
 
 

University of São Paulo 
“Luiz de Queiroz” College of Agriculture 

Genomic confirmatory factor analysis on milk fatty acid profile in dairy 
cattle reared in tropical conditions 

Brayan Dias D’auria 

 

Thesis presented to obtain the degree of Doctor in Science. 
Area: Animal Science and Pastures 

 

 

 

 

 

 

 

 
 
 

Piracicaba 
2021  



Brayan Dias D’auria 
Animal Scientist  

 

 

 

Genomic confirmatory factor analysis on milk fatty acid profile in 
dairy cattle reared in tropical conditions 

Advisor: 
Prof. Dr. GERSON BARRETO MOURÃO 

 

Thesis presented to obtain the degree of Doctor in Science. 
Area: Animal Science and Pastures 

 

 

 

 

 

 

 

 

 

 
 

Piracicaba 
2021 

versão revisada de acordo com a resolução CoPGr 6018 de 2011 



 
 
 
 

2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dados Internacionais de Catalogação na Publicação 
DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP 

D’auria, Brayan Dias 
Genomic confirmatory factor analysis on milk fatty acid profile in dairy 

cattle reared in tropical conditions / Brayan Dias D’auria. - - versão revisada 
de acordo com a resolução CoPGr 6018 de 2011. - - Piracicaba, 2021. 

68 p. 

Tese (Doutorado) - - USP / Escola Superior de Agricultura “Luiz de 
Queiroz”. 

1. Raça holandesa 2. Variável latente 3. Associção genômica ampla 4. 
Estresse térmico I. Título 

  



 
 

 
 
 

3 

DEDICATION 

 
 
 
 
 
 
 

To my mom, 
Lucimara de Oliveira Dias. 

 
To my father, 

Charles D`auria. 
 

 
 
 
 
 
 
 
 
 
 

    To them, 
I would like dedicate this work for all the support along my journey.  



 
 
 
 

4 

ACKNOWLEDGMENTS 
 

To my parents Charles D’auria and Lucimara de Oliveira Dias, and my brothers 

(Kinsya Muriel Dias D’auria and Dener Dias) for their love and support during all my life. 

To all my family and friends for their support, love, patient, and motivation. In 

especial, I would like to thank my girlfriend (Paola Bóscollo) for her daily support, advice, and 

love. 

To my advisor, professor Dr. Gerson Barreto Mourão, for his supervision, motivation 

and confidence during my doctorate, and also Barreto Mourão family for their friendship and 

support.  

To my co-advisor, professor Dr. Francisco Peñagaricano (University of Florida – 

Gainesville), for receiving me on my intership abroad and for being so helpful, patient and 

supportive during my stay in Florida.  

To members of my comitte, professor Dr. Luiz Lehmann Coutinho (USP/ESALQ) and 

professor Dr. Paulo Fernando Machado (USP/ESALQ), for their advice, support and 

suggestions. Additionaly, To thank professor Dr. Paulo Fernando Machado and staff from 

Clínica do leite – USP/ESALQ to provide the test-day milk yield from farms. To thank 

professor Dr. Luiz Lehmann Coutinho and members from Laboratório de Biotecnologia Animal 

– USP/ESALQ to provide personal access to the server for genetic analysis and  support in 

genotyping. 

To members of my qualification exam, professor Dr. Roberto Sartori Filho 

(USP/ESALQ), professor Dr. Júlio Cesar de Carvalho Balieiro (USP/FZEA) and professor 

Daniela Lino Lourenco (University of Georgia – UGA), for their suggestions, constructive 

criticism, and collaboration.  

To all past and current especial collegues and friends from GEMA (Grupo de Estudos 

em Estatística e Melhoramento Animal USP/ESALQ), Daysi Orzuza, Eula Regina Carrara, 

Fabricio Pilonetto, Fátima Bogdanski, Giovanni Ladeira, Gregorí Rovadoscki, Izally Gervásio, 

Juliana Petrini, Luiz Losada, Mayara Salvian, Paola Bóscollo, Sofia Andrade, Vamilton Franzo 

for friendship, patient and collaboration. 

  To my collegues and friends from Quantitative Genetics and Genomics at University of 

Florida, Anil Sigdel, Hendyel Pacheco, Laila Talarico, Lihe Liu, Maria André, Rodrigo Teixeira 

and Rostam Abdolahii-Arpanahi for friendship and the good times. 



 
 

 
 
 

5 

 To all professors and staff from departament of zootecnia USP/ESALQ, in special, 

professor Dr. Carla Maris Machado Bittar and professor Dr. Roberto Saroti Filho for their support 

and advices. 

 To the Government Funding Agency CNPq (process: 482327/2010-3, 484560/2012-3, and 

433056/2016-9) and the Government Funding Agency CAPES for the fellowship financial 

support.  

 

 

   



 
 
 
 

6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The saddest aspect of life right now is that science gathers 

knowledge faster than society gathers wisdom.” 

 

 

Isaac Asimov 

 

 

 

 

  



 
 

 
 
 

7 

SUMMARY  

 

RESUMO .................................................................................................................................... 9 

ABSTRACT ............................................................................................................................. 10 

1. INTRODUCTION ................................................................................................................ 11 

References ............................................................................................................................ 12 

2. ASSESSING GENETIC COMPONENTS OF MILK FATTY ACIDS PROFILE UNDER 

HEAT STRESS EFFECTS IN BRAZILIAN HOLSTEIN COWS .......................................... 15 

Abstract ................................................................................................................................. 15 

2.1 Introduction ..................................................................................................................... 15 

2.2 Material and Methods ..................................................................................................... 17 

2.2.1. Phenotypic and genotypic data ................................................................................... 17 

2.2.2. Climate data information ............................................................................................ 18 

2.2.3. Genetic Analysis ......................................................................................................... 18 

2.3 RESULTS AND DISCUSSION ..................................................................................... 21 

2.3.1. Genetic parameter estimation ....................................................................................................... 21 

2.3.2. Genetic evaluation for heat tolerance ......................................................................................... 23 

2.4 Conclusions .................................................................................................................... 25 

References ............................................................................................................................ 30 

3. GENETIC AND GENOMIC ANALYSIS OF LATENT VARIABLES RELATED TO 

MILK FATTY ACIDS IN HOLSTEIN COWS ....................................................................... 35 

Abstract ................................................................................................................................. 35 

3.1. Introduction .................................................................................................................... 35 

3.2. Material and Methods .................................................................................................... 37 

3.2.1. Phenotypes and genotypes ............................................................................................................. 37 

3.2.2. Latent variable modeling ............................................................................................................... 38 

3.2.3. Confirmatory factor analysis (CFA) ........................................................................................... 38 

3.2.4. Genetic Analysis ......................................................................................................... 39 

3.2.5. Assessment of candidate genomic regions ............................................................................... 41 

2.2.6. Gene-set enrichment analysis ....................................................................................................... 42 

3.3. Results and Discussion ........................................................................................................................ 44 

3.3.1. Latent variable fit model ................................................................................................................ 44 

3.3.2. Genetic parameters for latent variables ..................................................................................... 45 



 
 
 
 

8 

3.3.3. Whole-genome maping for latent variables ............................................................................. 49 

3.3.4. Gene-set analysis for latent variables ......................................................................................... 55 

3.4. Conclusions ................................................................................................................... 56 

References ............................................................................................................................ 56 

4. FINAL CONSIDERATION ................................................................................................ 63 

SUPLEMENTARY FIGURES ................................................................................................ 66 

SUPLEMENTARY TABLES...................................................................................................67 

 

  



 
 

 
 
 

9 

RESUMO 
 

Análise fatorial confirmatória e genômica do perfil de ácidos graxos do leite em 
bovinos leiteiros criados em condições tropicais 

 
O perfil de ácidos graxos do leite (AGL) bovino é um dos mais complexos e únicos entre 

mamíferos terrestres. A sua composição é extremamente variável e dependente de fatores como 
fonte da dieta, estado fisiológico do animal e uma fração atribuída ao componente genético. 
AGL são principalmente sintetizados pela de novo síntese que ocorre na glândula mamária ou 
derivados do processo de biohidrogrenação ruminal. Recentemente, esforços têm sido 
realizados na tentativa de elucidar os principais mecanismos associados às suas vias 
metabólicas. Além disso, o perfil de AGL tem sido investigado como biomarcador para o 
estresse térmico devido a grande influência da dieta na sua composição. Esses estudos são 
realizados na sua maioria pela análise de estimação de parâmetros genéticos, associação 
genômica ampla (GWAS) e de forma complementar com análise de enriquecimento. No 
entanto, pouco ainda tem sido explorado sobre abordagens que possam avaliar características 
quantitativas de forma multivariada. Neste contexto, foram conduzidos dois estudos utilizando 
estratégias e objetivos diferentes. Objetivou-se, no 1 estudo, estimar os parâmetros genéticos 
para AGL sob condições de estresse térmico (declínio) e sem estresse térmico (intercepto), 
posteriormente, comparar valores genômicos entre rankings (intercepto e declinio). Dados de 
produção de 7 AGL (AGL saturado - SAT, ALG insaturado - INSAT, ácido graxo 
monoinsaturado - MONO, AGL poliinsaturado - POLI, AGL palmítico - C16:0, AGL oleico - 
C18:0, e AGL esteárico - C18:1) foram utilizados nas análises genéticas. Os componentes de 
variância foram obtidos por meio de um modelo de repetibilidade com regressão aleatória de 
uma função de THI (índice de temperatura e umidade). AGL saturados (saturado e C16:0) 
apresentaram menores estimativas de herdabilidade sobre condições de estresse térmico. C18:1 
apresentou maior sensibilidade ao calor em condições de estresse térmico. Correlacões entre os 
rankings de valores genéticos genomicos variaram entre -0.27 a 0.99. Nossos resultados 
demonstraram uma oportunidade para investigar novos biomarcadores e melhorar os processos 
seletivos para termotolerância. No experimento 2, objetivou-se ajustar variáveis latentes 
(variável não observável) e predizer fator scores para utilizá-las como fenótipo na estimação 
de parâmetros genéticos, GWAS e análise de enriquecimento. Os ajustes foram obtidos por 
meio de uma análise fatorial confirmatória (método multivariado) que tem como principal 
objetivo reduzir a dimensão dos dados. O conjunto de variáveis observáveis que obtiveram 
melhor ajuste no modelo foram SAT, POLI, C18:0 e C18:1. Essas variáveis foram combinadas 
em um fator que reprentou 3 estágios de lactação (início: 40-60; meio: 160-180; final: 250-
270), baseados em intervalos fixos em dias em lactação (DEL) e posteriormente, foram 
combinadas para representar ordens de parto (1-3) utilizadas nas análises genéticas. As 
estimativas de herdabilidades para variáveis latentes foram de baixa magnitude (0.07 to 0.11). 
Dos resultados de GWAS, 11 genes candidatos (PLD1, TM6SF2, NUDT7, LIPT1, AKPA1, 
APOH, RPGRIP1L, FTO, GMDS, ALDH3B1, and PC) foram localizados em 9 cromossomos, 
incluindo na sua maioria genes que ainda não foram discutidos na literatura. Na análise de 
enriquecimento, foram revelados termos funcionais incluindo síntese de ácidos graxos, síntese 
do triglicerol e metabolismo de lipídeos e lipoproteínas. No geral, nosso estudo contribuiu como 
molde para novos estudos e para melhorar a base de conhecimento sobre os mecanismos 
genéticos subjacente à composição de AGL. 

