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RESUMO 

Detecção de patógenos causadores de mastite pelo seqüenciamento de diferentes regiões 
do gene 16S rRNA e aprendizado de máquina 

A correta identificação de patógenos causadores de mastite é um fator chave para o 
sucesso do manejo das fazendas leiteiras. Técnicas como meio de cultura, qPCR e 
sequenciamento de 16S rRNA têm sido utilizadas para detectar microrganismos importantes em 
amostras de leite bovino cru. No entanto, devido aos custos, alguns desafios permanecem. Os 
métodos de aprendizado de máquina têm se mostrado uma alternativa atraente, pois podem 
integrar diferentes fontes de dados, com diversas finalidades. Novos estudos com foco na 
detecção de mastite clínica e subclínica destacam o potencial de métodos de aprendizado de 
máquina aplicados ao manejo da mastite em fazendas leiteiras. Neste trabalho, avaliamos o 
desempenho de três métodos de aprendizado de máquina para detectar o patógeno causador de 
mastite mais abundante em amostras individuais de leite cru de bovinos integrando dados de 
composição do leite e sequenciamento de 16S rRNA. Mostramos o potencial para a identificação 
de Escherichia coli e Staphylococcus aureus. Para abundância superior a 3% em amostras individuais, 
uma precisão de 100% e 86% foi alcançada, respectivamente. Esses resultados mostram que não 
apenas a mastite subclínica e clínica pode ser detectada por métodos de aprendizado de máquina, 
mas também alguns patógenos causadores de mastite. Além disso, para maximizar as informações 
obtidas do sequenciamento do gene 16S rRNA, avaliamos a diversidade genética in silico para 
diferentes regiões do gene 16S rRNA e validamos os resultados pelo sequenciamento Illumina. 
Mostramos que para melhor detecção de microrganismos associados à mastite bovina, a região 
V2-V3 detecta maior prevalência com maior abundância relativa. Esperamos que este trabalho 
possa contribuir para um melhor manejo das propriedades leiteiras bem como o desenvolvimento 
de novas ferramentas para o controle da mastite bovina. 

Palavras-chave: Aprendizado de máquina, Mastite bovina, 16S rRNA, Staphylococcus aureus, 
Escherichia coli 
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ABSTRACT 

Detection of mastitis-causing pathogen by sequencing different regions of 16S rRNA gene 
and machine learning 

The correct identification of mastitis-causing pathogens is a key factor in the successful 
management of dairy farms. Techniques such as culture medium, qPCR, and 16S rRNA 
sequencing have been used to detect important microorganisms in raw bovine milk samples. 
However, due to costs, some challenges remain. Machine learning methods have been shown as 
an attractive alternative, as they can integrate different sources of data, with a diversity of 
purposes. New studies focusing on the detection of clinical and subclinical mastitis highlight the 
potential of applied machine learning methods to the management of mastitis in dairy farms. In 
this work, we evaluate the performance of three machine learning methods to detect the most 
abundant mastitis-causing pathogen in individual raw milk bovine samples integrating data from 
milk composition and 16S rRNA sequencing. We show the potential for the 
identification of Escherichia coli and Staphylococcus aureus. For abundance greater than 3% in 
individual samples, an accuracy of 100% and 86% was achieved, respectively. These 
results show that not only subclinical and clinical mastitis can be detected by machine learning 
methods, but some mastitis-causing pathogens either. Moreover, to maximize the information 
obtained from 16S rRNA sequencing, we evaluate in silico genetic diversity for different regions 
of the 16S rRNAgene and validate the results by Illumina sequencing. We show that for better 
detection of microorganisms associated with bovine mastitis, the V2-V3 region detects a higher 
prevalence with more relative abundance. We hope that this work can contribute to better 
management of dairy farms as well as the development of new tools for the control of bovine 
mastitis. 

Keywords: Machine learning, Bovine mastitis, 16S rRNA, Staphylococcus aureus, Escherichia 

coli 
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1. INTRODUCTION 

Mastitis is considered to be the most costly disease in the dairy industry in the world mainly due to reduced 

milk production and longevity of animals, changes in milk quality, labor costs, diagnosis, and treatments (Oliveira et 

al., 2013). It can be classified as clinical and subclinical mastitis. Clinical mastitis can be detected by inspecting 

changes in the appearance of milk and local signs in the mammary gland. Subclinical mastitis, on the other hand, 

does not show obvious signs of infection and requires specific methods to detect. 

The most used technique for the determination of subclinical mastitis is the evaluation of somatic cell count 

(SCC) (Sharma et al., 2011). However, the somatic cell count can’t identify the causative agent. Earlier detection of 

the pathogen involved can lead to a better choice of treatment method, antibiotic selection, and better management 

strategies (Ashraf and Imran, 2018). To detect microorganisms, methods based on culture medium and guide 

antibiotic treatment were developed. However, approximately 25% of samples from clinical mastitis are culture-

negative or do not present significant pathogens (Bradley et al., 2007). Another possibility of identification is through 

the use of the quantitative PCR technique (Masco et al., 2007; Malorny et al., 2008; Le Dréan et al., 2010). 

The progress of next-generation sequencing (NGS) technologies and the consequent reduction in 

sequencing costs has revolutionized human medicine and can add value to agribusiness. One of its contributions is 

through the use of genetic markers (Johnson et al., 2019). The 16S small subunit ribosomal RNA (16S rRNA) gene 

has been established as the most widely used genetic marker in modern microbiome studies due to its conservation 

and universal presence in prokaryotes (Amit Roy et al., 2014). 

However, the use of large-scale DNA sequencing to identify mastitis-causing pathogens is restricted to a 

few reports in the academic literature comparing healthy and infected udders (Porcellato et al., 2020). Moreover, 

recent studies have shown that the choice of 16S rRNA gene region may affect estimates of taxonomic diversity, 

leading to unreliable estimated proportions of different taxa between regions (Bukin et al., 2019). 

Some advances have been made in low-cost alternatives for the detection of clinical and subclinical mastitis 

using machine learning methods. As stated by Bobbo 2021, different studies have applied machine learning 

techniques to diagnose mastitis. Some studies relied on the presence of high milk somamtic cell counts (SCC) 

(Ebrahimie et al., 2018) or mastitis pathogens (Esener et al., 2018), while others have established SCC-independent 

models for mastitis prediction using milking traits (Ebrahimi et al, 2019). The developed studies for the detection of 

mastitis-causing pathogens relies only upon few species or genera (e.g. strains of Streptococcus uberis in Esener et al., 

2018), and a broader detection has not yet been developed. 

In this study, we explore the in silico genetic diversity for different regions of the 16S rRNA gene to find 

the regions that maximize genetic diversity for common mastitis-causing pathogens and validate these results by 

metabarcoding Illumina sequencing. Moreover, we investigate the potential of applied machine learning to raw milk 

composition to detect the most abundant mastitis-causing pathogen.  

