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RESUMO 

Mapeamento de alta resolução dos estoques de fósforo nos solos brasileiros por meio de 

geotecnologias: implicações para uma agricultura sustentável 

O fósforo, um nutriente essencial para a vida e crucial para a agricultura, é extraído de 

reservas minerais não renováveis, levantando preocupações sobre a sustentabilidade. Portanto, o 

mapeamento dos estoques de fósforo no solo é vital para a gestão eficiente desse recurso e para a 

sustentabilidade do planeta. Entretanto, mapear esses estoques em grandes áreas e alto nível de 

detalhes não é uma tarefa fácil. Felizmente, novas metodologias de mapeamento digital de solo 

(MDS) podem contribuir para a obtenção de mapas cada vez mais precisos. A hipótese central 

desta tese é que o uso de geotecnologias pode contribuir para o mapeamento dos estoques de P no 

brasil, com elevada precisão. Esta tese foi dividida em dois artigos. O primeiro teve como objetivo 

mapear os principais óxidos da fração argila do solo, que estão intimamente relacionados aos 

estoques de P. Esses mapas foram utilizados como covariáveis preditoras dos estoques de P no 

segundo capítulo, cujo objetivo principal foi mapear os estoques de fósforo total (PT) e fósforo 

disponível (PD) no Brasil. Para mapear os principais óxidos da fração argila, usamos um conjunto 

de dados de modelagem com 5.330 observações. Seis variáveis espectrais obtidas da série histórica 

Landsat e sete atributos do terreno derivados de um modelo digital de elevação foram utilizados 

para determinar Fe2O3, Al2O3 e SiO2 usando o algoritmo Random Forest. As melhores previsões 

foram observadas para Fe2O3 na camada superficial (RMSE = 47,0, RPIQ = 1,85 e R2 = 0,65), 

enquanto as menores previsões foram para SiO2 na camada subterrânea (RMSE = 66,7, RPIQ = 

1,55 e R2 = 0,19). Os mapas dos óxidos na camada de 0-20 cm foram usados na predição dos 

estoques de P. Além desses óxidos, incluímos covariáveis ambientais relacionadas aos processos de 

formação do solo, como relevo, clima e organismos, e outros atributos, como por exemplo, carbono 

orgânico do solo e argila. Dividimos o Brasil em duas sub-regiões, representando áreas com 

cobertura nativa e áreas com cobertura antrópica. A partir disso, construímos modelos preditivos 

independentes para cada sub-região. Ao todo, 28.572 amostras para PD e 3.154 para PT foram 

usadas na modelagem. Nossos resultados mostraram que o Brasil possui um estoque de TP de 531 

Mt e um estoque de AP de 17,4 Mt. As maiores médias de estoques de TP estão no bioma Mata 

Atlântica (73,8 g/m²), o que pode estar ligado aos maiores estoques de carbono orgânico no solo 

deste bioma. Os maiores estoques médios de AP estão no bioma Caatinga (2,51 g/m²) por 

apresentar solos mais jovens e com baixa capacidade de adsorção de fósforo. Descobrimos também 

que o uso de fertilizantes aumentou significativamente os estoques de AP, onde as áreas agrícolas 

sempre tiveram estoques de AP mais elevados do que as áreas nativas. A abordagem proposta foi 

capaz de quantificar os estoques de P do Brasil com distribuição espacial alinhada ao entendimento 

dos solos brasileiros. Além disso, foi possível mapear de forma inédita todo o território brasileiro 

com uma escala de 30m. 

Palavras-chave:  Aprendizagem de máquina, Mapeamento digital de solos, Sensoriamento remoto, 
Solos tropicais 
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ABSTRACT 

Fine scale mapping of phosphorus stocks in brazilian soils by geotechnologies: 

implications for a sustainable agriculture 

Phosphorus, an essential nutrient for life and crucial for agriculture, is extracted from non-

renewable mineral reserves, raising concerns about sustainability. Therefore, mapping soil 

phosphorus stocks is vital for the efficient management of this resource and for the sustainability of 

the planet. However, mapping these stocks over large areas and at a high level of detail is not an 

easy task. Fortunately, new digital soil mapping (DSM) methodologies can contribute to obtaining 

increasingly accurate maps. The central hypothesis of this thesis is that the use of geotechnologies 

can contribute to the mapping of P stocks in Brazil, with high accuracy. This thesis was divided 

into two articles. The first aimed to map the main oxides of the soil clay fraction, which are closely 

related to P stocks. These maps were used as predictive covariates of P stocks in the second 

chapter, whose main objective was to map the stocks of total phosphorus (TP) and available 

phosphorus (AP) in Brazil. To map the main oxides of the clay fraction, we used a modeling 

dataset with 5,330 observations. Six spectral variables obtained from the Landsat historical series 

and seven terrain attributes derived from a digital elevation model were used to determine Fe2O3, 

Al2O3, and SiO2 using the Random Forest algorithm. The best predictions were observed for 

Fe2O3 in the superficial layer (RMSE = 47.0, RPIQ = 1.85, and R2 = 0.65), while the lowest 

predictions were for SiO2 in the underground layer (RMSE = 66.7, RPIQ = 1.55, and R2 = 0.19). 

The maps of the oxides in the 0-20 cm layer were used in predicting P stocks. In addition to these 

oxides, we included environmental covariates related to soil formation processes, such as relief, 

climate, and organisms, and other attributes, such as, for example, soil organic carbon and clay. We 

divided Brazil into two sub-regions, representing areas with native coverage and areas with 

anthropic coverage. From this, we built independent predictive models for each sub-region. In total, 

28,572 samples for AP and 3,154 for TP were used in modeling. Our results showed that Brazil has 

a TP stock of 531 Mt and an AP stock of 17.4 Mt. The highest averages of TP stocks are in the 

Atlantic Forest biome (73.8 g/m²), which may be linked to the higher stocks of soil organic carbon 

in this biome. The highest average AP stocks are in the Caatinga biome (2.51 g/m²) for presenting 

younger soils and with low phosphorus adsorption capacity. We also found that the use of 

fertilizers significantly increased AP stocks, where agricultural areas always had higher AP stocks 

than native areas. The proposed approach was able to quantify Brazil’s P stocks with spatial 

distribution aligned with the understanding of Brazilian soils. In addition, it was possible to map 

the entire Brazilian territory for the first time with a scale of 30m. 

Keywords: Machine Learning, Digital Soil Mapping, Remote Sensing, Tropical Soils 
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1 GENERAL INTRODUCTION  

 
  Brazil is considered a breadbasket for the world due to the large quantities of food produced in its 

territory (Tollefson, 2010). One of the factors that contribute most to the large quantities of food produced is the 

country’s large territorial extension as well as its climatic characteristics and wealth of water resources (Dias et 

al., 2016). At the end of the 20th century, what most marked the increase in Brazil’s agricultural production was 

the expansion of agricultural frontiers, mainly in the Cerrado biome (Gibbs et al., 2010; Leite et al., 2012). At the 

beginning of the 21st century, with the implementation of public policies and concern on the part of society for 

the environment, the expansion of agricultural frontiers in Brazil had its pace slowed down (Graesser et al., 

2015). However, agricultural production continues to grow. Year after year, grain production breaks records 

(Dias et al., 2016).  

The explanation for these increases in Brazilian agricultural production is associated with the increased 

adoption of technologies by farmers, mainly the use of agricultural fertilizers (Barretto et al., 2013; Lopes and 

Guimarães, 2016). Among the fertilizers, phosphates have gained prominence in their use, as their use has greatly 

increased in recent Years (Withers et al., 2018). Studies report that the quantities of P fertilizers currently used by 

agriculture are about 30 times greater than in the 1960s, and this may be leading to the accumulation of P in 

Brazilian agricultural soils (Martinelli et al., 2010; Roy et al., 2016a). 

The use of P in large quantities and agriculture’s heavy dependence on this nutrient has sparked 

debates on this subject. The main concern regarding the use of P in agriculture is that the P used is primarily 

extracted from non-renewable mineral reserves, and their depletion could lead to food insecurity on the planet 

(Elser, 2012; Rosemarin and Ekane, 2016). The pursuit of sustainable P use has been a central theme of many 

studies. However, in recent decades, phosphorus has been used in agriculture without much control and often 

inefficiently (Roy et al., 2016b; Withers et al., 2015). Incorrect application of P can have serious consequences. 

Its excessive use can cause losses to aquatic ecosystems by causing primary overproduction, leading to 

eutrophication and significant ecosystem imbalance (Schipanski and Bennett, 2021; Steffen et al., 2015). 

Furthermore, in the soil, excessive doses can be adsorbed by soil clays and become unavailable to plants in a 

short period  (Schipanski and Bennett, 2021).   

The pursuit of efficient and sustainable use of phosphorus (P) involves strategies at the local level (on 

the farm), such as soil pH correction, application in varied doses, and increasing organic matter in the soil to 

neutralize charges capable of adsorbing P  (Schröder et al., 2011; Simpson et al., 2011). In addition, it 

encompasses strategies at the global level, mainly highlighting the mapping of P stocks and the factors that 

influence the availability of this element to plants (Barbieri et al., 2021; Roy et al., 2016). Mapping soil P stocks 

can shed light on the spatial distribution of P in the soil, allowing for the assessment of the productivity of natural 

and agricultural ecosystems. Furthermore, knowledge of these stocks can guide P applications or the adoption of 

practices to preserve P in soils  (Viscarra Rossel and Bui, 2016).  

Mapping large areas ends up being a laborious process, which depends on a dense number of field 

samples and spatial modeling of the variable that one wishes to map. A very used modeling method for mapping 

soil attributes was kriging, which is based on the assumption that there is spatial dependence in the soil attributes, 
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and these can be interpolated as a function of distance (Adhikari et al., 2013; Mondal et al., 2017). Despite being 

widely used, a large number of samples is necessary to adjust models that are capable of explaining the spatial 

behavior of a certain attribute (Adhikari et al., 2013). However, new digital mapping techniques have been 

surpassing classical methods. These techniques are based on machine learning or deep learning algorithms that 

minimize errors (Padarian et al., 2019; Poppiel et al., 2019; Tziolas et al., 2020). These techniques make use of 

covariates that strongly correlate with the study variable, and these covariates are usually easy to acquire, and can 

be sampled in large quantities (Padarian et al., 2019).  

Among the steps of digital soil mapping (DSM), the choice of covariates is the most critical. The 

SCORPAN model proposed by McBratney et al. (2003) suggests that environmental covariates should mainly 

represent the soil formation processes. In addition, these covariates can also be represented by soil properties with 

some degree of relation to the soil attribute to be mapped  (McBratney et al., 2003). Among the covariates used in 

the mapping of soil attributes, spectral variables in the spectrum region varying from 0.4-2.5 µm obtained by 

optical sensors have shown to be very promising for mapping in large areas where soil observations tend to be 

scarce  (Forkuor et al., 2017; Zeraatpisheh et al., 2019; Zhou et al., 2021). The sensors on board orbital platforms 

like Landsat have gained the most prominence in recent years. Generally, the products of orbital platforms have 

been used as indirect information to infer the spatial distribution of the soil due to the continuous coverage of the 

earth’s surface (Chabrillat et al., 2019). In addition, the multi-temporal collections of images allow the use of data 

mining algorithms to generate an image that represents the exposed soil surface, which has a strong relationship 

with numerous soil attributes. 

Recently, many automated processing algorithms have been developed to recover soil reflectance from 

multispectral images (Demattê et al., 2018; Diek et al., 2017; Rogge et al., 2018). In Brazil, the Geospatial Soil 

Sensing System (GEOS3) has been used to map soil atributes (Fongaro et al., 2018; Gallo et al., 2018; Poppiel et 

al., 2019) and infer spatial distribution of soils and lithological classes (Mendes et al., 2019; Poppiel et al., 2019; 

Rizzo et al., 2020). The algorithm is based on the recovery of historical soil exposures to satellite measurements, 

which are aggregated into products namely: Synthetic Soil Image (SYSI) and Soil Frequency (SF) (Demattê et 

al., 2018). These products reveal the direct multispectral response of the soils and the historical disturbance of the 

surface for a given location, which can be correlated with soil properties and morphological attributes and with 

soil intensification respectively (Demattê et al., 2020). 

Other covariates that have been used in DSM are those related to the soil formation factors relief, 

climate, and organism. For example, multispectral images, obtained by satellites, can describe the spectral 

behavior of vegetation, representing the soil formation factor organism (Chen et al., 2022). Digital elevation 

models are used to represent the relief (Safanelli et al., 2020), while historical data, obtained by weather stations, 

such as rainfall and temperature, can be spatialized and used to represent the climate (Shary, 2023). In addition, 

soil properties can also be used to compose the covariates. In the case of phosphorus, its stocks can be greatly 

affected by the degree of weathering of the soils (Antoniadis et al., 2016). The degree of weathering influences 

the composition of the soils as well as the presence of aluminum and iron oxides that are large fixers of P in 

tropical soils (Pavinato et al., 2020).  



10 
 

In light of the above, the central hypothesis of this thesis proposes that the application of advanced 

DSM tools, such as the use of machine learning and environmental variables as representations of the underlying 

factors to the spatial variations in phosphorus stocks, will allow the construction of a comprehensive and detailed 

map these stocks throughout the Brazilian territory. This approach will offer an enhanced level of precision and 

understanding of the geospatial distributions of phosphorus, significantly contributing to the sustainable 

management of this crucial resource in the agricultural and environmental context. To test this hypothesis, this 

thesis was structured into two articles. The primary objective of the first article was to map the oxides of the soil 

clay fraction and the degree of chemical weathering of the soils in order to associate these attributes with the P 

stocks in Brazilian soils and use them as environmental covariates to predict these stocks. The main objective of 

the second article was to map the total and plant-available phosphorus stocks of Brazilian soils at a 30 m scale 

using advanced DSM techniques. 

 



   11 
 

REFERENCES 

Adhikari, K., Kheir, R.B., Greve, M.B., Greve, M.H., 2013. Comparing kriging and regression approaches for 

mapping soil clay content in a diverse danish landscape. Soil Science 178, 505–517. 

https://doi.org/10.1097/SS.0000000000000013 

Antoniadis, V., Koliniati, R., Efstratiou, E., Golia, E., Petropoulos, S., 2016. Effect of soils with varying degree 

of weathering and pH values on phosphorus sorption. Catena (Amst) 139, 214–219. 

https://doi.org/10.1016/J.CATENA.2016.01.008 

Barbieri, P., MacDonald, G.K., Bernard de Raymond, A., Nesme, T., 2021. Food system resilience to phosphorus 

shortages on a telecoupled planet. Nature Sustainability 5, 114–122. https://doi.org/10.1038/s41893-021-

00816-1 

Barretto, A.G.O.P., Berndes, G., Sparovek, G., Wirsenius, S., 2013. Agricultural intensification in Brazil and its 

effects on land-use patterns: An analysis of the 1975-2006 period. Global Change Biology 19, 1804–1815. 

https://doi.org/10.1111/gcb.12174 

Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gomez, C., Schmid, T., van Wesemael, B., 2019. Imaging 

Spectroscopy for Soil Mapping and Monitoring, Surveys in Geophysics. Springer Netherlands. 

https://doi.org/10.1007/s10712-019-09524-0 

Chen, S., Arrouays, D., Leatitia Mulder, V., Poggio, L., Minasny, B., Roudier, P., Libohova, Z., Lagacherie, P., 

Shi, Z., Hannam, J., Meersmans, J., Richer-de-Forges, A.C., Walter, C., 2022. Digital mapping of 

GlobalSoilMap soil properties at a broad scale: A review. Geoderma 409, 115567. 

https://doi.org/10.1016/J.GEODERMA.2021.115567 

Demattê, J.A.M., Fongaro, C.T., Rizzo, R., Safanelli, J.L., 2018. Geospatial Soil Sensing System (GEOS3): A 

powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sens 

Environ 212, 161–175. https://doi.org/10.1016/j.rse.2018.04.047 

Demattê, J.A.M., Safanelli, J.L., Poppiel, R.R., Rizzo, R., Silvero, N.E.Q., Mendes, W. de S., Bonfatti, B.R., 

Dotto, A.C., Salazar, D.F.U., Mello, F.A. de O., Paiva, A.F. da S., Souza, A.B., Santos, N.V. dos, Maria 

Nascimento, C., Mello, D.C. de, Bellinaso, H., Gonzaga Neto, L., Amorim, M.T.A., Resende, M.E.B. de, 

Vieira, J. da S., Queiroz, L.G. de, Gallo, B.C., Sayão, V.M., Lisboa, C.J. da S., 2020. Bare Earth’s Surface 

Spectra as a Proxy for Soil Resource Monitoring. Sci Rep 10, 1–11. https://doi.org/10.1038/s41598-020-

61408-1 

Dias, L.C.P., Pimenta, F.M., Santos, A.B., Costa, M.H., Ladle, R.J., 2016. Patterns of land use, extensification, 

and intensification of Brazilian agriculture. Global change biology 22, 2887–2903. 

https://doi.org/10.1111/gcb.13314 

Diek, S., Fornallaz, F., Schaepman, M.E., de Jong, R., 2017. Barest Pixel Composite for agricultural areas using 

landsat time series. Remote Sensing 9. https://doi.org/10.3390/rs9121245 

Elser, J.J., 2012. Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23, 833–838. 

