percentage of bare soil in sugarcane areas in the dry season (b); and in the rainy season (c). 

 

In addition to the changes presented as a result of the advance of mechanization in sugarcane fields, the 

annual variation in the area and percentage of bare soil is affected by climatic and economic moments that occurred 

during the period (Fig. 3). In years of low rainfall, as occurred in the region in 1985 and 2014, the low area of soil 

discovered in the following year is notorious due to the crop failure. Low production leads to a reduction in the 

income of the producer, who, without capital, reduces the areas of renewal (replanting). (Fig. 3a). The fall of bare soil 

in 1986 is also motivated by the severe economic crisis that Brazil was going through and the drop in oil prices, 

which led the government to reduce incentives for ethanol production (Stolf and de Oliveira, 2020; UNICA, 2021). 
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During the Collor government (1990-1992), Brazil was going through a serious economic crisis (Fig. 3a). 

Thus, in the sugarcane sector, there was a reduction in incentives, high production cost, and a process of 

deregulation, which began with the extinction of the IAA (Institute of Sugar and Alcohol). The IAA was responsible 

for the quota system, which defined how much each mill could produce during the harvest, so the IAA planned and 

monitored all that production (Bray et al., 2000). Thus, with the extinction of the institute, the quota system was 

abolished, thus generating a period of instability in the sector until they managed to coordinate on their own (Stolf 

and de Oliveira, 2020). So, all these factors motivated the reduction of bare soils in this period. 

In Figure 3a, it is possible to observe the moments of bare soil increase, as occurred in the years 1999 to 

2006. This was motivated by the high perspective that the sector was going through with the increase in the prices of 

agricultural commodities worldwide. This was also impacted by the insertion of commercial dual-fuel cars (ethanol 

and gas, the called ´flex´) in 2003 (Caldarelli and Gillio, 2018). Schlindwein et al. (2021) point out that the main cause 

of sugarcane expansion in Brazil is due to the successful adoption of flex-fuel vehicles. Thus, new areas were 

transformed for the cultivation of sugarcane, and the renovation areas were greater, since the producers wanted to 

guarantee higher yields as a result of the good prices at the time. The early 2000s are known in the agricultural sector 

as the “Commodities Boom”. Between 2007 and 2008 occurred a rapid internationalization of the sector, which also 

contributed to the expansion (Caldarelli and Gilio, 2018). The 2009 economic crisis that brought stagnation and soon 

after (Caldarelli and Gilio, 2018), in 2012, the government interference in gas prices, which impacted on alcohol and 

broke more than 100 mills. In 2018, this policy changed again and ethanol started new increasing era. Therefore, it is 

possible to verify that economic factors, laws and public policies have a direct impact on sugarcane production, 

corroborating with Catañeda-Ayarza and Godoi (2021), which ends up interfering more or less sharply with soil 

safety in sugarcane-producing areas.  

 

4.3.3. Distribution of bare soils in months of risk 

The three situation of surface (bare soil, straw after harvesting and adult sugar cane) are illustrated in figure 

4a. The rainy season in São Paulo State concentrates 60% of the intra-annual erosivity, with the highest mean 

monthly values observed in January (Teixeira et al. 2021). It is possible to verify a change over time in the 

distribution of areas with bare soil during the rainy season (Fig. 4b). For the month of November there is a reduction 

in the area over time. Although, November continues to be the month, of the rainy season, with the highest area of 

bare soil. This can be explained for two reasons, due to the increase in mechanized harvesting along the time, which 

led to a decrease in bare soil areas due to pre-harvest fire in October and November, or a change in the management 

of crop planting in the region, leaving a system from “12 months-cane” planting to “18 months-cane”. This second 

point can be reinforced by the increase, along the time, of bare soil areas in December, January and February. The 

planting season is considered the most impacting for soil conservation in the sugarcane crop (Machado et al. 2021). 

Li et al. (2021) demonstrated that erosion and nutrient losses were 2–3-fold higher in plant cane than in rattons. 

Teixeira et al. (2021) reinforced the importance of information on rainfall erosivity and erosivity density in soil 

conservation planning for sugarcane activity in the State of São Paulo. 
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Figure 4. Illustration of three situations, bare soil, straw after harvesting and adult sugar cane (a). The bare soil area (bar) during 
the rainy season over the years every 5 years, and historical average precipitation (point) (b). 