With our results, we show that sequencing of the 16S rRNA V2-V3 region may lead to a better taxonomic 

assignment at the species level for mastitis-causing pathogens. Moreover, machine learning methods applied to the 

detection of mastitis-causing pathogens may lead to the identification of Escherichia coli and Staphylococcus aureus on 

individual raw milk samples, with low-cost data (e.g. somatic cell counts, total bacteria count, fat, protein, lactose, 

total solids, and defatted dry extract). 
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1.1. General Objectives 

Identify the 16S rRNA region that maximizes the detection of mastitis-causing pathogens. 

Evaluate different machine learning models to predict mastitis-causing pathogens in individual raw milk 

samples by low-cost data, such as somatic cell count, total bacteria count, fat, protein, lactose, total solids, and 

defatted dry extract. 

 

1.2. Specific Objectives 

(a) In silico genetic diversity evaluation of V2-V3, V4, and V5-V6 regions to find the region that maximizes species 

identification for mastitis-causing pathogens. 

(b) Validate the in silico genetic diversity evaluation results by metabarcoding 16S rRNA Illumina sequencing. 

(c) Evaluate three different models to predict the most abundant mastitis-causing pathogens in individual raw milk 

samples. 
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2. IN SILICO GENETIC DIVERSITY EVALUTION OF 16S RRNA REGIONS FOR PRE-SELECTED 

SPECIES CAN IMPROVE TAXONOMIC ASSIGNMENT 

 

Abstract 
Modern microbiome studies relies on the correct identification of microbial communities and their impact 

on different life phenomena. Historically, conventional techniques, such as classical Gram staining, were used for the 
identification of cultured bacteria from clinical, food, and environmental origins. However, cultured bacteria 
communities represent only a fraction of the real diversity. This limitation was partially overcome with the advent of 
next-generation sequencing (NGS) technologies and 16S rRNA marker gene, but challenges remain. The choice of a 
reference database for classification can be tricky. Larger databases make it potentially more difficult to assign 
taxonomy at genus and species-level as the likelihood of ambiguous assignment increases, but smaller databases 
possibly do not contain a sufficient representation of species. In an attempt to overcome these limitations, some 
dedicated reference databases were constructed for a certain niche, such as HITdb (Human Intestinal 16S rRNA 
database) and DAIRYdb. We hypothesize that in cases when only a few species or genera are needed to be detected, 
targeting a region of 16S rRNA gene marker that maximizes genetic diversity for this species would lead to a better 
taxonomic assignment. Here, we evaluate the genetic diversity for the V2-V3, V4, and V5-V6 regions for the most 
common genera associated with mastitis in bovine milk, and contrast the results of the lowest and highest genetic 
diversity regions by Illumina sequencing. We show that our approach increases the number of species-level assigned 
sequences. 

 

2.1. Introduction 

One of the main goals of modern microbiome studies is the correct identification of microbial communities 

and their impact on different life phenomena. Microbial communities, also known as microbiota, are groups of 

microorganisms that share a common living space and are present in virtually all known environments, such as 

oceans (Suganawa et al., 2015), soils (Thompson et al., 2017), ice (Christner et al., 2008), food (Yeluri et al., 2018), 

and other living organisms (Cho andBlaser, 2012). 

Historically, conventional techniques, such as classical Gram staining, were used for the identification of 

cultured bacteria from clinical, food, and environmental samples. However, cultured bacteria communities represent 

only a fraction of the real diversity, being about 0.1% of complex communities as the human intestinal microbiota 

(Cao et al., 2017). Overcoming these limitations, microbiome studies have experienced an enhancement during the 

last decade with the advent of next-generation sequencing (NGS) technologies (Porter et al., 2018) and the use of 

genetic markers (Johnson et al., 2019). 

The 16S small subunit ribosomal RNA (16S rRNA) gene has been established as the most widely used 

genetic marker in modern microbiome studies due to its conservation and universal presence in prokaryotes (Amit 

Roy et al., 2014). The generation of millions of reads per single run, increased read length, sample multiplexing, and 

reduced costs of high-throughput sequencing platforms, lead to an accumulation of 16S sequence data from various 

microbial situs, and reference databases like Silva (Quast et al., 2013) and RDP (Ribosomal Database Project) (Cole 

et al., 2014) have been built to enable a phylogenetic analysis of these data. 

A major step in analyzing 16S rRNA data is the taxonomic assignment of the sequences. Taxonomic 

assignment depends on several factors, including sequence length, the target region of the 16S gene, classification 

method, and reference database (Huse et al., 2008; Bowen et al., 2012; Werner et al., 2011). 

Larger databases make it potentially more difficult to assign taxonomy at genus and species-level as the 

likelihood of ambiguous assignment increases due to highly similar sequences. Furthermore, the 16S rRNA gene 
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shows higher ambiguous assignment at lower taxonomic levels compared with other taxonomic marker genes 

(Mende et al., 2013). In an attempt to overcome these limitations, some dedicated reference databases have been 

proposed in the last years, such as DAIRYdb(Meola et al., 2019) and HITdb (Ritari et al., 2015). 

These authors hypothesize that reducing the size of the reference database to encompass only the 

sequences innate to the environment under study would lead to improved taxonomic classifications at lower 

taxonomic levels due to less competition among targets (Meola et al., 2019; Ritari et al., 2015). 

Moreover, the choice of 16S rRNA gene region may affect estimates of taxonomic diversity, leading to 

unreliable estimated proportions of different taxa between regions and the known true composition (Bukin et al., 

2019). One of the possible approaches to solving this problem is to use the experience of studying the same 

communities employing different 16S rRNA regions (Bukin et al., 2019). 

However, it’s not always necessary to detect as many taxa as possible and their real proportions. In some 

cases, as in the diagnosis of mastitis-causing pathogens, only a few species are correlated with the disease. Species 

such as Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, and Mycoplasma uberis are targets for mastitis-

causing pathogens and commercial kits for real-time PCR are available. Despite being accurate in their purpose, these 

kits detect only a few species, making the 16S sequencing approach more useful due to its greater ability to detect 

microbial diversity. 

Here, we hypothesize that in cases when only a few species or genera are needed to be detected, targeting a 

region of 16S rRNA gene marker that maximizes genetic diversity for these species would lead to a better taxonomic 

assignment. For that, we evaluate the in silico genetic diversity for the V2-V3, V4, and V5-V6 regions for the most 

common genera associated with bovine mastitis, and compare the results of the lowest and highest genetic diversity 

regions by Illumina sequencing. 

We have shown that choosing the region that maximizes the genetic diversity for species of interest leads to 

greater detection. We also provide a pipeline, publicly available at 

(https://github.com/clementeluangaspar/Derep16S)to target the region of interest based on a list of species or 

genera. 