https://doi.org/10.1016/J.COPBIO.2012.03.001 



12 
 

Fongaro, C.T., Demattê, J.A.M., Rizzo, R., Safanelli, J.L., Mendes, W. de S., Dotto, A.C., Vicente, L.E., 

Franceschini, M.H.D., Ustin, S.L., 2018. Improvement of clay and sand quantification based on a novel 

approach with a focus on multispectral satellite images. Remote Sens (Basel) 10. 

https://doi.org/10.3390/rs10101555 

Forkuor, G., Hounkpatin, O.K.L., Welp, G., Thiel, M., 2017. High resolution mapping of soil properties using 

Remote Sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple 

linear regression models. PLoS ONE 12, 1–21. https://doi.org/10.1371/journal.pone.0170478 

Gallo, B.C., Demattê, J.A.M., Rizzo, R., Safanelli, J.L., Mendes, W. de S., Lepsch, I.F., Sato, M. V., Romero, 

D.J., Lacerda, M.P.C., 2018. Multi-temporal satellite images on topsoil attribute quantification and the 

relationship with soil classes and geology. Remote Sens (Basel) 10. https://doi.org/10.3390/rs10101571 

Gibbs, H.K., Ruesch, A.S., Achard, F., Clayton, M.K., Holmgren, P., Ramankutty, N., Foley, J.A., 2010. Tropical 

forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National 

Academy of Sciences of the United States of America 107, 16732–16737. 

https://doi.org/10.1073/pnas.0910275107 

Graesser, J., Aide, T.M., Grau, H.R., Ramankutty, N., 2015. Cropland/pastureland dynamics and the slowdown of 

deforestation in Latin America. Environmental Research Letters 10, 34017. https://doi.org/10.1088/1748-

9326/10/3/034017 

Leite, C.C., Costa, M.H., Soares-Filho, B.S., De Barros Viana Hissa, L., 2012. Historical land use change and 

associated carbon emissions in Brazil from 1940 to 1995. Global Biogeochemical Cycles 26, 1–13. 

https://doi.org/10.1029/2011GB004133 

Lopes, A.S., Guimarães, G.L.R., 2016. A career perspective on soil management in the Cerrado region of Brazil, 

Advances in Agronomy. Elsevier Inc. https://doi.org/10.1016/bs.agron.2015.12.004 

Martinelli, L.A., Naylor, R., Vitousek, P.M., Moutinho, P., 2010. Agriculture in Brazil: Impacts, costs, and 

opportunities for a sustainable future. Current Opinion in Environmental Sustainability 2, 431–438. 

https://doi.org/10.1016/j.cosust.2010.09.008 

McBratney, A.B., Santos, M.L.M., Minasny, B., 2003. On digital soil mapping. Geoderma 117, 3–52. 

https://doi.org/10.1016/S0016-7061(03)00223-4 

Mendes, W. de S., Medeiros Neto, L.G., Demattê, J.A.M., Gallo, B.C., Rizzo, R., Safanelli, J.L., Fongaro, C.T., 

2019. Is it possible to map subsurface soil attributes by satellite spectral transfer models? Geoderma 343, 

269–279. https://doi.org/10.1016/j.geoderma.2019.01.025 

Mondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S., Mukhopadhyay, A., 2017. Spatial soil organic 

carbon (SOC) prediction by regression kriging using remote sensing data. Egyptian Journal of Remote 

Sensing and Space Science 20, 61–70. https://doi.org/10.1016/j.ejrs.2016.06.004 

Padarian, J., Minasny, B., McBratney, A.B., 2019. Using deep learning to predict soil properties from regional 

spectral data. Geoderma Regional 16, e00198. https://doi.org/10.1016/j.geodrs.2018.e00198 

Pavinato, P.Sergio., Rocha, G.Cassoni., Cherubin, M.Roberto., Harris, Ian., Jones, D.Leonard., Withers, 

P.J.Anthony., 2020. Map of total phosphorus content in native soils of Brazil. Sci Agric 78, e20200077. 

https://doi.org/10.1590/1678-992X-2020-0077 



   13 
 

Poppiel, R.R., Lacerda, M.P.C., Safanelli, J.L., Rizzo, R., Oliveira, M.P., Novais, J.J., Demattê, J.A.M., 2019. 

Mapping at 30 m resolution of soil attributes at multiple depths in midwest Brazil. Remote Sensing 11. 

https://doi.org/10.3390/rs11242905 

Rizzo, R., Medeiros, L.G., Mello, D.C. de, Marques, K.P.P., Mendes, W. de S., Quiñonez Silvero, N.E., Dotto, 

A.C., Bonfatti, B.R., Demattê, J.A.M., 2020. Multi-temporal bare surface image associated with transfer 

functions to support soil classification and mapping in southeastern Brazil. Geoderma 361, 114018. 

https://doi.org/10.1016/j.geoderma.2019.114018 

Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T., Heiden, U., 2018. Building an exposed soil composite 

processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–

2014). Remote Sensing of Environment 205, 1–17. https://doi.org/10.1016/j.rse.2017.11.004 

Rosemarin, A., Ekane, N., 2016. The governance gap surrounding phosphorus. Nutr Cycl Agroecosyst 104, 265–

279. https://doi.org/10.1007/S10705-015-9747-9/TABLES/2 

Roy, E.D., Richards, P.D., Martinelli, L.A., Coletta, L. Della, Lins, S.R.M., Vazquez, F.F., Willig, E., Spera, 

S.A., VanWey, L.K., Porder, S., 2016a. The phosphorus cost of agricultural intensification in the tropics. 

Nature Plants 2, 2–7. https://doi.org/10.1038/NPLANTS.2016.43 

Safanelli, J.L., Poppiel, R.R., Chimelo Ruiz, L.F., Bonfatti, B.R., de Oliveira Mello, F.A., Rizzo, R., Demattê, 

J.A.M., 2020. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-

Scale Analysis. ISPRS International Journal of Geo-Information 9, 400. https://doi.org/10.3390/IJGI9060400 

Schipanski, M.E., Bennett, E.M., 2021. The Phosphorus Cycle, in: Fundamentals of Ecosystem Science, Second 

Edition. Academic Press, pp. 189–213. https://doi.org/10.1016/B978-0-12-812762-9.00009-5 

Schröder, J.J., Smit, A.L., Cordell, D., Rosemarin, A., 2011. Improved phosphorus use efficiency in agriculture: 

A key requirement for its sustainable use. Chemosphere 84, 822–831. 

https://doi.org/10.1016/J.CHEMOSPHERE.2011.01.065 

Shary, P.A., 2023. Environmental Variables in Predictive Soil Mapping: A Review. Eurasian Soil Science 56, 

247–259. https://doi.org/10.1134/S1064229322602384/FIGURES/6 

Simpson, R.J., Oberson, Astrid, Culvenor, Richard A, Ryan, Megan H, Veneklaas, Erik J, Lambers, Hans, Lynch, 

Jonathan P, Ryan, Peter R, Delhaize, Emmanuel, Andrew Smith, F., Smith, Sally E, Harvey, Paul R, 

Richardson, Alan E, Wissuwa J Simpson, M.R., Culvenor, R A, Richardson, A E, Oberson, A, Ryan, M H, 

Veneklaas, E J, Lambers, H, Lynch, J P, Ryan, P R, Delhaize, E, Smith, F.A., Smith, S E, Harvey, P R, 2011. 

Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant 

and Soil 349, 89–120. https://doi.org/10.1007/S11104-011-0880-1 

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., De 

Vries, W., De Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., 

Reyers, B., Sörlin, S., 2015. Planetary boundaries: Guiding human development on a changing planet. 

Science (1979) 347. https://doi.org/10.1126/SCIENCE.1259855/SUPPL_FILE/STEFFEN-SM.PDF 

Tollefson, J., 2010. Food: The global farm. Nature 466, 554–556. https://doi.org/10.1038/466554a 



14 
 

Tziolas, N., Tsakiridis, N., Ben-Dor, E., Theocharis, J., Zalidis, G., 2020. Employing a multi-input deep 

convolutional neural network to derive soil clay content from a synergy of multi-temporal optical and radar 

imagery data. Remote Sensing 12. https://doi.org/10.3390/RS12091389 

Viscarra Rossel, R.A., Bui, E.N., 2016. A new detailed map of total phosphorus stocks in Australian soil. Science 

of the Total Environment 542, 1040–1049. https://doi.org/10.1016/J.SCITOTENV.2015.09.119 

Withers, P.J.A., Rodrigues, M., Soltangheisi, A., De Carvalho, T.S., Guilherme, L.R.G., Benites, V.D.M., 

Gatiboni, L.C., De Sousa, D.M.G., Nunes, R.D.S., Rosolem, C.A., Andreote, F.D., Oliveira, A. De, 

Coutinho, E.L.M., Pavinato, P.S., 2018. Transitions to sustainable management of phosphorus in Brazilian 

agriculture. Scientific Reports 8, 1–13. https://doi.org/10.1038/s41598-018-20887-z 

Withers, P.J.A., van Dijk, K.C., Neset, T.S.S., Nesme, T., Oenema, O., Rubæk, G.H., Schoumans, O.F., Smit, B., 

Pellerin, S., 2015. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44, 

193–206. https://doi.org/10.1007/S13280-014-0614-8/FIGURES/5 

Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., Finke, P., 2019. Digital mapping of soil properties using 

multiple machine learning in a semi-arid region, central Iran. Geoderma 338, 445–452. 

https://doi.org/10.1016/j.geoderma.2018.09.006 

Zhou, T., Geng, Y., Ji, C., Xu, X., Wang, H., Pan, J., Bumberger, J., Haase, D., Lausch, A., 2021. Prediction of 

soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A 

comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. Science of the Total Environment 755, 

142661. https://doi.org/10.1016/j.scitotenv.2020.142661 



   15 
 

2 THE BRAZILIAN SOILS CLAY FRACTION MAJOR OXIDES SPATIALIZED 

BY EARTH OBSERVATION STRATEGY 

 

ABSTRACT 

The soils clay fraction major oxides of tropical soils are iron oxides (Fe2O3), aluminum 

oxides (Al2O3), and silicon oxides (SiO2). In tropical soils, these oxides are directly or indirectly 

responsible for the soil's capacity to provide ecosystem services. Additionally, they are used to 

classify soils into different pedological classes. Despite the importance of these oxides, quantifying 

them on a large scale is not an easy task. Moreover, the most common method for quantifying these 

oxides is laboratory sulfuric acid digestion, which is expensive, complex, and environmentally 

harmful. To overcome this issue and provide faster information, we developed a satellite technique 

associated with machine learning to map all agricultural areas in Brazil at a 30 m resolution. 

Additionally, we tested if the generated maps can be used to infer soil weathering, assist in the 

construction of pedological maps, and support agricultural crop management. We used a modeling 

dataset with 5,330 sites (0-20 cm and 80-100 cm) distributed across all 27 states. Six spectral 

variables obtained from the historical Landsat series (bare soil) and seven terrain attributes derived 

from a digital elevation model were used to determine Fe2O3, Al2O3, and SiO2 using the Random 

Forest algorithm. The predicted maps of oxides covered nearly 3.48 million km² (~40% of the 

national territory). The best predictions were observed for Fe2O3 in the surface layer (RMSE = 

47.0, RPIQ = 1.85, and R2 = 0.65), while the lowest predictions were for SiO2 in the subsurface 

layer (RMSE = 66.7, RPIQ = 1.55, and R2 = 0.19). It was possible to infer soil weathering using 

the Ki index. Our results were consistent with legacy maps, where highly weathered soils were 

observed in the plateaus of the cerrado biome, while younger soils were observed in the arid 

Caatinga biome and waterlogged soils in the Pantanal biome. Our maps also demonstrated a high 

potential for grouping pedological soil classes. Furthermore, we observed a relationship between 

oxide contents and the vigor of sugarcane crops, indicating that our findings can assist in crop 

management. Moreover, our satellite-based technique supported by machine learning was capable 

of predicting this information for large areas with high spatial resolution. 

Keywords: Digital Soil mapping, ecosystem services, Soil weathering, machine learning, bare soil 

reflectance. 
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2.1 Introduction  

 
The soil plays several ecosystem services (ES) that are of utmost importance for the maintenance of 

life on the planet (McBratney et al., 2014). The soil's ability to provide ecosystem services is determined by 

various intrinsic soil properties, such as texture, organic carbon content, depth, density, available water, and 

cation exchange capacity (Adhikari and Hartemink, 2016; Hewitt et al., 2015). These soil properties have 

different spatial distributions and can vary considerably across the Earth's crust, influencing the soil's capacity to 

deliver ecosystem services (Adhikari and Hartemink, 2016). In tropical soils, where the degree of weathering is 

high, one of the most important properties in the production of ES are clay fraction oxides (Kirsten et al., 2021; 

Silva et al., 2021). Soil oxides play several roles in the soil matrix. Among these functions, there is the 

maintenance of soil structure, potential for organic carbon retention, potential water retention, influences the pH 

magnitude, availability of nutrients for plants, among others (Kirsten et al., 2021; Ukabiala et al., 2021). Against 

this, the task of quantifying these oxides can help in understanding the ability of a given soil to produce ES.  

The clay fraction major oxides of tropical soils are iron oxides (Fe2O3), aluminum oxides (Al2O3) and 

silicon oxides (SiO2) (Schaefer et al., 2008). In addition to the importance of these oxides in the production of 

ES, in Brazil, they are used in the Brazilian soil classification system (SiBCS). The Fe2O3 content is used in 

SiBCS for classification in the third categorical level, while Al2O3 and SiO2 are used to measure the degree of 

soil weathering (Embrapa Solos, 2018).  

Despite the great importance of these oxides in the soil, few efforts are made to map them in the 

tropical regions of the world. This is due to the fact that laboratory methodologies are expensive, time consuming 

and have a high potential for environmental pollution (its quantification is performed by use of acid digestion 

with strong acids such as sulfuric acid), making difficult to obtain pedogenic oxides information for large areas, 

with high spatial resolutions (Silva et al., 2019). However, despite the great challenge of mapping the contents of 

these oxides, innovative techniques for digital soil mapping (DSM) can enable the construction of maps 

containing their contents with high spatial resolution and low levels of uncertainty, even with low sample 

densities (Mendes et al., 2022; Safanelli et al., 2021a).  

In DSM, robust mathematical models capable of predicting a given soil property based on 

environmental covariates are used (Hengl et al., 2017; Vaysse and Lagacherie, 2015). Due to the advancements in 

computational techniques, it is currently possible to implement robust machine learning (ML) algorithms that 

exhibit high reliability (Wadoux et al., 2020a). Numerous algorithms are available for use in several scientific 

fields. However, in DSM studies, the Random Forest (RF) algorithm has been the most widely used (Padarian et 

al., 2020). The RF has great acceptance in the user community due to being a robust model composed of multiple 

decision trees that are not correlated with each other. Due to these characteristics, the RF has high accuracy in 

prediction processes with minimal chance of overfitting in the models (Sheykhmousa et al., 2020; Wadoux et al., 

2020a). In addition, due to the structure of RF being formed by decision trees, it allows for working with linear 

regression and categorical data, encompassing various soil properties (Sheykhmousa et al., 2020).  

The final quality of DSM depends greatly on the environmental covariates used for modeling a specific 

soil attribute. Typically, environmental covariates are used that represent part of the physical and chemical 
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processes that govern the spatial variation of soil (McBratney et al., 2003; Wadoux et al., 2020). Among the 

environmental covariates, the most commonly used ones are digital elevation models, vegetation indices, climate 

covariates, geological maps, and surface reflectance obtained by satellites (Lamichhane et al., 2019). In addition 

to these covariates, recent studies propose using environmental covariates that represent bare soil reflectance 

(Rosin et al., 2023; Safanelli et al., 2021b). Despite the great potential of bare soil reflectance in DSM, obtaining 

this reflectance is a major challenge due to the vegetation present on soils most of the time. In order to solve this 

problem, Demattê et al. (2018) developed an algorithm (Geospatial Soil Sensing System - GEOS3) capable of 

retrieving bare soil reflectance from historical series of Landsat images by aggregating the pixels that were 

exposed at least once throughout the historical series into a synthetic soil image (SYSI). 

Several studies worldwide have demonstrated the potential of exposed soil reflectance for soil attribute 

mapping (Gasmi et al., 2021; Rizzo et al., 2020; Silvero et al., 2021; Yang et al., 2020). The prediction of soil 

attributes based on reflectance has been consolidated with the use of spectroscopy in laboratories (Barra et al., 

2021). This consolidation is due to the fact that the concentrations of soil attributes alter their spectral signature. 

The spectral signature can be altered either at specific wavelengths or across the entire electromagnetic spectrum, 

such as the iron oxide content altering reflectance in the red region or clay content altering reflectance intensity 

across the spectrum (Ackerson et al., 2015; Demattê et al., 2007).  This characteristic makes the reflectance of 

exposed soil when applied in DSM the most important environmental covariates in predicting soil attributes 

(Poppiel et al., 2019; Rosin et al., 2023). 

We expect that topsoil reflectance measured by satellite will be related to the clay fraction major 

oxides Fe2O3, Al2O3, SiO2 by the electronic transition and molecular vibrations in the 350-2500 nm spectral 

range. With this, we expect to quantify and spacialize these properties by remote sensing associated with machine 

learning tehcniques at surface and undersurface. In addition, we expect that these oxides maps can be utilized to 

infer on the weathering of Brazilian agricultural soils, support soil class mapping, and aid in agricultural crop 

management. The information, for all agriculture areas of Brazil, in a high special definition (30 m) may bring 

light to researchers, farmers and consultors, on understanding their soil dynamics.  