 
Palavras-chave: Bovinos leiteiros, Variável latente, Estresse térmico, Ácidos graxos 
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ABSTRACT 
 

Genomic confirmatory factor analysis on milk fatty acid profile in dairy cattle 
reared in tropical conditions 

 
 The bovine milk fatty acid (FA) profile is one of the most complex and unique among 
terrestrial mammals. Its composition is extremely variable and depends on factors such as the 
source of the diet, the physiological state of the animal, and a fraction attributed to the genetic 
component. FA is mainly synthesized by the new synthesis that occurs in the mammary gland 
or derived from the ruminal biohydrogenation process. Recently, efforts have been made in an 
attempt to elucidate the main mechanisms associated with their metabolic pathways. In 
addition, the FA profile has been investigated as a biomarker for heat stress due to the great 
influence of diet on its composition. Most of these studies are carried out by analyzing genetic 
parameter estimation, genome-wide association study (GWAS), and in a complementary tool 
with enrichment analysis. However, little has been explored on approaches that can assess 
quantitative characteristics in a multivariate method. In this context, two studies were conducted 
using different strategies and objectives. The objective of this study was to estimate the genetic 
parameters for FA under conditions of thermal stress (decline) and without thermal stress 
(intercept), subsequently to compare genomic values between rankings (intercept and decline). 
Records of test-day milk of 7 FA (saturated FA - SFA, unsaturated FA - UFA, monounsaturated 
fatty acid - MUFA, polyunsaturated FA - PUFA, palmitic FA - C16:0, oleic FA - C18:0, and 
stearic FA - C18:1) were used in genetic analysis. The components of variance were obtained 
using a repeatability model with random regression of a THI function (temperature and 
humidity index). Saturated FA (saturated and C16:0) showed lower estimates of heritability 
under thermal stress conditions. C18:1 showed greater sensitivity to heat under conditions of 
thermal stress. Correlations between the rankings of genomic genetic values ranged from -0.27 
to 0.99. Our results demonstrated an opportunity to investigate new biomarkers and improve 
selection processes for thermotolerance. In experiment 2, the objective was to adjust latent 
variables (unobservable variable) and predict factor scores to use them as a phenotype in the 
estimation of genetic parameters, GWAS, and enrichment analysis. The adjustments were 
obtained through confirmatory factor analysis (multivariate method) whose main objective is 
to reduce the size of the data. The set of observable variables that obtained the best fit in the 
model were SAT, POLI, C18: 0, and C18:1. These variables were combined into a factor that 
represented 3 stages of lactation (40-60; 160-180; 250-270), based on fixed intervals in days in 
milk (DIM) and later, were merged to represent lactation order (1 to 3) used in genetic analysis. 
The heritability estimates for latent variables were low (0.07 to 0.11). From the GWAS results, 
11 candidate genes (PLD1, TM6SF2, NUDT7, LIPT1, AKPA1, APOH, RPGRIP1L, FTO, 
GMDS, ALDH3B1, and PC) were located on 9 chromosomes, mostly including genes that have 
not yet been discussed in the literature. In the enrichment analysis, functional terms were 
revealed including fatty acid synthesis, triacylglycerol synthesis, and lipid and lipoprotein 
metabolism. Overall, our study contributed as a design for further studies and to improve the 
knowledge base on the genetic mechanisms underlying the composition of FA.  
 
Keywords: Dairy cattle, Latent variable, Heat stress, Fatty acids 
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1. INTRODUCTION  

 In dairy cows, recent efforts have been directed through elucidate genetic determinants 

related to physiological regulation, lipid metabolism and analyze the effects of milk fatty acids 

(FA) on human health (Palmquist, 2006). Milk FA derive from de novo synthesis in the mammary 

gland and from diet, biohydrogenation ruminal, or lipid mobilization (Palmquist, 2006). FA 

composition can be manipulated by diet and management (Rennó et al., 2013) and genetic 

selection (Bastin et al., 2012). However, it is necessary to emphasize that changes in composition 

could affect the physical and sensory properties of dairy products (Chiliard et al., 2000). Moreover, 

breeding goals can be challenging because of pattern phenotypic and genetic correlations among 

FA traits (Petrini et al., 2016). Bastin et al. (2012) reinforced that the directions of change in FA 

composition remain unclear and should be defined before including these traits in breeding 

programs. 

 Statistical method based on data reduction, such as confirmatory factor analysis (CFA), 

may be adopted to investigated the covariance structure of complex patterns among FA traits. CFA 

attempts to determine which sets of observed variables forward common variance and covariance 

traits that defined theoretical constructs or factors, namely latent variables. (Schumaker & Lomar, 

2004). In dairy cattle, CFA has been used to study milk FA profile and milk composition (Conte 

et al., 2016; Mele et al., 2016). Moreover, genetic parameters of latent variables have been 

estimated and subsequently used in GWAS and pathways-based approach (Dadousis et al., 2017; 

Cecchinato et al., 2019; Palombo et al., 2020a, Palombo et al., 2020b). These studies indicate a 

relevant potential of using this tool in dairy cattle breeding. 

  There is growing evidence that there is a substantial increase of knowledge of the 

biological functions of milk fatty acids, a new appreciation for studies of genetic effects and 

nutritional strategies on milk fat composition (Bastin et al., 2012; Rennó et al., 2013). In 

addition, FA composition have used as biomarker for several metabolic patterns in animals 

(e.g., enteric methane emission, ketosis, acidosis, feed efficiency, lipid mobilization) 

(Cecchinato et al., 2019). They also have been suggested as one potential biomarker for heat 

stress in dairy cattle (Hammami et al., 2015; Nguyen et al., 2016).   

 In the context of biomarker function and modeling latent variables, this thesis has two main 

objectives: I) To determine if milk FA is a relevant biomarker to capture the effects of heat stress. 

II) To investigate the possibility to use latent variables to estimate genetic parameters and identify 

genomic regions and functional terms associated with milk FA traits.  
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 In chapter 2, we measured genetic parameters under two conditions (heat stress and 

thermo-neutral). Repeatability test day models with random regressions on a function of 

temperature-humidity index (THI) values were used for genetic analyses. In addition, in this study 

we performed a comparation between rankings of GPTAs (genomic predicted transmitting 

abilitty) evalutead under two conditions (heat stress and thermo-neutral). We report remarkable 

differences between estimates of heritabilities.  In general, saturated groups (SFA, C16:0 and 

C18:0)  had lower estimates of heritability under heat stress conditions. In contrast, unsaturated 

groups had higher estimates of heritability under heat stress conditions (PUFA, UFA ,MUFA and 

C18:1). We suggested that this difference was due to the origin of milk FA, in which short-chain 

and medium-chain (saturated group) are less sensitive to environmental changes and derived 

mainly from de novo synthesis in the mammary gland. Briefly, saturated variables presented an 

antagonistic effect (negative correlation) between rankings correlation.  

 In chapter 3, we performed a study with latent variables related to stages and orders of 

lactations. Milk FA were fitted using CFA to construct latent variables and subsequently extracted 

factor scores. Genetic parameters were estimated using factor scores as phenotype. We carried out 

a GWAS and enrichment analysis for three lactations representing by latent variables. We report 

low estimates of heritability for latent variables. Our genomic study revealed some novel genomic 

regions that explained a small fraction of additive variance. In total, 11 putative genes were 

associated with a biological function in FA synthesis. We found significant functional terms of 

enrichment analysis related to lipid metabolism, FA synthesis, and triacylglycerol synthesis. Our 

results showed a relevant opportunity to design further studies and validated these putative genes. 

In chapter 4, we present the general conclusion of this thesis. 
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2. ASSESSING GENETIC COMPONENTS OF MILK FATTY ACIDS TRAITS UNDER 

HEAT STRESS IN A BRAZILIAN HOLSTEIN POPULATION 

Brayan Dias Dauria1, Anil Sigdel2, Francisco Peñagaricano2, Fabricio Pilonetto1, Juliana 

Petrini1, Mayara Salvian1, Paola Perez Bóscollo1, Paulo Fernando Machado1, Luiz Lehman 

Coutinho1, & Gerson Barreto Mourão1* 

1 Department of Animal Science, University of São Paulo (USP) / Luiz de Queiroz College of Agriculture 
(ESALQ), Piracicaba, SP, Brazil 
2 Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA 
 

Abstract 

The present study aimed to estimate covariance components of milk fatty acids (FA) 
and to compare the genomic-predicted genetic values (GPTA) under general and heat stress 
effects. Data consisted of 38,762 test-day records from 6,344 Holstein cows obtained from May 
2012 through January 2018 on four dairy herds from Brazil. Single-trait repeatability test day 
models with random regressions as a function of temperature-humidity index (THI) values were 
used for genetic analyses. The models included contemporary groups, parity order (1-6), and 
DIM classes as fixed effects, permanent environmental and general additive and heat stress 
additive genetic as random effects. Notably, heritability estimates increased (0.03 to 0.06) for 
unsaturated FA traits (UFA = unsaturated; MUFA = monounsaturated; PUFA = 
polyunsaturated; and C18:1 = oleic acid) at heat stress levels. In contrast, heritability estimated 
for saturated FA traits (SFA = saturated; C16:0 = palmitic acid; and C18:0 = stearic acid) 
decreased (-0.01 to -0.04) under heat stress conditions. In addition, our study revealed negative 
genetic correlation between general and heat stress additive genetic effects (antagonistic effect) 
for SFA, C16:0, C18:0, and C18:1 ranged from -0.007 to -0.32. Estimation of genetic 
correlation within traits was generally low to moderated (<0.80), which suggests animals re-
ranking at heat stress conditions. The lowest genetic correlation between additive effects was 
observed for C18:1 (-0.07), suggesting being more sensitivity to heat stress. Spearman’s 
ranking correlation between GPTAs ranged from -0.27 to 0.99. Results indicated that most FA 
traits are affecting the selection response if practiced in a limiting environment. Our findings 
point out novel opportunities to explore the use of FA milk profile as a potential biomarker of 
heat stress in dairy cattle. 

 
Key words: temperature-humidity index, heat tolerance, variance component, milk fatty acid 
 

2.1 Introduction 

 In tropical environment, climatic factors could be challenging for dairy farming, where 

climate is characterized by high temperature, humidity, and rainfall. Under such climatic 

conditions, high-producing dairy cows experience heat stress and show decline in health, 

fertility, and production traits. Heat stress is a condition in which animal is not able to dissipate 

endogenous or exogenous heat from its body (Bernabucci et., 2010). Heat stress is an important 

economic issue in dairy farming. In Brazil, there are no economic loss estimates due to heat 
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stress found in literature. However, this effect could be a relevant factor, mainly because most 

of the high-producing dairy cows (purebred) are not adapted genetically to tropical conditions. 

In the US dairy industry, the economic losses due to heat stress are estimated to be between 

$897 million to $1,500 million per year (St-Pierre et al., 2003). 

 As heat stress is a costly problem for dairy producers, different strategies such as 

environmental conditioning of the warehouses using fans, sprinklers, shades, and improved 

nutritional and management practices have been used to alleviate the effects of heat stress 

(Moran, 2005). However, these practices increase production costs, and, in general, cannot 

eliminate heat stress completely. Santana Jr et al. (2016) reinforced the hypothesis that heat 

stress reduces milk production and quality of Brazilian Holstein herds even maintained in 

modified physical environments. One complementary strategy for reducing the effects of heat 

stress on dairy cattle performance is the identification and subsequent selection of animals that 

are genetically more thermotolerant. Selecting animals that are more thermo-tolerant is the most 

cost-effective approach to raise dairy purebred under tropical conditions as the gains made 

through genetic selection are cumulative and permanent (Wall et al., 2010). 

 The main challenges in genetic analyses of heat stress are accurate selection of 

phenotypes and the choice of models for variance components and parameter estimation to 

quantify the level of heat stress. Several studies have used physiological traits such as rectal 

temperature, respiration rate and intra-vaginal temperature as indicator traits of heat stress 

(Kendal et al., 2007; Dikmen and Hansen, 2009; Kaufman et al., 2018). However, collection of 

such data at national level is both logistically challenging and time consuming. Regarding the 

choice of heat stress variable indicator, Ravagnolo et al. (2000) examined several functions for 

quantifying heat stress and suggested that temperature-humidity index (THI) was a good 

environmental indicator. Moreover, THI has been used for decades to measures heat stress 

effects into genetic models by several studies related to dairy cattle (Ravagnolo & Misztal, 

2000; Aguilar et al., 2009; Hammami et al., 2015; Nguyen et al., 2016; Sigdel et al., 2019). 

