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Walt Disney 

 

“Courage doesn’t always roar. Sometimes courage is the little voice at the end of the day that says, ‘I’ll 

try again tomorrow”. 

Mary Anne Radmacher 

 

  



7 
 

SUMMARY 
 

RESUMO ............................................................................................................................ 9 

ABSTRACT ....................................................................................................................... 10 

LIST OF ABBREVIATIONS ................................................................................................. 11 

1. INTRODUCTION........................................................................................................... 13 

REFERENCES .................................................................................................................... 15 

2. ESTIMATION OF BREEDING VALUES USING SPARSE SNP PANELS AND IMPUTED 
WHOLE-GENOME SEQUENCE DATA IN BROILER CHICKENS ........................................... 19 

ABSTRACT ....................................................................................................................... 19 

2.1. INTRODUCTION ....................................................................................................... 19 

2.2. MATERIALS AND METHODS ..................................................................................... 21 

2.2.1 POPULATION AND PHENOTYPES ........................................................................ 21 

2.2.2 GENOTYPING ...................................................................................................... 22 

2.2.3 IMPUTATION ....................................................................................................... 22 

2.2.4 PREDICTION ........................................................................................................ 23 

2.2.5 ASSESSMENT OF ACCURACY AND BIAS ................................................................. 25 

2.3. RESULTS ................................................................................................................... 26 

2.3.1 DESCRIPTIVE RESULTS ........................................................................................... 26 

2.3.2 PREDICTION ........................................................................................................... 27 

2.4. DISCUSSION ............................................................................................................. 32 

2.4.1 MAF DISTRIBUTION ............................................................................................... 32 

2.4.2 HERITABILITY FOR PEDIGREE-BASED AND GENOMIC MODELS ............................. 33 

2.4.3 CORRELATION BETWEEN EBV AND GEBV ............................................................. 34 

2.4.4 REGRESSION COEFFICIENTS ................................................................................... 35 

2.4.5 PREDICTIVE ABILITY ............................................................................................... 36 

2.5. CONCLUSIONS.......................................................................................................... 37 

REFERENCES .................................................................................................................... 38 

3. GENOMIC PREDICTION USING HIGH DENSITY-PANEL AND IMPUTED WHOLE-GENOME 
SEQUENCE DATA WITH DIFFERENT GENOMIC RELATIONSHIP MATRICES IN BROILER 
CHICKENS ........................................................................................................................ 45 

ABSTRACT ....................................................................................................................... 45 

3.1. INTRODUCTION ....................................................................................................... 45 

3.2. MATERIALS AND METHODS ..................................................................................... 47 



8 
 

 
 

3.2.1 POPULATION AND PHENOTYPES ........................................................................ 47 

3.2.2 GENOTYPING ...................................................................................................... 48 

3.2.3 IMPUTATION ....................................................................................................... 49 

3.2.4 PREDICTION ........................................................................................................ 50 

3.2.5 ASSESSMENT OF ACCURACY AND BIAS .............................................................. 51 

3.3. RESULTS ................................................................................................................... 52 

3.3.1 IMPUTATION ACCURACY .................................................................................... 52 

3.3.2 MAF DISTRIBUTION ............................................................................................... 52 

3.3.3 DESCRIPTIVE RESULTS ........................................................................................... 52 

3.3.4 PREDICTION ........................................................................................................... 53 

3.4. DISCUSSION ............................................................................................................. 56 

3.4.1. GENOMIC HERITABILITY ....................................................................................... 57 

3.4.2 CORRELATION BETWEEN DGV ............................................................................... 58 

3.4.3 REGRESSION COEFFICIENTS ................................................................................... 58 

3.4.5 PREDICTIVE ABILITY ............................................................................................... 59 

3.5. CONCLUSION ........................................................................................................... 60 

REFERENCES .................................................................................................................... 60 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



9 
 

RESUMO 

Enriquecimento de painéis de genotipagem para a seleção genômica de características 

especiais em frango de corte  

O melhoramento genético modificou consideravelmente a produção de frango no 
Brasil e no mundo. No entanto, o intensivo processo de seleção ao longo dos anos trouxe 
consequências negativas em aves, como por exemplo, o aumento na deposição de gordura 
abdominal nos animais, resultando em dificuldades de processamento e depreciação do 
produto final. Nos últimos anos, os avanços tecnológicos nas áreas de genética molecular e 
bioinformática fizeram com que a seleção genômica (SG) com o uso de marcadores 
moleculares (Single Nucleotide Polymorphisms - SNP), e mais recentemente o 
sequenciamento completo do genoma (Whole-Genomic Sequencing - WGS), se tornasse uma 
importante ferramenta para aumentar o ganho genético no melhoramento animal, 
especialmente para características complexas e de difícil mensuração. Os objetivos deste 
trabalho foram estimar os valores genéticos e comparar as predições genômicas utilizando 
provenientes de um painel de SNP de alta densidade (HD - 600K) e  de dados do 
sequenciamento completo do genoma (WGS), por meio de diferentes densidades de 
marcadores. Foram utilizadas informações de órgãos (coração, fígado, moela e pulmões) e 
carcaça (peito, coxa, sobrecoxa) de 2.000 aves provenientes da população referência TT 
pertencente ao Programa de Melhoramento Genético de Aves da EMBRAPA Suínos e Aves. 
Posteriormente, as predições genômicas foram realizadas utilizando os modelos PBLUP 
(Pedigree-Based BLUP), ssGBLUP (single-step Genomic BLUP) e BayesC em várias densidades 
de SNP e variantes imputadas a partir da sequência do genoma completo. As predições 
genômicas foram melhores quando as informações genômicas foram adicionadas nas 
análises. No entanto, nossos resultados não mostraram nenhum benefício no uso de dados 
WGS em comparação aos dados do HD quando as abordagens ssGBLUP ou BayesC foram 
aplicadas. Além disso, o uso de um painel de baixa densidade (~74.000 SNPs) pode fornecer 
resultados significativos a um baixo custo. 

Palavras-chave: Frango de corte, Seleção genômica, Valor genético genômico, SNP, 
Sequenciamento 
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ABSTRACT 

Enrichment of genotyping panels for the genomic selection of special traits in broiler 

chicken 

Traditional animal breeding programs have considerably modified chicken production 
in Brazil. However, the intensive selection process over the years brought negative 
consequences in poultry production, such as increased of the abdominal fat deposition, 
resulting in difficulties in the industrial processing and depreciation of the final product. In 
recent years, technological advances in molecular genetics and bioinformatics fields have 
made genomic selection (GS), using molecular markers (Single Nucleotide Polymorphisms - 
SNP), and more recently the whole-genome sequencing (WGS), an important tool to increase 
the genetic gain in animal breeding, especially for complex traits and traits which are difficult 
to measure. The aims of this work were to estimate the genetic values and compare the 
genomic predictions using a high-density SNP panel (HD - 600K) and whole-genome 
sequencing (WGS) dataset through different marker densities. Organs (heart, liver, gizzard and 
lungs) and carcass (breast, thigh, drumstick) information of 2,000 animals derived from a TT 
broiler line belonging to the Animal Breeding Program from Embrapa Swine and Poultry were 
used in further analysis. Subsequently, genomic predictions were performed using pedigree-
based BLUP (PBLUP), single-step genomic BLUP (ssGBLUP) and BayesC models using various 
densities of SNP and variants imputed from whole-genome sequence. Genomic predictions 
were better when the genomic information was added in the analyses. However, our results 
showed no benefit of using WGS data compared to HD array data when ssGBLUP or BayesC 
approaches were applied. Besides that, the use of array data with lower densities (~74,000 
SNPs) can provide significant results at a low cost. 

Keywords: Broiler chicken, Genomic selection, Genomic breeding value, SNP, Sequencing 
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1. INTRODUCTION 

Chicken is considered a cheap source of protein due to the short interval between 

generations and the large numbers of progenies. The broiler meat production is forecast to 

102.9 million tons in 2020 being USA, China and Brazil the largest world broiler producers 

(USDA, 2020). The traditional selection process based on phenotypic and pedigree 

information has been responsible for achieve the desired progress in poultry breeding 

programs especially for trait with high heritabilities such as body weight.  

Despite many positive results obtained with traditional selection, this technique has 

limitations, due to the fact that the phenotypic information is considered an imperfect 

predictor of the breeding value, especially in cases where the negative associations between 

genes are not taken into account (Dekkers; Hospital 2002). In chickens, for example, traits with 

low heritability or sex-limited like egg production and disease resistance, which a greater 

number of information is required to achieve a high accuracy, this selection process is not 

effective as expected (Wolc, 2014). Moreover, the intense selection process over the years 

has also brought some negative consequences for poultry production including the abdominal 

fat increase and metabolic disorders (Campos et al., 2009; Leng et al., 2016). 

The discovery of DNA structure in the 1950s has made with a third source of 

information was added in the prediction analyzes, solving problems imposed by traditional 

selection and improving the genetic architecture understanding, as well as which genes are 

involved in the expression of the trait. Additionally in livestock production, chicken was the 

first specie to have the genome sequenced (Hillier et al., 2004) followed by bovine (Zimin et 

al., 2009), sheep (Archibald et al., 2010), swine (Groenen et al. al., 2012) and equine (Orlando 

et al., 2013).   

Over the years genomic technologies have been allowed estimating the animal 

breeding value based on genomic sequences becoming animal selection more accurate and 

efficient (Ober et al., 2012). The genomic selection (GS) introduced by Meuwissen et al. (2001) 

made possible to select animals accurately at an early stage of life (Liu et al., 2014b) and also 

led to the incorporating marker and sequence information to complement pedigree and 

phenotypic information (Hickey et al., 2017).  

This approach has been commonly applied in dairy cattle breeding increasing the 

genetic gain per year and reducing the generation interval. However, in broilers, which already 
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have a shorter generation interval the most benefit to use it is increase the accuracy of 

genomic selection, especially for traits that are difficult to measure and improve (Stock; 

Reents, 2013; Liu et al., 2014).   

The accuracy of genomic prediction can be influenced by many factors including 

heritability, genetic architecture, extend of linkage disequilibrium between SNPs and QTLs, 

the population size and the statistical method applied for the genomic prediction. Linear and 

non-linear methods can be used in genomic prediciton, Genomic-best linear unbiased 

prediction (GBLUP) is an example of linear method, while Bayesian approach is an example of 

non-linear method (Iheshiulor et al., 2017). 

The main difference between these approaches is related to distribution of SNP 

effects prior, GBLUP assume normal distribution for all SNP effects, while a non-normality 

distribution is assumed by Bayesian methods (Meuwissen et al., 2001; Chen et al., 2014). 

However, despite the variations between these approaches, some results showed no 

differences in genomic prediction using Bayes or GBLUP approach (Hayes et al., 2009; 

VanRaden et al., 2009; Ober et al., 2012; Heidaritabar et al., 2016). 