 

2.2 Materials and methods 

 
2.2.1 Study area   

 
The study area is represented by the entire agriculture territory of Brazil. Brazil is a country with a 

large dimension (with about 8.5 million km2) and its variability of soils. This soil variability is due to the great 

formation factors, mainly, the climate, the time of formation, the parental material and the topography. Brazil's 

climate varies across the territory between tropical, subtropical until semiarid being represented by 12 classes 

(Figure A1). The time of formation of the parental materials that gave rise to Brazilian soils are most formed in 

the Cenozoic, Mesozoic, Neoproterozoic and Paleoproterozoic eras (Figure  A1). Regarding the parental material, 

the majority of rocks are sedimentary, formed by sediments with diverse origins, such as weathering of the Andes 

(Amazon basin), ocean floor (São Francisco craton region), desert sediment as in the Bauru and Botucatu 
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formations. In addition to sedimentary rocks, a large part of Brazil's geology is composed of volcanic and 

plutonic rocks. In the region encompassing the states of Paraná, São Paulo, Rio Grande do Sul, Minas Gerais, 

Goiás, and Mato Grosso do Sul, there is a large mass of basaltic rocks formed from basaltic eruptions. These 

rocks are extrusive and contain higher levels of iron and easily weatherable minerals. Along the Brazilian 

coastline, there are many plutonic rocks that were formed underground (intrusives) during continental drift. These 

rocks possess highly crystallized minerals like quartz. 

Another factor of formation with high variability in Brazil is the topography. Many mountains are 

present in coastal regions, while the interior of the country has large plateaus that favor soil weathering. There are 

also extensive floodplain basins, such as the Pantanal. All of these variations in soil formation factors contribute 

to the existence of soils with different levels of weathering and, consequently, different levels of oxides that were 

mapped in this study. 

Figure 1. Flowchart of the soils clay fraction major oxides prediction and its possible applications tested. 

GEOS3: Geospatial Soil Sensing System; SYSI: Synthetic Soil Image; DEM: Digital Elevation Model; STRM: 

Shuttle Radar Topography Mission; TAGEE: Terrain Analysis in Google Earth Engine; TA: Terrain Attributes; 

RF: Random Forest.   

 

2.2.2 Soil observations  

 
The soil observations were based several databases, which came from two different sources: i) Publicly 

available national soil profile databases with nearly 9.119 sites (Samuel-Rosa et al., 2019), ii) Brazilian Soil 

Spectral Library with nearly 45,000 sites (Demattê et al., 2019). The final database containing the soil 

observations used in this study were consolidated and modified in four different steps. The first step was to 

eliminate the sites with not accurate coordinates (accuracy less than 100 m). In the second step, all the sites that 

had information on at least one of the Fe2O3, SiO2, Al2O3 oxides were filtered. The pseudo-total concentrations of 

these oxides were obtained by the sulfuric acid digestion proposed by Vettori (1969), with modifications 

proposed by Raij and Valadares (1974). This extraction method can access the oxides in the secondary minerals. 

In this way, the extracted oxides mostly make up from the clay fraction of the soil. 
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Once the second step was completed, a total of 5,330 sites were obtained covering the entire Brazilian 

territory. These sites were submitted to a third step, which consisted of detecting those located in the areas 

covered by SYSI. In the fourth step, each site remaining from the third step, containing information of oxides at 

more than one depth, was subjected to interpolation along the profile to standardize the depths making them 

suitable for our study. The interpolation method was the quadratic spline function implemented in the GSIF R 

package (Hengl and Macmillan, 2019). The use of the quadratic spline function for interpolation of soil attributes 

along the profile was proposed by Bishop et al. (1999), where, in tests comparing with other similar methods, it 

excelled, since then it has been widely used in soil science studies (Ellili-Bargaoui et al., 2020; Sulaeman et al., 

2013; Tayebi et al., 2021). Once interpolation, we obtained layers of 20 cm, starting at the soil surface to 100 cm 

depth.  Two depths were used in this study 0-20 and 80-100 cm. After all the steps taken, the database was ready 

to be used. In the final database, each oxide had a different number of sites. In addition, the sampling density was 

also different for each depth used (Table 1).  

 

Table 1. Number of soil observations for each oxide throughout Brazil and in areas covered by SYSI 

Oxide Layer Nº observations 

  Brazil SISY Coverage 

Fe2O3 

0-20 cm 5211 2715 

80-100 cm 3671 1874 

Al2O3 

0-20 cm 4551 2253 

80-100 cm 3262 1608 

SiO2 

0-20 cm 4750 2380 

80-100 cm 3393 1697 

 SYSI: Synthetic Soil Image 

2.2.3 Environmental covariates  

 
 The Random Forest (RF) algorithm was used to fit predictive models for Fe2O3, Al2O3  and SiO2 

oxides using  the  synthetic soil image (SYSI) and terrain  attributes as covariates. A flowchart of the prediction 

process is shown in figure 1. 

The concentrations of the oxides are directly associated with soil formation factors which was one of 

the criteria for choosing the environmental covariates. Despite the great importance of all formation factors, the 

relief factor was considered. It was not possible to use the factors as climate, parental material, time and 

organisms, due to low spatial resolution or lack of information. To represent the relief factor, we consider 

environmental covariates that were previously used to predict soil attributes with satisfactory results in Safanelli 

et al (2021b). These terrain attributes were as follows: slope, altitude, north and east slope, horizontal curvature, 

vertical curvature, and a relief shape index. These variables were based on a digital elevation model (DEM) from 

the Shuttle Radar Topography Mission (SRTM) with 30 m (Farr and Kobrick, 2000). To calculate the 
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environmental variables, the Terrain Analysis in Google Earth Engine (TAGEE) algorithm proposed by 

(Safanelli et al., 2020b) was used. The individual information on the environmental covariates derived from the 

DEM are shown in table 2. 

For choosing the environmental covariates we also adopted the bare soil spectral signature. Several 

studies have shown that these oxides tend to alter the reflectance intensity of soils (Demattê et al., 2009; Terra et 

al., 2018). In this way, it is possible to estimate their concentrations from spectral information. To obtain the 

spectral variables, the GEOS3 algorithm (Demattê et al., 2020, 2018), developed within the Google Earth Engine, 

was used to generate the multispectral composite of bare soil and the frequency of soil exposure from 1982 to 

2020 with the Landsat Collections of Surface Reflectance Images at 30-m resolution (USGS, 2021a, 2021b). 

GEOS3 is a data mining algorithm that extracts soil features from the historical collection of satellite images and 

aggregates the spatially sparse discovered soil fragments into a SYSI. The SYSI is the reflectance image, 

composed of six spectral bands (Blue – band 1, Green – band 2, Red – band 3, NIR – band 4, SWIR1 – band 5 

and SWIR2 – band 6).  

A set of rules was used to identify bare ground pixels in satellite images, SYSI based on spectral 

indices coupled with quality assessment bands to remove cloud, cloud shadow, inland water, photosynthetic 

vegetation and non-photosynthetic vegetation (residues of harvest). A pixel was considered as bare soil when it 

had Normalized Difference Vegetation Index (NDVI) values between -0.05 and 0.30 (masking green vegetation) 

and Normalized Burn Ratio 2 (NBR2) values between -0.15 and 0.15 (masking crop residues). Pixels detected 

with bare soil were selected to compose the multitemporal collection. Each pixel that makes up the SYSI refers to 

the median value calculated among all pixels in the multitemporal collection for a given position. Thus, GEOS3 

produced an almost continuous representation of the topsoil reflectance, increasing the mapped area of the soil 

surface by combining and averaging estimation of multitemporal measurements. Detailed information on 

GEOS3, spectral indices and sensitivity analysis can be found in previous studies (Demattê et al., 2020; Fongaro 

et al., 2018; Gallo et al., 2018; Safanelli et al., 2020a). All six SYSI bands were used as environmental variables 

for the prediction of oxides; they are shown in Table 2. 
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Table 2. Environmental covariates used for modeling major oxides. 

Environmental covariate Source (spatial resolution) References 

SYSI blue (450–520 nm) Landsat collection (30 m) (Demattê et al., 2018) 

SYSI green (520–600 nm) Landsat collection (30 m) (Demattê et al., 2018) 

SYSI red (630–690 nm) Landsat collection (30 m) (Demattê et al., 2018) 

SYSI NIR (760–900 nm) Landsat collection (30 m) (Demattê et al., 2018) 

SYSI SWIR1 (1550–1750 nm) Landsat collection (30 m) (Demattê et al., 2018) 

SYSI SWIR2 (2080–2350 nm) Landsat collection (30 m) (Demattê et al., 2018) 

Elevation SRTM (30 m) (Farr and Kobrick, 2000) 

Slope TAGEE/SRTM (30 m) (Safanelli et al., 2020b) 

Northness TAGEE/SRTM (30 m) (Safanelli et al., 2020b) 

Eastness TAGEE/SRTM (30 m) (Safanelli et al., 2020b) 

Horizontal curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020b) 

Vertical curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020b) 

Terrain shape index TAGEE/SRTM (30 m) (Safanelli et al., 2020b) 

SYSI: Synthetic Soil Image; TAGEE: Terrain Analysis in Google Earth Engine; SRTM: Shuttle Radar 

Topography Mission.    

 

2.2.4 Soils clay fraction major oxides modeling by Random Forest  

 
In this study, we employed the Random Forest (RF) machine learning algorithm to map the content of 

soils clay fraction major oxides for Brazilian agriculture areas. The RF, proposed by Breiman (2001),  is an ML 

algorithm that operates by constructing a set of independent decision trees. Each tree is trained on a random 

sample of the training data. During prediction, each tree generates an estimate, and the final prediction is 

determined by a combination of the estimates from all the trees (Breiman, 2001). This ensemble approach allows 

Random Forest to capture complex relationships between variables and produce more robust and accurate results 

(Cutler et al., 2012).   

RF can be used for both linear regression and classification tasks. This characteristic makes the 

algorithm highly attractive for use in DSM, as it can handle a wide range of soil attributes effectively (Heung et 
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al., 2016). Due to this, RF is the most widely used ML algorithm in the construction of digital soil maps (Wadoux 

et al., 2020). In recent years, several studies have demonstrated the potential of RF to construct digital soil maps 

with a high level of detail and accuracy for various soil attributes. RF was used to map carbon stock (Tayebi et 

al., 2021), soil mineralogy (Rosin et al., 2023), soil texture (Dharumarajan and Hegde, 2022) , parent material of 

soils (Heung et al., 2014). 

 

2.2.4.1 Model tuning, performance and validation 

 
The selected environmental covariates were used as independent variables to obtain soil oxide 

prediction models. At each soil sampling point, the values of the environmental covariates were collected using 

the bilinear sampling method, which considers some neighboring pixels within a radius of 100 m around the 

coordinate point. The bilinear sampling aims to eliminate the effects of noisy pixels and the effect of coordinates 

with lower accuracies. 

To optimize the best combination of hyperparameters for RF, a grid search procedure was performed, 

which aimed to reduce the possibility of overfitting. The following values were tested for each hyperparameter: 

number of trees in the forest (FS): 30, 60, 100, 200, and 500, number of random predictors tested at splits of each 

tree (nRP): 3, 5, 9, 11, and 13, and minimum number of samples at the tree (minSL): 10, 20, 30, 40, 50, 100, 200, 

and 500. 

A bootstrapped sampling was used to determine the training dataset for the model while the test dataset 

was defined by the remaining samples (out of the bag) that were not selected in each bootstrapping.  The 

bootstrapping sampling was performed individually for each decision tree in the random forest, and in the end, 

they were aggregated by mean. Bootstrapping is a resampling method that randomly samples observations with 

replacement from the original dataset to create a new dataset of the same size, covering, in general, around 67% 

of the entire dataset. We applied the bootstrap method up to 500 times, which is equivalent to the maximum 

number of trees tested for the random forest. 

The optimal combination (FS, nPR and minSL) with the smallest Root Mean Squared Error (RMSE) 

for the test set was selected for each soil attribute. The accuracy of the developed models was evaluated by the 

coefficient of determination (R2), RMSE, Ratio of Performance to InterQuartile distance (RPIQ) of the calibration 

and validation data sets. The calculation of these parameters was performed according to the equations 1, 2, 3, 4, 

5.  

𝑅𝑀𝑆𝐸 = √(
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
)                                       (1) 

𝑅2 = 1 − 
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
                                               (2) 

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  ∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                 (3) 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 =  ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1                                        (4)  

𝑅𝑃𝐼𝑄 =
𝐼𝑄𝑅𝑦

𝑅𝑀𝑆𝐸𝑦̂
                                                         (5) 
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where 𝑦𝑖  is the vector of measured values, 𝑦̂𝑖 is the vector of predicted values, 𝑦 is the mean of vector 

y, and IQR is the interquartile range. 

 

2.2.4.2 Soils clay fraction major oxides and uncertainty mapping 

 
After selecting the best FS, nPR and minSL optimal combination, it was used to predict the major soil 

oxides for the study area.  The raster files corresponding to the environmental covariate were used as input data in 

Fe2O3, Al2O3 and SiO2 models, and the output was the respective maps. The final estimated value for each pixel 

in the final maps was formed by the aggregated mean of the estimations obtained by each regression tree 

(Equation (6)). Additionally, the standard deviation of the estimations of the predictions was also calculated 

(Equation (7)). The standard deviation of the ensemble was used to calculate the spatial distribution of 

uncertainty, which was defined by the confidence interval (95% probability level) standardized for the average 

estimate at the pixel level (Equation (8)). 

𝑓𝑝 =
1

𝐵
∑ 𝑓𝑏 (𝑋𝑝)𝐵

𝑏=1                                          (6) 

𝑆𝑝 = √
∑ (𝑓𝑏(𝑋𝑝)−𝑓̂𝑝)²𝐵

𝑏=1

𝐵−1
                                        (7) 

𝐶𝑅𝑠𝑡𝑑 =
(𝑓̂𝑝+1.96

𝑆𝑝

√𝐵
)−(𝑓̂𝑝−1.96

𝑆𝑝

√𝐵
)

𝑓̂𝑝
                       (8) 

Where X is the set of environmental features for pixel 𝑝; B is the forest size determined by the number 

of bootstrapping samples 𝑏; 𝑓𝑏 is the regression tree fitted to each bootstrapped sample 𝑏; 𝑓𝑝 is the mean of pixel 

𝑝; and 𝑆𝑝 is the standard deviation of location 𝑝. 

 

2.2.5  Oxides maps interpretation 

 
The interpretation of the oxide maps obtained in the modeling was conducted using three distinct 

approaches. The first approach involved reclassifying the maps based on their oxide content into three distinct 

classes. Subsequently, the percentage of areas encompassing each class was quantified.  

The Fe2O3 maps were divided according to the SiBCS classification system, where hypoferric soils had 

oxide contents below 80 g.kg-1, mesoferric soils ranged from 80 to <180 g.kg-1, and ferric soils ranged from 180 

to 360 g.kg-1. However, for the Al2O3 and SiO2 maps, this classification system was not applicable. Therefore, 

we proposed intervals based on the range of oxide contents obtained in the maps. We defined soils with oxide 

contents less than 80 g.kg-1 as low, soils ranging from 80 to <150 g.kg-1 as medium, and soils with oxide 

contents above 150 g.kg-1 as high, for both oxides. 

The second interpretation focused on the spectral signature of the aforementioned classes for all 

oxides. We compared the average spectral signature for each class obtained from the sampled points with the 

average spectral signature of the classes in the predicted map. 
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The third interpretation was conducted based on the parent materials. We utilized a geological map 

constructed by Gómez et al. (2018) and calculated the average oxide contents for each parent material. 

 

2.2.6 Soils clay fraction major oxides maps applications  

 
We tested three applications of the soil oxide maps: Infer to the degree of chemical weathering of soils; 

potential to contribute to the development of high resolution soil class maps; and finally, the prospect of utilizing 

these maps to guide management practices in agricultural fields. 

 

2.2.6.1 Chemical weathering index calculation 

To infer on the chemical weathering of soils, we calculated the Ki index (equation 9). The Ki 

calculation was performed on a pixel-by-pixel basis using the maps of SiO2 and Al2O3. The Ki weathering index 

expresses an idea of the removal of Si by the soil weathering process. The higher the value of the index, the lower 

the degree of weathering of the soil.  

𝐾𝑖 =   
𝑆𝑖𝑂2(𝑔.𝑘𝑔−1)

𝐴𝑙2𝑂3(𝑔.𝑘𝑔−1)
 𝑥 1.70                                                           (9) 

 

2.2.6.2 Application in pedological maps 

 
In the Brazilian Soil Classification System (SiBCS), the content of pedogenic oxides and the degree of 

weathering are used to soil classification. To test the potential contribution of our maps to the construction of 

pedological maps, we selected a 182-hectare farm located in the municipality of Rafard, São Paulo (Figure 1). 

The chosen area exhibits significant variations in lithology, with predominance of immature psammites with 

heterogeneous grain size, transitioning to feldspathic psammites and even arkosic sandstones. Concurrently with 

this lithology, eruptive elements of dikes from the Serra Geral formation occur, composed of intrusive bodies of 

tholeiitic basalt (Nanni and Demattê, 2006). This complex lithology has contributed to the formation of different 

soil classes. A conventional soil class map was constructed by Bazaglia Filho et al. (2013) for the area. In this 

map, five soil classes were identified at the first categorical level of SiBCS.  