 Most of the genetic studies in dairy cattle are interested in estimated a fixed threshold 

level of THI for production and quality traits (Aguilar et al., 2009; Bernabucci et al., 2014; 

Hammami et al., 2015). These models usually assumed that production declines linearly with 

increasing of THI, and the declines can be attributed to genetic effects. In addition, Sánchez et 

al. (2009) proposed a more complex model that assumed each cow had different threshold and 

slope based on a hierarchical Bayes model. However, this model could be computationally 

challenging as it has a large number of parameters. Therefore, a repeatability test-day model 
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with constant threshold and random slope for heat load function could result in reasonable 

estimates of genetic parameters under heat stress (Aguilar et al., 2009; Nguyen et al, 2016). 

 Recently, there has been a considerable interest in milk fatty acid profile because of its 

effects on human health, technological, sensorial, and nutritional properties of milk and dairy 

products (Hanus et al., 2018). Hammami et al. (2015) have assessed the potential of milk fatty 

acid profile as biomarkers of thermotolerance in Holstein population from Belgium. Also, 

Nguyen et al. (2016) suggested that fatty acid profile could be a potential biomarker for heat 

tolerance as it can be measured on a large scale through mid-infrared spectroscopy of milk 

samples and hence can be applied to datasets as large as those utilized for the national 

evaluation. Thus, the first objective of this study was to estimate covariance components of FA 

as a function of THI values through single-trait repeatability test-day model. The second 

objective was to estimate GPTA under general and heat stress conditions for milk FA and 

subsequently to compare the Spearman ranking correlations between sires.   

 

2.2 Material and Methods  

 

2.2.1. Phenotypic and genotypic data 

 Data consisted of 38,762 FA records from 6,344 Holstein cows obtained from 2012 

through 2018 on four dairy herds in Brazil (Table 1). Cows were from first through sixth parity 

and were daughters of 535 sires, with days in milk (DIM) between 5 and 305. Test-day records 

ranged from 1 to 29, with an average milk frequency of three times a day. Contemporary group 

(CG) was formed by the combination of herd, calving year, and month of test-day record. Only 

records within the acceptable range of three standard deviations from the respective mean and 

from CG with a minimum of five animals were used in the genetic analyses. Pedigree was 

created by tracing the pedigrees of cows back to five generations. The pedigree file included 

9,759 animals. 

 In this study, we considered seven (7) traits related to FA milk profile: saturated (SFA), 

unsaturated (UFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids 

groups; and the individual fatty acids: palmitic acid (C16:0), stearic acid (C18:0), and oleic 

acid (C18:1). FA were determined as grams per 100 g of milk and measured by mid-infrared 

spectroscopy (Delta Instruments CombiScope Filter, Advanceed Instruments Inc., Norwood). 

The key ingredients in cows’ diet include corn silage, grass hay, cottonseed, soybean meal, 

soybean husk, cornmeal, citrus pulp, minerals, and vitamins. 
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 Genotype data for 72,444 SNP markers across the bovine genome were available for 

1,152 cows with records, daughters from 165 sires in the pedigree. SNP information was 

updated to the new bovine reference genome ARS-UCD 1.2. A detailed description of the 

procedure of imputation analysis for cow’s reference population have been reported by Petrini 

et al. (2016) and Iung et al. (2019). The SNP that mapped to sex chromosomes, were 

monomorphic, or had minor allele frequency below 1% were excluded from the genotype data. 

After quality control, a total of 928 cows and 67,471 SNP markers were retained for subsequent 

genomic analysis. 

 

2.2.2. Climate Data Information 

Weather data were obtained from NASA Prediction of Worldwide Energy Resource 

(POWER, 2017), using the farm’s location’s coordinates: latitude and longitude. Hourly THI 

(temperature-humidity index) values were calculated as proposed by Ravagnolo et al. (2000): 

THI= (1.8 x T + 32) – (0.55 – (0.0055 x RH) x (1.8 x T -26) 

where T is the average of temperature in degree ℃ and RH is the average of relative humidity, 

expressed as a percentage. After that, mean daily THI corresponding three days prior each test 

day was calculated as suggested by Bohmanova et al. (2007). A heat load function, denoted as 

"($%&), was calculated to estimate the decrease (slope) in the content of FA in milk under heat 

stress, as follows: 

"($%&) = 	 *		0																																	,"	$%&	 ≤ 	$%&!"#		$%& −			$%&!"#						,"	$%& > 	$%&!"#
	 

where $%&!"# (THI - threshold) was set to 68, and thus "($%&) was equal to max (0, $%& −

			$%&!"#) (Sigdel et al., 2019). 

 

2.2.3. Genetic analyses 

 Single-trait repeatability test-day model proposed by Ravagnolo and 

Misztal (2000) were fitted to estimate variance components for FA in milk under general and 

heat stress conditions. Additionally, genomic predicted transmitting ability (GPTA) were 
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estimated for two environments: general (heat load THI function = 0) and heat stress (heat load 

THI function The variances are:  

0
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23
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Where was assumed 0 = [0)* 1)* ] be a vector of random additive genetic effects and 23 =

[23)* 4)* ] be a vector of random permanent effects.  

= 10 degrees above to threshold), afterward, sire rankings were compared through Pearson's 

correlations. 

8+,-./ 	= 	9:+ +	<=>, 	+ ?&@- +	0. +	23. 	+ 	 1.["($%&)] +	4.["($%&)] +	3+,-./ 

where 80123 is the record for the fatty acid milk traits, 9:4 is ith contemporary group (herd, 

calving year, and month of test-day record) (i = 1 to 142), <=>5 is jth parities (j =  1-6), ?&@0 

is the kth DIM class with classes defined every 20 days (k = 16), 01 is the general random 

additive genetic effect (intercept) of animal l, 231 is the general random permanent 

environmental effect (intercept) of animal l, ["($%&)]  is a function of THI, 11 is the random 

additive genetic effect (slope) of heat stress of the animal l, 41 is the random permanent 

environmental effect (slope) of heat stress of animal l,  3+,-./ is the random residual effect. 

For all analysis it was assumed a genomic polygenic model a~N (0, HB67), where B67 

is the additive genetic variance, H is the combined relationship matrix (pedigree and genomic 

information) (Aguilar et al., 2010; Christensen & Lund, 2010). This method is known as 

single-step genomic best linear unbiased prediction (ssGBLUP). The inverse of H was 

obtained as follows, 

%89 = =89 + C6 6
6 ::89 − =%%89

D 

Where  =89 is the inverse of the pedigree relationship matrix, ::89 is the inverse of the genomic 

relationship matrix, and E778; is the inverse of the pedigree relationship matrix of the animals 
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genotyped. :< = αG + β=%%, where G was equal to the genomic relationship according to 

VanRaden (2008). w is the amount the proportion of the total additive genetic variance by 

genetic marker. This step was performed using the default parameterization in the preGSf90 (α 

= 0.95 and β = 0.05). 

 Variance components for FA milk traits were estimated in a Frequentist framework 

using the restricted maximum likelihood method under genomic polygenic models in 

AIREMLF90 software (Misztal et al., 2015). The genomic heritability coefficients (H%) were 

obtained at heat stress level "($%&) = 10 and general effects "($%&) = 0 (Ravagnolo & Misztal, 

2000): 

H% =	
	5$% + "($%&)%5!	% + I	"($%&)	5$!

5$% + "($%&)%5!	% + I	"($%&)	5$! + 5&'% + "($%&)	%5(	% + I"($%&)	%5&'( +	5'%			
 

where 5$% the variance of general additive genetic effects; 5!% is the variance of thermotolerance 

additive genetic effects; 5$! is the additive genetic covariance among general and 

thermotolerance genetic effects; 5&'%  is the variance of general enviromental permanent effects; 

5(	%  is the variance of thermotolerance environmental permanent effects; 5&'( is environmental 

permanent covariance among TNZ and HS effects;	"($%&) is a function of THI, and 5'%	is the 

residual variance. 

The genetic correlation within trait among general and heat stress additive genetic 

variances was estimated as: 

JKLL	[0, "($%&)1] = 		
"($%&)5$!

N5$%"($%&)%5!	%
 

The GPTA was predicted using BLUPF90 program (Misztal et al., 2015) with a 

convergence criterion of 10-12. Spearman rank correlation was performed to compare the 

classification of animals between general and heat stress conditions using the software Rstudio 

(R Development Core Team 2019). For sires ranking, was selected only sires with a minimum 
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of twenty daughters reared at least in more than one CG, and split into three subsets (TOP25%, 

TOP60%, and FULL_RANK). 

 

2.3. Results and Discussion 

2.3.1. Genetic parameter estimation 

 Variance components for FA milk traits under general and heat stress conditions were 

estimated using single-trait repeatability test day models (Table 2). The genetic parameters 

included genomic heritability estimates and genetic correlation calculated within trait at general 

(intercept) and at heat stress level equal to "($%&) (slope). The heat stress level was fixed to 10 

THI degrees above the THI threshold (THI = 68 degrees) to obtain larger variances (100 times) 

(Ravagnolo & Misztal, 2000; Aguilar et al., 2010; Sigdel et al., 2019). 

 Our studies reveal that there is a remarkable difference in genomic heritability estimates 

for all FA traits under general and heat stress conditions. Interestingly, unsaturated FA traits 

(PUFA, MUFA, UFA, and C18:1) showed higher heritabilities estimates under heat stress 

(0.16, 0.09, 0.08, 0.08, respectively) compared with general conditions (0.10, 0.05, 0.05, and 

0.05, respectively). Our findings are similar to those reported by Hammami et al. (2015), who 

indicated that PUFA and C18:1 also had higher heritabilities under high THI values in Belgium 

Holstein cows using the linear reaction norm model. Moreover, results reinforced that mostly 

unsaturated FA traits were lowest heritable than saturated FA traits in both conditions. Other 

studies (Bastin et al., 2012; Penasa et al., 2014; Petrini et al., 2016) showed that PUFA, MUFA, 

UFA, and C18:1 had lower heritabilities estimated compared than saturated FA traits. 

Differences in heritability estimated ranged from 0.03 to 0.06 in the proportion of estimation in 

unsaturated FA traits under heat stress. 

In contrast, saturated FA traits (SFA, C16:0, and C18:0) had lower heritabilities 

estimates under heat stress (0.23, 0.23, and 0.13, respectively) compared to general conditions 
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(0.26, 0.27, and 0.14, respectively). In agreement, Hammami et al. (2015) suggested that 

heritability estimates decreased slightly at high THI for most FA traits with higher heritability. 

As far as we know, milk FA profiles derived from de novo (short- and medium-chain FA = 

saturated) are mostly heritable than milk FA profiles obtained from ruminal biohydrogenation 

on diet and body fat stores (long-chain FA = unsaturated) (Penasa et al., 2014). Despite this, 

very few studies have been devoted to compare changes in heritability estimation for milk FA 

profile considering heat stress effects in genetic models. Other reports have focused on the 

effects of lactation stage, parities, and seasons of year associated with variability in genetic and 

phenotypic components for FA milk profiles (Bastin et al., 2012; Renna et al., 2010). In general, 

differences in variances components showed changes in estimation during heat stress for all FA 

traits that indicated the possibility to investigate the phenotypes with greater sensitivity under 

heat stress effects.  

Genetic correlation between additive genetic effects between general and heat stress 

conditions were negative and low for SFA, C16:0, C18:0, and C18:1, ranging from -0.007 to -

0.32. Negative genetic correlations between general and heat stress additive genetic effects also 

reported for SFA and C16:0 in primiparous Holstein cows (Hammami et al., 2015). 