Furthermore, according to Goddard (2009) the density of the SNP panel also has a 

significant effect on the GEBV prediction, because the SNPs number distributed throughout 

the genome also increases the probability that each QTL is in high linkage disequilibrium with 

at least one marker. However, it is unclear what would be the correct density of the SNP panel 

to achieve the desired result. 

Due to sequencing costs reduction and the uncertainty regarding the correct SNP 

panel density to be used, some researchers are sequencing the animals whole genome and 

using this information to estimate the GEBV both in real data (Ober et al. , 2012) as well as in 

simulated data (Meuwissen, Goddard, 2010; Druet et al., 2014; MacLeod et al., 2016). It is 

expected that the data obtained by sequencing the whole genome include the causal 

mutations underlying the QTL, which allow estimating the trait QTL effect regardless of linkage 

disequilibrium between the SNPs and QTL (van Binsbergen, et al., 2015). Thus, the SNP 

variance with low allelic frequency (low MAF) that are not in high LD with causal variants but 

which explain a part of the trait genetic variance may be used, increasing the GEBV accuracy 

(Heidaritabar et al., 2016). 
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The aim of this study was to improve the genetic understanding of organ and carcass 

traits in broiler chicken by using information from SNPs arrays as well as whole-genome 

sequencing (WGS) to be applied in genomic selection (GS). A Brazilian broiler TT population 

developed in Brazil by Chicken Breeding Program of EMBRAPA Swine and Poultry was used to 

run the analysis. All the results obtained in this thesis were carried out in agreement between 

“Luiz de Queiroz” College of Agriculture (University of São Paulo), EMBRAPA Swine and Poultry 

and University of Nebraska – Lincoln.   
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2. ESTIMATION OF BREEDING VALUES USING SPARSE SNP PANELS AND 

IMPUTED WHOLE-GENOME SEQUENCE DATA IN BROILER CHICKENS 

ABSTRACT 

Traditionally, breeding values have been estimated based on phenotypic 
and pedigree information using the numerator relationship (A) matrix. With the 
availability of genomic information, genome-wide markers can be included in the 
estimation of breeding values, thus genomic prediction based on high density 
panel (HD) or even whole-genome sequencing (WGS) data is feasible. The aim of 
this study was to compare the rank of estimated breeding values (EBV) for organ 
(heart, liver, lungs and gizzard) and carcass (breast, thigh and drumstick) weight 
traits in a broiler population using pedigree-based BLUP (PBLUP) and single-step 
genomic BLUP (ssGBLUP) models using various densities of SNP and variants 
imputed from whole-genome sequence. For both PBLUP and ssGBLUP, heritability 
estimates varied from low (LUN) to high (HRT, LIV, GIZ, BRST, THG and DRUM). 
Regression coefficients values of EBV on GEBV were similar for both the HD and 
WGS sets of SNPs, ranging from 0.87 to 0.99 across scenarios. Results show no 
benefit of using WGS data compared to HD array data using ssGBLUP. Therefore, 
the uses of array data with lower densities can provide significant results at a low 
cost. Our results suggest that the use of at least 74,122 SNPs (20%) can be effective 
to provide considerable results.  

 

Keywords: Genomic prediction; High density panel; Whole-genomic sequence; 
Imputation; Broiler chicken  

 
2.1. Introduction 

Traditionally, breeding values have been estimated based on phenotypic and 

pedigree information by pedigree-based BLUP (PBLUP) using the numerator relationship (A) 

matrix (Henderson, 1984). With the advent of genomic selection and the availability of dense 

SNP arrays, genomic information has been included in the estimation of breeding values. 

Currently, many genetic evaluation systems have implemented a single-step genomic BLUP 

(ssGBLUP) (Misztal et al., 2013) approach that makes use of genomic, phenotypic, and 

pedigree data simultaneously. This approach combines the A matrix with the genomic 

relationship matrix (G) into a single kinship matrix (H) (Legarra et al., 2009). The benefit of this 
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approach is in the ability to account for Mendelian inheritance information and thus a more 

accurate prediction of breeding values can be obtained as compared with PBLUP.  

Despite the reduction in the cost of genotyping, it still represents a non-trivial cost. 

Consequently, the ability to optimize the cost of implementing genomic selection and the rate 

of genetic gain from having done so is of interest. One potential way to do this is to reduce 

the proportion of animals genotyped in a strategic manor (e.g., Howard et al., 2018).  Another 

option is to simply reduce the density of the marker panel used.  

Theoretically, denser SNP panels lead to an increased probability that any  QTL 

(Quantitative Trait Loci) is in perfect linkage disequilibrium (LD) with a SNP (Meuwissen et al., 

2016). However, the use of high density (HD) panels in forming a genomic relationship matrix 

has not been shown to provide significant improvements in accuracy (Misztal et al., 2013). 

Despite numerous studies, it is unclear what the optimal density of a SNP panel would be to 

achieve increased estimated breeding value (EBV) accuracies with minimal genotyping costs. 

Recently, efforts have been allocated to whole-genome sequencing (WGS) and using 

this information to estimate EBV both in real data (Ober et al., 2012) as well as in simulated 

data (Meuwissen and Goddard, 2010; Druet et al., 2014; MacLeod et al., 2016). Thus, it is 

expected that data obtained by sequencing the whole genome include the causal mutations 

underlying the QTL, which would enable estimating the trait QTL effect regardless of LD 

between the SNPs and QTL (van Binsbergen et al., 2015).  

Performing WGS at moderate to high-depths for every animal in a population would 

be cost prohibitive to many if not all livestock breeding programs. A less expensive solution 

would be to genotype individuals with less expensive SNP panels and impute sequence 

variants throughout the population by only sequencing targeted individuals. Simulated data 

has shown an increase in genomic prediction accuracy when the causal mutations were 

included in the analyses (Meuwissen and Goddard, 2010; Druet et al., 2014; MacLeod et al., 

2014). Interestingly, this has not always been the case in real data using cattle and chickens 

(e.g., van Binsbergen et al., 2015; Heidaritabar et al., 2016; MacLeod et al., 2016). 

Although the expectation is that genomic selection using HD panels and even WGS 

data increase prediction accuracy in chickens for traits that are difficult or costly to measure 

it is unclear what marker density is sufficient. Therefore, the aim of this study was to compare 

the rank and degree of bias of estimated breeding values (EBV) for organs (heart, liver, lungs 
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and gizzard) and carcass (breast, thigh and drumstick) traits in a broiler population using 

PBLUP and ssGBLUP by means of various densities of SNP (high-density panel – HD) and 

variants imputed from whole-genome sequence (WGS) data.  

 

2.2. MATERIALS AND METHODS 

All experimental protocols related to animals in this study were performed in 

agreement with the resolution number 010/2012 approved by the Embrapa Swine and Poultry 

Ethics Committee on Animal Utilization to ensure compliance with international guidelines for 

animal welfare. 

 

2.2.1 Population and phenotypes 

The chicken population used in this study was derived from a TT broiler line belonging 

to the Animal Breeding Program from Embrapa Swine and Poultry. Since 1992, multi-trait 

selection has been applied in this line, mainly focused on traits such as body weight, feed 

conversion, carcass weights and yield, fertility, hatchability, and to reduce abdominal fat and 

metabolic syndromes (Nones et al., 2012; Venturini et al., 2014). The TT reference population 

is a broiler population developed for genomic studies in 2008 from the crossing between 92 

females (one from each female family) with 20 males (one from each male family) in a 

hierarchical scheme (1 male: 5 females) producing approximately 1,500 chickens from five 

hatches. Matings between relatives were avoided to improve the genetic variability as 

described by Marchesi et al. (2018). 

A total of 1,453 animals (703 males and 750 females) were slaughtered at 42 days of 

age after six hours of fasting and the body weight at 42 days of age (BW42) were recorded. 

Blood samples from each animal were collected for DNA extraction and the eviscerated 

carcass was cooled. After six hour of cooling (4°C) the carcass (breast, drumstick and thigh) 

and organs (heart, liver, gizzard and lung) were weighed. More details about the rearing 

condition and phenotypes measurements are available in Fornari et al. (2014). 

Descriptive statistics for the carcass and organ traits involved in the study (Table 1) 

were obtained through the PROC MEANS procedure of SAS® (SAS 9.4, SAS Institute).  
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2.2.2 Genotyping 

Blood samples of each animal (1,453) were used to extract DNA using PureLink® 

Genomic DNA (Invitrogen, Carlsbad, CA, USA) kit and quantified using Qubit® 2.0 Fluorometer 

(Thermo Fisher Scientific, Waltham, MA, USA). After extraction, the diluted genomic DNA was 

prepared following Affymetrix protocol to perform the genotyping analysis using 600K 

Affymetrix Axiom Genotyping Array (HD) (Affymetrix, Inc. Santa Clara, CA, USA). This 

genotyping array was developed using segregating SNPs identified in chicken populations, 

including four commercial broiler lines, as described by Kranis et al. (2013).  

Axiom™ Analysis Suite (Affymetrix®) software was used to filter based on DishQC 

parameter, and then PLINK v.1.9 software (Purcell et al., 2007) was used to perform quality 

control analysis and genotype calling. Samples that exhibited DishQC of ≥ 0.82 and call rate of 

≥ 90% were kept. In order to select markers with high quality, a SNP quality control was applied 

for removing SNP with call rate lower than 98%, MAF lower than 2% and significant deviations 

from HWE (p-value < 10-7) leaving 370,608 SNP for further analysis (Moreira et al., 2018). 

 

2.2.3 Imputation 

Data from WGS were obtained using the Illumina HiSeq2500® System (Illumina, Inc., 

San Diego, EUA) with coverage of 10X for 84 animals from Brazilian broiler and layer lines; 14 

of those were randomly selected from the 20 males used in the crosses to obtain TT reference 

population. These data were aligned to Build 5 of the chicken reference genome 

(Gallus_gallus-5.0) with BWA (version GCA_000002315.3). The read alignment, as well as 

variant calling and quality control, were performed following the same pipeline adopted by 

(Boschiero et al., 2018) and (Moreira et al., 2018). 

After filtering, 12,577,770 SNPs remained in the set of 84 animals sequenced and 

were used as the reference dataset to impute the HD array to sequence data. Imputation from 

HD to WGS was performed using BEAGLE 4.1 software (Browning and Browning, 2008) with 

20 iterations. Imputation accuracy was assessed using the validation subset approach. 

Sequenced individuals (n=84) were randomly divided into 14 subsets with 6 animals per group 

and each group was used as validation set once. The imputation process was carried out again 

for each validation subset masking the SNPs from HD, and then the imputed values for the 
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validation set were compared to their observed values from sequence. Imputation accuracy 

was defined as the average of squared correlation between observed and predicted variants. 