Using our oxide maps, we performed an unsupervised classification using the K-means algorithm. The 

aim of this classification was to generate a map containing groups based on the content of pedogenic oxides. All 

six oxide maps (Fe2O3, Al2O3, and SiO2 in the 0-20 cm and 80-100 cm layers) were used as input variables in the 

classification. Additionally, we included the Ki maps from both layers as input variables. The number of groups 

was set to 5, representing the number of soil from conventional soil class map. Finally, we compared the resulting 

map from the unsupervised classification with the conventional soil class map. 
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2.2.6.3 Application in agricultural management 

 
Oxides have a direct relationship with crop vigor (Bronick and Lal, 2005). The presence of these 

pedogenic oxides improves soil structure, increases soil organic matter content, and consequently enhances the 

soil's water-holding capacity (Barthès et al., 2008; Kirsten et al., 2021). In light of this, we tested whether the 

content of oxides found in our maps are related to the vegetative vigor of plants. 

For it, we selected a sugarcane farm located in Itapura, São Paulo, with an area of 229 hectares (Figure 

1). This area was chosen because it had two lithologies: sandstone and basalt, with an abrupt transition between 

them. The vegetative vigor of sugarcane plants was assessed using the Normalized Difference Vegetation Index 

(NDVI). NDVI is a widely used index for inferring vegetation vigor, as it utilizes the difference between near-

infrared reflectance and red reflectance (Huang et al., 2021). The calculation of NDVI is performed using 

Equation 10, and its values range from -1 to +1. In vegetation, values close to 0 indicate low vegetative vigor, 

while values close to 1 represent high vegetative vigor.  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
                                                                       (10) 

Where NIR represents the reflectance in the near-infrared band, and Red represents the reflectance in 

the red band. 

The NDVI map was calculated using images obtained from the MSI sensor aboard the Sentinel-2 

satellite. Since our objective was to map at the farm level, we chose Sentinel-2 over Landsat due to its higher 

spatial resolution (10m), which ensures a greater level of detail. We used a single image obtained by calculating 

the pixel-wise median from all images (with less than 20% cloud cover) acquired in May 2020. The image 

acquisition period preceded the harvest, representing the final stages of sugarcane development. The NDVI map 

was subjected to an unsupervised classification using the K-means algorithm. Two classes were defined in the 

final map, with one class representing plants with higher vegetative vigor and the other class representing lower 

vegetative vigor. The map containing the vegetative vigor classes was compared with the soil oxide maps. 

 

2.3 Results and discussion 

 
2.3.1 Descriptive statistics  

 
The statistical analysis of the sample data containing the contents of the main soil oxides in the clay 

fraction shows high variability (Figure 2). The Fe2O3 contents ranged from 0 to 385 g kg-1, SiO2 varied from 0 to 

390 g kg-1, and Al2O3 ranged from 0.34 to 396 g kg-1. The contents of these oxides in the soil clay fraction are 

related to two factors: the type of parent material and its degree of weathering (Schaefer et al., 2008). The high 

variability observed in oxide contents is explained by the extensive geodiversity throughout the Brazilian territory 

(de Paula Silva et al., 2021).  Differences were also observed in the contents between the evaluated layers. All 

studied oxides have higher concentrations in the 80-100 cm layers (Figure 2). Minor differences were observed 

for Fe2O3, where the median content in the 0-20 cm layer was 41 gkg-1 and in the 80-100 cm layer it was 57 g kg-
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1. On the other hand, for SiO2 and Al2O3 oxides, the differences were more pronounced, with median contents in 

the 0-20 cm layer of 118 and 100 g kg-1, and in the 80-100 cm layer of 163 and 154 g kg-1, respectively.  The 

surface layers are in greater contact with the weathering agents and causes a more intense loss of elements than in 

the deeper layer, especially in tropical regions, resulting in lower quantities of oxides in the surface layers 

(Guimarães et al., 2021). 

 

 

Figure 2. Descriptive statistics of major soil oxides data observed in the study area. 

 

2.3.2 Spearman correlation between soils clay fraction major oxides and environmental 

covariates  

 
The Spearman correlation analysis between the environmental covariates and the oxides revealed that, 

for all the oxides, the bands of SYSI showed the highest correlations (Figure 3). Among the bands of the SYSI, 

SWIR2 showed the highest correlation values, ranging from -0.46 (for SiO2 in the 80-100 cm layer) to -0.63 (for 

Fe2O3 in the 0-20 cm layer). Pedogenic oxides are components of the soil clay fraction, and an increase in their 

content tends to reduce the reflectance intensity throughout the spectrum, resulting in negative correlation in the 

regions of the spectrum covered by the SYSI bands, particularly in the SWIR region (Terra et al., 2018). 

Different correlation values of oxides with SYSI were observed among the studied soil layers, with the 0-20 cm 

layer consistently showing higher correlations when compared to the 80-100 cm layer. This is due to the 

reflectance collected by satellites only comprising the surface layer of the soil, thus ensuring a direct relationship 

with oxide content in the 0-20 cm layer and an indirect relationship in the 80-100 cm layer (Mendes et al., 2019; 

Rosin et al., 2023b). 

Regarding the remaining environmental covariates (terrain attributes), a positive correlation with oxide 

concentrations was observed. According to Marques et al. (2004), most high-altitude areas in Brazil are 

characterized by older parent materials that have undergone greater weathering, resulting in higher concentrations 

of pedogenic oxides in the clay fraction of the soil. Among the terrain attributes, elevation and slope show the 
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highest correlation values with oxides. Only SiO2 in the 80-100 cm layer showed no correlation with elevation. 

The correlations with elevation ranged from 0.21 for SiO2 in the 0-20 cm layer to 0.40 for Fe2O3 in the 0-20 cm 

layer. In addition, the correlations with slope ranged from 0.15 for SiO2 in the 80-100 cm layer to 0.27 for Fe2O3 

in the 0-20 cm layer. The higher correlation values between these variables and Fe2O3 content can be attributed to 

the fact that areas with higher altitudes are predominantly located within the region formed by the Serra Geral 

Formation, resulting from basaltic spill that led to soils with higher iron content (Famelli et al., 2021; Silva et al., 

2020). On the other hand, soils located at lower elevations often consist of poor drainage condition soils, favoring 

Gleization processes that can translocate or remove iron (Couto et al., 2023; de Almeida, 2023; Ferreira et al., 

2023).  The environmental covariates representing terrain curvature had virtually no correlation with the oxides. 

We believe that this lack of correlation is due to curvature capturing spatial variability at short distances. 

However, our dataset has a low sample density, which does not adequately cover these shorter distances. 

 

 

Figure 3. Performance evaluation of soils clay fraction major oxides prediction using out-of-the-bag validation. 

(a): Speraman's correlation analysis of environmental covariates with soil oxides, (b) parameters of models used 

to predict soil oxide maps, (b.1): Root Mean Squared Error (RMSE), (b.2): Ratio of Performance to InterQuartile 

distance (RPIQ), (b.3): coefficient of determination (R²), * Signifcant at 5% probability level. 
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2.3.3  Performance of RF models for soils clay fraction major oxides prediction 

 
The best performances were observed in the surface layers, especially for Fe2O3 in the 0-20 cm layer 

(RMSE = 47, RPIQ = 1.85 and R2 = 0.65) (Fig. 3b). Conversely, Si2O3 presented the lower values, mainly for the 

80-100 cm layer (RMSE = 66.7, RPIQ = 1.55 and R2 = 0.19). Evaluating the performance of the models among 

the studied layers, the 0-20 cm layer performed better for all oxides. This superior performance in the surface 

layer can be attributed to the SYSI bands that represent the soil surface reflectance, and as demonstrated in 

section 3.2, showed the highest correlations with the oxides among all environmental covariates.   

The Fe2O3 oxide showed more accurate models than SiO2 and Al2O3 (Figure 3b).  It occurred due to the 

less generalized occurrence of Fe2O3 in soil, being present in high concentration under specific conditions of 

relief, climate and parent material (Bigham et al., 2002; Wiriyakitnateekul et al., 2007). On the other hand, SiO2 

and Al2O3 are present in several soil minerals, such as kaolinite, with generalized occurrence in Brazilian territory 

(Schaefer et al., 2008). Besides, the Fe2O3 showed high Spearman correlations with environmental covariates, 

than SiO2   and Al2O3, manly with SYSI bands and elevation, as explained above. which is key to explain the 

accuracy of RF prediction models. 

 

2.3.4 Soils clay fraction major oxides maps 

 
The predicted maps of oxides (Figures 4) comprised nearly 3.48 million km² (~40% of the national 

territory) that matches the area covered by the SYSI with bare soils between 1982 and 2021. These maps mainly 

span the agricultural areas of the country, where land cover (such as sugar cane, soy, grains, pasture, reforestation 

and others) tends to be removed due to agricultural practices. The maps for the 80-100 cm layer presented higher 

concentrations for all oxides, mainly SiO2, following the patterns observed in the soil dataset (Figure 2). On the 

other hand, the maps of the 0-20 cm layer exhibit greater spatial variability. The increased spatial variability 

observed in the surface layer is a result of more intense weathering processes than in the subsurface layer 

(Poppiel et al., 2019; Rossel, 2011). 

FeO2 exhibited the highest variation: 17.5-232 g.kg-1 (0-20 cm layer) and 29-211 g.kg-1 (80-100 cm 

layer). Subsequently, Al2O3 ranged from 26-207 g.kg-1 (0-20 cm layer) to 88-192 g.kg-1 (80-100 cm layer), 

while SiO2 ranged from 50.5-170 g.kg-1 (0-20 cm layer) to 116-200 g.kg-1 (80-100 cm layer). Despite having 

slightly higher contents in the 80-100 cm layer, the spatial distribution of Fe2O3 contents is similar in both 

mapped layers (figures 4a and 4b). Approximately 61% of the mapped area in the 0-20 cm layer and 57% in the 

80-100 cm layer consist of soils with low iron content (hypoferric soils). Additionally, 9% and 18% correspond to 

soils with moderate iron content (mesoferric soils), while 30% and 25% represent soils with high iron content 

(ferric soils), respectively.   

Oxides Al3O2 and SiO2 exhibit distinct spatial behaviors among the evaluated layers (Figures 4d, 4e, 

4g, and 4h). The contents of these oxides are significantly higher in the subsurface layer throughout the mapped 

area.  In the 0-20 cm layer, 49% and 38% of the mapped area consist of soils with low contents (>80 g.kg-1) of 

Al3O2 and SiO2, respectively (Figure 4f and 4i). In contrast, in the 80-100 cm layer, there are no soils containing 
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low contents. Instead, approximately 64% of the mapped areas contain soils with Al2O3 contents ranging from 80 

to 150 g.kg-1, and 62% contain SiO2contents above 150 g.kg-1. In tropical soils, the majority of aluminum (Al) 

and silicon (Si) are found within the structures of clay minerals, primarily in kaolinite resulting from the process 

of monosialization. Due to the process of clay illuviation, these elements are transported to subsurface horizons 

(Quénard et al., 2011; Schaefer et al., 2008). On the other hand, iron (Fe) is predominantly found in pedogenic 

oxides such as hematite and goethite, which are products of intense weathering (Schwertmann and Taylor, 1989). 

The main pedogenetic process in soils with high iron content and intense weathering is ferralitization (Breemen 

and Buurman, 1998). Iron oxides form stable complexes with organic matter and other soil particles, limiting 

their movement within the soil profile (Schwertmann and Taylor, 1989; Van Wambeke et al., 1983).  
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Figura 4. Soils clay fraction major oxides predicted maps. (a) Fe2O3 map in the 0-20 cm layer; (b) Fe2O3 map in 

the 80-100 cm layer; (c) percentage of mapped area as a function of Fe2O3 content; (d) Al2O3 map in the 0-20 cm 

layer; (e) Al2O3 map in the 80-100 cm layer; (f) percentage of mapped area as a function of Al2O3 content; (g) 

SiO2 map in the 0-20 cm layer; (h) SiO2 map in the 80-100 cm layer; (i) percentage of mapped area as a function 

of SiO2 content.   
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The predicted oxides contents are strongly correlated with parent materials. The highest contents were 

observed in regions comprising the basalt spill flows of the Serra Geral formation, while the lowest contents are 

found in soils formed on sandstones (Figure 5a). A more detailed view of the oxide contents in relation to the 

main parent materials of Brazilian soils is presented in Figure 5b. The highest average oxide contents were 

observed in soils developed on volcanic basaltic rocks (Vb) (Fe2O3: 172 and 162; Al2O3: 143 and 168; SiO2: 140 

and 188 g.kg-1 in the 0-20 and 80-100 cm layers, respectively), followed by soils derived from volcanic rhyolitic 

rocks (Vr) (Fe2O3: 133 and 133; Al2O3: 121 and 151; SiO2: 125 and 180 g.kg-1 in the 0-20 and 80-100 cm layers, 

respectively). The lowest contents were observed in soils derived from metamorphic medium to high grade rocks 

(Mmhg) (Fe2O3: 78 and 85; Al2O3: 83 and 121; SiO2: 92 and 153 g.kg-1 in the 0-20 and 80-100 cm layers, 

respectively) and sedimentary siliciclastic rocks (Ss) (Fe2O3: 88 and 195; Al2O3: 91 and 126; SiO2: 99 and 159 

g.kg-1 in the 0-20 and 80-100 cm layers, respectively).  

Volcanic rocks are rich in minerals such as amphiboles, pyroxene, and olivine, which are less 

crystallized and more susceptible to chemical and physical weathering (Schenato et al., 2003). Additionally, these 

minerals contain significant amounts of iron, giving rise to ferric soils (Araujo et al., 2014; Schaefer et al., 2008). 

In addition, due to the advanced weathering of these soils, they have higher clay contents in their texture, 

resulting in higher levels of silicon and aluminum, constituents of kaolinites and gibbsite, being found (Schaefer 

et al., 2008). The lower contents observed in soils derived from Mmhg rocks are due to their chemical 

composition. These rocks are usually gneisses, which undergo significant transformations in their mineralogy due 

to the intensity of metamorphism (White et al., 2017). Despite the mineralogical and structural variations, 

gneisses predominantly exhibit minerals that are resistant to weathering, such as K-feldspars, muscovite, and 

quartz, along with accessory minerals like zircon (Buol and Weed, 1991; Câmara et al., 2021). Similar to 

Mmhg rocks, Sedimentary Siliciclastic rocks also predominantly consist of minerals that are highly resistant to 

chemical weathering, particularly quartz (Garzanti, 2019). This results in soils with lower clay contents and 

consequently lower oxide contents (Martins et al., 2005; L. S. Silva et al., 2019).   

In soils developed from plutonic rocks, the oxide contents were higher in Plutonic Gabbroic and 

Ultramafic (Pgu) rocks compared to Plutonic Granitic (Pg) rocks. Pgu rocks have a mineralogical composition 

very similar to basalt, with a notable presence of ferromagnesian minerals that are more easily weathered 

(Guimarães et al., 2017; Silva et al., 2022). On the other hand, Pg rocks predominantly consist of highly 

crystallized minerals that are highly resistant to chemical weathering (Heuze, 1983). Median contents (above 80 

g.kg-1) for the predicted oxides were observed in soils developed on Sedimentary Carbonatic (Sc) rocks. These 

values differ from the literature, especially for Fe2O3, where soils developed on Sc rocks usually have lower 

contents than 80 g.kg-1  (de Souza Oliveira et al., 2021; Pinheiro Junior et al., 2021; Silva et al., 2017). This 

inconsistency can be explained by the low mapping scale of lithology (1:5,000,000), where other rocks with high 

iron contents may be included in the map regions interpreted as Sc rocks. 
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Figure 5. Interpretations of soils clay fraction major oxides predicted maps. (a) Comparison between the predicted oxide maps in the 0-20 cm layer with the 

geological map; (b) Oxide content in soils as a function of parent material; (c) Comparison between the average spectral signature of soils with different oxide 

contents obtained punctually in laboratory data with the average spectral signature obtained in mapped regions with different oxide contents, (c.1) average 

spectrum for laboratory data as a function of Fe2O3, (c.2) average spectrum for predicted maps as a function of Fe2O3, (c.3) average spectrum for laboratory 

data as a function of Al2O3, (c.4) average spectrum for predicted maps as a function of Al2O3, (c.5) average spectrum for laboratory data as a function of SiO2, 

(c.6) average spectrum for predicted maps as a function of SiO2. Vr: Volcanic Rhyolitic; Vb: Volcanic Basaltic; Su: Sedimentary Undifferentiated; Ss: 

Sedimentary Siliciclastic; Sc: Sedimentary Carbonatic; Pgu: Plutonic Gabbroic and Ultramafic; Pgr: Plutonic Granitic; Mmhg: Metamorphic Medium to high 

grade; Mlmg: Metamorphic Low to medium grade.  
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2.3.4.1 Spectral behavior as a function of oxide content 

  

Spectral signature (from image pixels compared with punctual controlling pixels with known 

wet laboratory information) of types of oxides indicated important variancy (Figure 5c) which gives 

support to the statistical approach. As we may see, the morphology trend is similar for all oxides of know 

positions to unknown ones (Figure 5c.1, c.2, c.3, c.4, c.5 and c.6) which bring an information of spectra 

indicating that the pixels were acquired with quality. We observe that the hypoferric soils and ferric soils 

have different trends due to their constitution and interaction with energy. The same happens with SiO2. 

important to mention that this silica is not from quartz, since sulphuric acid digestion extracts Si from 

clay fraction oxides. This, it is coherent to see high intensity with low SiO2. This SiO2 are in the structure 

of minerals in clay fraction (i.e., hematite, goethite, gibbsite, kaolinite and montmorillonite).  