 

The progress of renovation (replanting) areas, especially in December and January, which present intense 

rainfall and a greater volume of precipitation, requires the correct planning that will be reformed due to the high 

propensity to erosion (De Maria et al., 2016). It is recommended that only flat, clayey, fertile, and high CAD areas be 

replanted in these months (De Maria et al., 2016). Traditionally, in the renovation of a sugarcane area, the first step is 

to turn the soil over, (plowing, subsoiling and harrowing) due to physical, chemical, or biological problems 

(conventional tillage), which promotes the breakdown of soil particles and soil organic carbon oxidation (Cerri et al., 

2011; Bolonhezi et al., 2019; da Luz et al., 2020). But the presence of bare soil in the rainy season could increase soil 

lost by erosion (Corrêa et al., 2019). Then, minimum, no-tillage or localized tillage (preparing the soil only in the 

planting line, promoting greater maintenance of the straw) and use of cover crops should be considered (Carneiro et 

al., 2020). According to studies by Prove et al. (1995), the average soil loss for conventional tillage systems was 148 t 

ha-1 year-1, whereas in the no-tillage system it was less than 15 t ha-1 year-1. Also, according to studies in the Ferralsols 

during 44 days, the conventional tillage releases 954.79 kg ha-1 of carbon to the atmosphere, while that reduced tillage 

and minimum tillage releases 141 and 15.2 kg ha-1, respectively (Silva-Olaya et al., 2013). However, some authors 

report that the sector still resists the adoption of more conservationist soil preparation methodologies (Fuentes-

Llanillo et al. 2021). 

Different studies have pointed out the importance of soil conservation practices in the sugarcane crop, 

mainly due to the production of sediments and pollutant transport by runoff. Amorim et al. (2021) studying the 
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origin of sediments from a basin in northeastern Brazil, detected that the second largest source of sediments was the 

sugarcane crop. Machado et al. (2021) studying the variation of runoff coefficient in a watershed in Piracicaba region, 

largely occupied with sugarcane, pointed out the impact of soil management on the runoff produced. Anjinho et al. 

(2021) pointed to agriculture (sugarcane) and soil type were key factors to the erosion and sedimentation 

susceptibility. Furlan et al. (2021) evaluated the impact of sediments from sugarcane area on wetlands. In Australia, 

there is great concern about soil management practices in the sugarcane crop, mainly due to the potential impact of 

sediments and polluting compounds on the Great Barrier Reef (Vilas et al. 2022). 

 

4.3.4. Soil types and bare soil frequency: vulnerability to degradation 

We observed a high spatial variation in the frequency of bare soil in the period from 1985 to 2019 in 

sugarcane areas (Fig. 5a). In the northeast there is a lower bare soil frequency (lower exposure frequency) when 

compared to the northwest and southwest sites, which have higher frequencies related to the predominant soil types 

and clay contents (Fig. 5b-c). The distribution of BSF in relation to clay contents presented a negative correlation of 

-0.34, while, relating to slope, was -0.08, thus showing a greater dependence on the clay (Fig. 5c-d). Catelan et al. 

(2021) and Marques et al. (2014) pointed out a positive correlation between sugarcane yield and soil clay content. 

Productivity is the main factor considered in the need to replant sugarcane (Cheavegatti-Gianotto et al. 2011), then, 

the maintenance of productivity implies, as a consequence, less soil tillage over time. Therefore, any practice that 

contributes to the increase in the longevity of the sugarcane crop, will imply a greater number of ratoons and will 

reduce the need for replanting, when there is more disturbance of the soil, and consequently less environmental 

impact (Chagas et al. 2016). May be cited as practices that contribute to increased longevity: compaction control 

(Lima et al. 2022; Panziera et al. 2022), use of varieties in suitable production environments (Barbosa et al. 2021), 

adequate fertilization (Pancelli et al. 2015), harvest performed with adequate speed (Martins et al. 2022), irrigation 