 

2.2. Materials and Methods 

2.2.1. In silico genetic diversity evaluation of 16S rRNAtarget regions 

To determine the genetic diversity captured by different amplicons, we quantify the identity between each 

pair of sequences for the DAIRYdb 16S rRNA reference database for the V2-V3, V4, and V5-V6 regions. Moreover, 

we evaluate the number of unique sequences for the V2-V3, V4, and V5-V6 regions (For primer sequence, see Table 

1). Unique sequences were considered the ones with less than 100 percent identity compared to all the remaining 

sequences. 
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Table 1.Primer pairs used for in silico evalution of genetic diversity between V2-V3, V4 and V5-V6 regions. 

Gene Amplicon Primer Sequence 

16S rRNA 

V2-V3 
V2-V3F ANTGGCGGACGGGTGAGTAA 

V2-V3R GTGCCAGCAGCCGCGG 

V4 
V4F GTGNCAGCNGCCGCGGTAA 

V4R GGACTACNNGGGTNTCTAAT 

V5-V6 
V5-V6F ATTAGATACCCNGGTAG 

V5-V6R CGACAGCCATGCANCACCT 

 

To find unique sequences we construct a pipeline based on three main steps: primer mapping, trimming, 

and clustering. In the primer mapping step, a global alignment (Bodenhofer et al., 2015) is performed between the 

set of primers and the sequences present in the reference fasta. Alignments of both primers with 100 percent identity 

and expected positions are considered valid and the sequences are trimmed in the annealing positions, excluding the 

primer sequence.  

The trimmed sequences are clustered based on identity. Sequences that present 100 percent identity and 

have the same length are considered duplicated. All duplicate sequences are dereplicated and a new identification is 

created, providing the specie-level information of all sequences present in the cluster. All non-duplicate sequences 

are maintained. For this study, we considered regions with the lowest number of pairs of sequences with 100 percent 

of identity and the highest number of unique sequences to be the ones with the most genetic diversity. 

 

2.2.2. Samples 

We select 96 bulk tank milk samples obtained from herds located in São Paulo State, Brazil. Homogenized 

samples were collected from the tank before transportation of the milk to the industry. Samples were collected and 

stored in tubes with Bronopol® conservative with a concentration between 0,004% - 0,005%. The tubes were stored 

refrigerated for five days maximum until DNA extraction and library generation. 

 

2.2.3. DNA extraction and library generation 

For DNA extraction and library generation, 2mL of milk was transferred to a 2mL microcentrifuge tube 

and centrifuged at 14.000 rpm for 5 minutes. Supernatant and fat were discarded and the pellet was stored at -20ºC 

until DNA extraction. DNA extraction was done using MagMAX™ CORE combined with MagMAX™ CORE 

Mechanical Lysis Module (ThermoFisher™) according to the manufacturer’s instructions. 

The 16S Metagenomic Sequencing Library Preparation Guidelines (Illumina Inc., San Diego, CA) were 

performed for library construction. One library was prepared for each of the primer pairs (Table 2) to amplify 

hypervariable regions of the 16S rRNA gene by PCR. Equimolar quantities of each library were pooled and 

sequencing by MiniSeq High Output reagent kit (300 cycles) on the MiSeq platform (Illumina Inc., San Diego, CA). 
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Table 2.Primer pairs used for Illumina sequencing. 

Gene Amplicon Primer Sequence 

16S rRNA 

V2-V3 
V2-V3F ANTGGCGGACGGGTGAGTAA 

V2-V3R GTGCCAGCAGCCGCGG 

V4 
V4F GTGNCAGCNGCCGCGGTAA 

V4R GGACTACNNGGGTNTCTAAT 

 

2.2.4. Sequencing data analysis 

The DADA2, an open package implemented in the R language (Callahan et al., 2016), was used for 

modeling and error correction of amplicons, with the construction of ASVs (Amplicon Sequencing Variants). Studies 

have shown that in several simulated communities, DADA2 identified more real variants and produced fewer 

spurious sequences than other methods (Callahan et al., 2016). Filtering of fastq files was performed to remove 

sequences from the primers and low-quality bases at the end of the reads (Q<30). After filtering, the forward and 

reverse reads were joined to reassemble the complete fragment. 

The DADA2 algorithm makes use of a parametric error model, incorporating the different error rates in 

each amplicon dataset. The “learnErrors” method adjusts the error model from the data, alternating between 

estimating error rates and inferring sample composition until convergence. Through dereplication, the list of unique 

sequences was obtained, with relative abundances, and then the chimeras were removed. 

After initial data processing, taxonomies were assigned to each ASV using a DADA2 implementation of the 

Naive Bayesian classifier method (Wang et al., 2007), using the DAIRYdb reference database (Alishum, 2019) with 

minimum bootstrap confidence of 90. 

 

2.2.5. Statistical comparison of species diversity 

To compare community biodiversity, we calculated Shannon (Hil, 1973) Simpson (Hil, 1973) Chao1 (O’Hara, 

2005), and ACE index (Chiu et al., 2014) and tested for significant differences using a paired modification of the 

Wilkinson-Mann-Whitney nonparametric criterion (Bauer, 1972). 

To check if read counts were sufficient for characterizing community diversity we determined the correlation 

between sample sizes and diversity index (Shannon and Simpson) for V2-V3 and V4 regions by non-parametric 

Spearman correlation (Zar, 1972). All diversity indexes were measured at ASV-level by “estimate richness” function 

of the phyloseq R package (McMurdie and Holmes, 2013), and visualized by density plot using ggplot2 (Wickham, 

H. 2016). 

For qualitative comparison, we evaluate the species spectrum (shared and non-shared species) of the common 

species associated with bovine mastitis. We also evaluate the percentage of samples that detect these species and the 

abundance average of each species for V2-V3 and V4 regions.  
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2.3. Results and discussion 

2.3.1. In silico V2-V3 sequences shows higher genetic diversity compared to V4 and V5-V6 

sequences for common mastitis-causing pathogens 

For the evalution of the genetic diversity of common species associated with bovine mastitits, we select all 

sequences classified to species-level for genera Staphylococcus, Sterptococcus, Escherichia, Enterococcus, Klebsiella, Serratia, 

Corynebacterium, Trueperella and Mycoplasma available at DAIRYdb reference database.The selection of species was 

based on a list of species of the commercial kit real-time PCR VetMAXMastiType Multi Kit (ThermoFisher™). A 

total of 288 near-full 16S rRNA sequences were selected for 217 species. 

For primmer mapping step, we select a primer pair for the V2-V3, V4, and V5-V6 regions of the 16S rRNA 

gene (Table 1). Next, we align the sequence of forward and reverse primers for each of the 288 sequences, and 

trimmed the sequences based on annealing sites, regardless of primer sequence. Only sequences with 100% identity 

at the primer site were considered valid. For the evaluation of the annealing step, we construct a boxplot for the 

position of the alignment of forward and reverse primer (Figure 1) and compare the location according to a scheme 

of ribosome complex and 16S rRNA gene available at (Fukuda et al., 2016).  