 

2.3.4.2 Soils clay fraction major oxides predictions uncertainty  

 
In general, the spatial uncertainty (Figure 6) ranged from 0 to 20%, suggesting a low variation 

around the mean predicted value. The uncertainty represents the variation of the set of predicted values 

for each pixel in relation to the mean. Thus, the low uncertainty values validate the oxides prediction 

process adopted in this study. Low uncertainty values were also observed by Safanelli et al. (2021a) with 

uncertainty values were between 0-25% in the prediction of clay and carbon stock in Brazil. When 

analyzing the uncertainty maps in a spatial way, it is possible to see that for all minerals, the regions 

where the lowest concentrations were observed, the highest values of uncertainty were also observed. 

This reveals that there are higher estimates in areas with low mineral content. 
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Figure 6.  Uncertainty Predicted major soil oxides. 
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2.3.4.3 A discussion related with spatial resolution and geographical extension 

 
The technique maintains the spatial resolution with 30 m (Figure 7). As we can observe, when 

we look at the São Paulo state (Figure 7a), it is clearly detected the spill of basalt from south to north. 

This spill cross the state with the basalt origin and generates a specific spectra at 3r2g1b and 5r4g3b 

compositions (Landsat 5), in agreement with Fongaro et al.  (2018). The comparison of the spectra with 

the iron quantification are well correlated. Sometimes, these maps are well visualized because are with a 

low dimension. On the other hand, when we make a zoom in a regional scale, in an area with 500.000 ha 

(Figura 7b), we still see variations and with greater differences. Going towards to a farm scale, such as the 

one with 160 ha (Figure 7c), the differences are still there. These images indicate that the mechanism of 

SYSI is a powerful technique, that results in multiple geographical extensions from a country to a farm 

and maintain the same information.  

 

 

Figure 7: The figure represents the same region observed from different scales where (a) State scale, (b) 

Regional scale, and (c) farm scale. From left to right we go from a Landsat composition (SYSI) 321 and 

543 RGB respectively, and finally a Fe2O3 map. 
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2.3.5 Soils clay fraction major oxides maps applications  

 
2.3.5.1 Maps of Weathering Index (Ki) 

 
The Ki maps calculated based on SiO2 and Al2O3 contents are presented in Figure 8. We 

obtained Ki maps for two soil layers (0-20 cm and 80-100 cm). The map of the surface layer (Figure 8a) 

revealed greater spatial variability in Ki values, ranging from 0.67 to 4.2, with values below 2 

predominating throughout the map. In contrast, the subsurface layer map showed lower spatial variability, 

with values between 1.5 and 2.9 (Figure 6b), and a significant prevalence of areas containing Ki values 

above 2. These maps are consistent with the Ki values obtained through database calculations (laboratory 

analyses), as shown in Figure 8c. Ki is one of the most widely used indices in Brazil, as it indicates soil 

mineralogy and weathering. The Ki index is used in the Brazilian Soil Classification System to 

characterize and identify oxic horizons, which should have values below 2.2, indicating a high degree of 

weathering (Embrapa Solos, 2018). Low Ki values indicate processes of monosiallitization and 

alitization, leading to the formation of 1:1 clay minerals and aluminum oxides (Lima et al., 2022). On the 

other hand, higher Ki values (greater than 2.2) indicate the occurrence of bissiallitization processes with a 

higher presence of 2:1 clay minerals, indicating a lower degree of weathering (Guimarães et al., 2021). 

Values of Ki predominantly ≤ 1.5 (in the 0-20 cm layer) are observed in the region represented 

in Figure 8a.1. This region comprises a portion of the Cerrado biome, where the predominant soils are 

Ferralsols. The Ferralsols of the Cerrado exhibit varying origins, ranging from sedimentary rocks such as 

the sandstones of the Paraná Basin to basaltic rocks of the Serra Geral Formation and Cenozoic Lateritic 

Cover (Oliveira et al., 2023). The occurrence of plateaus associated with the tropical climate has 

contributed to an intense degree of weathering of these soils, making them the most weathered in Brazil 

(Curi and Franzmeier, 1984; Oliveira et al., 2023). In general, their mineralogy exhibits a low presence of 

primary weatherable minerals and a higher presence of kaolinite and oxides, with the soils being more 

gibbsitic in the higher areas of the plateaus (Schaefer et al., 2008). 

The Ki maps represent the spatial variations of weathering degree in soils formed under 

different circumstances, as can be observed in Figure 8a.4. The delimited area in the figure encompasses a 

region between the states of Bahia and Tocantins, as well as the northern part of Goiás. This region 

exhibits a strong contrast between highly weathered soil classes (Ferralsols) on one side, which are found 

in the extensive plateau of the Urucuia geological formation, and Cambisols and Regosols formed on the 

Bambuí group on the other side. Values of Ki ranging from 1.91 to 3.10 were observed by Maranhão et 

al, (2016) when studying profiles formed on the Bambuí group in this region, which is consistent with our 

results. 

Higher values of Ki in the surface layer (predominantly ≥ 2) are observed in the regions 

encompassing the Pantanal and Caatinga biomes, where younger soils such as Neosols, Luvissols, 

Planosols, Solonetz, and Vertisols are predominant. A zoom in on these regions is presented in Figures 

8a.2 and 8a.3 for a more detailed visualization. The Pantanal is a vast floodplain, and as such, 

hydromorphism is the main pedogenetic process in its soils, reducing weathering rates (Coringa et al., 

2012). Additionally, the parent materials in the Pantanal region often consist of carbonate sediments or 

exhibit a significant presence of sodium (Andrade et al., 2020; Oliveira et al., 2021). The chemical 
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elements released during the weathering of these sediments that remain in the soil solution increase the 

pH, favoring the neoformation of 2:1 clay minerals (Couto et al., 2023). Contrary to the Pantanal, the 

Caatinga biome is one of the largest tropical dry areas in the world (Araujo et al., 2022). Furthermore, the 

Caatinga is the oldest semi-arid landscape in South America, and its semi-arid climate strongly influences 

the formation of its soils (Araújo Filho et al., 2023).  The soils in this biome contain significant amounts 

of primary minerals and 2:1 clay minerals due to the low rates of weathering (Oliveira et al., 2019). 

The map of the 80-100 cm layer showed that subsurface soils are less weathered and more 

similar to the parent material than the surface soils. It is possible to observe that lower Ki values are 

found in regions composed of rocks that undergo weathering more easily, such as basalt. In Figure 8b.1, 

we selected a region where soils have developed on different parent materials. Soils derived from 

quartzose rocks (Bauru Group Formation, Botucatu Formation, and Passa Dois Formation) exhibit Ki 

values above 2 in the subsurface layer. On the other hand, soils formed on the Serra Geral Formation 

(ultramafic basaltic rocks) display Ki values lower than 2, indicating greater weathering in the subsurface. 
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Figure 8. Maps of Ki index. (a) Ki map of the 0-20 cm layer; (a.1) Region representing the Cerrado 

biome with highly weathered soils; (a.2) Region representing the Caatinga biome with less weathered 

soils; (a.3) Region representing the Pantanal biome with  less weathered hydromorphic soils; (a.4) Region 

exhibiting a contrast between highly weathered and less weathered soils; (b) Ki map of the 80-100 cm 

layer; (b.1) Region with different geological formations; (c) Descriptive statistics of the Ki index 

calculated from laboratory analyses in the two studied layers. The pedological map used for comparisons 

was the legacy soil map of Brazil published by IBGE, (2021); The geological map used for comparisons 

was published by Gómez et al.  (2018). 
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2.3.5.2 Application in pedological maps 

 
The study area comprises five soil classes: Cambisols, Chernozems, Nitisols, Lixisols, and 

Leptosols (Figure 9a), with a predominance of Lixisols. Unsupervised classification performed using the 

oxide maps created groups that represented the observed soil classes on the pedological map (Figure 9b). 

The best representations were found in the regions corresponding to Nitisols and Lixisols, represented by 

groups 1 and 2, respectively. The Nitisols in these regions develop on iron-rich ultrabasic basaltic rocks 

and easily weatherable primary minerals, thus exhibiting high oxide content (Silvero et al., 2021). In 

contrast to the other soils in the area that have developed on parent materials rich in quartz (Nanni and 

Demattê, 2006). This characteristic allowed for the distinction of this soil class from the others due to its 

high oxide content and pronounced degree of weathering.  In contrast, Lixisols are soils with a moderate 

degree of weathering when compared to Nitisols, where the pedogenetic process of clay illuviation is 

predominant (Embrapa Solos, 2018). This process favors the formation of sandy surface layers and clayey 

subsurface layers. As a result, there are significant differences in oxide content between the layers 

(Quénard et al., 2011). This characteristic allowed for the discrimination of these soils into a single group.  

In the regions encompassing the soil classes Cambisols, Chernozems, and Leptosols, there was 

not a clear discrimination between the groups. These soils share common characteristics such as low 

weathering degree, significant amounts of primary minerals and 2:1 clay minerals, and shallow depth 

(Embrapa Solos, 2018). We believe that due to these similarities, it was challenging to individualize these 

soils into distinct groups.     

 

Figure 9. Comparisons between (a) a detailed pedological map, (b) Class map obtained by unsupervised 

classification of soil oxide and Ki maps 
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2.3.5.3 Application in agricultural management 

 
The NDVI is widely used to infer, in general, the vegetation health (Lisboa et al., 2018; 

Piedallu et al., 2019). When we observe the NDVI of the sugarcane field, it is possible to detect two 

regions with opposite values (Figure 10a). The regions to the north and west presented higher NDVI 

values, indicating that the plants are healthier. While at south east the NDVI values are lower, indicating 

that plants may be suffering some type of stress. Unsupervised classification using the NDVI map (Figure 

10b) showed that the area is divided into two distinct clusters. When we compare this map of groups with 

the maps of oxides (Figure 10c, d and e), it is possible to observe that cluster 1, where the healthiest 

plants are contained, has higher concentrations of oxides. According to Silva et al, (2022),  soils 

containing higher levels of these oxides, mainly iron oxides, are generally soils originated from mafic or 

ultramafic rocks, which also provide higher levels of nutrients for plants due to their mineralogical 

composition. In addition, the oxides can form complexes with Soil organic matter (SOM) in the soil, 

increasing their concentrations as indicated by Hemingway et al, (Kleber et al., 2021). The increase in 

SOM content may favor the water storage capacity in the soil, increasing the availability of water for 

plants in dry periods (Wiesmeier et al., 2019).  

 

 

 

Figure 10. Relationship between the vigor of the sugarcane and the contents of oxides. (a) NDVI 

calculated with Sentinel-2 images at the final stage of sugarcane development; (b) unsupervised 

classification based on the NDVI, where cluster 1 represents plants with greater vigor and cluster 2 plants 

with lower vigor; (c) Fe2O3 map in the 0-20 cm layer; (d) Al2O3 map in the 0-20 cm layer; (e) SiO2 map 

in the 0-20 cm layer.     
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2.4 Conclusions  

 

It was possible to predict soils clay fraction major oxides (Fe2O3, SiO2, Al2O3) with high 

spatial resolution (30m) using satellite-derived data and machine learning. Furthermore, the modeling of 

our maps was considered satisfactory, with R2 and RMSE ranging from 0.19 to 0.65 and from 66.7 to 47 

g.kg-1, respectively. The predicted oxide maps covered approximately 3.48 million km² (~40% of the 

national territory), encompassing all areas that were used for agriculture during the period from 1982 to 

2020.  

The oxide contents were strongly related to the pedogenetic processes of soil formation, such 

as hydromorphism, clay illuviation, monosialitization, and ferralitization. Additionally, a significant 

relationship between soil-forming factors, such as parent material and climate, was observed. 

The maps of soil clay fraction major oxides showed great potential for inferring the degree of 

weathering of soils using the weathering index Ki. The Ki index demonstrated consistency with legacy 

pedological maps, where higher weathering was observed in regions predominantly composed of 

Ferralsols, while less weathered soils were found in regions dominated by Neosols, Luvissols, Planosols, 

Solonetz, and Vertisols. 

Our maps showed great potential to assist in the construction of pedological maps, capable of 

distinguishing regions belonging to the same soil class. Additionally, we observed a relationship between 

the vigor of sugarcane crops and the oxide contents, where plants cultivated in soils with higher oxide 

contents exhibited greater vegetative vigor. 

 

Furthermore, our findings provide valuable information for all agricultural regions in Brazil, 

with high spatial resolution. This information can aid researchers, farmers, and consultants in 

understanding the dynamics of their soils and making informed decisions. 
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APPENDIX 

 

 

Figure A1. Geological map of Brazil (a) and map of parent materials of Brazil (b) (adapted from Gómes 

et al., 2019); pedological map of Brazil (Instituto Brasileiro de Geografia e estatística 2021) (c); map of 

Kopen’s climatic classes of Brazil (Alvarez et al., 2013) (d). 
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3 GEOTECHNOLOGIES ON THE PHOSPHORUS STOCKS 

DETERMINATION IN TROPICAL SOILS: GENERAL IMPACTS ON 

SOCIETY 

ABSTRACT  

Phosphorus (P) is a critical nutrient for primary production in both terrestrial and 

aquatic ecosystems, and its use in fertilizers is essential for the success of global 

agriculture. However, given the non-renewability of P mineral reserves, the discussion 

about its sustainable use has been growing, with the aim of ensuring food security for future 

generations. In this study, our primary objective was to map the stocks of available P (AP) 

and total P (TP) in the soil throughout the territory of Brazil at a 30 m scale. Furthermore, 

we hope that the maps generated here can be used to achieve a sustainable use of P in 

agriculture and the environment systems. We used the Random Forest machine learning 

algorithm, which was fed with a legacy database containing 28,572 samples for AP and 

3,154 for TP distributed throughout the Brazilian territory (0-20 cm). The P stocks were 

predicted from environmental covariates related to soil formation processes and soil 

properties correlated with P. We divided Brazil into two sub-regions, representing areas 

with native coverage and areas with anthropogenic coverage. From this, we built 

independent predictive models for each sub-region. Our results showed that Brazil has a TP 

stock of 531 Mt and an AP stock of 17.4 Mt. The highest averages of TP stocks are in the 

Atlantic Forest biome (73.8 g.m²), which may be linked to the higher stocks of organic 

carbon in the soil of this biome. The highest averages AP stocks are in the Caatinga biome 

(2.51 g.m-²) since this has younger soils with a low capacity to adsorb phosphorus. We also 

found that the use of fertilizers significantly increased AP stocks, where agricultural areas 

always had higher AP stocks than native areas. Furthermore, results indicated that Brazil’s 

agricultural production is heavily influenced by AP stocks in the soil. We found a 

correlation ranging from 0.20 for coffee crops to 0.46 for soybean, between crop 

productivity and AP stocks in Brazilian soils.         

Keywords: Digital Soil mapping, Sustainability, Remote Sensing, Machine Learning, soil 

health.   
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3.1 Introduction 

Phosphorus (P), an emblematic chemical element, is one of the main nutrients that limit 

primary production in terrestrial and aquatic ecosystems (Schipanski and Bennett, 2021). Its use in 

agriculture, in the form of chemical fertilizers, has been the main driver of the significant increase in 

productivity in tropical soils (Withers et al., 2018). Although phosphorus is abundant in the soil, both in 

organic and inorganic forms, it is a limiting element for crop development and growth due to its low 

availability to plants. Plants absorb phosphorus through the root system in the form of orthophosphate, 

but only about 0.1% of the phosphorus is readily available to them (Schipanski and Bennett, 2021; Zhu et 

al., 2011).  

The majority of P used in agriculture comes from non-renewable mineral reserves, which has 

sparked debates about its management, as the reserves are at risk of depletion, creating food insecurity for 

future generations (Elser, 2012; Rosemarin and Ekane, 2016). For decades, phosphorus has been used in 

agriculture without much control and often inefficiently (Roy et al., 2016; Withers et al., 2015). In the 

soil, phosphorus applied in the form of chemical fertilizers in excessive doses can become unavailable to 

plants due to its fixation or be lost to aquatic environments, causing eutrophication (Schipanski and 

Bennett, 2021). Therefore, the efficient use of phosphorus is indispensable for us to achieve sustainability 

on the planet (Steffen et al., 2015). The search for the efficient and sustainable use of P involves strategies 

at the local level (on the farm), such as the correction of soil pH, the application at a varied rate, and the 

increase of organic matter in the soil to neutralize charges capable of adsorbing P (Schröder et al., 2011; 

Simpson et al., 2011). In addition, it covers strategies at the global level, mainly highlighting the mapping 

of P stocks and the factors that influence the availability of this element to plants (Barbieri et al., 2021; 

Roy et al., 2016). 