Interestingly, other studies have also reported negative genetic correlation between general and 

heat stress additive genetic effects for milk yield and composition traits such as protein and fat 

for high-producing dairy cows (Ravagnolo & Misztal, 2000; Aguilar et al., 2009; Bernabucci 

et al., 2014; Hammami et al., 2015, Sigdel et al., 2019). These studies suggest that milk yield 

traits are antagonistic to heat tolerance, and selection for higher yield without considering heat 

tolerance may results in greater susceptibility to heat stress.  

The antagonistic effect is related to physiological change mechanisms and a positive 

correlation between milk production and metabolic heat production. This effect leads to blood 

insulin concentrations increase, glucose concentrations decrease, feed intake reduced (negative 
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energy balance), limitation in lactose synthesis, and hence, milk yield declines (Rhoads et al., 

2009; Baumgard et a., 2015). In saturated FA milk traits (SFA, C16:0, and C18:0), it probably 

occurs because heat stress modifies the metabolic strategies of the uses of body resources such 

as fat, protein, and energy (Slimen et al., 2016). Herein, C18:1 showed a genetic correlation 

between additive genetic variances close to 0, which means a genetic relationship almost null 

compared to two different environmental conditions. These results are in accordance with 

previously reported findings on the use of C18:1 as a biomarker for heat stress (Hammami et 

al., 2015). 

Positive genetic correlations between general and heat stress additive genetic effects 

were observed for UFA, MUFA, and PUFA, ranging from low to high genetic relationship (0.12 

to 0.72). This is in agreement with the findings of Hammami et al. (2015) in Belgium Holsteins, 

who reported positive genetic correlations between general and heat stress additive genetic 

effects for UFA, MUFA, and PUFA (0.03 to 0.38). A high positive correlation found for PUFA 

(0.72) suggests that the effects attributed to genes between general and heat stress conditions 

possibly mostly are the same associated with their genetic architecture. In addition, PUFA 

represents a low percentage (5%) of the bovine milk fat and small variability associated with 

their composition (Penasa et al., 2015), which indicates be a weak candidate for capture heat 

stress effects from samples of milk. In general, genetic correlations within traits allowed to 

identify the genetic behavior of milk FA profile under heat stress conditions. Thus, our findings 

provide further evidence of the interaction between genotype and environment along with the 

low and negative genetic correlation between saturated FA and C18:1 unsaturated FA with heat 

stress environment. 

2.3.2. Genetic evaluation for heat tolerance 

Table 4. shows the ranking correlation between GPTAs of 97 sires under general and 

heat stress conditions split into three subsets (TOP20%, TOP50%, and FULL_RANK). 
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Negative ranking correlations between GPTAs ranged from -0.12 to -0.46 for SFA and C16:0; 

positive ranking correlations between GPTAs ranged from 0.28 to 0.99 for UFA, MUFA, 

PUFA, and C18:1. For breeding schemes, negative rankings correlation indicates re-ranking of 

sires and differences in performance for these traits under two conditions of the environment. 

It was expected for saturated FA because there was an antagonistic relationship between general 

and heat stress additive genetic variances.  

Interestingly, PUFA presented a strong positive ranking correlation between general and 

heat stress conditions (0.97 to 0.99), suggesting no re-ranking of sires. Moreover, PUFA had 

the highest positive genetic correlation (0.74) in the parameter estimation within traits observed 

previously. Rankings results indicate that PUFA would have few changes in GPTAs for both 

environmental conditions proposed in the present study.  It reinforced our hypothesis that PUFA 

probably is not a good indicator for heat stress.  

In general, differences between rankings are reported for low genetic correlations 

(<0.80), which means that the top sires on a trait in one environment are not necessarily as 

superior in the other (Hammami et al., 2008). Our results indicate that UFA, MUFA, and C18:1 

had ranking sires’ correlations lower than 0.55. Therefore, all those traits also are expected 

differences related to GPTAs with the environment of genetic evaluation. Furthermore, 

rankings correlations (negative or positive) also suggest possible differences between contents 

of FA milk profiles. It was observed by Renna et al. (2010), which argues that higher 

concentrations of saturated FA occur during heat stress conditions in alpine grazing systems. 

Also, Hammami et al. (2015) reported that heat stress influences lipid synthesis by the 

mammary gland that alters the content of saturated and unsaturated FA in milk. Diet 

composition also alters the FA milk profile, particularly for C16:0 and C18:1 when sources of 

fats are included in the feed (Palmquist, 2006).  Therefore, we reinforce that the FA of milk 

interacts with the genotype-environment. 
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Our ranking correlation results indicate a re-ranking of sires for mostly FA traits 

including SFA, UFA, MUFA, C16:0, and C18:1 attributed to low to the moderate genetic 

correlation between GPTAs under general and heat stress conditions. In genetic aspects, all 

those traits can affect the selection response if practiced in a limiting environment. Considering 

full rankings, C18:1 presented the lowest ranking Spearman correlation (0.32), which agrees 

with previous results from the genetic correlation between additive genetic variances. The 

present results support the idea that C18:1 is influenced strongly by heat stress, thus showing 

that environmental conditions may affect their synthesis. Bastin et al. (2011) showed a high 

range between C18:1 and other FA during the first 100 days in milk for Wallon Holstein cows. 

The authors reinforced that release of long-chain FA inhibits FA synthesis in the mammary 

gland while the cow is in negative energy balance. On this basis, Moore et al. (2005) suggest 

that cows under heat stress conditions became a state of negative energy balance, independently 

of the lactation stage, which would compromise the milk yield and components. The present 

study provides further evidence that C18:1 can be a candidate milk biomarker for heat stress in 

dairy cattle, highlighting the importance of combine records from mid-infrared spectrometry 

and climate data to be used for heat-stress management or development of new tools for 

analyzing the samples directly from milk. 

 

2.4. Conclusions 

The FA profile in milk changes continuously throughout general and heat stress conditions and 

these changes can be determined genetically. Interestingly, unsaturated FA have higher 

heritability estimates under heat stress conditions. The antagonistic relationship between 

additive genetic variances under general and heat stress conditions indicate that saturated FA 

could have higher concentrations during heat-stress environment. High ranking correlation at 

heat stress conditions suggests no genotype by environment interaction for PUFA. However, 
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for C18:1, larger genetic variation and lower genetic correlation indicate that this trait has the 

greatest sensitivity to heat stress conditions in a tropical climate. These findings could 

contribute to a better understanding of interaction of milk FA complex traits with the 

environment under heat stress conditions in dairy cattle. Also, milk FA can be used as a heat 

stress biomarker or even for the management of the heat stress conditions open new possibilities 

for further studies. 
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Table 1. Descriptive analysis of fatty acids of milk (g/100g/milk). 

Traits N Mean SD Min Max 
FA groups      
SFA 38,762 2.30 0.56 0.71 6.00 
UFA 38,762 1.03 0.31 0.08 3.08 
MUFA 38,762 0.87 0.27 0.08 2.66 
PUFA 38,762 0.15 0.05 0.01 0.50 
Individual FA      
C16:0 38,762 0.87 0.24 0.17 2.49 
C18:0 38,762 0.62 0.16 0.50 1.94 
C18:1 38,762 0.66 0.23 0.02 2.00 

N = number of observations; SD = standard deviation; Min = minimum; Max = maximum; FA = fatty acids of milk; 
SFA = saturated, UFA = unsaturated, MUFA = monounsaturated, PUFA = polyunsaturated, C16:0, palmitic, C18:0 = 
stearic, C18:1 = oleic. 
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Table 2. Variance component estimates, genomic heritability, and correlations between general and heat stress additive effects for FA traits.

FA traits σ!" σ#" σ!,	# σ&'"  σ(" σ&',( σ'" h" (t) h" (a) r)	(a, t) 
FA groups 

          

SFA 0.07668 0.000066 -0.00063 0.0292 0.00053 -0.0015 0.1825 0.23 (0.026) 0.26 (0.017) -0.28 (0.39) 

UFA 0.00539 0.00421 0.000082 0.00013 0.000016 -0.00040 0.0706 0.08 (0.020) 0.05 (0.008) 0.31 (0.78) 

MUFA 0.00372 0.00303 0.000036 0.00011 0.000027 -0.00027 0.0528 0.09 (0.027) 0.05 (0.007) 0.12 (0.67) 

PUFA 0.00013 0.00019 0.000006 0.000001 0.0000003 -0.000008 0.0016 0.16 (0.01) 0.10 (0.01) 0.74 (0.04) 

Individual FA 
          

C16:0 0.00470 0.01392 -0.000125 0.000092 0.000010 -0.00020 0.0309 0.23 (0.022) 0.27 (0.018) -0.32 (0.24) 

C18:0 0.00186 0.00310 -0.000016 0.000023 0.000003 -0.000086 0.0170 0.13 (0.021) 0.14 (0.014) -0.15 (0.27) 

C18:1 0.00298 0.00209 -0.000001 0.000065 0.000016 -0.000197 0.0349 0.08 (0.018) 0.05 (0.008) -0.007 (0.28) 
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Table 3. Spearman correlation between genomic-predicted genetic values (GPTA) of 
bulls under general (a) and heat stress (t). 

*: no significance for p-value ≤ 0.05; SFA = saturated; UFA = unsaturated; MUFA = 
monounsaturated; PUFA = polyunsaturated; C16:0 = palmitic acid; C18:0 = stearic acid; 
and C18:1 = oleic acid; TOP20% = 20% of best classification sires; TOP50% = 50% of 
best classification sires; FULL_RANK = All sires presented at ranking 
  

Ranking Bulls  
 TOP20% TOP50% FULL_RANK 
FA traits GPTA (a,t) GPTA (a,t) GPTA (a,t) 
SFA -0.40 -0.27 -0.38 
UFA 0.52 0.28 0.38 
MUFA 0.50 0.36 0.39 
PUFA 0.97 0.98 0.99 
C16:0 -0.40 -0.45 -0.46 
C18:0* -0.18* -0.12* -0.13* 

C18:1  0.34 0.31 0.32 
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Abstract 

This study aimed to perform genetic, genome-wide association (GWAS), and gene-set 
analysis with latent variables related to milk fatty acid traits (SFA: saturated, PUFA: 
polyunsaturated, C18:0: stearic acid, and C18:1: oleic acid) of 4,184 Brazilian Holstein cows 
collected from May 2012 to January 2018. Latent variables were fitted through confirmatory 
factor analysis based on prior knowledge and biological interest. In the first step, three latent 
variables were classified as follows: Early (records between 40 to 60 days in milk), Middle 
(records between 160 to 180 days in milk) and Late (records between 250 to 270 days in milk). 
In sequence, these latent variables were combined and obtained 3 latent variables (PAR1, 
PAR2, and PAR3: parities 1-3) with three repetead records (Early, Middle, and Late). 
(Co)variance components were estimated for factor scores using a single-trait repeatability 
model under genomic-based approach. Heritabilities estimated for latent variables ranged from 
0.07 for PAR3 to 0.12 for PAR1. Genetic correlations between latent variables varied from 0.81 
to 0.97. Whole-genome scans identified at least 11 putative candidate genes (PLD1, TM6SF2, 
NUDT7, LIPT1, AKPA1, APOH, RPGRIP1L, FTO, GMDS, ALDH3B1, and PC) located on 9 
chromosomes, including novel regions explaining relatively smaller fractions of the genetic 
additive variance (0.55 to 1.81%). The gene-set enrichement analysis revealed functional terms 
related to fatty acids synthesis, triacylglycerol synthesis, and lipid and lipoprotein metabolism. 
Our findings point out novel opportunities to investigate multiple correlated traits and deserves 
to be further investigated for breeding purposes. 
 