(Walter et al. 2014), among others 

The Arenosols, present in the northwest region (Fig. 5b), are located in flat to soft undulating reliefs and 

present a high rate of water infiltration into the soil. However, these soils require attention because they are sandy 

texture and low levels of SOM, therefore, they have a low particle aggregation capacity, which gives them a high 

propensity to erosion, especially rill and gully erosion (Carneiro et al., 2020; Cunha et al., 2011; Santos, 2018; Thomaz 

and Fidalski, 2020). The low levels of SOM plays a fundamental role in its quality, such as low CEC, slow release of 

P, N, S nutrients, lower availability of micronutrients and water retention (Cunha et al., 2011). This soil type had the 

highest BSF mean, 7.02% (Figure 5e), which is harmful to the maintenance or increase of SOM, since maintain the 

soil uncovered promotes SOM decomposition and other impacts (Cerri et al., 2011; Cherubin et al., 2021; Morais et 

al., 2020; Popin et al., 2020). Sayão et al. (2020) demonstrated that bare sandy soils, from the same region of our 

study, had the highest surface temperature which contributes to an even greater SOM mineralization. 

These observations are alarming since the management adopted for Arenosols, in the studied region, 

indicate a soil degradation cycle (Fig. 6). Breaking this cycle can be promoted through the adoption of management 

practices such as: greater input of organic and mineral fertilizers, as vinasse and filter cake, cover crops/green 

manure, intercropping (Shen et al. 2019; Singh et al. 2021), minimum or no-tillage (Martíni et al. 2021), practices that 

enable an increase in the number of ratoons (longevity) and maintenance of the straw. Cherubin et al. (2021a) 

concluded that sandy soils were more prone to soil health degradation, when straw is removed and the healthier soils 

were associated with higher sugarcane yields. Shukla et al. (2020) emphasize that maintaining soil organic carbon and 
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increasing crop productivity is an inseparable issue, without addressing both issues simultaneously, the sustainability 

of production system could not be achieved. 

 

 

Figure 5. Bare soil frequency map from 1985 to 2019 for sugarcane areas (a); Soil (b), Granulometric classes (c) and Slope classes 
(d) maps for sugarcane areas; Boxplot of bare soil frequency for maps classes (e). 
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In the northwest and southwest regions, Lixisols/Acrisols are the main soil classes (Fig. 5b), and present 

the second highest average of the BSF (5.78%). These soil types are susceptible to erosive processes, as they are 

located in more rugged reliefs and have increase of clay in-depth, resulting in a textural gradient, which makes it 

difficult for water to infiltrate, and increasing surface runoff (Fig. 2a), to finally transport the eroded sediment (Jarbas 

et al., n.d.; Santos et al., 2018; Zaroni and Santos, n.d.). According to Martins Filho et al. (2009) an Lixisol without 

vegetation cover, there is an enrichment ratio in the eroded sediment of 2.7 (SOM), 3.8 (P), 1.3 (K), 3.9 (Ca), and 2.9 

(Mg) times when compared to soil 100% covered, i.e., resulting in a greater loss of SOM and nutrients when to bare. 

 

 

Figure 5. Bare soil frequency map from 1985 to 2019 for sugarcane areas (a); Soil (b), Granulometric classes (c) and Slope classes 
(d) maps for sugarcane areas; Boxplot of bare soil frequency for maps classes (e). 

 

Leptosols (Fig. 2d) located in 6.21% of the area (Fig. 5b) are soils with a low degree of pedogenetic 

development, and low depth due to the mandatory contact of the A horizon to the R/C/Cr horizons within 50 cm 

of the surface and are found in strong declivity reliefs. Such characteristics increase the propensity to erosion (Curcio 

et al., n.d.; Santos et al., 2018). The presence of lithic contact prevents water infiltration into the soil and results in a 

low storage volume, favoring surface runoff. This gains strength due to the high declivity, so its BSF mean of 4.58% 

in the period, (Fig. 5e) favors it is degradation (Weill and Sparovek, 2008). 

Finally, the Ferralsols and Nitisols had the lowest BSF averages, 4.02 and 2.42%, respectively (Fig. 5e). 

Ferralsols are deep, well-drained, with strong profile percolation and low fertility. Clay contents range from 150 to 

800 g kg-1 and are mostly found in flat to soft undulating reliefs (Fig. 5b) (Santos, 2018; Sousa and Lobato, n.d.). 