The P stocks in the soil are the result of a complex interaction of climatic, biotic, and landscape 

factors over time (Menge et al., 2023). Soil formation factors influence the P stocks in the soil as well as 

the proportions in which these stocks are available or not for plants (Hou et al., 2018; Smeck, 1985). Soils 

formed from ultramafic rocks have higher phosphorus stocks than those formed from chemically poor 

parent material (Daly et al., 2015; Mage and Porder, 2013). However, the degree of weathering affects the 

proportion of available phosphorus to total phosphorus. Highly weathered soils have most of their stocks 

adsorbed on metallic oxides, while younger soils have larger quantities of phosphorus in its available 

form (Antoniadis et al., 2016). Climate formation factor also plays a crucial role in the phosphorus stocks 

of soils around the planet. Mild climates tend to preserve carbon in the soil and with it the phosphorus 

contained in the soil organic matter (SOM) (Hou et al., 2018). In addition to formation factors, due to the 

use of phosphate fertilizers in agriculture, phosphorus stocks also tend to increase in agricultural areas, as 

residual phosphorus adds to the soil’s natural stocks (Pavinato et al., 2020).  

In Brazil, where oxidic soils with a high degree of weathering predominate (Schaefer et al., 

2008), the understanding of the dynamics of the phosphorus element has always had a generalist tendency 

(Withers et al., 2018). Where there is practically total adsorption of phosphorus on oxyhydroxides from 

clay minerals. Such reasoning disregards all the geospatial variation of Brazilian soils, which are highly 

heterogeneous and have different capacities to adsorb phosphorus or not. In a mapping of the potential for 

soil phosphorus retention, Barbosa et al, (2022) demonstrated that about 70% of Brazilian soils have low 
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to medium potential to adsorb phosphorus. These characteristics lead us to review the understanding of 

the spatial behavior of the phosphorus element throughout Brazilian territory. Once the phosphorus made 

available in the weathering process, in the mineralization of soil organic matter (SOM), and in the 

chemical fertilization of crops may or may not be adsorbed in the soil, directly influencing the phosphorus 

stocks in the soil. 

Phosphorus stocks in Brazilian soils have never been quantified at a national level with 

detailed scale. The pioneering study conducted by Pavinato et al., (2020) mapped the content of native 

total phosphorus in Brazilian soils. However, this map presents a low level of detail, following the 

resolution of the soil map of Brazil, which is 1:5000000, preventing farm-level planning. In addition, 

mapping only total phosphorus does not provide a clear idea about the phosphorus available to plants, as 

there is no direct relationship between total phosphorus and available phosphorus (Nwoke et al., 2003; 

Smeck, 1985). 

In a country where its dimensions are continental like Brazil, mapping phosphorus stocks is not 

an easy task. Brazil has about 8.5 million square kilometers, and a large part of the Brazilian territory is 

under native vegetation (about 64%), mainly in the northern region in the Amazon biome (MapBiomas, 

2023). This contributes to a scarcity of data, making it difficult to map with a high level of detail and low 

uncertainties. Despite this, thanks to recent advances in digital soil mapping (DSM), these problems are 

being overcome. Several studies demonstrate the potential of Digital Soil Mapping (DSM) to generate 

assertive maps of different soil properties, e.g soil mineralogy (Rosin et al., 2023), soil texture 

(Dharumarajan and Hegde, 2022; Žížala et al., 2022), soil organic carbon stock (Gomes et al., 2019; 

Safanelli et al., 2021; Tayebi et al., 2021) and even total phosphorus stocks (Viscarra Rossel and Bui, 

2016).   

The use of predictive models based on machine learning (ML) algorithms, along with 

environmental covariates with increasing levels of detail and quality, has significantly contributed to the 

development of more accurate maps (Khaledian and Miller, 2020; Samuel-Rosa et al., 2015; Wadoux et 

al., 2020).  Among the ML algorithms, Random Forest (RF) proposed by Breiman, (2001) has stood out 

in soil science studies. According to Padarian et al. (2020), this algorithm is the most used in this theme, 

having become popular due to its robustness provided by its architecture composed of numerous 

uncorrelated trees. Furthermore, Random Forest is easy to implement, allowing for the construction of a 

grid search to determine the best hyperparameters to be used, which often results in superior performance 

compared to other machine learning algorithms (Sheykhmousa et al., 2020; Wadoux et al., 2020). 

Additionally, as soil properties can be of a quantitative or qualitative nature, the structure of Random 

Forest, based on decision trees, can handle both. This is because the algorithm works with both linear 

regression and classification (Sheykhmousa et al., 2020). 

In DSM, the choice of environmental covariates is extremely important for obtaining assertive 

maps (Lamichhane et al., 2019). The SCORPAN model proposed by McBratney et al. (2003) is popularly 

used in DSM as a strategy in determining environmental covariates. Many covariates can be used to 

represent the factors described in the SCORPAN model. For example, multispectral images, obtained by 

satellites, can describe the spectral behavior of vegetation, representing the soil formation factor organism 

(Chen et al., 2022). Digital elevation models are used to represent the relief (Safanelli et al., 2020), while 



56 
 

historical data, obtained by weather stations, such as rainfall and temperature, can be spatialized and used 

to represent the climate (Shary, 2023). In addition, data mining algorithms, such as GEOS3 developed by 

Demattê et al., (2018), can be used to manipulate historical data series and extract point information 

highly correlated with soil properties. GEOS3 is fed with the entire historical series of Landsat images 

and outputs a synthetic soil image (SYSI) composed of pixels that represent the soil reflectance at a time 

when it was uncovered. The SYSI represents a direct measure of the soil and has a high correlation with 

various soil properties (Demattê et al., 2020), being used as a proxy for DSM in several studies (Gómez et 

al., 2023; Mello et al., 2023; Rosin et al., 2023; Safanelli et al., 2021). Furthermore, due to the correlation 

between various soil properties, they can also be used as environmental covariates (McBratney et al., 

2003). Soil properties such as clay, iron oxides, aluminum oxides, and SOC are generally used to map 

soil phosphorus (Pavinato et al., 2020; Viscarra Rossel and Bui, 2016).  

We expect that combination of advanced MDS techniques, including machine learning and 

environmental covariates with a high level of detail, will enable us to quantify and map available and total 

phosphorus stocks in the surface layer of soil throughout the Brazilian territory at a spatial resolution of 

30 meters. Additionally, we expect that these maps can be utilized to support future strategies for the 

sustainable management of phosphorus in both agriculture and the environment. 

 

3.2 Material and methods 

 

3.2.1 Study area 
 

The study covered all of Brazil, a country of continental dimensions with six main biomes. The 

Amazon and the Atlantic Forest are characterized by vast rainforests, while the Cerrado and the Caatinga 

feature extensive savannas. The Pantanal is one of the largest floodable areas in the world, and the Pampa 

has steppe-type vegetation similar to that of temperate climate regions. Brazilian agriculture is diverse, 

producing commodities such as soybeans, coffee, cotton, corn, and sugarcane, in addition to annual crops 

like beans and vegetables, perennial crops like tropical fruits, and planted forests. There are also large 

areas dedicated to livestock, about 19% of the entire national territory (MapBiomas, 2023). 

Brazil exhibits a variety of climates according to the Köppen climate classifications, including 

equatorial (Af, Am, Aw, As), tropical (Aw, BSh), and subtropical (Cwa, Cwb, Cwc, Cfa, Cfb), influenced 

by its location predominantly in the Tropical Zone (92% above the Tropic of Capricorn) and the extensive 

coastline that contributes to the prevailing humidity (Alvares et al., 2013). The climates that stand out are 

the equatorial, characterized by high rainfall, and the subtropical, with moderate temperatures and well-

distributed rains. 

The geology of Brazil, the result of complex geological processes over billions of years, 

encompasses crystalline shields, sedimentary basins, and volcanic terrains, playing a fundamental role in 

the formation of soils and in determining their fertility(de Alkmim, 2015). The crystalline shields, 

representing 36% of the country, include the Guiana Shield, Central Brazil Shield, and Atlantic Shield, 

with enormous heterogeneity in the soils formed on plutonic rocks, which underwent metamorphism, 

physical damage, and were exposed to large climatic variations over the geological ages (Schaefer et al., 
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2023).The sedimentary basins, covering about 60% of the territory, originated infertile soils due to the 

chemically poor sandstones that form these basins, such as those of the Paraná River basin and the 

Amazon basin, for example (Schaefer et al., 2023). The second largest volcanic spill in the world, which 

occurred at the beginning of the Cretaceous, originated magmatic rocks such as diabase and basalt in the 

Serra Geral geological formation (Alkmim, 2015). In these regions, soils with significant fertility 

originated due to the richness in nutrients of these rocks (Schaefer et al., 2023). The diversity of Brazilian 

soils, shaped by geological factors such as climate and relief, results in a wide variety of pedological 

characteristics throughout the country. In total, Brazilian soils are classified into 13 classes at the first 

categorical level according to the Brazilian soil classification system (Embrapa Solos, 2018).  

All this diversity found throughout Brazil directly affects the P cycle. Thus, the P stocks in the 

soil are a consequence of this diversity, varying significantly in space. 

 

3.2.2 Soil observations  

 
In this study, we used a legacy database composed of data obtained from two different sources: 

i) Publicly available national soil profile databases (Samuel-Rosa et al., 2019), ii) Brazilian Soil Spectral 

Library (Demattê et al., 2019). These data were filtered according to two criteria: accuracy of geographic 

coordinates (error less than 100 meters) and the presence of available or total phosphorus (P) data. After 

the filtering process, we applied a vertical harmonization to the profile using the spline method proposed 

by Bishop et al. (1999), in order to standardize our samples to the 0-20 cm layer. We obtained 28,572 

samples containing available phosphorus (AP) content and 3,154 samples containing total phosphorus 

(TP) content in the 0-20 cm layer. The P samples were distributed throughout the study area. AP was 

extracted using the resin method initially proposed by Amer et al. (1955) and modified for laboratory use 

in Brazil by Van Raij et al. (1986). The resin extraction method involves the use of both an anion-

exchange and cation-exchange resin saturated with sodium bicarbonate, which adsorbs phosphorus from 

the soil in an aqueous suspension. The TP was determined through sulfuric acid digestion, as proposed by 

Vettori (1969), with modifications as proposed by Van Raij e Valadares (1974). This method accesses P 

present in the clay fraction of the soil, organic P, and is also capable of accessing P present in the primary 

mineral apatite.  

The contents of AP and TP were transformed into P stocks using equation 1. 

𝑃𝑠𝑡𝑜𝑐𝑘𝑠 = [𝑃 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑋 𝐷𝑠 𝑋 𝐷] 𝑋 10                                                                       (1) 

Where, P stocks are reported in g.m−2, P content (g.kg−1), soil bulk density (Ds) (g.cm−3), and 

soil thickness (D) (cm). 

Soil bulk density (BD) was estimated using a pedotransfer function calibrated with the clay and 

soil organic carbon (SOC) contents for Brazilian soils and reached an R2 value of 0.63 and standard error 

of 0.11 g cm−3 (Benites et al., 2007). This function is widely used in soil science studies in Brazil 

(Bonfatti et al., 2016; Gomes et al., 2019; Safanelli et al., 2021; Tayebi et al., 2021). All soil samples 

containing phosphorus content also had measurements of soil organic carbon (SOC) and clay content, 

which were used for bulk density (BD) calculations. The determinations of clay and SOC content 

followed the Brazilian soil analysis standards (Teixeira et al., 2017). 
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3.2.3 Strategies for mapping the entire national territory 

 
Brazil is a continental country, where a significant portion of its vegetation cover remains 

native. This directly impacts data acquisition, rendering data scarcer in these areas compared to regions 

where vegetation cover has already been altered by human activities. In our study, we independently 

mapped these areas. The primary objective of this strategy was to generate a more accurate map where 

data availability was higher. To achieve our goal, we divided Brazil into two sub-regions based on 

vegetation cover, namely Anthropogenic Vegetation Cover (AVC) and Native Vegetation Cover (NVC). 

This segmentation was carried out using the entire historical series of Landsat images (from 1982 to 

2022) through the GEOS3 algorithm (Demattê et al., 2018). Regions classified as AVC were those where 

vegetation had been removed, leaving the soil exposed at least once during this period. Locations where 

this criterion was not met were considered as NVC regions in our study. As a result, the database 

containing soil observations was also segmented. The number of observations in each sub-region can be 

consulted in Table 1. In Figure 1, we present a workflow to illustrate the strategy adopted.  

 

Table 1. Number of soil observations for vegetation cover 

 AVC NVC TOTAL 

TP 1,673 1,481 3,154 

AP 22,025 6,547 28,572 

TP: total phosphorus; AP: available phosphorus; AVC: Anthropogenic Vegetation Cover; NVC: Native 

Vegetation Cover. 
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Figure 1. Workflow for mapping phosphorus stocks in Brazilian soils. Total phosphorus (TP); available 

phosphorus (AP); anthropogenic vegetation cover (AVC) and native vegetation cover (NVC) 

 

3.2.4 Environmental covariates 

 
Our primary concern in selecting environmental covariates was their ability to represent 

processes governing the phosphorus cycle in the Earth's crust. In general, we considered climatic 

variables, variables describing vegetation, and variables describing soil. In total, 34 covariates were used 

for modeling TP and AP. However, in areas of Low Data Availability (NVC), not all covariates were 

accessible. In Table 2, we specify which variables were employed for each mapped sub-region. 
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3.2.4.1 Climatic environmental covariates  

The variables we employed to represent the climate were Annual Mean Temperature (ANMT) 

and Annual Precipitation (ANP) along with Land Surface Temperature (LST). We retrieved annual mean 

temperature and precipitation data from the WorldClim BIO V1 dataset (Hijmans et al., 2005). These data 

correspond to a specialized global climate time series at a spatial resolution of 1 km. For our study, we 

resampled the covariates to a spatial resolution of 30 m. The Land Surface Temperature (LST) was 

calculated from the thermal band (band 10) of Landsat 8 imagery. In the Google Earth Engine (GEE) 

environment, we created a cloud mask and selected all images with less than 20% cloud cover. After 

image selection, we computed the temperature using the methods proposed by Ermida et al. (2020). We 

aggregated all LST images obtained through median calculation, resulting in an image representing the 

median LST for the period from 2013 to 2022 across the entire study area. 

 

3.2.4.2 Vegetation environmental covariates 

  

To represent vegetation, we created a synthetic image that depicted the mean Vegetation 

Reflectance (mVR). We utilized the complete Landsat 8 collection from 2013 to 2022. The process began 

by filtering out all images with less than 20% cloud cover. Subsequently, we generated a mask to select 

only vegetation and exclude water surfaces and exposed soil. To create the mask, we employed the 

Normalized Difference Vegetation Index (NDVI). We established a threshold of 0.5, and all pixels with 

values exceeding this threshold were aggregated using the median. At the conclusion of this process, we 

obtained a synthetic image covering the entire study area, containing spectral information about the 

vegetation. The mVR was represented by the six spectral bands of Landsat 8. 

 

3.2.4.3 Soil environmental covariates  

 
The selected covariates to represent the soil included topography, Synthetic Soil Image (SYSI), 

and soil attributes directly correlated with soil phosphorus content. Topography was represented by 

terrain attributes that were previously used to digital soil map with satisfactory results in Safanelli et al 

(2021). These terrain attributes were as follows: slope, elevation, north and east slope, horizontal 

curvature, vertical curvature, mean curvature, maximal curvature, aspect, hillshade and a relief shape 

index. These variables were based on a digital elevation model (DEM) from the Shuttle Radar 

Topography Mission (SRTM) with 30 m (Farr and Kobrick, 2000). To calculate the environmental 

variables, the Terrain Analysis in Google Earth Engine (TAGEE) algorithm proposed by (Safanelli et al., 

2020) was used. The individual information on the environmental covariates derived from the DEM are 

shown in table 2. 

We utilized the GEOS3 algorithm (Demattê et al., 2020, 2018) to generate the Synthetic Soil 

Image (SYSI). The SYSI was created using the time series of images from the entire Landsat collection 

(USGS, 2021a, 2021b) covering the period from 1982 to 2022. This image represents the mean 

reflectance of bare soil and is composed of six spectral bands (Blue - band 1, Green - band 2, Red - band 

3, NIR - band 4, SWIR1 - band 5, and SWIR2 - band 6). We employed a set of rules to identify bare soil 
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pixels in the satellite images, based on spectral indices and quality assessment bands, to remove clouds, 

cloud shadows, freshwater, photosynthetic vegetation, and non-photosynthetic vegetation (crop residues). 

A pixel was considered as bare soil when it exhibited Normalized Difference Vegetation Index (NDVI) 

values between -0.05 and 0.30 (excluding green vegetation) and Normalized Burn Ratio 2 (NBR2) values 

between -0.15 and 0.15 (excluding crop residues). Pixels identified as bare soil were selected to compose 

the multi-temporal collection. Each pixel in the SYSI represents the median value calculated among all 

pixels in the multi-temporal collection for a given location. 