Key words: dairy cattle, fatty acids, confirmatory factor analysis, genome-wide association 
studies (GWAS), gene-set enrichment 
 
3.1 Introduction 

The composition of ruminant milk fat has a particular structure among terrestrial 

mammals, it is attributed to a great diversity of component fatty acids (FA) (Palmquist, 2006). 

In dairy cattle, Milk FA derives from the effects of ruminal biohydrogenation on dietary 

unsaturated FA and the variety of FA synthesized de novo synthesis in the mammary gland 

(Palmquist, 2006). Moreover, FA in the mammary gland also can be originated from the 
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mobilization of body fat reserves (Gebreyesus et al., 2019). All of those metabolic pathways 

involved in FA synthesis can be modified by nutrition and management (Walker et al., 2004). 

However, only selective breeding schemes would have permanent gain for favorable milk FA 

profile associated with human health (Hein et al., 2018).  

Many studies have been showed the possibility of change of milk FA profile based on 

results of genetic parameters in dairy cows (Hammami et al., 2015; Petrini et al., 2016; Hein et 

al., 2018). Nevertheless, the exact mechanisms and impacts by which genetic changes can affect 

the technological and sensory properties of dairy products are not yet known. In addition, the 

physiological stage related to variation across lactation also can affect the milk FA composition 

(Bastin et al., 2012), which indicates needed to investigate the genetics and physiological state 

for efficient manipulation of milk FA synthesis. 

For this purpose, the multivariate statistical approach based on reduction of 

dimensionality of data, such as confirmatory factor analysis (CFA), may be adopted to elucidate 

the correlation structure among measured traits and to extracted namely factors or latent 

variables, that are unobserved variables explained by independent variables (Bollen, 1989).  In 

dairy cattle, the potential use of this method has been investigated in genetic analysis, genome-

wide association studies (GWAS), and gene-set analysis for milk FA (Conte et al., 2016; Melee 

et al., 2016; Cecchinato et al., 2019; Palombo et al., 2020a; Palombo et al., 2020b). CFA 

analysis could be a useful statistical method for assessing the complex structure of correlation 

among quantitative traits and construct latent variables with significantly biological meanings 

to be used as a phenotype in genetic and genomic analysis.  

 We hypothesize that using latent variables might allow us to elucidate the biological 

interpretation of genomic analysis, particularly in terms of common effects (pleiotropic effects) 

related to the original phenotype and provide a powerful approach to identify pathways-

associated genes with milk FA synthesis.  Therefore, the aims of this study were: (i) to assess 

the use of latent variables related to parities for estimate genetic parameters for a total of milk 

FA, (ii) to perform whole-genome scans and subsequent gene-set enrichment analysis in order 

to identify genes and functional terms responsible for milk FA across lactations. 
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3.2 Materials and Methods  
3.2.1. Phenotypes and genotypes 

A total of 6,834 fatty acids (FA) records were collected from May 2012 to January 2018 

on four dairy herds from Brazil. Lactation records were obtained from 4,184 Holstein cows 

from first through third parity, daughters of 249 sires, with days in milk (DIM) between 60 and 

270. The number of measures ranged from 1 to 3 records per cow. The pedigree file included 

6,163 animals created by tracing the pedigree of cows back to two generations. In this study, 

we considered 4 phenotypes: saturated (UFA) and polyunsaturated (PUFA) FA groups and 

stearic acid (C18:0) and oleic acid (C18:1) individuals milk FA. These traits were the candidates 

to construct latent variables and predict factor scores (Table 1). Milk FA were determined as 

grams per 100g of milk and measured by mid-infrared spectroscopy (Delta Instruments 

CombiScope Filter, Advanceed Instruments Inc., Norwood). The key ingredients in cows’ diet 

include corn silage, grass hay, cottonseed, soybean meal, soybean husk, cornmeal, citrus pulp, 

minerals, and vitamins. 

 

Table 1. Number of observations (N) mean, standard deviation (SD), minimum (Min) and 

maximum (Max) obtained from factor scores predicted. 

Latent variables N Mean SD Min Max 
1st Lactation      

Early1 1,015 0.00039 0.9497 -2.90 5.11 
Middle1 957 5.7E-08 0.9555 -3.57 4.33 

Late1 1,110 0.00036 0.9428 -4.91 6.23 
PAR1 3,082 0.00025 0.9487 -4.91 6.23 

2nd Lactation      
Early2 887 -0.00022 0.9741 -3.00 5.14 

Middle2 856 -0.00011 0.9629 -4.00 5.25 
Late2 734 0.002 0.9684 -2.40 4.58 
PAR2 2,468 0.00048 0.9699 -4.03 5.25 

3rd Lactation      
Early3 487 0.0002 0.9659 -2.72 3.55 

Middle3 469 0.0017 0.9757 -2.46 4.86 
Late3 319 -0.0025 0.9704 -2.64 4.40 
PAR3 1,275 0.000078 0.9689 -2.72 4.86 

Abbreviations: Early, Middle and Late are the latent variables with 1 record per cow represented by days in milk: 40-60, 160-180, 250-270 

respectively; PAR1, PAR2 and PAR3 corresponding to factor scores predicted from CFA models with 1 to 3 records per cow (the latent 
variables were obtained through of combination of Early – Middle – Late for each parity). 
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Genotype data for 72,445 single nucleotide polymorphism (SNP) markers based on a 

new reference bovine population (ARS-UCD1.2) were available for 824 cows (689 with 

records) and 89 sires in pedigree file. A detailed description of the procedure of imputation 

analysis for cow’s reference population have been reported by Iung et al. (2019) and Petrini et 

al. (2019). Sires genotype was obtained from a total of 143,250 bulls available for a panel of 

312,614 SNPs provided by USDA-ARS Animal Improvement Programs Laboratory and 

University of Florida. Subsequently, this panel was reduced to 72,445 SNPs maintained only 

markers in common with the cows’ SNP panel, the procedure was carried out using snp1101 

software (Sargolzaei, 2014). Those SNPs markers that mapped to sex chromosomes, were 

monomorphic, or had minor allele frequency below 1% were excluded from the genotype data. 

 

3.2.2. Latent variable modeling 

Before modeling latent variables, the phenotypes were adjusted for one fix effect, 

described here as an exogenous variable: contemporary group (CG) was formed by the 

combination of the herd, calving year, and month of analysis information. The phenotypes were 

defined based on prior knowledge and biological interest. Two steps were performed to define 

the latent variables that would be used in genetic analysis. i) We created three latent variables 

for modeling stages of lactation: 60-80 DIM (Early), 160-180 DIM (Middle), and 250-270 DIM 

(Late) for each parity (1-3) with a total of 9 datasets. Thereby, each latent variable was 

explained by four observed phenotypes (UFA, PUFA, C18:0, and C18:1). ii) Finally, latent 

variables obtained previously (Early-Middle-Late) were merged, which generated one dataset 

related to orders of lactations (1 to 3) (PAR1, PAR2, and PAR3). These latent variables were 

used to estimate genetic parameters, genome-scan mapping, and pathway enrichment analyses 

using fatty acid scores (FAS) as phenotype. For instance, one cow could have records of one 

lactation (PAR1) ranged from 1 to 3 (Early-Middle-Late) measures, which was represented by 

one FAS obtained from the prediction of the latent variable. 

 

3.2.3. Confirmatory factor analysis (CFA) 

All latent variables were separately evaluated using the following measurement model: 

 

" = 	Λ& + 	(, 
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Where " is a (4 x 1) vector of adjusted phenotypic variables in each animal, & is the (1 x 1) 

vector of latent variables, elements (*) of Λ are factor loadings relating latent variables to the 

observed variables (indicator variables), and ( is the corresponding vector of errors of 

measurement. In this study, it is assumed that E(() = 0, var(()	= ,, E = (&) = -. Here ,	is not 

a diagonal matrix; when considered appropriate, covariances between error terms were freely 

estimated. 

This model was fitted using maximum likelihood estimation (ML) with robust standard 

errors and mean- and variance-fitted test statistic and unstandardized loadings were estimated 

for each latent variable construct (Peñagaricano et al., 2015). 

In CFA models a well-fitting implies that the latent variable is able to account for the 

observed covariances among a set of indicator variables. The good fitness of model was 

performed by several fit indices as "!(chi-square), standardized root-mean-square residual 

(SRMR; Bentler, 1995), root-mean-square residual (RMSEA; Steiger, 1990), Tucker-Lewis 

index (TLI; Tucker and lewis, 1973) and comparative fit index (CFI; Bentler, 1990). All these 

analyses were performed using package ‘lavaan’ (Rosseel, 2012) in R software (R Development 

Core Team, 2011). 

 After a latent variable has been fitted, we were interested in predicting factor scores for 

each individual based on their observed values of the variables indicators from factors. We 

predicted factor scores through the sum of the individual values from observed variables, with 

the weights considered by the parameters (standardized factor loadings) obtained in the fitted 

model. This method was performed using the package ‘Psych’ of the R software (R 

Development Core Team 2019). 

 

3.2.4. Genetic analyses  

 Genetic analyses can be summarized in the following steps: i) we performed a single-

trait model (animal) to estimate variance components to each latent variable related to stages of 

lactations (Early, Middle, and Late) for three parities; ii) repeatability model was estimated 

using FAS as phenotype for each latent variable classified as parities (PAR1, PAR2, and PAR3). 

We carried out these steps to evaluate the possibility of reduced dimensionality of data and to 

investigate the use of factor scores as a phenotype in genomic analysis. Single-trait models were 

performed to estimate variance components of fatty acid scores to stages of lactation: Early, 

Middle, and Late, considering as different traits for each parity. 
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. = 	/ + 0a + 	2 

  

where ., /, a, and 2 are the vectors of estimated latent variables (fatty acid scores), intercept, 

additive genetics random effects, and the vector of residual effects, respectively. The join 

distribution of  2~N (0, I3"!), where I is an identity matrix and 3"! is the residual variance. In 

the polygenic model, it was assumed a~N(0, A3#!) where A represents the matrix of the additive 

genetic relationship between animals in pedigree. The (co)variance structure was assumed as 

follows: 

 

456 7	
	5	
8 	9 = 7:	⨂	Φ 0

0 >	⨂	?9 

 

where : is the numerator relationship matrix, and Φ are (co)variance matrix of random 

coefficients for additive effect, ? is a diagonal matrix of residual variances of the trait, and ⨂ 

denotes the Kronecker product of matrices. 

 Repeatability model were used to estimate variance components that was performed 

using the maximum restricted likelihood method in AIREMLF90 program (Misztal et al., 2002) 

FAS were considering to the first three orders of lactations as different traits. The following 

model was fitted: 

 

.$%& 	= 	@AB$% 	+ 	C$%&	 +	DE$%& 	+ 	E$%& 

 

Where .$%& is the record for the FAS, @AB$% days in milk defined for FAS observed in 3 

different stages of lactation (60-80 DIM (Early), 160-180 DIM (Middle), and 250-270 DIM 

(Late), C$%&	 is the random genetic additive effect of animal F in stage of lactation GH,   DE$%&     

is the random permanent environment effect of animal F in stage of lactation GH,  E$%& is the 

random residual effect.  The (co)variance structure was assumed as follows: 

 

C
DE
E
		= 	

:	⨂	Φ 0 0
0 A	⨂	ψ 0
0 0 >	⨂	?
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where : is the numerator relationship matrix, Φ and ψ are (co)variances matrices of random 

genetic additive and permanent environment effects respectively, ? is a diagonal matrix of 

residual variances corresponding to each FAS, and ⨂ denotes Kronecker products of matrices. 