As can be seen in Figure 1, we obtained reliable annealing for the forward and reverse primers for the 

V2V3, V4, and V5-V6 primers. Although we have variability in the annealing positions, this may be due to an 

incompleteness of the sequences, especially in the V1 region. The 288 sequences have a mean length of 1486 bases, 

with the first quarter of 1452 and third quarter of 1483, a minimum of 1051 and a maximum of 2230, so it is 

expected to have variability on the annealing position, however, the distance between forward and reverse primers 

must be similar. 

 

 

Figure 1.Boxplot with annealing position of forward and reverse primers for V2-V3, V4, V5-V6 regions with 

scheme of ribosome complex and 16S rRNA gene adapted from (Fukuda, K., 2016). The X-axis represents a 

position within the 16SrRNA gene, and the Y-axis, the V2-V3, V4, and V5-V6 primer pairs. The values were colored 

by primers pairs. The green color represents the values for V2-V3 regions, the red color represents the V4 regions 

and the orange represent the V5-V6 region. 
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For discarding inaccurate alignments, we select only trimmed sequences with length around the median 

length for the region. For the V2-V3 regions, we considered a length of 400 bases, 254 bases for V4, and 240 bases 

for the V5-V6 regions. We obtained a total of 273 sequences for the V2-V3 regions, 279 sequences for V4, and 277 

sequences for V5-V6. 

To evaluate the genetic diversity of the sequences in the DAIRYdb, we calculate the identity for each pair 

of sequences for V2-V3, V4, and V5-V6 regions using “pid” function of the Biostrings R package (Pagès et al., 

2022). After the construction of a matrix of identity for each pair of sequences, we determine the percentage of pairs 

with 100 percent identity. A total of 415 (0.55%) were obtained for V2-V3 regions, 1475 (1.89%) for V4 region and 

1011 (1.32%) for V5-V6 regions. To illustrate the genetic diversity we construct a heatmap of the identity value of 

each pair of sequences (Figure 2). 

 

 

Figure 2. Heatmap of the identity value for each pair of sequences from the 288 sequences of DAIRYdb reference 

database. The colored squares represent values with identity lower than 100. The green color were used for V2-V3 

regions, red color for V4 regions and orange color for V5-V6 regions. The black squares represent pairs of sequences 

with 100 percent identity. 

 

Moreover, we compare the remaining sequences based on identity and remove duplicated sequences using 

the function“unique”of r-base. A total of 239 unique sequences were obtained for the V2-V3 region, 170 unique 

sequences for the V4 region, and 189 unique sequences for the V5-V6 region. Based on these results we select the 

V2-V3 (highest genetic diversity) and V4 (lowest genetic diversity) regions for validation by 16S rRNA sequencing of 

milk samples. 

 

2.3.2. Taxonomical classification is greatly impacted by target region. 

 The sequencing of 16S rRNA fragments from the 96 raw milk samples yielded a total of 2,907,146 paired-

end reads (mean of 30,462 paired-end reads with sd (Standard deviation) of 4,072.48) for V2-V3 regions and 

7,757,884 paired-end-reads (mean of 80,811 paired-end reads with sd of 30,284) for V4 region.After quality control, 

denoising, and exclusion of chimeras we retained a total of 2,149,292 (73.93%) paired-end reads resolved in 16,418 

ASVs for V2-V3 regions and 6.977.815 (89.94%) paired-end reads resolved in 18,651 ASVs for V4 regions. 

To measure the community diversity of V2-V3 and V4 regions we calculate Shannon and Simpson indices 

and test for significant differences using a paired modification of the Wilkinson-Mann-Whitney-nonparametric test 

(Table 3). The values for Shannon diversity indices in all samples for both regions ranged from 0.3776 to 5.947, while 

the Simpson index ranged from 0.0935 (V2-V3 region) to 0.9953561 (V4 region). Testing with the Wilkinson-Mann-

Whitney index showed that the average of both indices differs significantly between the regions (Shannon p-value < 
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0.03, Simpson p-value < 0.03). Indicating that metabarcoding V4 16S rRNA region captures higher values for species 

diversity. 

 

Table 3 Comparison of community diversity indices. 

Community 

diversity Indicex 

Mean value for V2-V3 

region 

Mean value for V4 

region 

P value from Wikinson-

Mann-Whitney test 

Shannon index 0.89 0.90 0.03 

Simpson index 3.97 4.21 0.03 

Chao1 index 305.64 392.66 7.92e-05 

ACE index 303.44 392.77 5.73e-05 

 

In terms of microbial community resolution, an analysis of the Chao1 and ACE indices shows that, in most 

cases, the hidden species richness of the V4 region is higher than in the V2-V3 regions. For the V4 region, the 

Chao1 index varied from 46 to 815.5 (mean value of 392.66) while for the V2-V3 regions it varied from 8 to 764 

(mean value of 305.64). The Wilkinson-Mann-Whitney test confirmed that the V4 region for metabarcoding studies 

will lead to an overall greater resolution (Chao1 p-value <.7.925e-05, ACE p-value < 5.73e-05). More details of 

diversity indices distribution can be seen in Figure 3. 

 

 

Figure 3.Density plot for diversity indices of the V2-V3 and V4 regions. The vertical line represents the mean value 

for each of the regions. Green color represents V2-V3 region. Red color represents V4 region. 

 

To test if these results were biased by read counts, we have done a Spearman correlation test between read 

counts and diversity indices (Simpson and Shannon). Spearman correlation analysis shows that there is no correlation 

between diversity indices and read counts (Table 4). If the coverage of the community were insufficient, diversity 

indices would increase with the read count and there would be a significant positive (r > 0) correlation between these 

values. 
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Table 4.Correlation between diversity indices (Shannon and Simpson) and read counts. 

Community diversity 

Indices 
16S rRNA region Correlation coefficient 

P value from 

Spearman’s rank 

correlation test 

Shannon index V2-V3 0.01 0.99 

Shnanon index V4 -0.01 0.94 

Simpson index V2-V3 0.02 0.84 

Simpson index V4 -0.06 0.55 

 

To investigate the qualitative differences between the V2-V3 and V4 regions (considering ASVs that were 

classified at species-level), we assign taxonomy to each ASVs, using the “assignTaxonomy” function of the dada2 R 

package with DAIRYdb as reference database (min bootstrap confidence of 90). 

A total of 7.474 ASVs were classified at species-level for V2-V3 regions and 10,168 ASVs for V4 regions. 

After merging ASVs with the same taxonomy at the species level, we obtained 1,127 species for the V2-V3 regions 

and 1.096 species for the V4 region. Among the species identified, 694 (45.38%) were common to both regions, 433 

(28.32%) were specific to V2-V3 regions and 402 (26.30%) for V4 region (Figure 4). 

 

 

Figure 4.Taxonomic assignment spectrum for ASVs identified at species-level for regions V2-V3 and V4 regions. 

The X-axis represents the seven taxonomic ranks, going from Kingdom to Species. The Y-axis represents the 

comparison of the assignments between V2-V3 and V4 regions. Area colored by blue represents shared assignments 

betweens regions, while colored green represents assignments specific to V2-V3 regions and red for assignments 

specific to V4 region. 