Due to these characteristics, the propensity to degradation, such as nutrient deficiency and erosion, occurs mainly in 

sandy-medium Ferralsols, which have lower aggregation and lower SOM (Carneiro et al., 2020; Donagemma et al., 

2016; Sousa and Lobato, n.d.). Thus, as with Arenosols, greater coverage of these soils is necessary to promote the 

maintenance and increase of SOM, as well as water retention to reduce nutrient leaching. In the northeast sector are 

found most of the Ferralsols (Fig. 5b) with higher clay contents (Fig. 5c) and lowest BSF (Fig. 5a). It is in agreement 

with that was pointed out previously, that, there is a high correlation between clay contents, productivity and the 

need of replant. 
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On the other hand, Nitisols are also deep and well-drained soils with good structure, and clay contents 

(above 350 g kg-1), without the presence of textural gradient, and are found in smooth wavy to strong wavy reliefs 

(Santos and Zaroni, n.d.; Santos, 2018). In areas with more sloping relief, there is greater susceptibility to erosion 

processes, so keep the soil uncovered in these regions must be associated with other conservation practices to ensure 

soil security (Santos and Zaroni, 2021). Mechanized harvesting without previous burning provided the maintenance 

of cover in these soils, however brought problems with soil compaction, especially in clayey soils, harming its 

porosity and density (Braunack et al., 2006; Oliveira et al., 1995). Some authors point out that, in some cases, up to 

60% of the area may be affected by compaction (Souza et al., 2014; Esteban et al. 2019). The physical impediment 

caused by the high traffic of machines impairs the infiltration of water into the soil, promoting a greater volume of 

surface runoff, which can result in erosive processes (Ceddia et al., 1999; Fiorio et al., 2000; Prado and Centurion, 

2001). This surface runoff with the presence of sediments is harmful also to aquatic systems, as the deposition of 

these sediments in rivers, lakes or reservoirs impacts water quality and ecosystem biodiversity (Politano and Pissarra, 

2005). In addition, compacted soils present unfavorable conditions for the growth and development of the sugarcane 

root system (De Sousa et al. 2019), thus resulting in lower productivity (Arruda et al. 2021) that will contribute to the 

producer's decision-making for the anticipation of sugarcane replant, i.e., reducing longevity. Marin et al. (2019), 

appointment that the negative effects of mechanical harvest on soil structure is one aspect related to yield decline in 

commercial sugarcane areas. Another negative aspect is that conventional soil preparation is often seen as the main 

way to reduce compaction, although different studies have shown its low effectiveness, especially after the first 

harvest (Guimarães Júnnyor et al. 2019; Martíni et al. 2021). Some compaction mitigation practices are: the adoption 

of controlled traffic (De Sousa et al. 2019; Barbosa et al. 2021), spacing and machine gauge adjustment (Rossi Neto 

et al. 2018; Esteban et al. 2019) 

 

4.3.5. Monitoring the bare soil frequency 

Monitoring the average frequency of bare soil in two different seasons, rainy (Fig. 7a,c,e) and dry (Fig. 

7b,d,f), showed a downward trend in the two periods, i.e., the BSF average has declined over the years (Fig. 7g). In 

the dry season, only in the second period there was a downward trend, and in the first, there was an upward (Fig. 7g). 

The Arenosols did not trend in the first periods of the dry and rainy season and the Nitisols either did not in the 

second period of the rainy season. 

The tendency to reduce the frequency of bare soil in the rainy season is of great importance for their 

conservation and soil security. This reduction shows the better planning and understanding of the sector in which 

lands can be bare at certain times of the year. This could be related to the advancement of the concept of 

“Production Environments”, that considers the interaction between soil, climate, and plant (Barbosa et al. 2021; 

Catelan et al., 2021; Demattê and Demattê, 2009), use of cover crops (Carneiro et al., 2020); migration from 12 

months-cane planting, to 18 months-cane, adoption of MEIOSI (Portuguese acronym for Methods Inter-rotacional 

Ocurring Simultaneously) planting system when it is possible (Oliveira et al. 2018). According to Landell et al. (2003), 

for adequate knowledge of the production environment in sugarcane culture, it is necessary, first, to classify the given 

soil. Besides, Donzelli et al. (2018) emphasizes the importance of an adequate soil mapping for production 

environments classification and soil groups for agricultural management. 
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Figure 7. Mean Bare soil frequency in rainy season (a-c-e) and dry season (b-d-f); Magnitude of the trend by Sen’s slope (g). 