The accuracy of imputation was 0.84. 

After imputation, a quality control was applied to select the sequence variants with 

a MAF greater than 0.015 and imputation accuracy equal to or greater than 0.95 (e.g., r² ≥ 

0.95) which left 1,421,371 SNPs for further analysis. By using this MAF it is expected that the 

changing of detecting segregating SNPs be greater, thus it would reduce the cost of genotyping 

of non-segregating selected SNPs. Furthermore SNPs were classified into five classes by 

Variant Effect Predictor (VEP) software (version vep-93.4; McLaren et al., 2016) using galGal5 

as reference genome.  

The sequence variants selected to include in further analysis were UTR3’, UTR5’, 

downstream, upstream and intergenic regions of the genome.  Genetic variants annotated in 

those regions were considered potentially functional and thus could have a role in the 

regulation of the phenotype or even be responsible for control of gene expression (Moreira 

et al., 2018). To ensure that the WGS dataset had the same number of variants as the HD array 

set, the common genetic variants between those data sets were removed from WGS data, 

leaving only the non-common variants. 

 After the selection of non-common variants 1,095,053 SNPs remained to compose 

the WGS dataset, which consists of 69% of intergenic regions of the genome, 16% of 

downstream, 14% upstream and 1% of UTR3’and UTR5’, respectively. Then, from those non-

common variants 370,608 SNPs were randomly selected (10 times) to compose the final WGS 

dataset and ensure a random representation of the entire genome.  

 

2.2.4 Prediction  

Variant Subsets 

Seven subsets (0.5, 1, 5, 10, 20, 40 and 80% of SNP) were randomly selected from the 

full HD set to determine the impact, in terms of EBV rank and bias, of using reduced subsets 

of SNP to inform relationships among individuals. Imputed variants from WGS were also used 

and mimicked the number of SNP chosen for the subsets mentioned above. In both data sets 

(HD and imputed WGS) the SNP selection process was repeated ten times in each scenario. 

Results are the average of the 10 replicates of randomly selecting subsets.   
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Breeding value estimation 

Estimated breeding values for the weight of each organ [heart (HRT), liver (LIV), 

gizzard (GIZ), lung (LUN)] and carcass trait [breast (BRT), thigh (THG) and drumstick (DRM)] 

and BW42 were predicted using the BLUPF90 family of programs (Misztal et al., 2018) using 

three approaches: 1) Pedigree based BLUP (PBLUP), 2) Single-step genomic BLUP (ssGBLUP) 

using subsets from the HD panel, and 3) ssGBLUP using subsets from WGS. The pedigree used 

consisted of 2,130 animals, 430 hens and 260 roosters. A bivariate model with BW42 as an 

anchor trait has been chosen to assess genetic interactions between traits with BW42 and 

minimize the bias associate with them. Additionally, the use of bivariate model has greater or 

at least similar power compared to univariate models (Rovadoscki et al., 2018). For both 

methods the following bivariate animal model was used: 

 

ቂ
𝒚ଵ

𝒚ଶ
ቃ = ൤

𝑿ଵ 0
0 𝑿ଶ

൨ ൤
𝒃ଵ

𝒃ଶ
൨ + ൤

𝒁ଵ 0
0 𝒁ଶ

൨ ቂ
𝒖ଵ

𝒖ଶ
ቃ + ቂ

𝒆ଵ

𝒆ଶ
ቃ 

 

where y1 and y2 are the vector of observation for each carcass trait (y1) and BW42 

(y2); X1 and X2 are the design matrix for fixed effects; b1 and b2 are the vector of fixed effects 

(sex and hatch) for the first and second trait, respectively; Z1 and Z2 are the design matrix for 

random effects; u1 and u2 are the vector of random additive genetic effects; e1 and e2 are the 

vector of random error effect with a distribution ~ N(0, Iσe2), where I is an identity matrix and 

σe2 is the residual variance. The additive genetics effects were assumed to be normally 

distributed as u ~ N (0, Aσu2) for PBLUP and u ~ N (0, Hσu2) for ssGBLUP.  

The H matrix combines information from numerator relationship matrix (A) and 

genomic matrix (G). The inverse of H was calculated following the approach of Aguilar et al. 

(2010) as: 

 

𝑯ିଵ = 𝑨ିଵ ൤
𝟎 𝟎
𝟎 𝑮ିଵ − 𝑨ଶଶ

ିଵ൨ 

 

where 𝐀ିଵ is the inverse of a numerator relationship matrix; 𝐆ିଵ is the inverse of a 

blended genomic matrix; and 𝐀ଶଶ
ିଵ  is the inverse of a pedigree-based relationship matrix for 

genotyped animals only. The G blended matrix was obtained as follows: 
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𝑮 = 0.95𝑮𝒘 + 0.05𝑨ଶଶ 

 

where: 𝑨ଶଶ is the pedigree-based relationship matrix for genotyped animals only; Gw 

is the genomic matrix obtained following (VanRaden, 2008; Heidaritabar et al., 2016): 

 

𝑮𝒘 =
𝑴𝑴′

2 ∑ 𝑝௜(1 − 𝑝௜)
 

 

where: M is the SNP matrix, coded as 0, 1 or 2; pi is the allelic frequency for ith SNP.  

 

2.2.5 Assessment of accuracy and bias 

Spearman correlations between EBV from PBLUP and EBV for ssGBLUP using 

genotypes from eight subsets (0.5%, 1%, 5%, 10%, 20%, 40%, 80% and 100% of SNPs) from 

both the HD and WGS imputed set were calculated to determine the impact of using reduced 

subsets of SNP on EBV rank.  

Predictive ability of EBV, from PBLUP and ssGBLUP, was defined as the correlation (r) 

between EBV and phenotypes corrected for fixed effects (y*) for animals in the validation set 

for each trait (Legarra et al., 2008): 

 

𝑟 = 𝑐𝑜𝑟(𝐸𝐵𝑉, 𝑦∗) 

 

Approximately one-third of the animals had their phenotypes masked and were 

chosen to be in the validation set. These animals were randomly selected, and three subsets 

were created to ensure that all the animals were in the validation set once. Moreover, the 

regression coefficients of EBV on GEBV in each scenario were calculated to evaluate the 

degree of similarity between the predictions.  
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2.3. RESULTS 

2.3.1 Descriptive results 

The descriptive statistics of the remaining data are presented in Table 1. The 

estimates of variance component and heritability for organ and carcass traits from PBLUP and 

ssGBLUP using both HD and WGS density panels are given in Tables 2. Small differences in 

those estimates were observed between the methods used. Except for HRT, the estimation of 

heritability was lower when the genomic information was used. The standard errors were also 

lower when the genomic information was used. 

 

Table 1. Number of observations (N), mean, standard deviation (SD), minimum (MIN) maximum (MAX) 
and coefficient of variation (CV) values of carcass and organ traits of broiler chickens. 

Trait1 N Mean SD Min Max CV, % 
Organ weights (g)      

HRT 1421 12.34 2.15 6.30 19.70 17.35 
LIV 1422 52.34 8.73 25.40 82.40 16.68 
GIZ 1423 32.00 6.04 17.80 56.10 18.86 
LUN 1430 15.31 3.06 6.60 24.60 19.98 

Carcass weights (g)      
BW42 1452 2223.86 260.24 988 2971.00 11.70 
BRST 1426 500.76 63.48 211.30 710.80 12.68 
DRM 1421 205.87 31.24 86.20 306.60 15.17 
THG 1427 310.49 46.15 113.60 464.40 14.85 

1HRT=Heart; LIV=Liver; GIZ=Gizzard; LUN=Lungs; BW42=Body weight at 42 days of age; BRST=Breast; 
DRM=Drumstick; THG =Thigh. 
 

  



27 
 

Table 2. Additive genetic variance (𝜎௔
ଶ), environmental variance (𝜎௘

ଶ), phenotypic variance (𝜎௣
ଶ) and 

heritability estimates (ℎଶ), with their respective standard errors (in brackets) for organ and carcass 
trait of broiler chicken using PBLUP, HD and WGS dataset.   

Trait¹ 𝝈𝒂
𝟐 

 

𝝈𝒆
𝟐 𝝈𝒑

𝟐 𝒉𝟐 
PBLUP 

Organ weight    

HRT 1.01 (0.24) 1.77 (0.16) 2.78 (0.14) 0.37 (0.07) 
LIV 23.49 (5.53) 44.93 (3.68) 68.43 (3.37) 0.34 (0.07) 
GIZ 15.42 (3.22) 17.33 (1.95) 32.75 (1.82) 0.47 (0.07) 
LUN 1.09 (0.34) 5.10 (0.29) 6.19 (0.26) 0.17 (0.05) 

Carcass weight    

BRST 1306.2 (291.47) 1854.3 (182.81) 3160.5 (167.51) 0.41 (0.07) 
DRM 205.37 (47.73) 266.45 (28.76) 471.82 (26.10) 0.43 (0.08) 
THG 522.31 (120.08) 801.08 (76.23) 1323.4 (69.35) 0.39 (0.07) 

HD Panel  
Organ weight    

HRT 1.12 (0.18) 1.71 (0.11) 2.83 (0.13) 0.39 (0.04) 
LIV 22.37 (3.89) 45.86 (2.60) 68.23 (3.15) 0.33 (0.04) 
GIZ 14.12 (2.05) 18.32 (1.15) 32.44 (1.60) 0.43 (0.05) 
LUN 0.97 (0.26) 5.20 (0.25) 6.17 (0.25) 0.16 (0.04) 

Carcass weight    

BRST 1046.1 (181.66) 2054.40 (118.67) 3100.50 (145.27) 0.34 (0.05) 
DRM 162.49 (27.50) 296.13 (17.47) 458.62 (21.77) 0.35 (0.05) 
THG 431.62 (75.76) 870.23 (49.93) 1301.90 (60.78) 0.33 (0.05) 

WGS Dataset  
Organ weight    

HRT 1.04 (0.17) 1.77 (0.10) 2.81 (0.13) 0.37 (0.04) 
LIV 21.52 (3.78) 46.58 (2.56) 68.11 (3.13) 0.31 (0.04) 
GIZ 13.54 (1.97) 18.78 (1.13) 32.33 (1.58) 0.42 (0.04) 
LUN 0.92 (0.25) 5.24 (0.25) 6.16 (0.25) 0.15 (0.04) 

Carcass weight    

BRST 1009.7 (173.80) 2073.2 (115.28) 3082.90 (143.17) 0.33 (0.05) 
DRM 153.64 (26.20) 302.69 (17.08) 456.33 (21.40) 0.34 (0.05) 
THG 395.15 (70.96) 895.75 (48.83) 1290.70 (59.10) 0.31 (0.05) 

1HRT=heart weight (g); LIV=liver weight (g); GIZ=gizzard weight (g); LUN=lung weight (g); BRST=breast weight (g); 
DRM=drumstick weight (g); THG=thigh weight (g).  