 

It’s interesting to note that this difference is most prominent at higher taxonomic ranks (higher than genus), 

as can be seen in Figure 4. V4 primers are known to be the most “universal” primer, with an exception for only a 

few specific taxons (Mao et al., 2012), so, as expected, it has a greater capacity for coverage of more taxa present in 

the sample. However, when lowering the taxonomic ranks we see that this does not remain for genus and species 

rank. This may be explained by some reasons. 

As discussed in the Bukin, 2019, we can consider the possibility that the dissimilarity in species spectra 

detected by different 16S rRNA fragments is related to primer specificity and PCR artifacts (Wang et al., 2009). 

Primers with lower specificity would disrupt the distribution uniformity and decrease the Shannon indices. 
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In some cases, it may happen that for some species, genes were not amplified at all. And this is what we 

find in our results. When we look at the results of higher taxonomic ranks for the V2-V3 and V4 regions we find 7 

phyla that were not detected at all (e.g.ChlamydiaeandGracilibacteria) for the V2-V3 region. Moreover, the length of the 

regions may also affect the assignment at lower taxonomic ranks. The larger the region, the more likely there is a 

mutation that discriminates against the taxons. 

Another interesting reason, also discussed in the Bukin, 2019, is the biological function of these fragments. 

The V2 region is responsible for maintaining the structural stability of the 16S rRNA gene, while the V4 region takes 

part in the translation process, responsible for binding tRNAs and interacting with the 23S rRNA gene (Van de Peer 

et al., 1999, Schluenzen et al., 2000, Morosyuk et al., 2001). So, it’s expected that the V4 region will accumulate 

mutation at a slower pace compared to the V2 region. 

Some studies compared diversity estimates between different regions of the 16S rRNA gene (Bukin et al., 

2019, Fadeev et al., 2021). However, differences in the degenerated bases in primers sequence, sequencing platform, 

type of samples, and framework applied may impair direct comparison to our study.  

Finally, to check if our initial hypothesis was correct, we compare the assignment for mastitis-causing 

pathogens between V2-V3 and V4 regions. We compare the species-level assignment forStaphylococcus 

aureus,Streptococcus agalactiae,Streptococcus dysgalaciae, Streptococcus uberis, Escherichiacoli,Klebsiellaoxytoca,Klebsiella pneumonia, 

Serratiamarcescens,Corynebacterium bovisandMycoplasma bovis. 

For V2-V3 we were able to detect Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, 

Corynebacterium bovis, Streptococcus uberis, and Mycoplasma bovis, while for the V4 region we were able to detect only 

Streptococcus dysgalactiae and Mycoplasma bovis. Details of abundance percentage for each species can be found in Figure 

5. 
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Figure 5.Abundance and prevalence of mastitis-causing pathogens for 96 raw milk samples sequencing for V2-V3 

and V4 regions by Illumina sequencing. The Y-axis for V2-V3 regions ranged from 0.00 to 1.00. The Y-axis for V4 

regions ranged from 0.00 to 0.10. 

 

The sequencing of the V2-V3 region was not only able to detect a higher number of species (6 species) 

associated with bovine mastitis, but it also detected mastitis-causing pathogens in a larger number of samples (76 

samples) compared to the V4 region (9 samples) with an important difference between the abundance estimates. 

All these results show the potential of sequencing 16S rRNA V2-V3 fragment to be used as a tool for 

diagnostic of mastitis infection. Although it’s not properly determined if the abundance estimates are accurate. It can 

increase the knowledge of the microbiome profile of dairy farms qualitatively. To the best of our knowledge, this is 

the first work that focuses on the target 16S rRNA region that maximizes the genetic diversity of mastitis-causing 

pathogens for raw bovine milk samples. 

Some disadvantage for the V2-V3 region is the lack of primer specificity compared to a more “universal” 

primer, such as V4. However, this can be partially overcome by a more detailed study of the V2-V3 primer region for 

raw bovine milk samples. A possible approach is to evaluate targeting bases to be degenerated, increasing the 

coverage of the primer for prokaryote species. We also acknowledge that diagnosis of mastitis-causing pathogens it’s 

not the only reason for microbiome profiling of raw bovine milk and more studies need to be done to account for a 

diversity of purposes.  
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2.4. Conclusions 

The goal of this work was to find a 16S rRNA region that maximizes the detection of mastitis-causing 

pathogens on raw bovine milk samples. For that, we evaluate in silico the genetic diversity for V2-V3, V4, and V5-

V6 regions, and find V2-V3 as a potential region. To validate our in silico results wth real data, we sequenced 96 raw 

bovine milk samples for the V2-V3 and V4 regions and compared the results. The result shows that although the V4 

region was better to determinate the microbial diversity, it lacks taxonomic assignment at lower ranks, such as genus 

and species. Moreover, the V2-V3 region was able to detect in a large number of samples, a greater number of 

species correlated with bovine mastitis, with more abundance estimation. Here we demonstrated that targeting a 

region that maximizes genetic diversity according to the purpose of the study can have an important impact on the 

results. 
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3. MACHINE LEARNING APPLICATION FOR MASTITIS-CAUSING PATHOGEN DETECTION ON 

INDIVIDUAL SAMPLES OF RAW BOVINE MILK 

 

Abstract 
The correct identification of mastitis-causing pathogens is an important step in management of dairy farms. 

However, due to costs, techniques such as qPCR and 16S rRNA sequencing remain unfeasible for some herds. 
Machine learning methods have been shown as an attractive alternative. New studies focusing on the detection of 
clinical and subclinical mastitis highlight the potential of applied machine learning methods to the management of 
mastitis in dairy farms. Few studies of machine learning models were applied to detection mastitis-causing pathogen. 
In this work, we evaluate the performance of three machine learning methods to detect the most abundant mastitis-
causing pathogen in individual raw milk bovine samples integrating data from milk composition and 16S rRNA 
sequencing. For abundance greater than 3% in individual samples, an accuracy of 100% for Escherichia coliand 86% 
for Staphylococcus aureuswere achieved. These results show that not only subclinical and clinical mastitis can be 
detected by machine learning methods, but also some mastitis-causing pathogens  

 

3.1. Introduction 

Milk is a widely consumed food, both in its in natura form and its products. The milk contains water and 

nutritional compounds, such as vitamins, minerals, and macronutrients. The milk has about 0.9% of vitamins and 

minerals, such as calcium, phosphorus, sodium, potassium, B vitamins (B2, B6, and B12), vitamin A, and 12% of 

macronutrients, with 4% protein, 4.2% fat, and 4.6% carbohydrates (Mansoon, 2008). The content of the nutritional 

compounds can be affected by several factors such as diet, diseases, stage of lactation, age of the animal, and breed 

(Walstra, 1999). 