 

In particular, the Lixisols/Acrisols and Leptosols (Fig. 2c,d), that presents a high propensity to degradation 

when bare (Corrêa et al., 2019; De Maria et al., 2016), presented a downward trend of 0.28 and 0.25% rainy season-1 

year-1 in the first period and 0.16 and 0.14% rainy season-1 year-1 in the second period, respectively (Table 1). The 

Arenosols (Fig. 7a), indicated a significant downward trend of 0.38% in the second rainy season-1 year-1 (Table 1). 

However, it is the soil class with the highest BSF for all period. Ferralsols presented low variation (Fig. 7a,b). To 
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keep the soils uncovered promotes an increase in temperature, which leads to the acceleration of SOM 

decomposition (Silva-Olaya et al., 2013), and consequently, affecting soil biota (Demattê et al., 2020). Therefore, the 

upward trend presented in the first period, motivated by the increase of newly cultivated areas, was detrimental to 

soil conservation. However, the downward trend in the second period, caused mainly by the advance of mechanized 

harvesting, shows the improvement in the biological and chemical conditions that the sector has been providing to 

its soils. In particular, soils of the sandy and sandy medium clay classes showed a downward trend of 0.99 and 0.78 

dry season-1 year-1, respectively (Table 1). In general, such classes do not have high levels of SOM, therefore, 

promoting their maintenance or increase is of paramount importance for soil quality, providing greater particle 

aggregation, increasing CEC and nutrient release and increasing water retention. 

 

4.3.6. Site-specific monitoring in an eroded area 

We made a site-specific evaluation regarding the erosion identification (Fig. 8a). The site had a surface with 

clay content of 170 g kg-1, a slope of 11.5%, and classified as Lixisols/Acrisols. This information infers that it is an 

area of great erosion susceptibility, which is seen in the satellite image. The observed erosive furrow proves that the 

soil management was not adequate in this area and the control practices, such as the presence of contour lines and 

terracing (Fig. 8a), were not sufficient or poorly dimensioned.  

Also, this region had high BSF in the period from 1985 to 2019 (Fig. 8b). We observed that until 2014, in 

almost every year, at the same site-specific the soil was bare, except for the years 1986, 1992, and 1998. It was caused 

by the sugarcane pre-harvest burning that occurred in the past or by the conventional tillage during the period of 

sugarcane replanting. Thus, analyzing from 1985 to 2014, 9% of exposures (soil was bare) occurred in months 

considered restricted, 44% in unsuitable and 47% in adequate periods. The exposure in restricted and unsuitable 

months may have favored the erosive process. On the other hand, after 2015 (despite the short period of analysis), it 

is observed that the number of years without bare soil presence increases, which could be explained by the 

introduction of mechanized harvesting. In any case, and for this region, planting and harvesting should be prioritized 

between May and August, which are considered suitable for the exhibition in agreement with De Maria et al. (2016). 

In this simple site-specific evaluation, it is possible to observe that BSF is a good tool to identify areas with a high 

propensity to soil degradation, promoting information for soil security through its efficacy such as a technique for 

soil monitoring. 
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Figure 8. Satellite Image, Bare Soil Frequency, Soil Unit Class, surface clay content and Slope map in an area with the presence of 
erosion (a); Moments of soil was bare per month from 1985 to 2019 (b). 

 

4.3.7. Limitations and advantages 

Some points can be pointed out as the main limitations related to the creation of images of bare soil and 

bare soil frequency. The definition of threshold values for the indices used to mask unexposed (soil covered) pixels 

varies with the region and scale (Demattê et al. 2020; Silvero et al. 2021a). Zepp et al. (2021) pointed out as not 
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robust enough the threshold values previously pointed out by Rogge et al. (2018). The high presence of clouds and 

shadows in a certain region and/or the season are another limitation (Silvero et al. 2021b; Mzid et al. 2021). Silvero et 

al. (2021a) obtained percentage of bare soil pixels lower than 15% in the moist season in a tropical area and 

concludes that twenty images from the dry period would provide barer soil pixels than twenty images from the moist 

season. Another issue is the satellite´s temporal resolution, the shorter the revisit time, more images can be obtained 

and, consequently, barer soil pixels (Silvero et al. 2021a; Silvero et al. 2021b; Mzid et al. 2021). 