 For all previous analysis were assumed a genomic polygenic model a~N (0, H3#!), where 

3#! is the additive genetic variance, H is the combined relationship matrix (pedigree and 

genomic information) (Aguilar et al., 2010; Christensen & Lund, 2010). This method is known 

as single-step genomic best linear unbiased prediction (ssGBLUP). The inverse of H was 

obtained as follows,  

J() = K() + L
0 0
0 M() − K!!()

O 

 

where M() is the inverse of the genomic relationship matrix and K!!
() is the inverse of the 

pedigree relationship matrix of the animals genotyped. The M() has the dimension of 582 x 

582, 575 x 575, 412 x 412 that includes cows with records and sires in the pedigree for 1, 2 and 

3 parity respectively. The A matrix has a dimension of 3,977 x 3,977, 3,196 x 3,196, 1,810 x 

1,810 for 1, 2 and 3 parity respectively, which is based on a two-generation pedigree. 

 

3.2.5. Assessment of candidate genomic regions 

 The genomic regions and candidate genes for latent variables were obtained by the 

following procedures: i) the ssGBLUP method was performed to obtain the estimated genomic 

breeding values (GEBV), ii) The effect of the SNP was obtained using the GEBV estimated 

using the postGSF90 program (Aguilar et al., 2014) following the equation described by Wang 

et al. (2012), iii) Candidate genomic regions were obtained of the amount of genetic percentage 

of variance explained by 2.0 Mb windows of adjacent SNPs performed in the postGSF90 

software. 

 

ii) Wang et al. (2012). 

PQ = @0*[0@0*]()C+T 

 

where: PQ  is the vector of markers effects, @ is a diagonal matrix of weights of SNPs, here, @	 =

	A, A is an identity matrix or weight = 1, 0 is a matrix of genotyped of each locus, and C+T is the 

vector of GEBVs. 
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iii) Aguilar el al. (2014) 

UCV(P,)
3-!

	"	100	 = 	
UCV	(∑ 0.Z.)

/
.0)
3-!

	"	100 

 

where P, is the genetic value of the [12 genomic region, \ is the total number of adjacent SNPs 

within the 2.0 Mb genomic region, and 0. is the genotype information of ]12 marker, Z. is the 

marker effect within the [12 genomic region.  

 

3.2.6. Gene‐set enrichment analysis 

 Gene-set enrichment or pathways-based analysis is an alternative tool to identify 

biologically relevant pathways and could support a better understanding genetic of complex 

traits (Weng et al., 2011). This approach could be defined in three steps: i) the assignment of 

SNPs to gene (i.e., location of SNPs in gene annotated), ii) the assignment of genes to functional 

pathways and iii) Verify the association of a given pathway with FAS, which was analyzed 

using a test of proportions based on the cumulative hypergeometric distribution or also named 

as Fisher’s exact, if there was a statistical difference among latent variables for lactations 

(Peñagaricano et al., 2013). 

 The ARS-UCD1.2 bovine genome sequence assembly was used for SNP assignments 

using biomaRt package in R. Herein, SNPs were assigned to genes if they were located within 

the genomic sequence of an anottaded gene or within 15 kb either upstream or downstream of 

the gene. An arbitrary threshold of 5% of the SNP effects distribution (in absolute value) was 

used to define relevant SNP markers and genes associated with latent variables if that gene 

contained at least one potential SNP.  

 For assignment of genes to pathways in each latent variable, we carried out functional 

enrichment analysis on the list of significant genes using the Gene Ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes (KEGG), Medical Subject Headings (MeSH), InterPro, 

Reactome, and Molecular Signatures Database (MSigDB) to identify significantly 

overrepresented pathways to define a functional set of genes. The association between a 

particular gene-set and FAS of latent variables was assigned using a Fisher’s exact test 

(Peñagaricano et al., 2013). 

The P-value of observing k significant genes in pathway-based association analysis 

was calculated by: 
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^ − value	 = 	1	 −	c 			
d34e		d

/(3
5(4e

d/5e

6()

407
	 

 

where S is the total number of genes that are significantly associated with each parity 

represented by latent variable, N is the total number of genes that were analyzed in the study, 

and m is the number of genes in the pathway. 
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3.3. Results and Discussion 

3.3.1. Latent variable fit model 

 The main challenge involving latent variables is the goodness of fit of the measurement 

model, traditionally assessed by several fit indices. Thus, these indices are an essential 

parameter, which allows using these variables to investigate complex traits. In this study, we 

presented in Table 2 all of the fit indices extracted from CFA. All p-values were higher than 

0.05 suggesting, that observable variables were independents, and alternative indices as CHISQ 

(ranged from 0.65 to 3.78), RMSEA (ranged from 0.007 to 0.05), SRMR (ranged from 0.003 

to 0.007), CFI (close to 1), and TLI (close to 1) indicated that proposed model fitted the data 

reasonably well. The standardized solutions for the factor loadings (i.e., elements of Λ presented 

in the CFA model) are shown in supplementary tables S1, S2, and S3.  

 

Table 2.  Fit indices from confirmatory analysis  

Fit indices 1st Lactation 2nd Lactation 3rd Lactation 
  E M L E M L E M L 
DF 1 1 1 1 1 1 1 1 1 

CHISQ 3.78 2.93 3.64 0.65 1.21 1.03 0.642 1.59 1.23 

P-VALUE 0.054 0.082 0.056 0.419 0.271 0.308 0.423 0.207 0.267 

RMSEA 0.05 0.04 0.04 0.01 0.01 0.007 0.001 0.035 0.027 

SRMR 0.007 0.005 0.006 0.002 0.003 0.003 0.003 0.004 0.004 

CFI 0.99 0.99 0.99 1 1 1 1 1 1 

TLI 0.99 0.99 0.99 1 1 1 1 0.99 0.99 

N   1,015 957 1,110 887 887 887 487 487 487 
Abbreviations: DF: Freedom degree; CHISQ: Chi-square; RMSEA: Root mean square error of approximation; SRMR: 
Standardized root mean residual; CFI: Comparative fit index; TLI: Tucker Lewis index; N: number of observations. 
 
 Penãgaricano et al. (2015) suggested that factor loadings can be interpreted as the 

correlation between the observed phenotype and the corresponding latent variable. The wald 

test (Z-value) was obtained by dividing the parameter value by its standard error, and noticeably 

all Z-values were higher than 2.58, thereby all factors loading had statistically different from  0 

(P(>|Z|)) in our population, which means that observed variables used here had a relevant 

association with the corresponding latent variable. As shown in Figure 1. below, we modeled 

each latent variable separately related to one specific interval across lactation. In our study, the 

limitation for working with a simultaneous model (structural equation model) was attributed to 

latent variables be correlated and did not a satisfactory fit in CFA. 
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Figure 1. An illustrative example of a measurement model with one latent variable evaluated using confirmatory factor analysis. 

Curved arrows between boxes represent the presence of (co)variance between error terms. The goodness of fit of the 

measurement model was evaluated using a χ2 (scaled) test and alternative fit indices cited previously. 

 

 Generally, we found studies considering different latent variables as quality, fertility, or 

production investigating the causal and no causal structure between latent variables defined by 

the structural equation model (Peñagaricano et al., 2015; Leal-Gutiérrez et al., 2018; Pegolo et 

al., 2020). In contrast, in our study, we are interested in assessing different parities been 

represented by factors or latent variables constructed by a group of milk fatty acids. The 

potential of this approach (multivariate factor analysis) has been reported by several authors 

that suggested be a powerful tool for reducing complexity in genetic and genomic studies 

through separated groups of variables with similar origins and functions, maintaining the 

biological significance and behavior of the original phenotype (Mele et al., 2016; Dadousis et 

al., 2017; Olasege et al., 2019; Cecchinato et al., 2019). 

 

3.3.2. Genetic parameters for latent variables 

 The estimates of heritabilities and genetic correlation for latent variables for the stage 

of lactation (Early, Middle, and Late) are summarized in Table 3. Overall, genomic heritabilities 

to lactation stage factors ranged from low to high for three parities. Factors Early1 (0.18) and 

Early3 (0.23) presented hightest heritabilities, whereas Middle3 (0.02) and Late3 (0.02) had 
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lowest heritabilities estimates. The other factors had low to moderate heritabilities ranging from 

0.05 (Late3) to 0.15 (Middle2). 

 

Table 3. Heritabilities estimated through a genomic‐based model of factor scores representing 

each stage of lactation.  

 σ2a σ2p σ2e h2 n 
1st lactation      
Early1 0.166 (0.086) 0.910 0.743 (0.081) 0.18 (0.089) 1.015 
Middle1 0.062 (0.053) 0.914 0.846 (0.062) 0.06 (0.060) 957 
Late1 0.063 (0.034) 0.889 0.826 (0.052) 0.07 (0.050) 1.110 
2nd lactation      
Early2 0.030 (0.033) 0.948 0.917 (0.048) 0.03 (0.035) 887 
Middle2 0.130 (0.069) 0.928 0.798 (0.072) 0.14 (0.086) 856 
Late2 0.047(0.059) 0.936 0.888 (0.073) 0.05 (0.063) 734 
3rd lactation      
Early3 0.218(0.086) 0.933 0.715 (0.087) 0.23(0.086) 487 
Middle3 0.019 (0.019) 0.950 0.931 (0.064) 0.02 (0.019) 469 
Late3 0.023 (0.025) 0.933 0.914 (0.077) 0.02 (0.025) 319 

Early: 40-60 days in milk; Middle: 160-180 days in milk; Late: 250-270 days in milk; σ2
a: genetic variance additive; σ2

p:  phenotypic variance; 

σ2
e: residual variance; h2: heritability; n: number of observations.  

 The heritability estimates found here showed a relevant variability between lactation 

stages, agreeing with those of the individual traits findings out by Park et al. (2020) that 

suggested a significant contribution of lactation stage, energy balance, and parity on variation 

in milk fat composition. Bilal et al. (2014) also reported significant effects of the stage of 

lactation and parity on milk fatty acid profile for the Canadian Holstein population. 

Interestingly, the authors argued that the proportions of short- and medium-chain fatty acids 

(C6:0 to C14:0) were low at the beginning of lactation and increased in the early part of 

lactation, different than observed for long-chain fatty acids (C18:0 and C18:1) that had an 

opposed trend compared to others fatty acids.  

 In our study, we merged the (co)variance structure of two milk fatty acids groups 

(saturated and polyunsaturated) and two individual milk fatty acids (C18:0 and C18:1) into one 

variable not observable (latent variable) to evaluate these complex traits together. These 

phenotypes represented more than 70% of the fatty acid content of milk and involved several 

pathways about fatty acid synthesis (de novo, biohydrogenation, desaturation, and short -and- 

long-chain FA). The differences observed here in genetic components between stages within 

lactation probably occurred due to metabolic state and rumen activity, attributed to diet 
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composition to achieve the nutrient requirements of cows during lactation. In agreement, Mele 

et al. (2016) also reported a significant effect of the lactation stage on the majority of latent 

variables related to milk FA, in particular, those associated with fatty acids derived from 

mammary enzymes (de novo, desaturation, and long-chain FA) presenting an increase across 

lactation. In agreement, Mele et al. (2016) also reported a significant effect of the lactation stage 

on the majority of latent variables related to milk FA, in particular, those associated with fatty 

acids derived from mammary enzymes (de novo, desaturation, and long-chain FA) presenting 

an increase during lactation. This fact reinforces the importance of carrying out milk quality 

measurements constant for a better understanding of the genetic basis of fatty acids profile. 

 Estimates of genetic correlation between lactation stages represented by factors are in 

Table 4. Intervals across lactation for cows of first parity had positive and moderate (< 0.70) 

genetic correlation between Early1 and Middle1 (0.68) and Early1 and Late1 (0.63), whereas a 

strong genetic correlation, was found among Middle1 and Late1 (0.99) latent factors; For the 

second lactation, the factor Early2 was strong and positive genetic correlated with Middle2 

(0.99) and Late2 (0.99), in exception of Middle2 and Late2 that presented moderate genetic 

correlation (0.47); For the third lactation, the factor Early3 presented a strong and positive 

genetic correlation with Middle3 (0.99) and Late3 (0.99), and conversely, a negative and strong 

genetic correlation among Middle3 and Late3 (-0.99). The estimates of genetic correlations for 

latent factors disagree with genetic correlations among individual fatty acid contents in milk 

reported by Bastin et al. (2012) that showed an intermediate magnitude ranging from 0.52 to 

0.70. However, a strong association of genetic correlation found here (0.99) associated with 

high standard errors (0.74 to 1.70) can be due to small variation between factors due to a low 

phenotypic variation presented for some individual fatty acids, or even the reduced number of 

records used for this analysis. 
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Table 4. Genetic correlations among stages of lactations considering latent variables. 