In addition to water and nutritional compounds, microorganisms are commonly found in milk. Due to its 

composition rich in nutrients, water, and neutral pH (6.2 to 6.8), they obtain the vital media for their proliferation 

(Quigley et al. ., 2013b; Vithanageet al., 2016). Specific profiles of the microbiota of milk can pose dangers to human 

health if consumed raw. Moreover, some species directly impact the profitability of producers, technological 

processes of food products, and the quality of the final product directed to the consumer (Maréchal et al., 2011; 

Quigley et al., 2013b). 

Raw milk can be a vehicle for certain microorganisms that cause diseases in humans, such asBrucella spp. 

(Brucellosis) (Galinska and Zagorski, 2013),Listeria monocytogenes(Listeriosis) (Swaminathan and Gerner-Smith, 

2007),andMycobacterium tuberculosis(Tuberculosis) (Russel, 2001). In addition, microorganisms of the 

generaBacillusandClostridiumcan form spores and become resistant to heat treatments, leading to a late deterioration of 

dairy products (Scheldeman et al., 2006). Moreover, psychrotrophicbacterias are capable of producing and releasing 

thermoresistant proteolytic and lipolytic enzymes, which compromise the quality of the dairy product even after heat 

treatments (Ribeiro Junior et al., 2017). 

The disease in the mammary gland with greater importance for milk production is mastitis (Watts, 1988). 

Mastitis is considered to be the most costly disease in the dairy industry in the world, leading to economic losses of 

up to 26 billion dollars annually (www.dairy.ahdb.org.uk), mainly due to reduced milk production, reduced longevity 

of animals, changes in milk quality, labor costs, diagnosis and treatments (Oliveira et al., 2013). 

Mastitis can be classified into two types; the clinic, when the animal presents physical symptoms, such as 

the presence of pus or lumps in the milk, redness, and swelling of the breasts; and the subclinical, where there are 
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alterations in the quality of the milk without the presence of physical symptoms in the animal. Data presented by 

Marcelo Busanello (2017) show that of the 517 herds studied in five Brazilian states, 46% of the animals had 

subclinical mastitis, with an incidence of 0.17 new cases per month. 

Clinical mastitis can be detected by inspecting changes in the appearance of milk, local signs in the 

mammary gland, such as swelling, pain, redness, or signs in the animal, such as fever, apathy, anorexia, and 

dehydration. Subclinical mastitis, on the other hand, does not show obvious signs of infection and requires specific 

methods to detect. The most used technique for the determination of this type of mastitis is the evaluation of 

somatic cell count (SCC) (Sharma et al., 2011). Somatic cell counts are mainly formed by leukocytes (neutrophils, 

macrophages, lymphocytes, erythrocytes) and epithelial cells, serving as a useful predictor of intramammary infection 

(Sharma et al., 2011). 

However, the somatic cell count can’t identify the causative agent. Earlier detection of the pathogen 

involved can lead to a better choice of treatment method, antibiotic selection, and better management strategies to 

control the spread of disease in the case of a contagious organism (Ashraf and Imran, 2018). To detect 

microorganisms, methods based on culture medium and guide antibiotic treatment were developed. However, 

approximately 25% of samples from clinical mastitis are culture-negative or do not present significant pathogens 

(Bradley et al., 2007). Likewise, more than 30% of samples from cows or udders with high SCC were reported to be 

culture-negative (Bradley et al., 2007). In addition, traditional culture and microbiological identification by 

biochemical tests present some other limitations, such as analysis time, differences in reliability between tests from 

different laboratories, and a large number of erroneously identified mastitis bacteria, and the impossibility of 

identifying microorganisms at the strain level. (Paszynska-WesolowskaandBartoszcz, 2009; Gunasekea et al., 2009). 

Another possibility of identification is through the use of the PCR technique. In the last decade, the 

amplification technique has evolved towards quantitative PCR (qPCR) (Masco et al., 2007; Malorny et al., 2008; Le 

Dréan et al., 2010) and the ISO 2012 and 2013 guidelines describe the use of qPCR for the detection of 

microorganisms in food. In this context, the molecular identification of microorganisms can replace the conventional 

characterization, based on clonal cultures, providing a more precise, sensitive and less laborious genomic definition, 

but with a high cost. 

The progress of next-generation sequencing (NGS) technologies and the consequent reduction in 

sequencing costs has revolutionized human medicine and can add value to agribusiness contributing to the solution 

of several problems. These technologies allow the study of highly complex biological samples, enabling the 

taxonomic and functional characterization of microbial communities that practically colonize all ecological niches. 

However, the use of large-scale DNA sequencing to identify mastitis-causing pathogens is restricted to a few reports 

in the academic literature comparing healthy and infected udders(Porcellato et al., 2020). Thus, the use of sequencing 

data from the 16S rRNA hypervariable regions of the 16S gene for the characterization of the microbiota has been a 

great bet for the future development of a diagnostic tool for the disease in its clinical and subclinical phases. 

Compared to the multiplex qPCR molecular methodology, the sequencing methodology is not limited to the number 

of previously selected pathogens, but it is also expensive. 

The standard control of the bovine herd occurs by the evaluation of the somatic cell count in the milk tank. 

In Brazil, this practice is mediated by Normative Instructions 76 and 77, of the Ministry of Agriculture and Supply 

(MAPA), which determine the maximum limits for commercialization of refrigerated raw milk in the dairy industry. 

However, the ideal would be to perform individual weekly control of SCC, as well as the identification of 
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microorganisms that cause mastitis in all animals with mastitis and with high SCC counts. Unfortunately, this practice 

comes at an unfeasible cost for most farms. 

Some advances have been made in low-cost alternatives for the detection of clinical and subclinical mastitis 

using machine learning methods. As stated by Bobbo 2021, different studies have applied machine learning 

techniques to diagnose mastitis. Some studies relied on the presence of high milk SCC (Ebrahimie et al., 2018) or 

mastitis pathogens(Esener et al., 2018), while othershave established SCC-independent models for mastitis prediction 

using alternative milking traits (e.g., milk volume, fat, protein, lactose) (Ebrahimi et al, 2019). However, when the 

mastitis-causing pathogen detectionwas developed, it was only for a few species or genera (e.g. strains of Streptococcus 

uberis in Esener et al., 2018), and a broader detection has not yet been developed. 

Due to this, the present work aims to integrate tankmilk composition traits to 16S rRNA sequencing data to 

be able to predict the most abundant mastitis-causing pathogen present in individual sample milk.For that, we 

applied 3 machine learning methods to 442 individual raw bovine milk samples that had been previously sequenced 

for 16S rRNA V4 regions, and evaluate the accuracy ofthe prediction of Staphylococcus aureus, Escherichia coli, 

Streptococcus agalactiae, and Streptococcus dysgalactiae, based on fat, protein, lactose, total solids, defatted dry extract, SCC 

and total bacterial countmeasured for tank samples obtained in the same week. 