 
Imputation accuracy estimated by Beagle and assessed using the validation subset 

approach was 0.84 and ranged from 0.79 to 0.88. After filtering, the distribution of MAF for 

the HD array was uniform while the MAF distribution for WGS variants retained for further 

analyses were not (Figure 1). 

2.3.2 Prediction 
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Correlations between predicted breeding values using the different datasets and 

different genomic prediction methods were high and ranged from 0.88 to 0.94 for organ traits 

and from 0.92 to 0.95 for carcass traits. Regression coefficients were similar for both the HD 

and WGS sets of SNPs, ranging from 0.87 to 0.99 across scenarios.  For HRT, a slightly 

overestimation of the breeding values was observed ranging from 0.87 to 0.89 when less than 

80% of SNPs were used in the HD dataset.  

The same pattern was observed using imputed sequence data which the regression 

coefficients were also overestimated (Tables 3 and 4). The regression coefficients increased 

as the proportion of SNP increased reaching a plateau between 5 and 10% of SNP. However, 

the use of WGS data set did not result in a better estimation of regression coefficients 

compared to HD panel, except for LUN.   

Regarding the predictive ability, traits with higher heritabilities (e.g. GIZ and DRM) 

showed higher predictive ability than trait with lower heritabilities (e.g. LUN), which means 

that traits with low heritability requires more records to achieve higher predictive abilities as 

traits with high heritabilities (Table 5). Compared to PBLUP, the predictive ability of ssGBLUP 

was higher from 0.5% of SNPs, excepted for LUN, which the predictive ability of PBLUP was 

higher than ssGBLUP when 0.5% and 1% of SNPs were used. 
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Table 3.  Regression coefficient (bEBV,GEBV) and standard error (in brackets) for organ traits in HD panel and WGS data in each scenario (SNP 
percentage). 

HD Panel 
SNP (%) HRT¹ BW42¹ LIV¹ BW42¹ GIZ¹ BW42¹ LUN¹ BW42¹ 

0.5 0.87 (0.009) 0.94 (0.007) 0.92 (0.010) 0.94 (0.009) 0.93 (0.009) 0.94 (0.009) 0.97 (0.012) 0.94 (0.009) 
1 0.88 (0.009) 0.96 (0.007) 0.93 (0.009) 0.95 (0.008) 0.93 (0.008) 0.95 (0.008) 0.98 (0.010) 0.95 (0.008) 
5 0.89 (0.008) 0.97 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.98 (0.009) 0.95 (0.007) 

10 0.89 (0.008) 0.97 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.98 (0.009) 0.95 (0.007) 
20 0.89 (0.008) 0.97 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.98 (0.009) 0.95 (0.007) 
40 0.89 (0.008) 0.97 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.98 (0.009) 0.95 (0.007) 
80 0.89 (0.008) 0.97 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.98 (0.009) 0.95 (0.007) 

100 0.89 (0.008) 0.97 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.98 (0.009) 0.95 (0.007) 
WGS Panel 

0.5 0.87 (0.010) 0.90 (0.007) 0.92 (0.010) 0.94 (0.009) 0.93 (0.009) 0.94 (0.009) 0.98 (0.012) 0.94 (0.009) 
1 0.88 (0.009) 0.91 (0.007) 0.92 (0.009) 0.94 (0.008) 0.93 (0.008) 0.94 (0.008) 0.98 (0.011) 0.94 (0.008) 
5 0.89 (0.008) 0.93 (0.006) 0.93 (0.009) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.99 (0.010) 0.95 (0.008) 

10 0.89 (0.008) 0.93 (0.006) 0.93 (0.009) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.99 (0.010) 0.95 (0.008) 
20 0.89 (0.008) 0.93 (0.006) 0.93 (0.009) 0.95 (0.008) 0.94 (0.008) 0.95 (0.007) 0.99 (0.009) 0.95 (0.008) 
40 0.89 (0.008) 0.93 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.008) 0.95 (0.007) 0.99 (0.009) 0.95 (0.008) 
80 0.89 (0.008) 0.93 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.008) 0.95 (0.007) 0.99 (0.009) 0.95 (0.008) 

100 0.89 (0.008) 0.93 (0.006) 0.93 (0.008) 0.95 (0.007) 0.94 (0.008) 0.95 (0.007) 0.99 (0.009) 0.95 (0.008) 
1HRT=Heart; LIV=Liver; GIZ=Gizzard; LUN=Lungs; BW42=Body weight at 42 days of age. 
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Table 4.  Regression coefficient (bEBV,GEBV) and standard error (in brackets) for carcass traits in HD panel and WGS data in each scenario (SNP 
percentage). 

HD Panel 
SNP (%) BRST¹ BW42¹ DRM¹ BW42¹ THG¹ BW42¹ 

0.5 0.93 (0.009) 0.94 (0.009) 0.92 (0.009) 0.94 (0.009) 0.93 (0.009) 0.94 (0.009) 
1 0.94 (0.008) 0.95 (0.008) 0.93 (0.008) 0.94 (0.008) 0.93 (0.008) 0.95 (0.008) 
5 0.95 (0.007) 0.95 (0.007) 0.94 (0.008) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 

10 0.95 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 
20 0.95 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 
40 0.95 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 
80 0.95 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 

100 0.95 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 0.94 (0.007) 0.95 (0.007) 
WGS Panel 

0.5 0.93 (0.009) 0.94 (0.009) 0.93 (0.009) 0.94 (0.009) 0.93 (0.009) 0.94 (0.009) 
1 0.93 (0.008) 0.94 (0.008) 0.93 (0.009) 0.94 (0.008) 0.93 (0.009) 0.94 (0.008) 
5 0.93 (0.008) 0.95 (0.008) 0.93 (0.008) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 

10 0.94 (0.007) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 
20 0.94 (0.007) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 
40 0.94 (0.007) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 
80 0.94 (0.007) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 

100 0.94 (0.007) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 0.94 (0.008) 0.95 (0.008) 
1BRST=Breast; DRM=Drumstick; THG =Thigh; BW42=Body weight at 42 days of age. 
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Table 5. Predictive abilities with HD panel and WGS datasets in each scenario (SNP percentage). 

HD Panel 
SNP (%) HRT¹ BW42¹ LIV¹ BW42¹ GIZ¹ BW42¹ LUN¹ BW42¹ BRST¹ BW42¹ DRM¹ BW42¹ THG¹ BW42¹ 

0.5 0.335 0.325 0.316 0.356 0.401 0.340 0.208 0.334 0.336 0.328 0.369 0.353 0.346 0.352 
1 0.342 0.329 0.333 0.368 0.410 0.350 0.219 0.345 0.347 0.338 0.375 0.366 0.359 0.367 
5 0.347 0.334 0.349 0.385 0.426 0.369 0.223 0.363 0.360 0.352 0.391 0.380 0.365 0.377 

10 0.349 0.332 0.343 0.381 0.425 0.363 0.225 0.360 0.359 0.351 0.391 0.381 0.371 0.379 
20 0.350 0.332 0.347 0.382 0.426 0.365 0.224 0.361 0.360 0.352 0.392 0.382 0.370 0.380 
40 0.351 0.332 0.346 0.383 0.426 0.365 0.224 0.362 0.360 0.352 0.392 0.383 0.371 0.380 
80 0.350 0.332 0.346 0.383 0.427 0.366 0.224 0.362 0.360 0.352 0.392 0.383 0.371 0.380 

100 0.350 0.332 0.347 0.383 0.427 0.365 0.224 0.362 0.360 0.352 0.392 0.383 0.371 0.380 
PBLUP 0.305 0.324 0.326 0.375 0.399 0.361 0.211 0.359 0.358 0.361 0.363 0.320 0.368 0.333 

WGS Data  
0.5 0.329 0.323 0.313 0.355 0.397 0.339 0.199 0.320 0.345 0.328 0.360 0.347 0.342 0.351 
1 0.332 0.327 0.331 0.369 0.412 0.351 0.200 0.353 0.350 0.336 0.374 0.366 0.351 0.367 
5 0.344 0.329 0.338 0.376 0.416 0.355 0.210 0.360 0.359 0.343 0.385 0.372 0.357 0.370 

10 0.344 0.330 0.339 0.378 0.418 0.358 0.220 0.362 0.360 0.344 0.385 0.373 0.358 0.372 
20 0.345 0.330 0.339 0.378 0.419 0.358 0.220 0.362 0.361 0.346 0.386 0.373 0.358 0.372 
40 0.346 0.330 0.339 0.378 0.420 0.359 0.220 0.362 0.361 0.346 0.386 0.374 0.358 0.373 
80 0.346 0.330 0.340 0.378 0.419 0.359 0.220 0.362 0.362 0.346 0.386 0.374 0.359 0.373 

100 0.346 0.330 0.340 0.379 0.421 0.359 0.220 0.362 0.361 0.346 0.387 0.374 0.359 0.373 
PBLUP 0.305 0.324 0.326 0.375 0.399 0.361 0.211 0.359 0.358 0.361 0.363 0.320 0.368 0.333 

1HRT=Heart; LIV=Liver; GIZ=Gizzard; LUN=Lungs; BRST=Breast; DRM=Drumstick; THG =Thigh; BW42=Body weight at 42 days of age. 
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2.4. DISCUSSION 

In the present study we had chosen select SNPs randomly to compose the different 

panel densities to investigate carcass and organ traits in broiler chicken. Although the markers 

were not equally spaced during the selection process, they were present in at least one 

chromosome across all genome.  

 

2.4.1 MAF distribution 

The distribution of MAF for the HD array was uniform while the MAF distribution for 

WGS variants retained for further analyses were not (Figure 1). Unlike other studies (van 

Binsbergen et al., 2015; Heidaritabar et al., 2016) the variants used in the current study did 

not show a U-shaped MAF distribution for WGS data. In accordance with Ni et al. (2017), which 

also found a non-U-shaped MAF distribution for sequence data in layer chickens, this 

distribution in WGS data may have occurred due to two possible reasons. First, some of the 

rare SNPs in the sequence animals were removed during the imputation process as a result of 

poor imputation accuracy of SNPs with low MAF. Second, these same rare SNPs were not 

available in all animals of the population. 

 
Figure 1. Distribution of minor allele frequency (MAF) for high density (HD) array data and whole-genome 
sequencing (WGS) data, after post-imputation filtering. 
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2.4.2 Heritability for pedigree-based and genomic models 

Estimates of variance components and heritability for carcass and organ traits 

obtained through PBLUP and ssGBLUP are provided in Table 2, respectively. The heritability 

estimates varied from low (LUN) to moderate (HRT, LIV and THG) and high (GIZ, BRST and 

DRM) and the standard errors associated with those estimates were low.  