In tropical soils, phosphorus (P) content depends significantly on its interaction with soil 

properties. We selected attributes directly related to soil P content as environmental covariates, which 

included clay, sand, silt, SiO2, Al2O3, Fe2O3, Soil Organic Carbon (SOC), and soil pH. For this study, 

we utilized 30-meter spatial resolution maps that were made available and specialized using the methods 

proposed by Safanelli et al., (2021), and Rosas et al., (2023). These attribute maps covered only the AVC 

areas due to the proxy used for their prediction, which was SYSI. All the maps were specialized using 

machine learning with the Random Forest algorithm, and the error metrics for each map are presented in 

the supplementary table A1. Further details on the spatialization of these attributes can b e found in 

(Safanelli et al., 2021, Rosas et al., 2023). 
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Table 2. Environmental covariates used for modeling phophorus stocks 

Environmental covariate Source (spatial resolution) References AVC NVC 

Annual Mean Temperature 

WorldClim BIO Variables V1 

(30 m) 

(Hijmans et al., 2005) yes yes 

Annual Precipitation 

WorldClim BIO Variables V1 

(30 m) 

(Hijmans et al., 2005) yes yes 

LST Landsat collection (30 m) (Ermida et al., 2020) yes yes 

Elevation SRTM (30 m) (Farr and Kobrick, 2000) yes yes 

Slope TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Northness TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Eastness TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Horizontal curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Vertical curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Aspect TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Hillshade TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Terrain shape index TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Mean curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

Maximal Curvature TAGEE/SRTM (30 m) (Safanelli et al., 2020) yes yes 

SYSI blue (450–520 nm) Landsat collection (30 m) (Demattê et al., 2018) yes no 

SYSI green (520–600 nm) Landsat collection (30 m) (Demattê et al., 2018) yes no 

SYSI red (630–690 nm) Landsat collection (30 m) (Demattê et al., 2018) yes no 

SYSI NIR (760–900 nm) Landsat collection (30 m) (Demattê et al., 2018) yes no 

SYSI SWIR1 (1550–1750 

nm) 

Landsat collection (30 m) (Demattê et al., 2018) yes no 

SYSI SWIR2 (2080–2350 

nm) 

Landsat collection (30 m) (Demattê et al., 2018) yes no 

mblue (450–520 nm) Landsat collection (30 m) In this study yes yes 

mgreen (520–600 nm) Landsat collection (30 m) In this study yes yes 

mred (630–690 nm) Landsat collection (30 m) In this study yes yes 

mNIR (760–900 nm) Landsat collection (30 m) In this study yes yes 

mSWIR1 (1550–1750 nm) Landsat collection (30 m) In this study yes yes 

mSWIR2 (2080–2350 nm) Landsat collection (30 m) In this study yes yes 

Clay 30 m In this study yes no 

Sand 30 m In this study yes no 
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Silt 30 m In this study yes no 

SiO2 30 m (Rosas et al., 2023) yes no 

Al2O3 30 m (Rosas et al., 2023) yes no 

Fe2O3 30 m (Rosas et al., 2023) yes no 

SOC 30 m In this study yes no 

pH_H2O 30 m In this study yes no 

Synthetic Soil Image (SYSI); Terrain Analysis in Google Earth Engine (TAGEE); Shuttle Radar 

Topography Mission (SRTM). Land Surface Temperature (LST); Bands of mean Vegetation Reflectance 

(mBLUE, mGREEN, mRED, mNIR, mSWIR1, mSWIR2); Soil Organic Carbon (SOC); anthropogenic 

vegetation cover (AVC) and native vegetation cover (NVC). 

 

3.2.5 Model tuning, performance and validation 
 

The AP and TP maps were generated using Random Forest (RF) models trained independently 

for each defined sub-region (AVC and NVC). We employed a geospatial RF modeling pipeline developed 

by Van Den Hoogen et al. (2021). To determine the hyperparameters of the models, we conducted a grid 

search and tested various combinations to optimize the best ones. In the grid search, the following 

hyperparameters were explored: Variables per split (we tested the entire covariate set with an interval 

between tests of 4, for example, 4, 8, 12, ... n), minimum leaf population (we tested values of 3, 6, 9), and 

the maximum number of leaf nodes in each tree (we tested values of 500, 1000, 1500). The number of 

trees was fixed at 30, a value determined through prior testing to achieve the best possible performance 

with adequate computational cost. 

To evaluate the model performance, we employed K-fold cross-validation. We set the number 

of folds (K) to 10, where sampling in each fold was random and stratified by biomes (Van Den Hoogen et 

al., 2021). We assessed the models using the following statistical metrics: coefficient of determination 

(R2), root mean square error (RMSE), and Ratio of Performance to Inter Quartile distance (RPIQ). The 

model selection was based on the lowest RMSE value, serving as the reference for mapping. The 

importance of predictor variables was evaluated using variable importance and ranked by the average 

importance across all models. 

 

3.2.6 Phosphorus Stocks mapping 
 

After selecting the best predictive models, they were used to predict the stocks of AP and TP in 

the study area. The raster files corresponding to the environmental covariates served as input data for the 

models, and the output consisted of AP and TP maps. Stratified bootstrapping sampling (by biome) was 

employed in the mapping process to create statistically valid pixel-wise confidence intervals and 

uncertainty estimates. In total, we conducted the bootstrapping procedure 100 times. The estimated value 

for each pixel in the final maps was formed by aggregating the means of the estimates obtained from each 

bootstrapping sample. Additionally, the standard deviation of the prediction estimates was also calculated. 

The standard deviation of the ensemble was used to compute the spatial distribution of uncertainty, 

defined by the 95% standardized confidence interval for the pixel-level mean estimate. 
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3.2.7 Statistical Analysis and Interpretation of Phosphorus Stock Maps 
 

Our maps were interpreted in a logical sequence composed of three steps. First, we sought to 

understand the coherence of these maps with our understanding of Brazilian soils. In a second moment, 

we sought to understand how phosphorus stocks are distributed in Brazil. Lastly, we analyzed the 

importance of these stocks for the country’s agricultural production. 

 

3.2.7.1 Evaluating the coherence of the phosphorus stock maps of the soils 

 
To verify the coherence of our maps with our understanding of Brazilian soils, we correlated 

our maps with soil observations contained in the Brazilian Soil Spectral Library database (Demattê et al., 

2019), The chosen soil properties were pH, SOC, and the relative abundance of soil minerals such as 

hematite, goethite, gibbsite, and kaolinite. The choice of these properties was due to their governing the 

adsorption or availability of phosphorus in the soil. The pH used was measured in water, and the SOC 

was determined through wet combustion (Teixeira et al., 2017).  

The relative abundance of minerals was determined based on soil reflectance spectra obtained 

in the Vis-NIR-SWIR region. The soil spectra were transformed to absorbance using the Kubelka-Munk 

function (KM) (Barron and Torrent, 1986). Since the KM spectra had overlapping bands, we calculated 

their 2nd derivative using the Savitzky-Golay method (SG) (Savitzky and Golay, 1964) to resolve and 

enhance the spectral features of interest. The features related to each mineral were defined in the SG 

spectra based on the literature. The range representing the feature of each mineral was used to calculate 

the mineral amplitude (MA), representing their relative abundance. The MA for each mineral was 

calculated as: MA=Maxλ−Minλ, where Maxλ and Minλ are the maximum (positive) and minimum 

(negative) values of the specific ranges. More details about the process steps can be found in Rosin et al, 

(2023). 

 

3.2.7.2 Understanding the Distribution of Phosphorus Stocks in Brazil 

 
To understand how phosphorus stocks are distributed throughout Brazilian soils, we calculated 

the average stocks of AP and TP according to the soil coverage within each Brazilian biome. In addition, 

we calculated the total stocks per biome. To determine soil coverage, we used the data collection from the 

MapBiomas project (MapBiomas, 2023), which provides annual soil coverage maps. In this study, we 

considered the soil coverage that occurred most in the last decade, for this we calculated the mode of the 

set of maps for the period from 2012 to 2022.  

 

3.2.7.3 The Importance of Stocks for Brazil’s Agricultural Production 

 
The importance of phosphorus stocks for Brazilian agriculture was determined by correlating 

the average productivity of the country’s main agricultural crops with the phosphorus stocks obtained in 
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our maps. We chose the five main agricultural crops produced: coffee, citrus, rice, sugarcane, and soy. 

The productivity of these crops was obtained from the database provided by the Brazilian Institute of 

Geography and Statistics (IBGE, 2021). We calculated the average of the harvests from 2017 to 2021, 

accounting for five harvests for each Brazilian municipality. The chosen period aimed to represent a 

current agricultural panorama with a five-year interval to smooth the influence of extreme and abnormal 

climatic events. Again, we used the data collection from the MapBiomas project on soil coverage to 

construct a mask and extract the average of phosphorus stocks only in pixels cultivated with each 

agricultural crop.   

 

3.3 Results 

 

 

Brazilian soils are naturally low in P, however, significant amounts of this element are fixed in 

the soil clays, making P unavailable to plants. Figure 2a presents the descriptive statistics of the TP stocks 

in the soil, calculated for the soil observations in the database used in the prediction. The median stocks 

of TP are approximately 40 g.m-2, being slightly higher in the areas of NVC. The stocks of AP are much 

lower than the stocks of TP (Figure 2b), with median values of 0.64 and 1.7 g.m-2 for areas of NVC and 

AVC respectively. The higher stocks in the AVC areas are due to the use of fertilizers in agriculture. 

 

 

Figure 2. Descriptive statistics of total phosphorus stocks (a) and available phosphorus (b) in areas of 

anthropogenic vegetation cover (AVC) and in areas of native vegetation cover (NVC). 

 

Four predictive models were adjusted to predict TP and AP stocks in the two defined sub-

regions. The modeling results are presented in Figure 3. The predictive models adjusted for AVC areas 

showed better performance than in NVC areas. Performance was very similar among different forms of P 

(Figure 3). The highest R2 was observed for TP stocks in AVC (0.35), which also exhibited the highest 

RPIQ (1.71); however, the smallest error, represented by RMSE, was observed in AP stocks in AVC 

areas (3.82%). On the other hand, the lowest R2 and RPIQ were in the predictive model for AP in NVC 

areas, 0.27 and 1.30 respectively. The highest errors were observed in the TP stocks prediction model in 

NVC areas with an RMSE of 10.5%. 
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The environmental covariates that most influenced the prediction of TP stocks in AVC areas, 

in descending order, were Fe2O3, ANMT, ANP, LST, and the blue band of SYSI (Figure 3d). Notably, 

Fe2O3 had the highest importance order = 1 (maximum). As for TP stocks in NVC areas, where not all 

covariates were available, climatic covariates ANMT, ANP, and LST took on a prominent role. In 

addition to these, the SWIR1 band of mVR and altitude also held great importance. In the model adjusted 

to predict AP stocks in AVC areas, altitude (TA1) had the highest importance (0.98), followed by pH and 

the Nir band of mVR. Climatic variables ANMT and ANP also had high importance. In NVC areas, the 

most important variables were ANP with an importance of 1, LST with an importance of 0.77, and 

altitude with an importance of 0.67. 
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Figure 3. Performance evaluation of the prediction of soil phosphorus stocks using K-fold cross-validation with the Random Forest algorithm. Parameters of models used to 

predict soil phosphorus stocks (a, b and c); importance of environmental covariates in predicting soil phosphorus stocks (d). Root Mean Squared Error RMSE; Ratio of 

Performance to InterQuartile distance (RPIQ); coefficient of determination (R²); total phosphorus stocks in the soil in areas of native vegetation cover (TPn); total phosphorus 

stocks in the soil in areas of anthropogenic vegetation cover (TPa); available phosphorus stocks in the soil in areas of native vegetation cover (APn); available phosphorus 

stocks in the soil in areas of anthropogenic vegetation cover (APa); Annual Mean Temperature (ANMT); Annual Precipitation (ANP); Land Surface Temperature (LST); 

Elevation (TA1); Slope (TA2); Eastness (TA3); Northness (TA4); Vertical Curvature (TA5); Horizontal Curvature (TA6); Aspect (TA7); Hillshade (TA8); Terrain shape 

index (TA9); Mean curvature (TA10); Maximal Curvature (TA11); synthetic soil image bands (BLUE, GREEN, RED, NIR, SWIR1, SWIR2); Bands of mean Vegetation 

Reflectance (mBLUE, mGREEN, mRED, mNIR, mSWIR1, mSWIR2; Soil Organic Carbon (SOC).  
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The maps of TP and AP stocks are presented in Figure 4. Our results showed that Brazil has a 

TP stock of 531 Mt and an AP stock of 17.4 Mt. The spatial distribution of P stocks aligns with the 

understanding of Brazilian soils. The highest TP stocks are found in soils originating from basaltic rocks 

(Serra Geral formation), in regions of higher altitude with milder climates, and in soils with higher carbon 

content. Soils with lower TP stocks are formed from sedimentary rocks, primarily in the drier regions of 

Brazil, such as the Caatinga biome. AP stocks are low across almost the entire Brazilian territory, with 

stocks below 5 g.m-2 in approximately 96% of the area. Higher stocks can be observed in areas dedicated 

to agriculture, where phosphatic fertilizers are applied. Additionally, slightly higher AP stocks can be 

seen in the northeastern region of Brazil and the Pantanal biome, where less weathered soils predominate.  

 

 

 

 

Figure 4. Maps of phosphorus stocks in Brazilian soils. Map of total phosphorus (TP) stocks in the soil 

layer from 0-20 cm (a); Map of available phosphorus (AP) stocks in the soil layer from 0-20 cm (b). 

  

The calculation of the percentage of AP stocks in relation to TP stocks revealed significant 

variation across the Brazilian territory (Figure 5). This variation depends on agricultural fertilization and 

the soil's ability to adsorb P, making it unavailable to plants. The vast majority of Brazilian soils have less 

than 3% of the total P available to plants. Higher percentages can be observed in agricultural areas, 

particularly where soils are composed of sandstones, such as in the Paraná River basin (Bauru sequence) 

and in the Barreira region in the state of Bahia, which exhibits a combination of low clay content soils 

and increased agricultural activity in recent decades. 
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Figure 5. Map of the percentage of available phosphorus stocks in relation to total phosphorus stocks in 

Brazilian soils. Percentage of available phosphorus (pAP). 

 

 

3.4 Discussion 

We adopted a strategy that allowed us to map the P stocks throughout the Brazilian territory. 

The predictive models adjusted for the areas of AVC outperformed the models adjusted for the areas of 

NVC. In regions of the country where natural vegetation has been replaced by human intervention, there 

is a greater abundance of available data. This allows us to generate maps of attributes highly correlated 

with soil P contents with a high degree of accuracy, such as Fe2O3, clay, and SOC (Safanelli et al., 2021; 

Safanelli et al., 2021). Furthermore, in areas where natural vegetation has been removed, it is possible to 

recover the reflectance of bare soil, which has been used as a proxy for digital soil mapping (Demattê et 

al., 2020). Due to this greater abundance of data, the models performed better in areas of AVC. 

     P is present in soils in organic and inorganic forms. In tropical soils with a high degree of 

weathering, inorganic P is mostly adsorbed to iron oxides (mainly hematite and goethite) (Alovisi et al., 

2020; de Oliveira et al., 2020). Therefore, there is a direct relationship between the Fe2O3 of the clay 

fraction with the TP stocks in the soil. This relationship ensures the greatest importance of this 

environmental variable in predicting TP stocks in areas of AVC. Organic P composes the soil organic 

matter (SOM). Despite this, SOC was not important in predicting P stocks. In the tropics, where microbial 

activity is intense, SOC levels are much lower compared to temperate climates (Wiesmeier et al., 2019). 

Furthermore, the low SOC levels of these soils are strongly complexed to soil oxides (Kleber et al., 2021). 

This association leads to a high degree of collinearity between Fe2O3 and SOC, resulting in the exclusion 

of this covariate to predict P stocks. 



70 
 

The predominant charges in the old soils of the tropics are positive, which attract phosphate 

ions adsorbing to soil colloids. Therefore, pH has a great influence on this adsorption. Soils with a pH 

lower than the point of zero charge (PZC) tend to adsorb more P, decreasing its availability to plants 

(Gérard, 2016; Stoop, 1980). This behavior explains the strong contribution of pH in predicting the stocks 

of AP in areas of AVC.  

Soil formation factors are intrinsically associated with the P cycle in the Earth’s crust and 

consequently with its stocks in the soil. The degree of soil formation changes the soil’s capacity to adsorb 

P or make it available, allowing its migration to other ecosystems (Antoniadis et al., 2016). The inclusion 

in the modeling of variables that represented the soil formation factors such as relief and climate brought 

significant gains, mainly in the areas of NVC where not all covariates were available. In addition, these 

formation factors have a strong relationship with soil attributes such as pH, Fe2O3, and clay (Wadoux et 

al., 2020), which were of great importance in predicting P stocks in areas of AVC. Thus, these attributes 

were indirectly represented in the NVC areas. 

The spectral characteristic of vegetation was important for the model adjusted for AP in areas 

of AVC, but it was not important for areas of NVC. The P content in the soil has a direct effect on plant 

development, which can alter its reflectance (Siedliska et al., 2021). However, the vegetation in NVC 

areas is extremely adapted to develop in soils with low P levels (Lambers et al., 2020). On the other hand, 

in AVC areas, agricultural crops that have undergone extensive genetic improvement processes 

throughout history tend to be extremely responsive to soil P levels (Ahmad et al., 2001). Therefore, the 

spatial variations of P levels in the soil influence the reflectance of the crop canopy much more than 

native vegetation. 

Brazilian soils show a significant variation in TP and AP stocks. The variation in TP stocks 

aligns with soil mineralogy and soil organic carbon (SOC), as expected. We observed positive 

correlations between TP and SOC (0.56), and with the relative abundance of minerals such as Hematite 

(0.47), Gibbsite (0.40), and Goethite (0.35) (Figure 6). These correlations are due to the predominance of 

P adsorption on these minerals and the organic P present in the SOC (Alovisi et al., 2020; Dos Santos et 

al., 2008) . 

The highest P stocks found in soils developed over basaltic rocks from the basaltic spill in the 

Serra Geral Formation are due to the chemical composition of these rocks. Ultramafic basaltic rocks are 

chemically richer, presenting higher P contents compared to other rocks present in Brazil, for example, 

sandstones (Daly et al., 2015; Mage and Porder, 2013). However, these rocks are also rich in metallic 

elements such as Fe and Al, which, during weathering processes, form minerals with high P adsorption 

potential, such as hematite, goethite, and gibbsite  (Riffel et al., 2016).  