 

3.2. Materials and Methods 

3.2.1. Samples 

We select 442individual milk samples and 9 (one for each month) tank milk samples obtained from 2 herds 

located in São Paulo State, Brazil. (282 individual samples from herd A for June, July, October, November of 2019, 

and 160 samples from herd B for May, July, August, September of 2019, and January of 2020). Samples were 

collected and stored in tubes with Bronopol® conservative with a concentration between 0,004% - 0,005%. The 

tubes were stored refrigerated for five days maximum until DNA extraction and library generation. 

 

3.2.2. Somatic cell count, total bacterial count and composition analysis 

The analyzes of somatic cell count (CCS) total bacterial count (CBT), fat, protein, lactose, total solids (TS) 

and defatted dry extract (DDE) were performed by flow cytometry methodology according to ISO 13366-2:2006/ 

IDF 148-2:2006 / ISO 16297: 2013/ IDF 161: 2013 by Clínica do Leite. 

The somatic cell count and the total bacterial count was measured for all individual samples while fat, 

protein, lactose, total solids and deffated dry extract was measured for the tank milk samples collected on the same 

week of individual samples.  

 

3.2.3. DNA extraction, library preparation and sequencing 

For storage, 2 ml aliquots were made in 2 ml eppendorf tubes and subjected to centrifugation for 5 minutes 

at 14,000 rpm. After centrifugation, fat and supernatant were discarded and the pellet stored at -20º C until DNA 
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extraction. DNA extraction was performed according to the protocol of the MagMax CORE Nucleic Acid 

Purification kit together with the mechanical lysis module (both from Applied Biosystems, Foster City, CA, USA), in 

the KingFisher equipment (ThermoFisher). The quality and quantity of the extracted DNA was evaluated by 1% 

agarose gel. The extracted DNA was stored in a freezer until use. 

The extracted DNA was subjected to library construction as suggested by the Illumina protocol for 16S 

libraries. The chosen region of the 16S gene for amplification was accordingly to works published by Quigley et al 

(2013a) and Bonsaglia et al (2017). In Quigley’s and Bonsaglia’s works they used the V4 region to identify the 

microbial profile of bovine milk. 

The Illumina protocol is based on two PCR reactions. The first with primers 515B/806B, which are 

universal locus-specific primers for the V4 hypervariable region of bacteria. The second PCR consists of the ligation 

of Illumina adapters that allow the multiplexing of the samples and the hybridization of the sequences in the 

sequencing slide. After being purified, the libraries were pooled with equimolar concentrations. The pool was 

quantified in qPCR and proceded to the denaturation and sequencing steps in MiSeq System equipment (Illumina, 

San Diego, CA, USA). 

 

3.2.4. Analysis of 16S sequencing data 

The DADA2 program, an open package implemented in the R language (Callahan et al., 2016), was used 

for modeling and error correction of amplicons, with the construction of ASVs (Callahan et al., 2016). Filtering of 

fastq files was performed to remove sequences from the primers and filter the ends due to quality decay (Q<30). 

After filtering, the forward and reverse reads were joined to reassemble the complete fragment. 

The DADA2 algorithm makes use of a parametric error model, incorporating the different error rates in 

each amplicon dataset. The “learnErrors” method adjusts the error model from the data, alternating between 

estimating error rates and inferring sample composition until convergence. Through dereplication, the list of unique 

sequences was obtained, with relative abundances, and then the chimeras were removed.Taxonomies were assigned 

to each ASVs (Amplicon Sequencing Variants) using a DADA2 implementation of the Naive Bayesian classifier 

method(Wang et al., 2007)wirhDAIRYdb reference database (Alishum, 2019) (min bootstrap confidence of 90).  

Afterwards, the data generated by the DADA2 program were imported into the phyloseq program 

(Murdie& Holmes, 2013), also implemented in R, for tax agglomeration and abundance estimation at species-level 

taxomical rank. 

 

3.2.5. Machine learning methods 

In machine learning, the term "learning" refers to running a computer program to induce a model using 

training data. Machine learning techniques use statistical theory in building computational models to make inferences 

from a sample. The learning process consists of several steps. In the first step, we integrate and merge different 

sources of information into a single format (e.g, data from an experiment and respective metadata). In the second 

step, it is necessary to select, clean, and transform the data. To perform this step, we need to eliminate or correct the 

data, as well, as decide the strategy to impute the missing data (if present). In this step, we can also select the relevant 

variables. In the third step, we take into account the objectives of the study to choose the most appropriate analysis 
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for the data (regression, for quantitative prediction, or classification for qualitative prediction). Once the model is 

obtained, it must be evaluated and, if necessary, return to the previous steps for a new iteration. The chosenmodel is 

then used to solve the problem (Larranaga, P. et. al., 2006). 

Topredictmastitis-causing pathogens we used the caret v.6.0 package (Kuhn, M. et al., 2020), by screening 

threemachine learning techniques of classification task (Conditional Random Forests, Naïve Bayes, andBoosted 

Logistic Regression). The goal of the classification task was to determine the most abundant mastitis-causing 

pathongen present in the individual raw milk sample. The effectiveness of the prediction was evaluated through the 

overall accuracy and accuracy for each pathogen. 

To construct the input dataset we combine the relative abundance for Staphylococcus aureus, Escherichia coli, 

Streptococcus agalactiae, and Streptococcus dysgalactiae, with values from milk traits composition into a “data.frame”. Each 

sample has its unique somatic cell count and total bacterial count and shared the fat, protein, lactose, total solids and 

defatted dry extract values from its tank’s sample. Following, we determine the most abundant specie for each 

sample (from pre-selected species) and used this information as a predicted variable in the machine learning 

methods. Samples with zero relative abundance for all selected species were labeled as “None”. To differentiate the 

ability of the model to detect low relative abundance and high relative abundance, we created a second predicted 

variable, considering only relative abundances higher than 3%. Samples that did not meet these criteria were labeled 

as “None”. 

To start the machine learning analyzes, we divided the total sample set into two subsets, the training subset 

and the validation subset, in ratio of 1:4. The learner’s efficiency (parameter tuning) was optimized through cross-

validation. Once the model was optimized we validated and calculate the accuracies for the validation subset. 

 

3.3. Results and discussion 

The sequencing of 16S rRNA fragments from the 451 raw milk samples yielded a total of 25,497,249 paired-

end reads (mean of 57,686 paired-end reads with sd (Standard deviation) of 25,510). After quality control, denoising, 

and exclusion of chimeras we retained a total of 19,829,789 (77.77%) paired-end reads resolved in 50,660 ASVs.To 

assign taxonomic to each ASV we used the Naïve Bayes Classifier method implemented in the DADA2 R package 

with DAIRYdb as a reference dataset (min bootstrap confidence of 90). After taxon agglomeration and relative 

abundance estimates, we retrievea total of 1,762 species. 

Following the construction of input data (milk trait composition and relative abundance for selected 

species),we trained the models on 356 samples and tested them on 86 samples to identify the most prevalent 

mastitis-causing pathogen using milk traits composition values.Theperformances of each machine learning method 

are detailed in Table 1. 
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Table 1. Performance metrics on external validation set.  