Pedigree-based heritability estimates have been reported in the literature for most 

of traits used in this study. Using the same population (Embrapa TT), Venturini et al. (2014) 

reported similar pedigree-based heritability estimates for LIV (0.33±0.07), GIZ (0.44±0.08), 

BRST (0.37±0.07) and DRM (0.35±0.07) to those reported herein. However, the heritability 

estimate found in this study for THG was higher (0.44±0.08) than the estimate in Venturini et 

al. (2014) (0.29±0.06).  

THG and DRM are commonly analyzed together as a leg trait, so heritability estimates 

for those traits are scarce in the literature. Heritability estimates for leg in chicken were 

reported by Argentão et al. (2002), Rance et al. (2002) and Gaya et al. (2006). In a study with 

a male broiler line, Gaya et al. (2006) reported heritability estimates for HRT (0.38±0.04), LIV 

(0.25±0.03), GIZ (0.39±0.04) and BRST (0.33±0.03). Rance et al. (2002) reported heritability 

estimates for HRT (0.30±0.08), LIV (0.08±0.06), GIZ (0.52±0.10).  

The heritability estimates for LUN in broiler chicken are not common in the literature. 

Using a F2 experimental population Ledur et al. (2006) reported similar pedigree-based 

heritability estimates for LUN (0.10) than the result reported herein. Although LUN is not 

considered an economically important trait, it has been related to pulmonary hypertension 

(e.g. ascites). Heritability estimation for ascites have been reported by several authors 

(Moghadam et al., 2001; Deeb et al., 2002; Pakdel et al., 2002; Ledur et al., 2006; Pavlidis et 

al., 2007; Wideman et al. 2013). The use of a multi-trait model may be responsible for the 

higher heritabilities estimates differences found in this study compared to the literature since 

multi-traits models uses additional genetic information from link with other traits (Zhang et 

al., 2017). 

Heritability was also estimated using the genomic matrix instead of numerator 

relationship matrix which resulted in relatively small differences between the estimates (Table 

2). Usually the genomic heritability is smaller than heritability estimate using only the pedigree 
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and phenotypic information (Kim et al., 2017). Few studies have used ssGBLUP method for 

genomic heritability estimation for traits used in this study.  

Based on the strong relationship between prediction and the heritability of the trait, 

wherein traits with higher heritability are more accurate comparing with traits with low 

heritability our results have been shown that HRT, LIV, GIZ, BRST, THG and DRM can be used 

as a selection criterion in this population.  

 

2.4.3 Correlation between EBV and GEBV 

Across all traits, EBV estimated with at least 0.5% SNP was highly correlated with EBV 

estimated from the complete HD (minimum correlation 0.94) and the minimum average 

correlation between 0.5% markers and PBLUP was 0.89. Indeed, lower correlations were 

observed when a smaller number of SNPs sets were used, but correlations between predicted 

breeding values were higher when the genomic matrix was incorporated in the analyses, 

regardless the SNP set selected. Although, the same pattern has been noted with WGS, a 

slightly improvement in the correlation value (minimum correlation 0.95) was acquired with 

this dataset.  

Comparing the correlations between predicted breeding values using different 

genotype datasets our results show no difference when 10% or 100% of SNPs (mean 

correlation 0.99) were used in the analyses which suggests that the use of evenly-spaced 

lower-density panel could provide a very similar ranking of EBV at a potentially lower cost, as 

proposed by Habier et al (2009). When applied to Japanese black cattle, Ogawa et al. (2014) 

suggested that using at least 4,000 equally-spaced SNPs should be enough to ranking the 

animals genetically for carcass weight and marbling score. 

Using 50K chip, Rolf et. al (2010) pointed out that 2,500 ~ 10,000 SNPs distributed 

throughout the genome could address a robustly G matrix estimation for feed efficiency in 

Angus cattle.  Thus, a lower density panel in genomic prediction analysis could be enough to 

generate an accurate genomic relationship matrix in genomic prediction analysis, agreeing 

with our findings.   
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2.4.4 Regression coefficients 

The slope of the regression coefficients of EBV on GEBV quantifies the bias in the 

variance of the estimated breeding value for each scenario (Tables 3 and 4). Regression 

coefficients were similar for both the HD and WGS sets of SNPs, ranging from 0.82 to 0.99 

across scenarios. The regression coefficients increased as the proportion of SNP increased 

reaching a plateau between 5 and 10% of SNPs.  

Overall, all the regression coefficients values were the same when HD or WGS was 

used. In practice, regression coefficient equal to one indicates no bias. Except for LUN, our 

results showed regression coefficients lower than one for both HD and WGS sets, which that 

means the variance of breeding values were overestimated. However, according to Tsuruta et 

al. (2011) deviations of ± 15% from unity are acceptable. Wherefore, based on these 

coefficients this study suggests that ssGBLUP approach is an effective method to improve the 

genetic prediction in broiler chicken. 

Using a pure layer line, Yan et al. (2017) used the bias to compare PBLUP and ssGBLUP 

prediction models. These authors used the regression coefficients of phenotypes corrected 

for fixed effects on predicted (G)EBV and reported that ssGBLUP approach was less bias than 

PBLUP. On the other hand, also in layer lines, Heidaritabar et al. (2016) reported high 

regression coefficients (greater than 1) when PBLUP or GBLUP were used in 60K SNP panel 

and sequence data, indicating an underestimation of the breeding values variance.  

Although, “Beavis effect” phenomenon can be pointed out as one of the reasons to 

cause the GEBV bias since the true SNPs effects tend to be smaller than the SNP effect 

reported by the trait. This effect probably was not the responsible to cause bias in this 

population since the SNPs used herein were selected randomly, the estimates were regressed 

towards the mean, thus minimizing the “Beavis effect” (Goddard, Hayes, 2009). 

Bias differences among the methods may be explained by directional selection 

(Vitezica et al., 2011). In the present study, a multi-trait selection has been applied in this line, 

mainly focused on traits such as body weight, feed conversion, carcass weights and yield, 

fertility, hatchability, and to reduce abdominal fat and metabolic syndromes (Nones et al., 

2012; Venturini et al., 2014).  
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2.4.5 Predictive ability 

Predictive abilities across all traits are reported in Table 5. Compared to PBLUP, the 

predictive ability assessed by ssGBLUP was higher for major traits when at least 5% of SNPs 

were used. Although BRST have presented similar predictive ability values the slight difference 

between both prediction methods might be explain by the fact that not all causal variants are 

captured during the genomic prediction for this trait.  

The incorporation of sequencing variants is generally thought to have the potential 

to improve predictive abilities, since it is expected that a high proportion of genetic variation 

may be explained when a high-density panel or even sequencing data are used. Although WGS 

increase the number of markers, most of them are in incomplete LD with causal mutation. 

Variants in incomplete LD with causal mutations limited the increase of prediction abilities, 

thus the use of variants in strong LD with causal mutations could be responsible to improve 

the genomic prediction (Al Kaladeh et al., 2019). 

Many researches have used reduced SNPs density as a solution for genotyping costs 

are available in the literature (e.g. Habier et al., 2009; Rolf et al., 2010; Wellmann et al., 2013; 

Ogawa et al., 2014; Li et al. 2018). While estimates using a genomic relationship matrix 

appears to be better than pedigree relationship matrix, our results show no difference in 

genomic prediction when a reduced number of SNPs were used to fit the genomic relationship 

matrix, indicating that at least 10% of SNP panel (~37,000 SNPs) can be used in genomic 

evaluation.  

Agreeing with our findings, Su et al. (2012), Zhang et al. (2018), and Boldt et al. (2018) 

concluded that the use of different percentage of SNP panel in genomic prediction did not 

improve the genomic prediction as expected, so a reduced number of SNPs can be used.  

Simulated data has shown an increase in genomic prediction accuracy when the 

causal mutations were included in the analyses (Meuwissen and Goddard, 2010; Druet et al., 

2014; MacLeod et al., 2014). Contrary to those findings, our study showed no significant 

increase in prediction accuracy when using WGS variants as opposed to SNP from the HD. 

Other authors have also observed lower or no significant benefits in predictive ability gain 

using sequence data comparing with SNP arrays (Ober et al., 2012; Van Binsbergen et al., 2015; 

Heidaritabar et al., 2016; MacLeod et al., 2016; VanRaden et al., 2017; Frischknecht et al., 

2017; Al Kalaldeh et al., 2019).  
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The infinitesimal model used herein (ssGBLUP), whereby the markers are assumed to 

come from a normal distribution with a common variance, showed no significant increase in 

prediction accuracy using WGS variants as compared to the HD markers. In a simulated study, 

Clark et al. (2011) suggested that the increase of genomic prediction accuracy will be smaller 

when the trait is highly polygenic especially in a small reference population. Further, false 

positives, including sequencing, alignment and calling errors, which are not included in 

simulated analysis but are present in real data, can also be responsible for these results 

(VanRaden et al., 2017).  

Another possible reason is related to the population structure. When a small effective 

population size undergoes selection for an extended period of time no significant gains in 

prediction accuracy are obtained regardless of using HD panel or WGS dataset (MacLeod et 

al., 2014). Thus, in highly selected population, almost the totally genetic variance can be 

explained by the SNPs genetic variance as result of the relationship between individuals 

(VanRaden et al., 2009).   

Despite the imputation accuracy does not be the principal objective of the present 

work, it can help to explain why sequence data was not present a superior predictive ability 

comparing with HD panel. In our study, the average of imputation accuracy assessed using the 

validation subset approach was 0.84. Although this value is suitable, possible errors in the 

genomic map might responsible to reduce the imputation accuracy since those errors may 

decrease the accuracy of prediction and interfere in the detection of causal mutations 

(Veerkamp et al.; 2016).  

 

2.5. CONCLUSIONS 

In this study, we investigated different density marker panels and methods for 

prediction of genomic breeding values in a broiler population. Our results show no difference 

when 10% or 100% of SNPs were used to inform kinship in the prediction of breeding values, 

suggesting that at least 20% of SNP (~74,122) can provide decent genetic evaluations. 