1st lactation Early Middle Late 

Early1 1 0.68 (1.10) 0.63 (1.70) 

Middle1 0.68 (1.10) 1 0.99 (0.55) 

Late1 0.63 (1.70) 0.99 (0.55) 1 

2nd lactation Early Middle Late 

Early2 1 0.99 (1.00) 0.99 (0.74) 

Middle2 0.99 (1.00) 1 0.47 (1.67) 

Late2 0.99 (0.74) 0.47 (1.67) 1 

3rd lactation Early Middle Late 

Early3 1 0.99 (1.34) 0.99 (0.70) 

Middle3 0.99 (1.34) 1 -0.99 (1.17) 

Late3 0.99 (0.70) -0.99 (1.17) 1 

Early: 40-60 days in milk; Middle: 160-180 days in milk; Late: 250-270 days in milk. 
   

 Regarding the genetic parameters estimated for parities as factors, we merged latent 

factors (Early, Middle, and Late) by ID number cow (identification number of each animal) and 

parity to perform a repeatability genetic additive model. Estimates of heritability (Table 5.) 

were low to all factors ranged from 0.07 (PAR3) to 0.12 (PAR1). Genetic correlations between 

parities considered by latent variables are presented in Table 6. A high and strong genetic 

correlation was found between latent factors varying from 0.81 to 0.97. 

 

Table 5. Heritabilities estimated through a genomic‐based model of latent variables 

representing parities.  

 σ2a σ2p 

 

σ2pe σ2e h2 
n         

PAR1 0.071  1.548 0.118 0.712  0.12 (0.033) 3,082 

PAR2 0.073  0.943 0.034 0.836  0.11 (0.036) 2,468 

PAR3 0.059  0.943 0.016 0.875 0.07 (0.046) 1,275 

PAR1: latent variable referent to first parity; PAR2: latent variable referent to second parity; PAR3: latent variable referent to 

third parity. σ2a: genetic variance additive; σ2p: phenotypic variance, σ2e: residual variane, h2: coefficient of heritability; n: 

number of records. 
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Table 6. Genetic correlations among parities of the latent variables genomic-based approach. 

Latent variables Lac1 Lac2 Lac3 
PAR1 1 0.96 (0.023) 0.97 (0.147) 

PAR2 0.96 (0.023) 1 0.81 (0.547) 

PAR3 0.97 (0.147) 0.81 (0.547) 1 

PAR1: first parity; PAR2: second parity; PAR3: third parity. 

 

 Bastin et al. (2012) also reported a relevant variation in heritabilities between parities 

for all individual fatty acids used here (SFA, PUFA, C18:0, and C18:1). Interestingly, the 

authors suggested that de novo synthesis and saturated FA were more heritable than C18:0 

(stearic), C18:1 (oleic), PUFA (polyunsaturated), MUFA (monounsaturated), and LCFA (long-

chain fatty acids) that are originated mainly from the diet and the body fat mobilization.  Under 

multivariate factor analysis, Mele et al. (2016) classified several latent factors related to 

different pathways of fatty acids milk (de novo, biohydrogenation, long-chain FA, desaturation, 

short-chain FA, odd FA, linolenic, vaccenic, CLA, and milk yield – branched FA) combining 

variables in common, and investigated the effect of parity of cows on a pattern of milk fatty 

acid factors. The authors showed parity significantly (P-value < 0.01) affected the scores of 

almost all the latent factors suggesting that these variables were consistently based on current 

knowledge of the physiological changes occurring during lactation.  

 The results obtained through the repeatability additive model suggested that latent 

variables representing parities had a similar relationship between them due to high genetic 

correlation estimates (0.81 to 0.97). Thus, considering the latent factor lactations represented 

by the same group of phenotypes probably would not present relevant differences between 

estimates of genetic correlation. This limitation could be related to the lack of the other variables 

to construct latent factors and, if possible, define this factor based on pathways related to fatty 

acids synthesis (i.e., mammary gland and de novo). 

 

3.3.3. Whole-genome mapping for latent variables 

 ssGBLUP methodology was utilized to identify genomic regions and putative candidate 

genes related to fatty acids factors. Our interest here was to detect the structure underlying the 

variables that could interact in a biological role. Figure 1. displays Manhattan plots for fatty 

acids factors for the three parities in context. The results are presented in terms of the 

proportions of genetic variance explained by 2.0 Mb SNP windows. 
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Figure 2. Manhattan plots showing the results of the whole-genome scans for the cows of first to third parity 

using fatty acids scores. 

 

 A summary of the results of GWAS for three latent variables is shown in Table 7. In 

total, we detected 11 putative candidate genes located on 9 Bos taurus autosomes. We observed 

one genomic region window in common in BTA23 (50.22–52.22 Mb position) associated with 

the FA scores across all three lactations. This region on BTA23 that harbors gene GMDS 

explained about 0.66%, 1.02%, and 1.15% of genetic variance for fatty acids scores across the 

first three parities. Gene GMDS acts on the metabolism of amino sugars and nucleotide sugars 

(Wickramasinghe et al., 2011). In literature, there are reports of association of this gene with 

the saturated fatty acids profile in intramuscular fat of longissimus thoracis muscle in bovine 

(Lemos et al., 2016).  
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Table 7. Putative candidate genes located in 2.0 Mb SNP windows that explain the highest 

genetic variance for latent variables across the first three parities. 

PAR1: first parity; PAR2: second parity; PAR3: third parity. 
 

 For PAR1, a total of eight genomic regions window located on chromosomes BTA1, 

BTA3, BTA19, BTA23, BTA28, and BTA29, explain more than 6.46% of the additive genetic 

variance for fatty acids scores. In particular, the region on BTA1 (95.42-97.42 Mb) covers the 

candidate gene PLD1, which is involved in lipid metabolism bovine that has a function catalytic 

activity (Pegolo et al., 2017). In addition, PLD1 (phospholipase D) has been considered an 

important enzyme that generates phosphatidic acid (PA) a critical phospholipid constituent in 

eukaryotic cell membranes, that accounts for 1-4% of the total lipid that can be generated de 

novo synthesis. 

 Another 2.0 Mb SNP window on BTA19 (7.78-9.78 Mb) explained about 0.82% of the 

additive genetic variance for fatty acids scores in PAR1. Notably, this region harbors the gene 

AKPA1, which encodes a member of the AKAP family, which has been shown to interact with 

the PKA family (Carlson et al., 2003). Moreover, this gene has been reported as a major 

adipocyte protein kinase A-binding protein, is the most abundant in adipose tissue and involved 

in fat metabolism and obesity (Bridges et al., 2006; Marrades et al., 2010). On BTA19, another 

window from 61.94 to 63.94 Mb was associated with fatty acid scores in PAR1. This region 

  Genetic Variance (%)  
  Parities  

Chr Pos (Mb) PAR1 PAR2 PAR3 Candidate genes 
BTA1 95.42 - 97.42 0.55 

  
PLD1 

BTA3 117.37 - 119.37 1.81 
  

- 

BTA3 119.38 - 121.38 0.61 
  

- 

BTA7 2.29 - 4.29 
  

0.78 TM6SF2, NUDT7 

BTA11 2.85 - 4.85 
 

0.66 
 

LIPT1 

BTA19 7.78 - 9.78 0.82 
  

AKPA1 

BTA19 61.94 - 63.94 0.65 
  

APOH 

BTA21 66.78 - 68.78 
 

0.59 
 

RPGRIP1L, FTO 

BTA23 50.22 - 52.22 0.66 1.02 1.15 GMDS 

BTA28 44.00 - 46.00 0.63 
  

ALDH3B1, PC 

BTA29 47.24 - 49.24 0.73     - 
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harbors the gene APOH (apolipoprotein H), also known as beta-2-glycoprotein I, which is a 

component of circulating plasma lipoproteins that binds several kinds of negatively charged 

substances such as heparin, phospholipids, and dextran sulfate. APOH has been involved in 

several human physiologic pathways, including lipid metabolism, coagulation, and the 

production of antiphospholipid antibodies (Mehdi et al., 1999).  

 On BTA28, two genes (ALDH3B1 and PC) were found in genomic region from 44.00 

to 46.00 Mb in PAR1. Gene ALDH3B1 is involved in oxidation of lipid-derived aldehydes 

generated in the human plasma membrane (Kitamura et al., 2013) and is associated to diatebes 

in humans (Jeff et al., 2014). Evidence supporting the association between ALDH3B1 and 

backfat thickness was previously reported in bovine (Silva et al., 2017). Gene PC (pyruvate 

carboxylase) plays a central role in gluconeogenesis and lipogenis. Previous reports shown a 

significantly elevated expression of PC in dary cattle around the time of calving, during feed 

restriction, and has been linked to increased fatty acids concentrations and profiles (White et 

al., 2011). Boesche & Donkin. (2020) suggested that PC promoter 1 activity that is mediated 

by unsaturated fatty acids may determine gene PC response during periods of negative energy 

balance in dairy cows.  

 For PAR2, a total of three genomic regions window located on chromossomes BTA11, 

BTA21, and BTA23, explained more than 2.27% of the additive genetic variance for fatty acids 

scores. On BTA11, a window from 2.85 to 4.85 Mbs harbor the gene LIPT1 that is associated 

with hyperlipedemia (accumulation of blood lipids) in human (Soreze et al., 2013), and was 

strongly associated as marbling trait in beef cattle (Magalhães, 2015).  

 Another 2.0 Mb SNP window on BTA21 (66.78-68.78 Mb) explained about 0.65% of 

the additive genetic variance for fatty acids scores in second parity. Interestingly, this region 

harbors the genes RPGRIP1L and FTO that were considered associated haplotypes by close 

genomic regions (Lea et al., 2013). RPGRIP1-like (RPGRIP1L) gene encodes a protein as a 

conserved C2-domain, which bind phospholipids, inositol polyphosphates, and intracellular 

proteins (Tews et al., 2011). The authors isolated primary pre-adipocytes tissue human and 

concluded that RPGRIP1L might be involved in adipogenic differentiation and has a relevant 

function in the insulin-regulated adipocyte metabolism. FTO gene has been reported as the 

major candidate gene for obesity in human (Dina et al., 2007) and was considering a potential 

biological locus due to FTO protein be conserved with a sequence identity of over 85% among 

humans, mice, cattle, sheep, dogs, and horses (Fredriksson et al., 2008). Experiments have 

identified that FTO signalizes cellular availability of oxygen, is functionality involved in fatty 
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acid metabolism and energy homeostasis and has a function in the catalysis of nucleic acid 

demethylation (Han et al., 2010).  Supporting our findings both genes were associated with milk 

composition variation in Holstein dairy cattle (Zielke et al., 2013), indicating that those genes 

could be potential markers to investigated milk fat composition. 

 For PAR3, we found a total of two genomic regions window located on chromosomes 

BTA7 and BTA23, explained more than 1.93% of the additive genetic variance for fatty acids 

scores. On BTA7, our study detected a putative candidate gene TM6SF2 (2.29-4.29 Mb); this 

gene is a regulator of liver fat metabolism in humans with opposing effects on the secretion of 

TG-rich lipoproteins and hepatic triglyceride content (Mahdessian et al., 2014). Chen et al. 