Despite these limitations, the use of multi-temporal images for environmental monitoring has been 

consolidated and pointed out as having a high potential for use (Canata et al. 2021; Som-ard et al 2021; Zepp et al. 

2021). As mentioned before, several works have shown solid results (Silvero et al. 2021b). Furthermore, the free 

open access of satellite images, like Landsat and Sentinel missions, especially in cloud-based platform such as the 

GEE, is a great opportunity (Aguiar et al. 2011; Silvero et al. 2021a) and facilitates the study of large areas (Chikhaoui 

et al., 2005). A future possibility is the fusion of multi-temporal images from different sensors that would allow a 

greater number of images with a shorter revisiting time for an area (Silvero et al. 2020a). Finally, specifically regarding 

soil security, Zepp et al. (2021) conclude that the use of multi-temporal composite images contributes with the 

information about where and when soils are bare, that is a valuable information for soil erosion studies. 

 

4.4. Conclusions 

We confirm our hypothesis that the use of multi-temporal satellite images makes it possible to evaluate 

aspects of soil management and their changes in sugarcane areas, and to relate them to soil security, especially those 

linked to erosion. The use of SYSIs showed that the bare soils areas under sugarcane cultivation reduced after the 

“Agro-environmental protocol”. However, we confirmed that the expansion occurred over soils more prone to 

erosion (Lixisols/Acrisols, Arenosols and Leptosols with sandy and sandy medium surface texture). Despite the 

challenges imposed by mechanized harvesting in relation to the physical properties of the soil, their cover 

maintenance contributes to its conservation, safety, and quality, that is, a necessary change for the development of 

more sustainable agriculture. Among the historical period of 35 years, the ups and down on soil tillage and bare soil 

area in the sugarcane culture, had several factors such as climate, commodities price, public policies, governments 

decisions and the learning curve of farmers.  

The use of the BSF allowed verifying the reduction of the bare soil frequency in the rainy season, in 

particular, into the Lixisols/Acrisols, Leptosols, and Arenosols soils types. This confirms the best knowledge of the 

sector in relation to the best period to tillage each soil class. However, it is necessary to continue the downward trend 

in order to reduce the propensity to degradation, especially in Arenosols and soils with a sandy surface texture, that 

are soils with highest BSF in all period. In the dry season, the reduction in the average BSF in the second period 

confirms the importance of the aforementioned protocol for soils. 

It was not possible to verify changes in the area of bare soil during the rainy season (November to 

February) over the years. However, there was a decrease in bare soil areas during November and an increase during 

the December, January and February.  

Finally, the site specific temporal analysis of bare soil in a given area, confirms the importance of remote 

sensing in environmental monitoring. The technique, proposed by Demattê et al. (2020) has important contributions 

in land inspection and the adoption of public policies on sustainability and soil conservation as impacts in soil 

security as well. Furthermore, this approach could be applied in other regions with sugarcane crop (i.e. Brazilian 

Northeast, Australia) either for past analysis or for future land monitoring. 
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Appendices 

Table A.1. Results of the trend analysis of the average bare soil frequency 

Class  

Rainy season Dry season season 

1989-2003 2004-2019 1989-2003 2004-2019 

Tau Slope p-value Tau Slope p-value Tau Slope p-value Tau Slope p-value 

Arenosols -0.09 -0.03 0.692 -0.88 -0.38 <0.001 -0.03 -0.05 0.921 -0.77 -1.40 <0.001 

Ferralsols -0.56 -0.17 0.004 -0.75 -0.12 <0.001 0.45 0.23 0.023 -0.87 -0.41 <0.001 

Leptosols -0.60 -0.25 0.002 -0.65 -0.14 <0.001 0.54 0.34 0.006 -0.88 -0.59 <0.001 

Lixisol/Acrisols -0.64 -0.28 <0.001 -0.77 -0.16 <0.001 0.54 0.45 0.006 -0.88 -0.81 <0.001 

Nitisols -0.49 -0.08 0.013 0.02 0.00 0.96 0.45 0.28 0.023 -0.82 -0.36 <0.001 

Clayey -0.58 -0.17 0.003 -0.77 -0.07 <0.001 0.49 0.27 0.013 -0.82 -0.25 <0.001 

Clayey medium -0.60 -0.18 0.002 -0.77 -0.13 <0.001 0.43 0.26 0.029 -0.87 -0.47 <0.001 