Therefore, the use of lower-density arrays, if at a lower cost, could be used to rank individual 

based on genetic merit. Furthermore, the results also demonstrated no benefit of using WGS 

data compared to HD array data using ssGBLUP. The use of different weighted genomic matrix 

may also improve the predictive ability when ssGBLUP approach is used. 
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3. GENOMIC PREDICTION USING HIGH DENSITY-PANEL AND IMPUTED WHOLE-

GENOME SEQUENCE DATA WITH DIFFERENT GENOMIC RELATIONSHIP 

MATRICES IN BROILER CHICKENS 

ABSTRACT  

Availability of high-density panels (HD) of SNP markers has brought promises to 
solve the problems imposed by the traditional selection process and improve the 
genomic predictions enable the selection of young animals allowing the 
implementation of genomic selection (GS) in breeding programs. However, it is 
unclear what would be the optimal density of the SNP panel to achieve high 
estimated breeding values (EBV) accuracies with minimal genotyping costs.  The 
aims of this study were to estimate direct genomic values (DGV) and compare 
results from genomic prediction analyses in a Brazilian broiler chicken using both 
high-density (HD) panel and imputed whole-genome sequence (WGS) data 
performed with BayesC model. Estimated genomic heritability for organ and 
carcass traits varied from low (LUN) to moderate (HRT, LIV, GIZ, LUN, BRST and 
DRUM). Comparing the datasets available, the highest predictive abilities were 
obtained from 10%, 20%, 40%, 80% and 100% of SNPs when the HD panel was 
used. Our findings show that there is no significant increase in prediction accuracy 
over the WGS file compared to HD panel using BayesC. Potential array data with 
lower densities (~74,122 SNPs) can provide significant results at a low cost.  

 

Keywords: Genomic prediction; High density panel; Whole-genomic sequence; 
imputation; Broiler chicken  

 
3.1.  INTRODUCTION 

Availability of high-density panels (HD) of SNP markers has brought promises to solve 

the problems imposed by the traditional selection process and improve the genomic 

predictions enable the selection of young animals allowing the implementation of genomic 

selection (GS) in breeding programs. Increasing the density of SNP panel increases the 

probability that any QTL is in perfect linkage disequilibrium (LD) with a single nucleotide 

polymorphism (SNP) marker (Meuwissen et al., 2016). However, it is unclear what would be 

the optimal density of the SNP panel to achieve high estimated breeding values (EBV) 

accuracies with minimal genotyping costs.   
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When the whole-genome sequence (WGS) is used in genomic predictions, it is 

expected that higher accuracies could be achieve due to the supposed inclusion of mutations 

underlying the QTL, which allow estimating the trait QTL effect regardless of LD between the 

SNPs and QTL (Druet et al., 2014; Van Binsbergen et al., 2015). Despite the cost of genotyping 

and genome resequencing have fallen, it is still relatively expensive to use a large number of 

animals to acquire high genomic predictions accuracy. A less expensive solution to reduce the 

costs, increase the number of animals and at the same time improve the genomic prediction 

accuracy is to impute density panels (low or high) to WGS. 

In livestock production, many studies have been developed using HD array data, WGS 

data and also imputed data. Based on a simulated study Meuwissen and Goddard (2010) 

stated that the sequence data prediction accuracy were higher (5-10%) than predictions based 

on dense markers data. Nevertheless, this increase in accuracy has not been observed in a 

simulated study performed by Pérez-Enciso et al. (2015). Despite the genetic background, 

these authors demonstrated that the prediction accuracy did not increase when WGS was use 

compared to HD data. In real data, neither Ober et al. (2012) who worked with Drosophila 

melanogaster nor Calus et al. (2016) in dairy cattle found positives results using WGS 

compared to SNP array.  

Even when imputed file is used minimal increase accuracy was obtained. For instance, 

in cattle the prediction accuracy reported by Hayes et al. (2014) improved 2% when WGS and 

imputed data were compared to SNP array.  In white layer chickens, Heidaritabar et al. (2016) 

hardly improved genomic prediction accuracy (~1%) when the imputed WGS was used 

compared to 60K SNP panel. Similar results were found by Ni et al. (2017) which little or no 

substantial results were obtained in genomic prediction accuracy when using WGS data 

compared to HD data. 

Regardless of the genomic data set used, genomic prediction accuracy can be 

influenced by many factors, such as the trait heritability, the nature of fixed effects, the extent 

of additive genetic relationships between individuals and selection candidates, the 

relationship between animals of reference population with target animals, the size of 

population, the density of the SNP panel  and the statistical method applied for the GEBVs 

estimation (Goddard, 2009; B.J. Hayes et al., 2009; Daetwyler et al., 2010; Hayes et al., 2010; 

de los Campos et al., 2013; Weng et al., 2016). 
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Appropriates genomic predictions approaches have been chosen to take advantage 

of genomic information. In practice, genomic best linear unbiased prediction (GBLUP) 

(VanRaden, 2008) and Bayesian methods are used to perform the genomic predictions. The 

difference between these approaches is related to distribution of SNP effects prior, GBLUP 

assume normal distribution for all SNP effects, while a non-normality distribution is assumed 

by Bayesian methods (Meuwissen et al., 2001; Chen et al., 2014). However, despite the 

variations between these approaches, some results showed no differences in genomic 

prediction using Bayes or GBLUP approach (Hayes et al., 2009; VanRaden et al., 2009; Ober et 

al., 2012; Heidaritabar et al., 2016). 

The aims of this study were to estimate direct genomic values (DGV) and compare 

results from genomic prediction analyses in a Brazilian broiler chicken using both high-density 

(HD) panel and imputed whole-genome sequence (WGS) data performed with BayesC model.  

 

3.2.  MATERIALS AND METHODS 

All experimental protocols related to animal experimentation in this study were 

performed in agreement with the resolution number 010/2012 approved by the Embrapa 

Swine and Poultry Ethics Committee on Animal Utilization to ensure compliance with 

international guidelines for animal welfare. 

 

3.2.1 Population and phenotypes 

The chicken population used in this study was derived from a TT broiler line belonging 

to the Animal Breeding Program from Embrapa Swine and Poultry. Since 1992, multi-trait 

selection has been applied in this line, mainly focused on traits such as body weight, feed 

conversion, carcass weights and cuts yield, fertility, hatchability and to reduce abdominal fat 

and metabolic syndromes (Nones et al., 2012; Venturini et al., 2014). The TT Reference 

population is a broiler population developed in 2008 from the crossing between 92 females 

with 20 males in a hierarchical scheme (1 male: 5 females) producing approximately 1,500 

chickens from five hatches. 

A total of 1,453 animals (703 males and 750 females) were slaughtered at 42 days of 

age after six hours of fasting and body weights at 42 days of age (BW42) were recorded. Blood 
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samples from each animal were collected for DNA extraction and the eviscerated carcass was 

cooled. After six hours of cooling (4°C) the carcass (breast, drumstick and thigh) and organs 

(heart, liver, gizzard and lung) were weighed.  Descriptive statistics of the carcass and organ 

traits involved in the study (Table 1) were obtained through the PROC MEANS procedure of 

SAS® (SAS 9.4, SAS Institute). 

 

Table 1. Number of observations (N), mean, standard deviation (SD), minimum (MIN) 
maximum (MAX) and coefficient of variation (CV) values of carcass and organ traits of broiler 
chickens. 

Trait1 N Mean SD Min Max CV 
Organ weights (g)      

HRT 1421 12.34 2.15 6.30 19.70 17.35 
LIV 1422 52.34 8.73 25.40 82.40 16.68 
GIZ 1423 32.00 6.04 17.80 56.10 18.86 
LUN 1430 15.31 3.06 6.60 24.60 19.98 

Carcass weights (g)      
BRST 1426 500.76 63.48 211.30 710.80 12.68 
DRM 1421 205.87 31.24 86.20 306.60 15.17 
THG 1427 310.49 46.11 113.60 464.40 14.85 

1HRT=Heart; LIV=Liver; GIZ=Gizzard; LUN=Lungs; BW42=Body weight at 42 days of age; BRST=Breast; 
DRUM=Drumstick; THG =Thigh. 
 

3.2.2 Genotyping 

Blood samples of each animal (1,453) were used to extract DNA using PureLink® 

Genomic DNA (Invitrogen, Carlsbad, CA, USA) kit and quantified using Qubit® 2.0 Fluorometer 

(Thermo Fisher Scientific, Waltham, MA, USA). After extraction, the diluted genomic DNA was 

prepared following Affymetrix protocol to perform the genotyping analysis using 600K 

Affymetrix Axiom Genotyping Array (Affymetrix, Inc. Santa Clara, CA, USA). This genotyping 

array was developed using segregating SNPs identified in chicken populations, including four 

commercial broilers (meat-type chicken lines), as described by Kranis et al. (2013).  

Axiom™ Analysis Suite (Affymetrix®) software was used to filter based on DishQC 

parameter, and then PLINK v.1.9 software (Purcell et al., 2007) was used to perform quality 

control analysis and genotype calling. Samples with DishQC of ≥ 0.82 and call rate of ≥ 90% 

were kept. A SNP quality control was applied for removing SNP with call rate lower than 98%, 
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MAF lower than 2% and significant deviations from HWE (p-value < 10-7) leaving 370,608 SNPs 

for further analysis (Moreira et al., 2018). 

 

3.2.3 Imputation 

Data from whole-genome sequencing (WGS) were obtained using the Illumina 

HiSeq2500® System (Illumina, Inc., San Diego, EUA) with coverage of 10X for 84 animals from 

Brazilian broiler and layer lines; 14 of those were randomly selected from the 20 males used 

in the crosses to obtain TT reference population. These data were aligned to Build 5 of the 

chicken reference genome (Gallus_gallus-5.0) with BWA (version GCA_000002315.3). The 

read alignment, as well as, variant calling and quality control were performed following the 

same pipeline adopted by Boschiero et al. (2018) and Moreira et al. (2018). 

After filtering, 12,577,770 SNPs remained in the set of 84 animals sequenced and 

were used as the reference dataset to impute the HD array to sequence data. Imputation from 

600K to WGS was performed using BEAGLE 4.1 software (Browning and Browning, 2008) with 

20 iterations. BEAGLE does not use pedigree information; thus genotypes are predicted based 

on linkage disequilibrium information using a Hidden Markov Model (HMM) process.  

Imputation accuracy was assessed using the validation subset approach. Individuals 

used in WGS (n=84) were randomly split into 14 subsets with 6 animals per group and each 

group was used as a validation set once. The imputation process was carried out again for 

each validation subset masking the SNPs from HD, and then the imputed values for the 

validation set were compared to their observed values from sequence. Imputation accuracy 

was defined as the average squared correlation between observed and predicted variants. 

After imputation, a quality control was applied to select the sequence variants 

considering MAF greater than 0.015 and imputation accuracy equal to or greater than 0.95 

(e.g., r² ≥ 0.95) leaving 1,421,371 SNPs for further analysis. Furthermore, SNPs were classified 

into five classes by Variant Effect Predictor (VEP) software (version vep-93.4; McLaren et al., 

2016) using galGal5 as a reference genome.  

The sequence variants selected to include in further analysis included UTR3’, UTR5’, 

downstream, upstream and intergenic regions of the genome. Genetic variants annotated in 

those regions were considered potentially functional and thus could have a role in the 

regulation of the phenotype or even be responsible for control of gene expression (Moreira 



50 
 

 
 

et al., 2018). Variants in common between the HD and WGS sets were removed leaving 

1,095,053 SNPs to compose the WGS dataset, which consists of 69% of intergenic regions of 

the genome, 16% of downstream, 14% upstream and 1% of UTR3’and UTR5’, respectively. 