(2017) shown that an SNP E167k in the gene TM6SF2 may have additive effects on lipid 

metabolism and the development of NAFLD (nonalcoholic fatty liver disease) by upregulating 

the expression of SREBP-1 (sterol receptor-element binding proteins) and FASN (fatty acid 

synthesis). In addition, was found considerable conservation for the predicted protein sequence 

of TM6SF2 in the cow, human, dog, guinea, pig, and mouse (Mahdessian et al., 2014). In 

bovine, fatty acid synthesis TAG-rich chylomicron and very-low-density lipoproteins (VLDL) 

of plasma are the primary sources of long-chain fatty acids taken up by the mammary glands 

(Palmquist, 2006). However, Grajales et al. (2020) performed an experimented with differential 

expression isolated mammary tissue bovine to investigate the association related to lipid 

metabolism and observed a negatively regulated expression of gene TM6SF2.  

 Gene NUDT7 (BTA7) encodes for a peroxisomal coenzyme A diphosphatase with the 

role to remove potentially toxic oxidized CoA disulfide from peroxisomes maintaining the 

capacity for beta-oxidation of fatty acids (Muñoz et al., 2013). Because this gene is involved in 

peroxisomal lipid metabolism in mouse and human metabolism (Wanders & Watherham, 

2006), we suggest that gene NUDT7 could be associated with the fatty acid synthesis of milk 

cows, but it is still unclear in the literature and needs to be more investigated. 

 Novel regions without potential candidate genes were found on BTA3 (117.37-119.37 

and 119.38-121.38 Mbs) for PAR1 and BTA29 (47.24-49.24 Mb) for PAR3 associated with 

fatty acids scores. The regions on BTA3 explained about 2.42% of the additive genetic variance; 

On BTA29 the additive genetic variance explained 0.73%. In this study, we found out different 

genes that still were not well-discussed in the literature, nevertheless, we expected it because 

our genomic analysis involved a multi-trait model considering a group of milk FA traits with 

(co)variances structures combined. Overall, we showed that the latent variables approach 

associated with GWAS could be a powerful tool to investigate genes with a joint biological 
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function, however, further research on a larger population is necessary to validate the results 

obtained in this study. 

 

3.3.4. Gene-set analysis for latent variables  

 The first step in this gene-set analysis of a whole-genome association study was to assign 

SNPs to genes. Of the 66,460 SNP markers evaluated in the GWAS, representing three 

lactations, a total of 28,366, 29,370, and 29,919 SNPs, respectively, were located either within 

annotated genes or at most 10 kb upstream or downstream from annotated genes. This set of 

SNPs marked a total per parity of 11,635, 11,451, and 11,748 genes annotated in the ARS-

UCD1.2 bovine genome sequence assembly. A subset of 513, 454, and 456, respectively, were 

flagged by at least one relevant SNP (based on the top 5% of the SNP effects distribution) for 

each parity, hence, these genes were defined as significantly associated with fatty acids scores 

represented by latent variables.  

 The functional characterization included six different biological databases: Gene 

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, InterPro, 

Medical Subject Headings (MeSH), and Molecular Signatures Database (MSigDB). 

Supplementary table 4. reports the full list of significant functional terms, containing term ID, 

genes, and Fisher’s P-value.  

 Figure 4. shows a set of functional terms significantly enriched with genes affecting 

fatty acids scores across all lactations. These functional terms were mainly related to fatty acids 

synthesis, triacylglycerol synthesis, and lipid and lipoprotein metabolism. Noticeably, some of 

the most relevant terms are directly involved in fatty acid synthesis related to milk fat 

composition, such as fatty acid biosynthesis [bta00061], long-chain fatty acid uptake 

[GO:0044539], the chemical reactions and pathways involving in linoleic acid [M15245] and 

alpha-linoleic acid [M13605], and the chemical reactions and pathways resulting in the 

formation of a fatty-acyl-CoA [M23818]. These significant fatty acids terms had in common at 

least three genes, namely, ACSL1, ACSL3, and ELOVL2. All of these genes are involved in 

process of regulating the channeling of fatty acids in milk fat synthesis (Bionaz & Loor, 2008), 

lipid biosynthesis, and fatty acids degradation (Popperlreuther et al., 2012), and elongation of 

PUFA (Castro et al., 2016), respectively. 
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Figure 4. Functional terms and pathways significantly enriched with genes associated with profile of fatty acids in milk across 

lactations Six gene annotation databases were analyzed: Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Medical Subject Headings (MeSH), InterPro, Reactome and Molecular Signatures Database (MSigDB). The y‐axis 

displays the names and the total number of genes of each gene‐set. The black dots represent the significance of enrichment 

(−log10 P‐value, Fisher’s exact test, top x‐axis) and the bars represent the number of significant genes in each functional term 

(bottom x‐axis). 

 

 Of special interest, we found gene-sets that showed an overrepresentation of genes that 

are directly associated with milk fat synthesis, such a type C phospholipase [D010738] and lipid 

metabolism [D050356]. These milk fat synthesis terms contain at least three relevant genes, 

namely XDH, CPT2, and CD36. XDH gene is involved in lipid droplet formation with a role in 

the mechanism encompassing the genes ADFP and BTN1A1 in the mammary gland (Bionaz & 

Loor, 2008). CPT2 gene transferred long-chain acyl-CoAs into the mitochondria for f-

oxidation, which is the key enzyme in lipid oxidation (Eaton, 2002). CD36 gene act in 

endothelial long-chain fatty acids transport and appear to be the most important protein related 

to fatty acids uptake from the blood (Bionaz & Loor, 2008). 

 The term fatty acid homeostasis [M12334] was another functional term significantly 

enriched with a gene associated with milk fat content. This gene-set harbors gene DGAT2 

which was suggested as a strong candidate for studies with dairy cows (Al-shuhabib et al., 2019) 

and goats (An et al., 2011). Interestingly, Liu et al. (2020) studying functional analysis of DGAT 

family genes, reported that this gene encoding the enzymes interacting with each other, 
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collectively regulated lipid metabolism, and affected milk secretion and synthesis in mammals. 

Thus, our findings provide further evidence of the possible involvement of this gene in milk 

fatty acids profile. 

 

3.4. Conclusions 

 In summary, we performed confirmatory factor analysis to reducing complexity in 

genetic and genomic studies of milk fatty acids traits. Genetic parameters for latent variables 

within (stages of lactation) and between (parities) lactations had strongly genetic correlated and 

ranged from low to moderate. GWAS for latent variables resulted in the detection of 11 putative 

candidate genes (PLD1, TM6SF2, NUDT7, LIPT1, AKPA1, APOH, RPGRIP1L, FTO, GMDS, 

ALDH3B1, and PC) located on 9 chromosomes, including novel regions explaining relatively 

smaller fractions of the genetic additive variance.  Moreover, the gene-set analysis revealed 

significant functional terms including fatty acids synthesis, triacylglycerol synthesis, and lipid 

and lipoprotein metabolism. Overall, this study contributes to designing further studies to 

improving the knowledge base on the genetics underlying the bovine milk fatty acids 

composition. 
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4. FINAL CONSIDERATION 

The study performed in Chapter 2 shows that test-day milk yield records combined with 

weather data from public stations provide a valuable source of information for evaluated the 

effects of heat stress in dairy cattle. Remarkable differences between estimates heritability 

under heat stress and thermal-neutro conditions indicated more sensitive for some milk FA 

unsaturated. Thus, it reinforced the hypothesis that milk FA derived from diet can be potential 

targets for capture physical changes (feed intake, water onsumption) affected to heat stress. 

Although milk FA and climate records are not relevant for breeding purposes, we believe that 

both information is a valuable tool to define the best bulls for the tropical conditions and could 

also support the management systems adoptions for mitigating heat stress issues.   

 In chapter 3, we demonstrated that latent variables for milk FA were similar in the 

genetic correlation between parities. However, our experimental design provides a relevant 

opportunity for investigating other phenotypes defined with biological roles and pathways in 

common. Thereby, multivariate approach could be a valuable tool for the analysis of 

quantitative and complex traits. Moreover, this method has a relevant statistical advantage to 

reduce large datasets from breeding programs. In our data, we were able to reduce the number 

of variables with redundant information. Whole-genome mapping results suggested that genes 

were different between lactations in most cases, except for only one chromosome window. 

Although most of them had no association with biological function in bovine milk FA, it would 

still provide novel candidate genes for further studies. We carried ou complementary analysis 

(enrichment analysis) of GWAS. The results indicated that all of the significant functional terms 

were of genes different than was revealed in the whole-genome scan. However, relevants genes 

were found related to fatty acids byosinthesis and lipid metabolism in this analysis. 
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SUPPLEMENTARY FIGURES 

 
 

 

Supplementary figure 2.1. Distribution of THI averages monthly across six years. 
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Supplementary figure 2.2. List of database, functional terms, genes and P-values from gene-set 

analysis. 
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SUPPLEMENTARY TABLES 
 
 
Supplementary Table 3.1. Standardized parameter estimates from the measurement model for 

first parity. 

Latent variables N Estimate SE Zvalue R2 

Early      
Sat 1,015 0.61 0.012 20.35 0.37 

Poly 1,015 0.83 0.001 31.18 0.69 
C18:0 1,015 0.81 0.003 30.20 0.66 
C18:1 1,015 0.91 0.004 35.38 0.82 

Middle      
Sat 957 0.70 0.013 23.69 0.49 

Poly 957 0.77 0.001 26.79 0.59 
C18:0 957 0.78 0.003 27.59 0.62 
C18:1 957 0.93 0.004 34.96 0.87 
Late      
Sat 1,110 0.67 0.013 23.53 0.44 

Poly 1,110 0.76 0.001 28.27 0.58 
C18:0 1,110 0.78 0.003 29.10 0.61 
C18:1 1,110 0.91 0.004 35.54 0.83 

Abreviatture: N: number of records, estimate: Factor loadings, SE: standard error, R2: 
coefficient of variation. 
 
Supplementary table 3.2. Standardized parameter estimates from the measurement model for 

second parity. 

Latent variables N Estimate SE Zvalue R2 

Early      
Sat 887 0.74 0.015 25.57 0.74 

Poly 887 0.86 0.001 31.53 0.86 
C18:0 887 0.87 0.004 32.27 0.87 
C18:1 887 0.96 0.005 37.74 0.96 

Middle      
Sat 856 0.74 0.015 24.54 0.55 

Poly 856 0.83 0.001 29.11 0.70 
C18:0 856 0.80 0.004 27.51 0.64 
C18:1 856 0.94 0.004 34.87 0.89 
Late      
Sat 734 0.80 0.015 25.64 0.65 

Poly 734 0.79 0.001 25.35 0.63 
C18:0 734 0.82 0.004 26.27 0.67 
C18:1 734 0.85 0.005 33.06 0.91 

Abreviatture: N: number of records, estimate: Factor loadings, SE: standard error, R2: 
coefficient of variation  
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Supplementary table 3.3. Standardized parameter estimates from the measurement model for 

third parity. 

breviatture: N: number of records, estimate: Factor loadings, SE: standard error, R2: 
coefficient of variation.  
 

Latent variables N Estimate SE Zvalue R2 

Early      
Sat 487 0.69 0.021 16.92 0.48 

Poly 487 0.88 0.002 24.48 0.78 
C18:0 487 0.87 0.005 24.08 0.77 
C18:1 487 0.93 0.007 26.42 0.86 

Middle      
Sat 469 0.77 0.021 19.50 0.60 

Poly 469 0.84 0.002 22.41 0.72 
C18:0 469 0.85 0.005 22.53 0.72 
C18:1 469 0.96 0.007 27.50 0.93 
Late      
Sat 319 0.82 0.026 17.54 0.68 

Poly 319 0.83 0.002 17.92 0.69 
C18:0 319 0.89 0.006 19.82 0.79 
C18:1 319 0.94 0.008 21.98 0.89 