Sandy medium -0.62 -0.24 <0.001 -0.73 -0.17 <0.001 0.47 0.44 0.018 -0.85 -0.78 <0.001 

Sandy -0.68 -0.37 <0.001 -0.77 -0.19 <0.001 0.62 0.31 0.002 -0.92 -0.99 <0.001 

Flat -0.60 -0.21 0.002 -0.80 -0.17 <0.001 0.54 0.28 0.006 -0.83 -0.53 <0.001 

Flat/Soft -0.62 -0.21 <0.001 -0.75 -0.15 <0.001 0.56 0.42 0.004 -0.87 -0.66 <0.001 

Soft -0.66 -0.20 <0.001 -0.73 -0.13 <0.001 0.60 0.41 0.002 -0.88 -0.69 <0.001 

Rolling -0.70 -0.17 <0.001 -0.70 -0.10 <0.001 0.60 0.37 0.002 -0.82 -0.54 <0.001 

Strong rolling -0.77 -0.16 <0.001 -0.68 -0.10 <0.001 0.58 0.28 0.003 -0.63 -0.32 <0.001 
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5. GENERAL DISCUSSIONS AND CONCLUSIONS 

In this thesis, two chapters were presented that deal with the use of remote and proximal sensing 

technologies to map soil properties for soil management and conservation. The third chapter used Landsat multi-

temporal images to monitor soil management in sugarcane areas, aiming at its application in soil security. 

In the first study (Chapter 2) at the farm scale, different sensors were used for clay prediction for a 

smallholder area. The cubist algorithm and bootstrap (100 realizations) were applied to obtain the mean clay map 

and the uncertainty maps. It was tested the application of models obtained with external data, but from the same 

region, and models obtained within area data. For the external models the best result was obtained with Vis-NIR-

SWIR data from the Fieldspec sensor. Among the models of multispectral sensors on board datellites, Sentinel 2-

MSI had the best performance followed by Landsat 8-OLI, with the PlanetScope sensor being the worst result. The 

AISA-FÉNIX hyperspectral sensor, on the other hand, presented similar performance to Landsat 8-OLI and 

Sentinel 2-MSI sensors. There was a significant improvement in the performance of the models obtained from data 

from within the area. PlanetScope images had low spectral resolution and no spectral bands in the SWIR region, 

which are very important information in clay prediction.  

In the second study, an approach similar to that learned in the first was developed. However, one area was 

studied on a regional scale. SYSI bands and terrain covariates were used as independent variables to predict soil 

erodibility (K factor), in a covariate-based method prediction approach. Also erodibility was predicted using Vis-

NIR-SWIR data as independent variables, in a spatial autocorrelation approach (ordinary kriging). Again the Cubist 

algorithm was used. Two case studies were carried out to evaluate the results found. Both compared the erodibility 

maps obtained with erodibility maps obtained by traditional methodology, that is, from soil maps, one at a scale of 

1:100,000 and the other detailed at a scale of 1:10,000. The results found showed that the digital maps obtained have 

greater agreement with the traditional map obtained from the detailed soil map, which demonstrates the potential of 

the technique to be applied to obtain erodibility maps for microbasin or farm scale.  

Finally, in chapter 4, multi-temporal images from the Landsat series, from 1985 to 2019, were used to 

understand the dynamics of exposure of soils (bare soils) cultivated with sugarcane in the Piracicaba region. The 

results found that the end of pre-harvest burning provided a sharp drop in exposed soil areas over the years. They 

also demonstrate that sandy soils have a higher frequency of exposure than more clayey soils. The explanation for 

this is the lower productive potential of these soils, which leads to the need for sugarcane replanting with 

conventional tillage. It was also possible to verify a change over the years in the crop production system, a migration 

from the 12-month cane system to 18-month cane. 

As general conclusions of the developed works were found that: the use of remote and proximal sensing 

data have high potential to contribute to the digital mapping of soil attributes, being an important tool for obtaining 

adequate information for management and conservation practices. In addition, the use of multi-temporal images 

makes it possible to monitor management practices and soil tillage over the years.  