Then, from those non-common variants 370,608 SNPs were randomly selected to compose 

the final WGS dataset. 

 

3.2.4 Prediction  

Variant subsets 

Seven subsets (0.5, 1, 5, 10, 20, 40 and 80% of SNP) were selected from the full HD 

panel to determine the impact of using reduced subsets of SNP on genomic prediction. These 

subsets were chosen based on SNP effects, such that 80% of SNP represented the 80% of SNPs 

with largest effect and so on. Imputed variants from WGS were also used and mimicked the 

number of SNP chosen for the subsets mentioned above. 

 

Direct Genomic Values 

Direct genomic values (DGV) of each trait [heart (HRT), liver (LIV), gizzard (GIZ), lungs 

(LUN), breast (BRT), thigh (THG) and drumstick (DRM)] were predicted using GenSel software 

package (Garrick and Fernando, 2013). The following statistical BayesC model was used 

(Habier et al., 2011; Kizilkaya et al., 2010): 

 

y = Xb + ෍ 𝑧௝𝑎௝

௄

௝ୀଵ

+ e 

 

where y is the vector of observation (nx1); X is the design matrix for fixed effects; b 

is the vector of fixed effects which included sex and hatch; K is the number of SNPs; 𝑧௝  is a 

vector of genotypes (nx1) at SNP j based on the number of B alleles (−10, 0, +10); 𝑎௝ is the 

additive effect of  SNP j; e is the vector of random error effects with a distribution ~ N(0, Iσe2), 

where I is an identity matrix and σe2 is the residual variance. The prior for u depends on the 

variance, σu2 and the prior probability (𝜋) that a SNP has zero effect: 
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𝑢|𝜋, 𝜎௨
ଶ = ൜

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋

~𝑁(0, 𝜎௨
ଶ) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝜋).

    

 

Although BayesC model does not assume a known variance, all SNPs effect have a 

common variance which follows a scaled inverse 𝜒ଶ prior with 𝜈௨ degrees of freedom and 𝑆௔
ଶ 

scale parameter. Thus, all SNPs contribute towards the prediction of DGV. The ssGBLUP model 

was used to estimate the genetic and residual variances for each trait and these values were 

used as priors to run the BayesC model (Rolf et al., 2015; Heidaritabar et al., 2016).  

The π value was assumed according to SNPs subsets to avoid fitting more SNPs than 

the number of animals in a given iteration. We obtained 41,000 Markov Chain Monte Carlo 

(MCMC) samples and the first 1,000 samples discarded as burn-in. A map file was used to 

position the markers split into 1 Mb windows.  

 

3.2.5 Assessment of accuracy and bias 

Spearman correlation coefficients for direct genomic values (DGV) between each 

subset (0.5%, 1%, 5%, 10%, 20%, 40%, 80% and 100% of SNPs) were calculated to determine 

the impact of using reduced subsets of SNP on the rank of animals. All the subsets were 

selected based on the SNP effect from the full SNP panel.   

Predictive ability was defined as the correlation (r) between DGV and phenotypes 

corrected for fixed effects (y*) for animals in the validation population for each trait (Legarra 

et al., 2008): 

 

𝑟 = 𝑐𝑜𝑟(𝐷𝐺𝑉, 𝑦∗) 

 

Approximately one-third of the animals had their phenotypes masked and were 

chosen to be in the validation set. These animals were randomly selected, and three subsets 

were created to ensure that all the animals were in the validation set once. Moreover, the 

regression coefficients of the adjusted phenotype on DGV in each scenario were used to 

measure the degree of similarity between the predictions. A regression coefficient equal to 

one indicates no bias, whereas values greater than 1 or lower than 1 indicates that DGV is 

under- or over dispersed, respectively. 
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3.3.  RESULTS  

3.3.1 Imputation accuracy  

The average of imputation accuracy from the HD panel to whole sequence imputation 

estimated by Beagle and assessed using the validation subset approach was 0.84 and ranged 

from 0.79 to 0.88 across all subsets.  

 

3.3.2 MAF distribution 

The distribution of MAF for the HD array was uniform, whereas the MAF distribution 

for WGS variants retained for further analyses were not, it shows a lightly right skewed (Figure 

1). After applying the threshold in both HD panel (MAF < 0.02) and WGS data (MAF > 0.015), 

the average MAF was 0.26.  

 
Figure 1. Distribution of minor allele frequency (MAF) for high density (HD) array data and whole-
genome sequencing (WGS) data, after post-imputation filtering and before selecting the variants. 
 

 
3.3.3 Descriptive results 

The descriptive statistics of the remaining data are presented in Table 1. The 

estimates of variance component and heritability for organ and carcass traits obtained 

through BayesC model using both HD and WGS density panels are given in Tables 2. Despite 

the selection of variants, the estimation heritabilities were slightly lower when the WGS 

dataset were used, due to the reduction of genetic variance estimation. In general, small 

differences in these estimates were observed between the dataset used (HD panel and WGS 

dataset). 
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High heritability was estimated for GIZ, with values greater than 0.40 for both 

datasets. Moderate estimates were obtained for HRT, LIV, BRST, TGH and DRM, varying from 

0.28 to 0.33, whereas LUN had low estimation of heritability (0.12), regardless the dataset 

used.  

 

Table 2. Additive genetic variance (𝜎௔
ଶ), residual variance (𝜎௘

ଶ), phenotypic variance (𝜎௣
ଶ) and 

genomic posterior mean heritability estimates (ℎଶ), for organ and carcass trait of broiler 
chicken using BayesC (HD panel). 

Trait¹ 𝝈𝒂
𝟐 𝝈𝒆

𝟐 𝝈𝒑
𝟐 𝒉𝟐 

  HD Panel   
Organ weight    

HRT 0.83 1.76 2.59 0.32 
LIV 20.34 46.72 67.07 0.30 
GIZ 13.85 18.92 32.73 0.42 
LUN 0.74 5.26 5.99 0.12 

Carcass weight    
BRST 947.69 2099.08 3046.77 0.31 
DRM 146.95 299.98 446.93 0.33 
THG 384.11 884.28 1268.39 0.30 

WGS Dataset 
Organ weight    

HRT 0.77 1.81 2.59 0.30 
LIV 19.52 47.42 66.94 0.29 
GIZ 13.26 18.48 32.75 0.40 
LUN 0.72 5.28 6.00 0.12 

Carcass weight    
BRST 921.94 2123.82 3045.76 0.30 
DRM 141.03 305.98 447.01 0.31 
THG 361.43 907.60 1269.03 0.28 

1HRT=heart weight (g); LIV=liver weight (g); GIZ=gizzard weight (g); LUN=lung weight (g); BRST=breast weight (g); 
DRM=drumstick weight (g); THG=thigh weight (g).  

 
3.3.4 Prediction 

Regression coefficients were similar for both the HD and WGS sets of SNPs, ranging 

from 0.97 to 16.39 across scenarios (Table 3). For DRUM, a slightly underestimation of the 

breeding values was observed when the full HD panel was used (0.970). The same pattern was 

observed using WGS dataset (0.998). All regression coefficients were underestimation when 

especially lower SNP density (0.5%, 1%, 5%, 10%, 20%) were used.  
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However, better regression coefficients were obtained when at least 40% of SNPs 

were used in the analyses, except for LUN and BRST, which regression coefficients lower than 

1.3 were obtained when 80% and 100% of SNPs were used. Except for BRST, the regression 

coefficients close to 1 were acquired only with 100% of SNP. 

Regarding the predictive ability, traits with higher heritabilities (e.g. GIZ and THG) 

showed higher predictive ability than trait with lower heritabilities (e.g. LUN), which suggest 

that traits with low heritability requires more records to achieve higher predictive abilities as 

traits with high heritabilities. Compared to WGS dataset, the predictive ability obtained by HD 

panel was slightly higher from 10% of SNPs, but no significant improvement was achieved in 

the predictive ability when more than 20% of SNPs were used (Table 4). In general, predictive 

abilities were greater for subsets of SNP with largest estimated effect. Predictive ability across 

all traits improved when the number of SNPs with major effects rose.  
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Table 3. Regression coefficients (by*, DGV) and standard errors (in brackets) for organ and carcass traits in HD panel and WGS data in each 
scenario (SNP percentage). 

HD panel 
SNP (%) HRT¹ LIV¹ GIZ¹ LUN¹ BRST¹ DRM¹ THG¹ 

0.5 7.60 (1.219) 6.04 (1.011) 7.39 (0.9722) 16.39 (4.237) 10.90 (1.459) 9.14 (1.111) 8.07 (1.261) 
1 5.53 (0.839) 4.54 (0.693) 5.50 (0.652) 11.73 (2.845) 7.65 (0.978) 6.49 (0.75) 5.64 (0.834) 
5 2.71 (0.376) 2.59 (0.333) 2.59 (0.267) 5.32 (1.193) 3.56 (0.430) 2.93 (0.328) 2.54 (0.347) 

10 2.14 (0.286) 2.08 (0.258) 1.96 (0.196) 3.73 (0.826) 2.71 (0.321) 2.23 (0.245) 1.94 (0.257) 
20 1.72 (0.225) 1.68 (0.204) 1.56 (0.153) 2.59 (0.575) 2.08 (0.243) 1.74 (0.193) 1.54 (0.199) 
40 1.38 (0.180) 1.35 (0.162) 1.27 (0.123) 1.80 (0.400) 1.65 (0.189) 1.39 (0.154) 1.24 (0.157) 
80 1.15 (0.148) 1.10 (0.132) 1.06 (0.102) 1.26 (0.285) 1.32 (0.151) 1.12 (0.126) 1.01 (0.127) 

100 1.10 (0.142) 1.05 (0.126) 1.02 (0.098) 1.14 (0.261) 1.24 (0.143) 1.06 (0.120) 0.97 (0.121) 
WGS data 

0.5 8.09 (1.356) 5.91 (1.046) 7.23 (0.934) 12.73 (3.902) 9.31 (1.441) 9.17 (1.161) 8.95 (1.464) 
1 5.90 (0.943) 4.48 (0.718) 5.24 (0.636) 9.94 (2.691) 6.91 (0.993) 6.60 (0.789) 6.11 (0.933) 
5 3.01 (0.428) 2.63 (0.351) 2.52 (0.275) 5.10 (1.174) 3.49 (0.436) 3.08 (0.341) 2.87 (0.386) 

10 2.35 (0.323) 2.13 (0.270) 1.94 (0.202) 3.51 (0.804) 2.67 (0.323) 2.34 (0.256) 2.16 (0.283) 
20 1.85 (0.249) 1.72 (0.211) 1.56 (0.157) 2.47 (0.561) 2.09 (0.246) 1.83 (0.199) 1.67 (0.213) 
40 1.47 (0.196) 1.36 (0.166) 1.28 (0.127) 1.72 (0.389) 1.64 (0.188) 1.43 (0.157) 1.31 (0.164) 
80 1.20 (0.159) 1.10 (0.133) 1.07 (0.105) 1.19 (0.275) 1.31 (0.149) 1.13 (0.127) 1.05 (0.130) 

100 1.14 (0.151) 1.04 (0.126) 1.02 (0.100) 1.08 (0.251) 1.24 (0.141) 1.07 (0.121) 0.99 (0.123) 
1HRT=Heart weight (g); LIV=Liver weight (g); GIZ=Gizzard weight (g); LUN=Lungs weight (g); BRST=Breast weight (g); DRUM=Drumstick weight (g); THG =Thigh weight (g). 
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Table 4. Predictive abilities of HD panel and WGS data in each scenario (SNP percentage). 