Algorithm Variables Abundance+ Kappa E.coli² S.aureus³ S. dysgalactiae* S.agalatiae** All¹ 

Naïve Bayes 

SCCTBC 
0% 0.08 0.07 0.94 0.00 0.23 0.44 

3% 0.04 0.19 0.00 0.00 0.00 0.51 

Full 
0% 0.21 0.71 0.51 0.00 0.15 0.48 

3% 0.71 1.00 0.87 0.00 0.14 0.81 

Conditioal 

Random 

Forest 

SCCTBC 
0% 0.09 0.32 0.77 0.00 0.08 0.42 

3% 0.12 0.19 0.06 0.00 0.00 0.55 

Full 
0% 0.29 0.57 0.86 0.00 0.15 0.55 

3% 0.77 1.00 0.86 0.00 0.00 0.85 

Logic Boost 

SCCTBC 
0% 0.01 0.14 0.26 0.00 0.08 0.20 

3% 0.17 0.44 0.06 0.00 0.00 0.54 

Full 
0% 0.22 0.43 0.40 0.00 0.08 0.38 

3% 0.72 1.00 0.81 0.00 0.00 0.83 

 SCC/TBC – Models construct considering only somatic cell counts and total bacterial counts 
 Full – Models construct considering somatic cell counts, total bacterial counts, fat, protein, lactose, total solids and defatted dry extract. 

 0% - Labels representing the most abundant mastitis-causing pathogens with relative abundance greather than 0 percent. 
 3% - Labels representing the most abundant mastitis-causing pathogens with relative abundance greather than 3 percent. 

 ¹Overall accuracy 
 ² Accuracy for classification of Escherichia coli 

 ³ Accuracy for classification of Staphylococcus aureus 
 * Accuracy for classification of Streptococcus dysgalactiae 

 ** Accuracy for classification of Streptococcus agalactiae 

 

The best configuration for mastitis-causing pathogen was achieved using Conditional Random Forest 

models for full milk trait composition (kappa value of 0.77 and overall accuracy of 0.85) with abundance greater than 

3%. In all scenarios, it wasn’t possible to detect Streptococcus dysgalactiae and Streptococcus agalactiae. This may be due to 

an underrepresentation of this species 0inthe training and validation set. In training set, we had 30 samples for 

Streptococcus agalactiae and 6 samples for Streptococcus dysglactiae, while in the validation set we had 7 samples for 

Streptococcus agalactiae and 1 sample for Streptococcus dysgalactiae. 

Furthermore, we obtained a good classification accuracy of Escherichia coli(100%) and Staphylococcus 

aureus(86%). In Sharifi 2018 they were able to detect with 83% accuracy (on average), Escherichia coli induced mastitis 

using gene expression data of bio-signature genes (e.g ZC3H12A, CXCL2).Whileinteresting in highlighting genes 

related to immune response and inflammation, transcriptomic profile it’s too expensive to be used as a tool for 

mastitis diagnosis in dairy farms. 

Although the models were not able to detect all selected species, these results are relevant.Staphylococcus 

aureus mastitis is known to have a lower cure rate for treatments with antibiotics (Barkema et al, 2006) and cause 

infections that can persist through lactation with antibiotic pressure (Brouilette et al, 2004). Moreover, Staphylococcus 

aureushas the ability to invade epithelial cells (Bardiau et al, 2014) and form small colony variants (SCVs) in dairy 

cows with chronic intramammaryS. aureus infection history (Attala et al, 2008), leading to a more challenging control, 

compared to Streptococcus agalactiae, that has a cure rate above 90% with antibiotic treatments (Barkema et al, 2006). 

As discussed in Barkema 2006, for successful implementation of mastitis control program, it is important 

to identify Staphylococcus aureus-infected cows to isolate the animal and to minimize the opportunity for spread of the 

pathogen in the herd. Some antibiotic can be applied, such as penicillin; however the cure levels will depende on 

host-levels factors, patrhogens factors and strains with antibiotic resistance (Barkema et al, 2006). To control 

Escherichia-coli-infected cows some scientific evidences for fluoroquinolones and cephalosporins are available and 

antimicrobial resistance is generally not a limiting factor for the success of these treatments. (Suojala et al, 2013). 
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Our results show the potential of using compositional milk traits for detecting mastitis-causing pathogens 

with machine learning methods. However, some limitation needs to be pointed out. Our study was conducted based 

on two herds located in São Paulo, Brazil with a dataset of 442 individual raw milk samples. The dataset size was 

considerably shorter compared to other studies (> 18,000 samples for Bobbo et al., 2021) with fewerfeatures (> 250 

features for Hyde et al., 2020) and the compositional values (e.g. fat and protein) was measured for the tank and not 

individual samples. In addition, the 16S rRNA sequenced region may not be the most appropriateforthe detection of 

mastitis-causing pathogens, as described in Chapter 01 (In silico genetic diversity evaluation of 16S rRNA regions 

for pre-selected species can improve taxonomic assignement). All of these limitations may impact the accuracy and 

the generalization of the models for other herds. So, more studies need to be conducted with larger sample size, a 

greater number of herds,individual compositional values,and a different 16S rRNA target region. 

 

3.4. Conclusion 

The goal of this work was to evaluate the performance of three machine learning methods for mastitis-

causing pathogen detection. We select the species Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, 

and Escherichia cole to be detected. For relative abundance greater than 3% we were able to detect Staphylococcus aureus 

with 86% of accuracy and Escherichia coli with 100% of accuracy. These results can assist dairy farms, since 

Staphylococcus aureus is one of the most complicated species associated with bovine mastitis. It doesn’t respond well to 

antibiotic treatments, and has a long-lasting infection in herds. We hope that our work highlight the potential of 

using machine learning methods for detection of mastitis-causing pathogens and more studies are carried out to 

construct a more robust and generalized model. 
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4. CONCLUSIONS 

The goal of this work was to explore mastitis-causing pathogen detection on raw milk bovine individual 

samples. For that, first we find a 16S rRNA region that maximizes the detection of mastitis-causing pathogens on 

raw bovine milk samples and validate these results by sequencing. Second, weevaluate the performance of three 

machine learning methods for mastitis-causing pathogen detection. 

We find that although the V4 region was better to determinate the microbial diversity, it lacks taxonomic 

assignment at lower ranks, such as genus and species. Moreover, the V2-V3 region was able to detect in a large 

number of samples, a greater number of species correlated with bovine mastitis, with more abundance estimation. 

Moreover, using Conditional Random Forest for relative abundance greater than 3% we were able to detect 

Staphylococcus aureus with 86% of accuracy and Escherichia coli with 100% of accuracy. We hope that our work highlight 

the potential of using machine learning methods for detection of mastitis-causing pathogens and more studies are 

carried out to construct a more robust and generalized model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