The highest total TP stocks observed in the Amazon Forest and the Atlantic Forest are due to 

the greater accumulation of SOC in these biomes due to their dense biomass (Englund et al., 2017; 

Schaefer et al., 2008). In the southern region of Brazil, there are soils formed over basaltic rocks in 

regions of higher altitude, which contribute to the accumulation of SOC (Gomes et al., 2019). In this 

region are the country’s largest TP stocks. The high TP stocks observed in the Rio Negro basin in the 

Amazon were not detected in the study on the native P contents in Brazilian soils conducted by Pavinatto 

et al (2020). There is a predominance of sandy and hydromorphic soils in these regions. Due to 
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hydromorphism and the large plant biomass produced by the forest, carbon is accumulated in the soils 

(Montes et al., 2011). We believe that for this reason, the vast majority of P present in these soils is in the 

organic form. However, there are very few soil observations in these regions, and more studies should be 

conducted for more concrete conclusions. 

The low TP stocks observed in the northeastern region of Brazil, in the Paraná River basin, and 

in some plateaus such as the region of Barreiras in the state of Bahia are mainly due to the low P contents 

in the parent material. These regions are dominated by sandstones composed mainly of quartz and low P 

contents or by felsic rocks that also contain low P contents (da Silva et al., 2022; Schaefer et al., 2023). In 

addition, in the northeastern region, the arid climate negatively influences the inputs of organic P into the 

soil, reducing its stocks (Menezes et al., 2012). On the other hand, in these arid regions, the youngest soils 

are concentrated with a predominance of 2:1 clay minerals and a higher pH compared to the averages of 

Brazilian soils (de Araújo Filho et al., 2023), as a consequence, the stocks of AP are larger. In general, 

soils with a more alkaline pH showed higher stocks of AP, where the linear correlation analysis between 

the predicted AP stocks and the soil pH was 0.32 (Figure 6). 

 

 

Figure 6. Pearson’s linear correlation analysis between soil observations and the maps of phosphorus 

stocks in Brazilian soils. Soil organic carbon (OC); hematite (Hm); goethite (Gt); gibbsite (Gb); kaolinite 

(Kt), soil pH measured in water (pH); total phosphorus stock (TP); available phosphorus stock (AP); * 

Signifcant at 5% probability level. 

 

The pedogenetic processes that occur in the soils of the Pantanal contribute to the formation of 

soils with lower degrees of weathering that have larger natural AP stocks than most Brazilian soils 

(Coringa et al., 2012; Couto et al., 2023). The larger AP stocks in the soils of the Pantanal are due to the 

low potential for P adsorption in these soils. The low P adsorption is a result of the predominance of 2:1 
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type clay minerals and more alkaline pH due to higher calcium contents in the parent material (De Souza 

Oliveira et al., 2021). In addition, the flooding of the plains creates a reducing environment, releasing the 

P from the clays and making it available (Hamilton et al., 1997). The sediments that are deposited in the 

floodplains also contribute to the increase in AP stocks in the soils (Owens, 2020). The interaction of all 

the above factors results in the spatial behavior of the AP stocks presented in Figure 7a, where the stocks 

of the low areas (floodable) are always higher than the stocks of the high areas.  

Agricultural areas that receive constant applications of phosphate fertilizers have therefore 

increased their AP stocks compared to native areas. Not all P applied to the soil is exported by crops, 

generating a residual P that may or may not be adsorbed to the soil clays, this P is called legacy P 

(Rodrigues et al., 2016). In Figure 7b we can observe an example of the increases in AP stocks in areas 

cultivated with soybeans compared to native areas and pasture areas in soils with similar pedology. In 

addition, in regions where there is greater technological input, such as in circular areas (irrigated regions), 

AP stocks are even larger. According to Pavinato et al., (2020) the legacy P of the soil already amounted 

to about 33.4 Tg accumulated in agricultural soils between the period of 1967 to 2016.  

 

 

Figure 7.  Spatial behavior of available phosphorus (AP) stocks in different landscapes. (a) typical 

landscapes of the Brazilian Pantanal, where the lower parts are flooded for long periods, (b) landscape 

dominated by similar pedology with a clear contrast in AP stocks between areas cultivated with soybean, 

pasture, and native forest.   
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3.4.1 Detailing phosphorus stocks at the level of soil coverage 
 

Upon quantifying the P stocks by biome, we note that the largest stocks are found in the 

Amazon biome, containing 54% of the TP stocks and 39% of the AP stocks (Figure 8a and 8b). Despite 

the highest average values of the stocks not being found in this biome, its vast extent contributed to the 

results. The Amazon biome has the lowest average values of AP stocks, with 1.58 g.m-2 (Figure 8c). 

According to Cunha et al., (2022) the soils of this biome have low phosphorus content, even limiting the 

productivity of the Amazon Forest. The highest average stocks of AP were observed in the Caatinga 

biome with 2.51 g.m-2 and the Cerrado biome with 2.46 g.m-2. The soils of the Caatinga biome mostly 

have a lower capacity to adsorb P, contributing to higher levels of this nutrient available for plants (de 

Araújo Filho et al., 2023). In addition, the arid climate contributes to minimal P exports to aquatic 

ecosystems (de Araújo Filho et al., 2023).  On the other hand, the arid climate limits the production of 

biomass by vegetation, and consequently, the levels of organic P are lower, reducing the TP stocks 

(Menezes et al., 2012). In the Cerrado, the soils are naturally poor in P, however, the great agricultural 

advance in this biome contributed to the increase in P stocks due to the application of fertilizers 

(Rodrigues et al., 2016). In the Atlantic Forest is the highest average of TP stocks in Brazil, 73.8 g.m-2, 

due to the organic P present in the high carbon stocks of this biome (Gomes et al., 2019).  

Within the Brazilian biomes, large variations in P stocks were observed in different soil covers 

(Figure 8d). In general, forest formations and mangrove areas presented the highest TP stocks, ranging 

from approximately 50 g.m-2 in the Pantanal to 80 g.m-2 in the Atlantic Forest. These higher contents in 

the forest formation are associated with the P contained in the carbon stocks that tend to be larger in forest 

formations (Gomes et al., 2019). Mangroves only occurred in the Amazon, Atlantic Forest, and Caatinga 

biomes, and the TP stocks were approximately 80 g.m-2 in the Amazon and Atlantic Forest biomes, while 

in the Caatinga these stocks were around 70 g.m-2. Mangroves are areas of nutrient accumulation such as 

P, which is exported from terrestrial to aquatic ecosystems, hence these areas have larger P stocks (Pérez 

et al., 2021).  

Higher TP stocks were also observed in areas occupied by soybean cultivation in the Atlantic 

Forest and in areas occupied by sugarcane cultivation in the Cerrado. These higher stocks are due to the 

cultivation of these crops (in these biomes) in highly P-fixing oxidic soils formed from basaltic rocks 

(Schaefer et al., 2008). In all biomes, the transformation of native areas such as forest formation and 

Savanna Formation into agricultural areas culminated in the reduction of total P stocks. However, the 

Pampa biome is the one that presents the smallest contrasts between areas with agricultural cover and 

with native cover. The transformation of native areas into agricultural areas reduces the carbon stocks of 

the soil in the Brazilian biomes on a progressive scale of 1 to 26% as demonstrated by Medeiros et al., 

(2022). This occurs due to disturbances in the soil caused by the management of agricultural crops 

leading to the oxidation of SOM (Zinn et al., 2005). The oxidation of SOM results in the mineralization 

of organic P, making it available to plants. This P ends up being exported by the crops, reducing their 

stocks in the soil (Spohn, 2020). In the Pampa, where the climate is milder than the average in Brazil, the 

decomposition of SOM is slower, preserving it even if native ecosystems are converted into agricultural 

ecosystems (Kaschuk et al., 2011).  
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As expected, the stocks of available phosphorus (AP) tended to be higher in agricultural areas, 

with emphasis on cotton, soybeans, and sugarcane crops with average values ranging from 4 to 7.5 g.m -2. 

This confirms what we discussed earlier, AP stocks tend to increase in agricultural areas due to the legacy 

P originating from chemical fertilizations (Pavinato et al., 2020). In addition, the wetlands in the Pantanal 

also presented considerable stocks of AP (approximately 3.0 g.m-2). This happens due to the low capacity 

to adsorb P from soils in hydromorphic environments of the Pantanal (Couto et al., 2023). In general, the 

forest formation was the soil cover that presented the lowest stocks of AP in all biomes. 
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Figure 8: Spatial distribution of phosphorus stocks in Brazilian territory; proportion in percentage of total phosphorus stocks in Brazilian biomes (a); proportion in percentage 

of available phosphorus stocks in Brazilian biomes (b); average phosphorus stocks in the soils of different Brazilian biomes in g.m-2 (c); Phosphorus stock as a function of soil 

cover (d). Total phosphorus stock (TP); available phosphorus stock (AP); FF: Forest Formation; SF: Savanna Formation; Mg: Mangrove; WSV: Wooded Sandbank 

Vegetation; Wt: Wetland; Gl: Grassland; HSV: Herbaceous Sandbank Vegetation; Pt: Pasture; Sb: Soybean; Sc: Sugar cane; Rc: Rice; Ctt: Cotton; OTC: Other Temporary 

Crops; Cff: Coffee; Ctr: Citrus; OPC: Other Perennial Crops; FP: Forest Plantation. 
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3.4.2 Impact of phosphorus stocks on Brazilian agriculture 
 

Brazil is a global leader in food production and one of the largest exporters (Calil and Ribeira, 

2019). The success of Brazilian agriculture is driven by the expansion of the agricultural frontier, mainly in 

the Cerrado biome (Soterroni et al., 2019). Brazil pioneered achieving high productivity in acidic and 

infertile soils, such as those of the Brazilian savannas (Nehring, 2022). This was made possible thanks to the 

application of fertilizers and agricultural correctives, especially phosphate fertilizers, due to the low 

availability of P in Brazilian soils (Rodrigues et al., 2016). 

The combination of low P stocks in Brazilian soils and the success of Brazilian agriculture, driven 

by the incorporation of chemical fertilizers, makes Brazilian agriculture vulnerable to the depletion of 

mineral P reserves in the world. This is exacerbated by the high rates of P adsorption in the main agricultural 

areas (Roy et al., 2016). In addition, the main P reserves in the world are not in Brazil, making Brazilian 

agriculture dependent on international fertilizer trade (Barbieri et al., 2021). 

In this study, we correlated the productivity of the main agricultural crops with the P stocks in 

Brazilian soils. We observed a correlation ranging from 0.2 for coffee and 0.46 for soybeans with AP stocks 

(Figure 9). These correlations are considered high, given that P is just one of many factors that can affect 

crop productivity. The correlations between crop productivity and TP stocks were not high for most crops, 

which was expected, as there is not a high correlation between available AP stocks and TP. However, the 

correlations show that the higher the percentage of AP relative to TP, the higher the productivity of 

agricultural crops. These findings reinforce the need for sustainable P management strategies, given the 

dependence of Brazilian agriculture on P and the imminent global scarcity of this mineral. The maps in this 

study provide a basis for the development of strategies for the sustainable use of P in Brazilian agriculture. 

 

 

Figure 9. Pearson correlation analysis between the productivity of the main Brazilian agricultural crops and 

the phosphorus stocks in the soil. Total phosphorus stock (TP); available phosphorus stock (AP); percentage 

of available phosphorus (pAP); * Signifcant at 5% probability level. 
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3.5 Conclusions 

 We were able to predict the stocks of available phosphorus (AP) and total phosphorus (TP) with 

high spatial resolution (30m) using satellite-derived data, soil properties, and machine learning. Despite low 

determination coefficients, ranging from 0.27 for AP stocks in NVC areas to 0.35 for TP stocks in AVC 

areas, the obtained maps align with our understanding of Brazilian soils. Predictions generally performed 

better in AVC areas where more data and covariates were available. 

The maps displayed expected spatial patterns. The highest TP stocks were observed in regions 

with soils formed from basaltic rocks and soils with higher SOC accumulation. The highest AP stocks were 

observed in soils with lower P retention, in arid regions of Brazil and the Pantanal biome, and in agricultural 

areas where P is added as fertilizer. In total, P stocks in Brazil were 531 Mt for TP and 17.4 Mt for AP. 

About 54% of TP stocks and 39% of AP stocks are in the Amazon biome, despite its soils not having the 

highest average values of these stocks. The Caatinga biome has the highest average AP stocks, with 2.51 g.m-

2, and the Atlantic Forest biome holds the highest average TP stocks with 73.8 g.m-2. 

Correlation was verified between TP stocks and soil mineralogy, mainly minerals responsible for P 

adsorption in soils such as hematite and gibbsite, which had correlations of 0.47 and 0.40, respectively. TP 

stocks also correlated with SOC at 0.56. AP stocks correlated positively with soil pH. In addition, AP stocks 

showed correlation with the productivity of the main Brazilian agricultural crops, varying from 0.2 for coffee 

to 0.46 for soybeans, indicating the existence of vulnerability if global P reserves were to be depleted. 

In conclusion, the findings of this study provide a solid foundation for the sustainable management 

of phosphorus in Brazilian agriculture. The identification of areas with low phosphorus stocks and the 

correlation with crop productivity allow for the implementation of more efficient phosphorus management 

strategies. This could include the more targeted application of phosphate fertilizers, minimizing waste and 

maximizing productivity. Furthermore, understanding the dependence of Brazilian agriculture on phosphorus 

underscores the need to explore alternative sources of phosphorus and technologies to improve phosphorus 

use efficiency. These actions are crucial to ensure the sustainability of Brazilian agriculture in the face of the 

imminent global phosphorus scarcity. 
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APPENDIX 

 

 

Table A1. Performance evaluation of the prediction of soil attributes used as covariates in the mapping of 

phosphorus stocks in Brazil. 

 

Atributes RMSE_train RPIQ_train R2_train RMSE_test RPIQ_test R2_test 

Fe2O3 43.88 1.97 0.69 47.07 1.85 0.65 

Al2O3 42.79 2.36 0.59 49.85 2.04 0.44 

SiO2 46.34 1.99 0.41 47.98 1.91 0.36 

Clay 105.48 2.32 0.67 114.52 2.15 0.61 

Sand 156.25 2.40 0.62 170.65 2.19 0.55 

Silt 92.83 1.21 0.34 100.24 1.14 0.23 

SOC 6.66 1.66 0.56 6.93 1.60 0.52 

pH_H2O 0.51 1.36 0.37 0.53 1.30 0.32 
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4 FINAL REMARKS  

 

 

The absence of detailed maps describing the spatial behavior of phosphorus stocks in Brazil 

hinders the implementation of strategies to manage the use of this element on farms and at the regional level. 

In this thesis, we used geotechnologies to map, at a spatial resolution of 30m, the total and available stocks of 

phosphorus for plants in the surface layer of the soil (0-20 cm) throughout the Brazilian territory. 

In the first chapter, we carried out the mapping of soil oxides, such as Fe2O3, Al2O3, and SiO2, 

which have a direct relationship with phosphorus stocks. These maps were incorporated into the set of 

environmental variables used to map phosphorus stocks in the second chapter. 

The main conclusions of the study are: 

1) The combination of advanced digital soil mapping techniques, including machine learning, 

remote sensing, geoprocessing, and the use of legacy databases, allowed the mapping of phosphorus stocks of 

Brazilian soils with high spatial resolution, aligned with the understanding of Brazilian soils. 

2) The synthetic soil image (SYSI) contributed as a proxy to map soil attributes that have a strong 

relationship with P stocks, and these attributes could be used as environmental covariates to predict the 

stocks. Among the attributes, the best performance in modeling was observed for Fe2O3, with RMSE = 47 

g.kg-1, RPIQ = 1.85, and R2 = 0.65. 

3) The strategy of dividing Brazil into two sub-regions, Anthropogenic Vegetation Cover (AVC) 

and Native Vegetation Cover (NVC), allowed the use of covariates that were present only in AVC areas 

resulting in better performances in mapping these regions. 

4) Despite low determination coefficients, ranging from 0.27 for AP stocks in NVC areas to 0.35 

for TP stocks in AVC areas, the obtained maps align with our understanding of Brazilian soils. 

5) The highest TP stocks were observed in regions with soils formed from basaltic rocks and soils 

with higher SOC accumulation. The highest AP stocks were observed in soils with lower P retention, in arid 

regions of Brazil and the Pantanal biome, and in agricultural areas where P is added as fertilizer. 

6) In total, P stocks in Brazil were 531 Mt for TP and 17.4 Mt for AP. About 54% of TP stocks 

and 39% of AP stocks are in the Amazon biome, despite its soils not having the highest average values of 

these stocks. 

7) The Caatinga biome has the highest average AP stocks, with 2.51 g.m-2, and the Atlantic Forest 

biome holds the highest average TP stocks with 73.8 g.m-2. 

8) AP stocks showed correlation with the productivity of the main Brazilian agricultural crops, 

varying from 0.2 for coffee to 0.46 for soybeans, indicating the existence of vulnerability if global P reserves 

were to be depleted. 

9) The unprecedented maps generated in this thesis have the potential to shed light on researchers, 

policymakers, and farmers in the quest for sustainable phosphorus management in Brazil. 

 

 

 