HD panel 
SNP (%) HRT¹ LIV¹ GIZ¹ LUN¹ BRST¹ DRM¹ THG¹ 

0.5 0.289 0.286 0.381 0.182 0.338 0.346 0.320 
1 0.302 0.311 0.407 0.193 0.351 0.365 0.335 
5 0.329 0.354 0.441 0.208 0.363 0.393 0.357 

10 0.338 0.362 0.448 0.211 0.368 0.400 0.365 
20 0.341 0.368 0.451 0.213 0.370 0.400 0.370 
40 0.344 0.369 0.453 0.213 0.373 0.399 0.376 
80 0.347 0.370 0.453 0.211 0.374 0.396 0.378 

100 0.347 0.370 0.453 0.210 0.374 0.395 0.379 
WGS data 

0.5 0.294 0.271 0.371 0.169 0.303 0.326 0.304 
1 0.311 0.295 0.389 0.185 0.323 0.351 0.321 
5 0.332 0.343 0.417 0.205 0.355 0.389 0.354 

10 0.337 0.355 0.430 0.208 0.363 0.397 0.360 
20 0.339 0.364 0.437 0.209 0.369 0.399 0.367 
40 0.340 0.365 0.441 0.210 0.373 0.399 0.374 
80 0.342 0.367 0.442 0.208 0.375 0.396 0.376 

100 0.343 0.367 0.442 0.206 0.375 0.394 0.377 
1HRT=Heart weight (g); LIV=Liver weight (g); GIZ=Gizzard weight (g); LUN=Lungs weight (g); BRST=Breast weight 
(g); DRM=Drumstick weight (g); THG =Thigh weight (g).  
 

3.4.  DISCUSSION 

In this study we investigated if the selection of subsets of major SNP effects, such as 

those described above, will improve the genomic selection by estimating the predictive ability 

of DGV for organs (heart, liver, lungs and gizzard) and carcass (breast, thigh and drumstick) 

traits with HD array and sequence data using BayesC model in broiler chickens. 

Major SNPs identified were evaluated based on their effects estimated in training 

population and by re-estimation their effects in the validation set. Genomic prediction 

methods might be able to estimate the effect of a large number of SNPs (p) from a smaller 

number of phenotypic information. Due to the p>>n problem, the availability of HD data set 

or sequence data used to perform the genomic evaluation can lead to a poor estimation of 

SNP effects, an error in the estimation of the causal mutations effect and a considerable part 

of causal mutations with large effect might be distributed over multiple SNPs (Heidaritabar et 

al., 2016). Approaches like BayesC have been developed to solve p>>n problem by Markov 
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Chain Monte Carlo (MCMC), the idea is retaining the causal mutation by the regressing toward 

zero the false-positive or uninformative SNP effects. 

 

3.4.1. Genomic heritability  

The estimates of variance components and heritability for carcass and organ traits 

obtained through BayesC are provided in Table 2. The heritability estimates varied from low 

(LUN) to moderate (HRT, LIV, LUN, BRST and DRM) and high (GIZ).  

Pedigree-based estimates of heritability have been reported in the literature for most 

of traits used in this study. Using the same population (Embrapa TT), Venturini et al. (2014) 

reported similar pedigree-based heritability estimates for LIV (0.33±0.07) and  GIZ (0.44±0.08) 

and THG (0.29±0.06) to these reported herein. However, the genomic heritability estimate 

found in this study for BRST and DRUM were lower (0.31, 0.33 and 0.30) than the estimate in 

Venturini et al. (2014), BRST (0.37±0.07) and DRM (0.35±0.07).  

THG and DRUM are commonly analyzed together as a leg trait, so heritability 

estimates for those traits are scarce in the literature. Heritability estimates for leg in chicken 

were reported by Argentão et al. (2002), Rance et al. (2002) and Gaya et al. (2006). In a study 

with a male broiler line, Gaya et al. (2006) reported heritability estimates for HRT (0.38±0.04), 

LIV (0.25±0.03), GIZ (0.39±0.04) and BRST (0.33±0.03). Rance et al. (2002) reported heritability 

estimates for HRT (0.30±0.08), LIV (0.08±0.06), GIZ (0.52±0.10). 

The heritability estimates for LUN in broiler chicken are not common in the literature. 

Using a F2 experimental population Ledur et al. (2006) reported similar pedigree-based 

heritability estimates for LUN (0.10) to this reported herein. Although LUN is not considered 

an economically important trait, it has been related to pulmonary hypertension (e.g. ascites). 

Heritability estimation for ascites have been reported by several authors (Moghadam et al., 

2001; Deeb et al., 2002; Pakdel et al., 2002; Ledur et al., 2006; Pavlidis et al., 2007; Wideman 

et al. 2013).  
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3.4.2 Correlation between DGV  

Eight differing subsets were assessed in HD and WGS data set (results not shown). 

The DGV correlation for both data sets increase with increase of the percentage of SNPs.  

Across all traits, DGV estimated with at least 5% of SNPs were highly correlated (>0.94) with 

DGV estimated from the complete HD array. Indeed, lower correlations (>0.80) were observed 

when a smaller number of SNPs sets (0.5% and 1%) were used. Although, the same pattern 

has been noted with WGS, no significant improvement in the correlation value was acquired 

with this dataset. Comparing the correlations between DGV using different genotype datasets 

our results show no difference when 20% or 100% of SNPs were used in the analyses which 

suggests that the use of evenly-spaced lower-density panel could provide a very similar 

ranking of EBV at a potentially lower cost, as proposed by Habier et al (2009). 

 
3.4.3 Regression coefficients 

DGV bias in each scenario was calculated as the regression of adjusted phenotype on 

DGV (Table 3). A regression coefficient (slope) equal to one indicates no bias. In practice this 

means that a suitable genetic merit prediction method has been applied (Vitezica et al., 2011). 

Our results showed higher regression coefficients in HD data set for HRT, THG and DRM 

whereas for the other traits (LIV, GIZ, LUN and BRST) showed lower values when the same 

data set was used. In both data sets, DRM and LUN showed the lowest and the highest 

regression coefficient, respectively.  

Even though the regression values decrease with the increase of SNP density, 

showing better values for 80% and 100% of SNPs for all traits, the regression coefficients were 

significantly underestimation in the DGV predictions in lowest SNP densities, regardless the 

data set used. A possible explanation for this bias underestimation may be related to the fact 

that those SNPs are not explaining a large fraction of variation or they are not causative. In 

addition, the non-re-estimated of the SNPs effect after the SNP selection can also be a reason 

for the underestimation in the DGV predictions. 
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3.4.5 Predictive ability 

Predictive ability of DGV was evaluated based on the correlation between the DGV 

and phenotypes corrected for fixed effects (Table 4) in the validation set. In the both data set 

the GIZ showed the highest prediction ability value range from 0.37 to 0.45, while LUN had 

the lowest value range from 0.16 to 0.21. Our findings showed there is no clearly significant 

increase in prediction accuracy over the imputed file compared to HD dataset regardless of 

the SNP percentage used. 

Simulated data has shown an increase in genomic prediction accuracy when the 

causal mutations were included in the analyses (Meuwissen and Goddard, 2010; Druet et al., 

2014; MacLeod et al., 2014). Contrary to those findings, our study showed no significant 

increase in prediction accuracy over the imputed file compared to HD dataset. Indeed, lower 

or no significant benefits had been achieved in predictive ability gain using sequence data 

comparing with SNP array (Ober et al., 2012; Van Binsbergen et al., 2015; Heidaritabar et al., 

2016; MacLeod et al., 2016; VanRaden et al., 2017; Frischknecht et al., 2017).  

Many reasons might be responsible to explain why not any increase in predictive 

ability was observed in those results. In a simulated study, Clark et al. (2011) suggested that 

the increase of genomic prediction accuracy will be smaller when the trait is highly polygenic 

especially in a small reference population. Further, false positives, including sequencing, 

alignment and calling errors, which are not included in simulated analysis but are present in 

real data, can also be responsible for these results (VanRaden et al., 2017).  

Another possible reason is related to the population structure. When a small effective 

population size suffer selection process over the years no significant results in accuracy are 

obtained resulting in a high level of LD (MacLeod et al., 2014). Thus, in this type of population, 

almost the totally genetic variance can be explained by the SNPs genetic variance as result of 

the relationship between individuals, which leads to a low extension of LD (VanRaden et al., 

2009). Hence, a large number of SNPs are required to reach the genomic prediction accuracy 

(Wray et al., 2007).  

One important factor that is not usually taken into account is the WGS full 

information. In livestock studies the use of WGS data is commonly focused on SNPs, but, in 
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theory, this data also include all DNA variants, such as, InDels and copy number variations 

(CNV) which are important role to gene expression and phenotype variation (McCarroll et al., 

2006; Redon et al., 2006) and therefore, may be influence in the prediction ability. Moreover, 

select variants and use appropriate prediction models are needed to increase the predictive 

ability since the density of WGS data is higher compared to HD array. 

 

3.5. CONCLUSION 

In this study, we investigated different density marker panels for prediction of 

genomic breeding values in a broiler chicken population. Our results demonstrate that there 

is no difference when 20% or 100% of SNPs were used to inform kinship in the prediction of 

direct genomic breeding values, but currently, suggest that at least 20% of SNP (~74,122 SNPs) 

can provide consistent genetic evaluations.  

Therefore, the use of lower-density arrays, if at a lower cost, could be used to rank 

individual based on genetic merit. In addition, no significant improvements in genomic 

prediction accuracy were noticed when imputation to WGS data were used in broiler chickens 

comparing with the predictions based on HD array. Increasing the number of sequenced 

animals or reducing the relationship between animals in reference population may help to 

improve the predictions when WGS is available.  
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